2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
37 #include <linux/slab.h>
40 #include "gt/intel_gpu_commands.h"
41 #include "gt/intel_lrc.h"
42 #include "gt/intel_ring.h"
43 #include "gt/intel_gt_requests.h"
44 #include "gt/shmem_utils.h"
46 #include "i915_pvinfo.h"
49 #include "gem/i915_gem_context.h"
50 #include "gem/i915_gem_pm.h"
51 #include "gt/intel_context.h"
53 #define INVALID_OP (~0U)
57 #define OP_LEN_3D_MEDIA 16
58 #define OP_LEN_MFX_VC 16
59 #define OP_LEN_VEBOX 16
61 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7)
71 const struct sub_op_bits *sub_op;
74 #define MAX_CMD_BUDGET 0x7fffffff
75 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15)
76 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9)
77 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1)
79 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20)
80 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10)
81 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2)
83 /* Render Command Map */
85 /* MI_* command Opcode (28:23) */
86 #define OP_MI_NOOP 0x0
87 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */
88 #define OP_MI_USER_INTERRUPT 0x2
89 #define OP_MI_WAIT_FOR_EVENT 0x3
90 #define OP_MI_FLUSH 0x4
91 #define OP_MI_ARB_CHECK 0x5
92 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */
93 #define OP_MI_REPORT_HEAD 0x7
94 #define OP_MI_ARB_ON_OFF 0x8
95 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */
96 #define OP_MI_BATCH_BUFFER_END 0xA
97 #define OP_MI_SUSPEND_FLUSH 0xB
98 #define OP_MI_PREDICATE 0xC /* IVB+ */
99 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */
100 #define OP_MI_SET_APPID 0xE /* IVB+ */
101 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */
102 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */
103 #define OP_MI_DISPLAY_FLIP 0x14
104 #define OP_MI_SEMAPHORE_MBOX 0x16
105 #define OP_MI_SET_CONTEXT 0x18
106 #define OP_MI_MATH 0x1A
107 #define OP_MI_URB_CLEAR 0x19
108 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */
109 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */
111 #define OP_MI_STORE_DATA_IMM 0x20
112 #define OP_MI_STORE_DATA_INDEX 0x21
113 #define OP_MI_LOAD_REGISTER_IMM 0x22
114 #define OP_MI_UPDATE_GTT 0x23
115 #define OP_MI_STORE_REGISTER_MEM 0x24
116 #define OP_MI_FLUSH_DW 0x26
117 #define OP_MI_CLFLUSH 0x27
118 #define OP_MI_REPORT_PERF_COUNT 0x28
119 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */
120 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */
121 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */
122 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */
123 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */
124 #define OP_MI_2E 0x2E /* BDW+ */
125 #define OP_MI_2F 0x2F /* BDW+ */
126 #define OP_MI_BATCH_BUFFER_START 0x31
128 /* Bit definition for dword 0 */
129 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8)
131 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36
133 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
134 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
135 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U)
136 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U)
138 /* 2D command: Opcode (28:22) */
139 #define OP_2D(x) ((2<<7) | x)
141 #define OP_XY_SETUP_BLT OP_2D(0x1)
142 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3)
143 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11)
144 #define OP_XY_PIXEL_BLT OP_2D(0x24)
145 #define OP_XY_SCANLINES_BLT OP_2D(0x25)
146 #define OP_XY_TEXT_BLT OP_2D(0x26)
147 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31)
148 #define OP_XY_COLOR_BLT OP_2D(0x50)
149 #define OP_XY_PAT_BLT OP_2D(0x51)
150 #define OP_XY_MONO_PAT_BLT OP_2D(0x52)
151 #define OP_XY_SRC_COPY_BLT OP_2D(0x53)
152 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54)
153 #define OP_XY_FULL_BLT OP_2D(0x55)
154 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56)
155 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57)
156 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58)
157 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59)
158 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71)
159 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72)
160 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73)
161 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74)
162 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75)
163 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76)
164 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77)
166 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
167 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
168 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
170 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03)
172 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01)
173 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02)
174 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04)
175 #define OP_SWTESS_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x03)
177 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B)
179 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04)
181 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0)
182 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1)
183 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2)
184 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3)
185 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4)
186 #define OP_MEDIA_POOL_STATE OP_3D_MEDIA(0x2, 0x0, 0x5)
188 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0)
189 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2)
190 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3)
191 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5)
193 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
194 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
195 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
196 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
197 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08)
198 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09)
199 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A)
200 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B)
201 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */
202 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E)
203 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F)
204 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10)
205 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11)
206 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12)
207 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13)
208 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14)
209 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15)
210 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16)
211 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17)
212 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18)
213 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
214 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
215 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
216 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
217 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
218 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
219 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
220 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
221 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
222 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
223 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
224 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
225 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
226 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
227 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
228 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
229 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
230 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
231 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
232 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
233 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
234 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
235 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
236 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
237 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
238 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
239 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
240 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
241 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
242 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
243 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
244 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
245 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
246 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
247 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
248 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
249 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
250 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
251 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
252 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
253 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
254 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
255 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
256 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
257 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
258 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
260 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
261 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
262 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
263 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
264 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
265 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
266 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
267 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
268 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
269 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
270 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
272 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00)
273 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02)
274 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04)
275 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05)
276 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06)
277 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07)
278 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08)
279 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A)
280 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B)
281 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C)
282 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D)
283 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E)
284 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F)
285 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10)
286 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11)
287 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
288 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
289 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
290 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
291 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
292 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17)
293 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18)
294 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
295 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
296 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
297 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C)
298 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00)
299 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00)
301 /* VCCP Command Parser */
304 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
305 * git://anongit.freedesktop.org/vaapi/intel-driver
310 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \
317 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */
318 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */
319 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */
320 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */
321 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */
322 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */
323 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */
324 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */
325 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */
326 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */
327 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */
329 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */
331 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */
332 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */
333 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */
334 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */
335 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */
336 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */
337 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */
338 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */
339 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */
340 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */
341 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */
342 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */
344 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */
345 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */
346 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */
347 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */
348 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */
350 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */
351 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */
352 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */
353 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */
354 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */
356 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */
357 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */
358 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */
360 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0)
361 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2)
362 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8)
364 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
371 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0)
372 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2)
373 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3)
375 struct parser_exec_state;
377 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
379 #define GVT_CMD_HASH_BITS 7
381 /* which DWords need address fix */
382 #define ADDR_FIX_1(x1) (1 << (x1))
383 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
384 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
385 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
386 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
388 #define DWORD_FIELD(dword, end, start) \
389 FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
391 #define OP_LENGTH_BIAS 2
392 #define CMD_LEN(value) (value + OP_LENGTH_BIAS)
394 static int gvt_check_valid_cmd_length(int len, int valid_len)
396 if (valid_len != len) {
397 gvt_err("len is not valid: len=%u valid_len=%u\n",
408 #define F_LEN_MASK 3U
409 #define F_LEN_CONST 1U
411 /* value is const although LEN maybe variable */
412 #define F_LEN_VAR_FIXED (1<<1)
415 * command has its own ip advance logic
416 * e.g. MI_BATCH_START, MI_BATCH_END
418 #define F_IP_ADVANCE_CUSTOM (1<<2)
421 #define R_RCS BIT(RCS0)
422 #define R_VCS1 BIT(VCS0)
423 #define R_VCS2 BIT(VCS1)
424 #define R_VCS (R_VCS1 | R_VCS2)
425 #define R_BCS BIT(BCS0)
426 #define R_VECS BIT(VECS0)
427 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
428 /* rings that support this cmd: BLT/RCS/VCS/VECS */
431 /* devices that support this cmd: SNB/IVB/HSW/... */
434 /* which DWords are address that need fix up.
