2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * Alan Cox : Tidied tcp_data to avoid a potential
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
213 * Description of States:
215 * TCP_SYN_SENT sent a connection request, waiting for ack
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
220 * TCP_ESTABLISHED connection established
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
245 * TCP_CLOSE socket is finished
248 #define pr_fmt(fmt) "TCP: " fmt
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
276 #include <net/xfrm.h>
278 #include <net/sock.h>
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <asm/unaligned.h>
283 #include <net/busy_poll.h>
285 int sysctl_tcp_min_tso_segs __read_mostly = 2;
287 int sysctl_tcp_autocorking __read_mostly = 1;
289 struct percpu_counter tcp_orphan_count;
290 EXPORT_SYMBOL_GPL(tcp_orphan_count);
292 long sysctl_tcp_mem[3] __read_mostly;
293 int sysctl_tcp_wmem[3] __read_mostly;
294 int sysctl_tcp_rmem[3] __read_mostly;
296 EXPORT_SYMBOL(sysctl_tcp_mem);
297 EXPORT_SYMBOL(sysctl_tcp_rmem);
298 EXPORT_SYMBOL(sysctl_tcp_wmem);
300 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
301 EXPORT_SYMBOL(tcp_memory_allocated);
304 * Current number of TCP sockets.
306 struct percpu_counter tcp_sockets_allocated;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
312 struct tcp_splice_state {
313 struct pipe_inode_info *pipe;
319 * Pressure flag: try to collapse.
320 * Technical note: it is used by multiple contexts non atomically.
321 * All the __sk_mem_schedule() is of this nature: accounting
322 * is strict, actions are advisory and have some latency.
324 int tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL(tcp_memory_pressure);
327 void tcp_enter_memory_pressure(struct sock *sk)
329 if (!tcp_memory_pressure) {
330 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
331 tcp_memory_pressure = 1;
334 EXPORT_SYMBOL(tcp_enter_memory_pressure);
336 /* Convert seconds to retransmits based on initial and max timeout */
337 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
342 int period = timeout;
345 while (seconds > period && res < 255) {
348 if (timeout > rto_max)
356 /* Convert retransmits to seconds based on initial and max timeout */
357 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
365 if (timeout > rto_max)
373 /* Address-family independent initialization for a tcp_sock.
375 * NOTE: A lot of things set to zero explicitly by call to
376 * sk_alloc() so need not be done here.
378 void tcp_init_sock(struct sock *sk)
380 struct inet_connection_sock *icsk = inet_csk(sk);
381 struct tcp_sock *tp = tcp_sk(sk);
383 tp->out_of_order_queue = RB_ROOT;
384 tcp_init_xmit_timers(sk);
385 tcp_prequeue_init(tp);
386 INIT_LIST_HEAD(&tp->tsq_node);
388 icsk->icsk_rto = TCP_TIMEOUT_INIT;
389 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
390 tp->rtt_min[0].rtt = ~0U;
392 /* So many TCP implementations out there (incorrectly) count the
393 * initial SYN frame in their delayed-ACK and congestion control
394 * algorithms that we must have the following bandaid to talk
395 * efficiently to them. -DaveM
397 tp->snd_cwnd = TCP_INIT_CWND;
399 /* See draft-stevens-tcpca-spec-01 for discussion of the
400 * initialization of these values.
402 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
403 tp->snd_cwnd_clamp = ~0;
404 tp->mss_cache = TCP_MSS_DEFAULT;
405 u64_stats_init(&tp->syncp);
407 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
408 tcp_enable_early_retrans(tp);
409 tcp_assign_congestion_control(sk);
413 sk->sk_state = TCP_CLOSE;
415 sk->sk_write_space = sk_stream_write_space;
416 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
418 icsk->icsk_sync_mss = tcp_sync_mss;
420 sk->sk_sndbuf = sysctl_tcp_wmem[1];
421 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
424 if (mem_cgroup_sockets_enabled)
425 sock_update_memcg(sk);
426 sk_sockets_allocated_inc(sk);
429 EXPORT_SYMBOL(tcp_init_sock);
431 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb)
434 struct skb_shared_info *shinfo = skb_shinfo(skb);
435 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
437 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
438 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
439 tcb->txstamp_ack = 1;
440 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
441 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
446 * Wait for a TCP event.
448 * Note that we don't need to lock the socket, as the upper poll layers
449 * take care of normal races (between the test and the event) and we don't
450 * go look at any of the socket buffers directly.
452 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
455 struct sock *sk = sock->sk;
456 const struct tcp_sock *tp = tcp_sk(sk);
459 sock_rps_record_flow(sk);
461 sock_poll_wait(file, sk_sleep(sk), wait);
463 state = sk_state_load(sk);
464 if (state == TCP_LISTEN)
465 return inet_csk_listen_poll(sk);
467 /* Socket is not locked. We are protected from async events
468 * by poll logic and correct handling of state changes
469 * made by other threads is impossible in any case.
475 * POLLHUP is certainly not done right. But poll() doesn't
476 * have a notion of HUP in just one direction, and for a
477 * socket the read side is more interesting.
479 * Some poll() documentation says that POLLHUP is incompatible
480 * with the POLLOUT/POLLWR flags, so somebody should check this
481 * all. But careful, it tends to be safer to return too many
482 * bits than too few, and you can easily break real applications
483 * if you don't tell them that something has hung up!
487 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
488 * our fs/select.c). It means that after we received EOF,
489 * poll always returns immediately, making impossible poll() on write()
490 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
491 * if and only if shutdown has been made in both directions.
492 * Actually, it is interesting to look how Solaris and DUX
493 * solve this dilemma. I would prefer, if POLLHUP were maskable,
494 * then we could set it on SND_SHUTDOWN. BTW examples given
495 * in Stevens' books assume exactly this behaviour, it explains
496 * why POLLHUP is incompatible with POLLOUT. --ANK
498 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
499 * blocking on fresh not-connected or disconnected socket. --ANK
501 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
503 if (sk->sk_shutdown & RCV_SHUTDOWN)
504 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
506 /* Connected or passive Fast Open socket? */
507 if (state != TCP_SYN_SENT &&
508 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
509 int target = sock_rcvlowat(sk, 0, INT_MAX);
511 if (tp->urg_seq == tp->copied_seq &&
512 !sock_flag(sk, SOCK_URGINLINE) &&
516 if (tp->rcv_nxt - tp->copied_seq >= target)
517 mask |= POLLIN | POLLRDNORM;
519 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
520 if (sk_stream_is_writeable(sk)) {
521 mask |= POLLOUT | POLLWRNORM;
522 } else { /* send SIGIO later */
523 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
524 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
526 /* Race breaker. If space is freed after
527 * wspace test but before the flags are set,
528 * IO signal will be lost. Memory barrier
529 * pairs with the input side.
531 smp_mb__after_atomic();
532 if (sk_stream_is_writeable(sk))
533 mask |= POLLOUT | POLLWRNORM;
536 mask |= POLLOUT | POLLWRNORM;
538 if (tp->urg_data & TCP_URG_VALID)
541 /* This barrier is coupled with smp_wmb() in tcp_reset() */
543 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
548 EXPORT_SYMBOL(tcp_poll);
550 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
552 struct tcp_sock *tp = tcp_sk(sk);
558 if (sk->sk_state == TCP_LISTEN)
561 slow = lock_sock_fast(sk);
563 unlock_sock_fast(sk, slow);
566 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
569 if (sk->sk_state == TCP_LISTEN)
572 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
575 answ = tp->write_seq - tp->snd_una;
578 if (sk->sk_state == TCP_LISTEN)
581 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
584 answ = tp->write_seq - tp->snd_nxt;
590 return put_user(answ, (int __user *)arg);
592 EXPORT_SYMBOL(tcp_ioctl);
594 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
596 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
597 tp->pushed_seq = tp->write_seq;
600 static inline bool forced_push(const struct tcp_sock *tp)
602 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
605 static void skb_entail(struct sock *sk, struct sk_buff *skb)
607 struct tcp_sock *tp = tcp_sk(sk);
608 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
611 tcb->seq = tcb->end_seq = tp->write_seq;
612 tcb->tcp_flags = TCPHDR_ACK;
614 __skb_header_release(skb);
615 tcp_add_write_queue_tail(sk, skb);
616 sk->sk_wmem_queued += skb->truesize;
617 sk_mem_charge(sk, skb->truesize);
618 if (tp->nonagle & TCP_NAGLE_PUSH)
619 tp->nonagle &= ~TCP_NAGLE_PUSH;
621 tcp_slow_start_after_idle_check(sk);
624 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
627 tp->snd_up = tp->write_seq;
630 /* If a not yet filled skb is pushed, do not send it if
631 * we have data packets in Qdisc or NIC queues :
632 * Because TX completion will happen shortly, it gives a chance
633 * to coalesce future sendmsg() payload into this skb, without
634 * need for a timer, and with no latency trade off.
