]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/i915_irq.c
Merge tag 'mips_5.12_1' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
[linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/circ_buf.h>
32 #include <linux/slab.h>
33 #include <linux/sysrq.h>
34
35 #include <drm/drm_drv.h>
36 #include <drm/drm_irq.h>
37
38 #include "display/intel_display_types.h"
39 #include "display/intel_fifo_underrun.h"
40 #include "display/intel_hotplug.h"
41 #include "display/intel_lpe_audio.h"
42 #include "display/intel_psr.h"
43
44 #include "gt/intel_breadcrumbs.h"
45 #include "gt/intel_gt.h"
46 #include "gt/intel_gt_irq.h"
47 #include "gt/intel_gt_pm_irq.h"
48 #include "gt/intel_rps.h"
49
50 #include "i915_drv.h"
51 #include "i915_irq.h"
52 #include "i915_trace.h"
53 #include "intel_pm.h"
54
55 /**
56  * DOC: interrupt handling
57  *
58  * These functions provide the basic support for enabling and disabling the
59  * interrupt handling support. There's a lot more functionality in i915_irq.c
60  * and related files, but that will be described in separate chapters.
61  */
62
63 /*
64  * Interrupt statistic for PMU. Increments the counter only if the
65  * interrupt originated from the the GPU so interrupts from a device which
66  * shares the interrupt line are not accounted.
67  */
68 static inline void pmu_irq_stats(struct drm_i915_private *i915,
69                                  irqreturn_t res)
70 {
71         if (unlikely(res != IRQ_HANDLED))
72                 return;
73
74         /*
75          * A clever compiler translates that into INC. A not so clever one
76          * should at least prevent store tearing.
77          */
78         WRITE_ONCE(i915->pmu.irq_count, i915->pmu.irq_count + 1);
79 }
80
81 typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
82 typedef u32 (*hotplug_enables_func)(struct drm_i915_private *i915,
83                                     enum hpd_pin pin);
84
85 static const u32 hpd_ilk[HPD_NUM_PINS] = {
86         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
87 };
88
89 static const u32 hpd_ivb[HPD_NUM_PINS] = {
90         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
91 };
92
93 static const u32 hpd_bdw[HPD_NUM_PINS] = {
94         [HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A),
95 };
96
97 static const u32 hpd_ibx[HPD_NUM_PINS] = {
98         [HPD_CRT] = SDE_CRT_HOTPLUG,
99         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
100         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
101         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
102         [HPD_PORT_D] = SDE_PORTD_HOTPLUG,
103 };
104
105 static const u32 hpd_cpt[HPD_NUM_PINS] = {
106         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
107         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
108         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
109         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
110         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
111 };
112
113 static const u32 hpd_spt[HPD_NUM_PINS] = {
114         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
115         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
116         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
117         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
118         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT,
119 };
120
121 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
122         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
123         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
124         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
125         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
126         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
127         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN,
128 };
129
130 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
131         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
132         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
133         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
134         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
135         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
136         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
137 };
138
139 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
140         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
141         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
142         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
143         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
144         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
145         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
146 };
147
148 static const u32 hpd_bxt[HPD_NUM_PINS] = {
149         [HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A),
150         [HPD_PORT_B] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_B),
151         [HPD_PORT_C] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_C),
152 };
153
154 static const u32 hpd_gen11[HPD_NUM_PINS] = {
155         [HPD_PORT_TC1] = GEN11_TC_HOTPLUG(HPD_PORT_TC1) | GEN11_TBT_HOTPLUG(HPD_PORT_TC1),
156         [HPD_PORT_TC2] = GEN11_TC_HOTPLUG(HPD_PORT_TC2) | GEN11_TBT_HOTPLUG(HPD_PORT_TC2),
157         [HPD_PORT_TC3] = GEN11_TC_HOTPLUG(HPD_PORT_TC3) | GEN11_TBT_HOTPLUG(HPD_PORT_TC3),
158         [HPD_PORT_TC4] = GEN11_TC_HOTPLUG(HPD_PORT_TC4) | GEN11_TBT_HOTPLUG(HPD_PORT_TC4),
159         [HPD_PORT_TC5] = GEN11_TC_HOTPLUG(HPD_PORT_TC5) | GEN11_TBT_HOTPLUG(HPD_PORT_TC5),
160         [HPD_PORT_TC6] = GEN11_TC_HOTPLUG(HPD_PORT_TC6) | GEN11_TBT_HOTPLUG(HPD_PORT_TC6),
161 };
162
163 static const u32 hpd_icp[HPD_NUM_PINS] = {
164         [HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A),
165         [HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B),
166         [HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C),
167         [HPD_PORT_TC1] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC1),
168         [HPD_PORT_TC2] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC2),
169         [HPD_PORT_TC3] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC3),
170         [HPD_PORT_TC4] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC4),
171         [HPD_PORT_TC5] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC5),
172         [HPD_PORT_TC6] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC6),
173 };
174
175 static const u32 hpd_sde_dg1[HPD_NUM_PINS] = {
176         [HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A),
177         [HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B),
178         [HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C),
179         [HPD_PORT_D] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_D),
180 };
181
182 static void intel_hpd_init_pins(struct drm_i915_private *dev_priv)
183 {
184         struct i915_hotplug *hpd = &dev_priv->hotplug;
185
186         if (HAS_GMCH(dev_priv)) {
187                 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
188                     IS_CHERRYVIEW(dev_priv))
189                         hpd->hpd = hpd_status_g4x;
190                 else
191                         hpd->hpd = hpd_status_i915;
192                 return;
193         }
194
195         if (INTEL_GEN(dev_priv) >= 11)
196                 hpd->hpd = hpd_gen11;
197         else if (IS_GEN9_LP(dev_priv))
198                 hpd->hpd = hpd_bxt;
199         else if (INTEL_GEN(dev_priv) >= 8)
200                 hpd->hpd = hpd_bdw;
201         else if (INTEL_GEN(dev_priv) >= 7)
202                 hpd->hpd = hpd_ivb;
203         else
204                 hpd->hpd = hpd_ilk;
205
206         if ((INTEL_PCH_TYPE(dev_priv) < PCH_DG1) &&
207             (!HAS_PCH_SPLIT(dev_priv) || HAS_PCH_NOP(dev_priv)))
208                 return;
209
210         if (HAS_PCH_DG1(dev_priv))
211                 hpd->pch_hpd = hpd_sde_dg1;
212         else if (HAS_PCH_TGP(dev_priv) || HAS_PCH_JSP(dev_priv) ||
213                  HAS_PCH_ICP(dev_priv) || HAS_PCH_MCC(dev_priv))
214                 hpd->pch_hpd = hpd_icp;
215         else if (HAS_PCH_CNP(dev_priv) || HAS_PCH_SPT(dev_priv))
216                 hpd->pch_hpd = hpd_spt;
217         else if (HAS_PCH_LPT(dev_priv) || HAS_PCH_CPT(dev_priv))
218                 hpd->pch_hpd = hpd_cpt;
219         else if (HAS_PCH_IBX(dev_priv))
220                 hpd->pch_hpd = hpd_ibx;
221         else
222                 MISSING_CASE(INTEL_PCH_TYPE(dev_priv));
223 }
224
225 static void
226 intel_handle_vblank(struct drm_i915_private *dev_priv, enum pipe pipe)
227 {
228         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
229
230         drm_crtc_handle_vblank(&crtc->base);
231 }
232
233 void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
234                     i915_reg_t iir, i915_reg_t ier)
235 {
236         intel_uncore_write(uncore, imr, 0xffffffff);
237         intel_uncore_posting_read(uncore, imr);
238
239         intel_uncore_write(uncore, ier, 0);
240
241         /* IIR can theoretically queue up two events. Be paranoid. */
242         intel_uncore_write(uncore, iir, 0xffffffff);
243         intel_uncore_posting_read(uncore, iir);
244         intel_uncore_write(uncore, iir, 0xffffffff);
245         intel_uncore_posting_read(uncore, iir);
246 }
247
248 void gen2_irq_reset(struct intel_uncore *uncore)
249 {
250         intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
251         intel_uncore_posting_read16(uncore, GEN2_IMR);
252
253         intel_uncore_write16(uncore, GEN2_IER, 0);
254
255         /* IIR can theoretically queue up two events. Be paranoid. */
256         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
257         intel_uncore_posting_read16(uncore, GEN2_IIR);
258         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
259         intel_uncore_posting_read16(uncore, GEN2_IIR);
260 }
261
262 /*
263  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
264  */
265 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
266 {
267         u32 val = intel_uncore_read(uncore, reg);
268
269         if (val == 0)
270                 return;
271
272         drm_WARN(&uncore->i915->drm, 1,
273                  "Interrupt register 0x%x is not zero: 0x%08x\n",
274                  i915_mmio_reg_offset(reg), val);
275         intel_uncore_write(uncore, reg, 0xffffffff);
276         intel_uncore_posting_read(uncore, reg);
277         intel_uncore_write(uncore, reg, 0xffffffff);
278         intel_uncore_posting_read(uncore, reg);
279 }
280
281 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
282 {
283         u16 val = intel_uncore_read16(uncore, GEN2_IIR);
284
285         if (val == 0)
286                 return;
287
288         drm_WARN(&uncore->i915->drm, 1,
289                  "Interrupt register 0x%x is not zero: 0x%08x\n",
290                  i915_mmio_reg_offset(GEN2_IIR), val);
291         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
292         intel_uncore_posting_read16(uncore, GEN2_IIR);
293         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
294         intel_uncore_posting_read16(uncore, GEN2_IIR);
295 }
296
297 void gen3_irq_init(struct intel_uncore *uncore,
298                    i915_reg_t imr, u32 imr_val,
299                    i915_reg_t ier, u32 ier_val,
300                    i915_reg_t iir)
301 {
302         gen3_assert_iir_is_zero(uncore, iir);
303
304         intel_uncore_write(uncore, ier, ier_val);
305         intel_uncore_write(uncore, imr, imr_val);
306         intel_uncore_posting_read(uncore, imr);
307 }
308
309 void gen2_irq_init(struct intel_uncore *uncore,
310                    u32 imr_val, u32 ier_val)
311 {
312         gen2_assert_iir_is_zero(uncore);
313
314         intel_uncore_write16(uncore, GEN2_IER, ier_val);
315         intel_uncore_write16(uncore, GEN2_IMR, imr_val);
316         intel_uncore_posting_read16(uncore, GEN2_IMR);
317 }
318
319 /* For display hotplug interrupt */
320 static inline void
321 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
322                                      u32 mask,
323                                      u32 bits)
324 {
325         u32 val;
326
327         lockdep_assert_held(&dev_priv->irq_lock);
328         drm_WARN_ON(&dev_priv->drm, bits & ~mask);
329
330         val = intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_EN);
331         val &= ~mask;
332         val |= bits;
333         intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_EN, val);
334 }
335
336 /**
337  * i915_hotplug_interrupt_update - update hotplug interrupt enable
338  * @dev_priv: driver private
339  * @mask: bits to update
340  * @bits: bits to enable
341  * NOTE: the HPD enable bits are modified both inside and outside
342  * of an interrupt context. To avoid that read-modify-write cycles
343  * interfer, these bits are protected by a spinlock. Since this
344  * function is usually not called from a context where the lock is
345  * held already, this function acquires the lock itself. A non-locking
346  * version is also available.
347  */
348 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
349                                    u32 mask,
350                                    u32 bits)
351 {
352         spin_lock_irq(&dev_priv->irq_lock);
353         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
354         spin_unlock_irq(&dev_priv->irq_lock);
355 }
356
357 /**
358  * ilk_update_display_irq - update DEIMR
359  * @dev_priv: driver private
360  * @interrupt_mask: mask of interrupt bits to update
361  * @enabled_irq_mask: mask of interrupt bits to enable
362  */
363 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
364                             u32 interrupt_mask,
365                             u32 enabled_irq_mask)
366 {
367         u32 new_val;
368
369         lockdep_assert_held(&dev_priv->irq_lock);
370         drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
371
372         new_val = dev_priv->irq_mask;
373         new_val &= ~interrupt_mask;
374         new_val |= (~enabled_irq_mask & interrupt_mask);
375
376         if (new_val != dev_priv->irq_mask &&
377             !drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) {
378                 dev_priv->irq_mask = new_val;
379                 intel_uncore_write(&dev_priv->uncore, DEIMR, dev_priv->irq_mask);
380                 intel_uncore_posting_read(&dev_priv->uncore, DEIMR);
381         }
382 }
383
384 /**
385  * bdw_update_port_irq - update DE port interrupt
386  * @dev_priv: driver private
387  * @interrupt_mask: mask of interrupt bits to update
388  * @enabled_irq_mask: mask of interrupt bits to enable
389  */
390 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
391                                 u32 interrupt_mask,
392                                 u32 enabled_irq_mask)
393 {
394         u32 new_val;
395         u32 old_val;
396
397         lockdep_assert_held(&dev_priv->irq_lock);
398
399         drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
400
401         if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
402                 return;
403
404         old_val = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PORT_IMR);
405
406         new_val = old_val;
407         new_val &= ~interrupt_mask;
408         new_val |= (~enabled_irq_mask & interrupt_mask);
409
410         if (new_val != old_val) {
411                 intel_uncore_write(&dev_priv->uncore, GEN8_DE_PORT_IMR, new_val);
412                 intel_uncore_posting_read(&dev_priv->uncore, GEN8_DE_PORT_IMR);
413         }
414 }
415
416 /**
417  * bdw_update_pipe_irq - update DE pipe interrupt
418  * @dev_priv: driver private
419  * @pipe: pipe whose interrupt to update
420  * @interrupt_mask: mask of interrupt bits to update
421  * @enabled_irq_mask: mask of interrupt bits to enable
422  */
423 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
424                          enum pipe pipe,
425                          u32 interrupt_mask,
426                          u32 enabled_irq_mask)
427 {
428         u32 new_val;
429
430         lockdep_assert_held(&dev_priv->irq_lock);
431
432         drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
433
434         if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
435                 return;
436
437         new_val = dev_priv->de_irq_mask[pipe];
438         new_val &= ~interrupt_mask;
439         new_val |= (~enabled_irq_mask & interrupt_mask);
440
441         if (new_val != dev_priv->de_irq_mask[pipe]) {
442                 dev_priv->de_irq_mask[pipe] = new_val;
443                 intel_uncore_write(&dev_priv->uncore, GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
444                 intel_uncore_posting_read(&dev_priv->uncore, GEN8_DE_PIPE_IMR(pipe));
445         }
446 }
447
448 /**
449  * ibx_display_interrupt_update - update SDEIMR
450  * @dev_priv: driver private
451  * @interrupt_mask: mask of interrupt bits to update
452  * @enabled_irq_mask: mask of interrupt bits to enable
453  */
454 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
455                                   u32 interrupt_mask,
456                                   u32 enabled_irq_mask)
457 {
458         u32 sdeimr = intel_uncore_read(&dev_priv->uncore, SDEIMR);
459         sdeimr &= ~interrupt_mask;
460         sdeimr |= (~enabled_irq_mask & interrupt_mask);
461
462         drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
463
464         lockdep_assert_held(&dev_priv->irq_lock);
465
466         if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
467                 return;
468
469         intel_uncore_write(&dev_priv->uncore, SDEIMR, sdeimr);
470         intel_uncore_posting_read(&dev_priv->uncore, SDEIMR);
471 }
472
473 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
474                               enum pipe pipe)
475 {
476         u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
477         u32 enable_mask = status_mask << 16;
478
479         lockdep_assert_held(&dev_priv->irq_lock);
480
481         if (INTEL_GEN(dev_priv) < 5)
482                 goto out;
483
484         /*
485          * On pipe A we don't support the PSR interrupt yet,
486          * on pipe B and C the same bit MBZ.
487          */
488         if (drm_WARN_ON_ONCE(&dev_priv->drm,
489                              status_mask & PIPE_A_PSR_STATUS_VLV))
490                 return 0;
491         /*
492          * On pipe B and C we don't support the PSR interrupt yet, on pipe
493          * A the same bit is for perf counters which we don't use either.
494          */
495         if (drm_WARN_ON_ONCE(&dev_priv->drm,
496                              status_mask & PIPE_B_PSR_STATUS_VLV))
497                 return 0;
498
499         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
500                          SPRITE0_FLIP_DONE_INT_EN_VLV |
501                          SPRITE1_FLIP_DONE_INT_EN_VLV);
502         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
503                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
504         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
505                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
506
507 out:
508         drm_WARN_ONCE(&dev_priv->drm,
509                       enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
510                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
511                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
512                       pipe_name(pipe), enable_mask, status_mask);
513
514         return enable_mask;
515 }
516
517 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
518                           enum pipe pipe, u32 status_mask)
519 {
520         i915_reg_t reg = PIPESTAT(pipe);
521         u32 enable_mask;
522
523         drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
524                       "pipe %c: status_mask=0x%x\n",
525                       pipe_name(pipe), status_mask);
526
527         lockdep_assert_held(&dev_priv->irq_lock);
528         drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
529
530         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
531                 return;
532
533         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
534         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
535
536         intel_uncore_write(&dev_priv->uncore, reg, enable_mask | status_mask);
537         intel_uncore_posting_read(&dev_priv->uncore, reg);
538 }
539
540 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
541                            enum pipe pipe, u32 status_mask)
542 {
543         i915_reg_t reg = PIPESTAT(pipe);
544         u32 enable_mask;
545
546         drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
547                       "pipe %c: status_mask=0x%x\n",
548                       pipe_name(pipe), status_mask);
549
550         lockdep_assert_held(&dev_priv->irq_lock);
551         drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
552
553         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
554                 return;
555
556         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
557         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
558
559         intel_uncore_write(&dev_priv->uncore, reg, enable_mask | status_mask);
560         intel_uncore_posting_read(&dev_priv->uncore, reg);
561 }
562
563 static bool i915_has_asle(struct drm_i915_private *dev_priv)
564 {
565         if (!dev_priv->opregion.asle)
566                 return false;
567
568         return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
569 }
570
571 /**
572  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
573  * @dev_priv: i915 device private
574  */
575 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
576 {
577         if (!i915_has_asle(dev_priv))
578                 return;
579
580         spin_lock_irq(&dev_priv->irq_lock);
581
582         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
583         if (INTEL_GEN(dev_priv) >= 4)
584                 i915_enable_pipestat(dev_priv, PIPE_A,
585                                      PIPE_LEGACY_BLC_EVENT_STATUS);
586
587         spin_unlock_irq(&dev_priv->irq_lock);
588 }
589
590 /*
591  * This timing diagram depicts the video signal in and
592  * around the vertical blanking period.
