1 // SPDX-License-Identifier: GPL-2.0
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
51 #include <asm/tlbflush.h>
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
59 * migrate_prep() needs to be called before we start compiling a list of pages
60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61 * undesirable, use migrate_prep_local()
63 int migrate_prep(void)
66 * Clear the LRU lists so pages can be isolated.
67 * Note that pages may be moved off the LRU after we have
68 * drained them. Those pages will fail to migrate like other
69 * pages that may be busy.
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
86 struct address_space *mapping;
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
97 if (unlikely(!get_page_unless_zero(page)))
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
103 * so unconditionally grapping the lock ruins page's owner side.
105 if (unlikely(!__PageMovable(page)))
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
118 if (unlikely(!trylock_page(page)))
121 if (!PageMovable(page) || PageIsolated(page))
122 goto out_no_isolated;
124 mapping = page_mapping(page);
125 VM_BUG_ON_PAGE(!mapping, page);
127 if (!mapping->a_ops->isolate_page(page, mode))
128 goto out_no_isolated;
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page));
132 __SetPageIsolated(page);
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
148 struct address_space *mapping;
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(!PageMovable(page), page);
152 VM_BUG_ON_PAGE(!PageIsolated(page), page);
154 mapping = page_mapping(page);
155 mapping->a_ops->putback_page(page);
156 __ClearPageIsolated(page);
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
167 void putback_movable_pages(struct list_head *l)
172 list_for_each_entry_safe(page, page2, l, lru) {
173 if (unlikely(PageHuge(page))) {
174 putback_active_hugepage(page);
177 list_del(&page->lru);
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
183 if (unlikely(__PageMovable(page))) {
184 VM_BUG_ON_PAGE(!PageIsolated(page), page);
186 if (PageMovable(page))
187 putback_movable_page(page);
189 __ClearPageIsolated(page);
193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 page_is_file_cache(page), -hpage_nr_pages(page));
195 putback_lru_page(page);
201 * Restore a potential migration pte to a working pte entry
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204 unsigned long addr, void *old)
206 struct page_vma_mapped_walk pvmw = {
210 .flags = PVMW_SYNC | PVMW_MIGRATION,
216 VM_BUG_ON_PAGE(PageTail(page), page);
217 while (page_vma_mapped_walk(&pvmw)) {
221 new = page - pvmw.page->index +
222 linear_page_index(vma, pvmw.address);
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 remove_migration_pmd(&pvmw, new);
234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 if (pte_swp_soft_dirty(*pvmw.pte))
236 pte = pte_mksoft_dirty(pte);
239 * Recheck VMA as permissions can change since migration started
241 entry = pte_to_swp_entry(*pvmw.pte);
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
245 if (unlikely(is_zone_device_page(new))) {
246 if (is_device_private_page(new)) {
247 entry = make_device_private_entry(new, pte_write(pte));
248 pte = swp_entry_to_pte(entry);
249 } else if (is_device_public_page(new)) {
250 pte = pte_mkdevmap(pte);
251 flush_dcache_page(new);
254 flush_dcache_page(new);
256 #ifdef CONFIG_HUGETLB_PAGE
258 pte = pte_mkhuge(pte);
259 pte = arch_make_huge_pte(pte, vma, new, 0);
260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
262 hugepage_add_anon_rmap(new, vma, pvmw.address);
264 page_dup_rmap(new, true);
268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271 page_add_anon_rmap(new, vma, pvmw.address, false);
273 page_add_file_rmap(new, false);
275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278 /* No need to invalidate - it was non-present before */
279 update_mmu_cache(vma, pvmw.address, pvmw.pte);
286 * Get rid of all migration entries and replace them by
287 * references to the indicated page.
289 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
291 struct rmap_walk_control rwc = {
292 .rmap_one = remove_migration_pte,
297 rmap_walk_locked(new, &rwc);
299 rmap_walk(new, &rwc);
303 * Something used the pte of a page under migration. We need to
304 * get to the page and wait until migration is finished.
305 * When we return from this function the fault will be retried.
307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
316 if (!is_swap_pte(pte))
319 entry = pte_to_swp_entry(pte);
320 if (!is_migration_entry(entry))
323 page = migration_entry_to_page(entry);
326 * Once radix-tree replacement of page migration started, page_count
327 * *must* be zero. And, we don't want to call wait_on_page_locked()
328 * against a page without get_page().
329 * So, we use get_page_unless_zero(), here. Even failed, page fault
332 if (!get_page_unless_zero(page))
334 pte_unmap_unlock(ptep, ptl);
335 wait_on_page_locked(page);
339 pte_unmap_unlock(ptep, ptl);
342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343 unsigned long address)
345 spinlock_t *ptl = pte_lockptr(mm, pmd);
346 pte_t *ptep = pte_offset_map(pmd, address);
347 __migration_entry_wait(mm, ptep, ptl);
350 void migration_entry_wait_huge(struct vm_area_struct *vma,
351 struct mm_struct *mm, pte_t *pte)
353 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354 __migration_entry_wait(mm, pte, ptl);
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
363 ptl = pmd_lock(mm, pmd);
364 if (!is_pmd_migration_entry(*pmd))
366 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367 if (!get_page_unless_zero(page))
370 wait_on_page_locked(page);
379 /* Returns true if all buffers are successfully locked */
380 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
381 enum migrate_mode mode)
383 struct buffer_head *bh = head;
385 /* Simple case, sync compaction */
386 if (mode != MIGRATE_ASYNC) {
390 bh = bh->b_this_page;
392 } while (bh != head);
397 /* async case, we cannot block on lock_buffer so use trylock_buffer */
400 if (!trylock_buffer(bh)) {
402 * We failed to lock the buffer and cannot stall in
403 * async migration. Release the taken locks
405 struct buffer_head *failed_bh = bh;
408 while (bh != failed_bh) {
411 bh = bh->b_this_page;
416 bh = bh->b_this_page;
417 } while (bh != head);
421 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
422 enum migrate_mode mode)
426 #endif /* CONFIG_BLOCK */
429 * Replace the page in the mapping.
431 * The number of remaining references must be:
432 * 1 for anonymous pages without a mapping
433 * 2 for pages with a mapping
434 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
436 int migrate_page_move_mapping(struct address_space *mapping,
437 struct page *newpage, struct page *page,
438 struct buffer_head *head, enum migrate_mode mode,
441 struct zone *oldzone, *newzone;
443 int expected_count = 1 + extra_count;
447 * Device public or private pages have an extra refcount as they are
450 expected_count += is_device_private_page(page);
451 expected_count += is_device_public_page(page);
454 /* Anonymous page without mapping */
455 if (page_count(page) != expected_count)
458 /* No turning back from here */
459 newpage->index = page->index;
460 newpage->mapping = page->mapping;
461 if (PageSwapBacked(page))
462 __SetPageSwapBacked(newpage);
464 return MIGRATEPAGE_SUCCESS;
467 oldzone = page_zone(page);
468 newzone = page_zone(newpage);
470 xa_lock_irq(&mapping->i_pages);
472 pslot = radix_tree_lookup_slot(&mapping->i_pages,
475 expected_count += hpage_nr_pages(page) + page_has_private(page);
476 if (page_count(page) != expected_count ||
477 radix_tree_deref_slot_protected(pslot,
478 &mapping->i_pages.xa_lock) != page) {
479 xa_unlock_irq(&mapping->i_pages);
483 if (!page_ref_freeze(page, expected_count)) {
484 xa_unlock_irq(&mapping->i_pages);
489 * In the async migration case of moving a page with buffers, lock the
490 * buffers using trylock before the mapping is moved. If the mapping
491 * was moved, we later failed to lock the buffers and could not move
492 * the mapping back due to an elevated page count, we would have to
493 * block waiting on other references to be dropped.
