4 #include <linux/errno.h>
8 #include <linux/mmdebug.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page_ref.h>
29 struct anon_vma_chain;
32 struct writeback_control;
35 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
36 extern unsigned long max_mapnr;
38 static inline void set_max_mapnr(unsigned long limit)
43 static inline void set_max_mapnr(unsigned long limit) { }
46 extern unsigned long totalram_pages;
47 extern void * high_memory;
48 extern int page_cluster;
51 extern int sysctl_legacy_va_layout;
53 #define sysctl_legacy_va_layout 0
56 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
57 extern const int mmap_rnd_bits_min;
58 extern const int mmap_rnd_bits_max;
59 extern int mmap_rnd_bits __read_mostly;
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
62 extern const int mmap_rnd_compat_bits_min;
63 extern const int mmap_rnd_compat_bits_max;
64 extern int mmap_rnd_compat_bits __read_mostly;
68 #include <asm/pgtable.h>
69 #include <asm/processor.h>
72 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
76 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
80 * To prevent common memory management code establishing
81 * a zero page mapping on a read fault.
82 * This macro should be defined within <asm/pgtable.h>.
83 * s390 does this to prevent multiplexing of hardware bits
84 * related to the physical page in case of virtualization.
86 #ifndef mm_forbids_zeropage
87 #define mm_forbids_zeropage(X) (0)
91 * Default maximum number of active map areas, this limits the number of vmas
92 * per mm struct. Users can overwrite this number by sysctl but there is a
95 * When a program's coredump is generated as ELF format, a section is created
96 * per a vma. In ELF, the number of sections is represented in unsigned short.
97 * This means the number of sections should be smaller than 65535 at coredump.
98 * Because the kernel adds some informative sections to a image of program at
99 * generating coredump, we need some margin. The number of extra sections is
100 * 1-3 now and depends on arch. We use "5" as safe margin, here.
102 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
103 * not a hard limit any more. Although some userspace tools can be surprised by
106 #define MAPCOUNT_ELF_CORE_MARGIN (5)
107 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
109 extern int sysctl_max_map_count;
111 extern unsigned long sysctl_user_reserve_kbytes;
112 extern unsigned long sysctl_admin_reserve_kbytes;
114 extern int sysctl_overcommit_memory;
115 extern int sysctl_overcommit_ratio;
116 extern unsigned long sysctl_overcommit_kbytes;
118 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
120 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
123 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
125 /* to align the pointer to the (next) page boundary */
126 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
128 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
129 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
132 * Linux kernel virtual memory manager primitives.
133 * The idea being to have a "virtual" mm in the same way
134 * we have a virtual fs - giving a cleaner interface to the
135 * mm details, and allowing different kinds of memory mappings
136 * (from shared memory to executable loading to arbitrary
140 extern struct kmem_cache *vm_area_cachep;
143 extern struct rb_root nommu_region_tree;
144 extern struct rw_semaphore nommu_region_sem;
146 extern unsigned int kobjsize(const void *objp);
150 * vm_flags in vm_area_struct, see mm_types.h.
151 * When changing, update also include/trace/events/mmflags.h
153 #define VM_NONE 0x00000000
155 #define VM_READ 0x00000001 /* currently active flags */
156 #define VM_WRITE 0x00000002
157 #define VM_EXEC 0x00000004
158 #define VM_SHARED 0x00000008
160 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
161 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
162 #define VM_MAYWRITE 0x00000020
163 #define VM_MAYEXEC 0x00000040
164 #define VM_MAYSHARE 0x00000080
166 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
167 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
168 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
169 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
170 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
172 #define VM_LOCKED 0x00002000
173 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
175 /* Used by sys_madvise() */
176 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
177 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
179 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
180 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
181 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
182 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
183 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
184 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
185 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
186 #define VM_ARCH_2 0x02000000
187 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
189 #ifdef CONFIG_MEM_SOFT_DIRTY
190 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
192 # define VM_SOFTDIRTY 0
195 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
196 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
197 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
198 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
200 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
201 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
202 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
203 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
204 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
205 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
206 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
207 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
208 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
209 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
211 #if defined(CONFIG_X86)
212 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
213 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
214 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
215 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
216 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
217 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
218 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
220 #elif defined(CONFIG_PPC)
221 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
222 #elif defined(CONFIG_PARISC)
223 # define VM_GROWSUP VM_ARCH_1
224 #elif defined(CONFIG_METAG)
225 # define VM_GROWSUP VM_ARCH_1
226 #elif defined(CONFIG_IA64)
227 # define VM_GROWSUP VM_ARCH_1
228 #elif !defined(CONFIG_MMU)
229 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
232 #if defined(CONFIG_X86)
233 /* MPX specific bounds table or bounds directory */
234 # define VM_MPX VM_ARCH_2
238 # define VM_GROWSUP VM_NONE
241 /* Bits set in the VMA until the stack is in its final location */
242 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
244 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
245 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
248 #ifdef CONFIG_STACK_GROWSUP
249 #define VM_STACK VM_GROWSUP
251 #define VM_STACK VM_GROWSDOWN
254 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
257 * Special vmas that are non-mergable, non-mlock()able.
258 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
260 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
262 /* This mask defines which mm->def_flags a process can inherit its parent */
263 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
265 /* This mask is used to clear all the VMA flags used by mlock */
266 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
269 * mapping from the currently active vm_flags protection bits (the
270 * low four bits) to a page protection mask..
272 extern pgprot_t protection_map[16];
274 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
275 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
276 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
277 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
278 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
279 #define FAULT_FLAG_TRIED 0x20 /* Second try */
280 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
281 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
282 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
285 * vm_fault is filled by the the pagefault handler and passed to the vma's
286 * ->fault function. The vma's ->fault is responsible for returning a bitmask
287 * of VM_FAULT_xxx flags that give details about how the fault was handled.
289 * MM layer fills up gfp_mask for page allocations but fault handler might
290 * alter it if its implementation requires a different allocation context.
292 * pgoff should be used in favour of virtual_address, if possible.
295 struct vm_area_struct *vma; /* Target VMA */
296 unsigned int flags; /* FAULT_FLAG_xxx flags */
297 gfp_t gfp_mask; /* gfp mask to be used for allocations */
298 pgoff_t pgoff; /* Logical page offset based on vma */
299 unsigned long address; /* Faulting virtual address */
300 pmd_t *pmd; /* Pointer to pmd entry matching
302 pte_t orig_pte; /* Value of PTE at the time of fault */
304 struct page *cow_page; /* Page handler may use for COW fault */
305 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
306 struct page *page; /* ->fault handlers should return a
307 * page here, unless VM_FAULT_NOPAGE
308 * is set (which is also implied by
311 /* These three entries are valid only while holding ptl lock */
312 pte_t *pte; /* Pointer to pte entry matching
313 * the 'address'. NULL if the page
314 * table hasn't been allocated.
316 spinlock_t *ptl; /* Page table lock.
317 * Protects pte page table if 'pte'
318 * is not NULL, otherwise pmd.
320 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
321 * vm_ops->map_pages() calls
322 * alloc_set_pte() from atomic context.