635 * As packets containing data payload have a bigger truesize
636 * than pure acks (dataless) packets, the last checks prevent
637 * autocorking if we only have an ACK in Qdisc/NIC queues,
638 * or if TX completion was delayed after we processed ACK packet.
640 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
643 return skb->len < size_goal &&
644 sysctl_tcp_autocorking &&
645 skb != tcp_write_queue_head(sk) &&
646 atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
649 static void tcp_push(struct sock *sk, int flags, int mss_now,
650 int nonagle, int size_goal)
652 struct tcp_sock *tp = tcp_sk(sk);
655 if (!tcp_send_head(sk))
658 skb = tcp_write_queue_tail(sk);
659 if (!(flags & MSG_MORE) || forced_push(tp))
660 tcp_mark_push(tp, skb);
662 tcp_mark_urg(tp, flags);
664 if (tcp_should_autocork(sk, skb, size_goal)) {
666 /* avoid atomic op if TSQ_THROTTLED bit is already set */
667 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
668 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
669 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
671 /* It is possible TX completion already happened
672 * before we set TSQ_THROTTLED.
674 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
678 if (flags & MSG_MORE)
679 nonagle = TCP_NAGLE_CORK;
681 __tcp_push_pending_frames(sk, mss_now, nonagle);
684 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
685 unsigned int offset, size_t len)
687 struct tcp_splice_state *tss = rd_desc->arg.data;
690 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
691 min(rd_desc->count, len), tss->flags,
694 rd_desc->count -= ret;
698 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
700 /* Store TCP splice context information in read_descriptor_t. */
701 read_descriptor_t rd_desc = {
706 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
710 * tcp_splice_read - splice data from TCP socket to a pipe
711 * @sock: socket to splice from
712 * @ppos: position (not valid)
713 * @pipe: pipe to splice to
714 * @len: number of bytes to splice
715 * @flags: splice modifier flags
718 * Will read pages from given socket and fill them into a pipe.
721 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
722 struct pipe_inode_info *pipe, size_t len,
725 struct sock *sk = sock->sk;
726 struct tcp_splice_state tss = {
735 sock_rps_record_flow(sk);
737 * We can't seek on a socket input
746 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
748 ret = __tcp_splice_read(sk, &tss);
754 if (sock_flag(sk, SOCK_DONE))
757 ret = sock_error(sk);
760 if (sk->sk_shutdown & RCV_SHUTDOWN)
762 if (sk->sk_state == TCP_CLOSE) {
764 * This occurs when user tries to read
765 * from never connected socket.
767 if (!sock_flag(sk, SOCK_DONE))
775 sk_wait_data(sk, &timeo, NULL);
776 if (signal_pending(current)) {
777 ret = sock_intr_errno(timeo);
790 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
791 (sk->sk_shutdown & RCV_SHUTDOWN) ||
792 signal_pending(current))
803 EXPORT_SYMBOL(tcp_splice_read);
805 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
810 /* The TCP header must be at least 32-bit aligned. */
811 size = ALIGN(size, 4);
813 if (unlikely(tcp_under_memory_pressure(sk)))
814 sk_mem_reclaim_partial(sk);
816 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
820 if (force_schedule) {
821 mem_scheduled = true;
822 sk_forced_mem_schedule(sk, skb->truesize);
824 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
826 if (likely(mem_scheduled)) {
827 skb_reserve(skb, sk->sk_prot->max_header);
829 * Make sure that we have exactly size bytes
830 * available to the caller, no more, no less.
832 skb->reserved_tailroom = skb->end - skb->tail - size;
837 sk->sk_prot->enter_memory_pressure(sk);
838 sk_stream_moderate_sndbuf(sk);
843 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
846 struct tcp_sock *tp = tcp_sk(sk);
847 u32 new_size_goal, size_goal;
849 if (!large_allowed || !sk_can_gso(sk))
852 /* Note : tcp_tso_autosize() will eventually split this later */
853 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
854 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
856 /* We try hard to avoid divides here */
857 size_goal = tp->gso_segs * mss_now;
858 if (unlikely(new_size_goal < size_goal ||
859 new_size_goal >= size_goal + mss_now)) {
860 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
861 sk->sk_gso_max_segs);
862 size_goal = tp->gso_segs * mss_now;
865 return max(size_goal, mss_now);
868 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
872 mss_now = tcp_current_mss(sk);
873 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
878 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
879 size_t size, int flags)
881 struct tcp_sock *tp = tcp_sk(sk);
882 int mss_now, size_goal;
885 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
887 /* Wait for a connection to finish. One exception is TCP Fast Open
888 * (passive side) where data is allowed to be sent before a connection
889 * is fully established.
891 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
892 !tcp_passive_fastopen(sk)) {
893 err = sk_stream_wait_connect(sk, &timeo);
898 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
900 mss_now = tcp_send_mss(sk, &size_goal, flags);
904 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
908 struct sk_buff *skb = tcp_write_queue_tail(sk);
912 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 ||
913 !tcp_skb_can_collapse_to(skb)) {
915 if (!sk_stream_memory_free(sk))
916 goto wait_for_sndbuf;
918 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
919 skb_queue_empty(&sk->sk_write_queue));
921 goto wait_for_memory;
930 i = skb_shinfo(skb)->nr_frags;
931 can_coalesce = skb_can_coalesce(skb, i, page, offset);
932 if (!can_coalesce && i >= sysctl_max_skb_frags) {
933 tcp_mark_push(tp, skb);
936 if (!sk_wmem_schedule(sk, copy))
937 goto wait_for_memory;
940 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
943 skb_fill_page_desc(skb, i, page, offset, copy);
945 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
948 skb->data_len += copy;
949 skb->truesize += copy;
950 sk->sk_wmem_queued += copy;
951 sk_mem_charge(sk, copy);
952 skb->ip_summed = CHECKSUM_PARTIAL;
953 tp->write_seq += copy;
954 TCP_SKB_CB(skb)->end_seq += copy;
955 tcp_skb_pcount_set(skb, 0);
958 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
964 tcp_tx_timestamp(sk, sk->sk_tsflags, skb);
968 if (skb->len < size_goal || (flags & MSG_OOB))
971 if (forced_push(tp)) {
972 tcp_mark_push(tp, skb);
973 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
974 } else if (skb == tcp_send_head(sk))
975 tcp_push_one(sk, mss_now);
979 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
981 tcp_push(sk, flags & ~MSG_MORE, mss_now,
982 TCP_NAGLE_PUSH, size_goal);
984 err = sk_stream_wait_memory(sk, &timeo);
988 mss_now = tcp_send_mss(sk, &size_goal, flags);
992 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
993 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1000 /* make sure we wake any epoll edge trigger waiter */
1001 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1002 sk->sk_write_space(sk);
1003 return sk_stream_error(sk, flags, err);
1006 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1007 size_t size, int flags)
1011 if (!(sk->sk_route_caps & NETIF_F_SG) ||
1012 !sk_check_csum_caps(sk))
1013 return sock_no_sendpage(sk->sk_socket, page, offset, size,
1017 res = do_tcp_sendpages(sk, page, offset, size, flags);
1021 EXPORT_SYMBOL(tcp_sendpage);
1023 /* Do not bother using a page frag for very small frames.
1024 * But use this heuristic only for the first skb in write queue.
1026 * Having no payload in skb->head allows better SACK shifting
1027 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1028 * write queue has less skbs.
1029 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1030 * This also speeds up tso_fragment(), since it wont fallback
1031 * to tcp_fragment().