593  *
594  * Assumptions about the fictitious mode used in this example:
595  *  vblank_start >= 3
596  *  vsync_start = vblank_start + 1
597  *  vsync_end = vblank_start + 2
598  *  vtotal = vblank_start + 3
599  *
600  *           start of vblank:
601  *           latch double buffered registers
602  *           increment frame counter (ctg+)
603  *           generate start of vblank interrupt (gen4+)
604  *           |
605  *           |          frame start:
606  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
607  *           |          may be shifted forward 1-3 extra lines via PIPECONF
608  *           |          |
609  *           |          |  start of vsync:
610  *           |          |  generate vsync interrupt
611  *           |          |  |
612  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
613  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
614  * ----va---> <-----------------vb--------------------> <--------va-------------
615  *       |          |       <----vs----->                     |
616  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
617  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
618  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
619  *       |          |                                         |
620  *       last visible pixel                                   first visible pixel
621  *                  |                                         increment frame counter (gen3/4)
622  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
623  *
624  * x  = horizontal active
625  * _  = horizontal blanking
626  * hs = horizontal sync
627  * va = vertical active
628  * vb = vertical blanking
629  * vs = vertical sync
630  * vbs = vblank_start (number)
631  *
632  * Summary:
633  * - most events happen at the start of horizontal sync
634  * - frame start happens at the start of horizontal blank, 1-4 lines
635  *   (depending on PIPECONF settings) after the start of vblank
636  * - gen3/4 pixel and frame counter are synchronized with the start
637  *   of horizontal active on the first line of vertical active
638  */
639
640 /* Called from drm generic code, passed a 'crtc', which
641  * we use as a pipe index
642  */
643 u32 i915_get_vblank_counter(struct drm_crtc *crtc)
644 {
645         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
646         struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
647         const struct drm_display_mode *mode = &vblank->hwmode;
648         enum pipe pipe = to_intel_crtc(crtc)->pipe;
649         i915_reg_t high_frame, low_frame;
650         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
651         unsigned long irqflags;
652
653         /*
654          * On i965gm TV output the frame counter only works up to
655          * the point when we enable the TV encoder. After that the
656          * frame counter ceases to work and reads zero. We need a
657          * vblank wait before enabling the TV encoder and so we
658          * have to enable vblank interrupts while the frame counter
659          * is still in a working state. However the core vblank code
660          * does not like us returning non-zero frame counter values
661          * when we've told it that we don't have a working frame
662          * counter. Thus we must stop non-zero values leaking out.
663          */
664         if (!vblank->max_vblank_count)
665                 return 0;
666
667         htotal = mode->crtc_htotal;
668         hsync_start = mode->crtc_hsync_start;
669         vbl_start = mode->crtc_vblank_start;
670         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
671                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
672
673         /* Convert to pixel count */
674         vbl_start *= htotal;
675
676         /* Start of vblank event occurs at start of hsync */
677         vbl_start -= htotal - hsync_start;
678
679         high_frame = PIPEFRAME(pipe);
680         low_frame = PIPEFRAMEPIXEL(pipe);
681
682         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
683
684         /*
685          * High & low register fields aren't synchronized, so make sure
686          * we get a low value that's stable across two reads of the high
687          * register.
688          */
689         do {
690                 high1 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
691                 low   = intel_de_read_fw(dev_priv, low_frame);
692                 high2 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
693         } while (high1 != high2);
694
695         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
696
697         high1 >>= PIPE_FRAME_HIGH_SHIFT;
698         pixel = low & PIPE_PIXEL_MASK;
699         low >>= PIPE_FRAME_LOW_SHIFT;
700
701         /*
702          * The frame counter increments at beginning of active.
703          * Cook up a vblank counter by also checking the pixel
704          * counter against vblank start.
705          */
706         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
707 }
708
709 u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
710 {
711         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
712         struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
713         enum pipe pipe = to_intel_crtc(crtc)->pipe;
714
715         if (!vblank->max_vblank_count)
716                 return 0;
717
718         return intel_uncore_read(&dev_priv->uncore, PIPE_FRMCOUNT_G4X(pipe));
719 }
720
721 static u32 intel_crtc_scanlines_since_frame_timestamp(struct intel_crtc *crtc)
722 {
723         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
724         struct drm_vblank_crtc *vblank =
725                 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
726         const struct drm_display_mode *mode = &vblank->hwmode;
727         u32 htotal = mode->crtc_htotal;
728         u32 clock = mode->crtc_clock;
729         u32 scan_prev_time, scan_curr_time, scan_post_time;
730
731         /*
732          * To avoid the race condition where we might cross into the
733          * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
734          * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
735          * during the same frame.
736          */
737         do {
738                 /*
739                  * This field provides read back of the display
740                  * pipe frame time stamp. The time stamp value
741                  * is sampled at every start of vertical blank.
742                  */
743                 scan_prev_time = intel_de_read_fw(dev_priv,
744                                                   PIPE_FRMTMSTMP(crtc->pipe));
745
746                 /*
747                  * The TIMESTAMP_CTR register has the current
748                  * time stamp value.
749                  */
750                 scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR);
751
752                 scan_post_time = intel_de_read_fw(dev_priv,
753                                                   PIPE_FRMTMSTMP(crtc->pipe));
754         } while (scan_post_time != scan_prev_time);
755
756         return div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
757                                    clock), 1000 * htotal);
758 }
759
760 /*
761  * On certain encoders on certain platforms, pipe
762  * scanline register will not work to get the scanline,
763  * since the timings are driven from the PORT or issues
764  * with scanline register updates.
765  * This function will use Framestamp and current
766  * timestamp registers to calculate the scanline.
767  */
768 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
769 {
770         struct drm_vblank_crtc *vblank =
771                 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
772         const struct drm_display_mode *mode = &vblank->hwmode;
773         u32 vblank_start = mode->crtc_vblank_start;
774         u32 vtotal = mode->crtc_vtotal;
775         u32 scanline;
776
777         scanline = intel_crtc_scanlines_since_frame_timestamp(crtc);
778         scanline = min(scanline, vtotal - 1);
779         scanline = (scanline + vblank_start) % vtotal;
780
781         return scanline;
782 }
783
784 /*
785  * intel_de_read_fw(), only for fast reads of display block, no need for
786  * forcewake etc.
787  */
788 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
789 {
790         struct drm_device *dev = crtc->base.dev;
791         struct drm_i915_private *dev_priv = to_i915(dev);
792         const struct drm_display_mode *mode;
793         struct drm_vblank_crtc *vblank;
794         enum pipe pipe = crtc->pipe;
795         int position, vtotal;
796
797         if (!crtc->active)
798                 return -1;
799
800         vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
801         mode = &vblank->hwmode;
802
803         if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
804                 return __intel_get_crtc_scanline_from_timestamp(crtc);
805
806         vtotal = mode->crtc_vtotal;
807         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
808                 vtotal /= 2;
809
810         if (IS_GEN(dev_priv, 2))
811                 position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
812         else
813                 position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
814
815         /*
816          * On HSW, the DSL reg (0x70000) appears to return 0 if we
817          * read it just before the start of vblank.  So try it again
818          * so we don't accidentally end up spanning a vblank frame
819          * increment, causing the pipe_update_end() code to squak at us.
820          *
821          * The nature of this problem means we can't simply check the ISR
822          * bit and return the vblank start value; nor can we use the scanline
823          * debug register in the transcoder as it appears to have the same
824          * problem.  We may need to extend this to include other platforms,
825          * but so far testing only shows the problem on HSW.
826          */
827         if (HAS_DDI(dev_priv) && !position) {
828                 int i, temp;
829
830                 for (i = 0; i < 100; i++) {
831                         udelay(1);
832                         temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
833                         if (temp != position) {
834                                 position = temp;
835                                 break;
836                         }
837                 }
838         }
839
840         /*
841          * See update_scanline_offset() for the details on the
842          * scanline_offset adjustment.
843          */
844         return (position + crtc->scanline_offset) % vtotal;
845 }
846
847 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
848                                      bool in_vblank_irq,
849                                      int *vpos, int *hpos,
850                                      ktime_t *stime, ktime_t *etime,
851                                      const struct drm_display_mode *mode)
852 {
853         struct drm_device *dev = _crtc->dev;
854         struct drm_i915_private *dev_priv = to_i915(dev);
855         struct intel_crtc *crtc = to_intel_crtc(_crtc);
856         enum pipe pipe = crtc->pipe;
857         int position;
858         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
859         unsigned long irqflags;
860         bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
861                 IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
862                 crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
863
864         if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) {
865                 drm_dbg(&dev_priv->drm,
866                         "trying to get scanoutpos for disabled "
867                         "pipe %c\n", pipe_name(pipe));
868                 return false;
869         }
870
871         htotal = mode->crtc_htotal;
872         hsync_start = mode->crtc_hsync_start;
873         vtotal = mode->crtc_vtotal;
874         vbl_start = mode->crtc_vblank_start;
875         vbl_end = mode->crtc_vblank_end;
876
877         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
878                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
879                 vbl_end /= 2;
880                 vtotal /= 2;
881         }
882
883         /*
884          * Lock uncore.lock, as we will do multiple timing critical raw
885          * register reads, potentially with preemption disabled, so the
886          * following code must not block on uncore.lock.
887          */
888         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
889
890         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
891
892         /* Get optional system timestamp before query. */
893         if (stime)
894                 *stime = ktime_get();
895
896         if (crtc->mode_flags & I915_MODE_FLAG_VRR) {
897                 int scanlines = intel_crtc_scanlines_since_frame_timestamp(crtc);
898
899                 position = __intel_get_crtc_scanline(crtc);
900
901                 /*
902                  * Already exiting vblank? If so, shift our position
903                  * so it looks like we're already apporaching the full
904                  * vblank end. This should make the generated timestamp
905                  * more or less match when the active portion will start.
906                  */
907                 if (position >= vbl_start && scanlines < position)
908                         position = min(crtc->vmax_vblank_start + scanlines, vtotal - 1);
909         } else if (use_scanline_counter) {
910                 /* No obvious pixelcount register. Only query vertical
911                  * scanout position from Display scan line register.
912                  */
913                 position = __intel_get_crtc_scanline(crtc);
914         } else {
915                 /* Have access to pixelcount since start of frame.
916                  * We can split this into vertical and horizontal
917                  * scanout position.
918                  */
919                 position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
920
921                 /* convert to pixel counts */
922                 vbl_start *= htotal;
923                 vbl_end *= htotal;
924                 vtotal *= htotal;
925
926                 /*
927                  * In interlaced modes, the pixel counter counts all pixels,
928                  * so one field will have htotal more pixels. In order to avoid
929                  * the reported position from jumping backwards when the pixel
930                  * counter is beyond the length of the shorter field, just
931                  * clamp the position the length of the shorter field. This
932                  * matches how the scanline counter based position works since
933                  * the scanline counter doesn't count the two half lines.
934                  */
935                 if (position >= vtotal)
936                         position = vtotal - 1;
937
938                 /*
939                  * Start of vblank interrupt is triggered at start of hsync,
940                  * just prior to the first active line of vblank. However we
941                  * consider lines to start at the leading edge of horizontal
942                  * active. So, should we get here before we've crossed into
943                  * the horizontal active of the first line in vblank, we would
944                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
945                  * always add htotal-hsync_start to the current pixel position.
946                  */
947                 position = (position + htotal - hsync_start) % vtotal;
948         }
949
950         /* Get optional system timestamp after query. */
951         if (etime)
952                 *etime = ktime_get();
953
954         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
955
956         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
957
958         /*
959          * While in vblank, position will be negative
960          * counting up towards 0 at vbl_end. And outside
961          * vblank, position will be positive counting
962          * up since vbl_end.
963          */
964         if (position >= vbl_start)
965                 position -= vbl_end;
966         else
967                 position += vtotal - vbl_end;
968
969         if (use_scanline_counter) {
970                 *vpos = position;
971                 *hpos = 0;
972         } else {
973                 *vpos = position / htotal;
974                 *hpos = position - (*vpos * htotal);
975         }
976
977         return true;
978 }
979
980 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
981                                      ktime_t *vblank_time, bool in_vblank_irq)
982 {
983         return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
984                 crtc, max_error, vblank_time, in_vblank_irq,
985                 i915_get_crtc_scanoutpos);
986 }
987
988 int intel_get_crtc_scanline(struct intel_crtc *crtc)
989 {
990         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
991         unsigned long irqflags;
992         int position;
993
994         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
995         position = __intel_get_crtc_scanline(crtc);
996         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
997
998         return position;
999 }
1000
1001 /**
1002  * ivb_parity_work - Workqueue called when a parity error interrupt
1003  * occurred.
1004  * @work: workqueue struct
1005  *
1006  * Doesn't actually do anything except notify userspace. As a consequence of
1007  * this event, userspace should try to remap the bad rows since statistically
1008  * it is likely the same row is more likely to go bad again.
1009  */
1010 static void ivb_parity_work(struct work_struct *work)
1011 {
1012         struct drm_i915_private *dev_priv =
1013                 container_of(work, typeof(*dev_priv), l3_parity.error_work);
1014         struct intel_gt *gt = &dev_priv->gt;
1015         u32 error_status, row, bank, subbank;
1016         char *parity_event[6];
1017         u32 misccpctl;
1018         u8 slice = 0;
1019
1020         /* We must turn off DOP level clock gating to access the L3 registers.
1021          * In order to prevent a get/put style interface, acquire struct mutex
1022          * any time we access those registers.
1023          */
1024         mutex_lock(&dev_priv->drm.struct_mutex);
1025
1026         /* If we've screwed up tracking, just let the interrupt fire again */
1027         if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice))
1028                 goto out;
1029
1030         misccpctl = intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL);
1031         intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1032         intel_uncore_posting_read(&dev_priv->uncore, GEN7_MISCCPCTL);
1033
1034         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1035                 i915_reg_t reg;
1036
1037                 slice--;
1038                 if (drm_WARN_ON_ONCE(&dev_priv->drm,
1039                                      slice >= NUM_L3_SLICES(dev_priv)))
1040                         break;
1041
1042                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1043
1044                 reg = GEN7_L3CDERRST1(slice);
1045
1046                 error_status = intel_uncore_read(&dev_priv->uncore, reg);
1047                 row = GEN7_PARITY_ERROR_ROW(error_status);
1048                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1049                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1050
1051                 intel_uncore_write(&dev_priv->uncore, reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1052                 intel_uncore_posting_read(&dev_priv->uncore, reg);
1053
1054                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1055                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1056                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1057                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1058                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1059                 parity_event[5] = NULL;
1060
1061                 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1062                                    KOBJ_CHANGE, parity_event);
1063
1064                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1065                           slice, row, bank, subbank);
1066
1067                 kfree(parity_event[4]);
1068                 kfree(parity_event[3]);
1069                 kfree(parity_event[2]);
1070                 kfree(parity_event[1]);
1071         }
1072
1073         intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl);
1074
1075 out:
1076         drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice);
1077         spin_lock_irq(&gt->irq_lock);
1078         gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1079         spin_unlock_irq(&gt->irq_lock);
1080
1081         mutex_unlock(&dev_priv->drm.struct_mutex);
1082 }
1083
1084 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1085 {
1086         switch (pin) {
1087         case HPD_PORT_TC1:
1088         case HPD_PORT_TC2:
1089         case HPD_PORT_TC3:
1090         case HPD_PORT_TC4:
1091         case HPD_PORT_TC5:
1092         case HPD_PORT_TC6:
1093                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(pin);
1094         default:
1095                 return false;
1096         }
1097 }
1098
1099 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1100 {
1101         switch (pin) {
1102         case HPD_PORT_A:
1103                 return val & PORTA_HOTPLUG_LONG_DETECT;
1104         case HPD_PORT_B:
1105                 return val & PORTB_HOTPLUG_LONG_DETECT;
1106         case HPD_PORT_C:
1107                 return val & PORTC_HOTPLUG_LONG_DETECT;
1108         default:
1109                 return false;
1110         }
1111 }
1112
1113 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1114 {
1115         switch (pin) {
1116         case HPD_PORT_A:
1117         case HPD_PORT_B:
1118         case HPD_PORT_C:
1119         case HPD_PORT_D:
1120                 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(pin);
1121         default:
1122                 return false;
1123         }
1124 }
1125
1126 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1127 {
1128         switch (pin) {
1129         case HPD_PORT_TC1:
1130         case HPD_PORT_TC2:
1131         case HPD_PORT_TC3:
1132         case HPD_PORT_TC4:
1133         case HPD_PORT_TC5:
1134         case HPD_PORT_TC6:
1135                 return val & ICP_TC_HPD_LONG_DETECT(pin);
1136         default:
1137                 return false;
1138         }
1139 }
1140
1141 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1142 {
1143         switch (pin) {
1144         case HPD_PORT_E:
1145                 return val & PORTE_HOTPLUG_LONG_DETECT;
1146         default:
1147                 return false;
1148         }
1149 }
1150
1151 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1152 {
1153         switch (pin) {
1154         case HPD_PORT_A:
1155                 return val & PORTA_HOTPLUG_LONG_DETECT;
1156         case HPD_PORT_B:
1157                 return val & PORTB_HOTPLUG_LONG_DETECT;
1158         case HPD_PORT_C:
1159                 return val & PORTC_HOTPLUG_LONG_DETECT;
1160         case HPD_PORT_D:
1161                 return val & PORTD_HOTPLUG_LONG_DETECT;
1162         default:
1163                 return false;
1164         }
1165 }
1166
1167 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1168 {
1169         switch (pin) {
1170         case HPD_PORT_A:
1171                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1172         default:
1173                 return false;
1174         }
1175 }
1176
1177 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1178 {
1179         switch (pin) {
1180         case HPD_PORT_B:
1181                 return val & PORTB_HOTPLUG_LONG_DETECT;
1182         case HPD_PORT_C:
1183                 return val & PORTC_HOTPLUG_LONG_DETECT;
1184         case HPD_PORT_D:
1185                 return val & PORTD_HOTPLUG_LONG_DETECT;
1186         default:
1187                 return false;
1188         }
1189 }
1190
1191 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1192 {
1193         switch (pin) {
1194         case HPD_PORT_B:
1195                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1196         case HPD_PORT_C:
1197                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1198         case HPD_PORT_D:
1199                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1200         default:
1201                 return false;
1202         }
1203 }
1204
1205 /*
1206  * Get a bit mask of pins that have triggered, and which ones may be long.