323 * do_fault_around() pre-allocates
324 * page table to avoid allocation from
330 * These are the virtual MM functions - opening of an area, closing and
331 * unmapping it (needed to keep files on disk up-to-date etc), pointer
332 * to the functions called when a no-page or a wp-page exception occurs.
334 struct vm_operations_struct {
335 void (*open)(struct vm_area_struct * area);
336 void (*close)(struct vm_area_struct * area);
337 int (*mremap)(struct vm_area_struct * area);
338 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
339 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
340 pmd_t *, unsigned int flags);
341 void (*map_pages)(struct vm_fault *vmf,
342 pgoff_t start_pgoff, pgoff_t end_pgoff);
344 /* notification that a previously read-only page is about to become
345 * writable, if an error is returned it will cause a SIGBUS */
346 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
348 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
349 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
351 /* called by access_process_vm when get_user_pages() fails, typically
352 * for use by special VMAs that can switch between memory and hardware
354 int (*access)(struct vm_area_struct *vma, unsigned long addr,
355 void *buf, int len, int write);
357 /* Called by the /proc/PID/maps code to ask the vma whether it
358 * has a special name. Returning non-NULL will also cause this
359 * vma to be dumped unconditionally. */
360 const char *(*name)(struct vm_area_struct *vma);
364 * set_policy() op must add a reference to any non-NULL @new mempolicy
365 * to hold the policy upon return. Caller should pass NULL @new to
366 * remove a policy and fall back to surrounding context--i.e. do not
367 * install a MPOL_DEFAULT policy, nor the task or system default
370 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
373 * get_policy() op must add reference [mpol_get()] to any policy at
374 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
375 * in mm/mempolicy.c will do this automatically.
376 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
377 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
378 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
379 * must return NULL--i.e., do not "fallback" to task or system default
382 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
386 * Called by vm_normal_page() for special PTEs to find the
387 * page for @addr. This is useful if the default behavior
388 * (using pte_page()) would not find the correct page.
390 struct page *(*find_special_page)(struct vm_area_struct *vma,
397 #define page_private(page) ((page)->private)
398 #define set_page_private(page, v) ((page)->private = (v))
400 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
401 static inline int pmd_devmap(pmd_t pmd)
408 * FIXME: take this include out, include page-flags.h in
409 * files which need it (119 of them)
411 #include <linux/page-flags.h>
412 #include <linux/huge_mm.h>
415 * Methods to modify the page usage count.
417 * What counts for a page usage:
418 * - cache mapping (page->mapping)
419 * - private data (page->private)
420 * - page mapped in a task's page tables, each mapping
421 * is counted separately
423 * Also, many kernel routines increase the page count before a critical
424 * routine so they can be sure the page doesn't go away from under them.
428 * Drop a ref, return true if the refcount fell to zero (the page has no users)
430 static inline int put_page_testzero(struct page *page)
432 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
433 return page_ref_dec_and_test(page);
437 * Try to grab a ref unless the page has a refcount of zero, return false if
439 * This can be called when MMU is off so it must not access
440 * any of the virtual mappings.
442 static inline int get_page_unless_zero(struct page *page)
444 return page_ref_add_unless(page, 1, 0);
447 extern int page_is_ram(unsigned long pfn);
455 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
458 /* Support for virtually mapped pages */
459 struct page *vmalloc_to_page(const void *addr);
460 unsigned long vmalloc_to_pfn(const void *addr);
463 * Determine if an address is within the vmalloc range
465 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
466 * is no special casing required.
468 static inline bool is_vmalloc_addr(const void *x)
471 unsigned long addr = (unsigned long)x;
473 return addr >= VMALLOC_START && addr < VMALLOC_END;
479 extern int is_vmalloc_or_module_addr(const void *x);
481 static inline int is_vmalloc_or_module_addr(const void *x)
487 extern void kvfree(const void *addr);
489 static inline atomic_t *compound_mapcount_ptr(struct page *page)
491 return &page[1].compound_mapcount;
494 static inline int compound_mapcount(struct page *page)
496 VM_BUG_ON_PAGE(!PageCompound(page), page);
497 page = compound_head(page);
498 return atomic_read(compound_mapcount_ptr(page)) + 1;
502 * The atomic page->_mapcount, starts from -1: so that transitions
503 * both from it and to it can be tracked, using atomic_inc_and_test
504 * and atomic_add_negative(-1).
506 static inline void page_mapcount_reset(struct page *page)
508 atomic_set(&(page)->_mapcount, -1);
511 int __page_mapcount(struct page *page);
513 static inline int page_mapcount(struct page *page)
515 VM_BUG_ON_PAGE(PageSlab(page), page);
517 if (unlikely(PageCompound(page)))
518 return __page_mapcount(page);
519 return atomic_read(&page->_mapcount) + 1;
522 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
523 int total_mapcount(struct page *page);
524 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
526 static inline int total_mapcount(struct page *page)
528 return page_mapcount(page);
530 static inline int page_trans_huge_mapcount(struct page *page,
533 int mapcount = page_mapcount(page);
535 *total_mapcount = mapcount;
540 static inline struct page *virt_to_head_page(const void *x)
542 struct page *page = virt_to_page(x);
544 return compound_head(page);
547 void __put_page(struct page *page);
549 void put_pages_list(struct list_head *pages);
551 void split_page(struct page *page, unsigned int order);
554 * Compound pages have a destructor function. Provide a
555 * prototype for that function and accessor functions.
556 * These are _only_ valid on the head of a compound page.
558 typedef void compound_page_dtor(struct page *);
560 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
561 enum compound_dtor_id {
564 #ifdef CONFIG_HUGETLB_PAGE
567 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
572 extern compound_page_dtor * const compound_page_dtors[];
574 static inline void set_compound_page_dtor(struct page *page,
575 enum compound_dtor_id compound_dtor)
577 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
578 page[1].compound_dtor = compound_dtor;
581 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
583 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
584 return compound_page_dtors[page[1].compound_dtor];
587 static inline unsigned int compound_order(struct page *page)
591 return page[1].compound_order;
594 static inline void set_compound_order(struct page *page, unsigned int order)
596 page[1].compound_order = order;
599 void free_compound_page(struct page *page);
603 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
604 * servicing faults for write access. In the normal case, do always want
605 * pte_mkwrite. But get_user_pages can cause write faults for mappings
606 * that do not have writing enabled, when used by access_process_vm.
608 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
610 if (likely(vma->vm_flags & VM_WRITE))
611 pte = pte_mkwrite(pte);
615 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
617 int finish_fault(struct vm_fault *vmf);
618 int finish_mkwrite_fault(struct vm_fault *vmf);
622 * Multiple processes may "see" the same page. E.g. for untouched
623 * mappings of /dev/null, all processes see the same page full of
624 * zeroes, and text pages of executables and shared libraries have
625 * only one copy in memory, at most, normally.
627 * For the non-reserved pages, page_count(page) denotes a reference count.
628 * page_count() == 0 means the page is free. page->lru is then used for
629 * freelist management in the buddy allocator.
630 * page_count() > 0 means the page has been allocated.
