]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/gvt/cmd_parser.c
Merge tag 'mips_5.12_1' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
[linux.git] / drivers / gpu / drm / i915 / gvt / cmd_parser.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <[email protected]>
26  *    Zhiyuan Lv <[email protected]>
27  *
28  * Contributors:
29  *    Min He <[email protected]>
30  *    Ping Gao <[email protected]>
31  *    Tina Zhang <[email protected]>
32  *    Yulei Zhang <[email protected]>
33  *    Zhi Wang <[email protected]>
34  *
35  */
36
37 #include <linux/slab.h>
38
39 #include "i915_drv.h"
40 #include "gt/intel_gpu_commands.h"
41 #include "gt/intel_lrc.h"
42 #include "gt/intel_ring.h"
43 #include "gt/intel_gt_requests.h"
44 #include "gt/shmem_utils.h"
45 #include "gvt.h"
46 #include "i915_pvinfo.h"
47 #include "trace.h"
48
49 #include "gem/i915_gem_context.h"
50 #include "gem/i915_gem_pm.h"
51 #include "gt/intel_context.h"
52
53 #define INVALID_OP    (~0U)
54
55 #define OP_LEN_MI           9
56 #define OP_LEN_2D           10
57 #define OP_LEN_3D_MEDIA     16
58 #define OP_LEN_MFX_VC       16
59 #define OP_LEN_VEBOX        16
60
61 #define CMD_TYPE(cmd)   (((cmd) >> 29) & 7)
62
63 struct sub_op_bits {
64         int hi;
65         int low;
66 };
67 struct decode_info {
68         const char *name;
69         int op_len;
70         int nr_sub_op;
71         const struct sub_op_bits *sub_op;
72 };
73
74 #define   MAX_CMD_BUDGET                        0x7fffffff
75 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
76 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
77 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
78
79 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
80 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
81 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
82
83 /* Render Command Map */
84
85 /* MI_* command Opcode (28:23) */
86 #define OP_MI_NOOP                          0x0
87 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
88 #define OP_MI_USER_INTERRUPT                0x2
89 #define OP_MI_WAIT_FOR_EVENT                0x3
90 #define OP_MI_FLUSH                         0x4
91 #define OP_MI_ARB_CHECK                     0x5
92 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
93 #define OP_MI_REPORT_HEAD                   0x7
94 #define OP_MI_ARB_ON_OFF                    0x8
95 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
96 #define OP_MI_BATCH_BUFFER_END              0xA
97 #define OP_MI_SUSPEND_FLUSH                 0xB
98 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
99 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
100 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
101 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
102 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
103 #define OP_MI_DISPLAY_FLIP                  0x14
104 #define OP_MI_SEMAPHORE_MBOX                0x16
105 #define OP_MI_SET_CONTEXT                   0x18
106 #define OP_MI_MATH                          0x1A
107 #define OP_MI_URB_CLEAR                     0x19
108 #define OP_MI_SEMAPHORE_SIGNAL              0x1B  /* BDW+ */
109 #define OP_MI_SEMAPHORE_WAIT                0x1C  /* BDW+ */
110
111 #define OP_MI_STORE_DATA_IMM                0x20
112 #define OP_MI_STORE_DATA_INDEX              0x21
113 #define OP_MI_LOAD_REGISTER_IMM             0x22
114 #define OP_MI_UPDATE_GTT                    0x23
115 #define OP_MI_STORE_REGISTER_MEM            0x24
116 #define OP_MI_FLUSH_DW                      0x26
117 #define OP_MI_CLFLUSH                       0x27
118 #define OP_MI_REPORT_PERF_COUNT             0x28
119 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
120 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
121 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
122 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
123 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
124 #define OP_MI_2E                            0x2E  /* BDW+ */
125 #define OP_MI_2F                            0x2F  /* BDW+ */
126 #define OP_MI_BATCH_BUFFER_START            0x31
127
128 /* Bit definition for dword 0 */
129 #define _CMDBIT_BB_START_IN_PPGTT       (1UL << 8)
130
131 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
132
133 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
134 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
135 #define BATCH_BUFFER_ADR_SPACE_BIT(x)   (((x) >> 8) & 1U)
136 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
137
138 /* 2D command: Opcode (28:22) */
139 #define OP_2D(x)    ((2<<7) | x)
140
141 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
142 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
143 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
144 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
145 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
146 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
147 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
148 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
149 #define OP_XY_PAT_BLT                               OP_2D(0x51)
150 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
151 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
152 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
153 #define OP_XY_FULL_BLT                              OP_2D(0x55)
154 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
155 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
156 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
157 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
158 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
159 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
160 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
161 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
162 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
163 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
164 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
165
166 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
167 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
168         ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
169
170 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
171
172 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
173 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
174 #define OP_3D_MEDIA_0_1_4                       OP_3D_MEDIA(0x0, 0x1, 0x04)
175 #define OP_SWTESS_BASE_ADDRESS                  OP_3D_MEDIA(0x0, 0x1, 0x03)
176
177 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
178
179 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
180
181 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
182 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
183 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
184 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
185 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
186 #define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
187
188 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
189 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
190 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
191 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
192
193 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
194 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
195 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
196 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
197 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
198 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
199 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
200 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
201 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
202 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
203 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
204 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
205 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
206 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
207 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
208 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
209 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
210 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
211 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
212 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
213 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
214 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
215 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
216 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
217 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
218 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
219 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
220 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
221 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
222 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
223 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
224 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
225 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
226 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
227 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
228 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
229 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
230 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
231 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
232 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
233 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
234 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
235 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
236 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
237 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
238 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
239 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
240 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
241 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
242 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
243 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
244 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
245 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
246 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
247 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
248 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
249 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
250 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
251 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
252 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
253 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
254 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
255 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
256 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
257 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
258 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
259
260 #define OP_3DSTATE_VF_INSTANCING                OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
261 #define OP_3DSTATE_VF_SGVS                      OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
262 #define OP_3DSTATE_VF_TOPOLOGY                  OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
263 #define OP_3DSTATE_WM_CHROMAKEY                 OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
264 #define OP_3DSTATE_PS_BLEND                     OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
265 #define OP_3DSTATE_WM_DEPTH_STENCIL             OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
266 #define OP_3DSTATE_PS_EXTRA                     OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
267 #define OP_3DSTATE_RASTER                       OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
268 #define OP_3DSTATE_SBE_SWIZ                     OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
269 #define OP_3DSTATE_WM_HZ_OP                     OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
270 #define OP_3DSTATE_COMPONENT_PACKING            OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
271
272 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
273 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
274 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
275 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
276 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
277 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
278 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
279 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
280 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
281 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
282 #define OP_3DSTATE_MULTISAMPLE_BDW              OP_3D_MEDIA(0x3, 0x0, 0x0D)
283 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
284 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
285 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
286 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
287 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
288 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
289 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
290 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
291 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
292 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
293 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
294 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
295 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
296 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
297 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
298 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
299 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
300
301 /* VCCP Command Parser */
302
303 /*
304  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
305  * git://anongit.freedesktop.org/vaapi/intel-driver
306  * src/i965_defines.h
307  *
308  */
309
310 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
311         (3 << 13 | \
312          (pipeline) << 11 | \
313          (op) << 8 | \
314          (sub_opa) << 5 | \
315          (sub_opb))
316
317 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
318 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
319 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
320 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
321 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
322 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
323 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
324 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
325 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
326 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
327 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
328
329 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
330
331 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
332 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
333 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
334 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
335 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
336 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
337 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
338 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
339 #define OP_MFD_AVC_DPB_STATE                       OP_MFX(2, 1, 1, 6) /* IVB+ */
340 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
341 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
342 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
343
344 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
345 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
346 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
347 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
348 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
349
350 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
351 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
352 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
353 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
354 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
355
356 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
357 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
358 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
359
360 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
361 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
362 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
363
364 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
365         (3 << 13 | \
366          (pipeline) << 11 | \
367          (op) << 8 | \
368          (sub_opa) << 5 | \
369          (sub_opb))
370
371 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
372 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
373 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
374
375 struct parser_exec_state;
376
377 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
378
379 #define GVT_CMD_HASH_BITS   7
380
381 /* which DWords need address fix */
382 #define ADDR_FIX_1(x1)                  (1 << (x1))
383 #define ADDR_FIX_2(x1, x2)              (ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
384 #define ADDR_FIX_3(x1, x2, x3)          (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
385 #define ADDR_FIX_4(x1, x2, x3, x4)      (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
386 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
387
388 #define DWORD_FIELD(dword, end, start) \
389         FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
390
391 #define OP_LENGTH_BIAS 2
392 #define CMD_LEN(value)  (value + OP_LENGTH_BIAS)
393
394 static int gvt_check_valid_cmd_length(int len, int valid_len)
395 {
396         if (valid_len != len) {
397                 gvt_err("len is not valid:  len=%u  valid_len=%u\n",
398                         len, valid_len);
399                 return -EFAULT;
400         }
401         return 0;
402 }
403
404 struct cmd_info {
405         const char *name;
406         u32 opcode;
407
408 #define F_LEN_MASK      3U
409 #define F_LEN_CONST  1U
410 #define F_LEN_VAR    0U
411 /* value is const although LEN maybe variable */
412 #define F_LEN_VAR_FIXED    (1<<1)
413
414 /*
415  * command has its own ip advance logic
416  * e.g. MI_BATCH_START, MI_BATCH_END
417  */
418 #define F_IP_ADVANCE_CUSTOM (1<<2)
419         u32 flag;
420
421 #define R_RCS   BIT(RCS0)
422 #define R_VCS1  BIT(VCS0)
423 #define R_VCS2  BIT(VCS1)
424 #define R_VCS   (R_VCS1 | R_VCS2)
425 #define R_BCS   BIT(BCS0)
426 #define R_VECS  BIT(VECS0)
427 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
428         /* rings that support this cmd: BLT/RCS/VCS/VECS */
429         u16 rings;
430
431         /* devices that support this cmd: SNB/IVB/HSW/... */
432         u16 devices;
433
434         /* which DWords are address that need fix up.
435          * bit 0 means a 32-bit non address operand in command
436          * bit 1 means address operand, which could be 32-bit
437          * or 64-bit depending on different architectures.(
438          * defined by "gmadr_bytes_in_cmd" in intel_gvt.
439          * No matter the address length, each address only takes
440          * one bit in the bitmap.