1207  * This can be called multiple times with the same masks to accumulate
1208  * hotplug detection results from several registers.
1209  *
1210  * Note that the caller is expected to zero out the masks initially.
1211  */
1212 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1213                                u32 *pin_mask, u32 *long_mask,
1214                                u32 hotplug_trigger, u32 dig_hotplug_reg,
1215                                const u32 hpd[HPD_NUM_PINS],
1216                                bool long_pulse_detect(enum hpd_pin pin, u32 val))
1217 {
1218         enum hpd_pin pin;
1219
1220         BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1221
1222         for_each_hpd_pin(pin) {
1223                 if ((hpd[pin] & hotplug_trigger) == 0)
1224                         continue;
1225
1226                 *pin_mask |= BIT(pin);
1227
1228                 if (long_pulse_detect(pin, dig_hotplug_reg))
1229                         *long_mask |= BIT(pin);
1230         }
1231
1232         drm_dbg(&dev_priv->drm,
1233                 "hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1234                 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1235
1236 }
1237
1238 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
1239                                   const u32 hpd[HPD_NUM_PINS])
1240 {
1241         struct intel_encoder *encoder;
1242         u32 enabled_irqs = 0;
1243
1244         for_each_intel_encoder(&dev_priv->drm, encoder)
1245                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
1246                         enabled_irqs |= hpd[encoder->hpd_pin];
1247
1248         return enabled_irqs;
1249 }
1250
1251 static u32 intel_hpd_hotplug_irqs(struct drm_i915_private *dev_priv,
1252                                   const u32 hpd[HPD_NUM_PINS])
1253 {
1254         struct intel_encoder *encoder;
1255         u32 hotplug_irqs = 0;
1256
1257         for_each_intel_encoder(&dev_priv->drm, encoder)
1258                 hotplug_irqs |= hpd[encoder->hpd_pin];
1259
1260         return hotplug_irqs;
1261 }
1262
1263 static u32 intel_hpd_hotplug_enables(struct drm_i915_private *i915,
1264                                      hotplug_enables_func hotplug_enables)
1265 {
1266         struct intel_encoder *encoder;
1267         u32 hotplug = 0;
1268
1269         for_each_intel_encoder(&i915->drm, encoder)
1270                 hotplug |= hotplug_enables(i915, encoder->hpd_pin);
1271
1272         return hotplug;
1273 }
1274
1275 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1276 {
1277         wake_up_all(&dev_priv->gmbus_wait_queue);
1278 }
1279
1280 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1281 {
1282         wake_up_all(&dev_priv->gmbus_wait_queue);
1283 }
1284
1285 #if defined(CONFIG_DEBUG_FS)
1286 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1287                                          enum pipe pipe,
1288                                          u32 crc0, u32 crc1,
1289                                          u32 crc2, u32 crc3,
1290                                          u32 crc4)
1291 {
1292         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1293         struct intel_pipe_crc *pipe_crc = &crtc->pipe_crc;
1294         u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1295
1296         trace_intel_pipe_crc(crtc, crcs);
1297
1298         spin_lock(&pipe_crc->lock);
1299         /*
1300          * For some not yet identified reason, the first CRC is
1301          * bonkers. So let's just wait for the next vblank and read
1302          * out the buggy result.
1303          *
1304          * On GEN8+ sometimes the second CRC is bonkers as well, so
1305          * don't trust that one either.
1306          */
1307         if (pipe_crc->skipped <= 0 ||
1308             (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1309                 pipe_crc->skipped++;
1310                 spin_unlock(&pipe_crc->lock);
1311                 return;
1312         }
1313         spin_unlock(&pipe_crc->lock);
1314
1315         drm_crtc_add_crc_entry(&crtc->base, true,
1316                                 drm_crtc_accurate_vblank_count(&crtc->base),
1317                                 crcs);
1318 }
1319 #else
1320 static inline void
1321 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1322                              enum pipe pipe,
1323                              u32 crc0, u32 crc1,
1324                              u32 crc2, u32 crc3,
1325                              u32 crc4) {}
1326 #endif
1327
1328 static void flip_done_handler(struct drm_i915_private *i915,
1329                               enum pipe pipe)
1330 {
1331         struct intel_crtc *crtc = intel_get_crtc_for_pipe(i915, pipe);
1332         struct drm_crtc_state *crtc_state = crtc->base.state;
1333         struct drm_pending_vblank_event *e = crtc_state->event;
1334         struct drm_device *dev = &i915->drm;
1335         unsigned long irqflags;
1336
1337         spin_lock_irqsave(&dev->event_lock, irqflags);
1338
1339         crtc_state->event = NULL;
1340
1341         drm_crtc_send_vblank_event(&crtc->base, e);
1342
1343         spin_unlock_irqrestore(&dev->event_lock, irqflags);
1344 }
1345
1346 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1347                                      enum pipe pipe)
1348 {
1349         display_pipe_crc_irq_handler(dev_priv, pipe,
1350                                      intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_1_IVB(pipe)),
1351                                      0, 0, 0, 0);
1352 }
1353
1354 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1355                                      enum pipe pipe)
1356 {
1357         display_pipe_crc_irq_handler(dev_priv, pipe,
1358                                      intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_1_IVB(pipe)),
1359                                      intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_2_IVB(pipe)),
1360                                      intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_3_IVB(pipe)),
1361                                      intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_4_IVB(pipe)),
1362                                      intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_5_IVB(pipe)));
1363 }
1364
1365 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1366                                       enum pipe pipe)
1367 {
1368         u32 res1, res2;
1369
1370         if (INTEL_GEN(dev_priv) >= 3)
1371                 res1 = intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RES1_I915(pipe));
1372         else
1373                 res1 = 0;
1374
1375         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1376                 res2 = intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RES2_G4X(pipe));
1377         else
1378                 res2 = 0;
1379
1380         display_pipe_crc_irq_handler(dev_priv, pipe,
1381                                      intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RED(pipe)),
1382                                      intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_GREEN(pipe)),
1383                                      intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_BLUE(pipe)),
1384                                      res1, res2);
1385 }
1386
1387 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1388 {
1389         enum pipe pipe;
1390
1391         for_each_pipe(dev_priv, pipe) {
1392                 intel_uncore_write(&dev_priv->uncore, PIPESTAT(pipe),
1393                            PIPESTAT_INT_STATUS_MASK |
1394                            PIPE_FIFO_UNDERRUN_STATUS);
1395
1396                 dev_priv->pipestat_irq_mask[pipe] = 0;
1397         }
1398 }
1399
1400 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1401                                   u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1402 {
1403         enum pipe pipe;
1404
1405         spin_lock(&dev_priv->irq_lock);
1406
1407         if (!dev_priv->display_irqs_enabled) {
1408                 spin_unlock(&dev_priv->irq_lock);
1409                 return;
1410         }
1411
1412         for_each_pipe(dev_priv, pipe) {
1413                 i915_reg_t reg;
1414                 u32 status_mask, enable_mask, iir_bit = 0;
1415
1416                 /*
1417                  * PIPESTAT bits get signalled even when the interrupt is
1418                  * disabled with the mask bits, and some of the status bits do
1419                  * not generate interrupts at all (like the underrun bit). Hence
1420                  * we need to be careful that we only handle what we want to
1421                  * handle.
1422                  */
1423
1424                 /* fifo underruns are filterered in the underrun handler. */
1425                 status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1426
1427                 switch (pipe) {
1428                 default:
1429                 case PIPE_A:
1430                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1431                         break;
1432                 case PIPE_B:
1433                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1434                         break;
1435                 case PIPE_C:
1436                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1437                         break;
1438                 }
1439                 if (iir & iir_bit)
1440                         status_mask |= dev_priv->pipestat_irq_mask[pipe];
1441
1442                 if (!status_mask)
1443                         continue;
1444
1445                 reg = PIPESTAT(pipe);
1446                 pipe_stats[pipe] = intel_uncore_read(&dev_priv->uncore, reg) & status_mask;
1447                 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1448
1449                 /*
1450                  * Clear the PIPE*STAT regs before the IIR
1451                  *
1452                  * Toggle the enable bits to make sure we get an
1453                  * edge in the ISR pipe event bit if we don't clear
1454                  * all the enabled status bits. Otherwise the edge
1455                  * triggered IIR on i965/g4x wouldn't notice that
1456                  * an interrupt is still pending.
1457                  */
1458                 if (pipe_stats[pipe]) {
1459                         intel_uncore_write(&dev_priv->uncore, reg, pipe_stats[pipe]);
1460                         intel_uncore_write(&dev_priv->uncore, reg, enable_mask);
1461                 }
1462         }
1463         spin_unlock(&dev_priv->irq_lock);
1464 }
1465
1466 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1467                                       u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1468 {
1469         enum pipe pipe;
1470
1471         for_each_pipe(dev_priv, pipe) {
1472                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1473                         intel_handle_vblank(dev_priv, pipe);
1474
1475                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1476                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1477
1478                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1479                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1480         }
1481 }
1482
1483 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1484                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1485 {
1486         bool blc_event = false;
1487         enum pipe pipe;
1488
1489         for_each_pipe(dev_priv, pipe) {
1490                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1491                         intel_handle_vblank(dev_priv, pipe);
1492
1493                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1494                         blc_event = true;
1495
1496                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1497                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1498
1499                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1500                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1501         }
1502
1503         if (blc_event || (iir & I915_ASLE_INTERRUPT))
1504                 intel_opregion_asle_intr(dev_priv);
1505 }
1506
1507 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1508                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1509 {
1510         bool blc_event = false;
1511         enum pipe pipe;
1512
1513         for_each_pipe(dev_priv, pipe) {
1514                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1515                         intel_handle_vblank(dev_priv, pipe);
1516
1517                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1518                         blc_event = true;
1519
1520                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1521                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1522
1523                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1524                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1525         }
1526
1527         if (blc_event || (iir & I915_ASLE_INTERRUPT))
1528                 intel_opregion_asle_intr(dev_priv);
1529
1530         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1531                 gmbus_irq_handler(dev_priv);
1532 }
1533
1534 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1535                                             u32 pipe_stats[I915_MAX_PIPES])
1536 {
1537         enum pipe pipe;
1538
1539         for_each_pipe(dev_priv, pipe) {
1540                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1541                         intel_handle_vblank(dev_priv, pipe);
1542
1543                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1544                         flip_done_handler(dev_priv, pipe);
1545
1546                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1547                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1548
1549                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1550                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1551         }
1552
1553         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1554                 gmbus_irq_handler(dev_priv);
1555 }
1556
1557 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1558 {
1559         u32 hotplug_status = 0, hotplug_status_mask;
1560         int i;
1561
1562         if (IS_G4X(dev_priv) ||
1563             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1564                 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1565                         DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1566         else
1567                 hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1568
1569         /*
1570          * We absolutely have to clear all the pending interrupt
1571          * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1572          * interrupt bit won't have an edge, and the i965/g4x
1573          * edge triggered IIR will not notice that an interrupt
1574          * is still pending. We can't use PORT_HOTPLUG_EN to
1575          * guarantee the edge as the act of toggling the enable
1576          * bits can itself generate a new hotplug interrupt :(
1577          */
1578         for (i = 0; i < 10; i++) {
1579                 u32 tmp = intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT) & hotplug_status_mask;
1580
1581                 if (tmp == 0)
1582                         return hotplug_status;
1583
1584                 hotplug_status |= tmp;
1585                 intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_STAT, hotplug_status);
1586         }
1587
1588         drm_WARN_ONCE(&dev_priv->drm, 1,
1589                       "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1590                       intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT));
1591
1592         return hotplug_status;
1593 }
1594
1595 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1596                                  u32 hotplug_status)
1597 {
1598         u32 pin_mask = 0, long_mask = 0;
1599         u32 hotplug_trigger;
1600
1601         if (IS_G4X(dev_priv) ||
1602             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1603                 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1604         else
1605                 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1606
1607         if (hotplug_trigger) {
1608                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1609                                    hotplug_trigger, hotplug_trigger,
1610                                    dev_priv->hotplug.hpd,
1611                                    i9xx_port_hotplug_long_detect);
1612
1613                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1614         }
1615
1616         if ((IS_G4X(dev_priv) ||
1617              IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1618             hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1619                 dp_aux_irq_handler(dev_priv);
1620 }
1621
1622 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1623 {
1624         struct drm_i915_private *dev_priv = arg;
1625         irqreturn_t ret = IRQ_NONE;
1626
1627         if (!intel_irqs_enabled(dev_priv))
1628                 return IRQ_NONE;
1629
1630         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1631         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1632
1633         do {
1634                 u32 iir, gt_iir, pm_iir;
1635                 u32 pipe_stats[I915_MAX_PIPES] = {};
1636                 u32 hotplug_status = 0;
1637                 u32 ier = 0;
1638
1639                 gt_iir = intel_uncore_read(&dev_priv->uncore, GTIIR);
1640                 pm_iir = intel_uncore_read(&dev_priv->uncore, GEN6_PMIIR);
1641                 iir = intel_uncore_read(&dev_priv->uncore, VLV_IIR);
1642
1643                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1644                         break;
1645
1646                 ret = IRQ_HANDLED;
1647
1648                 /*
1649                  * Theory on interrupt generation, based on empirical evidence:
1650                  *
1651                  * x = ((VLV_IIR & VLV_IER) ||
1652                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1653                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1654                  *
1655                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1656                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1657                  * guarantee the CPU interrupt will be raised again even if we
1658                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1659                  * bits this time around.
1660                  */
1661                 intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, 0);
1662                 ier = intel_uncore_read(&dev_priv->uncore, VLV_IER);
1663                 intel_uncore_write(&dev_priv->uncore, VLV_IER, 0);
1664
1665                 if (gt_iir)
1666                         intel_uncore_write(&dev_priv->uncore, GTIIR, gt_iir);
1667                 if (pm_iir)
1668                         intel_uncore_write(&dev_priv->uncore, GEN6_PMIIR, pm_iir);
1669
1670                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1671                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1672
1673                 /* Call regardless, as some status bits might not be
1674                  * signalled in iir */
1675                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1676
1677                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1678                            I915_LPE_PIPE_B_INTERRUPT))
1679                         intel_lpe_audio_irq_handler(dev_priv);
1680
1681                 /*
1682                  * VLV_IIR is single buffered, and reflects the level
1683                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1684                  */
1685                 if (iir)
1686                         intel_uncore_write(&dev_priv->uncore, VLV_IIR, iir);
1687
1688                 intel_uncore_write(&dev_priv->uncore, VLV_IER, ier);
1689                 intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1690
1691                 if (gt_iir)
1692                         gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
1693                 if (pm_iir)
1694                         gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
1695
1696                 if (hotplug_status)
1697                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1698
1699                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1700         } while (0);
1701
1702         pmu_irq_stats(dev_priv, ret);
1703
1704         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1705
1706         return ret;
1707 }
1708
1709 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1710 {
1711         struct drm_i915_private *dev_priv = arg;
1712         irqreturn_t ret = IRQ_NONE;
1713
1714         if (!intel_irqs_enabled(dev_priv))
1715                 return IRQ_NONE;
1716
1717         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1718         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1719
1720         do {
1721                 u32 master_ctl, iir;
1722                 u32 pipe_stats[I915_MAX_PIPES] = {};
1723                 u32 hotplug_status = 0;
1724                 u32 ier = 0;
1725
1726                 master_ctl = intel_uncore_read(&dev_priv->uncore, GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1727                 iir = intel_uncore_read(&dev_priv->uncore, VLV_IIR);
1728
1729                 if (master_ctl == 0 && iir == 0)
1730                         break;
1731
1732                 ret = IRQ_HANDLED;
1733
1734                 /*
1735                  * Theory on interrupt generation, based on empirical evidence:
1736                  *
1737                  * x = ((VLV_IIR & VLV_IER) ||
1738                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1739                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1740                  *
1741                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1742                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1743                  * guarantee the CPU interrupt will be raised again even if we
1744                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1745                  * bits this time around.
1746                  */
1747                 intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, 0);
1748                 ier = intel_uncore_read(&dev_priv->uncore, VLV_IER);
1749                 intel_uncore_write(&dev_priv->uncore, VLV_IER, 0);
1750
1751                 gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
1752
1753                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1754                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1755
1756                 /* Call regardless, as some status bits might not be
1757                  * signalled in iir */
1758                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1759
1760                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1761                            I915_LPE_PIPE_B_INTERRUPT |
1762                            I915_LPE_PIPE_C_INTERRUPT))
1763                         intel_lpe_audio_irq_handler(dev_priv);
1764
1765                 /*
1766                  * VLV_IIR is single buffered, and reflects the level
1767                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1768                  */
1769                 if (iir)
1770                         intel_uncore_write(&dev_priv->uncore, VLV_IIR, iir);
1771
1772                 intel_uncore_write(&dev_priv->uncore, VLV_IER, ier);
1773                 intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1774
1775                 if (hotplug_status)
1776                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1777
1778                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1779         } while (0);
1780
1781         pmu_irq_stats(dev_priv, ret);
1782
1783         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1784
1785         return ret;
1786 }
1787
1788 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1789                                 u32 hotplug_trigger)
1790 {
1791         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1792
1793         /*
1794          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1795          * unless we touch the hotplug register, even if hotplug_trigger is
1796          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1797          * errors.