1033 static int linear_payload_sz(bool first_skb)
1036 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1040 static int select_size(const struct sock *sk, bool sg, bool first_skb)
1042 const struct tcp_sock *tp = tcp_sk(sk);
1043 int tmp = tp->mss_cache;
1046 if (sk_can_gso(sk)) {
1047 tmp = linear_payload_sz(first_skb);
1049 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1051 if (tmp >= pgbreak &&
1052 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1060 void tcp_free_fastopen_req(struct tcp_sock *tp)
1062 if (tp->fastopen_req) {
1063 kfree(tp->fastopen_req);
1064 tp->fastopen_req = NULL;
1068 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1069 int *copied, size_t size)
1071 struct tcp_sock *tp = tcp_sk(sk);
1074 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1076 if (tp->fastopen_req)
1077 return -EALREADY; /* Another Fast Open is in progress */
1079 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1081 if (unlikely(!tp->fastopen_req))
1083 tp->fastopen_req->data = msg;
1084 tp->fastopen_req->size = size;
1086 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1087 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1088 msg->msg_namelen, flags);
1089 *copied = tp->fastopen_req->copied;
1090 tcp_free_fastopen_req(tp);
1094 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1096 struct tcp_sock *tp = tcp_sk(sk);
1097 struct sk_buff *skb;
1098 struct sockcm_cookie sockc;
1099 int flags, err, copied = 0;
1100 int mss_now = 0, size_goal, copied_syn = 0;
1101 bool process_backlog = false;
1107 flags = msg->msg_flags;
1108 if (flags & MSG_FASTOPEN) {
1109 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1110 if (err == -EINPROGRESS && copied_syn > 0)
1116 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1118 /* Wait for a connection to finish. One exception is TCP Fast Open
1119 * (passive side) where data is allowed to be sent before a connection
1120 * is fully established.
1122 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1123 !tcp_passive_fastopen(sk)) {
1124 err = sk_stream_wait_connect(sk, &timeo);
1129 if (unlikely(tp->repair)) {
1130 if (tp->repair_queue == TCP_RECV_QUEUE) {
1131 copied = tcp_send_rcvq(sk, msg, size);
1136 if (tp->repair_queue == TCP_NO_QUEUE)
1139 /* 'common' sending to sendq */
1142 sockc.tsflags = sk->sk_tsflags;
1143 if (msg->msg_controllen) {
1144 err = sock_cmsg_send(sk, msg, &sockc);
1145 if (unlikely(err)) {
1151 /* This should be in poll */
1152 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1154 /* Ok commence sending. */
1158 mss_now = tcp_send_mss(sk, &size_goal, flags);
1161 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1164 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1166 while (msg_data_left(msg)) {
1168 int max = size_goal;
1170 skb = tcp_write_queue_tail(sk);
1171 if (tcp_send_head(sk)) {
1172 if (skb->ip_summed == CHECKSUM_NONE)
1174 copy = max - skb->len;
1177 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1181 /* Allocate new segment. If the interface is SG,
1182 * allocate skb fitting to single page.
1184 if (!sk_stream_memory_free(sk))
1185 goto wait_for_sndbuf;
1187 if (process_backlog && sk_flush_backlog(sk)) {
1188 process_backlog = false;
1191 first_skb = skb_queue_empty(&sk->sk_write_queue);
1192 skb = sk_stream_alloc_skb(sk,
1193 select_size(sk, sg, first_skb),
1197 goto wait_for_memory;
1199 process_backlog = true;
1201 * Check whether we can use HW checksum.
1203 if (sk_check_csum_caps(sk))
1204 skb->ip_summed = CHECKSUM_PARTIAL;
1206 skb_entail(sk, skb);
1210 /* All packets are restored as if they have
1211 * already been sent. skb_mstamp isn't set to
1212 * avoid wrong rtt estimation.
1215 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1218 /* Try to append data to the end of skb. */
1219 if (copy > msg_data_left(msg))
1220 copy = msg_data_left(msg);
1222 /* Where to copy to? */
1223 if (skb_availroom(skb) > 0) {
1224 /* We have some space in skb head. Superb! */
1225 copy = min_t(int, copy, skb_availroom(skb));
1226 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1231 int i = skb_shinfo(skb)->nr_frags;
1232 struct page_frag *pfrag = sk_page_frag(sk);
1234 if (!sk_page_frag_refill(sk, pfrag))
1235 goto wait_for_memory;
1237 if (!skb_can_coalesce(skb, i, pfrag->page,
1239 if (i == sysctl_max_skb_frags || !sg) {
1240 tcp_mark_push(tp, skb);
1246 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1248 if (!sk_wmem_schedule(sk, copy))
1249 goto wait_for_memory;
1251 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1258 /* Update the skb. */
1260 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1262 skb_fill_page_desc(skb, i, pfrag->page,
1263 pfrag->offset, copy);
1264 get_page(pfrag->page);
1266 pfrag->offset += copy;
1270 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1272 tp->write_seq += copy;
1273 TCP_SKB_CB(skb)->end_seq += copy;
1274 tcp_skb_pcount_set(skb, 0);
1277 if (!msg_data_left(msg)) {
1278 tcp_tx_timestamp(sk, sockc.tsflags, skb);
1279 if (unlikely(flags & MSG_EOR))
1280 TCP_SKB_CB(skb)->eor = 1;
1284 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1287 if (forced_push(tp)) {
1288 tcp_mark_push(tp, skb);
1289 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1290 } else if (skb == tcp_send_head(sk))
1291 tcp_push_one(sk, mss_now);
1295 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1298 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1299 TCP_NAGLE_PUSH, size_goal);
1301 err = sk_stream_wait_memory(sk, &timeo);
1305 mss_now = tcp_send_mss(sk, &size_goal, flags);
1310 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1313 return copied + copied_syn;
1317 tcp_unlink_write_queue(skb, sk);
1318 /* It is the one place in all of TCP, except connection
1319 * reset, where we can be unlinking the send_head.
1321 tcp_check_send_head(sk, skb);
1322 sk_wmem_free_skb(sk, skb);
1326 if (copied + copied_syn)
1329 err = sk_stream_error(sk, flags, err);
1330 /* make sure we wake any epoll edge trigger waiter */
1331 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1332 sk->sk_write_space(sk);
1336 EXPORT_SYMBOL(tcp_sendmsg);
1339 * Handle reading urgent data. BSD has very simple semantics for
1340 * this, no blocking and very strange errors 8)
1343 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1345 struct tcp_sock *tp = tcp_sk(sk);
1347 /* No URG data to read. */
1348 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1349 tp->urg_data == TCP_URG_READ)
1350 return -EINVAL; /* Yes this is right ! */
1352 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1355 if (tp->urg_data & TCP_URG_VALID) {
1357 char c = tp->urg_data;
1359 if (!(flags & MSG_PEEK))
1360 tp->urg_data = TCP_URG_READ;
1362 /* Read urgent data. */
1363 msg->msg_flags |= MSG_OOB;
1366 if (!(flags & MSG_TRUNC))
1367 err = memcpy_to_msg(msg, &c, 1);
1370 msg->msg_flags |= MSG_TRUNC;
1372 return err ? -EFAULT : len;
1375 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1378 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1379 * the available implementations agree in this case:
1380 * this call should never block, independent of the
1381 * blocking state of the socket.
1387 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1389 struct sk_buff *skb;
1390 int copied = 0, err = 0;
1392 /* XXX -- need to support SO_PEEK_OFF */
1394 skb_queue_walk(&sk->sk_write_queue, skb) {
1395 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1402 return err ?: copied;
1405 /* Clean up the receive buffer for full frames taken by the user,
1406 * then send an ACK if necessary. COPIED is the number of bytes
1407 * tcp_recvmsg has given to the user so far, it speeds up the
1408 * calculation of whether or not we must ACK for the sake of
1411 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1413 struct tcp_sock *tp = tcp_sk(sk);
1414 bool time_to_ack = false;
1416 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1418 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1419 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1420 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1422 if (inet_csk_ack_scheduled(sk)) {
1423 const struct inet_connection_sock *icsk = inet_csk(sk);
1424 /* Delayed ACKs frequently hit locked sockets during bulk
1426 if (icsk->icsk_ack.blocked ||
1427 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1428 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1430 * If this read emptied read buffer, we send ACK, if
1431 * connection is not bidirectional, user drained
1432 * receive buffer and there was a small segment
1436 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1437 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1438 !icsk->icsk_ack.pingpong)) &&
1439 !atomic_read(&sk->sk_rmem_alloc)))
1443 /* We send an ACK if we can now advertise a non-zero window
1444 * which has been raised "significantly".
1446 * Even if window raised up to infinity, do not send window open ACK
1447 * in states, where we will not receive more. It is useless.