441          */
442         u16 addr_bitmap;
443
444         /* flag == F_LEN_CONST : command length
445          * flag == F_LEN_VAR : length bias bits
446          * Note: length is in DWord
447          */
448         u32 len;
449
450         parser_cmd_handler handler;
451
452         /* valid length in DWord */
453         u32 valid_len;
454 };
455
456 struct cmd_entry {
457         struct hlist_node hlist;
458         const struct cmd_info *info;
459 };
460
461 enum {
462         RING_BUFFER_INSTRUCTION,
463         BATCH_BUFFER_INSTRUCTION,
464         BATCH_BUFFER_2ND_LEVEL,
465         RING_BUFFER_CTX,
466 };
467
468 enum {
469         GTT_BUFFER,
470         PPGTT_BUFFER
471 };
472
473 struct parser_exec_state {
474         struct intel_vgpu *vgpu;
475         const struct intel_engine_cs *engine;
476
477         int buf_type;
478
479         /* batch buffer address type */
480         int buf_addr_type;
481
482         /* graphics memory address of ring buffer start */
483         unsigned long ring_start;
484         unsigned long ring_size;
485         unsigned long ring_head;
486         unsigned long ring_tail;
487
488         /* instruction graphics memory address */
489         unsigned long ip_gma;
490
491         /* mapped va of the instr_gma */
492         void *ip_va;
493         void *rb_va;
494
495         void *ret_bb_va;
496         /* next instruction when return from  batch buffer to ring buffer */
497         unsigned long ret_ip_gma_ring;
498
499         /* next instruction when return from 2nd batch buffer to batch buffer */
500         unsigned long ret_ip_gma_bb;
501
502         /* batch buffer address type (GTT or PPGTT)
503          * used when ret from 2nd level batch buffer
504          */
505         int saved_buf_addr_type;
506         bool is_ctx_wa;
507         bool is_init_ctx;
508
509         const struct cmd_info *info;
510
511         struct intel_vgpu_workload *workload;
512 };
513
514 #define gmadr_dw_number(s)      \
515         (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
516
517 static unsigned long bypass_scan_mask = 0;
518
519 /* ring ALL, type = 0 */
520 static const struct sub_op_bits sub_op_mi[] = {
521         {31, 29},
522         {28, 23},
523 };
524
525 static const struct decode_info decode_info_mi = {
526         "MI",
527         OP_LEN_MI,
528         ARRAY_SIZE(sub_op_mi),
529         sub_op_mi,
530 };
531
532 /* ring RCS, command type 2 */
533 static const struct sub_op_bits sub_op_2d[] = {
534         {31, 29},
535         {28, 22},
536 };
537
538 static const struct decode_info decode_info_2d = {
539         "2D",
540         OP_LEN_2D,
541         ARRAY_SIZE(sub_op_2d),
542         sub_op_2d,
543 };
544
545 /* ring RCS, command type 3 */
546 static const struct sub_op_bits sub_op_3d_media[] = {
547         {31, 29},
548         {28, 27},
549         {26, 24},
550         {23, 16},
551 };
552
553 static const struct decode_info decode_info_3d_media = {
554         "3D_Media",
555         OP_LEN_3D_MEDIA,
556         ARRAY_SIZE(sub_op_3d_media),
557         sub_op_3d_media,
558 };
559
560 /* ring VCS, command type 3 */
561 static const struct sub_op_bits sub_op_mfx_vc[] = {
562         {31, 29},
563         {28, 27},
564         {26, 24},
565         {23, 21},
566         {20, 16},
567 };
568
569 static const struct decode_info decode_info_mfx_vc = {
570         "MFX_VC",
571         OP_LEN_MFX_VC,
572         ARRAY_SIZE(sub_op_mfx_vc),
573         sub_op_mfx_vc,
574 };
575
576 /* ring VECS, command type 3 */
577 static const struct sub_op_bits sub_op_vebox[] = {
578         {31, 29},
579         {28, 27},
580         {26, 24},
581         {23, 21},
582         {20, 16},
583 };
584
585 static const struct decode_info decode_info_vebox = {
586         "VEBOX",
587         OP_LEN_VEBOX,
588         ARRAY_SIZE(sub_op_vebox),
589         sub_op_vebox,
590 };
591
592 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
593         [RCS0] = {
594                 &decode_info_mi,
595                 NULL,
596                 NULL,
597                 &decode_info_3d_media,
598                 NULL,
599                 NULL,
600                 NULL,
601                 NULL,
602         },
603
604         [VCS0] = {
605                 &decode_info_mi,
606                 NULL,
607                 NULL,
608                 &decode_info_mfx_vc,
609                 NULL,
610                 NULL,
611                 NULL,
612                 NULL,
613         },
614
615         [BCS0] = {
616                 &decode_info_mi,
617                 NULL,
618                 &decode_info_2d,
619                 NULL,
620                 NULL,
621                 NULL,
622                 NULL,
623                 NULL,
624         },
625
626         [VECS0] = {
627                 &decode_info_mi,
628                 NULL,
629                 NULL,
630                 &decode_info_vebox,
631                 NULL,
632                 NULL,
633                 NULL,
634                 NULL,
635         },
636
637         [VCS1] = {
638                 &decode_info_mi,
639                 NULL,
640                 NULL,
641                 &decode_info_mfx_vc,
642                 NULL,
643                 NULL,
644                 NULL,
645                 NULL,
646         },
647 };
648
649 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine)
650 {
651         const struct decode_info *d_info;
652
653         d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
654         if (d_info == NULL)
655                 return INVALID_OP;
656
657         return cmd >> (32 - d_info->op_len);
658 }
659
660 static inline const struct cmd_info *
661 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode,
662                const struct intel_engine_cs *engine)
663 {
664         struct cmd_entry *e;
665
666         hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
667                 if (opcode == e->info->opcode &&
668                     e->info->rings & engine->mask)
669                         return e->info;
670         }
671         return NULL;
672 }
673
674 static inline const struct cmd_info *
675 get_cmd_info(struct intel_gvt *gvt, u32 cmd,
676              const struct intel_engine_cs *engine)
677 {
678         u32 opcode;
679
680         opcode = get_opcode(cmd, engine);
681         if (opcode == INVALID_OP)
682                 return NULL;
683
684         return find_cmd_entry(gvt, opcode, engine);
685 }
686
687 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
688 {
689         return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
690 }
691
692 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine)
693 {
694         const struct decode_info *d_info;
695         int i;
696
697         d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
698         if (d_info == NULL)
699                 return;
700
701         gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
702                         cmd >> (32 - d_info->op_len), d_info->name);
703
704         for (i = 0; i < d_info->nr_sub_op; i++)
705                 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
706                                         d_info->sub_op[i].low));
707
708         pr_err("\n");
709 }
710
711 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
712 {
713         return s->ip_va + (index << 2);
714 }
715
716 static inline u32 cmd_val(struct parser_exec_state *s, int index)
717 {
718         return *cmd_ptr(s, index);
719 }
720
721 static inline bool is_init_ctx(struct parser_exec_state *s)
722 {
723         return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx);
724 }
725
726 static void parser_exec_state_dump(struct parser_exec_state *s)
727 {
728         int cnt = 0;
729         int i;
730
731         gvt_dbg_cmd("  vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)"
732                     " ring_head(%08lx) ring_tail(%08lx)\n",
733                     s->vgpu->id, s->engine->name,
734                     s->ring_start, s->ring_start + s->ring_size,
735                     s->ring_head, s->ring_tail);
736
737         gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
738                         s->buf_type == RING_BUFFER_INSTRUCTION ?
739                         "RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ?
740                                 "CTX_BUFFER" : "BATCH_BUFFER"),
741                         s->buf_addr_type == GTT_BUFFER ?
742                         "GTT" : "PPGTT", s->ip_gma);
743
744         if (s->ip_va == NULL) {
745                 gvt_dbg_cmd(" ip_va(NULL)");
746                 return;
747         }
748
749         gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
750                         s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
751                         cmd_val(s, 2), cmd_val(s, 3));
752
753         print_opcode(cmd_val(s, 0), s->engine);
754
755         s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
756
757         while (cnt < 1024) {
758                 gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
759                 for (i = 0; i < 8; i++)
760                         gvt_dbg_cmd("%08x ", cmd_val(s, i));
761                 gvt_dbg_cmd("\n");
762
763                 s->ip_va += 8 * sizeof(u32);
764                 cnt += 8;
765         }
766 }
767
768 static inline void update_ip_va(struct parser_exec_state *s)
769 {
770         unsigned long len = 0;
771
772         if (WARN_ON(s->ring_head == s->ring_tail))
773                 return;
774
775         if (s->buf_type == RING_BUFFER_INSTRUCTION ||
776                         s->buf_type == RING_BUFFER_CTX) {
777                 unsigned long ring_top = s->ring_start + s->ring_size;
778
779                 if (s->ring_head > s->ring_tail) {
780                         if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
781                                 len = (s->ip_gma - s->ring_head);
782                         else if (s->ip_gma >= s->ring_start &&
783                                         s->ip_gma <= s->ring_tail)
784                                 len = (ring_top - s->ring_head) +
785                                         (s->ip_gma - s->ring_start);
786                 } else
787                         len = (s->ip_gma - s->ring_head);
788
789                 s->ip_va = s->rb_va + len;
790         } else {/* shadow batch buffer */
791                 s->ip_va = s->ret_bb_va;
792         }
793 }
794
795 static inline int ip_gma_set(struct parser_exec_state *s,
796                 unsigned long ip_gma)
797 {
798         WARN_ON(!IS_ALIGNED(ip_gma, 4));
799
800         s->ip_gma = ip_gma;
801         update_ip_va(s);
802         return 0;
803 }
804
805 static inline int ip_gma_advance(struct parser_exec_state *s,
806                 unsigned int dw_len)
807 {
808         s->ip_gma += (dw_len << 2);
809
810         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
811                 if (s->ip_gma >= s->ring_start + s->ring_size)
812                         s->ip_gma -= s->ring_size;
813                 update_ip_va(s);
814         } else {
815                 s->ip_va += (dw_len << 2);
816         }
817
818         return 0;
819 }
820
821 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
822 {
823         if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
824                 return info->len;
825         else
826                 return (cmd & ((1U << info->len) - 1)) + 2;
827         return 0;
828 }
829
830 static inline int cmd_length(struct parser_exec_state *s)
831 {
832         return get_cmd_length(s->info, cmd_val(s, 0));
833 }
834
835 /* do not remove this, some platform may need clflush here */
836 #define patch_value(s, addr, val) do { \
837         *addr = val; \
838 } while (0)
839
840 static inline bool is_mocs_mmio(unsigned int offset)
841 {
842         return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
843                 ((offset >= 0xb020) && (offset <= 0xb0a0));
844 }
845
846 static int is_cmd_update_pdps(unsigned int offset,
847                               struct parser_exec_state *s)
848 {
849         u32 base = s->workload->engine->mmio_base;
850         return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0));
851 }
852
853 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s,
854                                        unsigned int offset, unsigned int index)
855 {
856         struct intel_vgpu *vgpu = s->vgpu;
857         struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm;
858         struct intel_vgpu_mm *mm;
859         u64 pdps[GEN8_3LVL_PDPES];
860
861         if (shadow_mm->ppgtt_mm.root_entry_type ==
862             GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
863                 pdps[0] = (u64)cmd_val(s, 2) << 32;
864                 pdps[0] |= cmd_val(s, 4);
865
866                 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
867                 if (!mm) {
868                         gvt_vgpu_err("failed to get the 4-level shadow vm\n");
869                         return -EINVAL;
870                 }
871                 intel_vgpu_mm_get(mm);
872                 list_add_tail(&mm->ppgtt_mm.link,
873                               &s->workload->lri_shadow_mm);
874                 *cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
875                 *cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
876         } else {
877                 /* Currently all guests use PML4 table and now can't
878                  * have a guest with 3-level table but uses LRI for
879                  * PPGTT update. So this is simply un-testable. */
880                 GEM_BUG_ON(1);
881                 gvt_vgpu_err("invalid shared shadow vm type\n");
882                 return -EINVAL;
883         }
884         return 0;
885 }
886
887 static int cmd_reg_handler(struct parser_exec_state *s,
888         unsigned int offset, unsigned int index, char *cmd)
889 {
890         struct intel_vgpu *vgpu = s->vgpu;
891         struct intel_gvt *gvt = vgpu->gvt;
892         u32 ctx_sr_ctl;
893         u32 *vreg, vreg_old;
894