495 if (mode == MIGRATE_ASYNC && head &&
496 !buffer_migrate_lock_buffers(head, mode)) {
497 page_ref_unfreeze(page, expected_count);
498 xa_unlock_irq(&mapping->i_pages);
503 * Now we know that no one else is looking at the page:
504 * no turning back from here.
506 newpage->index = page->index;
507 newpage->mapping = page->mapping;
508 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
509 if (PageSwapBacked(page)) {
510 __SetPageSwapBacked(newpage);
511 if (PageSwapCache(page)) {
512 SetPageSwapCache(newpage);
513 set_page_private(newpage, page_private(page));
516 VM_BUG_ON_PAGE(PageSwapCache(page), page);
519 /* Move dirty while page refs frozen and newpage not yet exposed */
520 dirty = PageDirty(page);
522 ClearPageDirty(page);
523 SetPageDirty(newpage);
526 radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
527 if (PageTransHuge(page)) {
529 int index = page_index(page);
531 for (i = 0; i < HPAGE_PMD_NR; i++) {
532 pslot = radix_tree_lookup_slot(&mapping->i_pages,
534 radix_tree_replace_slot(&mapping->i_pages, pslot,
538 radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
542 * Drop cache reference from old page by unfreezing
543 * to one less reference.
544 * We know this isn't the last reference.
546 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
548 xa_unlock(&mapping->i_pages);
549 /* Leave irq disabled to prevent preemption while updating stats */
552 * If moved to a different zone then also account
553 * the page for that zone. Other VM counters will be
554 * taken care of when we establish references to the
555 * new page and drop references to the old page.
557 * Note that anonymous pages are accounted for
558 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
559 * are mapped to swap space.
561 if (newzone != oldzone) {
562 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
563 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
564 if (PageSwapBacked(page) && !PageSwapCache(page)) {
565 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
566 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
568 if (dirty && mapping_cap_account_dirty(mapping)) {
569 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
570 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
571 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
572 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
577 return MIGRATEPAGE_SUCCESS;
579 EXPORT_SYMBOL(migrate_page_move_mapping);
582 * The expected number of remaining references is the same as that
583 * of migrate_page_move_mapping().
585 int migrate_huge_page_move_mapping(struct address_space *mapping,
586 struct page *newpage, struct page *page)
591 xa_lock_irq(&mapping->i_pages);
593 pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page));
595 expected_count = 2 + page_has_private(page);
596 if (page_count(page) != expected_count ||
597 radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) {
598 xa_unlock_irq(&mapping->i_pages);
602 if (!page_ref_freeze(page, expected_count)) {
603 xa_unlock_irq(&mapping->i_pages);
607 newpage->index = page->index;
608 newpage->mapping = page->mapping;
612 radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
614 page_ref_unfreeze(page, expected_count - 1);
616 xa_unlock_irq(&mapping->i_pages);
618 return MIGRATEPAGE_SUCCESS;
622 * Gigantic pages are so large that we do not guarantee that page++ pointer
623 * arithmetic will work across the entire page. We need something more
626 static void __copy_gigantic_page(struct page *dst, struct page *src,
630 struct page *dst_base = dst;
631 struct page *src_base = src;
633 for (i = 0; i < nr_pages; ) {
635 copy_highpage(dst, src);
638 dst = mem_map_next(dst, dst_base, i);
639 src = mem_map_next(src, src_base, i);
643 static void copy_huge_page(struct page *dst, struct page *src)
650 struct hstate *h = page_hstate(src);
651 nr_pages = pages_per_huge_page(h);
653 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
654 __copy_gigantic_page(dst, src, nr_pages);
659 BUG_ON(!PageTransHuge(src));
660 nr_pages = hpage_nr_pages(src);
663 for (i = 0; i < nr_pages; i++) {
665 copy_highpage(dst + i, src + i);
670 * Copy the page to its new location
672 void migrate_page_states(struct page *newpage, struct page *page)
677 SetPageError(newpage);
678 if (PageReferenced(page))
679 SetPageReferenced(newpage);
680 if (PageUptodate(page))
681 SetPageUptodate(newpage);
682 if (TestClearPageActive(page)) {
683 VM_BUG_ON_PAGE(PageUnevictable(page), page);
684 SetPageActive(newpage);
685 } else if (TestClearPageUnevictable(page))
686 SetPageUnevictable(newpage);
687 if (PageChecked(page))
688 SetPageChecked(newpage);
689 if (PageMappedToDisk(page))
690 SetPageMappedToDisk(newpage);
692 /* Move dirty on pages not done by migrate_page_move_mapping() */
694 SetPageDirty(newpage);
696 if (page_is_young(page))
697 set_page_young(newpage);
698 if (page_is_idle(page))
699 set_page_idle(newpage);
702 * Copy NUMA information to the new page, to prevent over-eager
703 * future migrations of this same page.
705 cpupid = page_cpupid_xchg_last(page, -1);
706 page_cpupid_xchg_last(newpage, cpupid);
708 ksm_migrate_page(newpage, page);
710 * Please do not reorder this without considering how mm/ksm.c's
711 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
713 if (PageSwapCache(page))
714 ClearPageSwapCache(page);
715 ClearPagePrivate(page);
716 set_page_private(page, 0);
719 * If any waiters have accumulated on the new page then
722 if (PageWriteback(newpage))
723 end_page_writeback(newpage);
725 copy_page_owner(page, newpage);
727 mem_cgroup_migrate(page, newpage);
729 EXPORT_SYMBOL(migrate_page_states);
731 void migrate_page_copy(struct page *newpage, struct page *page)
733 if (PageHuge(page) || PageTransHuge(page))
734 copy_huge_page(newpage, page);
736 copy_highpage(newpage, page);
738 migrate_page_states(newpage, page);
740 EXPORT_SYMBOL(migrate_page_copy);
742 /************************************************************
743 * Migration functions
744 ***********************************************************/
747 * Common logic to directly migrate a single LRU page suitable for
748 * pages that do not use PagePrivate/PagePrivate2.
750 * Pages are locked upon entry and exit.
752 int migrate_page(struct address_space *mapping,
753 struct page *newpage, struct page *page,
754 enum migrate_mode mode)
758 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
760 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
762 if (rc != MIGRATEPAGE_SUCCESS)
765 if (mode != MIGRATE_SYNC_NO_COPY)
766 migrate_page_copy(newpage, page);
768 migrate_page_states(newpage, page);
769 return MIGRATEPAGE_SUCCESS;
771 EXPORT_SYMBOL(migrate_page);
775 * Migration function for pages with buffers. This function can only be used
776 * if the underlying filesystem guarantees that no other references to "page"
779 int buffer_migrate_page(struct address_space *mapping,
780 struct page *newpage, struct page *page, enum migrate_mode mode)
782 struct buffer_head *bh, *head;
785 if (!page_has_buffers(page))
786 return migrate_page(mapping, newpage, page, mode);
788 head = page_buffers(page);
790 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
792 if (rc != MIGRATEPAGE_SUCCESS)
796 * In the async case, migrate_page_move_mapping locked the buffers
797 * with an IRQ-safe spinlock held. In the sync case, the buffers
798 * need to be locked now
800 if (mode != MIGRATE_ASYNC)
801 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
803 ClearPagePrivate(page);
804 set_page_private(newpage, page_private(page));
805 set_page_private(page, 0);
811 set_bh_page(bh, newpage, bh_offset(bh));
812 bh = bh->b_this_page;
814 } while (bh != head);
816 SetPagePrivate(newpage);
818 if (mode != MIGRATE_SYNC_NO_COPY)
819 migrate_page_copy(newpage, page);
821 migrate_page_states(newpage, page);
827 bh = bh->b_this_page;
829 } while (bh != head);
831 return MIGRATEPAGE_SUCCESS;
833 EXPORT_SYMBOL(buffer_migrate_page);
837 * Writeback a page to clean the dirty state
839 static int writeout(struct address_space *mapping, struct page *page)
841 struct writeback_control wbc = {
842 .sync_mode = WB_SYNC_NONE,
845 .range_end = LLONG_MAX,
850 if (!mapping->a_ops->writepage)
851 /* No write method for the address space */
854 if (!clear_page_dirty_for_io(page))
855 /* Someone else already triggered a write */
859 * A dirty page may imply that the underlying filesystem has
860 * the page on some queue. So the page must be clean for
861 * migration. Writeout may mean we loose the lock and the
862 * page state is no longer what we checked for earlier.