435 * bit 0 means a 32-bit non address operand in command
436 * bit 1 means address operand, which could be 32-bit
437 * or 64-bit depending on different architectures.(
438 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
439 * No matter the address length, each address only takes
440 * one bit in the bitmap.
444 /* flag == F_LEN_CONST : command length
445 * flag == F_LEN_VAR : length bias bits
446 * Note: length is in DWord
450 parser_cmd_handler handler;
452 /* valid length in DWord */
457 struct hlist_node hlist;
458 const struct cmd_info *info;
462 RING_BUFFER_INSTRUCTION,
463 BATCH_BUFFER_INSTRUCTION,
464 BATCH_BUFFER_2ND_LEVEL,
473 struct parser_exec_state {
474 struct intel_vgpu *vgpu;
475 const struct intel_engine_cs *engine;
479 /* batch buffer address type */
482 /* graphics memory address of ring buffer start */
483 unsigned long ring_start;
484 unsigned long ring_size;
485 unsigned long ring_head;
486 unsigned long ring_tail;
488 /* instruction graphics memory address */
489 unsigned long ip_gma;
491 /* mapped va of the instr_gma */
496 /* next instruction when return from batch buffer to ring buffer */
497 unsigned long ret_ip_gma_ring;
499 /* next instruction when return from 2nd batch buffer to batch buffer */
500 unsigned long ret_ip_gma_bb;
502 /* batch buffer address type (GTT or PPGTT)
503 * used when ret from 2nd level batch buffer
505 int saved_buf_addr_type;
509 const struct cmd_info *info;
511 struct intel_vgpu_workload *workload;
514 #define gmadr_dw_number(s) \
515 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
517 static unsigned long bypass_scan_mask = 0;
519 /* ring ALL, type = 0 */
520 static const struct sub_op_bits sub_op_mi[] = {
525 static const struct decode_info decode_info_mi = {
528 ARRAY_SIZE(sub_op_mi),
532 /* ring RCS, command type 2 */
533 static const struct sub_op_bits sub_op_2d[] = {
538 static const struct decode_info decode_info_2d = {
541 ARRAY_SIZE(sub_op_2d),
545 /* ring RCS, command type 3 */
546 static const struct sub_op_bits sub_op_3d_media[] = {
553 static const struct decode_info decode_info_3d_media = {
556 ARRAY_SIZE(sub_op_3d_media),
560 /* ring VCS, command type 3 */
561 static const struct sub_op_bits sub_op_mfx_vc[] = {
569 static const struct decode_info decode_info_mfx_vc = {
572 ARRAY_SIZE(sub_op_mfx_vc),
576 /* ring VECS, command type 3 */
577 static const struct sub_op_bits sub_op_vebox[] = {
585 static const struct decode_info decode_info_vebox = {
588 ARRAY_SIZE(sub_op_vebox),
592 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
597 &decode_info_3d_media,
649 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine)
651 const struct decode_info *d_info;
653 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
657 return cmd >> (32 - d_info->op_len);
660 static inline const struct cmd_info *
661 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode,
662 const struct intel_engine_cs *engine)
666 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
667 if (opcode == e->info->opcode &&
668 e->info->rings & engine->mask)
674 static inline const struct cmd_info *
675 get_cmd_info(struct intel_gvt *gvt, u32 cmd,
676 const struct intel_engine_cs *engine)
680 opcode = get_opcode(cmd, engine);
681 if (opcode == INVALID_OP)
684 return find_cmd_entry(gvt, opcode, engine);
687 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
689 return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
692 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine)
694 const struct decode_info *d_info;
697 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
701 gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
702 cmd >> (32 - d_info->op_len), d_info->name);
704 for (i = 0; i < d_info->nr_sub_op; i++)
705 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
706 d_info->sub_op[i].low));
711 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
713 return s->ip_va + (index << 2);
716 static inline u32 cmd_val(struct parser_exec_state *s, int index)
718 return *cmd_ptr(s, index);
721 static inline bool is_init_ctx(struct parser_exec_state *s)
723 return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx);
726 static void parser_exec_state_dump(struct parser_exec_state *s)
731 gvt_dbg_cmd(" vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)"
732 " ring_head(%08lx) ring_tail(%08lx)\n",
733 s->vgpu->id, s->engine->name,
734 s->ring_start, s->ring_start + s->ring_size,
735 s->ring_head, s->ring_tail);
737 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ",
738 s->buf_type == RING_BUFFER_INSTRUCTION ?
739 "RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ?
740 "CTX_BUFFER" : "BATCH_BUFFER"),
741 s->buf_addr_type == GTT_BUFFER ?
742 "GTT" : "PPGTT", s->ip_gma);
744 if (s->ip_va == NULL) {
745 gvt_dbg_cmd(" ip_va(NULL)");
749 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n",
750 s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
751 cmd_val(s, 2), cmd_val(s, 3));
753 print_opcode(cmd_val(s, 0), s->engine);
755 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
758 gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
759 for (i = 0; i < 8; i++)
760 gvt_dbg_cmd("%08x ", cmd_val(s, i));
763 s->ip_va += 8 * sizeof(u32);
768 static inline void update_ip_va(struct parser_exec_state *s)
770 unsigned long len = 0;
772 if (WARN_ON(s->ring_head == s->ring_tail))
775 if (s->buf_type == RING_BUFFER_INSTRUCTION ||
776 s->buf_type == RING_BUFFER_CTX) {
777 unsigned long ring_top = s->ring_start + s->ring_size;
779 if (s->ring_head > s->ring_tail) {
780 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
781 len = (s->ip_gma - s->ring_head);
782 else if (s->ip_gma >= s->ring_start &&
783 s->ip_gma <= s->ring_tail)
784 len = (ring_top - s->ring_head) +
785 (s->ip_gma - s->ring_start);
787 len = (s->ip_gma - s->ring_head);
789 s->ip_va = s->rb_va + len;
790 } else {/* shadow batch buffer */
791 s->ip_va = s->ret_bb_va;
795 static inline int ip_gma_set(struct parser_exec_state *s,
796 unsigned long ip_gma)
798 WARN_ON(!IS_ALIGNED(ip_gma, 4));
805 static inline int ip_gma_advance(struct parser_exec_state *s,
808 s->ip_gma += (dw_len << 2);
810 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
811 if (s->ip_gma >= s->ring_start + s->ring_size)
812 s->ip_gma -= s->ring_size;
815 s->ip_va += (dw_len << 2);
821 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
823 if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
826 return (cmd & ((1U << info->len) - 1)) + 2;
830 static inline int cmd_length(struct parser_exec_state *s)
832 return get_cmd_length(s->info, cmd_val(s, 0));
835 /* do not remove this, some platform may need clflush here */
836 #define patch_value(s, addr, val) do { \
840 static inline bool is_mocs_mmio(unsigned int offset)
842 return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
843 ((offset >= 0xb020) && (offset <= 0xb0a0));
846 static int is_cmd_update_pdps(unsigned int offset,
847 struct parser_exec_state *s)
849 u32 base = s->workload->engine->mmio_base;
850 return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0));
853 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s,
854 unsigned int offset, unsigned int index)
856 struct intel_vgpu *vgpu = s->vgpu;
857 struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm;
858 struct intel_vgpu_mm *mm;
859 u64 pdps[GEN8_3LVL_PDPES];
861 if (shadow_mm->ppgtt_mm.root_entry_type ==
862 GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
863 pdps[0] = (u64)cmd_val(s, 2) << 32;
864 pdps[0] |= cmd_val(s, 4);
866 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
868 gvt_vgpu_err("failed to get the 4-level shadow vm\n");
871 intel_vgpu_mm_get(mm);
872 list_add_tail(&mm->ppgtt_mm.link,
873 &s->workload->lri_shadow_mm);
874 *cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
875 *cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
877 /* Currently all guests use PML4 table and now can't
878 * have a guest with 3-level table but uses LRI for
879 * PPGTT update. So this is simply un-testable. */
881 gvt_vgpu_err("invalid shared shadow vm type\n");
887 static int cmd_reg_handler(struct parser_exec_state *s,
888 unsigned int offset, unsigned int index, char *cmd)
890 struct intel_vgpu *vgpu = s->vgpu;
891 struct intel_gvt *gvt = vgpu->gvt;
895 if (offset + 4 > gvt->device_info.mmio_size) {
896 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
901 if (is_init_ctx(s)) {