895         if (offset + 4 > gvt->device_info.mmio_size) {
896                 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
897                                 cmd, offset);
898                 return -EFAULT;
899         }
900
901         if (is_init_ctx(s)) {
902                 struct intel_gvt_mmio_info *mmio_info;
903
904                 intel_gvt_mmio_set_cmd_accessible(gvt, offset);
905                 mmio_info = intel_gvt_find_mmio_info(gvt, offset);
906                 if (mmio_info && mmio_info->write)
907                         intel_gvt_mmio_set_cmd_write_patch(gvt, offset);
908                 return 0;
909         }
910
911         if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) {
912                 gvt_vgpu_err("%s access to non-render register (%x)\n",
913                                 cmd, offset);
914                 return -EBADRQC;
915         }
916
917         if (!strncmp(cmd, "srm", 3) ||
918                         !strncmp(cmd, "lrm", 3)) {
919                 if (offset != i915_mmio_reg_offset(GEN8_L3SQCREG4) &&
920                                 offset != 0x21f0) {
921                         gvt_vgpu_err("%s access to register (%x)\n",
922                                         cmd, offset);
923                         return -EPERM;
924                 } else
925                         return 0;
926         }
927
928         if (!strncmp(cmd, "lrr-src", 7) ||
929                         !strncmp(cmd, "lrr-dst", 7)) {
930                 gvt_vgpu_err("not allowed cmd %s\n", cmd);
931                 return -EPERM;
932         }
933
934         if (!strncmp(cmd, "pipe_ctrl", 9)) {
935                 /* TODO: add LRI POST logic here */
936                 return 0;
937         }
938
939         if (strncmp(cmd, "lri", 3))
940                 return -EPERM;
941
942         /* below are all lri handlers */
943         vreg = &vgpu_vreg(s->vgpu, offset);
944         if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) {
945                 gvt_vgpu_err("%s access to non-render register (%x)\n",
946                                 cmd, offset);
947                 return -EBADRQC;
948         }
949
950         if (is_cmd_update_pdps(offset, s) &&
951             cmd_pdp_mmio_update_handler(s, offset, index))
952                 return -EINVAL;
953
954         if (offset == i915_mmio_reg_offset(DERRMR) ||
955                 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
956                 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
957                 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
958         }
959
960         if (is_mocs_mmio(offset))
961                 *vreg = cmd_val(s, index + 1);
962
963         vreg_old = *vreg;
964
965         if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) {
966                 u32 cmdval_new, cmdval;
967                 struct intel_gvt_mmio_info *mmio_info;
968
969                 cmdval = cmd_val(s, index + 1);
970
971                 mmio_info = intel_gvt_find_mmio_info(gvt, offset);
972                 if (!mmio_info) {
973                         cmdval_new = cmdval;
974                 } else {
975                         u64 ro_mask = mmio_info->ro_mask;
976                         int ret;
977
978                         if (likely(!ro_mask))
979                                 ret = mmio_info->write(s->vgpu, offset,
980                                                 &cmdval, 4);
981                         else {
982                                 gvt_vgpu_err("try to write RO reg %x\n",
983                                                 offset);
984                                 ret = -EBADRQC;
985                         }
986                         if (ret)
987                                 return ret;
988                         cmdval_new = *vreg;
989                 }
990                 if (cmdval_new != cmdval)
991                         patch_value(s, cmd_ptr(s, index+1), cmdval_new);
992         }
993
994         /* only patch cmd. restore vreg value if changed in mmio write handler*/
995         *vreg = vreg_old;
996
997         /* TODO
998          * In order to let workload with inhibit context to generate
999          * correct image data into memory, vregs values will be loaded to
1000          * hw via LRIs in the workload with inhibit context. But as
1001          * indirect context is loaded prior to LRIs in workload, we don't
1002          * want reg values specified in indirect context overwritten by
1003          * LRIs in workloads. So, when scanning an indirect context, we
1004          * update reg values in it into vregs, so LRIs in workload with
1005          * inhibit context will restore with correct values
1006          */
1007         if (IS_GEN(s->engine->i915, 9) &&
1008             intel_gvt_mmio_is_sr_in_ctx(gvt, offset) &&
1009             !strncmp(cmd, "lri", 3)) {
1010                 intel_gvt_hypervisor_read_gpa(s->vgpu,
1011                         s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
1012                 /* check inhibit context */
1013                 if (ctx_sr_ctl & 1) {
1014                         u32 data = cmd_val(s, index + 1);
1015
1016                         if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
1017                                 intel_vgpu_mask_mmio_write(vgpu,
1018                                                         offset, &data, 4);
1019                         else
1020                                 vgpu_vreg(vgpu, offset) = data;
1021                 }
1022         }
1023
1024         return 0;
1025 }
1026
1027 #define cmd_reg(s, i) \
1028         (cmd_val(s, i) & GENMASK(22, 2))
1029
1030 #define cmd_reg_inhibit(s, i) \
1031         (cmd_val(s, i) & GENMASK(22, 18))
1032
1033 #define cmd_gma(s, i) \
1034         (cmd_val(s, i) & GENMASK(31, 2))
1035
1036 #define cmd_gma_hi(s, i) \
1037         (cmd_val(s, i) & GENMASK(15, 0))
1038
1039 static int cmd_handler_lri(struct parser_exec_state *s)
1040 {
1041         int i, ret = 0;
1042         int cmd_len = cmd_length(s);
1043
1044         for (i = 1; i < cmd_len; i += 2) {
1045                 if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) {
1046                         if (s->engine->id == BCS0 &&
1047                             cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
1048                                 ret |= 0;
1049                         else
1050                                 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
1051                 }
1052                 if (ret)
1053                         break;
1054                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
1055                 if (ret)
1056                         break;
1057         }
1058         return ret;
1059 }
1060
1061 static int cmd_handler_lrr(struct parser_exec_state *s)
1062 {
1063         int i, ret = 0;
1064         int cmd_len = cmd_length(s);
1065
1066         for (i = 1; i < cmd_len; i += 2) {
1067                 if (IS_BROADWELL(s->engine->i915))
1068                         ret |= ((cmd_reg_inhibit(s, i) ||
1069                                  (cmd_reg_inhibit(s, i + 1)))) ?
1070                                 -EBADRQC : 0;
1071                 if (ret)
1072                         break;
1073                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
1074                 if (ret)
1075                         break;
1076                 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
1077                 if (ret)
1078                         break;
1079         }
1080         return ret;
1081 }
1082
1083 static inline int cmd_address_audit(struct parser_exec_state *s,
1084                 unsigned long guest_gma, int op_size, bool index_mode);
1085
1086 static int cmd_handler_lrm(struct parser_exec_state *s)
1087 {
1088         struct intel_gvt *gvt = s->vgpu->gvt;
1089         int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
1090         unsigned long gma;
1091         int i, ret = 0;
1092         int cmd_len = cmd_length(s);
1093
1094         for (i = 1; i < cmd_len;) {
1095                 if (IS_BROADWELL(s->engine->i915))
1096                         ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1097                 if (ret)
1098                         break;
1099                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1100                 if (ret)
1101                         break;
1102                 if (cmd_val(s, 0) & (1 << 22)) {
1103                         gma = cmd_gma(s, i + 1);
1104                         if (gmadr_bytes == 8)
1105                                 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1106                         ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1107                         if (ret)
1108                                 break;
1109                 }
1110                 i += gmadr_dw_number(s) + 1;
1111         }
1112         return ret;
1113 }
1114
1115 static int cmd_handler_srm(struct parser_exec_state *s)
1116 {
1117         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1118         unsigned long gma;
1119         int i, ret = 0;
1120         int cmd_len = cmd_length(s);
1121
1122         for (i = 1; i < cmd_len;) {
1123                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1124                 if (ret)
1125                         break;
1126                 if (cmd_val(s, 0) & (1 << 22)) {
1127                         gma = cmd_gma(s, i + 1);
1128                         if (gmadr_bytes == 8)
1129                                 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1130                         ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1131                         if (ret)
1132                                 break;
1133                 }
1134                 i += gmadr_dw_number(s) + 1;
1135         }
1136         return ret;
1137 }
1138
1139 struct cmd_interrupt_event {
1140         int pipe_control_notify;
1141         int mi_flush_dw;
1142         int mi_user_interrupt;
1143 };
1144
1145 static struct cmd_interrupt_event cmd_interrupt_events[] = {
1146         [RCS0] = {
1147                 .pipe_control_notify = RCS_PIPE_CONTROL,
1148                 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1149                 .mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1150         },
1151         [BCS0] = {
1152                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1153                 .mi_flush_dw = BCS_MI_FLUSH_DW,
1154                 .mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1155         },
1156         [VCS0] = {
1157                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1158                 .mi_flush_dw = VCS_MI_FLUSH_DW,
1159                 .mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1160         },
1161         [VCS1] = {
1162                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1163                 .mi_flush_dw = VCS2_MI_FLUSH_DW,
1164                 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1165         },
1166         [VECS0] = {
1167                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1168                 .mi_flush_dw = VECS_MI_FLUSH_DW,
1169                 .mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1170         },
1171 };
1172
1173 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1174 {
1175         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1176         unsigned long gma;
1177         bool index_mode = false;
1178         unsigned int post_sync;
1179         int ret = 0;
1180         u32 hws_pga, val;
1181
1182         post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1183
1184         /* LRI post sync */
1185         if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1186                 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1187         /* post sync */
1188         else if (post_sync) {
1189                 if (post_sync == 2)
1190                         ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1191                 else if (post_sync == 3)
1192                         ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1193                 else if (post_sync == 1) {
1194                         /* check ggtt*/
1195                         if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1196                                 gma = cmd_val(s, 2) & GENMASK(31, 3);
1197                                 if (gmadr_bytes == 8)
1198                                         gma |= (cmd_gma_hi(s, 3)) << 32;
1199                                 /* Store Data Index */
1200                                 if (cmd_val(s, 1) & (1 << 21))
1201                                         index_mode = true;
1202                                 ret |= cmd_address_audit(s, gma, sizeof(u64),
1203                                                 index_mode);
1204                                 if (ret)
1205                                         return ret;
1206                                 if (index_mode) {
1207                                         hws_pga = s->vgpu->hws_pga[s->engine->id];
1208                                         gma = hws_pga + gma;
1209                                         patch_value(s, cmd_ptr(s, 2), gma);
1210                                         val = cmd_val(s, 1) & (~(1 << 21));
1211                                         patch_value(s, cmd_ptr(s, 1), val);
1212                                 }
1213                         }
1214                 }
1215         }
1216
1217         if (ret)
1218                 return ret;
1219
1220         if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1221                 set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify,
1222                         s->workload->pending_events);
1223         return 0;
1224 }
1225
1226 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1227 {
1228         set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt,
1229                 s->workload->pending_events);