863 * At this point we know that the migration attempt cannot
866 remove_migration_ptes(page, page, false);
868 rc = mapping->a_ops->writepage(page, &wbc);
870 if (rc != AOP_WRITEPAGE_ACTIVATE)
871 /* unlocked. Relock */
874 return (rc < 0) ? -EIO : -EAGAIN;
878 * Default handling if a filesystem does not provide a migration function.
880 static int fallback_migrate_page(struct address_space *mapping,
881 struct page *newpage, struct page *page, enum migrate_mode mode)
883 if (PageDirty(page)) {
884 /* Only writeback pages in full synchronous migration */
887 case MIGRATE_SYNC_NO_COPY:
892 return writeout(mapping, page);
896 * Buffers may be managed in a filesystem specific way.
897 * We must have no buffers or drop them.
899 if (page_has_private(page) &&
900 !try_to_release_page(page, GFP_KERNEL))
903 return migrate_page(mapping, newpage, page, mode);
907 * Move a page to a newly allocated page
908 * The page is locked and all ptes have been successfully removed.
910 * The new page will have replaced the old page if this function
915 * MIGRATEPAGE_SUCCESS - success
917 static int move_to_new_page(struct page *newpage, struct page *page,
918 enum migrate_mode mode)
920 struct address_space *mapping;
922 bool is_lru = !__PageMovable(page);
924 VM_BUG_ON_PAGE(!PageLocked(page), page);
925 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
927 mapping = page_mapping(page);
929 if (likely(is_lru)) {
931 rc = migrate_page(mapping, newpage, page, mode);
932 else if (mapping->a_ops->migratepage)
934 * Most pages have a mapping and most filesystems
935 * provide a migratepage callback. Anonymous pages
936 * are part of swap space which also has its own
937 * migratepage callback. This is the most common path
938 * for page migration.
940 rc = mapping->a_ops->migratepage(mapping, newpage,
943 rc = fallback_migrate_page(mapping, newpage,
947 * In case of non-lru page, it could be released after
948 * isolation step. In that case, we shouldn't try migration.
950 VM_BUG_ON_PAGE(!PageIsolated(page), page);
951 if (!PageMovable(page)) {
952 rc = MIGRATEPAGE_SUCCESS;
953 __ClearPageIsolated(page);
957 rc = mapping->a_ops->migratepage(mapping, newpage,
959 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
960 !PageIsolated(page));
964 * When successful, old pagecache page->mapping must be cleared before
965 * page is freed; but stats require that PageAnon be left as PageAnon.
967 if (rc == MIGRATEPAGE_SUCCESS) {
968 if (__PageMovable(page)) {
969 VM_BUG_ON_PAGE(!PageIsolated(page), page);
972 * We clear PG_movable under page_lock so any compactor
973 * cannot try to migrate this page.
975 __ClearPageIsolated(page);
979 * Anonymous and movable page->mapping will be cleard by
980 * free_pages_prepare so don't reset it here for keeping
981 * the type to work PageAnon, for example.
983 if (!PageMappingFlags(page))
984 page->mapping = NULL;
990 static int __unmap_and_move(struct page *page, struct page *newpage,
991 int force, enum migrate_mode mode)
994 int page_was_mapped = 0;
995 struct anon_vma *anon_vma = NULL;
996 bool is_lru = !__PageMovable(page);
998 if (!trylock_page(page)) {
999 if (!force || mode == MIGRATE_ASYNC)
1003 * It's not safe for direct compaction to call lock_page.
1004 * For example, during page readahead pages are added locked
1005 * to the LRU. Later, when the IO completes the pages are
1006 * marked uptodate and unlocked. However, the queueing
1007 * could be merging multiple pages for one bio (e.g.
1008 * mpage_readpages). If an allocation happens for the
1009 * second or third page, the process can end up locking
1010 * the same page twice and deadlocking. Rather than
1011 * trying to be clever about what pages can be locked,
1012 * avoid the use of lock_page for direct compaction
1015 if (current->flags & PF_MEMALLOC)
1021 if (PageWriteback(page)) {
1023 * Only in the case of a full synchronous migration is it
1024 * necessary to wait for PageWriteback. In the async case,
1025 * the retry loop is too short and in the sync-light case,
1026 * the overhead of stalling is too much
1030 case MIGRATE_SYNC_NO_COPY:
1038 wait_on_page_writeback(page);
1042 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1043 * we cannot notice that anon_vma is freed while we migrates a page.
1044 * This get_anon_vma() delays freeing anon_vma pointer until the end
1045 * of migration. File cache pages are no problem because of page_lock()
1046 * File Caches may use write_page() or lock_page() in migration, then,
1047 * just care Anon page here.
1049 * Only page_get_anon_vma() understands the subtleties of
1050 * getting a hold on an anon_vma from outside one of its mms.
1051 * But if we cannot get anon_vma, then we won't need it anyway,
1052 * because that implies that the anon page is no longer mapped
1053 * (and cannot be remapped so long as we hold the page lock).
1055 if (PageAnon(page) && !PageKsm(page))
1056 anon_vma = page_get_anon_vma(page);
1059 * Block others from accessing the new page when we get around to
1060 * establishing additional references. We are usually the only one
1061 * holding a reference to newpage at this point. We used to have a BUG
1062 * here if trylock_page(newpage) fails, but would like to allow for
1063 * cases where there might be a race with the previous use of newpage.
1064 * This is much like races on refcount of oldpage: just don't BUG().
1066 if (unlikely(!trylock_page(newpage)))
1069 if (unlikely(!is_lru)) {
1070 rc = move_to_new_page(newpage, page, mode);
1071 goto out_unlock_both;
1075 * Corner case handling:
1076 * 1. When a new swap-cache page is read into, it is added to the LRU
1077 * and treated as swapcache but it has no rmap yet.
1078 * Calling try_to_unmap() against a page->mapping==NULL page will
1079 * trigger a BUG. So handle it here.
1080 * 2. An orphaned page (see truncate_complete_page) might have
1081 * fs-private metadata. The page can be picked up due to memory
1082 * offlining. Everywhere else except page reclaim, the page is
1083 * invisible to the vm, so the page can not be migrated. So try to
1084 * free the metadata, so the page can be freed.
1086 if (!page->mapping) {
1087 VM_BUG_ON_PAGE(PageAnon(page), page);
1088 if (page_has_private(page)) {
1089 try_to_free_buffers(page);
1090 goto out_unlock_both;
1092 } else if (page_mapped(page)) {
1093 /* Establish migration ptes */
1094 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1097 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1098 page_was_mapped = 1;
1101 if (!page_mapped(page))
1102 rc = move_to_new_page(newpage, page, mode);
1104 if (page_was_mapped)
1105 remove_migration_ptes(page,
1106 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1109 unlock_page(newpage);
1111 /* Drop an anon_vma reference if we took one */
1113 put_anon_vma(anon_vma);
1117 * If migration is successful, decrease refcount of the newpage
1118 * which will not free the page because new page owner increased
1119 * refcounter. As well, if it is LRU page, add the page to LRU
1122 if (rc == MIGRATEPAGE_SUCCESS) {
1123 if (unlikely(__PageMovable(newpage)))
1126 putback_lru_page(newpage);
1133 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1136 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1137 #define ICE_noinline noinline
1139 #define ICE_noinline
1143 * Obtain the lock on page, remove all ptes and migrate the page
1144 * to the newly allocated page in newpage.