1449 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1450 __u32 rcv_window_now = tcp_receive_window(tp);
1452 /* Optimize, __tcp_select_window() is not cheap. */
1453 if (2*rcv_window_now <= tp->window_clamp) {
1454 __u32 new_window = __tcp_select_window(sk);
1456 /* Send ACK now, if this read freed lots of space
1457 * in our buffer. Certainly, new_window is new window.
1458 * We can advertise it now, if it is not less than current one.
1459 * "Lots" means "at least twice" here.
1461 if (new_window && new_window >= 2 * rcv_window_now)
1469 static void tcp_prequeue_process(struct sock *sk)
1471 struct sk_buff *skb;
1472 struct tcp_sock *tp = tcp_sk(sk);
1474 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1476 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1477 sk_backlog_rcv(sk, skb);
1479 /* Clear memory counter. */
1480 tp->ucopy.memory = 0;
1483 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1485 struct sk_buff *skb;
1488 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1489 offset = seq - TCP_SKB_CB(skb)->seq;
1490 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1491 pr_err_once("%s: found a SYN, please report !\n", __func__);
1494 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1498 /* This looks weird, but this can happen if TCP collapsing
1499 * splitted a fat GRO packet, while we released socket lock
1500 * in skb_splice_bits()
1502 sk_eat_skb(sk, skb);
1508 * This routine provides an alternative to tcp_recvmsg() for routines
1509 * that would like to handle copying from skbuffs directly in 'sendfile'
1512 * - It is assumed that the socket was locked by the caller.
1513 * - The routine does not block.
1514 * - At present, there is no support for reading OOB data
1515 * or for 'peeking' the socket using this routine
1516 * (although both would be easy to implement).
1518 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1519 sk_read_actor_t recv_actor)
1521 struct sk_buff *skb;
1522 struct tcp_sock *tp = tcp_sk(sk);
1523 u32 seq = tp->copied_seq;
1527 if (sk->sk_state == TCP_LISTEN)
1529 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1530 if (offset < skb->len) {
1534 len = skb->len - offset;
1535 /* Stop reading if we hit a patch of urgent data */
1537 u32 urg_offset = tp->urg_seq - seq;
1538 if (urg_offset < len)
1543 used = recv_actor(desc, skb, offset, len);
1548 } else if (used <= len) {
1553 /* If recv_actor drops the lock (e.g. TCP splice
1554 * receive) the skb pointer might be invalid when
1555 * getting here: tcp_collapse might have deleted it
1556 * while aggregating skbs from the socket queue.
1558 skb = tcp_recv_skb(sk, seq - 1, &offset);
1561 /* TCP coalescing might have appended data to the skb.
1562 * Try to splice more frags
1564 if (offset + 1 != skb->len)
1567 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1568 sk_eat_skb(sk, skb);
1572 sk_eat_skb(sk, skb);
1575 tp->copied_seq = seq;
1577 tp->copied_seq = seq;
1579 tcp_rcv_space_adjust(sk);
1581 /* Clean up data we have read: This will do ACK frames. */
1583 tcp_recv_skb(sk, seq, &offset);
1584 tcp_cleanup_rbuf(sk, copied);
1588 EXPORT_SYMBOL(tcp_read_sock);
1590 int tcp_peek_len(struct socket *sock)
1592 return tcp_inq(sock->sk);
1594 EXPORT_SYMBOL(tcp_peek_len);
1597 * This routine copies from a sock struct into the user buffer.
1599 * Technical note: in 2.3 we work on _locked_ socket, so that
1600 * tricks with *seq access order and skb->users are not required.
1601 * Probably, code can be easily improved even more.
1604 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1605 int flags, int *addr_len)
1607 struct tcp_sock *tp = tcp_sk(sk);
1613 int target; /* Read at least this many bytes */
1615 struct task_struct *user_recv = NULL;
1616 struct sk_buff *skb, *last;
1619 if (unlikely(flags & MSG_ERRQUEUE))
1620 return inet_recv_error(sk, msg, len, addr_len);
1622 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1623 (sk->sk_state == TCP_ESTABLISHED))
1624 sk_busy_loop(sk, nonblock);
1629 if (sk->sk_state == TCP_LISTEN)
1632 timeo = sock_rcvtimeo(sk, nonblock);
1634 /* Urgent data needs to be handled specially. */
1635 if (flags & MSG_OOB)
1638 if (unlikely(tp->repair)) {
1640 if (!(flags & MSG_PEEK))
1643 if (tp->repair_queue == TCP_SEND_QUEUE)
1647 if (tp->repair_queue == TCP_NO_QUEUE)
1650 /* 'common' recv queue MSG_PEEK-ing */
1653 seq = &tp->copied_seq;
1654 if (flags & MSG_PEEK) {
1655 peek_seq = tp->copied_seq;
1659 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1664 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1665 if (tp->urg_data && tp->urg_seq == *seq) {
1668 if (signal_pending(current)) {
1669 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1674 /* Next get a buffer. */
1676 last = skb_peek_tail(&sk->sk_receive_queue);
1677 skb_queue_walk(&sk->sk_receive_queue, skb) {
1679 /* Now that we have two receive queues this
1682 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1683 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1684 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1688 offset = *seq - TCP_SKB_CB(skb)->seq;
1689 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1690 pr_err_once("%s: found a SYN, please report !\n", __func__);
1693 if (offset < skb->len)
1695 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1697 WARN(!(flags & MSG_PEEK),
1698 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1699 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1702 /* Well, if we have backlog, try to process it now yet. */
1704 if (copied >= target && !sk->sk_backlog.tail)
1709 sk->sk_state == TCP_CLOSE ||
1710 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1712 signal_pending(current))
1715 if (sock_flag(sk, SOCK_DONE))
1719 copied = sock_error(sk);
1723 if (sk->sk_shutdown & RCV_SHUTDOWN)
1726 if (sk->sk_state == TCP_CLOSE) {
1727 if (!sock_flag(sk, SOCK_DONE)) {
1728 /* This occurs when user tries to read
1729 * from never connected socket.
1742 if (signal_pending(current)) {
1743 copied = sock_intr_errno(timeo);
1748 tcp_cleanup_rbuf(sk, copied);
1750 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1751 /* Install new reader */
1752 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1753 user_recv = current;
1754 tp->ucopy.task = user_recv;
1755 tp->ucopy.msg = msg;
1758 tp->ucopy.len = len;
1760 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1761 !(flags & (MSG_PEEK | MSG_TRUNC)));
1763 /* Ugly... If prequeue is not empty, we have to
1764 * process it before releasing socket, otherwise
1765 * order will be broken at second iteration.
1766 * More elegant solution is required!!!
1768 * Look: we have the following (pseudo)queues:
1770 * 1. packets in flight
1775 * Each queue can be processed only if the next ones
1776 * are empty. At this point we have empty receive_queue.
1777 * But prequeue _can_ be not empty after 2nd iteration,
1778 * when we jumped to start of loop because backlog
1779 * processing added something to receive_queue.
1780 * We cannot release_sock(), because backlog contains
1781 * packets arrived _after_ prequeued ones.