1230         patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1231         return 0;
1232 }
1233
1234 static int cmd_advance_default(struct parser_exec_state *s)
1235 {
1236         return ip_gma_advance(s, cmd_length(s));
1237 }
1238
1239 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1240 {
1241         int ret;
1242
1243         if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1244                 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1245                 ret = ip_gma_set(s, s->ret_ip_gma_bb);
1246                 s->buf_addr_type = s->saved_buf_addr_type;
1247         } else if (s->buf_type == RING_BUFFER_CTX) {
1248                 ret = ip_gma_set(s, s->ring_tail);
1249         } else {
1250                 s->buf_type = RING_BUFFER_INSTRUCTION;
1251                 s->buf_addr_type = GTT_BUFFER;
1252                 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1253                         s->ret_ip_gma_ring -= s->ring_size;
1254                 ret = ip_gma_set(s, s->ret_ip_gma_ring);
1255         }
1256         return ret;
1257 }
1258
1259 struct mi_display_flip_command_info {
1260         int pipe;
1261         int plane;
1262         int event;
1263         i915_reg_t stride_reg;
1264         i915_reg_t ctrl_reg;
1265         i915_reg_t surf_reg;
1266         u64 stride_val;
1267         u64 tile_val;
1268         u64 surf_val;
1269         bool async_flip;
1270 };
1271
1272 struct plane_code_mapping {
1273         int pipe;
1274         int plane;
1275         int event;
1276 };
1277
1278 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1279                 struct mi_display_flip_command_info *info)
1280 {
1281         struct drm_i915_private *dev_priv = s->engine->i915;
1282         struct plane_code_mapping gen8_plane_code[] = {
1283                 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1284                 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1285                 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1286                 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1287                 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1288                 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1289         };
1290         u32 dword0, dword1, dword2;
1291         u32 v;
1292
1293         dword0 = cmd_val(s, 0);
1294         dword1 = cmd_val(s, 1);
1295         dword2 = cmd_val(s, 2);
1296
1297         v = (dword0 & GENMASK(21, 19)) >> 19;
1298         if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code)))
1299                 return -EBADRQC;
1300
1301         info->pipe = gen8_plane_code[v].pipe;
1302         info->plane = gen8_plane_code[v].plane;
1303         info->event = gen8_plane_code[v].event;
1304         info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1305         info->tile_val = (dword1 & 0x1);
1306         info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1307         info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1308
1309         if (info->plane == PLANE_A) {
1310                 info->ctrl_reg = DSPCNTR(info->pipe);
1311                 info->stride_reg = DSPSTRIDE(info->pipe);
1312                 info->surf_reg = DSPSURF(info->pipe);
1313         } else if (info->plane == PLANE_B) {
1314                 info->ctrl_reg = SPRCTL(info->pipe);
1315                 info->stride_reg = SPRSTRIDE(info->pipe);
1316                 info->surf_reg = SPRSURF(info->pipe);
1317         } else {
1318                 drm_WARN_ON(&dev_priv->drm, 1);
1319                 return -EBADRQC;
1320         }
1321         return 0;
1322 }
1323
1324 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1325                 struct mi_display_flip_command_info *info)
1326 {
1327         struct drm_i915_private *dev_priv = s->engine->i915;
1328         struct intel_vgpu *vgpu = s->vgpu;
1329         u32 dword0 = cmd_val(s, 0);
1330         u32 dword1 = cmd_val(s, 1);
1331         u32 dword2 = cmd_val(s, 2);
1332         u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1333
1334         info->plane = PRIMARY_PLANE;
1335
1336         switch (plane) {
1337         case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1338                 info->pipe = PIPE_A;
1339                 info->event = PRIMARY_A_FLIP_DONE;
1340                 break;
1341         case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1342                 info->pipe = PIPE_B;
1343                 info->event = PRIMARY_B_FLIP_DONE;
1344                 break;
1345         case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1346                 info->pipe = PIPE_C;
1347                 info->event = PRIMARY_C_FLIP_DONE;
1348                 break;
1349
1350         case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1351                 info->pipe = PIPE_A;
1352                 info->event = SPRITE_A_FLIP_DONE;
1353                 info->plane = SPRITE_PLANE;
1354                 break;
1355         case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1356                 info->pipe = PIPE_B;
1357                 info->event = SPRITE_B_FLIP_DONE;
1358                 info->plane = SPRITE_PLANE;
1359                 break;
1360         case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1361                 info->pipe = PIPE_C;
1362                 info->event = SPRITE_C_FLIP_DONE;
1363                 info->plane = SPRITE_PLANE;
1364                 break;
1365
1366         default:
1367                 gvt_vgpu_err("unknown plane code %d\n", plane);
1368                 return -EBADRQC;
1369         }
1370
1371         info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1372         info->tile_val = (dword1 & GENMASK(2, 0));
1373         info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1374         info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1375
1376         info->ctrl_reg = DSPCNTR(info->pipe);
1377         info->stride_reg = DSPSTRIDE(info->pipe);
1378         info->surf_reg = DSPSURF(info->pipe);
1379
1380         return 0;
1381 }
1382
1383 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1384                 struct mi_display_flip_command_info *info)
1385 {
1386         u32 stride, tile;
1387
1388         if (!info->async_flip)
1389                 return 0;
1390
1391         if (INTEL_GEN(s->engine->i915) >= 9) {
1392                 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1393                 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1394                                 GENMASK(12, 10)) >> 10;
1395         } else {
1396                 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1397                                 GENMASK(15, 6)) >> 6;
1398                 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1399         }
1400
1401         if (stride != info->stride_val)
1402                 gvt_dbg_cmd("cannot change stride during async flip\n");
1403
1404         if (tile != info->tile_val)
1405                 gvt_dbg_cmd("cannot change tile during async flip\n");
1406
1407         return 0;
1408 }
1409
1410 static int gen8_update_plane_mmio_from_mi_display_flip(
1411                 struct parser_exec_state *s,
1412                 struct mi_display_flip_command_info *info)
1413 {
1414         struct drm_i915_private *dev_priv = s->engine->i915;
1415         struct intel_vgpu *vgpu = s->vgpu;
1416
1417         set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1418                       info->surf_val << 12);
1419         if (INTEL_GEN(dev_priv) >= 9) {
1420                 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1421                               info->stride_val);
1422                 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1423                               info->tile_val << 10);
1424         } else {
1425                 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1426                               info->stride_val << 6);
1427                 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1428                               info->tile_val << 10);
1429         }
1430
1431         if (info->plane == PLANE_PRIMARY)
1432                 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++;
1433
1434         if (info->async_flip)
1435                 intel_vgpu_trigger_virtual_event(vgpu, info->event);
1436         else
1437                 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1438
1439         return 0;
1440 }
1441
1442 static int decode_mi_display_flip(struct parser_exec_state *s,
1443                 struct mi_display_flip_command_info *info)
1444 {
1445         if (IS_BROADWELL(s->engine->i915))
1446                 return gen8_decode_mi_display_flip(s, info);
1447         if (INTEL_GEN(s->engine->i915) >= 9)
1448                 return skl_decode_mi_display_flip(s, info);
1449
1450         return -ENODEV;
1451 }
1452
1453 static int check_mi_display_flip(struct parser_exec_state *s,
1454                 struct mi_display_flip_command_info *info)
1455 {
1456         return gen8_check_mi_display_flip(s, info);
1457 }
1458
1459 static int update_plane_mmio_from_mi_display_flip(
1460                 struct parser_exec_state *s,
1461                 struct mi_display_flip_command_info *info)
1462 {
1463         return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1464 }
1465
1466 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1467 {
1468         struct mi_display_flip_command_info info;
1469         struct intel_vgpu *vgpu = s->vgpu;
1470         int ret;
1471         int i;
1472         int len = cmd_length(s);
1473         u32 valid_len = CMD_LEN(1);
1474
1475         /* Flip Type == Stereo 3D Flip */
1476         if (DWORD_FIELD(2, 1, 0) == 2)
1477                 valid_len++;
1478         ret = gvt_check_valid_cmd_length(cmd_length(s),
1479                         valid_len);
1480         if (ret)
1481                 return ret;
1482
1483         ret = decode_mi_display_flip(s, &info);
1484         if (ret) {
1485                 gvt_vgpu_err("fail to decode MI display flip command\n");
1486                 return ret;
1487         }
1488
1489         ret = check_mi_display_flip(s, &info);
1490         if (ret) {
1491                 gvt_vgpu_err("invalid MI display flip command\n");
1492                 return ret;
1493         }
1494
1495         ret = update_plane_mmio_from_mi_display_flip(s, &info);
1496         if (ret) {
1497                 gvt_vgpu_err("fail to update plane mmio\n");
1498                 return ret;
1499         }
1500
1501         for (i = 0; i < len; i++)
1502                 patch_value(s, cmd_ptr(s, i), MI_NOOP);
1503         return 0;
1504 }
1505
1506 static bool is_wait_for_flip_pending(u32 cmd)
1507 {
1508         return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1509                         MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1510                         MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1511                         MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1512                         MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1513                         MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1514 }
1515
1516 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1517 {
1518         u32 cmd = cmd_val(s, 0);
1519
1520         if (!is_wait_for_flip_pending(cmd))
1521                 return 0;
1522
1523         patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1524         return 0;
1525 }
1526
1527 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1528 {
1529         unsigned long addr;
1530         unsigned long gma_high, gma_low;
1531         struct intel_vgpu *vgpu = s->vgpu;
1532         int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1533
1534         if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1535                 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1536                 return INTEL_GVT_INVALID_ADDR;
1537         }
1538
1539         gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1540         if (gmadr_bytes == 4) {
1541                 addr = gma_low;
1542         } else {
1543                 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1544                 addr = (((unsigned long)gma_high) << 32) | gma_low;
1545         }
1546         return addr;
1547 }
1548
1549 static inline int cmd_address_audit(struct parser_exec_state *s,
1550                 unsigned long guest_gma, int op_size, bool index_mode)
1551 {
1552         struct intel_vgpu *vgpu = s->vgpu;
1553         u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1554         int i;
1555         int ret;
1556
1557         if (op_size > max_surface_size) {
1558                 gvt_vgpu_err("command address audit fail name %s\n",
1559                         s->info->name);
1560                 return -EFAULT;
1561         }
1562
1563         if (index_mode) {
1564                 if (guest_gma >= I915_GTT_PAGE_SIZE) {
1565                         ret = -EFAULT;
1566                         goto err;
1567                 }
1568         } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1569                 ret = -EFAULT;
1570                 goto err;
1571         }
1572
1573         return 0;
1574
1575 err:
1576         gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1577                         s->info->name, guest_gma, op_size);
1578
1579         pr_err("cmd dump: ");
1580         for (i = 0; i < cmd_length(s); i++) {
1581                 if (!(i % 4))
1582                         pr_err("\n%08x ", cmd_val(s, i));
1583                 else
1584                         pr_err("%08x ", cmd_val(s, i));
1585         }
1586         pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1587                         vgpu->id,
1588                         vgpu_aperture_gmadr_base(vgpu),
1589                         vgpu_aperture_gmadr_end(vgpu),
1590                         vgpu_hidden_gmadr_base(vgpu),
1591                         vgpu_hidden_gmadr_end(vgpu));
1592         return ret;
1593 }
1594