1146 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1147 free_page_t put_new_page,
1148 unsigned long private, struct page *page,
1149 int force, enum migrate_mode mode,
1150 enum migrate_reason reason)
1152 int rc = MIGRATEPAGE_SUCCESS;
1153 struct page *newpage;
1155 if (!thp_migration_supported() && PageTransHuge(page))
1158 newpage = get_new_page(page, private);
1162 if (page_count(page) == 1) {
1163 /* page was freed from under us. So we are done. */
1164 ClearPageActive(page);
1165 ClearPageUnevictable(page);
1166 if (unlikely(__PageMovable(page))) {
1168 if (!PageMovable(page))
1169 __ClearPageIsolated(page);
1173 put_new_page(newpage, private);
1179 rc = __unmap_and_move(page, newpage, force, mode);
1180 if (rc == MIGRATEPAGE_SUCCESS)
1181 set_page_owner_migrate_reason(newpage, reason);
1184 if (rc != -EAGAIN) {
1186 * A page that has been migrated has all references
1187 * removed and will be freed. A page that has not been
1188 * migrated will have kepts its references and be
1191 list_del(&page->lru);
1194 * Compaction can migrate also non-LRU pages which are
1195 * not accounted to NR_ISOLATED_*. They can be recognized
1198 if (likely(!__PageMovable(page)))
1199 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1200 page_is_file_cache(page), -hpage_nr_pages(page));
1204 * If migration is successful, releases reference grabbed during
1205 * isolation. Otherwise, restore the page to right list unless
1208 if (rc == MIGRATEPAGE_SUCCESS) {
1210 if (reason == MR_MEMORY_FAILURE) {
1212 * Set PG_HWPoison on just freed page
1213 * intentionally. Although it's rather weird,
1214 * it's how HWPoison flag works at the moment.
1216 if (!test_set_page_hwpoison(page))
1217 num_poisoned_pages_inc();
1220 if (rc != -EAGAIN) {
1221 if (likely(!__PageMovable(page))) {
1222 putback_lru_page(page);
1227 if (PageMovable(page))
1228 putback_movable_page(page);
1230 __ClearPageIsolated(page);
1236 put_new_page(newpage, private);
1245 * Counterpart of unmap_and_move_page() for hugepage migration.
1247 * This function doesn't wait the completion of hugepage I/O
1248 * because there is no race between I/O and migration for hugepage.
1249 * Note that currently hugepage I/O occurs only in direct I/O
1250 * where no lock is held and PG_writeback is irrelevant,
1251 * and writeback status of all subpages are counted in the reference
1252 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1253 * under direct I/O, the reference of the head page is 512 and a bit more.)
1254 * This means that when we try to migrate hugepage whose subpages are
1255 * doing direct I/O, some references remain after try_to_unmap() and
1256 * hugepage migration fails without data corruption.
1258 * There is also no race when direct I/O is issued on the page under migration,
1259 * because then pte is replaced with migration swap entry and direct I/O code
1260 * will wait in the page fault for migration to complete.
1262 static int unmap_and_move_huge_page(new_page_t get_new_page,
1263 free_page_t put_new_page, unsigned long private,
1264 struct page *hpage, int force,
1265 enum migrate_mode mode, int reason)
1268 int page_was_mapped = 0;
1269 struct page *new_hpage;
1270 struct anon_vma *anon_vma = NULL;
1273 * Movability of hugepages depends on architectures and hugepage size.
1274 * This check is necessary because some callers of hugepage migration
1275 * like soft offline and memory hotremove don't walk through page
1276 * tables or check whether the hugepage is pmd-based or not before
1277 * kicking migration.
1279 if (!hugepage_migration_supported(page_hstate(hpage))) {
1280 putback_active_hugepage(hpage);
1284 new_hpage = get_new_page(hpage, private);
1288 if (!trylock_page(hpage)) {
1293 case MIGRATE_SYNC_NO_COPY:
1301 if (PageAnon(hpage))
1302 anon_vma = page_get_anon_vma(hpage);
1304 if (unlikely(!trylock_page(new_hpage)))
1307 if (page_mapped(hpage)) {
1309 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1310 page_was_mapped = 1;
1313 if (!page_mapped(hpage))
1314 rc = move_to_new_page(new_hpage, hpage, mode);
1316 if (page_was_mapped)
1317 remove_migration_ptes(hpage,
1318 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1320 unlock_page(new_hpage);
1324 put_anon_vma(anon_vma);
1326 if (rc == MIGRATEPAGE_SUCCESS) {
1327 move_hugetlb_state(hpage, new_hpage, reason);
1328 put_new_page = NULL;
1334 putback_active_hugepage(hpage);
1335 if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1336 num_poisoned_pages_inc();
1339 * If migration was not successful and there's a freeing callback, use
1340 * it. Otherwise, put_page() will drop the reference grabbed during
1344 put_new_page(new_hpage, private);
1346 putback_active_hugepage(new_hpage);
1352 * migrate_pages - migrate the pages specified in a list, to the free pages
1353 * supplied as the target for the page migration
1355 * @from: The list of pages to be migrated.
1356 * @get_new_page: The function used to allocate free pages to be used
1357 * as the target of the page migration.
1358 * @put_new_page: The function used to free target pages if migration
1359 * fails, or NULL if no special handling is necessary.
1360 * @private: Private data to be passed on to get_new_page()
1361 * @mode: The migration mode that specifies the constraints for
1362 * page migration, if any.
1363 * @reason: The reason for page migration.
1365 * The function returns after 10 attempts or if no pages are movable any more
1366 * because the list has become empty or no retryable pages exist any more.
1367 * The caller should call putback_movable_pages() to return pages to the LRU
1368 * or free list only if ret != 0.
1370 * Returns the number of pages that were not migrated, or an error code.
1372 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1373 free_page_t put_new_page, unsigned long private,
1374 enum migrate_mode mode, int reason)
1378 int nr_succeeded = 0;
1382 int swapwrite = current->flags & PF_SWAPWRITE;
1386 current->flags |= PF_SWAPWRITE;
1388 for(pass = 0; pass < 10 && retry; pass++) {
1391 list_for_each_entry_safe(page, page2, from, lru) {
1396 rc = unmap_and_move_huge_page(get_new_page,
1397 put_new_page, private, page,
1398 pass > 2, mode, reason);
1400 rc = unmap_and_move(get_new_page, put_new_page,
1401 private, page, pass > 2, mode,
1407 * THP migration might be unsupported or the
1408 * allocation could've failed so we should
1409 * retry on the same page with the THP split
1412 * Head page is retried immediately and tail
1413 * pages are added to the tail of the list so
1414 * we encounter them after the rest of the list
1417 if (PageTransHuge(page)) {
1419 rc = split_huge_page_to_list(page, from);
1422 list_safe_reset_next(page, page2, lru);
1431 case MIGRATEPAGE_SUCCESS:
1436 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1437 * unlike -EAGAIN case, the failed page is
1438 * removed from migration page list and not
1439 * retried in the next outer loop.
1450 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1452 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1453 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1456 current->flags &= ~PF_SWAPWRITE;
1463 static int store_status(int __user *status, int start, int value, int nr)
1466 if (put_user(value, status + start))
1474 static int do_move_pages_to_node(struct mm_struct *mm,
1475 struct list_head *pagelist, int node)
1479 if (list_empty(pagelist))
1482 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1483 MIGRATE_SYNC, MR_SYSCALL);
1485 putback_movable_pages(pagelist);
1490 * Resolves the given address to a struct page, isolates it from the LRU and
1491 * puts it to the given pagelist.