632 * Pages are allocated by the slab allocator in order to provide memory
633 * to kmalloc and kmem_cache_alloc. In this case, the management of the
634 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
635 * unless a particular usage is carefully commented. (the responsibility of
636 * freeing the kmalloc memory is the caller's, of course).
638 * A page may be used by anyone else who does a __get_free_page().
639 * In this case, page_count still tracks the references, and should only
640 * be used through the normal accessor functions. The top bits of page->flags
641 * and page->virtual store page management information, but all other fields
642 * are unused and could be used privately, carefully. The management of this
643 * page is the responsibility of the one who allocated it, and those who have
644 * subsequently been given references to it.
646 * The other pages (we may call them "pagecache pages") are completely
647 * managed by the Linux memory manager: I/O, buffers, swapping etc.
648 * The following discussion applies only to them.
650 * A pagecache page contains an opaque `private' member, which belongs to the
651 * page's address_space. Usually, this is the address of a circular list of
652 * the page's disk buffers. PG_private must be set to tell the VM to call
653 * into the filesystem to release these pages.
655 * A page may belong to an inode's memory mapping. In this case, page->mapping
656 * is the pointer to the inode, and page->index is the file offset of the page,
657 * in units of PAGE_SIZE.
659 * If pagecache pages are not associated with an inode, they are said to be
660 * anonymous pages. These may become associated with the swapcache, and in that
661 * case PG_swapcache is set, and page->private is an offset into the swapcache.
663 * In either case (swapcache or inode backed), the pagecache itself holds one
664 * reference to the page. Setting PG_private should also increment the
665 * refcount. The each user mapping also has a reference to the page.
667 * The pagecache pages are stored in a per-mapping radix tree, which is
668 * rooted at mapping->page_tree, and indexed by offset.
669 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
670 * lists, we instead now tag pages as dirty/writeback in the radix tree.
672 * All pagecache pages may be subject to I/O:
673 * - inode pages may need to be read from disk,
674 * - inode pages which have been modified and are MAP_SHARED may need
675 * to be written back to the inode on disk,
676 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
677 * modified may need to be swapped out to swap space and (later) to be read
682 * The zone field is never updated after free_area_init_core()
683 * sets it, so none of the operations on it need to be atomic.
686 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
687 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
688 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
689 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
690 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
693 * Define the bit shifts to access each section. For non-existent
694 * sections we define the shift as 0; that plus a 0 mask ensures
695 * the compiler will optimise away reference to them.
697 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
698 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
699 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
700 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
702 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
703 #ifdef NODE_NOT_IN_PAGE_FLAGS
704 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
705 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
706 SECTIONS_PGOFF : ZONES_PGOFF)
708 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
709 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
710 NODES_PGOFF : ZONES_PGOFF)
713 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
715 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
716 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
719 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
720 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
721 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
722 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
723 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
725 static inline enum zone_type page_zonenum(const struct page *page)
727 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
730 #ifdef CONFIG_ZONE_DEVICE
731 void get_zone_device_page(struct page *page);
732 void put_zone_device_page(struct page *page);
733 static inline bool is_zone_device_page(const struct page *page)
735 return page_zonenum(page) == ZONE_DEVICE;
738 static inline void get_zone_device_page(struct page *page)
741 static inline void put_zone_device_page(struct page *page)
744 static inline bool is_zone_device_page(const struct page *page)
750 static inline void get_page(struct page *page)
752 page = compound_head(page);
754 * Getting a normal page or the head of a compound page
755 * requires to already have an elevated page->_refcount.
757 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
760 if (unlikely(is_zone_device_page(page)))
761 get_zone_device_page(page);
764 static inline void put_page(struct page *page)
766 page = compound_head(page);
768 if (put_page_testzero(page))
771 if (unlikely(is_zone_device_page(page)))
772 put_zone_device_page(page);
775 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
776 #define SECTION_IN_PAGE_FLAGS
780 * The identification function is mainly used by the buddy allocator for
781 * determining if two pages could be buddies. We are not really identifying
782 * the zone since we could be using the section number id if we do not have
783 * node id available in page flags.
784 * We only guarantee that it will return the same value for two combinable
787 static inline int page_zone_id(struct page *page)
789 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
792 static inline int zone_to_nid(struct zone *zone)
801 #ifdef NODE_NOT_IN_PAGE_FLAGS
802 extern int page_to_nid(const struct page *page);
804 static inline int page_to_nid(const struct page *page)
806 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
810 #ifdef CONFIG_NUMA_BALANCING
811 static inline int cpu_pid_to_cpupid(int cpu, int pid)
813 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
816 static inline int cpupid_to_pid(int cpupid)
818 return cpupid & LAST__PID_MASK;
821 static inline int cpupid_to_cpu(int cpupid)
823 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
826 static inline int cpupid_to_nid(int cpupid)
828 return cpu_to_node(cpupid_to_cpu(cpupid));
831 static inline bool cpupid_pid_unset(int cpupid)
833 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
836 static inline bool cpupid_cpu_unset(int cpupid)
838 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
841 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
843 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
846 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
847 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
848 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
850 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
853 static inline int page_cpupid_last(struct page *page)
855 return page->_last_cpupid;
857 static inline void page_cpupid_reset_last(struct page *page)
859 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
862 static inline int page_cpupid_last(struct page *page)
864 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
867 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
869 static inline void page_cpupid_reset_last(struct page *page)
871 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
873 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
874 #else /* !CONFIG_NUMA_BALANCING */
875 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
877 return page_to_nid(page); /* XXX */
880 static inline int page_cpupid_last(struct page *page)
882 return page_to_nid(page); /* XXX */
885 static inline int cpupid_to_nid(int cpupid)
890 static inline int cpupid_to_pid(int cpupid)
895 static inline int cpupid_to_cpu(int cpupid)
900 static inline int cpu_pid_to_cpupid(int nid, int pid)
905 static inline bool cpupid_pid_unset(int cpupid)
910 static inline void page_cpupid_reset_last(struct page *page)
914 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
918 #endif /* CONFIG_NUMA_BALANCING */
920 static inline struct zone *page_zone(const struct page *page)
922 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
925 static inline pg_data_t *page_pgdat(const struct page *page)
927 return NODE_DATA(page_to_nid(page));
930 #ifdef SECTION_IN_PAGE_FLAGS
931 static inline void set_page_section(struct page *page, unsigned long section)
933 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
934 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
937 static inline unsigned long page_to_section(const struct page *page)
939 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
943 static inline void set_page_zone(struct page *page, enum zone_type zone)
945 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
946 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
949 static inline void set_page_node(struct page *page, unsigned long node)
951 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
952 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
955 static inline void set_page_links(struct page *page, enum zone_type zone,
956 unsigned long node, unsigned long pfn)
958 set_page_zone(page, zone);
959 set_page_node(page, node);
960 #ifdef SECTION_IN_PAGE_FLAGS
961 set_page_section(page, pfn_to_section_nr(pfn));
966 static inline struct mem_cgroup *page_memcg(struct page *page)
968 return page->mem_cgroup;
970 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
972 WARN_ON_ONCE(!rcu_read_lock_held());
973 return READ_ONCE(page->mem_cgroup);
976 static inline struct mem_cgroup *page_memcg(struct page *page)
980 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
982 WARN_ON_ONCE(!rcu_read_lock_held());
988 * Some inline functions in vmstat.h depend on page_zone()
990 #include <linux/vmstat.h>
992 static __always_inline void *lowmem_page_address(const struct page *page)
994 return page_to_virt(page);
997 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
998 #define HASHED_PAGE_VIRTUAL
1001 #if defined(WANT_PAGE_VIRTUAL)
1002 static inline void *page_address(const struct page *page)
1004 return page->virtual;
1006 static inline void set_page_address(struct page *page, void *address)
1008 page->virtual = address;
1010 #define page_address_init() do { } while(0)
1013 #if defined(HASHED_PAGE_VIRTUAL)
1014 void *page_address(const struct page *page);
1015 void set_page_address(struct page *page, void *virtual);
1016 void page_address_init(void);
1019 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1020 #define page_address(page) lowmem_page_address(page)
1021 #define set_page_address(page, address) do { } while(0)
1022 #define page_address_init() do { } while(0)
1025 extern void *page_rmapping(struct page *page);
1026 extern struct anon_vma *page_anon_vma(struct page *page);
1027 extern struct address_space *page_mapping(struct page *page);
1029 extern struct address_space *__page_file_mapping(struct page *);
1032 struct address_space *page_file_mapping(struct page *page)
1034 if (unlikely(PageSwapCache(page)))
1035 return __page_file_mapping(page);
1037 return page->mapping;
1040 extern pgoff_t __page_file_index(struct page *page);
1043 * Return the pagecache index of the passed page. Regular pagecache pages
1044 * use ->index whereas swapcache pages use swp_offset(->private)
1046 static inline pgoff_t page_index(struct page *page)
1048 if (unlikely(PageSwapCache(page)))
1049 return __page_file_index(page);
1053 bool page_mapped(struct page *page);
1054 struct address_space *page_mapping(struct page *page);
1057 * Return true only if the page has been allocated with
1058 * ALLOC_NO_WATERMARKS and the low watermark was not
1059 * met implying that the system is under some pressure.