902 struct intel_gvt_mmio_info *mmio_info;
904 intel_gvt_mmio_set_cmd_accessible(gvt, offset);
905 mmio_info = intel_gvt_find_mmio_info(gvt, offset);
906 if (mmio_info && mmio_info->write)
907 intel_gvt_mmio_set_cmd_write_patch(gvt, offset);
911 if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) {
912 gvt_vgpu_err("%s access to non-render register (%x)\n",
917 if (!strncmp(cmd, "srm", 3) ||
918 !strncmp(cmd, "lrm", 3)) {
919 if (offset != i915_mmio_reg_offset(GEN8_L3SQCREG4) &&
921 gvt_vgpu_err("%s access to register (%x)\n",
928 if (!strncmp(cmd, "lrr-src", 7) ||
929 !strncmp(cmd, "lrr-dst", 7)) {
930 gvt_vgpu_err("not allowed cmd %s\n", cmd);
934 if (!strncmp(cmd, "pipe_ctrl", 9)) {
935 /* TODO: add LRI POST logic here */
939 if (strncmp(cmd, "lri", 3))
942 /* below are all lri handlers */
943 vreg = &vgpu_vreg(s->vgpu, offset);
944 if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) {
945 gvt_vgpu_err("%s access to non-render register (%x)\n",
950 if (is_cmd_update_pdps(offset, s) &&
951 cmd_pdp_mmio_update_handler(s, offset, index))
954 if (offset == i915_mmio_reg_offset(DERRMR) ||
955 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
956 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
957 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
960 if (is_mocs_mmio(offset))
961 *vreg = cmd_val(s, index + 1);
965 if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) {
966 u32 cmdval_new, cmdval;
967 struct intel_gvt_mmio_info *mmio_info;
969 cmdval = cmd_val(s, index + 1);
971 mmio_info = intel_gvt_find_mmio_info(gvt, offset);
975 u64 ro_mask = mmio_info->ro_mask;
978 if (likely(!ro_mask))
979 ret = mmio_info->write(s->vgpu, offset,
982 gvt_vgpu_err("try to write RO reg %x\n",
990 if (cmdval_new != cmdval)
991 patch_value(s, cmd_ptr(s, index+1), cmdval_new);
994 /* only patch cmd. restore vreg value if changed in mmio write handler*/
998 * In order to let workload with inhibit context to generate
999 * correct image data into memory, vregs values will be loaded to
1000 * hw via LRIs in the workload with inhibit context. But as
1001 * indirect context is loaded prior to LRIs in workload, we don't
1002 * want reg values specified in indirect context overwritten by
1003 * LRIs in workloads. So, when scanning an indirect context, we
1004 * update reg values in it into vregs, so LRIs in workload with
1005 * inhibit context will restore with correct values
1007 if (IS_GEN(s->engine->i915, 9) &&
1008 intel_gvt_mmio_is_sr_in_ctx(gvt, offset) &&
1009 !strncmp(cmd, "lri", 3)) {
1010 intel_gvt_hypervisor_read_gpa(s->vgpu,
1011 s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
1012 /* check inhibit context */
1013 if (ctx_sr_ctl & 1) {
1014 u32 data = cmd_val(s, index + 1);
1016 if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
1017 intel_vgpu_mask_mmio_write(vgpu,
1020 vgpu_vreg(vgpu, offset) = data;
1027 #define cmd_reg(s, i) \
1028 (cmd_val(s, i) & GENMASK(22, 2))
1030 #define cmd_reg_inhibit(s, i) \
1031 (cmd_val(s, i) & GENMASK(22, 18))
1033 #define cmd_gma(s, i) \
1034 (cmd_val(s, i) & GENMASK(31, 2))
1036 #define cmd_gma_hi(s, i) \
1037 (cmd_val(s, i) & GENMASK(15, 0))
1039 static int cmd_handler_lri(struct parser_exec_state *s)
1042 int cmd_len = cmd_length(s);
1044 for (i = 1; i < cmd_len; i += 2) {
1045 if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) {
1046 if (s->engine->id == BCS0 &&
1047 cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
1050 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
1054 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
1061 static int cmd_handler_lrr(struct parser_exec_state *s)
1064 int cmd_len = cmd_length(s);
1066 for (i = 1; i < cmd_len; i += 2) {
1067 if (IS_BROADWELL(s->engine->i915))
1068 ret |= ((cmd_reg_inhibit(s, i) ||
1069 (cmd_reg_inhibit(s, i + 1)))) ?
1073 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
1076 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
1083 static inline int cmd_address_audit(struct parser_exec_state *s,
1084 unsigned long guest_gma, int op_size, bool index_mode);
1086 static int cmd_handler_lrm(struct parser_exec_state *s)
1088 struct intel_gvt *gvt = s->vgpu->gvt;
1089 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
1092 int cmd_len = cmd_length(s);
1094 for (i = 1; i < cmd_len;) {
1095 if (IS_BROADWELL(s->engine->i915))
1096 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1099 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1102 if (cmd_val(s, 0) & (1 << 22)) {
1103 gma = cmd_gma(s, i + 1);
1104 if (gmadr_bytes == 8)
1105 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1106 ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1110 i += gmadr_dw_number(s) + 1;
1115 static int cmd_handler_srm(struct parser_exec_state *s)
1117 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1120 int cmd_len = cmd_length(s);
1122 for (i = 1; i < cmd_len;) {
1123 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1126 if (cmd_val(s, 0) & (1 << 22)) {
1127 gma = cmd_gma(s, i + 1);
1128 if (gmadr_bytes == 8)
1129 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1130 ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1134 i += gmadr_dw_number(s) + 1;
1139 struct cmd_interrupt_event {
1140 int pipe_control_notify;
1142 int mi_user_interrupt;
1145 static struct cmd_interrupt_event cmd_interrupt_events[] = {
1147 .pipe_control_notify = RCS_PIPE_CONTROL,
1148 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1149 .mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1152 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1153 .mi_flush_dw = BCS_MI_FLUSH_DW,
1154 .mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1157 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1158 .mi_flush_dw = VCS_MI_FLUSH_DW,
1159 .mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1162 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1163 .mi_flush_dw = VCS2_MI_FLUSH_DW,
1164 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1167 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1168 .mi_flush_dw = VECS_MI_FLUSH_DW,
1169 .mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1173 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1175 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1177 bool index_mode = false;
1178 unsigned int post_sync;
1182 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1185 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1186 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1188 else if (post_sync) {
1190 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1191 else if (post_sync == 3)
1192 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1193 else if (post_sync == 1) {
1195 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1196 gma = cmd_val(s, 2) & GENMASK(31, 3);
1197 if (gmadr_bytes == 8)
1198 gma |= (cmd_gma_hi(s, 3)) << 32;
1199 /* Store Data Index */
1200 if (cmd_val(s, 1) & (1 << 21))
1202 ret |= cmd_address_audit(s, gma, sizeof(u64),
1207 hws_pga = s->vgpu->hws_pga[s->engine->id];
1208 gma = hws_pga + gma;
1209 patch_value(s, cmd_ptr(s, 2), gma);
1210 val = cmd_val(s, 1) & (~(1 << 21));
1211 patch_value(s, cmd_ptr(s, 1), val);
1220 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1221 set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify,
1222 s->workload->pending_events);
1226 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1228 set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt,
1229 s->workload->pending_events);
1230 patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1234 static int cmd_advance_default(struct parser_exec_state *s)
1236 return ip_gma_advance(s, cmd_length(s));
1239 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1243 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1244 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1245 ret = ip_gma_set(s, s->ret_ip_gma_bb);
1246 s->buf_addr_type = s->saved_buf_addr_type;
1247 } else if (s->buf_type == RING_BUFFER_CTX) {
1248 ret = ip_gma_set(s, s->ring_tail);
1250 s->buf_type = RING_BUFFER_INSTRUCTION;
1251 s->buf_addr_type = GTT_BUFFER;
1252 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1253 s->ret_ip_gma_ring -= s->ring_size;
1254 ret = ip_gma_set(s, s->ret_ip_gma_ring);
1259 struct mi_display_flip_command_info {
1263 i915_reg_t stride_reg;
1264 i915_reg_t ctrl_reg;
1265 i915_reg_t surf_reg;
1272 struct plane_code_mapping {