1798          */
1799         dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
1800         if (!hotplug_trigger) {
1801                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1802                         PORTD_HOTPLUG_STATUS_MASK |
1803                         PORTC_HOTPLUG_STATUS_MASK |
1804                         PORTB_HOTPLUG_STATUS_MASK;
1805                 dig_hotplug_reg &= ~mask;
1806         }
1807
1808         intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, dig_hotplug_reg);
1809         if (!hotplug_trigger)
1810                 return;
1811
1812         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1813                            hotplug_trigger, dig_hotplug_reg,
1814                            dev_priv->hotplug.pch_hpd,
1815                            pch_port_hotplug_long_detect);
1816
1817         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1818 }
1819
1820 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1821 {
1822         enum pipe pipe;
1823         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1824
1825         ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1826
1827         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1828                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1829                                SDE_AUDIO_POWER_SHIFT);
1830                 drm_dbg(&dev_priv->drm, "PCH audio power change on port %d\n",
1831                         port_name(port));
1832         }
1833
1834         if (pch_iir & SDE_AUX_MASK)
1835                 dp_aux_irq_handler(dev_priv);
1836
1837         if (pch_iir & SDE_GMBUS)
1838                 gmbus_irq_handler(dev_priv);
1839
1840         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1841                 drm_dbg(&dev_priv->drm, "PCH HDCP audio interrupt\n");
1842
1843         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1844                 drm_dbg(&dev_priv->drm, "PCH transcoder audio interrupt\n");
1845
1846         if (pch_iir & SDE_POISON)
1847                 drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1848
1849         if (pch_iir & SDE_FDI_MASK) {
1850                 for_each_pipe(dev_priv, pipe)
1851                         drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1852                                 pipe_name(pipe),
1853                                 intel_uncore_read(&dev_priv->uncore, FDI_RX_IIR(pipe)));
1854         }
1855
1856         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1857                 drm_dbg(&dev_priv->drm, "PCH transcoder CRC done interrupt\n");
1858
1859         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1860                 drm_dbg(&dev_priv->drm,
1861                         "PCH transcoder CRC error interrupt\n");
1862
1863         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1864                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
1865
1866         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1867                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
1868 }
1869
1870 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1871 {
1872         u32 err_int = intel_uncore_read(&dev_priv->uncore, GEN7_ERR_INT);
1873         enum pipe pipe;
1874
1875         if (err_int & ERR_INT_POISON)
1876                 drm_err(&dev_priv->drm, "Poison interrupt\n");
1877
1878         for_each_pipe(dev_priv, pipe) {
1879                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1880                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1881
1882                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1883                         if (IS_IVYBRIDGE(dev_priv))
1884                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
1885                         else
1886                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
1887                 }
1888         }
1889
1890         intel_uncore_write(&dev_priv->uncore, GEN7_ERR_INT, err_int);
1891 }
1892
1893 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
1894 {
1895         u32 serr_int = intel_uncore_read(&dev_priv->uncore, SERR_INT);
1896         enum pipe pipe;
1897
1898         if (serr_int & SERR_INT_POISON)
1899                 drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1900
1901         for_each_pipe(dev_priv, pipe)
1902                 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
1903                         intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
1904
1905         intel_uncore_write(&dev_priv->uncore, SERR_INT, serr_int);
1906 }
1907
1908 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1909 {
1910         enum pipe pipe;
1911         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1912
1913         ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1914
1915         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1916                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1917                                SDE_AUDIO_POWER_SHIFT_CPT);
1918                 drm_dbg(&dev_priv->drm, "PCH audio power change on port %c\n",
1919                         port_name(port));
1920         }
1921
1922         if (pch_iir & SDE_AUX_MASK_CPT)
1923                 dp_aux_irq_handler(dev_priv);
1924
1925         if (pch_iir & SDE_GMBUS_CPT)
1926                 gmbus_irq_handler(dev_priv);
1927
1928         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1929                 drm_dbg(&dev_priv->drm, "Audio CP request interrupt\n");
1930
1931         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1932                 drm_dbg(&dev_priv->drm, "Audio CP change interrupt\n");
1933
1934         if (pch_iir & SDE_FDI_MASK_CPT) {
1935                 for_each_pipe(dev_priv, pipe)
1936                         drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1937                                 pipe_name(pipe),
1938                                 intel_uncore_read(&dev_priv->uncore, FDI_RX_IIR(pipe)));
1939         }
1940
1941         if (pch_iir & SDE_ERROR_CPT)
1942                 cpt_serr_int_handler(dev_priv);
1943 }
1944
1945 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1946 {
1947         u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_HOTPLUG_MASK_ICP;
1948         u32 tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_MASK_ICP;
1949         u32 pin_mask = 0, long_mask = 0;
1950
1951         if (ddi_hotplug_trigger) {
1952                 u32 dig_hotplug_reg;
1953
1954                 dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, SHOTPLUG_CTL_DDI);
1955                 intel_uncore_write(&dev_priv->uncore, SHOTPLUG_CTL_DDI, dig_hotplug_reg);
1956
1957                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1958                                    ddi_hotplug_trigger, dig_hotplug_reg,
1959                                    dev_priv->hotplug.pch_hpd,
1960                                    icp_ddi_port_hotplug_long_detect);
1961         }
1962
1963         if (tc_hotplug_trigger) {
1964                 u32 dig_hotplug_reg;
1965
1966                 dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, SHOTPLUG_CTL_TC);
1967                 intel_uncore_write(&dev_priv->uncore, SHOTPLUG_CTL_TC, dig_hotplug_reg);
1968
1969                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1970                                    tc_hotplug_trigger, dig_hotplug_reg,
1971                                    dev_priv->hotplug.pch_hpd,
1972                                    icp_tc_port_hotplug_long_detect);
1973         }
1974
1975         if (pin_mask)
1976                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1977
1978         if (pch_iir & SDE_GMBUS_ICP)
1979                 gmbus_irq_handler(dev_priv);
1980 }
1981
1982 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1983 {
1984         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1985                 ~SDE_PORTE_HOTPLUG_SPT;
1986         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1987         u32 pin_mask = 0, long_mask = 0;
1988
1989         if (hotplug_trigger) {
1990                 u32 dig_hotplug_reg;
1991
1992                 dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
1993                 intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, dig_hotplug_reg);
1994
1995                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1996                                    hotplug_trigger, dig_hotplug_reg,
1997                                    dev_priv->hotplug.pch_hpd,
1998                                    spt_port_hotplug_long_detect);
1999         }
2000
2001         if (hotplug2_trigger) {
2002                 u32 dig_hotplug_reg;
2003
2004                 dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG2);
2005                 intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2006
2007                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2008                                    hotplug2_trigger, dig_hotplug_reg,
2009                                    dev_priv->hotplug.pch_hpd,
2010                                    spt_port_hotplug2_long_detect);
2011         }
2012
2013         if (pin_mask)
2014                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2015
2016         if (pch_iir & SDE_GMBUS_CPT)
2017                 gmbus_irq_handler(dev_priv);
2018 }
2019
2020 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2021                                 u32 hotplug_trigger)
2022 {
2023         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2024
2025         dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL);
2026         intel_uncore_write(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2027
2028         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2029                            hotplug_trigger, dig_hotplug_reg,
2030                            dev_priv->hotplug.hpd,
2031                            ilk_port_hotplug_long_detect);
2032
2033         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2034 }
2035
2036 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2037                                     u32 de_iir)
2038 {
2039         enum pipe pipe;
2040         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2041
2042         if (hotplug_trigger)
2043                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2044
2045         if (de_iir & DE_AUX_CHANNEL_A)
2046                 dp_aux_irq_handler(dev_priv);
2047
2048         if (de_iir & DE_GSE)
2049                 intel_opregion_asle_intr(dev_priv);
2050
2051         if (de_iir & DE_POISON)
2052                 drm_err(&dev_priv->drm, "Poison interrupt\n");
2053
2054         for_each_pipe(dev_priv, pipe) {
2055                 if (de_iir & DE_PIPE_VBLANK(pipe))
2056                         intel_handle_vblank(dev_priv, pipe);
2057
2058                 if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2059                         flip_done_handler(dev_priv, pipe);
2060
2061                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2062                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2063
2064                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2065                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2066         }
2067
2068         /* check event from PCH */
2069         if (de_iir & DE_PCH_EVENT) {
2070                 u32 pch_iir = intel_uncore_read(&dev_priv->uncore, SDEIIR);
2071
2072                 if (HAS_PCH_CPT(dev_priv))
2073                         cpt_irq_handler(dev_priv, pch_iir);
2074                 else
2075                         ibx_irq_handler(dev_priv, pch_iir);
2076
2077                 /* should clear PCH hotplug event before clear CPU irq */
2078                 intel_uncore_write(&dev_priv->uncore, SDEIIR, pch_iir);
2079         }
2080
2081         if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2082                 gen5_rps_irq_handler(&dev_priv->gt.rps);
2083 }
2084
2085 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2086                                     u32 de_iir)
2087 {
2088         enum pipe pipe;
2089         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2090
2091         if (hotplug_trigger)
2092                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2093
2094         if (de_iir & DE_ERR_INT_IVB)
2095                 ivb_err_int_handler(dev_priv);
2096
2097         if (de_iir & DE_EDP_PSR_INT_HSW) {
2098                 u32 psr_iir = intel_uncore_read(&dev_priv->uncore, EDP_PSR_IIR);
2099
2100                 intel_psr_irq_handler(dev_priv, psr_iir);
2101                 intel_uncore_write(&dev_priv->uncore, EDP_PSR_IIR, psr_iir);
2102         }
2103
2104         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2105                 dp_aux_irq_handler(dev_priv);
2106
2107         if (de_iir & DE_GSE_IVB)
2108                 intel_opregion_asle_intr(dev_priv);
2109
2110         for_each_pipe(dev_priv, pipe) {
2111                 if (de_iir & DE_PIPE_VBLANK_IVB(pipe))
2112                         intel_handle_vblank(dev_priv, pipe);
2113
2114                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2115                         flip_done_handler(dev_priv, pipe);
2116         }
2117
2118         /* check event from PCH */
2119         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2120                 u32 pch_iir = intel_uncore_read(&dev_priv->uncore, SDEIIR);
2121
2122                 cpt_irq_handler(dev_priv, pch_iir);
2123
2124                 /* clear PCH hotplug event before clear CPU irq */
2125                 intel_uncore_write(&dev_priv->uncore, SDEIIR, pch_iir);
2126         }
2127 }
2128
2129 /*
2130  * To handle irqs with the minimum potential races with fresh interrupts, we:
2131  * 1 - Disable Master Interrupt Control.
2132  * 2 - Find the source(s) of the interrupt.
2133  * 3 - Clear the Interrupt Identity bits (IIR).
2134  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2135  * 5 - Re-enable Master Interrupt Control.
2136  */
2137 static irqreturn_t ilk_irq_handler(int irq, void *arg)
2138 {
2139         struct drm_i915_private *i915 = arg;
2140         void __iomem * const regs = i915->uncore.regs;
2141         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2142         irqreturn_t ret = IRQ_NONE;
2143
2144         if (unlikely(!intel_irqs_enabled(i915)))
2145                 return IRQ_NONE;
2146
2147         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2148         disable_rpm_wakeref_asserts(&i915->runtime_pm);
2149
2150         /* disable master interrupt before clearing iir  */
2151         de_ier = raw_reg_read(regs, DEIER);
2152         raw_reg_write(regs, DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2153
2154         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2155          * interrupts will will be stored on its back queue, and then we'll be
2156          * able to process them after we restore SDEIER (as soon as we restore
2157          * it, we'll get an interrupt if SDEIIR still has something to process
2158          * due to its back queue). */
2159         if (!HAS_PCH_NOP(i915)) {
2160                 sde_ier = raw_reg_read(regs, SDEIER);
2161                 raw_reg_write(regs, SDEIER, 0);
2162         }
2163
2164         /* Find, clear, then process each source of interrupt */
2165
2166         gt_iir = raw_reg_read(regs, GTIIR);
2167         if (gt_iir) {
2168                 raw_reg_write(regs, GTIIR, gt_iir);
2169                 if (INTEL_GEN(i915) >= 6)
2170                         gen6_gt_irq_handler(&i915->gt, gt_iir);
2171                 else
2172                         gen5_gt_irq_handler(&i915->gt, gt_iir);
2173                 ret = IRQ_HANDLED;
2174         }
2175
2176         de_iir = raw_reg_read(regs, DEIIR);
2177         if (de_iir) {
2178                 raw_reg_write(regs, DEIIR, de_iir);
2179                 if (INTEL_GEN(i915) >= 7)
2180                         ivb_display_irq_handler(i915, de_iir);
2181                 else
2182                         ilk_display_irq_handler(i915, de_iir);
2183                 ret = IRQ_HANDLED;
2184         }
2185
2186         if (INTEL_GEN(i915) >= 6) {
2187                 u32 pm_iir = raw_reg_read(regs, GEN6_PMIIR);
2188                 if (pm_iir) {
2189                         raw_reg_write(regs, GEN6_PMIIR, pm_iir);
2190                         gen6_rps_irq_handler(&i915->gt.rps, pm_iir);
2191                         ret = IRQ_HANDLED;
2192                 }
2193         }
2194
2195         raw_reg_write(regs, DEIER, de_ier);
2196         if (sde_ier)
2197                 raw_reg_write(regs, SDEIER, sde_ier);
2198
2199         pmu_irq_stats(i915, ret);
2200
2201         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2202         enable_rpm_wakeref_asserts(&i915->runtime_pm);
2203
2204         return ret;
2205 }
2206
2207 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2208                                 u32 hotplug_trigger)
2209 {
2210         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2211
2212         dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
2213         intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, dig_hotplug_reg);
2214
2215         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2216                            hotplug_trigger, dig_hotplug_reg,
2217                            dev_priv->hotplug.hpd,
2218                            bxt_port_hotplug_long_detect);
2219
2220         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2221 }
2222
2223 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2224 {
2225         u32 pin_mask = 0, long_mask = 0;
2226         u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2227         u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2228
2229         if (trigger_tc) {
2230                 u32 dig_hotplug_reg;
2231
2232                 dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL);
2233                 intel_uncore_write(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2234
2235                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2236                                    trigger_tc, dig_hotplug_reg,
2237                                    dev_priv->hotplug.hpd,
2238                                    gen11_port_hotplug_long_detect);
2239         }
2240
2241         if (trigger_tbt) {
2242                 u32 dig_hotplug_reg;
2243
2244                 dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL);
2245                 intel_uncore_write(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2246
2247                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2248                                    trigger_tbt, dig_hotplug_reg,
2249                                    dev_priv->hotplug.hpd,
2250                                    gen11_port_hotplug_long_detect);
2251         }
2252
2253         if (pin_mask)
2254                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2255         else
2256                 drm_err(&dev_priv->drm,
2257                         "Unexpected DE HPD interrupt 0x%08x\n", iir);
2258 }
2259
2260 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2261 {
2262         u32 mask;
2263
2264         if (INTEL_GEN(dev_priv) >= 12)
2265                 return TGL_DE_PORT_AUX_DDIA |
2266                         TGL_DE_PORT_AUX_DDIB |
2267                         TGL_DE_PORT_AUX_DDIC |
2268                         TGL_DE_PORT_AUX_USBC1 |
2269                         TGL_DE_PORT_AUX_USBC2 |
2270                         TGL_DE_PORT_AUX_USBC3 |
2271                         TGL_DE_PORT_AUX_USBC4 |
2272                         TGL_DE_PORT_AUX_USBC5 |
2273                         TGL_DE_PORT_AUX_USBC6;
2274
2275
2276         mask = GEN8_AUX_CHANNEL_A;
2277         if (INTEL_GEN(dev_priv) >= 9)
2278                 mask |= GEN9_AUX_CHANNEL_B |
2279                         GEN9_AUX_CHANNEL_C |
2280                         GEN9_AUX_CHANNEL_D;
2281
2282         if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11))
2283                 mask |= CNL_AUX_CHANNEL_F;
2284
2285         if (IS_GEN(dev_priv, 11))
2286                 mask |= ICL_AUX_CHANNEL_E;
2287
2288         return mask;
2289 }
2290
2291 static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2292 {
2293         if (IS_ROCKETLAKE(dev_priv))
2294                 return RKL_DE_PIPE_IRQ_FAULT_ERRORS;
2295         else if (INTEL_GEN(dev_priv) >= 11)
2296                 return GEN11_DE_PIPE_IRQ_FAULT_ERRORS;
2297         else if (INTEL_GEN(dev_priv) >= 9)
2298                 return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2299         else
2300                 return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2301 }
2302
2303 static void
2304 gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2305 {
2306         bool found = false;
2307
2308         if (iir & GEN8_DE_MISC_GSE) {
2309                 intel_opregion_asle_intr(dev_priv);
2310                 found = true;
2311         }
2312
2313         if (iir & GEN8_DE_EDP_PSR) {
2314                 u32 psr_iir;
2315                 i915_reg_t iir_reg;
2316
2317                 if (INTEL_GEN(dev_priv) >= 12)
2318                         iir_reg = TRANS_PSR_IIR(dev_priv->psr.transcoder);
2319                 else
2320                         iir_reg = EDP_PSR_IIR;
2321
2322                 psr_iir = intel_uncore_read(&dev_priv->uncore, iir_reg);
2323                 intel_uncore_write(&dev_priv->uncore, iir_reg, psr_iir);
2324
2325                 if (psr_iir)
2326                         found = true;
2327
2328                 intel_psr_irq_handler(dev_priv, psr_iir);
2329         }
2330
2331         if (!found)
2332                 drm_err(&dev_priv->drm, "Unexpected DE Misc interrupt\n");
2333 }
2334
2335 static void gen11_dsi_te_interrupt_handler(struct drm_i915_private *dev_priv,
2336                                            u32 te_trigger)
2337 {
2338         enum pipe pipe = INVALID_PIPE;
2339         enum transcoder dsi_trans;
2340         enum port port;
2341         u32 val, tmp;
2342
2343         /*
2344          * Incase of dual link, TE comes from DSI_1
2345          * this is to check if dual link is enabled
2346          */
2347         val = intel_uncore_read(&dev_priv->uncore, TRANS_DDI_FUNC_CTL2(TRANSCODER_DSI_0));
2348         val &= PORT_SYNC_MODE_ENABLE;
2349
2350         /*
2351          * if dual link is enabled, then read DSI_0
2352          * transcoder registers
2353          */
2354         port = ((te_trigger & DSI1_TE && val) || (te_trigger & DSI0_TE)) ?