1061 static inline bool page_is_pfmemalloc(struct page *page)
1064 * Page index cannot be this large so this must be
1065 * a pfmemalloc page.
1067 return page->index == -1UL;
1071 * Only to be called by the page allocator on a freshly allocated
1074 static inline void set_page_pfmemalloc(struct page *page)
1079 static inline void clear_page_pfmemalloc(struct page *page)
1085 * Different kinds of faults, as returned by handle_mm_fault().
1086 * Used to decide whether a process gets delivered SIGBUS or
1087 * just gets major/minor fault counters bumped up.
1090 #define VM_FAULT_OOM 0x0001
1091 #define VM_FAULT_SIGBUS 0x0002
1092 #define VM_FAULT_MAJOR 0x0004
1093 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1094 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1095 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1096 #define VM_FAULT_SIGSEGV 0x0040
1098 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1099 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1100 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1101 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1102 #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1104 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1106 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1107 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1110 /* Encode hstate index for a hwpoisoned large page */
1111 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1112 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1115 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1117 extern void pagefault_out_of_memory(void);
1119 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1122 * Flags passed to show_mem() and show_free_areas() to suppress output in
1125 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1127 extern void show_free_areas(unsigned int flags);
1128 extern bool skip_free_areas_node(unsigned int flags, int nid);
1130 int shmem_zero_setup(struct vm_area_struct *);
1132 bool shmem_mapping(struct address_space *mapping);
1134 static inline bool shmem_mapping(struct address_space *mapping)
1140 extern bool can_do_mlock(void);
1141 extern int user_shm_lock(size_t, struct user_struct *);
1142 extern void user_shm_unlock(size_t, struct user_struct *);
1145 * Parameter block passed down to zap_pte_range in exceptional cases.
1147 struct zap_details {
1148 struct address_space *check_mapping; /* Check page->mapping if set */
1149 pgoff_t first_index; /* Lowest page->index to unmap */
1150 pgoff_t last_index; /* Highest page->index to unmap */
1151 bool ignore_dirty; /* Ignore dirty pages */
1152 bool check_swap_entries; /* Check also swap entries */
1155 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1157 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1160 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1161 unsigned long size);
1162 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1163 unsigned long size, struct zap_details *);
1164 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1165 unsigned long start, unsigned long end);
1168 * mm_walk - callbacks for walk_page_range
1169 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1170 * this handler is required to be able to handle
1171 * pmd_trans_huge() pmds. They may simply choose to
1172 * split_huge_page() instead of handling it explicitly.
1173 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1174 * @pte_hole: if set, called for each hole at all levels
1175 * @hugetlb_entry: if set, called for each hugetlb entry
1176 * @test_walk: caller specific callback function to determine whether
1177 * we walk over the current vma or not. Returning 0
1178 * value means "do page table walk over the current vma,"
1179 * and a negative one means "abort current page table walk
1180 * right now." 1 means "skip the current vma."
1181 * @mm: mm_struct representing the target process of page table walk
1182 * @vma: vma currently walked (NULL if walking outside vmas)
1183 * @private: private data for callbacks' usage
1185 * (see the comment on walk_page_range() for more details)
1188 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1189 unsigned long next, struct mm_walk *walk);
1190 int (*pte_entry)(pte_t *pte, unsigned long addr,
1191 unsigned long next, struct mm_walk *walk);
1192 int (*pte_hole)(unsigned long addr, unsigned long next,
1193 struct mm_walk *walk);
1194 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1195 unsigned long addr, unsigned long next,
1196 struct mm_walk *walk);
1197 int (*test_walk)(unsigned long addr, unsigned long next,
1198 struct mm_walk *walk);
1199 struct mm_struct *mm;
1200 struct vm_area_struct *vma;
1204 int walk_page_range(unsigned long addr, unsigned long end,
1205 struct mm_walk *walk);
1206 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1207 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1208 unsigned long end, unsigned long floor, unsigned long ceiling);
1209 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1210 struct vm_area_struct *vma);
1211 void unmap_mapping_range(struct address_space *mapping,
1212 loff_t const holebegin, loff_t const holelen, int even_cows);
1213 int follow_pte(struct mm_struct *mm, unsigned long address, pte_t **ptepp,
1215 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1216 unsigned long *pfn);
1217 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1218 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1219 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1220 void *buf, int len, int write);
1222 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1223 loff_t const holebegin, loff_t const holelen)
1225 unmap_mapping_range(mapping, holebegin, holelen, 0);
1228 extern void truncate_pagecache(struct inode *inode, loff_t new);
1229 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1230 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1231 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1232 int truncate_inode_page(struct address_space *mapping, struct page *page);
1233 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1234 int invalidate_inode_page(struct page *page);
1237 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1238 unsigned int flags);
1239 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1240 unsigned long address, unsigned int fault_flags,
1243 static inline int handle_mm_fault(struct vm_area_struct *vma,
1244 unsigned long address, unsigned int flags)
1246 /* should never happen if there's no MMU */
1248 return VM_FAULT_SIGBUS;
1250 static inline int fixup_user_fault(struct task_struct *tsk,
1251 struct mm_struct *mm, unsigned long address,
1252 unsigned int fault_flags, bool *unlocked)
1254 /* should never happen if there's no MMU */
1260 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1261 unsigned int gup_flags);
1262 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1263 void *buf, int len, unsigned int gup_flags);
1264 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1265 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1267 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1268 unsigned long start, unsigned long nr_pages,
1269 unsigned int gup_flags, struct page **pages,
1270 struct vm_area_struct **vmas, int *locked);
1271 long get_user_pages(unsigned long start, unsigned long nr_pages,
1272 unsigned int gup_flags, struct page **pages,
1273 struct vm_area_struct **vmas);
1274 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1275 unsigned int gup_flags, struct page **pages, int *locked);