1278 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1279 struct mi_display_flip_command_info *info)
1281 struct drm_i915_private *dev_priv = s->engine->i915;
1282 struct plane_code_mapping gen8_plane_code[] = {
1283 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1284 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1285 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1286 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1287 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1288 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1290 u32 dword0, dword1, dword2;
1293 dword0 = cmd_val(s, 0);
1294 dword1 = cmd_val(s, 1);
1295 dword2 = cmd_val(s, 2);
1297 v = (dword0 & GENMASK(21, 19)) >> 19;
1298 if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code)))
1301 info->pipe = gen8_plane_code[v].pipe;
1302 info->plane = gen8_plane_code[v].plane;
1303 info->event = gen8_plane_code[v].event;
1304 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1305 info->tile_val = (dword1 & 0x1);
1306 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1307 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1309 if (info->plane == PLANE_A) {
1310 info->ctrl_reg = DSPCNTR(info->pipe);
1311 info->stride_reg = DSPSTRIDE(info->pipe);
1312 info->surf_reg = DSPSURF(info->pipe);
1313 } else if (info->plane == PLANE_B) {
1314 info->ctrl_reg = SPRCTL(info->pipe);
1315 info->stride_reg = SPRSTRIDE(info->pipe);
1316 info->surf_reg = SPRSURF(info->pipe);
1318 drm_WARN_ON(&dev_priv->drm, 1);
1324 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1325 struct mi_display_flip_command_info *info)
1327 struct drm_i915_private *dev_priv = s->engine->i915;
1328 struct intel_vgpu *vgpu = s->vgpu;
1329 u32 dword0 = cmd_val(s, 0);
1330 u32 dword1 = cmd_val(s, 1);
1331 u32 dword2 = cmd_val(s, 2);
1332 u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1334 info->plane = PRIMARY_PLANE;
1337 case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1338 info->pipe = PIPE_A;
1339 info->event = PRIMARY_A_FLIP_DONE;
1341 case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1342 info->pipe = PIPE_B;
1343 info->event = PRIMARY_B_FLIP_DONE;
1345 case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1346 info->pipe = PIPE_C;
1347 info->event = PRIMARY_C_FLIP_DONE;
1350 case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1351 info->pipe = PIPE_A;
1352 info->event = SPRITE_A_FLIP_DONE;
1353 info->plane = SPRITE_PLANE;
1355 case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1356 info->pipe = PIPE_B;
1357 info->event = SPRITE_B_FLIP_DONE;
1358 info->plane = SPRITE_PLANE;
1360 case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1361 info->pipe = PIPE_C;
1362 info->event = SPRITE_C_FLIP_DONE;
1363 info->plane = SPRITE_PLANE;
1367 gvt_vgpu_err("unknown plane code %d\n", plane);
1371 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1372 info->tile_val = (dword1 & GENMASK(2, 0));
1373 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1374 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1376 info->ctrl_reg = DSPCNTR(info->pipe);
1377 info->stride_reg = DSPSTRIDE(info->pipe);
1378 info->surf_reg = DSPSURF(info->pipe);
1383 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1384 struct mi_display_flip_command_info *info)
1388 if (!info->async_flip)
1391 if (INTEL_GEN(s->engine->i915) >= 9) {
1392 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1393 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1394 GENMASK(12, 10)) >> 10;
1396 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1397 GENMASK(15, 6)) >> 6;
1398 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1401 if (stride != info->stride_val)
1402 gvt_dbg_cmd("cannot change stride during async flip\n");
1404 if (tile != info->tile_val)
1405 gvt_dbg_cmd("cannot change tile during async flip\n");
1410 static int gen8_update_plane_mmio_from_mi_display_flip(
1411 struct parser_exec_state *s,
1412 struct mi_display_flip_command_info *info)
1414 struct drm_i915_private *dev_priv = s->engine->i915;
1415 struct intel_vgpu *vgpu = s->vgpu;
1417 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1418 info->surf_val << 12);
1419 if (INTEL_GEN(dev_priv) >= 9) {
1420 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1422 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1423 info->tile_val << 10);
1425 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1426 info->stride_val << 6);
1427 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1428 info->tile_val << 10);
1431 if (info->plane == PLANE_PRIMARY)
1432 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++;
1434 if (info->async_flip)
1435 intel_vgpu_trigger_virtual_event(vgpu, info->event);
1437 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1442 static int decode_mi_display_flip(struct parser_exec_state *s,
1443 struct mi_display_flip_command_info *info)
1445 if (IS_BROADWELL(s->engine->i915))
1446 return gen8_decode_mi_display_flip(s, info);
1447 if (INTEL_GEN(s->engine->i915) >= 9)
1448 return skl_decode_mi_display_flip(s, info);
1453 static int check_mi_display_flip(struct parser_exec_state *s,
1454 struct mi_display_flip_command_info *info)
1456 return gen8_check_mi_display_flip(s, info);
1459 static int update_plane_mmio_from_mi_display_flip(
1460 struct parser_exec_state *s,
1461 struct mi_display_flip_command_info *info)
1463 return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1466 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1468 struct mi_display_flip_command_info info;
1469 struct intel_vgpu *vgpu = s->vgpu;
1472 int len = cmd_length(s);
1473 u32 valid_len = CMD_LEN(1);
1475 /* Flip Type == Stereo 3D Flip */
1476 if (DWORD_FIELD(2, 1, 0) == 2)
1478 ret = gvt_check_valid_cmd_length(cmd_length(s),
1483 ret = decode_mi_display_flip(s, &info);
1485 gvt_vgpu_err("fail to decode MI display flip command\n");
1489 ret = check_mi_display_flip(s, &info);
1491 gvt_vgpu_err("invalid MI display flip command\n");
1495 ret = update_plane_mmio_from_mi_display_flip(s, &info);
1497 gvt_vgpu_err("fail to update plane mmio\n");
1501 for (i = 0; i < len; i++)
1502 patch_value(s, cmd_ptr(s, i), MI_NOOP);
1506 static bool is_wait_for_flip_pending(u32 cmd)
1508 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1509 MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1510 MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1511 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1512 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1513 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1516 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1518 u32 cmd = cmd_val(s, 0);
1520 if (!is_wait_for_flip_pending(cmd))
1523 patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1527 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1530 unsigned long gma_high, gma_low;
1531 struct intel_vgpu *vgpu = s->vgpu;
1532 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1534 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1535 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1536 return INTEL_GVT_INVALID_ADDR;
1539 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1540 if (gmadr_bytes == 4) {
1543 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1544 addr = (((unsigned long)gma_high) << 32) | gma_low;
1549 static inline int cmd_address_audit(struct parser_exec_state *s,
1550 unsigned long guest_gma, int op_size, bool index_mode)
1552 struct intel_vgpu *vgpu = s->vgpu;
1553 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1557 if (op_size > max_surface_size) {
1558 gvt_vgpu_err("command address audit fail name %s\n",
1564 if (guest_gma >= I915_GTT_PAGE_SIZE) {
1568 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1576 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1577 s->info->name, guest_gma, op_size);
1579 pr_err("cmd dump: ");
1580 for (i = 0; i < cmd_length(s); i++) {
1582 pr_err("\n%08x ", cmd_val(s, i));
1584 pr_err("%08x ", cmd_val(s, i));
1586 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1588 vgpu_aperture_gmadr_base(vgpu),
1589 vgpu_aperture_gmadr_end(vgpu),
1590 vgpu_hidden_gmadr_base(vgpu),
1591 vgpu_hidden_gmadr_end(vgpu));
1595 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1597 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1598 int op_size = (cmd_length(s) - 3) * sizeof(u32);
1599 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1600 unsigned long gma, gma_low, gma_high;