1595 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1596 {
1597         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1598         int op_size = (cmd_length(s) - 3) * sizeof(u32);
1599         int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1600         unsigned long gma, gma_low, gma_high;
1601         u32 valid_len = CMD_LEN(2);
1602         int ret = 0;
1603
1604         /* check ppggt */
1605         if (!(cmd_val(s, 0) & (1 << 22)))
1606                 return 0;
1607
1608         /* check if QWORD */
1609         if (DWORD_FIELD(0, 21, 21))
1610                 valid_len++;
1611         ret = gvt_check_valid_cmd_length(cmd_length(s),
1612                         valid_len);
1613         if (ret)
1614                 return ret;
1615
1616         gma = cmd_val(s, 2) & GENMASK(31, 2);
1617
1618         if (gmadr_bytes == 8) {
1619                 gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1620                 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1621                 gma = (gma_high << 32) | gma_low;
1622                 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1623         }
1624         ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1625         return ret;
1626 }
1627
1628 static inline int unexpected_cmd(struct parser_exec_state *s)
1629 {
1630         struct intel_vgpu *vgpu = s->vgpu;
1631
1632         gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1633
1634         return -EBADRQC;
1635 }
1636
1637 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1638 {
1639         return unexpected_cmd(s);
1640 }
1641
1642 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1643 {
1644         return unexpected_cmd(s);
1645 }
1646
1647 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1648 {
1649         return unexpected_cmd(s);
1650 }
1651
1652 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1653 {
1654         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1655         int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1656                         sizeof(u32);
1657         unsigned long gma, gma_high;
1658         u32 valid_len = CMD_LEN(1);
1659         int ret = 0;
1660
1661         if (!(cmd_val(s, 0) & (1 << 22)))
1662                 return ret;
1663
1664         /* check inline data */
1665         if (cmd_val(s, 0) & BIT(18))
1666                 valid_len = CMD_LEN(9);
1667         ret = gvt_check_valid_cmd_length(cmd_length(s),
1668                         valid_len);
1669         if (ret)
1670                 return ret;
1671
1672         gma = cmd_val(s, 1) & GENMASK(31, 2);
1673         if (gmadr_bytes == 8) {
1674                 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1675                 gma = (gma_high << 32) | gma;
1676         }
1677         ret = cmd_address_audit(s, gma, op_size, false);
1678         return ret;
1679 }
1680
1681 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1682 {
1683         return unexpected_cmd(s);
1684 }
1685
1686 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1687 {
1688         return unexpected_cmd(s);
1689 }
1690
1691 static int cmd_handler_mi_conditional_batch_buffer_end(
1692                 struct parser_exec_state *s)
1693 {
1694         return unexpected_cmd(s);
1695 }
1696
1697 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1698 {
1699         return unexpected_cmd(s);
1700 }
1701
1702 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1703 {
1704         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1705         unsigned long gma;
1706         bool index_mode = false;
1707         int ret = 0;
1708         u32 hws_pga, val;
1709         u32 valid_len = CMD_LEN(2);
1710
1711         ret = gvt_check_valid_cmd_length(cmd_length(s),
1712                         valid_len);
1713         if (ret) {
1714                 /* Check again for Qword */
1715                 ret = gvt_check_valid_cmd_length(cmd_length(s),
1716                         ++valid_len);
1717                 return ret;
1718         }
1719
1720         /* Check post-sync and ppgtt bit */
1721         if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1722                 gma = cmd_val(s, 1) & GENMASK(31, 3);
1723                 if (gmadr_bytes == 8)
1724                         gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1725                 /* Store Data Index */
1726                 if (cmd_val(s, 0) & (1 << 21))
1727                         index_mode = true;
1728                 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1729                 if (ret)
1730                         return ret;
1731                 if (index_mode) {
1732                         hws_pga = s->vgpu->hws_pga[s->engine->id];
1733                         gma = hws_pga + gma;
1734                         patch_value(s, cmd_ptr(s, 1), gma);
1735                         val = cmd_val(s, 0) & (~(1 << 21));
1736                         patch_value(s, cmd_ptr(s, 0), val);
1737                 }
1738         }
1739         /* Check notify bit */
1740         if ((cmd_val(s, 0) & (1 << 8)))
1741                 set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw,
1742                         s->workload->pending_events);
1743         return ret;
1744 }
1745
1746 static void addr_type_update_snb(struct parser_exec_state *s)
1747 {
1748         if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1749                         (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1750                 s->buf_addr_type = PPGTT_BUFFER;
1751         }
1752 }
1753
1754
1755 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1756                 unsigned long gma, unsigned long end_gma, void *va)
1757 {
1758         unsigned long copy_len, offset;
1759         unsigned long len = 0;
1760         unsigned long gpa;
1761
1762         while (gma != end_gma) {
1763                 gpa = intel_vgpu_gma_to_gpa(mm, gma);
1764                 if (gpa == INTEL_GVT_INVALID_ADDR) {
1765                         gvt_vgpu_err("invalid gma address: %lx\n", gma);
1766                         return -EFAULT;
1767                 }
1768
1769                 offset = gma & (I915_GTT_PAGE_SIZE - 1);
1770
1771                 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1772                         I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1773
1774                 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1775
1776                 len += copy_len;
1777                 gma += copy_len;
1778         }
1779         return len;
1780 }
1781
1782
1783 /*
1784  * Check whether a batch buffer needs to be scanned. Currently
1785  * the only criteria is based on privilege.
1786  */
1787 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1788 {
1789         /* Decide privilege based on address space */
1790         if (cmd_val(s, 0) & BIT(8) &&
1791             !(s->vgpu->scan_nonprivbb & s->engine->mask))
1792                 return 0;
1793
1794         return 1;
1795 }
1796
1797 static const char *repr_addr_type(unsigned int type)
1798 {
1799         return type == PPGTT_BUFFER ? "ppgtt" : "ggtt";
1800 }
1801
1802 static int find_bb_size(struct parser_exec_state *s,
1803                         unsigned long *bb_size,
1804                         unsigned long *bb_end_cmd_offset)
1805 {
1806         unsigned long gma = 0;
1807         const struct cmd_info *info;
1808         u32 cmd_len = 0;
1809         bool bb_end = false;
1810         struct intel_vgpu *vgpu = s->vgpu;
1811         u32 cmd;
1812         struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1813                 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1814
1815         *bb_size = 0;
1816         *bb_end_cmd_offset = 0;
1817
1818         /* get the start gm address of the batch buffer */
1819         gma = get_gma_bb_from_cmd(s, 1);
1820         if (gma == INTEL_GVT_INVALID_ADDR)
1821                 return -EFAULT;
1822
1823         cmd = cmd_val(s, 0);
1824         info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1825         if (info == NULL) {
1826                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1827                              cmd, get_opcode(cmd, s->engine),
1828                              repr_addr_type(s->buf_addr_type),
1829                              s->engine->name, s->workload);
1830                 return -EBADRQC;
1831         }
1832         do {
1833                 if (copy_gma_to_hva(s->vgpu, mm,
1834                                     gma, gma + 4, &cmd) < 0)
1835                         return -EFAULT;
1836                 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1837                 if (info == NULL) {
1838                         gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1839                                      cmd, get_opcode(cmd, s->engine),
1840                                      repr_addr_type(s->buf_addr_type),
1841                                      s->engine->name, s->workload);
1842                         return -EBADRQC;
1843                 }
1844
1845                 if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1846                         bb_end = true;
1847                 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1848                         if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1849                                 /* chained batch buffer */
1850                                 bb_end = true;
1851                 }
1852
1853                 if (bb_end)
1854                         *bb_end_cmd_offset = *bb_size;
1855
1856                 cmd_len = get_cmd_length(info, cmd) << 2;
1857                 *bb_size += cmd_len;
1858                 gma += cmd_len;
1859         } while (!bb_end);
1860
1861         return 0;
1862 }
1863
1864 static int audit_bb_end(struct parser_exec_state *s, void *va)
1865 {
1866         struct intel_vgpu *vgpu = s->vgpu;
1867         u32 cmd = *(u32 *)va;
1868         const struct cmd_info *info;
1869
1870         info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1871         if (info == NULL) {
1872                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1873                              cmd, get_opcode(cmd, s->engine),
1874                              repr_addr_type(s->buf_addr_type),
1875                              s->engine->name, s->workload);
1876                 return -EBADRQC;
1877         }
1878
1879         if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
1880             ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
1881              (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
1882                 return 0;
1883
1884         return -EBADRQC;
1885 }
1886
1887 static int perform_bb_shadow(struct parser_exec_state *s)
1888 {
1889         struct intel_vgpu *vgpu = s->vgpu;
1890         struct intel_vgpu_shadow_bb *bb;
1891         unsigned long gma = 0;
1892         unsigned long bb_size;
1893         unsigned long bb_end_cmd_offset;
1894         int ret = 0;
1895         struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1896                 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1897         unsigned long start_offset = 0;
1898
1899         /* get the start gm address of the batch buffer */
1900         gma = get_gma_bb_from_cmd(s, 1);
1901         if (gma == INTEL_GVT_INVALID_ADDR)
1902                 return -EFAULT;
1903
1904         ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
1905         if (ret)
1906                 return ret;
1907
1908         bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1909         if (!bb)
1910                 return -ENOMEM;
1911
1912         bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1913
1914         /* the start_offset stores the batch buffer's start gma's
1915          * offset relative to page boundary. so for non-privileged batch
1916          * buffer, the shadowed gem object holds exactly the same page
1917          * layout as original gem object. This is for the convience of
1918          * replacing the whole non-privilged batch buffer page to this
1919          * shadowed one in PPGTT at the same gma address. (this replacing
1920          * action is not implemented yet now, but may be necessary in
1921          * future).
1922          * for prileged batch buffer, we just change start gma address to
1923          * that of shadowed page.
1924          */
1925         if (bb->ppgtt)
1926                 start_offset = gma & ~I915_GTT_PAGE_MASK;
1927
1928         bb->obj = i915_gem_object_create_shmem(s->engine->i915,
1929                                                round_up(bb_size + start_offset,
1930                                                         PAGE_SIZE));
1931         if (IS_ERR(bb->obj)) {
1932                 ret = PTR_ERR(bb->obj);
1933                 goto err_free_bb;
1934         }
1935
1936         bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1937         if (IS_ERR(bb->va)) {
1938                 ret = PTR_ERR(bb->va);
1939                 goto err_free_obj;
1940         }
1941
1942         ret = copy_gma_to_hva(s->vgpu, mm,
1943                               gma, gma + bb_size,
1944                               bb->va + start_offset);
1945         if (ret < 0) {
1946                 gvt_vgpu_err("fail to copy guest ring buffer\n");
1947                 ret = -EFAULT;
1948                 goto err_unmap;
1949         }
1950
1951         ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
1952         if (ret)
1953                 goto err_unmap;
1954
1955         i915_gem_object_unlock(bb->obj);
1956         INIT_LIST_HEAD(&bb->list);
1957         list_add(&bb->list, &s->workload->shadow_bb);
1958
1959         bb->bb_start_cmd_va = s->ip_va;
1960
1961         if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1962                 bb->bb_offset = s->ip_va - s->rb_va;
1963         else
1964                 bb->bb_offset = 0;
1965
1966         /*
1967          * ip_va saves the virtual address of the shadow batch buffer, while
1968          * ip_gma saves the graphics address of the original batch buffer.