1276 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1277 struct page **pages, unsigned int gup_flags);
1278 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1279 struct page **pages);
1281 /* Container for pinned pfns / pages */
1282 struct frame_vector {
1283 unsigned int nr_allocated; /* Number of frames we have space for */
1284 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1285 bool got_ref; /* Did we pin pages by getting page ref? */
1286 bool is_pfns; /* Does array contain pages or pfns? */
1287 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1288 * pfns_vector_pages() or pfns_vector_pfns()
1292 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1293 void frame_vector_destroy(struct frame_vector *vec);
1294 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1295 unsigned int gup_flags, struct frame_vector *vec);
1296 void put_vaddr_frames(struct frame_vector *vec);
1297 int frame_vector_to_pages(struct frame_vector *vec);
1298 void frame_vector_to_pfns(struct frame_vector *vec);
1300 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1302 return vec->nr_frames;
1305 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1308 int err = frame_vector_to_pages(vec);
1311 return ERR_PTR(err);
1313 return (struct page **)(vec->ptrs);
1316 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1319 frame_vector_to_pfns(vec);
1320 return (unsigned long *)(vec->ptrs);
1324 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1325 struct page **pages);
1326 int get_kernel_page(unsigned long start, int write, struct page **pages);
1327 struct page *get_dump_page(unsigned long addr);
1329 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1330 extern void do_invalidatepage(struct page *page, unsigned int offset,
1331 unsigned int length);
1333 int __set_page_dirty_nobuffers(struct page *page);
1334 int __set_page_dirty_no_writeback(struct page *page);
1335 int redirty_page_for_writepage(struct writeback_control *wbc,
1337 void account_page_dirtied(struct page *page, struct address_space *mapping);
1338 void account_page_cleaned(struct page *page, struct address_space *mapping,
1339 struct bdi_writeback *wb);
1340 int set_page_dirty(struct page *page);
1341 int set_page_dirty_lock(struct page *page);
1342 void cancel_dirty_page(struct page *page);
1343 int clear_page_dirty_for_io(struct page *page);
1345 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1347 /* Is the vma a continuation of the stack vma above it? */
1348 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1350 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1353 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1355 return !vma->vm_ops;
1358 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1361 return (vma->vm_flags & VM_GROWSDOWN) &&
1362 (vma->vm_start == addr) &&
1363 !vma_growsdown(vma->vm_prev, addr);
1366 /* Is the vma a continuation of the stack vma below it? */
1367 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1369 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1372 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1375 return (vma->vm_flags & VM_GROWSUP) &&
1376 (vma->vm_end == addr) &&
1377 !vma_growsup(vma->vm_next, addr);
1380 int vma_is_stack_for_current(struct vm_area_struct *vma);
1382 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1383 unsigned long old_addr, struct vm_area_struct *new_vma,
1384 unsigned long new_addr, unsigned long len,
1385 bool need_rmap_locks);
1386 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1387 unsigned long end, pgprot_t newprot,
1388 int dirty_accountable, int prot_numa);
1389 extern int mprotect_fixup(struct vm_area_struct *vma,
1390 struct vm_area_struct **pprev, unsigned long start,
1391 unsigned long end, unsigned long newflags);
1394 * doesn't attempt to fault and will return short.
1396 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1397 struct page **pages);
1399 * per-process(per-mm_struct) statistics.
1401 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1403 long val = atomic_long_read(&mm->rss_stat.count[member]);
1405 #ifdef SPLIT_RSS_COUNTING
1407 * counter is updated in asynchronous manner and may go to minus.
1408 * But it's never be expected number for users.
1413 return (unsigned long)val;
1416 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1418 atomic_long_add(value, &mm->rss_stat.count[member]);
1421 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1423 atomic_long_inc(&mm->rss_stat.count[member]);
1426 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1428 atomic_long_dec(&mm->rss_stat.count[member]);
1431 /* Optimized variant when page is already known not to be PageAnon */
1432 static inline int mm_counter_file(struct page *page)
1434 if (PageSwapBacked(page))
1435 return MM_SHMEMPAGES;
1436 return MM_FILEPAGES;
1439 static inline int mm_counter(struct page *page)
1442 return MM_ANONPAGES;
1443 return mm_counter_file(page);
1446 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1448 return get_mm_counter(mm, MM_FILEPAGES) +
1449 get_mm_counter(mm, MM_ANONPAGES) +
1450 get_mm_counter(mm, MM_SHMEMPAGES);
1453 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1455 return max(mm->hiwater_rss, get_mm_rss(mm));
1458 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1460 return max(mm->hiwater_vm, mm->total_vm);
1463 static inline void update_hiwater_rss(struct mm_struct *mm)
1465 unsigned long _rss = get_mm_rss(mm);
1467 if ((mm)->hiwater_rss < _rss)
1468 (mm)->hiwater_rss = _rss;
1471 static inline void update_hiwater_vm(struct mm_struct *mm)
1473 if (mm->hiwater_vm < mm->total_vm)
1474 mm->hiwater_vm = mm->total_vm;
1477 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1479 mm->hiwater_rss = get_mm_rss(mm);
1482 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1483 struct mm_struct *mm)
1485 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1487 if (*maxrss < hiwater_rss)
1488 *maxrss = hiwater_rss;
1491 #if defined(SPLIT_RSS_COUNTING)
1492 void sync_mm_rss(struct mm_struct *mm);
1494 static inline void sync_mm_rss(struct mm_struct *mm)
1499 #ifndef __HAVE_ARCH_PTE_DEVMAP
1500 static inline int pte_devmap(pte_t pte)
1506 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1508 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1510 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1514 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1518 #ifdef __PAGETABLE_PUD_FOLDED
1519 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1520 unsigned long address)
1525 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1528 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1529 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1530 unsigned long address)
1535 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1537 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1542 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1543 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1546 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1548 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1550 atomic_long_set(&mm->nr_pmds, 0);
1553 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1555 return atomic_long_read(&mm->nr_pmds);
1558 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1560 atomic_long_inc(&mm->nr_pmds);
1563 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1565 atomic_long_dec(&mm->nr_pmds);
1569 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1570 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1573 * The following ifdef needed to get the 4level-fixup.h header to work.
1574 * Remove it when 4level-fixup.h has been removed.