1492 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1493 * queued or the page doesn't need to be migrated because it is already on
1496 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1497 int node, struct list_head *pagelist, bool migrate_all)
1499 struct vm_area_struct *vma;
1501 unsigned int follflags;
1504 down_read(&mm->mmap_sem);
1506 vma = find_vma(mm, addr);
1507 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1510 /* FOLL_DUMP to ignore special (like zero) pages */
1511 follflags = FOLL_GET | FOLL_DUMP;
1512 page = follow_page(vma, addr, follflags);
1514 err = PTR_ERR(page);
1523 if (page_to_nid(page) == node)
1527 if (page_mapcount(page) > 1 && !migrate_all)
1530 if (PageHuge(page)) {
1531 if (PageHead(page)) {
1532 isolate_huge_page(page, pagelist);
1538 head = compound_head(page);
1539 err = isolate_lru_page(head);
1544 list_add_tail(&head->lru, pagelist);
1545 mod_node_page_state(page_pgdat(head),
1546 NR_ISOLATED_ANON + page_is_file_cache(head),
1547 hpage_nr_pages(head));
1551 * Either remove the duplicate refcount from
1552 * isolate_lru_page() or drop the page ref if it was
1557 up_read(&mm->mmap_sem);
1562 * Migrate an array of page address onto an array of nodes and fill
1563 * the corresponding array of status.
1565 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1566 unsigned long nr_pages,
1567 const void __user * __user *pages,
1568 const int __user *nodes,
1569 int __user *status, int flags)
1571 int current_node = NUMA_NO_NODE;
1572 LIST_HEAD(pagelist);
1578 for (i = start = 0; i < nr_pages; i++) {
1579 const void __user *p;
1584 if (get_user(p, pages + i))
1586 if (get_user(node, nodes + i))
1588 addr = (unsigned long)p;
1591 if (node < 0 || node >= MAX_NUMNODES)
1593 if (!node_state(node, N_MEMORY))
1597 if (!node_isset(node, task_nodes))
1600 if (current_node == NUMA_NO_NODE) {
1601 current_node = node;
1603 } else if (node != current_node) {
1604 err = do_move_pages_to_node(mm, &pagelist, current_node);
1607 err = store_status(status, start, current_node, i - start);
1611 current_node = node;
1615 * Errors in the page lookup or isolation are not fatal and we simply
1616 * report them via status
1618 err = add_page_for_migration(mm, addr, current_node,
1619 &pagelist, flags & MPOL_MF_MOVE_ALL);
1623 err = store_status(status, i, err, 1);
1627 err = do_move_pages_to_node(mm, &pagelist, current_node);
1631 err = store_status(status, start, current_node, i - start);
1635 current_node = NUMA_NO_NODE;
1638 if (list_empty(&pagelist))
1641 /* Make sure we do not overwrite the existing error */
1642 err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1644 err1 = store_status(status, start, current_node, i - start);
1652 * Determine the nodes of an array of pages and store it in an array of status.
1654 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1655 const void __user **pages, int *status)
1659 down_read(&mm->mmap_sem);
1661 for (i = 0; i < nr_pages; i++) {
1662 unsigned long addr = (unsigned long)(*pages);
1663 struct vm_area_struct *vma;
1667 vma = find_vma(mm, addr);
1668 if (!vma || addr < vma->vm_start)
1671 /* FOLL_DUMP to ignore special (like zero) pages */
1672 page = follow_page(vma, addr, FOLL_DUMP);
1674 err = PTR_ERR(page);
1678 err = page ? page_to_nid(page) : -ENOENT;
1686 up_read(&mm->mmap_sem);
1690 * Determine the nodes of a user array of pages and store it in
1691 * a user array of status.
1693 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1694 const void __user * __user *pages,
1697 #define DO_PAGES_STAT_CHUNK_NR 16
1698 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1699 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1702 unsigned long chunk_nr;
1704 chunk_nr = nr_pages;
1705 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1706 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1708 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1711 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1713 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1718 nr_pages -= chunk_nr;
1720 return nr_pages ? -EFAULT : 0;
1724 * Move a list of pages in the address space of the currently executing
1727 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1728 const void __user * __user *pages,
1729 const int __user *nodes,
1730 int __user *status, int flags)
1732 struct task_struct *task;
1733 struct mm_struct *mm;
1735 nodemask_t task_nodes;
1738 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1741 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1744 /* Find the mm_struct */
1746 task = pid ? find_task_by_vpid(pid) : current;
1751 get_task_struct(task);
1754 * Check if this process has the right to modify the specified
1755 * process. Use the regular "ptrace_may_access()" checks.
1757 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1764 err = security_task_movememory(task);
1768 task_nodes = cpuset_mems_allowed(task);
1769 mm = get_task_mm(task);
1770 put_task_struct(task);
1776 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1777 nodes, status, flags);
1779 err = do_pages_stat(mm, nr_pages, pages, status);
1785 put_task_struct(task);
1789 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1790 const void __user * __user *, pages,
1791 const int __user *, nodes,
1792 int __user *, status, int, flags)
1794 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1797 #ifdef CONFIG_COMPAT
1798 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1799 compat_uptr_t __user *, pages32,
1800 const int __user *, nodes,
1801 int __user *, status,
1804 const void __user * __user *pages;
1807 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1808 for (i = 0; i < nr_pages; i++) {
1811 if (get_user(p, pages32 + i) ||
1812 put_user(compat_ptr(p), pages + i))
1815 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1817 #endif /* CONFIG_COMPAT */
1819 #ifdef CONFIG_NUMA_BALANCING
1821 * Returns true if this is a safe migration target node for misplaced NUMA
1822 * pages. Currently it only checks the watermarks which crude
1824 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1825 unsigned long nr_migrate_pages)
1829 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1830 struct zone *zone = pgdat->node_zones + z;
1832 if (!populated_zone(zone))
1835 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1836 if (!zone_watermark_ok(zone, 0,
1837 high_wmark_pages(zone) +
1846 static struct page *alloc_misplaced_dst_page(struct page *page,
1849 int nid = (int) data;
1850 struct page *newpage;
1852 newpage = __alloc_pages_node(nid,
1853 (GFP_HIGHUSER_MOVABLE |
1854 __GFP_THISNODE | __GFP_NOMEMALLOC |
1855 __GFP_NORETRY | __GFP_NOWARN) &
1862 * page migration rate limiting control.
1863 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1864 * window of time. Default here says do not migrate more than 1280M per second.
1866 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1867 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1869 /* Returns true if the node is migrate rate-limited after the update */
1870 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1871 unsigned long nr_pages)
1874 * Rate-limit the amount of data that is being migrated to a node.
1875 * Optimal placement is no good if the memory bus is saturated and
1876 * all the time is being spent migrating!
1878 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1879 spin_lock(&pgdat->numabalancing_migrate_lock);
1880 pgdat->numabalancing_migrate_nr_pages = 0;
1881 pgdat->numabalancing_migrate_next_window = jiffies +
1882 msecs_to_jiffies(migrate_interval_millisecs);
1883 spin_unlock(&pgdat->numabalancing_migrate_lock);
1885 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1886 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1892 * This is an unlocked non-atomic update so errors are possible.
1893 * The consequences are failing to migrate when we potentiall should
1894 * have which is not severe enough to warrant locking. If it is ever
1895 * a problem, it can be converted to a per-cpu counter.
1897 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1901 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1905 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1907 /* Avoid migrating to a node that is nearly full */
1908 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1911 if (isolate_lru_page(page))
1915 * migrate_misplaced_transhuge_page() skips page migration's usual
1916 * check on page_count(), so we must do it here, now that the page
1917 * has been isolated: a GUP pin, or any other pin, prevents migration.
1918 * The expected page count is 3: 1 for page's mapcount and 1 for the
1919 * caller's pin and 1 for the reference taken by isolate_lru_page().
