1 // SPDX-License-Identifier: MIT
3 * Copyright © 2010 Daniel Vetter
4 * Copyright © 2020 Intel Corporation
7 #include <linux/slab.h> /* fault-inject.h is not standalone! */
9 #include <linux/fault-inject.h>
10 #include <linux/log2.h>
11 #include <linux/random.h>
12 #include <linux/seq_file.h>
13 #include <linux/stop_machine.h>
15 #include <asm/set_memory.h>
18 #include "display/intel_frontbuffer.h"
19 #include "gt/intel_gt.h"
20 #include "gt/intel_gt_requests.h"
23 #include "i915_scatterlist.h"
24 #include "i915_trace.h"
25 #include "i915_vgpu.h"
27 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
28 struct sg_table *pages)
31 if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
32 pages->sgl, pages->nents,
33 PCI_DMA_BIDIRECTIONAL,
34 DMA_ATTR_SKIP_CPU_SYNC |
35 DMA_ATTR_NO_KERNEL_MAPPING |
40 * If the DMA remap fails, one cause can be that we have
41 * too many objects pinned in a small remapping table,
42 * such as swiotlb. Incrementally purge all other objects and
43 * try again - if there are no more pages to remove from
44 * the DMA remapper, i915_gem_shrink will return 0.
46 GEM_BUG_ON(obj->mm.pages == pages);
47 } while (i915_gem_shrink(to_i915(obj->base.dev),
48 obj->base.size >> PAGE_SHIFT, NULL,
50 I915_SHRINK_UNBOUND));
55 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
56 struct sg_table *pages)
58 struct drm_i915_private *i915 = to_i915(obj->base.dev);
59 struct i915_ggtt *ggtt = &i915->ggtt;
61 /* XXX This does not prevent more requests being submitted! */
62 if (unlikely(ggtt->do_idle_maps))
63 /* Wait a bit, in the hope it avoids the hang */
64 usleep_range(100, 250);
66 dma_unmap_sg(&i915->drm.pdev->dev,
67 pages->sgl, pages->nents,
68 PCI_DMA_BIDIRECTIONAL);
72 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
73 * @vm: the &struct i915_address_space
74 * @node: the &struct drm_mm_node (typically i915_vma.mode)
75 * @size: how much space to allocate inside the GTT,
76 * must be #I915_GTT_PAGE_SIZE aligned
77 * @offset: where to insert inside the GTT,
78 * must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
79 * (@offset + @size) must fit within the address space
80 * @color: color to apply to node, if this node is not from a VMA,
81 * color must be #I915_COLOR_UNEVICTABLE
82 * @flags: control search and eviction behaviour
84 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
85 * the address space (using @size and @color). If the @node does not fit, it
86 * tries to evict any overlapping nodes from the GTT, including any
87 * neighbouring nodes if the colors do not match (to ensure guard pages between
88 * differing domains). See i915_gem_evict_for_node() for the gory details
89 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
90 * evicting active overlapping objects, and any overlapping node that is pinned
91 * or marked as unevictable will also result in failure.
93 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
94 * asked to wait for eviction and interrupted.
96 int i915_gem_gtt_reserve(struct i915_address_space *vm,
97 struct drm_mm_node *node,
98 u64 size, u64 offset, unsigned long color,
104 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
105 GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
106 GEM_BUG_ON(range_overflows(offset, size, vm->total));
107 GEM_BUG_ON(vm == &vm->i915->ggtt.alias->vm);
108 GEM_BUG_ON(drm_mm_node_allocated(node));
111 node->start = offset;
114 err = drm_mm_reserve_node(&vm->mm, node);
118 if (flags & PIN_NOEVICT)
121 err = i915_gem_evict_for_node(vm, node, flags);
123 err = drm_mm_reserve_node(&vm->mm, node);
128 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
132 GEM_BUG_ON(range_overflows(start, len, end));
133 GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
135 range = round_down(end - len, align) - round_up(start, align);
137 if (sizeof(unsigned long) == sizeof(u64)) {
138 addr = get_random_long();
140 addr = get_random_int();
141 if (range > U32_MAX) {
143 addr |= get_random_int();
146 div64_u64_rem(addr, range, &addr);
150 return round_up(start, align);
154 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
155 * @vm: the &struct i915_address_space
156 * @node: the &struct drm_mm_node (typically i915_vma.node)
157 * @size: how much space to allocate inside the GTT,
158 * must be #I915_GTT_PAGE_SIZE aligned
159 * @alignment: required alignment of starting offset, may be 0 but
160 * if specified, this must be a power-of-two and at least
161 * #I915_GTT_MIN_ALIGNMENT
162 * @color: color to apply to node
163 * @start: start of any range restriction inside GTT (0 for all),
164 * must be #I915_GTT_PAGE_SIZE aligned
165 * @end: end of any range restriction inside GTT (U64_MAX for all),
166 * must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
167 * @flags: control search and eviction behaviour
169 * i915_gem_gtt_insert() first searches for an available hole into which
170 * is can insert the node. The hole address is aligned to @alignment and
171 * its @size must then fit entirely within the [@start, @end] bounds. The
172 * nodes on either side of the hole must match @color, or else a guard page
173 * will be inserted between the two nodes (or the node evicted). If no
174 * suitable hole is found, first a victim is randomly selected and tested
175 * for eviction, otherwise then the LRU list of objects within the GTT
176 * is scanned to find the first set of replacement nodes to create the hole.