1783 * Shortly, algorithm is clear --- to process all
1784 * the queues in order. We could make it more directly,
1785 * requeueing packets from backlog to prequeue, if
1786 * is not empty. It is more elegant, but eats cycles,
1789 if (!skb_queue_empty(&tp->ucopy.prequeue))
1792 /* __ Set realtime policy in scheduler __ */
1795 if (copied >= target) {
1796 /* Do not sleep, just process backlog. */
1800 sk_wait_data(sk, &timeo, last);
1806 /* __ Restore normal policy in scheduler __ */
1808 chunk = len - tp->ucopy.len;
1810 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1815 if (tp->rcv_nxt == tp->copied_seq &&
1816 !skb_queue_empty(&tp->ucopy.prequeue)) {
1818 tcp_prequeue_process(sk);
1820 chunk = len - tp->ucopy.len;
1822 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1828 if ((flags & MSG_PEEK) &&
1829 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1830 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1832 task_pid_nr(current));
1833 peek_seq = tp->copied_seq;
1838 /* Ok so how much can we use? */
1839 used = skb->len - offset;
1843 /* Do we have urgent data here? */
1845 u32 urg_offset = tp->urg_seq - *seq;
1846 if (urg_offset < used) {
1848 if (!sock_flag(sk, SOCK_URGINLINE)) {
1861 if (!(flags & MSG_TRUNC)) {
1862 err = skb_copy_datagram_msg(skb, offset, msg, used);
1864 /* Exception. Bailout! */
1875 tcp_rcv_space_adjust(sk);
1878 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1880 tcp_fast_path_check(sk);
1882 if (used + offset < skb->len)
1885 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1887 if (!(flags & MSG_PEEK))
1888 sk_eat_skb(sk, skb);
1892 /* Process the FIN. */
1894 if (!(flags & MSG_PEEK))
1895 sk_eat_skb(sk, skb);
1900 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1903 tp->ucopy.len = copied > 0 ? len : 0;
1905 tcp_prequeue_process(sk);
1907 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1908 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1914 tp->ucopy.task = NULL;
1918 /* According to UNIX98, msg_name/msg_namelen are ignored
1919 * on connected socket. I was just happy when found this 8) --ANK
1922 /* Clean up data we have read: This will do ACK frames. */
1923 tcp_cleanup_rbuf(sk, copied);
1933 err = tcp_recv_urg(sk, msg, len, flags);
1937 err = tcp_peek_sndq(sk, msg, len);
1940 EXPORT_SYMBOL(tcp_recvmsg);
1942 void tcp_set_state(struct sock *sk, int state)
1944 int oldstate = sk->sk_state;
1947 case TCP_ESTABLISHED:
1948 if (oldstate != TCP_ESTABLISHED)
1949 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1953 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1954 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1956 sk->sk_prot->unhash(sk);
1957 if (inet_csk(sk)->icsk_bind_hash &&
1958 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1962 if (oldstate == TCP_ESTABLISHED)
1963 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1966 /* Change state AFTER socket is unhashed to avoid closed
1967 * socket sitting in hash tables.
1969 sk_state_store(sk, state);
1972 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1975 EXPORT_SYMBOL_GPL(tcp_set_state);
1978 * State processing on a close. This implements the state shift for
1979 * sending our FIN frame. Note that we only send a FIN for some
1980 * states. A shutdown() may have already sent the FIN, or we may be
1984 static const unsigned char new_state[16] = {
1985 /* current state: new state: action: */
1986 [0 /* (Invalid) */] = TCP_CLOSE,
1987 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1988 [TCP_SYN_SENT] = TCP_CLOSE,
1989 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1990 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
1991 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
1992 [TCP_TIME_WAIT] = TCP_CLOSE,
1993 [TCP_CLOSE] = TCP_CLOSE,
1994 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
1995 [TCP_LAST_ACK] = TCP_LAST_ACK,
1996 [TCP_LISTEN] = TCP_CLOSE,
1997 [TCP_CLOSING] = TCP_CLOSING,
1998 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2001 static int tcp_close_state(struct sock *sk)
2003 int next = (int)new_state[sk->sk_state];
2004 int ns = next & TCP_STATE_MASK;
2006 tcp_set_state(sk, ns);
2008 return next & TCP_ACTION_FIN;
2012 * Shutdown the sending side of a connection. Much like close except
2013 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2016 void tcp_shutdown(struct sock *sk, int how)
2018 /* We need to grab some memory, and put together a FIN,
2019 * and then put it into the queue to be sent.
2022 if (!(how & SEND_SHUTDOWN))
2025 /* If we've already sent a FIN, or it's a closed state, skip this. */
2026 if ((1 << sk->sk_state) &
2027 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2028 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2029 /* Clear out any half completed packets. FIN if needed. */
2030 if (tcp_close_state(sk))
2034 EXPORT_SYMBOL(tcp_shutdown);
2036 bool tcp_check_oom(struct sock *sk, int shift)
2038 bool too_many_orphans, out_of_socket_memory;
2040 too_many_orphans = tcp_too_many_orphans(sk, shift);
2041 out_of_socket_memory = tcp_out_of_memory(sk);
2043 if (too_many_orphans)
2044 net_info_ratelimited("too many orphaned sockets\n");
2045 if (out_of_socket_memory)
2046 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2047 return too_many_orphans || out_of_socket_memory;
2050 void tcp_close(struct sock *sk, long timeout)
2052 struct sk_buff *skb;
2053 int data_was_unread = 0;
2057 sk->sk_shutdown = SHUTDOWN_MASK;
2059 if (sk->sk_state == TCP_LISTEN) {
2060 tcp_set_state(sk, TCP_CLOSE);
2063 inet_csk_listen_stop(sk);
2065 goto adjudge_to_death;
2068 /* We need to flush the recv. buffs. We do this only on the
2069 * descriptor close, not protocol-sourced closes, because the
2070 * reader process may not have drained the data yet!
2072 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2073 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2075 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2077 data_was_unread += len;
2083 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2084 if (sk->sk_state == TCP_CLOSE)
2085 goto adjudge_to_death;
2087 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2088 * data was lost. To witness the awful effects of the old behavior of
2089 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2090 * GET in an FTP client, suspend the process, wait for the client to
2091 * advertise a zero window, then kill -9 the FTP client, wheee...
2092 * Note: timeout is always zero in such a case.
2094 if (unlikely(tcp_sk(sk)->repair)) {
2095 sk->sk_prot->disconnect(sk, 0);
2096 } else if (data_was_unread) {
2097 /* Unread data was tossed, zap the connection. */
2098 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2099 tcp_set_state(sk, TCP_CLOSE);
2100 tcp_send_active_reset(sk, sk->sk_allocation);
2101 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2102 /* Check zero linger _after_ checking for unread data. */
2103 sk->sk_prot->disconnect(sk, 0);
2104 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2105 } else if (tcp_close_state(sk)) {
2106 /* We FIN if the application ate all the data before
2107 * zapping the connection.
2110 /* RED-PEN. Formally speaking, we have broken TCP state
2111 * machine. State transitions:
2113 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2114 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2115 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2117 * are legal only when FIN has been sent (i.e. in window),
2118 * rather than queued out of window. Purists blame.
2120 * F.e. "RFC state" is ESTABLISHED,
2121 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2123 * The visible declinations are that sometimes
2124 * we enter time-wait state, when it is not required really
2125 * (harmless), do not send active resets, when they are
2126 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2127 * they look as CLOSING or LAST_ACK for Linux)
2128 * Probably, I missed some more holelets.
2130 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2131 * in a single packet! (May consider it later but will
2132 * probably need API support or TCP_CORK SYN-ACK until
2133 * data is written and socket is closed.)
2138 sk_stream_wait_close(sk, timeout);
2141 state = sk->sk_state;
2145 /* It is the last release_sock in its life. It will remove backlog. */
2149 /* Now socket is owned by kernel and we acquire BH lock
2150 to finish close. No need to check for user refs.
2154 WARN_ON(sock_owned_by_user(sk));
2156 percpu_counter_inc(sk->sk_prot->orphan_count);
2158 /* Have we already been destroyed by a softirq or backlog? */
2159 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2162 /* This is a (useful) BSD violating of the RFC. There is a
2163 * problem with TCP as specified in that the other end could
2164 * keep a socket open forever with no application left this end.