1576 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1577 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1579 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1580 NULL: pud_offset(pgd, address);
1583 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1585 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1586 NULL: pmd_offset(pud, address);
1588 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1590 #if USE_SPLIT_PTE_PTLOCKS
1591 #if ALLOC_SPLIT_PTLOCKS
1592 void __init ptlock_cache_init(void);
1593 extern bool ptlock_alloc(struct page *page);
1594 extern void ptlock_free(struct page *page);
1596 static inline spinlock_t *ptlock_ptr(struct page *page)
1600 #else /* ALLOC_SPLIT_PTLOCKS */
1601 static inline void ptlock_cache_init(void)
1605 static inline bool ptlock_alloc(struct page *page)
1610 static inline void ptlock_free(struct page *page)
1614 static inline spinlock_t *ptlock_ptr(struct page *page)
1618 #endif /* ALLOC_SPLIT_PTLOCKS */
1620 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1622 return ptlock_ptr(pmd_page(*pmd));
1625 static inline bool ptlock_init(struct page *page)
1628 * prep_new_page() initialize page->private (and therefore page->ptl)
1629 * with 0. Make sure nobody took it in use in between.
1631 * It can happen if arch try to use slab for page table allocation:
1632 * slab code uses page->slab_cache, which share storage with page->ptl.
1634 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1635 if (!ptlock_alloc(page))
1637 spin_lock_init(ptlock_ptr(page));
1641 /* Reset page->mapping so free_pages_check won't complain. */
1642 static inline void pte_lock_deinit(struct page *page)
1644 page->mapping = NULL;
1648 #else /* !USE_SPLIT_PTE_PTLOCKS */
1650 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1652 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1654 return &mm->page_table_lock;
1656 static inline void ptlock_cache_init(void) {}
1657 static inline bool ptlock_init(struct page *page) { return true; }
1658 static inline void pte_lock_deinit(struct page *page) {}
1659 #endif /* USE_SPLIT_PTE_PTLOCKS */
1661 static inline void pgtable_init(void)
1663 ptlock_cache_init();
1664 pgtable_cache_init();
1667 static inline bool pgtable_page_ctor(struct page *page)
1669 if (!ptlock_init(page))
1671 inc_zone_page_state(page, NR_PAGETABLE);
1675 static inline void pgtable_page_dtor(struct page *page)
1677 pte_lock_deinit(page);
1678 dec_zone_page_state(page, NR_PAGETABLE);
1681 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1683 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1684 pte_t *__pte = pte_offset_map(pmd, address); \
1690 #define pte_unmap_unlock(pte, ptl) do { \
1695 #define pte_alloc(mm, pmd, address) \
1696 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1698 #define pte_alloc_map(mm, pmd, address) \
1699 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1701 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1702 (pte_alloc(mm, pmd, address) ? \
1703 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1705 #define pte_alloc_kernel(pmd, address) \
1706 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1707 NULL: pte_offset_kernel(pmd, address))
1709 #if USE_SPLIT_PMD_PTLOCKS
1711 static struct page *pmd_to_page(pmd_t *pmd)
1713 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1714 return virt_to_page((void *)((unsigned long) pmd & mask));
1717 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1719 return ptlock_ptr(pmd_to_page(pmd));
1722 static inline bool pgtable_pmd_page_ctor(struct page *page)
1724 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1725 page->pmd_huge_pte = NULL;
1727 return ptlock_init(page);
1730 static inline void pgtable_pmd_page_dtor(struct page *page)
1732 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1733 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1738 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1742 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1744 return &mm->page_table_lock;
1747 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1748 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1750 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1754 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1756 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1761 extern void free_area_init(unsigned long * zones_size);
1762 extern void free_area_init_node(int nid, unsigned long * zones_size,
1763 unsigned long zone_start_pfn, unsigned long *zholes_size);
1764 extern void free_initmem(void);
1767 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1768 * into the buddy system. The freed pages will be poisoned with pattern
1769 * "poison" if it's within range [0, UCHAR_MAX].
1770 * Return pages freed into the buddy system.
1772 extern unsigned long free_reserved_area(void *start, void *end,
1773 int poison, char *s);
1775 #ifdef CONFIG_HIGHMEM
1777 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1778 * and totalram_pages.
1780 extern void free_highmem_page(struct page *page);
1783 extern void adjust_managed_page_count(struct page *page, long count);
1784 extern void mem_init_print_info(const char *str);
1786 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
1788 /* Free the reserved page into the buddy system, so it gets managed. */
1789 static inline void __free_reserved_page(struct page *page)
1791 ClearPageReserved(page);
1792 init_page_count(page);
1796 static inline void free_reserved_page(struct page *page)
1798 __free_reserved_page(page);
1799 adjust_managed_page_count(page, 1);
1802 static inline void mark_page_reserved(struct page *page)
1804 SetPageReserved(page);
1805 adjust_managed_page_count(page, -1);
1809 * Default method to free all the __init memory into the buddy system.
1810 * The freed pages will be poisoned with pattern "poison" if it's within
1811 * range [0, UCHAR_MAX].
1812 * Return pages freed into the buddy system.
1814 static inline unsigned long free_initmem_default(int poison)
1816 extern char __init_begin[], __init_end[];
1818 return free_reserved_area(&__init_begin, &__init_end,
1819 poison, "unused kernel");
1822 static inline unsigned long get_num_physpages(void)
1825 unsigned long phys_pages = 0;
1827 for_each_online_node(nid)
1828 phys_pages += node_present_pages(nid);
1833 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1835 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1836 * zones, allocate the backing mem_map and account for memory holes in a more
1837 * architecture independent manner. This is a substitute for creating the
1838 * zone_sizes[] and zholes_size[] arrays and passing them to
1839 * free_area_init_node()
1841 * An architecture is expected to register range of page frames backed by
1842 * physical memory with memblock_add[_node]() before calling
1843 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1844 * usage, an architecture is expected to do something like
1846 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1848 * for_each_valid_physical_page_range()
1849 * memblock_add_node(base, size, nid)
1850 * free_area_init_nodes(max_zone_pfns);
1852 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1853 * registered physical page range. Similarly
1854 * sparse_memory_present_with_active_regions() calls memory_present() for
1855 * each range when SPARSEMEM is enabled.