177 * Those old overlapping nodes are evicted from the GTT (and so must be
178 * rebound before any future use). Any node that is currently pinned cannot
179 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
180 * active and #PIN_NONBLOCK is specified, that node is also skipped when
181 * searching for an eviction candidate. See i915_gem_evict_something() for
182 * the gory details on the eviction algorithm.
184 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
185 * asked to wait for eviction and interrupted.
187 int i915_gem_gtt_insert(struct i915_address_space *vm,
188 struct drm_mm_node *node,
189 u64 size, u64 alignment, unsigned long color,
190 u64 start, u64 end, unsigned int flags)
192 enum drm_mm_insert_mode mode;
196 lockdep_assert_held(&vm->mutex);
199 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
200 GEM_BUG_ON(alignment && !is_power_of_2(alignment));
201 GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
202 GEM_BUG_ON(start >= end);
203 GEM_BUG_ON(start > 0 && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
204 GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
205 GEM_BUG_ON(vm == &vm->i915->ggtt.alias->vm);
206 GEM_BUG_ON(drm_mm_node_allocated(node));
208 if (unlikely(range_overflows(start, size, end)))
211 if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
214 mode = DRM_MM_INSERT_BEST;
215 if (flags & PIN_HIGH)
216 mode = DRM_MM_INSERT_HIGHEST;
217 if (flags & PIN_MAPPABLE)
218 mode = DRM_MM_INSERT_LOW;
220 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
221 * so we know that we always have a minimum alignment of 4096.
222 * The drm_mm range manager is optimised to return results
223 * with zero alignment, so where possible use the optimal
226 BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
227 if (alignment <= I915_GTT_MIN_ALIGNMENT)
230 err = drm_mm_insert_node_in_range(&vm->mm, node,
231 size, alignment, color,
236 if (mode & DRM_MM_INSERT_ONCE) {
237 err = drm_mm_insert_node_in_range(&vm->mm, node,
238 size, alignment, color,
245 if (flags & PIN_NOEVICT)
249 * No free space, pick a slot at random.
251 * There is a pathological case here using a GTT shared between
252 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
254 * |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
255 * (64k objects) (448k objects)
257 * Now imagine that the eviction LRU is ordered top-down (just because
258 * pathology meets real life), and that we need to evict an object to
259 * make room inside the aperture. The eviction scan then has to walk
260 * the 448k list before it finds one within range. And now imagine that
261 * it has to search for a new hole between every byte inside the memcpy,
262 * for several simultaneous clients.
264 * On a full-ppgtt system, if we have run out of available space, there
265 * will be lots and lots of objects in the eviction list! Again,
266 * searching that LRU list may be slow if we are also applying any
267 * range restrictions (e.g. restriction to low 4GiB) and so, for
268 * simplicity and similarilty between different GTT, try the single
269 * random replacement first.
271 offset = random_offset(start, end,
272 size, alignment ?: I915_GTT_MIN_ALIGNMENT);
273 err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
277 if (flags & PIN_NOSEARCH)
280 /* Randomly selected placement is pinned, do a search */
281 err = i915_gem_evict_something(vm, size, alignment, color,
286 return drm_mm_insert_node_in_range(&vm->mm, node,
287 size, alignment, color,
288 start, end, DRM_MM_INSERT_EVICT);
291 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
292 #include "selftests/i915_gem_gtt.c"