1601 u32 valid_len = CMD_LEN(2);
1605 if (!(cmd_val(s, 0) & (1 << 22)))
1608 /* check if QWORD */
1609 if (DWORD_FIELD(0, 21, 21))
1611 ret = gvt_check_valid_cmd_length(cmd_length(s),
1616 gma = cmd_val(s, 2) & GENMASK(31, 2);
1618 if (gmadr_bytes == 8) {
1619 gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1620 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1621 gma = (gma_high << 32) | gma_low;
1622 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1624 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1628 static inline int unexpected_cmd(struct parser_exec_state *s)
1630 struct intel_vgpu *vgpu = s->vgpu;
1632 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1637 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1639 return unexpected_cmd(s);
1642 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1644 return unexpected_cmd(s);
1647 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1649 return unexpected_cmd(s);
1652 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1654 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1655 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1657 unsigned long gma, gma_high;
1658 u32 valid_len = CMD_LEN(1);
1661 if (!(cmd_val(s, 0) & (1 << 22)))
1664 /* check inline data */
1665 if (cmd_val(s, 0) & BIT(18))
1666 valid_len = CMD_LEN(9);
1667 ret = gvt_check_valid_cmd_length(cmd_length(s),
1672 gma = cmd_val(s, 1) & GENMASK(31, 2);
1673 if (gmadr_bytes == 8) {
1674 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1675 gma = (gma_high << 32) | gma;
1677 ret = cmd_address_audit(s, gma, op_size, false);
1681 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1683 return unexpected_cmd(s);
1686 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1688 return unexpected_cmd(s);
1691 static int cmd_handler_mi_conditional_batch_buffer_end(
1692 struct parser_exec_state *s)
1694 return unexpected_cmd(s);
1697 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1699 return unexpected_cmd(s);
1702 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1704 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1706 bool index_mode = false;
1709 u32 valid_len = CMD_LEN(2);
1711 ret = gvt_check_valid_cmd_length(cmd_length(s),
1714 /* Check again for Qword */
1715 ret = gvt_check_valid_cmd_length(cmd_length(s),
1720 /* Check post-sync and ppgtt bit */
1721 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1722 gma = cmd_val(s, 1) & GENMASK(31, 3);
1723 if (gmadr_bytes == 8)
1724 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1725 /* Store Data Index */
1726 if (cmd_val(s, 0) & (1 << 21))
1728 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1732 hws_pga = s->vgpu->hws_pga[s->engine->id];
1733 gma = hws_pga + gma;
1734 patch_value(s, cmd_ptr(s, 1), gma);
1735 val = cmd_val(s, 0) & (~(1 << 21));
1736 patch_value(s, cmd_ptr(s, 0), val);
1739 /* Check notify bit */
1740 if ((cmd_val(s, 0) & (1 << 8)))
1741 set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw,
1742 s->workload->pending_events);
1746 static void addr_type_update_snb(struct parser_exec_state *s)
1748 if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1749 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1750 s->buf_addr_type = PPGTT_BUFFER;
1755 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1756 unsigned long gma, unsigned long end_gma, void *va)
1758 unsigned long copy_len, offset;
1759 unsigned long len = 0;
1762 while (gma != end_gma) {
1763 gpa = intel_vgpu_gma_to_gpa(mm, gma);
1764 if (gpa == INTEL_GVT_INVALID_ADDR) {
1765 gvt_vgpu_err("invalid gma address: %lx\n", gma);
1769 offset = gma & (I915_GTT_PAGE_SIZE - 1);
1771 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1772 I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1774 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1784 * Check whether a batch buffer needs to be scanned. Currently
1785 * the only criteria is based on privilege.
1787 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1789 /* Decide privilege based on address space */
1790 if (cmd_val(s, 0) & BIT(8) &&
1791 !(s->vgpu->scan_nonprivbb & s->engine->mask))
1797 static const char *repr_addr_type(unsigned int type)
1799 return type == PPGTT_BUFFER ? "ppgtt" : "ggtt";
1802 static int find_bb_size(struct parser_exec_state *s,
1803 unsigned long *bb_size,
1804 unsigned long *bb_end_cmd_offset)
1806 unsigned long gma = 0;
1807 const struct cmd_info *info;
1809 bool bb_end = false;
1810 struct intel_vgpu *vgpu = s->vgpu;
1812 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1813 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1816 *bb_end_cmd_offset = 0;
1818 /* get the start gm address of the batch buffer */
1819 gma = get_gma_bb_from_cmd(s, 1);
1820 if (gma == INTEL_GVT_INVALID_ADDR)
1823 cmd = cmd_val(s, 0);
1824 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1826 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1827 cmd, get_opcode(cmd, s->engine),
1828 repr_addr_type(s->buf_addr_type),
1829 s->engine->name, s->workload);
1833 if (copy_gma_to_hva(s->vgpu, mm,
1834 gma, gma + 4, &cmd) < 0)
1836 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1838 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1839 cmd, get_opcode(cmd, s->engine),
1840 repr_addr_type(s->buf_addr_type),
1841 s->engine->name, s->workload);
1845 if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1847 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1848 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1849 /* chained batch buffer */
1854 *bb_end_cmd_offset = *bb_size;
1856 cmd_len = get_cmd_length(info, cmd) << 2;
1857 *bb_size += cmd_len;
1864 static int audit_bb_end(struct parser_exec_state *s, void *va)
1866 struct intel_vgpu *vgpu = s->vgpu;
1867 u32 cmd = *(u32 *)va;
1868 const struct cmd_info *info;
1870 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1872 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1873 cmd, get_opcode(cmd, s->engine),
1874 repr_addr_type(s->buf_addr_type),
1875 s->engine->name, s->workload);
1879 if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
1880 ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
1881 (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
1887 static int perform_bb_shadow(struct parser_exec_state *s)
1889 struct intel_vgpu *vgpu = s->vgpu;
1890 struct intel_vgpu_shadow_bb *bb;
1891 unsigned long gma = 0;
1892 unsigned long bb_size;
1893 unsigned long bb_end_cmd_offset;
1895 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1896 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1897 unsigned long start_offset = 0;
1899 /* get the start gm address of the batch buffer */
1900 gma = get_gma_bb_from_cmd(s, 1);
1901 if (gma == INTEL_GVT_INVALID_ADDR)
1904 ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
1908 bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1912 bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1914 /* the start_offset stores the batch buffer's start gma's
1915 * offset relative to page boundary. so for non-privileged batch
1916 * buffer, the shadowed gem object holds exactly the same page
1917 * layout as original gem object. This is for the convience of
1918 * replacing the whole non-privilged batch buffer page to this
1919 * shadowed one in PPGTT at the same gma address. (this replacing
1920 * action is not implemented yet now, but may be necessary in
1922 * for prileged batch buffer, we just change start gma address to
1923 * that of shadowed page.
1926 start_offset = gma & ~I915_GTT_PAGE_MASK;
1928 bb->obj = i915_gem_object_create_shmem(s->engine->i915,
1929 round_up(bb_size + start_offset,
1931 if (IS_ERR(bb->obj)) {
1932 ret = PTR_ERR(bb->obj);
1936 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1937 if (IS_ERR(bb->va)) {
1938 ret = PTR_ERR(bb->va);
1942 ret = copy_gma_to_hva(s->vgpu, mm,
1944 bb->va + start_offset);
1946 gvt_vgpu_err("fail to copy guest ring buffer\n");
1951 ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
1955 i915_gem_object_unlock(bb->obj);
1956 INIT_LIST_HEAD(&bb->list);
1957 list_add(&bb->list, &s->workload->shadow_bb);
1959 bb->bb_start_cmd_va = s->ip_va;
1961 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1962 bb->bb_offset = s->ip_va - s->rb_va;
1967 * ip_va saves the virtual address of the shadow batch buffer, while
1968 * ip_gma saves the graphics address of the original batch buffer.