2355                                                   PORT_A : PORT_B;
2356         dsi_trans = (port == PORT_A) ? TRANSCODER_DSI_0 : TRANSCODER_DSI_1;
2357
2358         /* Check if DSI configured in command mode */
2359         val = intel_uncore_read(&dev_priv->uncore, DSI_TRANS_FUNC_CONF(dsi_trans));
2360         val = val & OP_MODE_MASK;
2361
2362         if (val != CMD_MODE_NO_GATE && val != CMD_MODE_TE_GATE) {
2363                 drm_err(&dev_priv->drm, "DSI trancoder not configured in command mode\n");
2364                 return;
2365         }
2366
2367         /* Get PIPE for handling VBLANK event */
2368         val = intel_uncore_read(&dev_priv->uncore, TRANS_DDI_FUNC_CTL(dsi_trans));
2369         switch (val & TRANS_DDI_EDP_INPUT_MASK) {
2370         case TRANS_DDI_EDP_INPUT_A_ON:
2371                 pipe = PIPE_A;
2372                 break;
2373         case TRANS_DDI_EDP_INPUT_B_ONOFF:
2374                 pipe = PIPE_B;
2375                 break;
2376         case TRANS_DDI_EDP_INPUT_C_ONOFF:
2377                 pipe = PIPE_C;
2378                 break;
2379         default:
2380                 drm_err(&dev_priv->drm, "Invalid PIPE\n");
2381                 return;
2382         }
2383
2384         intel_handle_vblank(dev_priv, pipe);
2385
2386         /* clear TE in dsi IIR */
2387         port = (te_trigger & DSI1_TE) ? PORT_B : PORT_A;
2388         tmp = intel_uncore_read(&dev_priv->uncore, DSI_INTR_IDENT_REG(port));
2389         intel_uncore_write(&dev_priv->uncore, DSI_INTR_IDENT_REG(port), tmp);
2390 }
2391
2392 static u32 gen8_de_pipe_flip_done_mask(struct drm_i915_private *i915)
2393 {
2394         if (INTEL_GEN(i915) >= 9)
2395                 return GEN9_PIPE_PLANE1_FLIP_DONE;
2396         else
2397                 return GEN8_PIPE_PRIMARY_FLIP_DONE;
2398 }
2399
2400 static irqreturn_t
2401 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2402 {
2403         irqreturn_t ret = IRQ_NONE;
2404         u32 iir;
2405         enum pipe pipe;
2406
2407         if (master_ctl & GEN8_DE_MISC_IRQ) {
2408                 iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_MISC_IIR);
2409                 if (iir) {
2410                         intel_uncore_write(&dev_priv->uncore, GEN8_DE_MISC_IIR, iir);
2411                         ret = IRQ_HANDLED;
2412                         gen8_de_misc_irq_handler(dev_priv, iir);
2413                 } else {
2414                         drm_err(&dev_priv->drm,
2415                                 "The master control interrupt lied (DE MISC)!\n");
2416                 }
2417         }
2418
2419         if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2420                 iir = intel_uncore_read(&dev_priv->uncore, GEN11_DE_HPD_IIR);
2421                 if (iir) {
2422                         intel_uncore_write(&dev_priv->uncore, GEN11_DE_HPD_IIR, iir);
2423                         ret = IRQ_HANDLED;
2424                         gen11_hpd_irq_handler(dev_priv, iir);
2425                 } else {
2426                         drm_err(&dev_priv->drm,
2427                                 "The master control interrupt lied, (DE HPD)!\n");
2428                 }
2429         }
2430
2431         if (master_ctl & GEN8_DE_PORT_IRQ) {
2432                 iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PORT_IIR);
2433                 if (iir) {
2434                         bool found = false;
2435
2436                         intel_uncore_write(&dev_priv->uncore, GEN8_DE_PORT_IIR, iir);
2437                         ret = IRQ_HANDLED;
2438
2439                         if (iir & gen8_de_port_aux_mask(dev_priv)) {
2440                                 dp_aux_irq_handler(dev_priv);
2441                                 found = true;
2442                         }
2443
2444                         if (IS_GEN9_LP(dev_priv)) {
2445                                 u32 hotplug_trigger = iir & BXT_DE_PORT_HOTPLUG_MASK;
2446
2447                                 if (hotplug_trigger) {
2448                                         bxt_hpd_irq_handler(dev_priv, hotplug_trigger);
2449                                         found = true;
2450                                 }
2451                         } else if (IS_BROADWELL(dev_priv)) {
2452                                 u32 hotplug_trigger = iir & BDW_DE_PORT_HOTPLUG_MASK;
2453
2454                                 if (hotplug_trigger) {
2455                                         ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2456                                         found = true;
2457                                 }
2458                         }
2459
2460                         if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2461                                 gmbus_irq_handler(dev_priv);
2462                                 found = true;
2463                         }
2464
2465                         if (INTEL_GEN(dev_priv) >= 11) {
2466                                 u32 te_trigger = iir & (DSI0_TE | DSI1_TE);
2467
2468                                 if (te_trigger) {
2469                                         gen11_dsi_te_interrupt_handler(dev_priv, te_trigger);
2470                                         found = true;
2471                                 }
2472                         }
2473
2474                         if (!found)
2475                                 drm_err(&dev_priv->drm,
2476                                         "Unexpected DE Port interrupt\n");
2477                 }
2478                 else
2479                         drm_err(&dev_priv->drm,
2480                                 "The master control interrupt lied (DE PORT)!\n");
2481         }
2482
2483         for_each_pipe(dev_priv, pipe) {
2484                 u32 fault_errors;
2485
2486                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2487                         continue;
2488
2489                 iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PIPE_IIR(pipe));
2490                 if (!iir) {
2491                         drm_err(&dev_priv->drm,
2492                                 "The master control interrupt lied (DE PIPE)!\n");
2493                         continue;
2494                 }
2495
2496                 ret = IRQ_HANDLED;
2497                 intel_uncore_write(&dev_priv->uncore, GEN8_DE_PIPE_IIR(pipe), iir);
2498
2499                 if (iir & GEN8_PIPE_VBLANK)
2500                         intel_handle_vblank(dev_priv, pipe);
2501
2502                 if (iir & gen8_de_pipe_flip_done_mask(dev_priv))
2503                         flip_done_handler(dev_priv, pipe);
2504
2505                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2506                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2507
2508                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2509                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2510
2511                 fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2512                 if (fault_errors)
2513                         drm_err(&dev_priv->drm,
2514                                 "Fault errors on pipe %c: 0x%08x\n",
2515                                 pipe_name(pipe),
2516                                 fault_errors);
2517         }
2518
2519         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2520             master_ctl & GEN8_DE_PCH_IRQ) {
2521                 /*
2522                  * FIXME(BDW): Assume for now that the new interrupt handling
2523                  * scheme also closed the SDE interrupt handling race we've seen
2524                  * on older pch-split platforms. But this needs testing.
2525                  */
2526                 iir = intel_uncore_read(&dev_priv->uncore, SDEIIR);
2527                 if (iir) {
2528                         intel_uncore_write(&dev_priv->uncore, SDEIIR, iir);
2529                         ret = IRQ_HANDLED;
2530
2531                         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2532                                 icp_irq_handler(dev_priv, iir);
2533                         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2534                                 spt_irq_handler(dev_priv, iir);
2535                         else
2536                                 cpt_irq_handler(dev_priv, iir);
2537                 } else {
2538                         /*
2539                          * Like on previous PCH there seems to be something
2540                          * fishy going on with forwarding PCH interrupts.
2541                          */
2542                         drm_dbg(&dev_priv->drm,
2543                                 "The master control interrupt lied (SDE)!\n");
2544                 }
2545         }
2546
2547         return ret;
2548 }
2549
2550 static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2551 {
2552         raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2553
2554         /*
2555          * Now with master disabled, get a sample of level indications
2556          * for this interrupt. Indications will be cleared on related acks.
2557          * New indications can and will light up during processing,
2558          * and will generate new interrupt after enabling master.
2559          */
2560         return raw_reg_read(regs, GEN8_MASTER_IRQ);
2561 }
2562
2563 static inline void gen8_master_intr_enable(void __iomem * const regs)
2564 {
2565         raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2566 }
2567
2568 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2569 {
2570         struct drm_i915_private *dev_priv = arg;
2571         void __iomem * const regs = dev_priv->uncore.regs;
2572         u32 master_ctl;
2573
2574         if (!intel_irqs_enabled(dev_priv))
2575                 return IRQ_NONE;
2576
2577         master_ctl = gen8_master_intr_disable(regs);
2578         if (!master_ctl) {
2579                 gen8_master_intr_enable(regs);
2580                 return IRQ_NONE;
2581         }
2582
2583         /* Find, queue (onto bottom-halves), then clear each source */
2584         gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
2585
2586         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2587         if (master_ctl & ~GEN8_GT_IRQS) {
2588                 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2589                 gen8_de_irq_handler(dev_priv, master_ctl);
2590                 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2591         }
2592
2593         gen8_master_intr_enable(regs);
2594
2595         pmu_irq_stats(dev_priv, IRQ_HANDLED);
2596
2597         return IRQ_HANDLED;
2598 }
2599
2600 static u32
2601 gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2602 {
2603         void __iomem * const regs = gt->uncore->regs;
2604         u32 iir;
2605
2606         if (!(master_ctl & GEN11_GU_MISC_IRQ))
2607                 return 0;
2608
2609         iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2610         if (likely(iir))
2611                 raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2612
2613         return iir;
2614 }
2615
2616 static void
2617 gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2618 {
2619         if (iir & GEN11_GU_MISC_GSE)
2620                 intel_opregion_asle_intr(gt->i915);
2621 }
2622
2623 static inline u32 gen11_master_intr_disable(void __iomem * const regs)
2624 {
2625         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2626
2627         /*
2628          * Now with master disabled, get a sample of level indications
2629          * for this interrupt. Indications will be cleared on related acks.
2630          * New indications can and will light up during processing,
2631          * and will generate new interrupt after enabling master.
2632          */
2633         return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2634 }
2635
2636 static inline void gen11_master_intr_enable(void __iomem * const regs)
2637 {
2638         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2639 }
2640
2641 static void
2642 gen11_display_irq_handler(struct drm_i915_private *i915)
2643 {
2644         void __iomem * const regs = i915->uncore.regs;
2645         const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2646
2647         disable_rpm_wakeref_asserts(&i915->runtime_pm);
2648         /*
2649          * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2650          * for the display related bits.
2651          */
2652         raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0);
2653         gen8_de_irq_handler(i915, disp_ctl);
2654         raw_reg_write(regs, GEN11_DISPLAY_INT_CTL,
2655                       GEN11_DISPLAY_IRQ_ENABLE);
2656
2657         enable_rpm_wakeref_asserts(&i915->runtime_pm);
2658 }
2659
2660 static __always_inline irqreturn_t
2661 __gen11_irq_handler(struct drm_i915_private * const i915,
2662                     u32 (*intr_disable)(void __iomem * const regs),
2663                     void (*intr_enable)(void __iomem * const regs))
2664 {
2665         void __iomem * const regs = i915->uncore.regs;
2666         struct intel_gt *gt = &i915->gt;
2667         u32 master_ctl;
2668         u32 gu_misc_iir;
2669
2670         if (!intel_irqs_enabled(i915))
2671                 return IRQ_NONE;
2672
2673         master_ctl = intr_disable(regs);
2674         if (!master_ctl) {
2675                 intr_enable(regs);
2676                 return IRQ_NONE;
2677         }
2678
2679         /* Find, queue (onto bottom-halves), then clear each source */
2680         gen11_gt_irq_handler(gt, master_ctl);
2681
2682         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2683         if (master_ctl & GEN11_DISPLAY_IRQ)
2684                 gen11_display_irq_handler(i915);
2685
2686         gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2687
2688         intr_enable(regs);
2689
2690         gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2691
2692         pmu_irq_stats(i915, IRQ_HANDLED);
2693
2694         return IRQ_HANDLED;
2695 }
2696
2697 static irqreturn_t gen11_irq_handler(int irq, void *arg)
2698 {
2699         return __gen11_irq_handler(arg,
2700                                    gen11_master_intr_disable,
2701                                    gen11_master_intr_enable);
2702 }
2703
2704 static u32 dg1_master_intr_disable_and_ack(void __iomem * const regs)
2705 {
2706         u32 val;
2707
2708         /* First disable interrupts */
2709         raw_reg_write(regs, DG1_MSTR_UNIT_INTR, 0);
2710
2711         /* Get the indication levels and ack the master unit */
2712         val = raw_reg_read(regs, DG1_MSTR_UNIT_INTR);
2713         if (unlikely(!val))
2714                 return 0;
2715
2716         raw_reg_write(regs, DG1_MSTR_UNIT_INTR, val);
2717
2718         /*
2719          * Now with master disabled, get a sample of level indications
2720          * for this interrupt and ack them right away - we keep GEN11_MASTER_IRQ
2721          * out as this bit doesn't exist anymore for DG1
2722          */
2723         val = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ) & ~GEN11_MASTER_IRQ;
2724         if (unlikely(!val))
2725                 return 0;
2726
2727         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, val);
2728
2729         return val;
2730 }
2731
2732 static inline void dg1_master_intr_enable(void __iomem * const regs)
2733 {
2734         raw_reg_write(regs, DG1_MSTR_UNIT_INTR, DG1_MSTR_IRQ);
2735 }
2736
2737 static irqreturn_t dg1_irq_handler(int irq, void *arg)
2738 {
2739         return __gen11_irq_handler(arg,
2740                                    dg1_master_intr_disable_and_ack,
2741                                    dg1_master_intr_enable);
2742 }
2743
2744 /* Called from drm generic code, passed 'crtc' which
2745  * we use as a pipe index
2746  */
2747 int i8xx_enable_vblank(struct drm_crtc *crtc)
2748 {
2749         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2750         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2751         unsigned long irqflags;
2752
2753         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2754         i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2755         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2756
2757         return 0;
2758 }
2759
2760 int i915gm_enable_vblank(struct drm_crtc *crtc)
2761 {
2762         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2763
2764         /*
2765          * Vblank interrupts fail to wake the device up from C2+.
2766          * Disabling render clock gating during C-states avoids
2767          * the problem. There is a small power cost so we do this
2768          * only when vblank interrupts are actually enabled.
2769          */
2770         if (dev_priv->vblank_enabled++ == 0)
2771                 intel_uncore_write(&dev_priv->uncore, SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2772
2773         return i8xx_enable_vblank(crtc);
2774 }
2775
2776 int i965_enable_vblank(struct drm_crtc *crtc)
2777 {
2778         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2779         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2780         unsigned long irqflags;
2781
2782         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2783         i915_enable_pipestat(dev_priv, pipe,
2784                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2785         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2786
2787         return 0;
2788 }
2789
2790 int ilk_enable_vblank(struct drm_crtc *crtc)
2791 {
2792         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2793         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2794         unsigned long irqflags;
2795         u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2796                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2797
2798         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2799         ilk_enable_display_irq(dev_priv, bit);
2800         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2801
2802         /* Even though there is no DMC, frame counter can get stuck when
2803          * PSR is active as no frames are generated.
2804          */
2805         if (HAS_PSR(dev_priv))
2806                 drm_crtc_vblank_restore(crtc);
2807
2808         return 0;
2809 }
2810
2811 static bool gen11_dsi_configure_te(struct intel_crtc *intel_crtc,
2812                                    bool enable)
2813 {
2814         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
2815         enum port port;
2816         u32 tmp;
2817
2818         if (!(intel_crtc->mode_flags &
2819             (I915_MODE_FLAG_DSI_USE_TE1 | I915_MODE_FLAG_DSI_USE_TE0)))
2820                 return false;
2821
2822         /* for dual link cases we consider TE from slave */
2823         if (intel_crtc->mode_flags & I915_MODE_FLAG_DSI_USE_TE1)
2824                 port = PORT_B;
2825         else
2826                 port = PORT_A;
2827
2828         tmp =  intel_uncore_read(&dev_priv->uncore, DSI_INTR_MASK_REG(port));
2829         if (enable)
2830                 tmp &= ~DSI_TE_EVENT;
2831         else
2832                 tmp |= DSI_TE_EVENT;
2833
2834         intel_uncore_write(&dev_priv->uncore, DSI_INTR_MASK_REG(port), tmp);
2835
2836         tmp = intel_uncore_read(&dev_priv->uncore, DSI_INTR_IDENT_REG(port));
2837         intel_uncore_write(&dev_priv->uncore, DSI_INTR_IDENT_REG(port), tmp);
2838
2839         return true;
2840 }
2841
2842 int bdw_enable_vblank(struct drm_crtc *crtc)
2843 {
2844         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2845         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2846         enum pipe pipe = intel_crtc->pipe;
2847         unsigned long irqflags;
2848
2849         if (gen11_dsi_configure_te(intel_crtc, true))
2850                 return 0;
2851
2852         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2853         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2854         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2855
2856         /* Even if there is no DMC, frame counter can get stuck when
2857          * PSR is active as no frames are generated, so check only for PSR.