1921 if (PageTransHuge(page) && page_count(page) != 3) {
1922 putback_lru_page(page);
1926 page_lru = page_is_file_cache(page);
1927 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1928 hpage_nr_pages(page));
1931 * Isolating the page has taken another reference, so the
1932 * caller's reference can be safely dropped without the page
1933 * disappearing underneath us during migration.
1939 bool pmd_trans_migrating(pmd_t pmd)
1941 struct page *page = pmd_page(pmd);
1942 return PageLocked(page);
1946 * Attempt to migrate a misplaced page to the specified destination
1947 * node. Caller is expected to have an elevated reference count on
1948 * the page that will be dropped by this function before returning.
1950 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1953 pg_data_t *pgdat = NODE_DATA(node);
1956 LIST_HEAD(migratepages);
1959 * Don't migrate file pages that are mapped in multiple processes
1960 * with execute permissions as they are probably shared libraries.
1962 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1963 (vma->vm_flags & VM_EXEC))
1967 * Also do not migrate dirty pages as not all filesystems can move
1968 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1970 if (page_is_file_cache(page) && PageDirty(page))
1974 * Rate-limit the amount of data that is being migrated to a node.
1975 * Optimal placement is no good if the memory bus is saturated and
1976 * all the time is being spent migrating!
1978 if (numamigrate_update_ratelimit(pgdat, 1))
1981 isolated = numamigrate_isolate_page(pgdat, page);
1985 list_add(&page->lru, &migratepages);
1986 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1987 NULL, node, MIGRATE_ASYNC,
1990 if (!list_empty(&migratepages)) {
1991 list_del(&page->lru);
1992 dec_node_page_state(page, NR_ISOLATED_ANON +
1993 page_is_file_cache(page));
1994 putback_lru_page(page);
1998 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1999 BUG_ON(!list_empty(&migratepages));
2006 #endif /* CONFIG_NUMA_BALANCING */
2008 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2010 * Migrates a THP to a given target node. page must be locked and is unlocked
2013 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2014 struct vm_area_struct *vma,
2015 pmd_t *pmd, pmd_t entry,
2016 unsigned long address,
2017 struct page *page, int node)
2020 pg_data_t *pgdat = NODE_DATA(node);
2022 struct page *new_page = NULL;
2023 int page_lru = page_is_file_cache(page);
2024 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2025 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2028 * Rate-limit the amount of data that is being migrated to a node.
2029 * Optimal placement is no good if the memory bus is saturated and
2030 * all the time is being spent migrating!
2032 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2035 new_page = alloc_pages_node(node,
2036 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2040 prep_transhuge_page(new_page);
2042 isolated = numamigrate_isolate_page(pgdat, page);
2048 /* Prepare a page as a migration target */
2049 __SetPageLocked(new_page);
2050 if (PageSwapBacked(page))
2051 __SetPageSwapBacked(new_page);
2053 /* anon mapping, we can simply copy page->mapping to the new page: */
2054 new_page->mapping = page->mapping;
2055 new_page->index = page->index;
2056 migrate_page_copy(new_page, page);
2057 WARN_ON(PageLRU(new_page));
2059 /* Recheck the target PMD */
2060 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2061 ptl = pmd_lock(mm, pmd);
2062 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2064 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2066 /* Reverse changes made by migrate_page_copy() */
2067 if (TestClearPageActive(new_page))
2068 SetPageActive(page);
2069 if (TestClearPageUnevictable(new_page))
2070 SetPageUnevictable(page);
2072 unlock_page(new_page);
2073 put_page(new_page); /* Free it */
2075 /* Retake the callers reference and putback on LRU */
2077 putback_lru_page(page);
2078 mod_node_page_state(page_pgdat(page),
2079 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2084 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2085 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2088 * Clear the old entry under pagetable lock and establish the new PTE.
2089 * Any parallel GUP will either observe the old page blocking on the
2090 * page lock, block on the page table lock or observe the new page.
2091 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2092 * guarantee the copy is visible before the pagetable update.
2094 flush_cache_range(vma, mmun_start, mmun_end);
2095 page_add_anon_rmap(new_page, vma, mmun_start, true);
2096 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2097 set_pmd_at(mm, mmun_start, pmd, entry);
2098 update_mmu_cache_pmd(vma, address, &entry);
2100 page_ref_unfreeze(page, 2);
2101 mlock_migrate_page(new_page, page);
2102 page_remove_rmap(page, true);
2103 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2107 * No need to double call mmu_notifier->invalidate_range() callback as
2108 * the above pmdp_huge_clear_flush_notify() did already call it.
2110 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2112 /* Take an "isolate" reference and put new page on the LRU. */
2114 putback_lru_page(new_page);
2116 unlock_page(new_page);
2118 put_page(page); /* Drop the rmap reference */
2119 put_page(page); /* Drop the LRU isolation reference */
2121 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2122 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2124 mod_node_page_state(page_pgdat(page),
2125 NR_ISOLATED_ANON + page_lru,
2130 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2132 ptl = pmd_lock(mm, pmd);
2133 if (pmd_same(*pmd, entry)) {
2134 entry = pmd_modify(entry, vma->vm_page_prot);
2135 set_pmd_at(mm, mmun_start, pmd, entry);
2136 update_mmu_cache_pmd(vma, address, &entry);
2145 #endif /* CONFIG_NUMA_BALANCING */
2147 #endif /* CONFIG_NUMA */
2149 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2150 struct migrate_vma {
2151 struct vm_area_struct *vma;
2154 unsigned long cpages;
2155 unsigned long npages;
2156 unsigned long start;
2160 static int migrate_vma_collect_hole(unsigned long start,
2162 struct mm_walk *walk)
2164 struct migrate_vma *migrate = walk->private;
2167 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2168 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2169 migrate->dst[migrate->npages] = 0;
2177 static int migrate_vma_collect_skip(unsigned long start,
2179 struct mm_walk *walk)
2181 struct migrate_vma *migrate = walk->private;
2184 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2185 migrate->dst[migrate->npages] = 0;
2186 migrate->src[migrate->npages++] = 0;
2192 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2193 unsigned long start,
2195 struct mm_walk *walk)
2197 struct migrate_vma *migrate = walk->private;
2198 struct vm_area_struct *vma = walk->vma;
2199 struct mm_struct *mm = vma->vm_mm;
2200 unsigned long addr = start, unmapped = 0;
2205 if (pmd_none(*pmdp))
2206 return migrate_vma_collect_hole(start, end, walk);
2208 if (pmd_trans_huge(*pmdp)) {
2211 ptl = pmd_lock(mm, pmdp);
2212 if (unlikely(!pmd_trans_huge(*pmdp))) {
2217 page = pmd_page(*pmdp);
2218 if (is_huge_zero_page(page)) {
2220 split_huge_pmd(vma, pmdp, addr);
2221 if (pmd_trans_unstable(pmdp))
2222 return migrate_vma_collect_skip(start, end,
2229 if (unlikely(!trylock_page(page)))
2230 return migrate_vma_collect_skip(start, end,
2232 ret = split_huge_page(page);
2236 return migrate_vma_collect_skip(start, end,
2238 if (pmd_none(*pmdp))
2239 return migrate_vma_collect_hole(start, end,
2244 if (unlikely(pmd_bad(*pmdp)))
2245 return migrate_vma_collect_skip(start, end, walk);
2247 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2248 arch_enter_lazy_mmu_mode();
2250 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2251 unsigned long mpfn, pfn;
2259 if (pte_none(pte)) {
2260 mpfn = MIGRATE_PFN_MIGRATE;
2266 if (!pte_present(pte)) {
2270 * Only care about unaddressable device page special
2271 * page table entry. Other special swap entries are not
2272 * migratable, and we ignore regular swapped page.