1969 * As the shadow batch buffer is just a copy from the originial one,
1970 * it should be right to use shadow batch buffer'va and original batch
1971 * buffer's gma in pair. After all, we don't want to pin the shadow
1972 * buffer here (too early).
1974 s->ip_va = bb->va + start_offset;
1978 i915_gem_object_unpin_map(bb->obj);
1980 i915_gem_object_put(bb->obj);
1986 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1990 struct intel_vgpu *vgpu = s->vgpu;
1992 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1993 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1997 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
1998 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
1999 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
2003 s->saved_buf_addr_type = s->buf_addr_type;
2004 addr_type_update_snb(s);
2005 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2006 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
2007 s->buf_type = BATCH_BUFFER_INSTRUCTION;
2008 } else if (second_level) {
2009 s->buf_type = BATCH_BUFFER_2ND_LEVEL;
2010 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
2011 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
2014 if (batch_buffer_needs_scan(s)) {
2015 ret = perform_bb_shadow(s);
2017 gvt_vgpu_err("invalid shadow batch buffer\n");
2019 /* emulate a batch buffer end to do return right */
2020 ret = cmd_handler_mi_batch_buffer_end(s);
2027 static int mi_noop_index;
2029 static const struct cmd_info cmd_info[] = {
2030 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2032 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
2035 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
2036 0, 1, cmd_handler_mi_user_interrupt},
2038 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
2039 D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
2041 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2043 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2046 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2049 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2052 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2055 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
2058 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
2059 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2060 cmd_handler_mi_batch_buffer_end},
2062 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
2065 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2068 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
2071 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2074 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2077 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
2078 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
2080 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
2081 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
2083 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
2085 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
2086 D_ALL, 0, 8, NULL, CMD_LEN(0)},
2088 {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
2089 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
2092 {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
2093 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
2094 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
2096 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
2097 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
2099 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
2100 0, 8, cmd_handler_mi_store_data_index},
2102 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
2103 D_ALL, 0, 8, cmd_handler_lri},
2105 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
2106 cmd_handler_mi_update_gtt},
2108 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
2109 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2110 cmd_handler_srm, CMD_LEN(2)},
2112 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
2113 cmd_handler_mi_flush_dw},
2115 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
2116 10, cmd_handler_mi_clflush},
2118 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
2119 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
2120 cmd_handler_mi_report_perf_count, CMD_LEN(2)},
2122 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
2123 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2124 cmd_handler_lrm, CMD_LEN(2)},
2126 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
2127 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
2128 cmd_handler_lrr, CMD_LEN(1)},
2130 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
2131 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
2132 8, NULL, CMD_LEN(2)},
2134 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
2135 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
2137 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
2138 ADDR_FIX_1(2), 8, NULL},
2140 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
2141 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
2143 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
2144 8, cmd_handler_mi_op_2f},
2146 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
2147 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
2148 cmd_handler_mi_batch_buffer_start},
2150 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
2151 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2152 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
2154 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
2155 R_RCS | R_BCS, D_ALL, 0, 2, NULL},
2157 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2158 ADDR_FIX_2(4, 7), 8, NULL},
2160 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2163 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
2164 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2166 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2168 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
2171 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2172 ADDR_FIX_1(3), 8, NULL},
2174 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2177 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2178 ADDR_FIX_1(4), 8, NULL},
2180 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2181 ADDR_FIX_2(4, 5), 8, NULL},
2183 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2184 ADDR_FIX_1(4), 8, NULL},
2186 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2187 ADDR_FIX_2(4, 7), 8, NULL},
2189 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2190 D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2192 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2194 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2195 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2197 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2198 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2200 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2201 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2202 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2204 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2205 D_ALL, ADDR_FIX_1(4), 8, NULL},
2207 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2208 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2210 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2211 D_ALL, ADDR_FIX_1(4), 8, NULL},
2213 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2214 D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2216 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2217 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2219 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2220 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2221 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2223 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2224 ADDR_FIX_2(4, 5), 8, NULL},
2226 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2227 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2229 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2230 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2231 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2233 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2234 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2235 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2237 {"3DSTATE_BLEND_STATE_POINTERS",
2238 OP_3DSTATE_BLEND_STATE_POINTERS,
2239 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2241 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2242 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2243 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2245 {"3DSTATE_BINDING_TABLE_POINTERS_VS",
2246 OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2247 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2249 {"3DSTATE_BINDING_TABLE_POINTERS_HS",
2250 OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2251 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2253 {"3DSTATE_BINDING_TABLE_POINTERS_DS",
2254 OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2255 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2257 {"3DSTATE_BINDING_TABLE_POINTERS_GS",
2258 OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2259 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2261 {"3DSTATE_BINDING_TABLE_POINTERS_PS",
2262 OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2263 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2265 {"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2266 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2267 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2269 {"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2270 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2271 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2273 {"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2274 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2275 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2277 {"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2278 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2279 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2281 {"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2282 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2283 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2285 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2288 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2291 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2294 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2297 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2298 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2300 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2301 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2303 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2304 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2306 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2307 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2309 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2310 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2312 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2313 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2315 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2316 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2318 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2319 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2321 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2322 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2324 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2325 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2327 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2328 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2330 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2331 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2333 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2334 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2336 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2337 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2339 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2340 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2342 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2343 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2345 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2346 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2348 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2349 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2351 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2352 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2354 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2355 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2357 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2358 D_BDW_PLUS, 0, 8, NULL},