1969          * As the shadow batch buffer is just a copy from the originial one,
1970          * it should be right to use shadow batch buffer'va and original batch
1971          * buffer's gma in pair. After all, we don't want to pin the shadow
1972          * buffer here (too early).
1973          */
1974         s->ip_va = bb->va + start_offset;
1975         s->ip_gma = gma;
1976         return 0;
1977 err_unmap:
1978         i915_gem_object_unpin_map(bb->obj);
1979 err_free_obj:
1980         i915_gem_object_put(bb->obj);
1981 err_free_bb:
1982         kfree(bb);
1983         return ret;
1984 }
1985
1986 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1987 {
1988         bool second_level;
1989         int ret = 0;
1990         struct intel_vgpu *vgpu = s->vgpu;
1991
1992         if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1993                 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1994                 return -EFAULT;
1995         }
1996
1997         second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
1998         if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
1999                 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
2000                 return -EFAULT;
2001         }
2002
2003         s->saved_buf_addr_type = s->buf_addr_type;
2004         addr_type_update_snb(s);
2005         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2006                 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
2007                 s->buf_type = BATCH_BUFFER_INSTRUCTION;
2008         } else if (second_level) {
2009                 s->buf_type = BATCH_BUFFER_2ND_LEVEL;
2010                 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
2011                 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
2012         }
2013
2014         if (batch_buffer_needs_scan(s)) {
2015                 ret = perform_bb_shadow(s);
2016                 if (ret < 0)
2017                         gvt_vgpu_err("invalid shadow batch buffer\n");
2018         } else {
2019                 /* emulate a batch buffer end to do return right */
2020                 ret = cmd_handler_mi_batch_buffer_end(s);
2021                 if (ret < 0)
2022                         return ret;
2023         }
2024         return ret;
2025 }
2026
2027 static int mi_noop_index;
2028
2029 static const struct cmd_info cmd_info[] = {
2030         {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2031
2032         {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
2033                 0, 1, NULL},
2034
2035         {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
2036                 0, 1, cmd_handler_mi_user_interrupt},
2037
2038         {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
2039                 D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
2040
2041         {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2042
2043         {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2044                 NULL},
2045
2046         {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2047                 NULL},
2048
2049         {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2050                 NULL},
2051
2052         {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2053                 NULL},
2054
2055         {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
2056                 D_ALL, 0, 1, NULL},
2057
2058         {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
2059                 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2060                 cmd_handler_mi_batch_buffer_end},
2061
2062         {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
2063                 0, 1, NULL},
2064
2065         {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2066                 NULL},
2067
2068         {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
2069                 D_ALL, 0, 1, NULL},
2070
2071         {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2072                 NULL},
2073
2074         {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2075                 NULL},
2076
2077         {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
2078                 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
2079
2080         {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
2081                 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
2082
2083         {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
2084
2085         {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
2086                 D_ALL, 0, 8, NULL, CMD_LEN(0)},
2087
2088         {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
2089                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
2090                 NULL, CMD_LEN(0)},
2091
2092         {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
2093                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
2094                 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
2095
2096         {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
2097                 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
2098
2099         {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
2100                 0, 8, cmd_handler_mi_store_data_index},
2101
2102         {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
2103                 D_ALL, 0, 8, cmd_handler_lri},
2104
2105         {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
2106                 cmd_handler_mi_update_gtt},
2107
2108         {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
2109                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2110                 cmd_handler_srm, CMD_LEN(2)},
2111
2112         {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
2113                 cmd_handler_mi_flush_dw},
2114
2115         {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
2116                 10, cmd_handler_mi_clflush},
2117
2118         {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
2119                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
2120                 cmd_handler_mi_report_perf_count, CMD_LEN(2)},
2121
2122         {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
2123                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2124                 cmd_handler_lrm, CMD_LEN(2)},
2125
2126         {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
2127                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
2128                 cmd_handler_lrr, CMD_LEN(1)},
2129
2130         {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
2131                 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
2132                 8, NULL, CMD_LEN(2)},
2133
2134         {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
2135                 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
2136
2137         {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
2138                 ADDR_FIX_1(2), 8, NULL},
2139
2140         {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
2141                 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
2142
2143         {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
2144                 8, cmd_handler_mi_op_2f},
2145
2146         {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
2147                 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
2148                 cmd_handler_mi_batch_buffer_start},
2149
2150         {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
2151                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2152                 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
2153
2154         {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
2155                 R_RCS | R_BCS, D_ALL, 0, 2, NULL},
2156
2157         {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2158                 ADDR_FIX_2(4, 7), 8, NULL},
2159
2160         {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2161                 0, 8, NULL},
2162
2163         {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
2164                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2165
2166         {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2167
2168         {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
2169                 0, 8, NULL},
2170
2171         {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2172                 ADDR_FIX_1(3), 8, NULL},
2173
2174         {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2175                 D_ALL, 0, 8, NULL},
2176
2177         {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2178                 ADDR_FIX_1(4), 8, NULL},
2179
2180         {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2181                 ADDR_FIX_2(4, 5), 8, NULL},
2182
2183         {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2184                 ADDR_FIX_1(4), 8, NULL},
2185
2186         {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2187                 ADDR_FIX_2(4, 7), 8, NULL},
2188
2189         {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2190                 D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2191
2192         {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2193
2194         {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2195                 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2196
2197         {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2198                 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2199
2200         {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2201                 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2202                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2203
2204         {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2205                 D_ALL, ADDR_FIX_1(4), 8, NULL},
2206
2207         {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2208                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2209
2210         {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2211                 D_ALL, ADDR_FIX_1(4), 8, NULL},
2212
2213         {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2214                 D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2215
2216         {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2217                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2218
2219         {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2220                 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2221                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2222
2223         {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2224                 ADDR_FIX_2(4, 5), 8, NULL},
2225
2226         {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2227                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2228
2229         {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2230                 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2231                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2232
2233         {"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2234                 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2235                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2236
2237         {"3DSTATE_BLEND_STATE_POINTERS",
2238                 OP_3DSTATE_BLEND_STATE_POINTERS,
2239                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2240
2241         {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2242                 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2243                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2244
2245         {"3DSTATE_BINDING_TABLE_POINTERS_VS",
2246                 OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2247                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2248
2249         {"3DSTATE_BINDING_TABLE_POINTERS_HS",
2250                 OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2251                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2252
2253         {"3DSTATE_BINDING_TABLE_POINTERS_DS",
2254                 OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2255                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2256
2257         {"3DSTATE_BINDING_TABLE_POINTERS_GS",
2258                 OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2259                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2260
2261         {"3DSTATE_BINDING_TABLE_POINTERS_PS",
2262                 OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2263                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2264
2265         {"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2266                 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2267                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2268
2269         {"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2270                 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2271                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2272
2273         {"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2274                 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2275                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2276
2277         {"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2278                 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2279                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2280
2281         {"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2282                 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2283                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2284
2285         {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2286                 0, 8, NULL},
2287
2288         {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2289                 0, 8, NULL},
2290
2291         {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2292                 0, 8, NULL},
2293
2294         {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2295                 0, 8, NULL},
2296
2297         {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2298                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2299
2300         {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2301                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2302
2303         {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2304                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2305
2306         {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2307                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2308
2309         {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2310                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2311
2312         {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2313                 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2314
2315         {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2316                 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2317
2318         {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2319                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2320
2321         {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2322                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2323
2324         {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2325                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2326
2327         {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2328                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2329
2330         {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2331                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2332
2333         {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2334                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2335
2336         {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2337                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2338
2339         {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2340                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2341
2342         {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2343                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2344
2345         {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2346                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2347
2348         {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2349                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2350
2351         {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2352                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2353
2354         {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2355                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2356
2357         {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2358                 D_BDW_PLUS, 0, 8, NULL},
2359
2360         {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2361                 NULL},
2362
2363         {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2364                 D_BDW_PLUS, 0, 8, NULL},
2365
2366         {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2367                 D_BDW_PLUS, 0, 8, NULL},
2368
2369         {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2370                 8, NULL},