2274 entry = pte_to_swp_entry(pte);
2275 if (!is_device_private_entry(entry))
2278 page = device_private_entry_to_page(entry);
2279 mpfn = migrate_pfn(page_to_pfn(page))|
2280 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2281 if (is_write_device_private_entry(entry))
2282 mpfn |= MIGRATE_PFN_WRITE;
2284 if (is_zero_pfn(pfn)) {
2285 mpfn = MIGRATE_PFN_MIGRATE;
2290 page = _vm_normal_page(migrate->vma, addr, pte, true);
2291 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2292 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2295 /* FIXME support THP */
2296 if (!page || !page->mapping || PageTransCompound(page)) {
2300 pfn = page_to_pfn(page);
2303 * By getting a reference on the page we pin it and that blocks
2304 * any kind of migration. Side effect is that it "freezes" the
2307 * We drop this reference after isolating the page from the lru
2308 * for non device page (device page are not on the lru and thus
2309 * can't be dropped from it).
2315 * Optimize for the common case where page is only mapped once
2316 * in one process. If we can lock the page, then we can safely
2317 * set up a special migration page table entry now.
2319 if (trylock_page(page)) {
2322 mpfn |= MIGRATE_PFN_LOCKED;
2323 ptep_get_and_clear(mm, addr, ptep);
2325 /* Setup special migration page table entry */
2326 entry = make_migration_entry(page, mpfn &
2328 swp_pte = swp_entry_to_pte(entry);
2329 if (pte_soft_dirty(pte))
2330 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2331 set_pte_at(mm, addr, ptep, swp_pte);
2334 * This is like regular unmap: we remove the rmap and
2335 * drop page refcount. Page won't be freed, as we took
2336 * a reference just above.
2338 page_remove_rmap(page, false);
2341 if (pte_present(pte))
2346 migrate->dst[migrate->npages] = 0;
2347 migrate->src[migrate->npages++] = mpfn;
2349 arch_leave_lazy_mmu_mode();
2350 pte_unmap_unlock(ptep - 1, ptl);
2352 /* Only flush the TLB if we actually modified any entries */
2354 flush_tlb_range(walk->vma, start, end);
2360 * migrate_vma_collect() - collect pages over a range of virtual addresses
2361 * @migrate: migrate struct containing all migration information
2363 * This will walk the CPU page table. For each virtual address backed by a
2364 * valid page, it updates the src array and takes a reference on the page, in
2365 * order to pin the page until we lock it and unmap it.
2367 static void migrate_vma_collect(struct migrate_vma *migrate)
2369 struct mm_walk mm_walk;
2371 mm_walk.pmd_entry = migrate_vma_collect_pmd;
2372 mm_walk.pte_entry = NULL;
2373 mm_walk.pte_hole = migrate_vma_collect_hole;
2374 mm_walk.hugetlb_entry = NULL;
2375 mm_walk.test_walk = NULL;
2376 mm_walk.vma = migrate->vma;
2377 mm_walk.mm = migrate->vma->vm_mm;
2378 mm_walk.private = migrate;
2380 mmu_notifier_invalidate_range_start(mm_walk.mm,
2383 walk_page_range(migrate->start, migrate->end, &mm_walk);
2384 mmu_notifier_invalidate_range_end(mm_walk.mm,
2388 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2392 * migrate_vma_check_page() - check if page is pinned or not
2393 * @page: struct page to check
2395 * Pinned pages cannot be migrated. This is the same test as in
2396 * migrate_page_move_mapping(), except that here we allow migration of a
2399 static bool migrate_vma_check_page(struct page *page)
2402 * One extra ref because caller holds an extra reference, either from
2403 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2409 * FIXME support THP (transparent huge page), it is bit more complex to
2410 * check them than regular pages, because they can be mapped with a pmd
2411 * or with a pte (split pte mapping).
2413 if (PageCompound(page))
2416 /* Page from ZONE_DEVICE have one extra reference */
2417 if (is_zone_device_page(page)) {
2419 * Private page can never be pin as they have no valid pte and
2420 * GUP will fail for those. Yet if there is a pending migration
2421 * a thread might try to wait on the pte migration entry and
2422 * will bump the page reference count. Sadly there is no way to
2423 * differentiate a regular pin from migration wait. Hence to
2424 * avoid 2 racing thread trying to migrate back to CPU to enter
2425 * infinite loop (one stoping migration because the other is
2426 * waiting on pte migration entry). We always return true here.
2428 * FIXME proper solution is to rework migration_entry_wait() so
2429 * it does not need to take a reference on page.
2431 if (is_device_private_page(page))
2435 * Only allow device public page to be migrated and account for
2436 * the extra reference count imply by ZONE_DEVICE pages.
2438 if (!is_device_public_page(page))
2443 /* For file back page */
2444 if (page_mapping(page))
2445 extra += 1 + page_has_private(page);
2447 if ((page_count(page) - extra) > page_mapcount(page))
2454 * migrate_vma_prepare() - lock pages and isolate them from the lru
2455 * @migrate: migrate struct containing all migration information
2457 * This locks pages that have been collected by migrate_vma_collect(). Once each
2458 * page is locked it is isolated from the lru (for non-device pages). Finally,
2459 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2460 * migrated by concurrent kernel threads.
2462 static void migrate_vma_prepare(struct migrate_vma *migrate)
2464 const unsigned long npages = migrate->npages;
2465 const unsigned long start = migrate->start;
2466 unsigned long addr, i, restore = 0;
2467 bool allow_drain = true;
2471 for (i = 0; (i < npages) && migrate->cpages; i++) {
2472 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2478 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2480 * Because we are migrating several pages there can be
2481 * a deadlock between 2 concurrent migration where each
2482 * are waiting on each other page lock.
2484 * Make migrate_vma() a best effort thing and backoff
2485 * for any page we can not lock right away.
2487 if (!trylock_page(page)) {
2488 migrate->src[i] = 0;
2494 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2497 /* ZONE_DEVICE pages are not on LRU */
2498 if (!is_zone_device_page(page)) {
2499 if (!PageLRU(page) && allow_drain) {
2500 /* Drain CPU's pagevec */
2501 lru_add_drain_all();
2502 allow_drain = false;
2505 if (isolate_lru_page(page)) {
2507 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2511 migrate->src[i] = 0;
2519 /* Drop the reference we took in collect */
2523 if (!migrate_vma_check_page(page)) {
2525 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2529 if (!is_zone_device_page(page)) {
2531 putback_lru_page(page);
2534 migrate->src[i] = 0;
2538 if (!is_zone_device_page(page))
2539 putback_lru_page(page);
2546 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2547 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2549 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2552 remove_migration_pte(page, migrate->vma, addr, page);
2554 migrate->src[i] = 0;
2562 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2563 * @migrate: migrate struct containing all migration information
2565 * Replace page mapping (CPU page table pte) with a special migration pte entry
2566 * and check again if it has been pinned. Pinned pages are restored because we
2567 * cannot migrate them.
2569 * This is the last step before we call the device driver callback to allocate
2570 * destination memory and copy contents of original page over to new page.
2572 static void migrate_vma_unmap(struct migrate_vma *migrate)
2574 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2575 const unsigned long npages = migrate->npages;
2576 const unsigned long start = migrate->start;
2577 unsigned long addr, i, restore = 0;
2579 for (i = 0; i < npages; i++) {
2580 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2582 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2585 if (page_mapped(page)) {
2586 try_to_unmap(page, flags);
2587 if (page_mapped(page))
2591 if (migrate_vma_check_page(page))
2595 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2600 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2601 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2603 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2606 remove_migration_ptes(page, page, false);
2608 migrate->src[i] = 0;
2612 if (is_zone_device_page(page))
2615 putback_lru_page(page);
2619 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2625 struct vm_area_struct *vma = migrate->vma;
2626 struct mm_struct *mm = vma->vm_mm;
2627 struct mem_cgroup *memcg;
2637 /* Only allow populating anonymous memory */
2638 if (!vma_is_anonymous(vma))
2641 pgdp = pgd_offset(mm, addr);
2642 p4dp = p4d_alloc(mm, pgdp, addr);
2645 pudp = pud_alloc(mm, p4dp, addr);
2648 pmdp = pmd_alloc(mm, pudp, addr);
2652 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2656 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2657 * pte_offset_map() on pmds where a huge pmd might be created
2658 * from a different thread.