2360 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2363 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2364 D_BDW_PLUS, 0, 8, NULL},
2366 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2367 D_BDW_PLUS, 0, 8, NULL},
2369 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2372 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2373 R_RCS, D_BDW_PLUS, 0, 8, NULL},
2375 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2378 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2381 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2384 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2387 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2388 D_BDW_PLUS, 0, 8, NULL},
2390 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2391 R_RCS, D_ALL, 0, 8, NULL},
2393 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2394 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2396 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2397 R_RCS, D_ALL, 0, 1, NULL},
2399 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2401 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2402 R_RCS, D_ALL, 0, 8, NULL},
2404 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2405 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2407 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2409 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2411 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2413 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2414 D_BDW_PLUS, 0, 8, NULL},
2416 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2417 D_BDW_PLUS, 0, 8, NULL},
2419 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2422 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2423 D_BDW_PLUS, 0, 8, NULL},
2425 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2426 D_BDW_PLUS, 0, 8, NULL},
2428 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2430 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2432 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2434 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2437 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2439 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2441 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2442 R_RCS, D_ALL, 0, 8, NULL},
2444 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2445 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2447 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2450 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2451 D_ALL, ADDR_FIX_1(2), 8, NULL},
2453 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2454 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2456 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2457 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2459 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2462 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2465 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2468 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2469 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2471 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2472 D_BDW_PLUS, 0, 8, NULL},
2474 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2475 D_ALL, ADDR_FIX_1(2), 8, NULL},
2477 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2478 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2480 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2481 R_RCS, D_ALL, 0, 8, NULL},
2483 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2484 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2486 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2487 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2489 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2490 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2492 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2493 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2495 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2496 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2498 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2499 R_RCS, D_ALL, 0, 8, NULL},
2501 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2504 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2505 ADDR_FIX_2(2, 4), 8, NULL},
2507 {"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2508 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2509 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2511 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2512 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2514 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2515 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2516 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2518 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2519 D_BDW_PLUS, 0, 8, NULL},
2521 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2522 ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2524 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2526 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2529 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2530 ADDR_FIX_1(1), 8, NULL},
2532 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2534 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2535 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2537 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2538 ADDR_FIX_1(1), 8, NULL},
2540 {"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS,
2541 F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL},
2543 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2545 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2547 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2550 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2551 D_SKL_PLUS, 0, 8, NULL},
2553 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2554 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2556 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2559 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2562 {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2565 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2567 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2570 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2573 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2576 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2579 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2582 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2583 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2585 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2586 R_VCS, D_ALL, 0, 12, NULL},
2588 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2589 R_VCS, D_ALL, 0, 12, NULL},
2591 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2592 R_VCS, D_BDW_PLUS, 0, 12, NULL},
2594 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2595 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2597 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2598 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2600 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2602 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2603 R_VCS, D_ALL, 0, 12, NULL},
2605 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2606 R_VCS, D_ALL, 0, 12, NULL},
2608 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2609 R_VCS, D_ALL, 0, 12, NULL},
2611 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2612 R_VCS, D_ALL, 0, 12, NULL},
2614 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2615 R_VCS, D_ALL, 0, 12, NULL},
2617 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2618 R_VCS, D_ALL, 0, 12, NULL},
2620 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2621 R_VCS, D_ALL, 0, 6, NULL},
2623 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2624 R_VCS, D_ALL, 0, 12, NULL},
2626 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2627 R_VCS, D_ALL, 0, 12, NULL},
2629 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2630 R_VCS, D_ALL, 0, 12, NULL},
2632 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2633 R_VCS, D_ALL, 0, 12, NULL},
2635 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2636 R_VCS, D_ALL, 0, 12, NULL},
2638 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2639 R_VCS, D_ALL, 0, 12, NULL},
2641 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2642 R_VCS, D_ALL, 0, 12, NULL},
2643 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2644 R_VCS, D_ALL, 0, 12, NULL},
2646 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2647 R_VCS, D_ALL, 0, 12, NULL},
2649 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2650 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2652 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2653 R_VCS, D_ALL, 0, 12, NULL},
2655 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2656 R_VCS, D_ALL, 0, 12, NULL},
2658 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2659 R_VCS, D_ALL, 0, 12, NULL},
2661 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2662 R_VCS, D_ALL, 0, 12, NULL},
2664 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2665 R_VCS, D_ALL, 0, 12, NULL},
2667 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2668 R_VCS, D_ALL, 0, 12, NULL},
2670 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2671 R_VCS, D_ALL, 0, 12, NULL},
2673 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2674 R_VCS, D_ALL, 0, 12, NULL},
2676 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2677 R_VCS, D_ALL, 0, 12, NULL},
2679 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2680 R_VCS, D_ALL, 0, 12, NULL},
2682 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2683 R_VCS, D_ALL, 0, 12, NULL},
2685 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2688 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2690 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2692 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2693 R_VCS, D_ALL, 0, 12, NULL},
2695 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2696 R_VCS, D_ALL, 0, 12, NULL},
2698 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2699 R_VCS, D_ALL, 0, 12, NULL},
2701 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2703 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2706 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2710 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2712 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2715 /* call the cmd handler, and advance ip */
2716 static int cmd_parser_exec(struct parser_exec_state *s)
2718 struct intel_vgpu *vgpu = s->vgpu;
2719 const struct cmd_info *info;
2723 cmd = cmd_val(s, 0);
2725 /* fastpath for MI_NOOP */
2727 info = &cmd_info[mi_noop_index];
2729 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
2732 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