2858          */
2859         if (HAS_PSR(dev_priv))
2860                 drm_crtc_vblank_restore(crtc);
2861
2862         return 0;
2863 }
2864
2865 /* Called from drm generic code, passed 'crtc' which
2866  * we use as a pipe index
2867  */
2868 void i8xx_disable_vblank(struct drm_crtc *crtc)
2869 {
2870         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2871         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2872         unsigned long irqflags;
2873
2874         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2875         i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2876         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2877 }
2878
2879 void i915gm_disable_vblank(struct drm_crtc *crtc)
2880 {
2881         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2882
2883         i8xx_disable_vblank(crtc);
2884
2885         if (--dev_priv->vblank_enabled == 0)
2886                 intel_uncore_write(&dev_priv->uncore, SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2887 }
2888
2889 void i965_disable_vblank(struct drm_crtc *crtc)
2890 {
2891         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2892         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2893         unsigned long irqflags;
2894
2895         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2896         i915_disable_pipestat(dev_priv, pipe,
2897                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2898         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2899 }
2900
2901 void ilk_disable_vblank(struct drm_crtc *crtc)
2902 {
2903         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2904         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2905         unsigned long irqflags;
2906         u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2907                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2908
2909         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2910         ilk_disable_display_irq(dev_priv, bit);
2911         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2912 }
2913
2914 void bdw_disable_vblank(struct drm_crtc *crtc)
2915 {
2916         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2917         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2918         enum pipe pipe = intel_crtc->pipe;
2919         unsigned long irqflags;
2920
2921         if (gen11_dsi_configure_te(intel_crtc, false))
2922                 return;
2923
2924         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2925         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2926         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2927 }
2928
2929 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2930 {
2931         struct intel_uncore *uncore = &dev_priv->uncore;
2932
2933         if (HAS_PCH_NOP(dev_priv))
2934                 return;
2935
2936         GEN3_IRQ_RESET(uncore, SDE);
2937
2938         if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2939                 intel_uncore_write(&dev_priv->uncore, SERR_INT, 0xffffffff);
2940 }
2941
2942 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2943 {
2944         struct intel_uncore *uncore = &dev_priv->uncore;
2945
2946         if (IS_CHERRYVIEW(dev_priv))
2947                 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2948         else
2949                 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
2950
2951         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2952         intel_uncore_write(uncore, PORT_HOTPLUG_STAT, intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT));
2953
2954         i9xx_pipestat_irq_reset(dev_priv);
2955
2956         GEN3_IRQ_RESET(uncore, VLV_);
2957         dev_priv->irq_mask = ~0u;
2958 }
2959
2960 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2961 {
2962         struct intel_uncore *uncore = &dev_priv->uncore;
2963
2964         u32 pipestat_mask;
2965         u32 enable_mask;
2966         enum pipe pipe;
2967
2968         pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
2969
2970         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2971         for_each_pipe(dev_priv, pipe)
2972                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2973
2974         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2975                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2976                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2977                 I915_LPE_PIPE_A_INTERRUPT |
2978                 I915_LPE_PIPE_B_INTERRUPT;
2979
2980         if (IS_CHERRYVIEW(dev_priv))
2981                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2982                         I915_LPE_PIPE_C_INTERRUPT;
2983
2984         drm_WARN_ON(&dev_priv->drm, dev_priv->irq_mask != ~0u);
2985
2986         dev_priv->irq_mask = ~enable_mask;
2987
2988         GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
2989 }
2990
2991 /* drm_dma.h hooks
2992 */
2993 static void ilk_irq_reset(struct drm_i915_private *dev_priv)
2994 {
2995         struct intel_uncore *uncore = &dev_priv->uncore;
2996
2997         GEN3_IRQ_RESET(uncore, DE);
2998         dev_priv->irq_mask = ~0u;
2999
3000         if (IS_GEN(dev_priv, 7))
3001                 intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
3002
3003         if (IS_HASWELL(dev_priv)) {
3004                 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3005                 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3006         }
3007
3008         gen5_gt_irq_reset(&dev_priv->gt);
3009
3010         ibx_irq_reset(dev_priv);
3011 }
3012
3013 static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
3014 {
3015         intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, 0);
3016         intel_uncore_posting_read(&dev_priv->uncore, VLV_MASTER_IER);
3017
3018         gen5_gt_irq_reset(&dev_priv->gt);
3019
3020         spin_lock_irq(&dev_priv->irq_lock);
3021         if (dev_priv->display_irqs_enabled)
3022                 vlv_display_irq_reset(dev_priv);
3023         spin_unlock_irq(&dev_priv->irq_lock);
3024 }
3025
3026 static void gen8_irq_reset(struct drm_i915_private *dev_priv)
3027 {
3028         struct intel_uncore *uncore = &dev_priv->uncore;
3029         enum pipe pipe;
3030
3031         gen8_master_intr_disable(dev_priv->uncore.regs);
3032
3033         gen8_gt_irq_reset(&dev_priv->gt);
3034
3035         intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3036         intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3037
3038         for_each_pipe(dev_priv, pipe)
3039                 if (intel_display_power_is_enabled(dev_priv,
3040                                                    POWER_DOMAIN_PIPE(pipe)))
3041                         GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3042
3043         GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3044         GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3045         GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3046
3047         if (HAS_PCH_SPLIT(dev_priv))
3048                 ibx_irq_reset(dev_priv);
3049 }
3050
3051 static void gen11_display_irq_reset(struct drm_i915_private *dev_priv)
3052 {
3053         struct intel_uncore *uncore = &dev_priv->uncore;
3054         enum pipe pipe;
3055         u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
3056                 BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
3057
3058         intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
3059
3060         if (INTEL_GEN(dev_priv) >= 12) {
3061                 enum transcoder trans;
3062
3063                 for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
3064                         enum intel_display_power_domain domain;
3065
3066                         domain = POWER_DOMAIN_TRANSCODER(trans);
3067                         if (!intel_display_power_is_enabled(dev_priv, domain))
3068                                 continue;
3069
3070                         intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff);
3071                         intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff);
3072                 }
3073         } else {
3074                 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3075                 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3076         }
3077
3078         for_each_pipe(dev_priv, pipe)
3079                 if (intel_display_power_is_enabled(dev_priv,
3080                                                    POWER_DOMAIN_PIPE(pipe)))
3081                         GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3082
3083         GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3084         GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3085         GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
3086
3087         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3088                 GEN3_IRQ_RESET(uncore, SDE);
3089
3090         /* Wa_14010685332:cnp/cmp,tgp,adp */
3091         if (INTEL_PCH_TYPE(dev_priv) == PCH_CNP ||
3092             (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP &&
3093              INTEL_PCH_TYPE(dev_priv) < PCH_DG1)) {
3094                 intel_uncore_rmw(uncore, SOUTH_CHICKEN1,
3095                                  SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
3096                 intel_uncore_rmw(uncore, SOUTH_CHICKEN1,
3097                                  SBCLK_RUN_REFCLK_DIS, 0);
3098         }
3099 }
3100
3101 static void gen11_irq_reset(struct drm_i915_private *dev_priv)
3102 {
3103         struct intel_uncore *uncore = &dev_priv->uncore;
3104
3105         if (HAS_MASTER_UNIT_IRQ(dev_priv))
3106                 dg1_master_intr_disable_and_ack(dev_priv->uncore.regs);
3107         else
3108                 gen11_master_intr_disable(dev_priv->uncore.regs);
3109
3110         gen11_gt_irq_reset(&dev_priv->gt);
3111         gen11_display_irq_reset(dev_priv);
3112
3113         GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
3114         GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3115 }
3116
3117 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3118                                      u8 pipe_mask)
3119 {
3120         struct intel_uncore *uncore = &dev_priv->uncore;
3121         u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN |
3122                 gen8_de_pipe_flip_done_mask(dev_priv);
3123         enum pipe pipe;
3124
3125         spin_lock_irq(&dev_priv->irq_lock);
3126
3127         if (!intel_irqs_enabled(dev_priv)) {
3128                 spin_unlock_irq(&dev_priv->irq_lock);
3129                 return;
3130         }
3131
3132         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3133                 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3134                                   dev_priv->de_irq_mask[pipe],
3135                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3136
3137         spin_unlock_irq(&dev_priv->irq_lock);
3138 }
3139
3140 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3141                                      u8 pipe_mask)
3142 {
3143         struct intel_uncore *uncore = &dev_priv->uncore;
3144         enum pipe pipe;
3145
3146         spin_lock_irq(&dev_priv->irq_lock);
3147
3148         if (!intel_irqs_enabled(dev_priv)) {
3149                 spin_unlock_irq(&dev_priv->irq_lock);
3150                 return;
3151         }
3152
3153         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3154                 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3155
3156         spin_unlock_irq(&dev_priv->irq_lock);
3157
3158         /* make sure we're done processing display irqs */
3159         intel_synchronize_irq(dev_priv);
3160 }
3161
3162 static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
3163 {
3164         struct intel_uncore *uncore = &dev_priv->uncore;
3165
3166         intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, 0);
3167         intel_uncore_posting_read(&dev_priv->uncore, GEN8_MASTER_IRQ);
3168
3169         gen8_gt_irq_reset(&dev_priv->gt);
3170
3171         GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3172
3173         spin_lock_irq(&dev_priv->irq_lock);
3174         if (dev_priv->display_irqs_enabled)
3175                 vlv_display_irq_reset(dev_priv);
3176         spin_unlock_irq(&dev_priv->irq_lock);
3177 }
3178
3179 static u32 ibx_hotplug_enables(struct drm_i915_private *i915,
3180                                enum hpd_pin pin)
3181 {
3182         switch (pin) {
3183         case HPD_PORT_A:
3184                 /*
3185                  * When CPU and PCH are on the same package, port A
3186                  * HPD must be enabled in both north and south.
3187                  */
3188                 return HAS_PCH_LPT_LP(i915) ?
3189                         PORTA_HOTPLUG_ENABLE : 0;
3190         case HPD_PORT_B:
3191                 return PORTB_HOTPLUG_ENABLE |
3192                         PORTB_PULSE_DURATION_2ms;
3193         case HPD_PORT_C:
3194                 return PORTC_HOTPLUG_ENABLE |
3195                         PORTC_PULSE_DURATION_2ms;
3196         case HPD_PORT_D:
3197                 return PORTD_HOTPLUG_ENABLE |
3198                         PORTD_PULSE_DURATION_2ms;
3199         default:
3200                 return 0;
3201         }
3202 }
3203
3204 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3205 {
3206         u32 hotplug;
3207
3208         /*
3209          * Enable digital hotplug on the PCH, and configure the DP short pulse
3210          * duration to 2ms (which is the minimum in the Display Port spec).
3211          * The pulse duration bits are reserved on LPT+.
3212          */
3213         hotplug = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
3214         hotplug &= ~(PORTA_HOTPLUG_ENABLE |
3215                      PORTB_HOTPLUG_ENABLE |
3216                      PORTC_HOTPLUG_ENABLE |
3217                      PORTD_HOTPLUG_ENABLE |
3218                      PORTB_PULSE_DURATION_MASK |
3219                      PORTC_PULSE_DURATION_MASK |
3220                      PORTD_PULSE_DURATION_MASK);
3221         hotplug |= intel_hpd_hotplug_enables(dev_priv, ibx_hotplug_enables);
3222         intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, hotplug);
3223 }
3224
3225 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3226 {
3227         u32 hotplug_irqs, enabled_irqs;
3228
3229         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3230         hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3231
3232         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3233
3234         ibx_hpd_detection_setup(dev_priv);
3235 }
3236
3237 static u32 icp_ddi_hotplug_enables(struct drm_i915_private *i915,
3238                                    enum hpd_pin pin)
3239 {
3240         switch (pin) {
3241         case HPD_PORT_A:
3242         case HPD_PORT_B:
3243         case HPD_PORT_C:
3244         case HPD_PORT_D:
3245                 return SHOTPLUG_CTL_DDI_HPD_ENABLE(pin);
3246         default:
3247                 return 0;
3248         }
3249 }
3250
3251 static u32 icp_tc_hotplug_enables(struct drm_i915_private *i915,
3252                                   enum hpd_pin pin)
3253 {
3254         switch (pin) {
3255         case HPD_PORT_TC1:
3256         case HPD_PORT_TC2:
3257         case HPD_PORT_TC3:
3258         case HPD_PORT_TC4:
3259         case HPD_PORT_TC5:
3260         case HPD_PORT_TC6:
3261                 return ICP_TC_HPD_ENABLE(pin);
3262         default:
3263                 return 0;
3264         }
3265 }
3266
3267 static void icp_ddi_hpd_detection_setup(struct drm_i915_private *dev_priv)
3268 {
3269         u32 hotplug;
3270
3271         hotplug = intel_uncore_read(&dev_priv->uncore, SHOTPLUG_CTL_DDI);
3272         hotplug &= ~(SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_A) |
3273                      SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_B) |
3274                      SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_C) |
3275                      SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_D));
3276         hotplug |= intel_hpd_hotplug_enables(dev_priv, icp_ddi_hotplug_enables);
3277         intel_uncore_write(&dev_priv->uncore, SHOTPLUG_CTL_DDI, hotplug);
3278 }
3279
3280 static void icp_tc_hpd_detection_setup(struct drm_i915_private *dev_priv)
3281 {
3282         u32 hotplug;
3283
3284         hotplug = intel_uncore_read(&dev_priv->uncore, SHOTPLUG_CTL_TC);
3285         hotplug &= ~(ICP_TC_HPD_ENABLE(HPD_PORT_TC1) |
3286                      ICP_TC_HPD_ENABLE(HPD_PORT_TC2) |
3287                      ICP_TC_HPD_ENABLE(HPD_PORT_TC3) |
3288                      ICP_TC_HPD_ENABLE(HPD_PORT_TC4) |
3289                      ICP_TC_HPD_ENABLE(HPD_PORT_TC5) |
3290                      ICP_TC_HPD_ENABLE(HPD_PORT_TC6));
3291         hotplug |= intel_hpd_hotplug_enables(dev_priv, icp_tc_hotplug_enables);
3292         intel_uncore_write(&dev_priv->uncore, SHOTPLUG_CTL_TC, hotplug);
3293 }
3294
3295 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3296 {
3297         u32 hotplug_irqs, enabled_irqs;
3298
3299         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3300         hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3301
3302         if (INTEL_PCH_TYPE(dev_priv) <= PCH_TGP)
3303                 intel_uncore_write(&dev_priv->uncore, SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3304
3305         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3306
3307         icp_ddi_hpd_detection_setup(dev_priv);
3308         icp_tc_hpd_detection_setup(dev_priv);
3309 }
3310
3311 static u32 gen11_hotplug_enables(struct drm_i915_private *i915,
3312                                  enum hpd_pin pin)
3313 {
3314         switch (pin) {
3315         case HPD_PORT_TC1:
3316         case HPD_PORT_TC2:
3317         case HPD_PORT_TC3:
3318         case HPD_PORT_TC4:
3319         case HPD_PORT_TC5:
3320         case HPD_PORT_TC6:
3321                 return GEN11_HOTPLUG_CTL_ENABLE(pin);
3322         default:
3323                 return 0;
3324         }
3325 }
3326
3327 static void dg1_hpd_irq_setup(struct drm_i915_private *dev_priv)
3328 {
3329         u32 val;
3330
3331         val = intel_uncore_read(&dev_priv->uncore, SOUTH_CHICKEN1);
3332         val |= (INVERT_DDIA_HPD |
3333                 INVERT_DDIB_HPD |
3334                 INVERT_DDIC_HPD |
3335                 INVERT_DDID_HPD);
3336         intel_uncore_write(&dev_priv->uncore, SOUTH_CHICKEN1, val);
3337
3338         icp_hpd_irq_setup(dev_priv);
3339 }
3340
3341 static void gen11_tc_hpd_detection_setup(struct drm_i915_private *dev_priv)
3342 {
3343         u32 hotplug;
3344
3345         hotplug = intel_uncore_read(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL);
3346         hotplug &= ~(GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) |
3347                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) |
3348                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) |
3349                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) |
3350                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) |
3351                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6));
3352         hotplug |= intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables);
3353         intel_uncore_write(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL, hotplug);
3354 }
3355
3356 static void gen11_tbt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3357 {
3358         u32 hotplug;
3359
3360         hotplug = intel_uncore_read(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL);
3361         hotplug &= ~(GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) |
3362                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) |
3363                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) |
3364                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) |
3365                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) |
3366                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6));
3367         hotplug |= intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables);
3368         intel_uncore_write(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL, hotplug);
3369 }
3370
3371 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3372 {
3373         u32 hotplug_irqs, enabled_irqs;
3374         u32 val;
3375
3376         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3377         hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3378
3379         val = intel_uncore_read(&dev_priv->uncore, GEN11_DE_HPD_IMR);
3380         val &= ~hotplug_irqs;
3381         val |= ~enabled_irqs & hotplug_irqs;
3382         intel_uncore_write(&dev_priv->uncore, GEN11_DE_HPD_IMR, val);
3383         intel_uncore_posting_read(&dev_priv->uncore, GEN11_DE_HPD_IMR);
3384
3385         gen11_tc_hpd_detection_setup(dev_priv);
3386         gen11_tbt_hpd_detection_setup(dev_priv);
3387
3388         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3389                 icp_hpd_irq_setup(dev_priv);
3390 }
3391
3392 static u32 spt_hotplug_enables(struct drm_i915_private *i915,
3393                                enum hpd_pin pin)
3394 {
3395         switch (pin) {
3396         case HPD_PORT_A:
3397                 return PORTA_HOTPLUG_ENABLE;
3398         case HPD_PORT_B:
3399                 return PORTB_HOTPLUG_ENABLE;
3400         case HPD_PORT_C:
3401                 return PORTC_HOTPLUG_ENABLE;
3402         case HPD_PORT_D:
3403                 return PORTD_HOTPLUG_ENABLE;
3404         default:
3405                 return 0;
3406         }
3407 }
3408
3409 static u32 spt_hotplug2_enables(struct drm_i915_private *i915,
3410                                 enum hpd_pin pin)
3411 {
3412         switch (pin) {
3413         case HPD_PORT_E:
3414                 return PORTE_HOTPLUG_ENABLE;
3415         default:
3416                 return 0;
3417         }
3418 }
3419
3420 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3421 {
3422         u32 val, hotplug;
3423
3424         /* Display WA #1179 WaHardHangonHotPlug: cnp */
3425         if (HAS_PCH_CNP(dev_priv)) {
3426                 val = intel_uncore_read(&dev_priv->uncore, SOUTH_CHICKEN1);
3427                 val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3428                 val |= CHASSIS_CLK_REQ_DURATION(0xf);
3429                 intel_uncore_write(&dev_priv->uncore, SOUTH_CHICKEN1, val);
3430         }
3431
3432         /* Enable digital hotplug on the PCH */
3433         hotplug = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
3434         hotplug &= ~(PORTA_HOTPLUG_ENABLE |
3435                      PORTB_HOTPLUG_ENABLE |
3436                      PORTC_HOTPLUG_ENABLE |
3437                      PORTD_HOTPLUG_ENABLE);
3438         hotplug |= intel_hpd_hotplug_enables(dev_priv, spt_hotplug_enables);
3439         intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, hotplug);
3440
3441         hotplug = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG2);
3442         hotplug &= ~PORTE_HOTPLUG_ENABLE;
3443         hotplug |= intel_hpd_hotplug_enables(dev_priv, spt_hotplug2_enables);
3444         intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG2, hotplug);
3445 }
3446
3447 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3448 {
3449         u32 hotplug_irqs, enabled_irqs;
3450
3451         if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3452                 intel_uncore_write(&dev_priv->uncore, SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3453
3454         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3455         hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3456
3457         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3458
3459         spt_hpd_detection_setup(dev_priv);
3460 }
3461
3462 static u32 ilk_hotplug_enables(struct drm_i915_private *i915,
3463                                enum hpd_pin pin)
3464 {
3465         switch (pin) {
3466         case HPD_PORT_A:
3467                 return DIGITAL_PORTA_HOTPLUG_ENABLE |
3468                         DIGITAL_PORTA_PULSE_DURATION_2ms;
3469         default:
3470                 return 0;
3471         }
3472 }
3473
3474 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3475 {
3476         u32 hotplug;
3477
3478         /*
3479          * Enable digital hotplug on the CPU, and configure the DP short pulse
3480          * duration to 2ms (which is the minimum in the Display Port spec)
3481          * The pulse duration bits are reserved on HSW+.