2371
2372         {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2373                 R_RCS, D_BDW_PLUS, 0, 8, NULL},
2374
2375         {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2376                 8, NULL},
2377
2378         {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2379                 NULL},
2380
2381         {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2382                 NULL},
2383
2384         {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2385                 NULL},
2386
2387         {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2388                 D_BDW_PLUS, 0, 8, NULL},
2389
2390         {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2391                 R_RCS, D_ALL, 0, 8, NULL},
2392
2393         {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2394                 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2395
2396         {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2397                 R_RCS, D_ALL, 0, 1, NULL},
2398
2399         {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2400
2401         {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2402                 R_RCS, D_ALL, 0, 8, NULL},
2403
2404         {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2405                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2406
2407         {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2408
2409         {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2410
2411         {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2412
2413         {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2414                 D_BDW_PLUS, 0, 8, NULL},
2415
2416         {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2417                 D_BDW_PLUS, 0, 8, NULL},
2418
2419         {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2420                 D_ALL, 0, 8, NULL},
2421
2422         {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2423                 D_BDW_PLUS, 0, 8, NULL},
2424
2425         {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2426                 D_BDW_PLUS, 0, 8, NULL},
2427
2428         {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2429
2430         {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2431
2432         {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2433
2434         {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2435                 D_ALL, 0, 8, NULL},
2436
2437         {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2438
2439         {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2440
2441         {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2442                 R_RCS, D_ALL, 0, 8, NULL},
2443
2444         {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2445                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2446
2447         {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2448                 0, 8, NULL},
2449
2450         {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2451                 D_ALL, ADDR_FIX_1(2), 8, NULL},
2452
2453         {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2454                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2455
2456         {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2457                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2458
2459         {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2460                 D_ALL, 0, 8, NULL},
2461
2462         {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2463                 D_ALL, 0, 8, NULL},
2464
2465         {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2466                 D_ALL, 0, 8, NULL},
2467
2468         {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2469                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2470
2471         {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2472                 D_BDW_PLUS, 0, 8, NULL},
2473
2474         {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2475                 D_ALL, ADDR_FIX_1(2), 8, NULL},
2476
2477         {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2478                 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2479
2480         {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2481                 R_RCS, D_ALL, 0, 8, NULL},
2482
2483         {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2484                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2485
2486         {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2487                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2488
2489         {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2490                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2491
2492         {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2493                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2494
2495         {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2496                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2497
2498         {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2499                 R_RCS, D_ALL, 0, 8, NULL},
2500
2501         {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2502                 D_ALL, 0, 9, NULL},
2503
2504         {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2505                 ADDR_FIX_2(2, 4), 8, NULL},
2506
2507         {"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2508                 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2509                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2510
2511         {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2512                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2513
2514         {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2515                 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2516                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2517
2518         {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2519                 D_BDW_PLUS, 0, 8, NULL},
2520
2521         {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2522                 ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2523
2524         {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2525
2526         {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2527                 1, NULL},
2528
2529         {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2530                 ADDR_FIX_1(1), 8, NULL},
2531
2532         {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2533
2534         {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2535                 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2536
2537         {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2538                 ADDR_FIX_1(1), 8, NULL},
2539
2540         {"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS,
2541                 F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL},
2542
2543         {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2544
2545         {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2546
2547         {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2548                 0, 8, NULL},
2549
2550         {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2551                 D_SKL_PLUS, 0, 8, NULL},
2552
2553         {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2554                 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2555
2556         {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2557                 0, 16, NULL},
2558
2559         {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2560                 0, 16, NULL},
2561
2562         {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2563                 0, 16, NULL},
2564
2565         {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2566
2567         {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2568                 0, 16, NULL},
2569
2570         {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2571                 0, 16, NULL},
2572
2573         {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2574                 0, 16, NULL},
2575
2576         {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2577                 0, 8, NULL},
2578
2579         {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2580                 NULL},
2581
2582         {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2583                 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2584
2585         {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2586                 R_VCS, D_ALL, 0, 12, NULL},
2587
2588         {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2589                 R_VCS, D_ALL, 0, 12, NULL},
2590
2591         {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2592                 R_VCS, D_BDW_PLUS, 0, 12, NULL},
2593
2594         {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2595                 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2596
2597         {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2598                 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2599
2600         {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2601
2602         {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2603                 R_VCS, D_ALL, 0, 12, NULL},
2604
2605         {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2606                 R_VCS, D_ALL, 0, 12, NULL},
2607
2608         {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2609                 R_VCS, D_ALL, 0, 12, NULL},
2610
2611         {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2612                 R_VCS, D_ALL, 0, 12, NULL},
2613
2614         {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2615                 R_VCS, D_ALL, 0, 12, NULL},
2616
2617         {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2618                 R_VCS, D_ALL, 0, 12, NULL},
2619
2620         {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2621                 R_VCS, D_ALL, 0, 6, NULL},
2622
2623         {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2624                 R_VCS, D_ALL, 0, 12, NULL},
2625
2626         {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2627                 R_VCS, D_ALL, 0, 12, NULL},
2628
2629         {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2630                 R_VCS, D_ALL, 0, 12, NULL},
2631
2632         {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2633                 R_VCS, D_ALL, 0, 12, NULL},
2634
2635         {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2636                 R_VCS, D_ALL, 0, 12, NULL},
2637
2638         {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2639                 R_VCS, D_ALL, 0, 12, NULL},
2640
2641         {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2642                 R_VCS, D_ALL, 0, 12, NULL},
2643         {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2644                 R_VCS, D_ALL, 0, 12, NULL},
2645
2646         {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2647                 R_VCS, D_ALL, 0, 12, NULL},
2648
2649         {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2650                 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2651
2652         {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2653                 R_VCS, D_ALL, 0, 12, NULL},
2654
2655         {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2656                 R_VCS, D_ALL, 0, 12, NULL},
2657
2658         {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2659                 R_VCS, D_ALL, 0, 12, NULL},
2660
2661         {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2662                 R_VCS, D_ALL, 0, 12, NULL},
2663
2664         {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2665                 R_VCS, D_ALL, 0, 12, NULL},
2666
2667         {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2668                 R_VCS, D_ALL, 0, 12, NULL},
2669
2670         {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2671                 R_VCS, D_ALL, 0, 12, NULL},
2672
2673         {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2674                 R_VCS, D_ALL, 0, 12, NULL},
2675
2676         {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2677                 R_VCS, D_ALL, 0, 12, NULL},
2678
2679         {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2680                 R_VCS, D_ALL, 0, 12, NULL},
2681
2682         {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2683                 R_VCS, D_ALL, 0, 12, NULL},
2684
2685         {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2686                 0, 16, NULL},
2687
2688         {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2689
2690         {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2691
2692         {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2693                 R_VCS, D_ALL, 0, 12, NULL},
2694
2695         {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2696                 R_VCS, D_ALL, 0, 12, NULL},
2697
2698         {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2699                 R_VCS, D_ALL, 0, 12, NULL},
2700
2701         {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2702
2703         {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2704                 0, 12, NULL},
2705
2706         {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2707                 0, 12, NULL},
2708 };
2709
2710 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2711 {
2712         hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2713 }
2714
2715 /* call the cmd handler, and advance ip */
2716 static int cmd_parser_exec(struct parser_exec_state *s)
2717 {
2718         struct intel_vgpu *vgpu = s->vgpu;
2719         const struct cmd_info *info;
2720         u32 cmd;
2721         int ret = 0;
2722
2723         cmd = cmd_val(s, 0);
2724
2725         /* fastpath for MI_NOOP */
2726         if (cmd == MI_NOOP)
2727                 info = &cmd_info[mi_noop_index];
2728         else
2729                 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
2730
2731         if (info == NULL) {
2732                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
2733                              cmd, get_opcode(cmd, s->engine),
2734                              repr_addr_type(s->buf_addr_type),
2735                              s->engine->name, s->workload);
2736                 return -EBADRQC;
2737         }
2738
2739         s->info = info;
2740
2741         trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va,
2742                           cmd_length(s), s->buf_type, s->buf_addr_type,
2743                           s->workload, info->name);
2744
2745         if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
2746                 ret = gvt_check_valid_cmd_length(cmd_length(s),
2747                                                  info->valid_len);
2748                 if (ret)
2749                         return ret;
2750         }
2751
2752         if (info->handler) {
2753                 ret = info->handler(s);
2754                 if (ret < 0) {
2755                         gvt_vgpu_err("%s handler error\n", info->name);
2756                         return ret;
2757                 }
2758         }
2759
2760         if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2761                 ret = cmd_advance_default(s);
2762                 if (ret) {
2763                         gvt_vgpu_err("%s IP advance error\n", info->name);
2764                         return ret;
2765                 }
2766         }
2767         return 0;
2768 }
2769
2770 static inline bool gma_out_of_range(unsigned long gma,
2771                 unsigned long gma_head, unsigned int gma_tail)
2772 {
2773         if (gma_tail >= gma_head)
2774                 return (gma < gma_head) || (gma > gma_tail);
2775         else
2776                 return (gma > gma_tail) && (gma < gma_head);
2777 }
2778
2779 /* Keep the consistent return type, e.g EBADRQC for unknown
2780  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2781  * works as the input of VM healthy status.
2782  */
2783 static int command_scan(struct parser_exec_state *s,
2784                 unsigned long rb_head, unsigned long rb_tail,
2785                 unsigned long rb_start, unsigned long rb_len)
2786 {
2787
2788         unsigned long gma_head, gma_tail, gma_bottom;
2789         int ret = 0;
2790         struct intel_vgpu *vgpu = s->vgpu;
2791
2792         gma_head = rb_start + rb_head;
2793         gma_tail = rb_start + rb_tail;
2794         gma_bottom = rb_start +  rb_len;
2795
2796         while (s->ip_gma != gma_tail) {
2797                 if (s->buf_type == RING_BUFFER_INSTRUCTION ||
2798                                 s->buf_type == RING_BUFFER_CTX) {
2799                         if (!(s->ip_gma >= rb_start) ||
2800                                 !(s->ip_gma < gma_bottom)) {
2801                                 gvt_vgpu_err("ip_gma %lx out of ring scope."
2802                                         "(base:0x%lx, bottom: 0x%lx)\n",
2803                                         s->ip_gma, rb_start,
2804                                         gma_bottom);
2805                                 parser_exec_state_dump(s);
2806                                 return -EFAULT;
2807                         }
2808                         if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2809                                 gvt_vgpu_err("ip_gma %lx out of range."