2733 cmd, get_opcode(cmd, s->engine),
2734 repr_addr_type(s->buf_addr_type),
2735 s->engine->name, s->workload);
2741 trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va,
2742 cmd_length(s), s->buf_type, s->buf_addr_type,
2743 s->workload, info->name);
2745 if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
2746 ret = gvt_check_valid_cmd_length(cmd_length(s),
2752 if (info->handler) {
2753 ret = info->handler(s);
2755 gvt_vgpu_err("%s handler error\n", info->name);
2760 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2761 ret = cmd_advance_default(s);
2763 gvt_vgpu_err("%s IP advance error\n", info->name);
2770 static inline bool gma_out_of_range(unsigned long gma,
2771 unsigned long gma_head, unsigned int gma_tail)
2773 if (gma_tail >= gma_head)
2774 return (gma < gma_head) || (gma > gma_tail);
2776 return (gma > gma_tail) && (gma < gma_head);
2779 /* Keep the consistent return type, e.g EBADRQC for unknown
2780 * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2781 * works as the input of VM healthy status.
2783 static int command_scan(struct parser_exec_state *s,
2784 unsigned long rb_head, unsigned long rb_tail,
2785 unsigned long rb_start, unsigned long rb_len)
2788 unsigned long gma_head, gma_tail, gma_bottom;
2790 struct intel_vgpu *vgpu = s->vgpu;
2792 gma_head = rb_start + rb_head;
2793 gma_tail = rb_start + rb_tail;
2794 gma_bottom = rb_start + rb_len;
2796 while (s->ip_gma != gma_tail) {
2797 if (s->buf_type == RING_BUFFER_INSTRUCTION ||
2798 s->buf_type == RING_BUFFER_CTX) {
2799 if (!(s->ip_gma >= rb_start) ||
2800 !(s->ip_gma < gma_bottom)) {
2801 gvt_vgpu_err("ip_gma %lx out of ring scope."
2802 "(base:0x%lx, bottom: 0x%lx)\n",
2803 s->ip_gma, rb_start,
2805 parser_exec_state_dump(s);
2808 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2809 gvt_vgpu_err("ip_gma %lx out of range."
2810 "base 0x%lx head 0x%lx tail 0x%lx\n",
2811 s->ip_gma, rb_start,
2813 parser_exec_state_dump(s);
2817 ret = cmd_parser_exec(s);
2819 gvt_vgpu_err("cmd parser error\n");
2820 parser_exec_state_dump(s);
2828 static int scan_workload(struct intel_vgpu_workload *workload)
2830 unsigned long gma_head, gma_tail, gma_bottom;
2831 struct parser_exec_state s;
2834 /* ring base is page aligned */
2835 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2838 gma_head = workload->rb_start + workload->rb_head;
2839 gma_tail = workload->rb_start + workload->rb_tail;
2840 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl);
2842 s.buf_type = RING_BUFFER_INSTRUCTION;
2843 s.buf_addr_type = GTT_BUFFER;
2844 s.vgpu = workload->vgpu;
2845 s.engine = workload->engine;
2846 s.ring_start = workload->rb_start;
2847 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2848 s.ring_head = gma_head;
2849 s.ring_tail = gma_tail;
2850 s.rb_va = workload->shadow_ring_buffer_va;
2851 s.workload = workload;
2852 s.is_ctx_wa = false;
2854 if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail)
2857 ret = ip_gma_set(&s, gma_head);
2861 ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2862 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2868 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2871 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2872 struct parser_exec_state s;
2874 struct intel_vgpu_workload *workload = container_of(wa_ctx,
2875 struct intel_vgpu_workload,
2878 /* ring base is page aligned */
2879 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2880 I915_GTT_PAGE_SIZE)))
2883 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2884 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2886 gma_head = wa_ctx->indirect_ctx.guest_gma;
2887 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2888 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2890 s.buf_type = RING_BUFFER_INSTRUCTION;
2891 s.buf_addr_type = GTT_BUFFER;
2892 s.vgpu = workload->vgpu;
2893 s.engine = workload->engine;
2894 s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2895 s.ring_size = ring_size;
2896 s.ring_head = gma_head;
2897 s.ring_tail = gma_tail;
2898 s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2899 s.workload = workload;
2902 ret = ip_gma_set(&s, gma_head);
2906 ret = command_scan(&s, 0, ring_tail,
2907 wa_ctx->indirect_ctx.guest_gma, ring_size);
2912 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2914 struct intel_vgpu *vgpu = workload->vgpu;
2915 struct intel_vgpu_submission *s = &vgpu->submission;
2916 unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2917 void *shadow_ring_buffer_va;
2920 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2922 /* calculate workload ring buffer size */
2923 workload->rb_len = (workload->rb_tail + guest_rb_size -
2924 workload->rb_head) % guest_rb_size;
2926 gma_head = workload->rb_start + workload->rb_head;
2927 gma_tail = workload->rb_start + workload->rb_tail;
2928 gma_top = workload->rb_start + guest_rb_size;
2930 if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) {
2933 /* realloc the new ring buffer if needed */
2934 p = krealloc(s->ring_scan_buffer[workload->engine->id],
2935 workload->rb_len, GFP_KERNEL);
2937 gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2940 s->ring_scan_buffer[workload->engine->id] = p;
2941 s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len;
2944 shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id];
2946 /* get shadow ring buffer va */
2947 workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2949 /* head > tail --> copy head <-> top */
2950 if (gma_head > gma_tail) {
2951 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2952 gma_head, gma_top, shadow_ring_buffer_va);
2954 gvt_vgpu_err("fail to copy guest ring buffer\n");
2957 shadow_ring_buffer_va += ret;
2958 gma_head = workload->rb_start;
2961 /* copy head or start <-> tail */
2962 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2963 shadow_ring_buffer_va);
2965 gvt_vgpu_err("fail to copy guest ring buffer\n");
2971 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2974 struct intel_vgpu *vgpu = workload->vgpu;
2976 ret = shadow_workload_ring_buffer(workload);
2978 gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2982 ret = scan_workload(workload);
2984 gvt_vgpu_err("scan workload error\n");
2990 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2992 int ctx_size = wa_ctx->indirect_ctx.size;
2993 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2994 struct intel_vgpu_workload *workload = container_of(wa_ctx,
2995 struct intel_vgpu_workload,
2997 struct intel_vgpu *vgpu = workload->vgpu;
2998 struct drm_i915_gem_object *obj;
3002 obj = i915_gem_object_create_shmem(workload->engine->i915,
3003 roundup(ctx_size + CACHELINE_BYTES,
3006 return PTR_ERR(obj);
3008 /* get the va of the shadow batch buffer */
3009 map = i915_gem_object_pin_map(obj, I915_MAP_WB);
3011 gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
3016 i915_gem_object_lock(obj, NULL);
3017 ret = i915_gem_object_set_to_cpu_domain(obj, false);
3018 i915_gem_object_unlock(obj);
3020 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
3024 ret = copy_gma_to_hva(workload->vgpu,
3025 workload->vgpu->gtt.ggtt_mm,
3026 guest_gma, guest_gma + ctx_size,
3029 gvt_vgpu_err("fail to copy guest indirect ctx\n");
3033 wa_ctx->indirect_ctx.obj = obj;
3034 wa_ctx->indirect_ctx.shadow_va = map;
3038 i915_gem_object_unpin_map(obj);
3040 i915_gem_object_put(obj);
3044 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3046 u32 per_ctx_start[CACHELINE_DWORDS] = {0};
3047 unsigned char *bb_start_sva;
3049 if (!wa_ctx->per_ctx.valid)
3052 per_ctx_start[0] = 0x18800001;
3053 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
3055 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
3056 wa_ctx->indirect_ctx.size;
3058 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
3063 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3066 struct intel_vgpu_workload *workload = container_of(wa_ctx,
3067 struct intel_vgpu_workload,
3069 struct intel_vgpu *vgpu = workload->vgpu;
3071 if (wa_ctx->indirect_ctx.size == 0)
3074 ret = shadow_indirect_ctx(wa_ctx);
3076 gvt_vgpu_err("fail to shadow indirect ctx\n");
3080 combine_wa_ctx(wa_ctx);
3082 ret = scan_wa_ctx(wa_ctx);
3084 gvt_vgpu_err("scan wa ctx error\n");
3091 /* generate dummy contexts by sending empty requests to HW, and let
3092 * the HW to fill Engine Contexts. This dummy contexts are used for
3093 * initialization purpose (update reg whitelist), so referred to as
3096 void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu)
3098 const unsigned long start = LRC_STATE_PN * PAGE_SIZE;
3099 struct intel_gvt *gvt = vgpu->gvt;
3100 struct intel_engine_cs *engine;
3101 enum intel_engine_id id;
3103 if (gvt->is_reg_whitelist_updated)
3106 /* scan init ctx to update cmd accessible list */
3107 for_each_engine(engine, gvt->gt, id) {
3108 struct parser_exec_state s;
3112 if (!engine->default_state)
3115 vaddr = shmem_pin_map(engine->default_state);
3116 if (IS_ERR(vaddr)) {
3117 gvt_err("failed to map %s->default state, err:%zd\n",
3118 engine->name, PTR_ERR(vaddr));
3122 s.buf_type = RING_BUFFER_CTX;
3123 s.buf_addr_type = GTT_BUFFER;
3127 s.ring_size = engine->context_size - start;
3129 s.ring_tail = s.ring_size;
3130 s.rb_va = vaddr + start;
3132 s.is_ctx_wa = false;
3133 s.is_init_ctx = true;
3135 /* skipping the first RING_CTX_SIZE(0x50) dwords */
3136 ret = ip_gma_set(&s, RING_CTX_SIZE);
3138 ret = command_scan(&s, 0, s.ring_size, 0, s.ring_size);
3140 gvt_err("Scan init ctx error\n");
3143 shmem_unpin_map(engine->default_state, vaddr);
3148 gvt->is_reg_whitelist_updated = true;
3151 int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload)
3153 struct intel_vgpu *vgpu = workload->vgpu;
3154 unsigned long gma_head, gma_tail, gma_start, ctx_size;
3155 struct parser_exec_state s;
3156 int ring_id = workload->engine->id;
3157 struct intel_context *ce = vgpu->submission.shadow[ring_id];
3160 GEM_BUG_ON(atomic_read(&ce->pin_count) < 0);
3162 ctx_size = workload->engine->context_size - PAGE_SIZE;
3164 /* Only ring contxt is loaded to HW for inhibit context, no need to
3165 * scan engine context
3167 if (is_inhibit_context(ce))
3170 gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE;
3172 gma_tail = ctx_size;
3174 s.buf_type = RING_BUFFER_CTX;
3175 s.buf_addr_type = GTT_BUFFER;
3176 s.vgpu = workload->vgpu;
3177 s.engine = workload->engine;
3178 s.ring_start = gma_start;
3179 s.ring_size = ctx_size;
3180 s.ring_head = gma_start + gma_head;
3181 s.ring_tail = gma_start + gma_tail;
3182 s.rb_va = ce->lrc_reg_state;
3183 s.workload = workload;
3184 s.is_ctx_wa = false;
3185 s.is_init_ctx = false;
3187 /* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring
3190 ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE);
3194 ret = command_scan(&s, gma_head, gma_tail,
3195 gma_start, ctx_size);
3198 gvt_vgpu_err("scan shadow ctx error\n");
3203 static int init_cmd_table(struct intel_gvt *gvt)
3205 unsigned int gen_type = intel_gvt_get_device_type(gvt);
3208 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
3209 struct cmd_entry *e;
3211 if (!(cmd_info[i].devices & gen_type))
3214 e = kzalloc(sizeof(*e), GFP_KERNEL);
3218 e->info = &cmd_info[i];
3219 if (cmd_info[i].opcode == OP_MI_NOOP)
3222 INIT_HLIST_NODE(&e->hlist);
3223 add_cmd_entry(gvt, e);
3224 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3225 e->info->name, e->info->opcode, e->info->flag,
3226 e->info->devices, e->info->rings);
3232 static void clean_cmd_table(struct intel_gvt *gvt)
3234 struct hlist_node *tmp;
3235 struct cmd_entry *e;
3238 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
3241 hash_init(gvt->cmd_table);
3244 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
3246 clean_cmd_table(gvt);
3249 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
3253 ret = init_cmd_table(gvt);
3255 intel_gvt_clean_cmd_parser(gvt);