2165 * We use a 1 minute timeout (about the same as BSD) then kill
2166 * our end. If they send after that then tough - BUT: long enough
2167 * that we won't make the old 4*rto = almost no time - whoops
2170 * Nope, it was not mistake. It is really desired behaviour
2171 * f.e. on http servers, when such sockets are useless, but
2172 * consume significant resources. Let's do it with special
2173 * linger2 option. --ANK
2176 if (sk->sk_state == TCP_FIN_WAIT2) {
2177 struct tcp_sock *tp = tcp_sk(sk);
2178 if (tp->linger2 < 0) {
2179 tcp_set_state(sk, TCP_CLOSE);
2180 tcp_send_active_reset(sk, GFP_ATOMIC);
2181 __NET_INC_STATS(sock_net(sk),
2182 LINUX_MIB_TCPABORTONLINGER);
2184 const int tmo = tcp_fin_time(sk);
2186 if (tmo > TCP_TIMEWAIT_LEN) {
2187 inet_csk_reset_keepalive_timer(sk,
2188 tmo - TCP_TIMEWAIT_LEN);
2190 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2195 if (sk->sk_state != TCP_CLOSE) {
2197 if (tcp_check_oom(sk, 0)) {
2198 tcp_set_state(sk, TCP_CLOSE);
2199 tcp_send_active_reset(sk, GFP_ATOMIC);
2200 __NET_INC_STATS(sock_net(sk),
2201 LINUX_MIB_TCPABORTONMEMORY);
2205 if (sk->sk_state == TCP_CLOSE) {
2206 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2207 /* We could get here with a non-NULL req if the socket is
2208 * aborted (e.g., closed with unread data) before 3WHS
2212 reqsk_fastopen_remove(sk, req, false);
2213 inet_csk_destroy_sock(sk);
2215 /* Otherwise, socket is reprieved until protocol close. */
2222 EXPORT_SYMBOL(tcp_close);
2224 /* These states need RST on ABORT according to RFC793 */
2226 static inline bool tcp_need_reset(int state)
2228 return (1 << state) &
2229 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2230 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2233 int tcp_disconnect(struct sock *sk, int flags)
2235 struct inet_sock *inet = inet_sk(sk);
2236 struct inet_connection_sock *icsk = inet_csk(sk);
2237 struct tcp_sock *tp = tcp_sk(sk);
2239 int old_state = sk->sk_state;
2241 if (old_state != TCP_CLOSE)
2242 tcp_set_state(sk, TCP_CLOSE);
2244 /* ABORT function of RFC793 */
2245 if (old_state == TCP_LISTEN) {
2246 inet_csk_listen_stop(sk);
2247 } else if (unlikely(tp->repair)) {
2248 sk->sk_err = ECONNABORTED;
2249 } else if (tcp_need_reset(old_state) ||
2250 (tp->snd_nxt != tp->write_seq &&
2251 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2252 /* The last check adjusts for discrepancy of Linux wrt. RFC
2255 tcp_send_active_reset(sk, gfp_any());
2256 sk->sk_err = ECONNRESET;
2257 } else if (old_state == TCP_SYN_SENT)
2258 sk->sk_err = ECONNRESET;
2260 tcp_clear_xmit_timers(sk);
2261 __skb_queue_purge(&sk->sk_receive_queue);
2262 tcp_write_queue_purge(sk);
2263 skb_rbtree_purge(&tp->out_of_order_queue);
2265 inet->inet_dport = 0;
2267 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2268 inet_reset_saddr(sk);
2270 sk->sk_shutdown = 0;
2271 sock_reset_flag(sk, SOCK_DONE);
2273 tp->write_seq += tp->max_window + 2;
2274 if (tp->write_seq == 0)
2276 icsk->icsk_backoff = 0;
2278 icsk->icsk_probes_out = 0;
2279 tp->packets_out = 0;
2280 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2281 tp->snd_cwnd_cnt = 0;
2282 tp->window_clamp = 0;
2283 tcp_set_ca_state(sk, TCP_CA_Open);
2284 tcp_clear_retrans(tp);
2285 inet_csk_delack_init(sk);
2286 tcp_init_send_head(sk);
2287 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2290 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2292 sk->sk_error_report(sk);
2295 EXPORT_SYMBOL(tcp_disconnect);
2297 static inline bool tcp_can_repair_sock(const struct sock *sk)
2299 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2300 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2303 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2305 struct tcp_repair_window opt;
2310 if (len != sizeof(opt))
2313 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2316 if (opt.max_window < opt.snd_wnd)
2319 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2322 if (after(opt.rcv_wup, tp->rcv_nxt))
2325 tp->snd_wl1 = opt.snd_wl1;
2326 tp->snd_wnd = opt.snd_wnd;
2327 tp->max_window = opt.max_window;
2329 tp->rcv_wnd = opt.rcv_wnd;
2330 tp->rcv_wup = opt.rcv_wup;
2335 static int tcp_repair_options_est(struct tcp_sock *tp,
2336 struct tcp_repair_opt __user *optbuf, unsigned int len)
2338 struct tcp_repair_opt opt;
2340 while (len >= sizeof(opt)) {
2341 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2347 switch (opt.opt_code) {
2349 tp->rx_opt.mss_clamp = opt.opt_val;
2353 u16 snd_wscale = opt.opt_val & 0xFFFF;
2354 u16 rcv_wscale = opt.opt_val >> 16;
2356 if (snd_wscale > 14 || rcv_wscale > 14)
2359 tp->rx_opt.snd_wscale = snd_wscale;
2360 tp->rx_opt.rcv_wscale = rcv_wscale;
2361 tp->rx_opt.wscale_ok = 1;
2364 case TCPOPT_SACK_PERM:
2365 if (opt.opt_val != 0)
2368 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2369 if (sysctl_tcp_fack)
2370 tcp_enable_fack(tp);
2372 case TCPOPT_TIMESTAMP:
2373 if (opt.opt_val != 0)
2376 tp->rx_opt.tstamp_ok = 1;
2385 * Socket option code for TCP.
2387 static int do_tcp_setsockopt(struct sock *sk, int level,
2388 int optname, char __user *optval, unsigned int optlen)
2390 struct tcp_sock *tp = tcp_sk(sk);
2391 struct inet_connection_sock *icsk = inet_csk(sk);
2392 struct net *net = sock_net(sk);
2396 /* These are data/string values, all the others are ints */
2398 case TCP_CONGESTION: {
2399 char name[TCP_CA_NAME_MAX];
2404 val = strncpy_from_user(name, optval,
2405 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2411 err = tcp_set_congestion_control(sk, name);
2420 if (optlen < sizeof(int))
2423 if (get_user(val, (int __user *)optval))
2430 /* Values greater than interface MTU won't take effect. However
2431 * at the point when this call is done we typically don't yet
2432 * know which interface is going to be used */
2433 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2437 tp->rx_opt.user_mss = val;
2442 /* TCP_NODELAY is weaker than TCP_CORK, so that
2443 * this option on corked socket is remembered, but
2444 * it is not activated until cork is cleared.
2446 * However, when TCP_NODELAY is set we make
2447 * an explicit push, which overrides even TCP_CORK
2448 * for currently queued segments.
2450 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2451 tcp_push_pending_frames(sk);
2453 tp->nonagle &= ~TCP_NAGLE_OFF;
2457 case TCP_THIN_LINEAR_TIMEOUTS:
2458 if (val < 0 || val > 1)
2464 case TCP_THIN_DUPACK:
2465 if (val < 0 || val > 1)
2468 tp->thin_dupack = val;
2469 if (tp->thin_dupack)
2470 tcp_disable_early_retrans(tp);
2475 if (!tcp_can_repair_sock(sk))
2477 else if (val == 1) {
2479 sk->sk_reuse = SK_FORCE_REUSE;
2480 tp->repair_queue = TCP_NO_QUEUE;
2481 } else if (val == 0) {
2483 sk->sk_reuse = SK_NO_REUSE;
2484 tcp_send_window_probe(sk);
2490 case TCP_REPAIR_QUEUE:
2493 else if (val < TCP_QUEUES_NR)
2494 tp->repair_queue = val;
2500 if (sk->sk_state != TCP_CLOSE)
2502 else if (tp->repair_queue == TCP_SEND_QUEUE)
2503 tp->write_seq = val;
2504 else if (tp->repair_queue == TCP_RECV_QUEUE)
2510 case TCP_REPAIR_OPTIONS:
2513 else if (sk->sk_state == TCP_ESTABLISHED)
2514 err = tcp_repair_options_est(tp,
2515 (struct tcp_repair_opt __user *)optval,
2522 /* When set indicates to always queue non-full frames.
2523 * Later the user clears this option and we transmit
2524 * any pending partial frames in the queue. This is
2525 * meant to be used alongside sendfile() to get properly
2526 * filled frames when the user (for example) must write
2527 * out headers with a write() call first and then use
2528 * sendfile to send out the data parts.
2530 * TCP_CORK can be set together with TCP_NODELAY and it is
2531 * stronger than TCP_NODELAY.