3482          */
3483         hotplug = intel_uncore_read(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL);
3484         hotplug &= ~(DIGITAL_PORTA_HOTPLUG_ENABLE |
3485                      DIGITAL_PORTA_PULSE_DURATION_MASK);
3486         hotplug |= intel_hpd_hotplug_enables(dev_priv, ilk_hotplug_enables);
3487         intel_uncore_write(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3488 }
3489
3490 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3491 {
3492         u32 hotplug_irqs, enabled_irqs;
3493
3494         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3495         hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3496
3497         if (INTEL_GEN(dev_priv) >= 8)
3498                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3499         else
3500                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3501
3502         ilk_hpd_detection_setup(dev_priv);
3503
3504         ibx_hpd_irq_setup(dev_priv);
3505 }
3506
3507 static u32 bxt_hotplug_enables(struct drm_i915_private *i915,
3508                                enum hpd_pin pin)
3509 {
3510         u32 hotplug;
3511
3512         switch (pin) {
3513         case HPD_PORT_A:
3514                 hotplug = PORTA_HOTPLUG_ENABLE;
3515                 if (intel_bios_is_port_hpd_inverted(i915, PORT_A))
3516                         hotplug |= BXT_DDIA_HPD_INVERT;
3517                 return hotplug;
3518         case HPD_PORT_B:
3519                 hotplug = PORTB_HOTPLUG_ENABLE;
3520                 if (intel_bios_is_port_hpd_inverted(i915, PORT_B))
3521                         hotplug |= BXT_DDIB_HPD_INVERT;
3522                 return hotplug;
3523         case HPD_PORT_C:
3524                 hotplug = PORTC_HOTPLUG_ENABLE;
3525                 if (intel_bios_is_port_hpd_inverted(i915, PORT_C))
3526                         hotplug |= BXT_DDIC_HPD_INVERT;
3527                 return hotplug;
3528         default:
3529                 return 0;
3530         }
3531 }
3532
3533 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3534 {
3535         u32 hotplug;
3536
3537         hotplug = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
3538         hotplug &= ~(PORTA_HOTPLUG_ENABLE |
3539                      PORTB_HOTPLUG_ENABLE |
3540                      PORTC_HOTPLUG_ENABLE |
3541                      BXT_DDIA_HPD_INVERT |
3542                      BXT_DDIB_HPD_INVERT |
3543                      BXT_DDIC_HPD_INVERT);
3544         hotplug |= intel_hpd_hotplug_enables(dev_priv, bxt_hotplug_enables);
3545         intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, hotplug);
3546 }
3547
3548 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3549 {
3550         u32 hotplug_irqs, enabled_irqs;
3551
3552         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3553         hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3554
3555         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3556
3557         bxt_hpd_detection_setup(dev_priv);
3558 }
3559
3560 /*
3561  * SDEIER is also touched by the interrupt handler to work around missed PCH
3562  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3563  * instead we unconditionally enable all PCH interrupt sources here, but then
3564  * only unmask them as needed with SDEIMR.
3565  *
3566  * Note that we currently do this after installing the interrupt handler,
3567  * but before we enable the master interrupt. That should be sufficient
3568  * to avoid races with the irq handler, assuming we have MSI. Shared legacy
3569  * interrupts could still race.
3570  */
3571 static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3572 {
3573         struct intel_uncore *uncore = &dev_priv->uncore;
3574         u32 mask;
3575
3576         if (HAS_PCH_NOP(dev_priv))
3577                 return;
3578
3579         if (HAS_PCH_IBX(dev_priv))
3580                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3581         else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3582                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3583         else
3584                 mask = SDE_GMBUS_CPT;
3585
3586         GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff);
3587 }
3588
3589 static void ilk_irq_postinstall(struct drm_i915_private *dev_priv)
3590 {
3591         struct intel_uncore *uncore = &dev_priv->uncore;
3592         u32 display_mask, extra_mask;
3593
3594         if (INTEL_GEN(dev_priv) >= 7) {
3595                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3596                                 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3597                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3598                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3599                               DE_PLANE_FLIP_DONE_IVB(PLANE_C) |
3600                               DE_PLANE_FLIP_DONE_IVB(PLANE_B) |
3601                               DE_PLANE_FLIP_DONE_IVB(PLANE_A) |
3602                               DE_DP_A_HOTPLUG_IVB);
3603         } else {
3604                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3605                                 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3606                                 DE_PIPEA_CRC_DONE | DE_POISON);
3607                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK |
3608                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3609                               DE_PLANE_FLIP_DONE(PLANE_A) |
3610                               DE_PLANE_FLIP_DONE(PLANE_B) |
3611                               DE_DP_A_HOTPLUG);
3612         }
3613
3614         if (IS_HASWELL(dev_priv)) {
3615                 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3616                 display_mask |= DE_EDP_PSR_INT_HSW;
3617         }
3618
3619         if (IS_IRONLAKE_M(dev_priv))
3620                 extra_mask |= DE_PCU_EVENT;
3621
3622         dev_priv->irq_mask = ~display_mask;
3623
3624         ibx_irq_postinstall(dev_priv);
3625
3626         gen5_gt_irq_postinstall(&dev_priv->gt);
3627
3628         GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3629                       display_mask | extra_mask);
3630 }
3631
3632 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3633 {
3634         lockdep_assert_held(&dev_priv->irq_lock);
3635
3636         if (dev_priv->display_irqs_enabled)
3637                 return;
3638
3639         dev_priv->display_irqs_enabled = true;
3640
3641         if (intel_irqs_enabled(dev_priv)) {
3642                 vlv_display_irq_reset(dev_priv);
3643                 vlv_display_irq_postinstall(dev_priv);
3644         }
3645 }
3646
3647 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3648 {
3649         lockdep_assert_held(&dev_priv->irq_lock);
3650
3651         if (!dev_priv->display_irqs_enabled)
3652                 return;
3653
3654         dev_priv->display_irqs_enabled = false;
3655
3656         if (intel_irqs_enabled(dev_priv))
3657                 vlv_display_irq_reset(dev_priv);
3658 }
3659
3660
3661 static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3662 {
3663         gen5_gt_irq_postinstall(&dev_priv->gt);
3664
3665         spin_lock_irq(&dev_priv->irq_lock);
3666         if (dev_priv->display_irqs_enabled)
3667                 vlv_display_irq_postinstall(dev_priv);
3668         spin_unlock_irq(&dev_priv->irq_lock);
3669
3670         intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3671         intel_uncore_posting_read(&dev_priv->uncore, VLV_MASTER_IER);
3672 }
3673
3674 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3675 {
3676         struct intel_uncore *uncore = &dev_priv->uncore;
3677
3678         u32 de_pipe_masked = gen8_de_pipe_fault_mask(dev_priv) |
3679                 GEN8_PIPE_CDCLK_CRC_DONE;
3680         u32 de_pipe_enables;
3681         u32 de_port_masked = gen8_de_port_aux_mask(dev_priv);
3682         u32 de_port_enables;
3683         u32 de_misc_masked = GEN8_DE_EDP_PSR;
3684         u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
3685                 BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
3686         enum pipe pipe;
3687
3688         if (INTEL_GEN(dev_priv) <= 10)
3689                 de_misc_masked |= GEN8_DE_MISC_GSE;
3690
3691         if (IS_GEN9_LP(dev_priv))
3692                 de_port_masked |= BXT_DE_PORT_GMBUS;
3693
3694         if (INTEL_GEN(dev_priv) >= 11) {
3695                 enum port port;
3696
3697                 if (intel_bios_is_dsi_present(dev_priv, &port))
3698                         de_port_masked |= DSI0_TE | DSI1_TE;
3699         }
3700
3701         de_pipe_enables = de_pipe_masked |
3702                 GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN |
3703                 gen8_de_pipe_flip_done_mask(dev_priv);
3704
3705         de_port_enables = de_port_masked;
3706         if (IS_GEN9_LP(dev_priv))
3707                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3708         else if (IS_BROADWELL(dev_priv))
3709                 de_port_enables |= BDW_DE_PORT_HOTPLUG_MASK;
3710
3711         if (INTEL_GEN(dev_priv) >= 12) {
3712                 enum transcoder trans;
3713
3714                 for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
3715                         enum intel_display_power_domain domain;
3716
3717                         domain = POWER_DOMAIN_TRANSCODER(trans);
3718                         if (!intel_display_power_is_enabled(dev_priv, domain))
3719                                 continue;
3720
3721                         gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans));
3722                 }
3723         } else {
3724                 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3725         }
3726
3727         for_each_pipe(dev_priv, pipe) {
3728                 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3729
3730                 if (intel_display_power_is_enabled(dev_priv,
3731                                 POWER_DOMAIN_PIPE(pipe)))
3732                         GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3733                                           dev_priv->de_irq_mask[pipe],
3734                                           de_pipe_enables);
3735         }
3736
3737         GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3738         GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3739
3740         if (INTEL_GEN(dev_priv) >= 11) {
3741                 u32 de_hpd_masked = 0;
3742                 u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3743                                      GEN11_DE_TBT_HOTPLUG_MASK;
3744
3745                 GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3746                               de_hpd_enables);
3747         }
3748 }
3749
3750 static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3751 {
3752         if (HAS_PCH_SPLIT(dev_priv))
3753                 ibx_irq_postinstall(dev_priv);
3754
3755         gen8_gt_irq_postinstall(&dev_priv->gt);
3756         gen8_de_irq_postinstall(dev_priv);
3757
3758         gen8_master_intr_enable(dev_priv->uncore.regs);
3759 }
3760
3761 static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3762 {
3763         struct intel_uncore *uncore = &dev_priv->uncore;
3764         u32 mask = SDE_GMBUS_ICP;
3765
3766         GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff);
3767 }
3768
3769 static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3770 {
3771         struct intel_uncore *uncore = &dev_priv->uncore;
3772         u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3773
3774         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3775                 icp_irq_postinstall(dev_priv);
3776
3777         gen11_gt_irq_postinstall(&dev_priv->gt);
3778         gen8_de_irq_postinstall(dev_priv);
3779
3780         GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3781
3782         intel_uncore_write(&dev_priv->uncore, GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3783
3784         if (HAS_MASTER_UNIT_IRQ(dev_priv)) {
3785                 dg1_master_intr_enable(uncore->regs);
3786                 intel_uncore_posting_read(&dev_priv->uncore, DG1_MSTR_UNIT_INTR);
3787         } else {
3788                 gen11_master_intr_enable(uncore->regs);
3789                 intel_uncore_posting_read(&dev_priv->uncore, GEN11_GFX_MSTR_IRQ);
3790         }
3791 }
3792
3793 static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3794 {
3795         gen8_gt_irq_postinstall(&dev_priv->gt);
3796
3797         spin_lock_irq(&dev_priv->irq_lock);
3798         if (dev_priv->display_irqs_enabled)
3799                 vlv_display_irq_postinstall(dev_priv);
3800         spin_unlock_irq(&dev_priv->irq_lock);
3801
3802         intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3803         intel_uncore_posting_read(&dev_priv->uncore, GEN8_MASTER_IRQ);
3804 }
3805
3806 static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3807 {
3808         struct intel_uncore *uncore = &dev_priv->uncore;
3809
3810         i9xx_pipestat_irq_reset(dev_priv);
3811
3812         GEN2_IRQ_RESET(uncore);
3813         dev_priv->irq_mask = ~0u;
3814 }
3815
3816 static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3817 {
3818         struct intel_uncore *uncore = &dev_priv->uncore;
3819         u16 enable_mask;
3820
3821         intel_uncore_write16(uncore,
3822                              EMR,
3823                              ~(I915_ERROR_PAGE_TABLE |
3824                                I915_ERROR_MEMORY_REFRESH));
3825
3826         /* Unmask the interrupts that we always want on. */
3827         dev_priv->irq_mask =
3828                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3829                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3830                   I915_MASTER_ERROR_INTERRUPT);
3831
3832         enable_mask =
3833                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3834                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3835                 I915_MASTER_ERROR_INTERRUPT |
3836                 I915_USER_INTERRUPT;
3837
3838         GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3839
3840         /* Interrupt setup is already guaranteed to be single-threaded, this is
3841          * just to make the assert_spin_locked check happy. */
3842         spin_lock_irq(&dev_priv->irq_lock);
3843         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3844         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3845         spin_unlock_irq(&dev_priv->irq_lock);
3846 }
3847
3848 static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3849                                u16 *eir, u16 *eir_stuck)
3850 {
3851         struct intel_uncore *uncore = &i915->uncore;
3852         u16 emr;
3853
3854         *eir = intel_uncore_read16(uncore, EIR);
3855
3856         if (*eir)
3857                 intel_uncore_write16(uncore, EIR, *eir);
3858
3859         *eir_stuck = intel_uncore_read16(uncore, EIR);
3860         if (*eir_stuck == 0)
3861                 return;
3862
3863         /*
3864          * Toggle all EMR bits to make sure we get an edge
3865          * in the ISR master error bit if we don't clear
3866          * all the EIR bits. Otherwise the edge triggered
3867          * IIR on i965/g4x wouldn't notice that an interrupt
3868          * is still pending. Also some EIR bits can't be
3869          * cleared except by handling the underlying error
3870          * (or by a GPU reset) so we mask any bit that
3871          * remains set.
3872          */
3873         emr = intel_uncore_read16(uncore, EMR);
3874         intel_uncore_write16(uncore, EMR, 0xffff);
3875         intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3876 }
3877
3878 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3879                                    u16 eir, u16 eir_stuck)
3880 {
3881         DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3882
3883         if (eir_stuck)
3884                 drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n",
3885                         eir_stuck);
3886 }
3887
3888 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3889                                u32 *eir, u32 *eir_stuck)
3890 {
3891         u32 emr;
3892
3893         *eir = intel_uncore_read(&dev_priv->uncore, EIR);
3894
3895         intel_uncore_write(&dev_priv->uncore, EIR, *eir);
3896
3897         *eir_stuck = intel_uncore_read(&dev_priv->uncore, EIR);
3898         if (*eir_stuck == 0)
3899                 return;
3900
3901         /*
3902          * Toggle all EMR bits to make sure we get an edge
3903          * in the ISR master error bit if we don't clear
3904          * all the EIR bits. Otherwise the edge triggered
3905          * IIR on i965/g4x wouldn't notice that an interrupt
3906          * is still pending. Also some EIR bits can't be
3907          * cleared except by handling the underlying error
3908          * (or by a GPU reset) so we mask any bit that
3909          * remains set.