2810                                         "base 0x%lx head 0x%lx tail 0x%lx\n",
2811                                         s->ip_gma, rb_start,
2812                                         rb_head, rb_tail);
2813                                 parser_exec_state_dump(s);
2814                                 break;
2815                         }
2816                 }
2817                 ret = cmd_parser_exec(s);
2818                 if (ret) {
2819                         gvt_vgpu_err("cmd parser error\n");
2820                         parser_exec_state_dump(s);
2821                         break;
2822                 }
2823         }
2824
2825         return ret;
2826 }
2827
2828 static int scan_workload(struct intel_vgpu_workload *workload)
2829 {
2830         unsigned long gma_head, gma_tail, gma_bottom;
2831         struct parser_exec_state s;
2832         int ret = 0;
2833
2834         /* ring base is page aligned */
2835         if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2836                 return -EINVAL;
2837
2838         gma_head = workload->rb_start + workload->rb_head;
2839         gma_tail = workload->rb_start + workload->rb_tail;
2840         gma_bottom = workload->rb_start +  _RING_CTL_BUF_SIZE(workload->rb_ctl);
2841
2842         s.buf_type = RING_BUFFER_INSTRUCTION;
2843         s.buf_addr_type = GTT_BUFFER;
2844         s.vgpu = workload->vgpu;
2845         s.engine = workload->engine;
2846         s.ring_start = workload->rb_start;
2847         s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2848         s.ring_head = gma_head;
2849         s.ring_tail = gma_tail;
2850         s.rb_va = workload->shadow_ring_buffer_va;
2851         s.workload = workload;
2852         s.is_ctx_wa = false;
2853
2854         if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail)
2855                 return 0;
2856
2857         ret = ip_gma_set(&s, gma_head);
2858         if (ret)
2859                 goto out;
2860
2861         ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2862                 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2863
2864 out:
2865         return ret;
2866 }
2867
2868 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2869 {
2870
2871         unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2872         struct parser_exec_state s;
2873         int ret = 0;
2874         struct intel_vgpu_workload *workload = container_of(wa_ctx,
2875                                 struct intel_vgpu_workload,
2876                                 wa_ctx);
2877
2878         /* ring base is page aligned */
2879         if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2880                                         I915_GTT_PAGE_SIZE)))
2881                 return -EINVAL;
2882
2883         ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2884         ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2885                         PAGE_SIZE);
2886         gma_head = wa_ctx->indirect_ctx.guest_gma;
2887         gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2888         gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2889
2890         s.buf_type = RING_BUFFER_INSTRUCTION;
2891         s.buf_addr_type = GTT_BUFFER;
2892         s.vgpu = workload->vgpu;
2893         s.engine = workload->engine;
2894         s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2895         s.ring_size = ring_size;
2896         s.ring_head = gma_head;
2897         s.ring_tail = gma_tail;
2898         s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2899         s.workload = workload;
2900         s.is_ctx_wa = true;
2901
2902         ret = ip_gma_set(&s, gma_head);
2903         if (ret)
2904                 goto out;
2905
2906         ret = command_scan(&s, 0, ring_tail,
2907                 wa_ctx->indirect_ctx.guest_gma, ring_size);
2908 out:
2909         return ret;
2910 }
2911
2912 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2913 {
2914         struct intel_vgpu *vgpu = workload->vgpu;
2915         struct intel_vgpu_submission *s = &vgpu->submission;
2916         unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2917         void *shadow_ring_buffer_va;
2918         int ret;
2919
2920         guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2921
2922         /* calculate workload ring buffer size */
2923         workload->rb_len = (workload->rb_tail + guest_rb_size -
2924                         workload->rb_head) % guest_rb_size;
2925
2926         gma_head = workload->rb_start + workload->rb_head;
2927         gma_tail = workload->rb_start + workload->rb_tail;
2928         gma_top = workload->rb_start + guest_rb_size;
2929
2930         if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) {
2931                 void *p;
2932
2933                 /* realloc the new ring buffer if needed */
2934                 p = krealloc(s->ring_scan_buffer[workload->engine->id],
2935                              workload->rb_len, GFP_KERNEL);
2936                 if (!p) {
2937                         gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2938                         return -ENOMEM;
2939                 }
2940                 s->ring_scan_buffer[workload->engine->id] = p;
2941                 s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len;
2942         }
2943
2944         shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id];
2945
2946         /* get shadow ring buffer va */
2947         workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2948
2949         /* head > tail --> copy head <-> top */
2950         if (gma_head > gma_tail) {
2951                 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2952                                       gma_head, gma_top, shadow_ring_buffer_va);
2953                 if (ret < 0) {
2954                         gvt_vgpu_err("fail to copy guest ring buffer\n");
2955                         return ret;
2956                 }
2957                 shadow_ring_buffer_va += ret;
2958                 gma_head = workload->rb_start;
2959         }
2960
2961         /* copy head or start <-> tail */
2962         ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2963                                 shadow_ring_buffer_va);
2964         if (ret < 0) {
2965                 gvt_vgpu_err("fail to copy guest ring buffer\n");
2966                 return ret;
2967         }
2968         return 0;
2969 }
2970
2971 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2972 {
2973         int ret;
2974         struct intel_vgpu *vgpu = workload->vgpu;
2975
2976         ret = shadow_workload_ring_buffer(workload);
2977         if (ret) {
2978                 gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2979                 return ret;
2980         }
2981
2982         ret = scan_workload(workload);
2983         if (ret) {
2984                 gvt_vgpu_err("scan workload error\n");
2985                 return ret;
2986         }
2987         return 0;
2988 }
2989
2990 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2991 {
2992         int ctx_size = wa_ctx->indirect_ctx.size;
2993         unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2994         struct intel_vgpu_workload *workload = container_of(wa_ctx,
2995                                         struct intel_vgpu_workload,
2996                                         wa_ctx);
2997         struct intel_vgpu *vgpu = workload->vgpu;
2998         struct drm_i915_gem_object *obj;
2999         int ret = 0;
3000         void *map;
3001
3002         obj = i915_gem_object_create_shmem(workload->engine->i915,
3003                                            roundup(ctx_size + CACHELINE_BYTES,
3004                                                    PAGE_SIZE));
3005         if (IS_ERR(obj))
3006                 return PTR_ERR(obj);
3007
3008         /* get the va of the shadow batch buffer */
3009         map = i915_gem_object_pin_map(obj, I915_MAP_WB);
3010         if (IS_ERR(map)) {
3011                 gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
3012                 ret = PTR_ERR(map);
3013                 goto put_obj;
3014         }
3015
3016         i915_gem_object_lock(obj, NULL);
3017         ret = i915_gem_object_set_to_cpu_domain(obj, false);
3018         i915_gem_object_unlock(obj);
3019         if (ret) {
3020                 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
3021                 goto unmap_src;
3022         }
3023
3024         ret = copy_gma_to_hva(workload->vgpu,
3025                                 workload->vgpu->gtt.ggtt_mm,
3026                                 guest_gma, guest_gma + ctx_size,
3027                                 map);
3028         if (ret < 0) {
3029                 gvt_vgpu_err("fail to copy guest indirect ctx\n");
3030                 goto unmap_src;
3031         }
3032
3033         wa_ctx->indirect_ctx.obj = obj;
3034         wa_ctx->indirect_ctx.shadow_va = map;
3035         return 0;
3036
3037 unmap_src:
3038         i915_gem_object_unpin_map(obj);
3039 put_obj:
3040         i915_gem_object_put(obj);
3041         return ret;
3042 }
3043
3044 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3045 {
3046         u32 per_ctx_start[CACHELINE_DWORDS] = {0};
3047         unsigned char *bb_start_sva;
3048
3049         if (!wa_ctx->per_ctx.valid)
3050                 return 0;
3051
3052         per_ctx_start[0] = 0x18800001;
3053         per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
3054
3055         bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
3056                                 wa_ctx->indirect_ctx.size;
3057
3058         memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
3059
3060         return 0;
3061 }
3062
3063 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3064 {
3065         int ret;
3066         struct intel_vgpu_workload *workload = container_of(wa_ctx,
3067                                         struct intel_vgpu_workload,
3068                                         wa_ctx);
3069         struct intel_vgpu *vgpu = workload->vgpu;
3070
3071         if (wa_ctx->indirect_ctx.size == 0)
3072                 return 0;
3073
3074         ret = shadow_indirect_ctx(wa_ctx);
3075         if (ret) {
3076                 gvt_vgpu_err("fail to shadow indirect ctx\n");
3077                 return ret;
3078         }
3079
3080         combine_wa_ctx(wa_ctx);
3081
3082         ret = scan_wa_ctx(wa_ctx);
3083         if (ret) {
3084                 gvt_vgpu_err("scan wa ctx error\n");
3085                 return ret;
3086         }
3087
3088         return 0;
3089 }
3090
3091 /* generate dummy contexts by sending empty requests to HW, and let
3092  * the HW to fill Engine Contexts. This dummy contexts are used for
3093  * initialization purpose (update reg whitelist), so referred to as
3094  * init context here
3095  */
3096 void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu)
3097 {
3098         const unsigned long start = LRC_STATE_PN * PAGE_SIZE;
3099         struct intel_gvt *gvt = vgpu->gvt;
3100         struct intel_engine_cs *engine;
3101         enum intel_engine_id id;
3102
3103         if (gvt->is_reg_whitelist_updated)
3104                 return;
3105
3106         /* scan init ctx to update cmd accessible list */
3107         for_each_engine(engine, gvt->gt, id) {
3108                 struct parser_exec_state s;
3109                 void *vaddr;
3110                 int ret;
3111
3112                 if (!engine->default_state)
3113                         continue;
3114
3115                 vaddr = shmem_pin_map(engine->default_state);
3116                 if (IS_ERR(vaddr)) {
3117                         gvt_err("failed to map %s->default state, err:%zd\n",
3118                                 engine->name, PTR_ERR(vaddr));
3119                         return;
3120                 }
3121
3122                 s.buf_type = RING_BUFFER_CTX;
3123                 s.buf_addr_type = GTT_BUFFER;
3124                 s.vgpu = vgpu;
3125                 s.engine = engine;
3126                 s.ring_start = 0;
3127                 s.ring_size = engine->context_size - start;
3128                 s.ring_head = 0;
3129                 s.ring_tail = s.ring_size;
3130                 s.rb_va = vaddr + start;
3131                 s.workload = NULL;
3132                 s.is_ctx_wa = false;
3133                 s.is_init_ctx = true;
3134
3135                 /* skipping the first RING_CTX_SIZE(0x50) dwords */
3136                 ret = ip_gma_set(&s, RING_CTX_SIZE);
3137                 if (ret == 0) {
3138                         ret = command_scan(&s, 0, s.ring_size, 0, s.ring_size);
3139                         if (ret)
3140                                 gvt_err("Scan init ctx error\n");
3141                 }
3142
3143                 shmem_unpin_map(engine->default_state, vaddr);
3144                 if (ret)
3145                         return;
3146         }
3147
3148         gvt->is_reg_whitelist_updated = true;
3149 }
3150
3151 int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload)
3152 {
3153         struct intel_vgpu *vgpu = workload->vgpu;
3154         unsigned long gma_head, gma_tail, gma_start, ctx_size;
3155         struct parser_exec_state s;
3156         int ring_id = workload->engine->id;
3157         struct intel_context *ce = vgpu->submission.shadow[ring_id];
3158         int ret;
3159
3160         GEM_BUG_ON(atomic_read(&ce->pin_count) < 0);
3161
3162         ctx_size = workload->engine->context_size - PAGE_SIZE;
3163
3164         /* Only ring contxt is loaded to HW for inhibit context, no need to
3165          * scan engine context
3166          */
3167         if (is_inhibit_context(ce))
3168                 return 0;
3169
3170         gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE;
3171         gma_head = 0;
3172         gma_tail = ctx_size;
3173
3174         s.buf_type = RING_BUFFER_CTX;
3175         s.buf_addr_type = GTT_BUFFER;
3176         s.vgpu = workload->vgpu;
3177         s.engine = workload->engine;
3178         s.ring_start = gma_start;
3179         s.ring_size = ctx_size;
3180         s.ring_head = gma_start + gma_head;
3181         s.ring_tail = gma_start + gma_tail;
3182         s.rb_va = ce->lrc_reg_state;
3183         s.workload = workload;
3184         s.is_ctx_wa = false;
3185         s.is_init_ctx = false;
3186
3187         /* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring
3188          * context
3189          */
3190         ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE);
3191         if (ret)
3192                 goto out;
3193
3194         ret = command_scan(&s, gma_head, gma_tail,
3195                 gma_start, ctx_size);
3196 out:
3197         if (ret)
3198                 gvt_vgpu_err("scan shadow ctx error\n");
3199
3200         return ret;
3201 }
3202
3203 static int init_cmd_table(struct intel_gvt *gvt)
3204 {
3205         unsigned int gen_type = intel_gvt_get_device_type(gvt);
3206         int i;
3207
3208         for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
3209                 struct cmd_entry *e;
3210
3211                 if (!(cmd_info[i].devices & gen_type))
3212                         continue;
3213
3214                 e = kzalloc(sizeof(*e), GFP_KERNEL);
3215                 if (!e)
3216                         return -ENOMEM;
3217
3218                 e->info = &cmd_info[i];
3219                 if (cmd_info[i].opcode == OP_MI_NOOP)
3220                         mi_noop_index = i;
3221
3222                 INIT_HLIST_NODE(&e->hlist);
3223                 add_cmd_entry(gvt, e);
3224                 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3225                             e->info->name, e->info->opcode, e->info->flag,
3226                             e->info->devices, e->info->rings);
3227         }
3228
3229         return 0;
3230 }
3231
3232 static void clean_cmd_table(struct intel_gvt *gvt)
3233 {
3234         struct hlist_node *tmp;
3235         struct cmd_entry *e;
3236         int i;
3237
3238         hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
3239                 kfree(e);
3240
3241         hash_init(gvt->cmd_table);
3242 }
3243
3244 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
3245 {
3246         clean_cmd_table(gvt);
3247 }
3248
3249 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
3250 {
3251         int ret;
3252
3253         ret = init_cmd_table(gvt);
3254         if (ret) {
3255                 intel_gvt_clean_cmd_parser(gvt);
3256                 return ret;
3257         }
3258         return 0;
3259 }
This page took 0.226275 seconds and 4 git commands to generate.