2534 tp->nonagle |= TCP_NAGLE_CORK;
2536 tp->nonagle &= ~TCP_NAGLE_CORK;
2537 if (tp->nonagle&TCP_NAGLE_OFF)
2538 tp->nonagle |= TCP_NAGLE_PUSH;
2539 tcp_push_pending_frames(sk);
2544 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2547 tp->keepalive_time = val * HZ;
2548 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2549 !((1 << sk->sk_state) &
2550 (TCPF_CLOSE | TCPF_LISTEN))) {
2551 u32 elapsed = keepalive_time_elapsed(tp);
2552 if (tp->keepalive_time > elapsed)
2553 elapsed = tp->keepalive_time - elapsed;
2556 inet_csk_reset_keepalive_timer(sk, elapsed);
2561 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2564 tp->keepalive_intvl = val * HZ;
2567 if (val < 1 || val > MAX_TCP_KEEPCNT)
2570 tp->keepalive_probes = val;
2573 if (val < 1 || val > MAX_TCP_SYNCNT)
2576 icsk->icsk_syn_retries = val;
2580 if (val < 0 || val > 1)
2589 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2592 tp->linger2 = val * HZ;
2595 case TCP_DEFER_ACCEPT:
2596 /* Translate value in seconds to number of retransmits */
2597 icsk->icsk_accept_queue.rskq_defer_accept =
2598 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2602 case TCP_WINDOW_CLAMP:
2604 if (sk->sk_state != TCP_CLOSE) {
2608 tp->window_clamp = 0;
2610 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2611 SOCK_MIN_RCVBUF / 2 : val;
2616 icsk->icsk_ack.pingpong = 1;
2618 icsk->icsk_ack.pingpong = 0;
2619 if ((1 << sk->sk_state) &
2620 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2621 inet_csk_ack_scheduled(sk)) {
2622 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2623 tcp_cleanup_rbuf(sk, 1);
2625 icsk->icsk_ack.pingpong = 1;
2630 #ifdef CONFIG_TCP_MD5SIG
2632 /* Read the IP->Key mappings from userspace */
2633 err = tp->af_specific->md5_parse(sk, optval, optlen);
2636 case TCP_USER_TIMEOUT:
2637 /* Cap the max time in ms TCP will retry or probe the window
2638 * before giving up and aborting (ETIMEDOUT) a connection.
2643 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2647 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2649 tcp_fastopen_init_key_once(true);
2651 fastopen_queue_tune(sk, val);
2660 tp->tsoffset = val - tcp_time_stamp;
2662 case TCP_REPAIR_WINDOW:
2663 err = tcp_repair_set_window(tp, optval, optlen);
2665 case TCP_NOTSENT_LOWAT:
2666 tp->notsent_lowat = val;
2667 sk->sk_write_space(sk);
2678 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2679 unsigned int optlen)
2681 const struct inet_connection_sock *icsk = inet_csk(sk);
2683 if (level != SOL_TCP)
2684 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2686 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2688 EXPORT_SYMBOL(tcp_setsockopt);
2690 #ifdef CONFIG_COMPAT
2691 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2692 char __user *optval, unsigned int optlen)
2694 if (level != SOL_TCP)
2695 return inet_csk_compat_setsockopt(sk, level, optname,
2697 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2699 EXPORT_SYMBOL(compat_tcp_setsockopt);
2702 /* Return information about state of tcp endpoint in API format. */
2703 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2705 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2706 const struct inet_connection_sock *icsk = inet_csk(sk);
2707 u32 now = tcp_time_stamp;
2713 memset(info, 0, sizeof(*info));
2714 if (sk->sk_type != SOCK_STREAM)
2717 info->tcpi_state = sk_state_load(sk);
2719 info->tcpi_ca_state = icsk->icsk_ca_state;
2720 info->tcpi_retransmits = icsk->icsk_retransmits;
2721 info->tcpi_probes = icsk->icsk_probes_out;
2722 info->tcpi_backoff = icsk->icsk_backoff;
2724 if (tp->rx_opt.tstamp_ok)
2725 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2726 if (tcp_is_sack(tp))
2727 info->tcpi_options |= TCPI_OPT_SACK;
2728 if (tp->rx_opt.wscale_ok) {
2729 info->tcpi_options |= TCPI_OPT_WSCALE;
2730 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2731 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2734 if (tp->ecn_flags & TCP_ECN_OK)
2735 info->tcpi_options |= TCPI_OPT_ECN;
2736 if (tp->ecn_flags & TCP_ECN_SEEN)
2737 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2738 if (tp->syn_data_acked)
2739 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2741 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2742 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2743 info->tcpi_snd_mss = tp->mss_cache;
2744 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2746 if (info->tcpi_state == TCP_LISTEN) {
2747 info->tcpi_unacked = sk->sk_ack_backlog;
2748 info->tcpi_sacked = sk->sk_max_ack_backlog;
2750 info->tcpi_unacked = tp->packets_out;
2751 info->tcpi_sacked = tp->sacked_out;
2753 info->tcpi_lost = tp->lost_out;
2754 info->tcpi_retrans = tp->retrans_out;
2755 info->tcpi_fackets = tp->fackets_out;
2757 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2758 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2759 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2761 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2762 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2763 info->tcpi_rtt = tp->srtt_us >> 3;
2764 info->tcpi_rttvar = tp->mdev_us >> 2;
2765 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2766 info->tcpi_snd_cwnd = tp->snd_cwnd;
2767 info->tcpi_advmss = tp->advmss;
2768 info->tcpi_reordering = tp->reordering;
2770 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2771 info->tcpi_rcv_space = tp->rcvq_space.space;
2773 info->tcpi_total_retrans = tp->total_retrans;
2775 rate = READ_ONCE(sk->sk_pacing_rate);
2776 rate64 = rate != ~0U ? rate : ~0ULL;
2777 put_unaligned(rate64, &info->tcpi_pacing_rate);
2779 rate = READ_ONCE(sk->sk_max_pacing_rate);
2780 rate64 = rate != ~0U ? rate : ~0ULL;
2781 put_unaligned(rate64, &info->tcpi_max_pacing_rate);
2784 start = u64_stats_fetch_begin_irq(&tp->syncp);
2785 put_unaligned(tp->bytes_acked, &info->tcpi_bytes_acked);
2786 put_unaligned(tp->bytes_received, &info->tcpi_bytes_received);
2787 } while (u64_stats_fetch_retry_irq(&tp->syncp, start));
2788 info->tcpi_segs_out = tp->segs_out;
2789 info->tcpi_segs_in = tp->segs_in;
2791 notsent_bytes = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt);
2792 info->tcpi_notsent_bytes = max(0, notsent_bytes);
2794 info->tcpi_min_rtt = tcp_min_rtt(tp);
2795 info->tcpi_data_segs_in = tp->data_segs_in;
2796 info->tcpi_data_segs_out = tp->data_segs_out;
2798 EXPORT_SYMBOL_GPL(tcp_get_info);
2800 static int do_tcp_getsockopt(struct sock *sk, int level,
2801 int optname, char __user *optval, int __user *optlen)
2803 struct inet_connection_sock *icsk = inet_csk(sk);
2804 struct tcp_sock *tp = tcp_sk(sk);
2805 struct net *net = sock_net(sk);
2808 if (get_user(len, optlen))
2811 len = min_t(unsigned int, len, sizeof(int));
2818 val = tp->mss_cache;
2819 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2820 val = tp->rx_opt.user_mss;
2822 val = tp->rx_opt.mss_clamp;
2825 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2828 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2831 val = keepalive_time_when(tp) / HZ;
2834 val = keepalive_intvl_when(tp) / HZ;
2837 val = keepalive_probes(tp);
2840 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
2845 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
2847 case TCP_DEFER_ACCEPT:
2848 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2849 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2851 case TCP_WINDOW_CLAMP:
2852 val = tp->window_clamp;
2855 struct tcp_info info;
2857 if (get_user(len, optlen))
2860 tcp_get_info(sk, &info);
2862 len = min_t(unsigned int, len, sizeof(info));
2863 if (put_user(len, optlen))
2865 if (copy_to_user(optval, &info, len))
2870 const struct tcp_congestion_ops *ca_ops;
2871 union tcp_cc_info info;
2875 if (get_user(len, optlen))
2878 ca_ops = icsk->icsk_ca_ops;
2879 if (ca_ops && ca_ops->get_info)
2880 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2882 len = min_t(unsigned int, len, sz);
2883 if (put_user(len, optlen))
2885 if (copy_to_user(optval, &info, len))
2890 val = !icsk->icsk_ack.pingpong;
2893 case TCP_CONGESTION:
2894 if (get_user(len, optlen))
2896 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2897 if (put_user(len, optlen))
2899 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2903 case TCP_THIN_LINEAR_TIMEOUTS:
2906 case TCP_THIN_DUPACK:
2907 val = tp->thin_dupack;
2914 case TCP_REPAIR_QUEUE:
2916 val = tp->repair_queue;
2921 case TCP_REPAIR_WINDOW: {
2922 struct tcp_repair_window opt;
2924 if (get_user(len, optlen))
2927 if (len != sizeof(opt))
2933 opt.snd_wl1 = tp->snd_wl1;
2934 opt.snd_wnd = tp->snd_wnd;
2935 opt.max_window = tp->max_window;
2936 opt.rcv_wnd = tp->rcv_wnd;
2937 opt.rcv_wup = tp->rcv_wup;
2939 if (copy_to_user(optval, &opt, len))