3910          */
3911         emr = intel_uncore_read(&dev_priv->uncore, EMR);
3912         intel_uncore_write(&dev_priv->uncore, EMR, 0xffffffff);
3913         intel_uncore_write(&dev_priv->uncore, EMR, emr | *eir_stuck);
3914 }
3915
3916 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
3917                                    u32 eir, u32 eir_stuck)
3918 {
3919         DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
3920
3921         if (eir_stuck)
3922                 drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n",
3923                         eir_stuck);
3924 }
3925
3926 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3927 {
3928         struct drm_i915_private *dev_priv = arg;
3929         irqreturn_t ret = IRQ_NONE;
3930
3931         if (!intel_irqs_enabled(dev_priv))
3932                 return IRQ_NONE;
3933
3934         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3935         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3936
3937         do {
3938                 u32 pipe_stats[I915_MAX_PIPES] = {};
3939                 u16 eir = 0, eir_stuck = 0;
3940                 u16 iir;
3941
3942                 iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
3943                 if (iir == 0)
3944                         break;
3945
3946                 ret = IRQ_HANDLED;
3947
3948                 /* Call regardless, as some status bits might not be
3949                  * signalled in iir */
3950                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3951
3952                 if (iir & I915_MASTER_ERROR_INTERRUPT)
3953                         i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3954
3955                 intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
3956
3957                 if (iir & I915_USER_INTERRUPT)
3958                         intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3959
3960                 if (iir & I915_MASTER_ERROR_INTERRUPT)
3961                         i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
3962
3963                 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3964         } while (0);
3965
3966         pmu_irq_stats(dev_priv, ret);
3967
3968         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3969
3970         return ret;
3971 }
3972
3973 static void i915_irq_reset(struct drm_i915_private *dev_priv)
3974 {
3975         struct intel_uncore *uncore = &dev_priv->uncore;
3976
3977         if (I915_HAS_HOTPLUG(dev_priv)) {
3978                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3979                 intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_STAT, intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT));
3980         }
3981
3982         i9xx_pipestat_irq_reset(dev_priv);
3983
3984         GEN3_IRQ_RESET(uncore, GEN2_);
3985         dev_priv->irq_mask = ~0u;
3986 }
3987
3988 static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
3989 {
3990         struct intel_uncore *uncore = &dev_priv->uncore;
3991         u32 enable_mask;
3992
3993         intel_uncore_write(&dev_priv->uncore, EMR, ~(I915_ERROR_PAGE_TABLE |
3994                           I915_ERROR_MEMORY_REFRESH));
3995
3996         /* Unmask the interrupts that we always want on. */
3997         dev_priv->irq_mask =
3998                 ~(I915_ASLE_INTERRUPT |
3999                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4000                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4001                   I915_MASTER_ERROR_INTERRUPT);
4002
4003         enable_mask =
4004                 I915_ASLE_INTERRUPT |
4005                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4006                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4007                 I915_MASTER_ERROR_INTERRUPT |
4008                 I915_USER_INTERRUPT;
4009
4010         if (I915_HAS_HOTPLUG(dev_priv)) {
4011                 /* Enable in IER... */
4012                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4013                 /* and unmask in IMR */
4014                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4015         }
4016
4017         GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4018
4019         /* Interrupt setup is already guaranteed to be single-threaded, this is
4020          * just to make the assert_spin_locked check happy. */
4021         spin_lock_irq(&dev_priv->irq_lock);
4022         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4023         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4024         spin_unlock_irq(&dev_priv->irq_lock);
4025
4026         i915_enable_asle_pipestat(dev_priv);
4027 }
4028
4029 static irqreturn_t i915_irq_handler(int irq, void *arg)
4030 {
4031         struct drm_i915_private *dev_priv = arg;
4032         irqreturn_t ret = IRQ_NONE;
4033
4034         if (!intel_irqs_enabled(dev_priv))
4035                 return IRQ_NONE;
4036
4037         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4038         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4039
4040         do {
4041                 u32 pipe_stats[I915_MAX_PIPES] = {};
4042                 u32 eir = 0, eir_stuck = 0;
4043                 u32 hotplug_status = 0;
4044                 u32 iir;
4045
4046                 iir = intel_uncore_read(&dev_priv->uncore, GEN2_IIR);
4047                 if (iir == 0)
4048                         break;
4049
4050                 ret = IRQ_HANDLED;
4051
4052                 if (I915_HAS_HOTPLUG(dev_priv) &&
4053                     iir & I915_DISPLAY_PORT_INTERRUPT)
4054                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4055
4056                 /* Call regardless, as some status bits might not be
4057                  * signalled in iir */
4058                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4059
4060                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4061                         i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4062
4063                 intel_uncore_write(&dev_priv->uncore, GEN2_IIR, iir);
4064
4065                 if (iir & I915_USER_INTERRUPT)
4066                         intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
4067
4068                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4069                         i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4070
4071                 if (hotplug_status)
4072                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4073
4074                 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4075         } while (0);
4076
4077         pmu_irq_stats(dev_priv, ret);
4078
4079         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4080
4081         return ret;
4082 }
4083
4084 static void i965_irq_reset(struct drm_i915_private *dev_priv)
4085 {
4086         struct intel_uncore *uncore = &dev_priv->uncore;
4087
4088         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4089         intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_STAT, intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT));
4090
4091         i9xx_pipestat_irq_reset(dev_priv);
4092
4093         GEN3_IRQ_RESET(uncore, GEN2_);
4094         dev_priv->irq_mask = ~0u;
4095 }
4096
4097 static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
4098 {
4099         struct intel_uncore *uncore = &dev_priv->uncore;
4100         u32 enable_mask;
4101         u32 error_mask;
4102
4103         /*
4104          * Enable some error detection, note the instruction error mask
4105          * bit is reserved, so we leave it masked.
4106          */
4107         if (IS_G4X(dev_priv)) {
4108                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4109                                GM45_ERROR_MEM_PRIV |
4110                                GM45_ERROR_CP_PRIV |
4111                                I915_ERROR_MEMORY_REFRESH);
4112         } else {
4113                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4114                                I915_ERROR_MEMORY_REFRESH);
4115         }
4116         intel_uncore_write(&dev_priv->uncore, EMR, error_mask);
4117
4118         /* Unmask the interrupts that we always want on. */
4119         dev_priv->irq_mask =
4120                 ~(I915_ASLE_INTERRUPT |
4121                   I915_DISPLAY_PORT_INTERRUPT |
4122                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4123                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4124                   I915_MASTER_ERROR_INTERRUPT);
4125
4126         enable_mask =
4127                 I915_ASLE_INTERRUPT |
4128                 I915_DISPLAY_PORT_INTERRUPT |
4129                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4130                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4131                 I915_MASTER_ERROR_INTERRUPT |
4132                 I915_USER_INTERRUPT;
4133
4134         if (IS_G4X(dev_priv))
4135                 enable_mask |= I915_BSD_USER_INTERRUPT;
4136
4137         GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4138
4139         /* Interrupt setup is already guaranteed to be single-threaded, this is
4140          * just to make the assert_spin_locked check happy. */
4141         spin_lock_irq(&dev_priv->irq_lock);
4142         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4143         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4144         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4145         spin_unlock_irq(&dev_priv->irq_lock);
4146
4147         i915_enable_asle_pipestat(dev_priv);
4148 }
4149
4150 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4151 {
4152         u32 hotplug_en;
4153
4154         lockdep_assert_held(&dev_priv->irq_lock);
4155
4156         /* Note HDMI and DP share hotplug bits */
4157         /* enable bits are the same for all generations */
4158         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4159         /* Programming the CRT detection parameters tends
4160            to generate a spurious hotplug event about three
4161            seconds later.  So just do it once.
4162         */
4163         if (IS_G4X(dev_priv))
4164                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4165         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4166
4167         /* Ignore TV since it's buggy */
4168         i915_hotplug_interrupt_update_locked(dev_priv,
4169                                              HOTPLUG_INT_EN_MASK |
4170                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4171                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4172                                              hotplug_en);
4173 }
4174
4175 static irqreturn_t i965_irq_handler(int irq, void *arg)
4176 {
4177         struct drm_i915_private *dev_priv = arg;
4178         irqreturn_t ret = IRQ_NONE;
4179
4180         if (!intel_irqs_enabled(dev_priv))
4181                 return IRQ_NONE;
4182
4183         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4184         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4185
4186         do {
4187                 u32 pipe_stats[I915_MAX_PIPES] = {};
4188                 u32 eir = 0, eir_stuck = 0;
4189                 u32 hotplug_status = 0;
4190                 u32 iir;
4191
4192                 iir = intel_uncore_read(&dev_priv->uncore, GEN2_IIR);
4193                 if (iir == 0)
4194                         break;
4195
4196                 ret = IRQ_HANDLED;
4197
4198                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4199                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4200
4201                 /* Call regardless, as some status bits might not be
4202                  * signalled in iir */
4203                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4204
4205                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4206                         i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4207
4208                 intel_uncore_write(&dev_priv->uncore, GEN2_IIR, iir);
4209
4210                 if (iir & I915_USER_INTERRUPT)
4211                         intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
4212
4213                 if (iir & I915_BSD_USER_INTERRUPT)
4214                         intel_engine_signal_breadcrumbs(dev_priv->gt.engine[VCS0]);
4215
4216                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4217                         i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4218
4219                 if (hotplug_status)
4220                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4221
4222                 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4223         } while (0);
4224
4225         pmu_irq_stats(dev_priv, IRQ_HANDLED);
4226
4227         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4228
4229         return ret;
4230 }
4231
4232 /**
4233  * intel_irq_init - initializes irq support
4234  * @dev_priv: i915 device instance
4235  *
4236  * This function initializes all the irq support including work items, timers
4237  * and all the vtables. It does not setup the interrupt itself though.
4238  */
4239 void intel_irq_init(struct drm_i915_private *dev_priv)
4240 {
4241         struct drm_device *dev = &dev_priv->drm;
4242         int i;
4243
4244         INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work);
4245         for (i = 0; i < MAX_L3_SLICES; ++i)
4246                 dev_priv->l3_parity.remap_info[i] = NULL;
4247
4248         /* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
4249         if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
4250                 dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
4251
4252         if (!HAS_DISPLAY(dev_priv))
4253                 return;
4254
4255         intel_hpd_init_pins(dev_priv);
4256
4257         intel_hpd_init_work(dev_priv);
4258
4259         dev->vblank_disable_immediate = true;
4260
4261         /* Most platforms treat the display irq block as an always-on
4262          * power domain. vlv/chv can disable it at runtime and need
4263          * special care to avoid writing any of the display block registers
4264          * outside of the power domain. We defer setting up the display irqs
4265          * in this case to the runtime pm.
4266          */
4267         dev_priv->display_irqs_enabled = true;
4268         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4269                 dev_priv->display_irqs_enabled = false;
4270
4271         dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4272         /* If we have MST support, we want to avoid doing short HPD IRQ storm
4273          * detection, as short HPD storms will occur as a natural part of
4274          * sideband messaging with MST.
4275          * On older platforms however, IRQ storms can occur with both long and
4276          * short pulses, as seen on some G4x systems.
4277          */
4278         dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4279
4280         if (HAS_GMCH(dev_priv)) {
4281                 if (I915_HAS_HOTPLUG(dev_priv))
4282                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4283         } else {
4284                 if (HAS_PCH_DG1(dev_priv))
4285                         dev_priv->display.hpd_irq_setup = dg1_hpd_irq_setup;
4286                 else if (INTEL_GEN(dev_priv) >= 11)
4287                         dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4288                 else if (IS_GEN9_LP(dev_priv))
4289                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4290                 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4291                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4292                 else
4293                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4294         }
4295 }
4296
4297 /**
4298  * intel_irq_fini - deinitializes IRQ support
4299  * @i915: i915 device instance
4300  *
4301  * This function deinitializes all the IRQ support.
4302  */
4303 void intel_irq_fini(struct drm_i915_private *i915)
4304 {
4305         int i;
4306
4307         for (i = 0; i < MAX_L3_SLICES; ++i)
4308                 kfree(i915->l3_parity.remap_info[i]);
4309 }
4310
4311 static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
4312 {
4313         if (HAS_GMCH(dev_priv)) {
4314                 if (IS_CHERRYVIEW(dev_priv))
4315                         return cherryview_irq_handler;
4316                 else if (IS_VALLEYVIEW(dev_priv))
4317                         return valleyview_irq_handler;
4318                 else if (IS_GEN(dev_priv, 4))
4319                         return i965_irq_handler;
4320                 else if (IS_GEN(dev_priv, 3))
4321                         return i915_irq_handler;
4322                 else
4323                         return i8xx_irq_handler;
4324         } else {
4325                 if (HAS_MASTER_UNIT_IRQ(dev_priv))
4326                         return dg1_irq_handler;
4327                 if (INTEL_GEN(dev_priv) >= 11)
4328                         return gen11_irq_handler;
4329                 else if (INTEL_GEN(dev_priv) >= 8)
4330                         return gen8_irq_handler;
4331                 else
4332                         return ilk_irq_handler;
4333         }
4334 }
4335
4336 static void intel_irq_reset(struct drm_i915_private *dev_priv)
4337 {
4338         if (HAS_GMCH(dev_priv)) {
4339                 if (IS_CHERRYVIEW(dev_priv))
4340                         cherryview_irq_reset(dev_priv);
4341                 else if (IS_VALLEYVIEW(dev_priv))
4342                         valleyview_irq_reset(dev_priv);
4343                 else if (IS_GEN(dev_priv, 4))
4344                         i965_irq_reset(dev_priv);
4345                 else if (IS_GEN(dev_priv, 3))
4346                         i915_irq_reset(dev_priv);
4347                 else
4348                         i8xx_irq_reset(dev_priv);
4349         } else {
4350                 if (INTEL_GEN(dev_priv) >= 11)
4351                         gen11_irq_reset(dev_priv);
4352                 else if (INTEL_GEN(dev_priv) >= 8)
4353                         gen8_irq_reset(dev_priv);
4354                 else
4355                         ilk_irq_reset(dev_priv);
4356         }
4357 }
4358
4359 static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4360 {
4361         if (HAS_GMCH(dev_priv)) {
4362                 if (IS_CHERRYVIEW(dev_priv))
4363                         cherryview_irq_postinstall(dev_priv);
4364                 else if (IS_VALLEYVIEW(dev_priv))
4365                         valleyview_irq_postinstall(dev_priv);
4366                 else if (IS_GEN(dev_priv, 4))
4367                         i965_irq_postinstall(dev_priv);
4368                 else if (IS_GEN(dev_priv, 3))
4369                         i915_irq_postinstall(dev_priv);
4370                 else
4371                         i8xx_irq_postinstall(dev_priv);
4372         } else {
4373                 if (INTEL_GEN(dev_priv) >= 11)
4374                         gen11_irq_postinstall(dev_priv);
4375                 else if (INTEL_GEN(dev_priv) >= 8)
4376                         gen8_irq_postinstall(dev_priv);
4377                 else
4378                         ilk_irq_postinstall(dev_priv);
4379         }
4380 }
4381
4382 /**
4383  * intel_irq_install - enables the hardware interrupt
4384  * @dev_priv: i915 device instance
4385  *
4386  * This function enables the hardware interrupt handling, but leaves the hotplug
4387  * handling still disabled. It is called after intel_irq_init().
4388  *
4389  * In the driver load and resume code we need working interrupts in a few places
4390  * but don't want to deal with the hassle of concurrent probe and hotplug
4391  * workers. Hence the split into this two-stage approach.
4392  */
4393 int intel_irq_install(struct drm_i915_private *dev_priv)
4394 {
4395         int irq = dev_priv->drm.pdev->irq;
4396         int ret;
4397
4398         /*
4399          * We enable some interrupt sources in our postinstall hooks, so mark
4400          * interrupts as enabled _before_ actually enabling them to avoid
4401          * special cases in our ordering checks.
4402          */
4403         dev_priv->runtime_pm.irqs_enabled = true;
4404
4405         dev_priv->drm.irq_enabled = true;
4406
4407         intel_irq_reset(dev_priv);
4408
4409         ret = request_irq(irq, intel_irq_handler(dev_priv),
4410                           IRQF_SHARED, DRIVER_NAME, dev_priv);
4411         if (ret < 0) {
4412                 dev_priv->drm.irq_enabled = false;
4413                 return ret;
4414         }
4415
4416         intel_irq_postinstall(dev_priv);
4417
4418         return ret;
4419 }
4420
4421 /**
4422  * intel_irq_uninstall - finilizes all irq handling
4423  * @dev_priv: i915 device instance
4424  *
4425  * This stops interrupt and hotplug handling and unregisters and frees all
4426  * resources acquired in the init functions.
4427  */
4428 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4429 {
4430         int irq = dev_priv->drm.pdev->irq;
4431
4432         /*
4433          * FIXME we can get called twice during driver probe
4434          * error handling as well as during driver remove due to
4435          * intel_modeset_driver_remove() calling us out of sequence.
4436          * Would be nice if it didn't do that...
4437          */
4438         if (!dev_priv->drm.irq_enabled)
4439                 return;
4440
4441         dev_priv->drm.irq_enabled = false;
4442
4443         intel_irq_reset(dev_priv);
4444
4445         free_irq(irq, dev_priv);
4446
4447         intel_hpd_cancel_work(dev_priv);
4448         dev_priv->runtime_pm.irqs_enabled = false;
4449 }
4450
4451 /**
4452  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4453  * @dev_priv: i915 device instance
4454  *
4455  * This function is used to disable interrupts at runtime, both in the runtime
4456  * pm and the system suspend/resume code.
4457  */
4458 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4459 {
4460         intel_irq_reset(dev_priv);
4461         dev_priv->runtime_pm.irqs_enabled = false;
4462         intel_synchronize_irq(dev_priv);
4463 }
4464
4465 /**
4466  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4467  * @dev_priv: i915 device instance
4468  *
4469  * This function is used to enable interrupts at runtime, both in the runtime
4470  * pm and the system suspend/resume code.
4471  */
4472 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4473 {
4474         dev_priv->runtime_pm.irqs_enabled = true;
4475         intel_irq_reset(dev_priv);
4476         intel_irq_postinstall(dev_priv);
4477 }
4478
4479 bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4480 {
4481         /*
4482          * We only use drm_irq_uninstall() at unload and VT switch, so
4483          * this is the only thing we need to check.
4484          */
4485         return dev_priv->runtime_pm.irqs_enabled;
4486 }
4487
4488 void intel_synchronize_irq(struct drm_i915_private *i915)
4489 {
4490         synchronize_irq(i915->drm.pdev->irq);
4491 }
This page took 0.294819 seconds and 4 git commands to generate.