1857 * See mm/page_alloc.c for more information on each function exposed by
1858 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1860 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1861 unsigned long node_map_pfn_alignment(void);
1862 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1863 unsigned long end_pfn);
1864 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1865 unsigned long end_pfn);
1866 extern void get_pfn_range_for_nid(unsigned int nid,
1867 unsigned long *start_pfn, unsigned long *end_pfn);
1868 extern unsigned long find_min_pfn_with_active_regions(void);
1869 extern void free_bootmem_with_active_regions(int nid,
1870 unsigned long max_low_pfn);
1871 extern void sparse_memory_present_with_active_regions(int nid);
1873 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1875 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1876 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1877 static inline int __early_pfn_to_nid(unsigned long pfn,
1878 struct mminit_pfnnid_cache *state)
1883 /* please see mm/page_alloc.c */
1884 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1885 /* there is a per-arch backend function. */
1886 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1887 struct mminit_pfnnid_cache *state);
1890 extern void set_dma_reserve(unsigned long new_dma_reserve);
1891 extern void memmap_init_zone(unsigned long, int, unsigned long,
1892 unsigned long, enum memmap_context);
1893 extern void setup_per_zone_wmarks(void);
1894 extern int __meminit init_per_zone_wmark_min(void);
1895 extern void mem_init(void);
1896 extern void __init mmap_init(void);
1897 extern void show_mem(unsigned int flags);
1898 extern long si_mem_available(void);
1899 extern void si_meminfo(struct sysinfo * val);
1900 extern void si_meminfo_node(struct sysinfo *val, int nid);
1901 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
1902 extern unsigned long arch_reserved_kernel_pages(void);
1905 extern __printf(2, 3)
1906 void warn_alloc(gfp_t gfp_mask, const char *fmt, ...);
1908 extern void setup_per_cpu_pageset(void);
1910 extern void zone_pcp_update(struct zone *zone);
1911 extern void zone_pcp_reset(struct zone *zone);
1914 extern int min_free_kbytes;
1915 extern int watermark_scale_factor;
1918 extern atomic_long_t mmap_pages_allocated;
1919 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1921 /* interval_tree.c */
1922 void vma_interval_tree_insert(struct vm_area_struct *node,
1923 struct rb_root *root);
1924 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1925 struct vm_area_struct *prev,
1926 struct rb_root *root);
1927 void vma_interval_tree_remove(struct vm_area_struct *node,
1928 struct rb_root *root);
1929 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1930 unsigned long start, unsigned long last);
1931 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1932 unsigned long start, unsigned long last);
1934 #define vma_interval_tree_foreach(vma, root, start, last) \
1935 for (vma = vma_interval_tree_iter_first(root, start, last); \
1936 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1938 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1939 struct rb_root *root);
1940 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1941 struct rb_root *root);
1942 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1943 struct rb_root *root, unsigned long start, unsigned long last);
1944 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1945 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1946 #ifdef CONFIG_DEBUG_VM_RB
1947 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1950 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1951 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1952 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1955 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1956 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
1957 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
1958 struct vm_area_struct *expand);
1959 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1960 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
1962 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
1964 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1965 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1966 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1967 struct mempolicy *, struct vm_userfaultfd_ctx);
1968 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1969 extern int split_vma(struct mm_struct *,
1970 struct vm_area_struct *, unsigned long addr, int new_below);
1971 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1972 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1973 struct rb_node **, struct rb_node *);
1974 extern void unlink_file_vma(struct vm_area_struct *);
1975 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1976 unsigned long addr, unsigned long len, pgoff_t pgoff,
1977 bool *need_rmap_locks);
1978 extern void exit_mmap(struct mm_struct *);
1980 static inline int check_data_rlimit(unsigned long rlim,
1982 unsigned long start,
1983 unsigned long end_data,
1984 unsigned long start_data)
1986 if (rlim < RLIM_INFINITY) {
1987 if (((new - start) + (end_data - start_data)) > rlim)
1994 extern int mm_take_all_locks(struct mm_struct *mm);
1995 extern void mm_drop_all_locks(struct mm_struct *mm);
1997 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1998 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1999 extern struct file *get_task_exe_file(struct task_struct *task);
2001 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2002 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2004 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2005 const struct vm_special_mapping *sm);
2006 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2007 unsigned long addr, unsigned long len,
2008 unsigned long flags,
2009 const struct vm_special_mapping *spec);
2010 /* This is an obsolete alternative to _install_special_mapping. */
2011 extern int install_special_mapping(struct mm_struct *mm,
2012 unsigned long addr, unsigned long len,
2013 unsigned long flags, struct page **pages);
2015 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2017 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2018 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
2019 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2020 unsigned long len, unsigned long prot, unsigned long flags,
2021 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
2022 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
2024 static inline unsigned long
2025 do_mmap_pgoff(struct file *file, unsigned long addr,
2026 unsigned long len, unsigned long prot, unsigned long flags,
2027 unsigned long pgoff, unsigned long *populate)
2029 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
2033 extern int __mm_populate(unsigned long addr, unsigned long len,
2035 static inline void mm_populate(unsigned long addr, unsigned long len)
2038 (void) __mm_populate(addr, len, 1);
2041 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2044 /* These take the mm semaphore themselves */
2045 extern int __must_check vm_brk(unsigned long, unsigned long);
2046 extern int vm_munmap(unsigned long, size_t);
2047 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2048 unsigned long, unsigned long,
2049 unsigned long, unsigned long);
2051 struct vm_unmapped_area_info {
2052 #define VM_UNMAPPED_AREA_TOPDOWN 1
2053 unsigned long flags;
2054 unsigned long length;
2055 unsigned long low_limit;
2056 unsigned long high_limit;
2057 unsigned long align_mask;
2058 unsigned long align_offset;
2061 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2062 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2065 * Search for an unmapped address range.
2067 * We are looking for a range that:
2068 * - does not intersect with any VMA;
2069 * - is contained within the [low_limit, high_limit) interval;
2070 * - is at least the desired size.
2071 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2073 static inline unsigned long
2074 vm_unmapped_area(struct vm_unmapped_area_info *info)
2076 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2077 return unmapped_area_topdown(info);
2079 return unmapped_area(info);
2083 extern void truncate_inode_pages(struct address_space *, loff_t);
2084 extern void truncate_inode_pages_range(struct address_space *,
2085 loff_t lstart, loff_t lend);
2086 extern void truncate_inode_pages_final(struct address_space *);
2088 /* generic vm_area_ops exported for stackable file systems */
2089 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2090 extern void filemap_map_pages(struct vm_fault *vmf,
2091 pgoff_t start_pgoff, pgoff_t end_pgoff);
2092 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2094 /* mm/page-writeback.c */
2095 int write_one_page(struct page *page, int wait);
2096 void task_dirty_inc(struct task_struct *tsk);
2099 #define VM_MAX_READAHEAD 128 /* kbytes */
2100 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2102 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2103 pgoff_t offset, unsigned long nr_to_read);
2105 void page_cache_sync_readahead(struct address_space *mapping,
2106 struct file_ra_state *ra,
2109 unsigned long size);
2111 void page_cache_async_readahead(struct address_space *mapping,
2112 struct file_ra_state *ra,
2116 unsigned long size);
2118 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2119 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2121 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2122 extern int expand_downwards(struct vm_area_struct *vma,