2944 if (tp->repair_queue == TCP_SEND_QUEUE)
2945 val = tp->write_seq;
2946 else if (tp->repair_queue == TCP_RECV_QUEUE)
2952 case TCP_USER_TIMEOUT:
2953 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2957 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
2961 val = tcp_time_stamp + tp->tsoffset;
2963 case TCP_NOTSENT_LOWAT:
2964 val = tp->notsent_lowat;
2969 case TCP_SAVED_SYN: {
2970 if (get_user(len, optlen))
2974 if (tp->saved_syn) {
2975 if (len < tp->saved_syn[0]) {
2976 if (put_user(tp->saved_syn[0], optlen)) {
2983 len = tp->saved_syn[0];
2984 if (put_user(len, optlen)) {
2988 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
2992 tcp_saved_syn_free(tp);
2997 if (put_user(len, optlen))
3003 return -ENOPROTOOPT;
3006 if (put_user(len, optlen))
3008 if (copy_to_user(optval, &val, len))
3013 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3016 struct inet_connection_sock *icsk = inet_csk(sk);
3018 if (level != SOL_TCP)
3019 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3021 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3023 EXPORT_SYMBOL(tcp_getsockopt);
3025 #ifdef CONFIG_COMPAT
3026 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3027 char __user *optval, int __user *optlen)
3029 if (level != SOL_TCP)
3030 return inet_csk_compat_getsockopt(sk, level, optname,
3032 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3034 EXPORT_SYMBOL(compat_tcp_getsockopt);
3037 #ifdef CONFIG_TCP_MD5SIG
3038 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3039 static DEFINE_MUTEX(tcp_md5sig_mutex);
3040 static bool tcp_md5sig_pool_populated = false;
3042 static void __tcp_alloc_md5sig_pool(void)
3044 struct crypto_ahash *hash;
3047 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3051 for_each_possible_cpu(cpu) {
3052 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3053 struct ahash_request *req;
3056 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3057 sizeof(struct tcphdr),
3062 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3064 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3067 req = ahash_request_alloc(hash, GFP_KERNEL);
3071 ahash_request_set_callback(req, 0, NULL, NULL);
3073 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3075 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3076 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3079 tcp_md5sig_pool_populated = true;
3082 bool tcp_alloc_md5sig_pool(void)
3084 if (unlikely(!tcp_md5sig_pool_populated)) {
3085 mutex_lock(&tcp_md5sig_mutex);
3087 if (!tcp_md5sig_pool_populated)
3088 __tcp_alloc_md5sig_pool();
3090 mutex_unlock(&tcp_md5sig_mutex);
3092 return tcp_md5sig_pool_populated;
3094 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3098 * tcp_get_md5sig_pool - get md5sig_pool for this user
3100 * We use percpu structure, so if we succeed, we exit with preemption
3101 * and BH disabled, to make sure another thread or softirq handling
3102 * wont try to get same context.
3104 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3108 if (tcp_md5sig_pool_populated) {
3109 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3111 return this_cpu_ptr(&tcp_md5sig_pool);
3116 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3118 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3119 const struct sk_buff *skb, unsigned int header_len)
3121 struct scatterlist sg;
3122 const struct tcphdr *tp = tcp_hdr(skb);
3123 struct ahash_request *req = hp->md5_req;
3125 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3126 skb_headlen(skb) - header_len : 0;
3127 const struct skb_shared_info *shi = skb_shinfo(skb);
3128 struct sk_buff *frag_iter;
3130 sg_init_table(&sg, 1);
3132 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3133 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3134 if (crypto_ahash_update(req))
3137 for (i = 0; i < shi->nr_frags; ++i) {
3138 const struct skb_frag_struct *f = &shi->frags[i];
3139 unsigned int offset = f->page_offset;
3140 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3142 sg_set_page(&sg, page, skb_frag_size(f),
3143 offset_in_page(offset));
3144 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3145 if (crypto_ahash_update(req))
3149 skb_walk_frags(skb, frag_iter)
3150 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3155 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3157 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3159 struct scatterlist sg;
3161 sg_init_one(&sg, key->key, key->keylen);
3162 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3163 return crypto_ahash_update(hp->md5_req);
3165 EXPORT_SYMBOL(tcp_md5_hash_key);
3169 void tcp_done(struct sock *sk)
3171 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3173 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3174 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3176 tcp_set_state(sk, TCP_CLOSE);
3177 tcp_clear_xmit_timers(sk);
3179 reqsk_fastopen_remove(sk, req, false);
3181 sk->sk_shutdown = SHUTDOWN_MASK;
3183 if (!sock_flag(sk, SOCK_DEAD))
3184 sk->sk_state_change(sk);
3186 inet_csk_destroy_sock(sk);
3188 EXPORT_SYMBOL_GPL(tcp_done);
3190 int tcp_abort(struct sock *sk, int err)
3192 if (!sk_fullsock(sk)) {
3193 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3194 struct request_sock *req = inet_reqsk(sk);
3197 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3205 /* Don't race with userspace socket closes such as tcp_close. */
3208 if (sk->sk_state == TCP_LISTEN) {
3209 tcp_set_state(sk, TCP_CLOSE);
3210 inet_csk_listen_stop(sk);
3213 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3217 if (!sock_flag(sk, SOCK_DEAD)) {
3219 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3221 sk->sk_error_report(sk);
3222 if (tcp_need_reset(sk->sk_state))
3223 tcp_send_active_reset(sk, GFP_ATOMIC);
3232 EXPORT_SYMBOL_GPL(tcp_abort);
3234 extern struct tcp_congestion_ops tcp_reno;
3236 static __initdata unsigned long thash_entries;
3237 static int __init set_thash_entries(char *str)
3244 ret = kstrtoul(str, 0, &thash_entries);
3250 __setup("thash_entries=", set_thash_entries);
3252 static void __init tcp_init_mem(void)
3254 unsigned long limit = nr_free_buffer_pages() / 16;
3256 limit = max(limit, 128UL);
3257 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3258 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3259 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3262 void __init tcp_init(void)
3264 unsigned long limit;
3265 int max_rshare, max_wshare, cnt;
3268 sock_skb_cb_check_size(sizeof(struct tcp_skb_cb));
3270 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3271 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3272 tcp_hashinfo.bind_bucket_cachep =
3273 kmem_cache_create("tcp_bind_bucket",
3274 sizeof(struct inet_bind_bucket), 0,
3275 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3277 /* Size and allocate the main established and bind bucket
3280 * The methodology is similar to that of the buffer cache.
3282 tcp_hashinfo.ehash =
3283 alloc_large_system_hash("TCP established",
3284 sizeof(struct inet_ehash_bucket),
3286 17, /* one slot per 128 KB of memory */
3289 &tcp_hashinfo.ehash_mask,
3291 thash_entries ? 0 : 512 * 1024);
3292 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3293 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3295 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3296 panic("TCP: failed to alloc ehash_locks");
3297 tcp_hashinfo.bhash =
3298 alloc_large_system_hash("TCP bind",
3299 sizeof(struct inet_bind_hashbucket),
3300 tcp_hashinfo.ehash_mask + 1,
3301 17, /* one slot per 128 KB of memory */
3303 &tcp_hashinfo.bhash_size,
3307 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3308 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3309 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3310 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3314 cnt = tcp_hashinfo.ehash_mask + 1;
3316 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3317 sysctl_tcp_max_orphans = cnt / 2;
3318 sysctl_max_syn_backlog = max(128, cnt / 256);
3321 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3322 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3323 max_wshare = min(4UL*1024*1024, limit);
3324 max_rshare = min(6UL*1024*1024, limit);
3326 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3327 sysctl_tcp_wmem[1] = 16*1024;
3328 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3330 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3331 sysctl_tcp_rmem[1] = 87380;
3332 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3334 pr_info("Hash tables configured (established %u bind %u)\n",
3335 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3338 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);