2123 unsigned long address);
2125 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2127 #define expand_upwards(vma, address) (0)
2130 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2131 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2132 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2133 struct vm_area_struct **pprev);
2135 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2136 NULL if none. Assume start_addr < end_addr. */
2137 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2139 struct vm_area_struct * vma = find_vma(mm,start_addr);
2141 if (vma && end_addr <= vma->vm_start)
2146 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2148 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2151 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2152 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2153 unsigned long vm_start, unsigned long vm_end)
2155 struct vm_area_struct *vma = find_vma(mm, vm_start);
2157 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2164 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2165 void vma_set_page_prot(struct vm_area_struct *vma);
2167 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2171 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2173 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2177 #ifdef CONFIG_NUMA_BALANCING
2178 unsigned long change_prot_numa(struct vm_area_struct *vma,
2179 unsigned long start, unsigned long end);
2182 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2183 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2184 unsigned long pfn, unsigned long size, pgprot_t);
2185 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2186 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2188 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2189 unsigned long pfn, pgprot_t pgprot);
2190 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2192 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2195 struct page *follow_page_mask(struct vm_area_struct *vma,
2196 unsigned long address, unsigned int foll_flags,
2197 unsigned int *page_mask);
2199 static inline struct page *follow_page(struct vm_area_struct *vma,
2200 unsigned long address, unsigned int foll_flags)
2202 unsigned int unused_page_mask;
2203 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2206 #define FOLL_WRITE 0x01 /* check pte is writable */
2207 #define FOLL_TOUCH 0x02 /* mark page accessed */
2208 #define FOLL_GET 0x04 /* do get_page on page */
2209 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2210 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2211 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2212 * and return without waiting upon it */
2213 #define FOLL_POPULATE 0x40 /* fault in page */
2214 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2215 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2216 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2217 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2218 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2219 #define FOLL_MLOCK 0x1000 /* lock present pages */
2220 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2221 #define FOLL_COW 0x4000 /* internal GUP flag */
2223 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2225 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2226 unsigned long size, pte_fn_t fn, void *data);
2229 #ifdef CONFIG_PAGE_POISONING
2230 extern bool page_poisoning_enabled(void);
2231 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2232 extern bool page_is_poisoned(struct page *page);
2234 static inline bool page_poisoning_enabled(void) { return false; }
2235 static inline void kernel_poison_pages(struct page *page, int numpages,
2237 static inline bool page_is_poisoned(struct page *page) { return false; }
2240 #ifdef CONFIG_DEBUG_PAGEALLOC
2241 extern bool _debug_pagealloc_enabled;
2242 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2244 static inline bool debug_pagealloc_enabled(void)
2246 return _debug_pagealloc_enabled;
2250 kernel_map_pages(struct page *page, int numpages, int enable)
2252 if (!debug_pagealloc_enabled())
2255 __kernel_map_pages(page, numpages, enable);
2257 #ifdef CONFIG_HIBERNATION
2258 extern bool kernel_page_present(struct page *page);
2259 #endif /* CONFIG_HIBERNATION */
2260 #else /* CONFIG_DEBUG_PAGEALLOC */
2262 kernel_map_pages(struct page *page, int numpages, int enable) {}
2263 #ifdef CONFIG_HIBERNATION
2264 static inline bool kernel_page_present(struct page *page) { return true; }
2265 #endif /* CONFIG_HIBERNATION */
2266 static inline bool debug_pagealloc_enabled(void)
2270 #endif /* CONFIG_DEBUG_PAGEALLOC */
2272 #ifdef __HAVE_ARCH_GATE_AREA
2273 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2274 extern int in_gate_area_no_mm(unsigned long addr);
2275 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2277 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2281 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2282 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2286 #endif /* __HAVE_ARCH_GATE_AREA */
2288 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2290 #ifdef CONFIG_SYSCTL
2291 extern int sysctl_drop_caches;
2292 int drop_caches_sysctl_handler(struct ctl_table *, int,
2293 void __user *, size_t *, loff_t *);
2296 void drop_slab(void);
2297 void drop_slab_node(int nid);
2300 #define randomize_va_space 0
2302 extern int randomize_va_space;
2305 const char * arch_vma_name(struct vm_area_struct *vma);
2306 void print_vma_addr(char *prefix, unsigned long rip);
2308 void sparse_mem_maps_populate_node(struct page **map_map,
2309 unsigned long pnum_begin,
2310 unsigned long pnum_end,
2311 unsigned long map_count,
2314 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2315 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2316 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2317 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2318 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2319 void *vmemmap_alloc_block(unsigned long size, int node);
2321 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2322 struct vmem_altmap *altmap);
2323 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2325 return __vmemmap_alloc_block_buf(size, node, NULL);
2328 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2329 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2331 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2332 void vmemmap_populate_print_last(void);
2333 #ifdef CONFIG_MEMORY_HOTPLUG
2334 void vmemmap_free(unsigned long start, unsigned long end);
2336 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2337 unsigned long size);
2340 MF_COUNT_INCREASED = 1 << 0,
2341 MF_ACTION_REQUIRED = 1 << 1,
2342 MF_MUST_KILL = 1 << 2,
2343 MF_SOFT_OFFLINE = 1 << 3,
2345 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2346 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2347 extern int unpoison_memory(unsigned long pfn);
2348 extern int get_hwpoison_page(struct page *page);
2349 #define put_hwpoison_page(page) put_page(page)
2350 extern int sysctl_memory_failure_early_kill;
2351 extern int sysctl_memory_failure_recovery;
2352 extern void shake_page(struct page *p, int access);
2353 extern atomic_long_t num_poisoned_pages;
2354 extern int soft_offline_page(struct page *page, int flags);
2358 * Error handlers for various types of pages.
2361 MF_IGNORED, /* Error: cannot be handled */
2362 MF_FAILED, /* Error: handling failed */
2363 MF_DELAYED, /* Will be handled later */
2364 MF_RECOVERED, /* Successfully recovered */
2367 enum mf_action_page_type {
2369 MF_MSG_KERNEL_HIGH_ORDER,
2371 MF_MSG_DIFFERENT_COMPOUND,
2372 MF_MSG_POISONED_HUGE,
2375 MF_MSG_UNMAP_FAILED,
2376 MF_MSG_DIRTY_SWAPCACHE,
2377 MF_MSG_CLEAN_SWAPCACHE,
2378 MF_MSG_DIRTY_MLOCKED_LRU,
2379 MF_MSG_CLEAN_MLOCKED_LRU,
2380 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2381 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2384 MF_MSG_TRUNCATED_LRU,
2390 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2391 extern void clear_huge_page(struct page *page,
2393 unsigned int pages_per_huge_page);
2394 extern void copy_user_huge_page(struct page *dst, struct page *src,
2395 unsigned long addr, struct vm_area_struct *vma,
2396 unsigned int pages_per_huge_page);
2397 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2399 extern struct page_ext_operations debug_guardpage_ops;
2400 extern struct page_ext_operations page_poisoning_ops;
2402 #ifdef CONFIG_DEBUG_PAGEALLOC
2403 extern unsigned int _debug_guardpage_minorder;
2404 extern bool _debug_guardpage_enabled;
2406 static inline unsigned int debug_guardpage_minorder(void)
2408 return _debug_guardpage_minorder;
2411 static inline bool debug_guardpage_enabled(void)
2413 return _debug_guardpage_enabled;
2416 static inline bool page_is_guard(struct page *page)
2418 struct page_ext *page_ext;
2420 if (!debug_guardpage_enabled())
2423 page_ext = lookup_page_ext(page);
2424 if (unlikely(!page_ext))
2427 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2430 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2431 static inline bool debug_guardpage_enabled(void) { return false; }
2432 static inline bool page_is_guard(struct page *page) { return false; }
2433 #endif /* CONFIG_DEBUG_PAGEALLOC */
2435 #if MAX_NUMNODES > 1
2436 void __init setup_nr_node_ids(void);
2438 static inline void setup_nr_node_ids(void) {}
2441 #endif /* __KERNEL__ */
2442 #endif /* _LINUX_MM_H */