2660 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2661 * parallel threads are excluded by other means.
2663 * Here we only have down_read(mmap_sem).
2665 if (pte_alloc(mm, pmdp, addr))
2668 /* See the comment in pte_alloc_one_map() */
2669 if (unlikely(pmd_trans_unstable(pmdp)))
2672 if (unlikely(anon_vma_prepare(vma)))
2674 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2678 * The memory barrier inside __SetPageUptodate makes sure that
2679 * preceding stores to the page contents become visible before
2680 * the set_pte_at() write.
2682 __SetPageUptodate(page);
2684 if (is_zone_device_page(page)) {
2685 if (is_device_private_page(page)) {
2686 swp_entry_t swp_entry;
2688 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2689 entry = swp_entry_to_pte(swp_entry);
2690 } else if (is_device_public_page(page)) {
2691 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2692 if (vma->vm_flags & VM_WRITE)
2693 entry = pte_mkwrite(pte_mkdirty(entry));
2694 entry = pte_mkdevmap(entry);
2697 entry = mk_pte(page, vma->vm_page_prot);
2698 if (vma->vm_flags & VM_WRITE)
2699 entry = pte_mkwrite(pte_mkdirty(entry));
2702 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2704 if (pte_present(*ptep)) {
2705 unsigned long pfn = pte_pfn(*ptep);
2707 if (!is_zero_pfn(pfn)) {
2708 pte_unmap_unlock(ptep, ptl);
2709 mem_cgroup_cancel_charge(page, memcg, false);
2713 } else if (!pte_none(*ptep)) {
2714 pte_unmap_unlock(ptep, ptl);
2715 mem_cgroup_cancel_charge(page, memcg, false);
2720 * Check for usefaultfd but do not deliver the fault. Instead,
2723 if (userfaultfd_missing(vma)) {
2724 pte_unmap_unlock(ptep, ptl);
2725 mem_cgroup_cancel_charge(page, memcg, false);
2729 inc_mm_counter(mm, MM_ANONPAGES);
2730 page_add_new_anon_rmap(page, vma, addr, false);
2731 mem_cgroup_commit_charge(page, memcg, false, false);
2732 if (!is_zone_device_page(page))
2733 lru_cache_add_active_or_unevictable(page, vma);
2737 flush_cache_page(vma, addr, pte_pfn(*ptep));
2738 ptep_clear_flush_notify(vma, addr, ptep);
2739 set_pte_at_notify(mm, addr, ptep, entry);
2740 update_mmu_cache(vma, addr, ptep);
2742 /* No need to invalidate - it was non-present before */
2743 set_pte_at(mm, addr, ptep, entry);
2744 update_mmu_cache(vma, addr, ptep);
2747 pte_unmap_unlock(ptep, ptl);
2748 *src = MIGRATE_PFN_MIGRATE;
2752 *src &= ~MIGRATE_PFN_MIGRATE;
2756 * migrate_vma_pages() - migrate meta-data from src page to dst page
2757 * @migrate: migrate struct containing all migration information
2759 * This migrates struct page meta-data from source struct page to destination
2760 * struct page. This effectively finishes the migration from source page to the
2763 static void migrate_vma_pages(struct migrate_vma *migrate)
2765 const unsigned long npages = migrate->npages;
2766 const unsigned long start = migrate->start;
2767 struct vm_area_struct *vma = migrate->vma;
2768 struct mm_struct *mm = vma->vm_mm;
2769 unsigned long addr, i, mmu_start;
2770 bool notified = false;
2772 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2773 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2774 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2775 struct address_space *mapping;
2779 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2784 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2790 mmu_notifier_invalidate_range_start(mm,
2794 migrate_vma_insert_page(migrate, addr, newpage,
2800 mapping = page_mapping(page);
2802 if (is_zone_device_page(newpage)) {
2803 if (is_device_private_page(newpage)) {
2805 * For now only support private anonymous when
2806 * migrating to un-addressable device memory.
2809 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2812 } else if (!is_device_public_page(newpage)) {
2814 * Other types of ZONE_DEVICE page are not
2817 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2822 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2823 if (r != MIGRATEPAGE_SUCCESS)
2824 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2828 * No need to double call mmu_notifier->invalidate_range() callback as
2829 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2830 * did already call it.
2833 mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2838 * migrate_vma_finalize() - restore CPU page table entry
2839 * @migrate: migrate struct containing all migration information
2841 * This replaces the special migration pte entry with either a mapping to the
2842 * new page if migration was successful for that page, or to the original page
2845 * This also unlocks the pages and puts them back on the lru, or drops the extra
2846 * refcount, for device pages.
2848 static void migrate_vma_finalize(struct migrate_vma *migrate)
2850 const unsigned long npages = migrate->npages;
2853 for (i = 0; i < npages; i++) {
2854 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2855 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2859 unlock_page(newpage);
2865 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2867 unlock_page(newpage);
2873 remove_migration_ptes(page, newpage, false);
2877 if (is_zone_device_page(page))
2880 putback_lru_page(page);
2882 if (newpage != page) {
2883 unlock_page(newpage);
2884 if (is_zone_device_page(newpage))
2887 putback_lru_page(newpage);
2893 * migrate_vma() - migrate a range of memory inside vma
2895 * @ops: migration callback for allocating destination memory and copying
2896 * @vma: virtual memory area containing the range to be migrated
2897 * @start: start address of the range to migrate (inclusive)
2898 * @end: end address of the range to migrate (exclusive)
2899 * @src: array of hmm_pfn_t containing source pfns
2900 * @dst: array of hmm_pfn_t containing destination pfns
2901 * @private: pointer passed back to each of the callback
2902 * Returns: 0 on success, error code otherwise
2904 * This function tries to migrate a range of memory virtual address range, using
2905 * callbacks to allocate and copy memory from source to destination. First it
2906 * collects all the pages backing each virtual address in the range, saving this
2907 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2908 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2909 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2910 * in the corresponding src array entry. It then restores any pages that are
2911 * pinned, by remapping and unlocking those pages.
2913 * At this point it calls the alloc_and_copy() callback. For documentation on
2914 * what is expected from that callback, see struct migrate_vma_ops comments in
2915 * include/linux/migrate.h
2917 * After the alloc_and_copy() callback, this function goes over each entry in
2918 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2919 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2920 * then the function tries to migrate struct page information from the source
2921 * struct page to the destination struct page. If it fails to migrate the struct
2922 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2925 * At this point all successfully migrated pages have an entry in the src
2926 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2927 * array entry with MIGRATE_PFN_VALID flag set.
2929 * It then calls the finalize_and_map() callback. See comments for "struct
2930 * migrate_vma_ops", in include/linux/migrate.h for details about
2931 * finalize_and_map() behavior.
2933 * After the finalize_and_map() callback, for successfully migrated pages, this
2934 * function updates the CPU page table to point to new pages, otherwise it
2935 * restores the CPU page table to point to the original source pages.
2937 * Function returns 0 after the above steps, even if no pages were migrated
2938 * (The function only returns an error if any of the arguments are invalid.)
2940 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2941 * unsigned long entries.
2943 int migrate_vma(const struct migrate_vma_ops *ops,
2944 struct vm_area_struct *vma,
2945 unsigned long start,
2951 struct migrate_vma migrate;
2953 /* Sanity check the arguments */
2956 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
2958 if (start < vma->vm_start || start >= vma->vm_end)
2960 if (end <= vma->vm_start || end > vma->vm_end)
2962 if (!ops || !src || !dst || start >= end)
2965 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2968 migrate.start = start;
2974 /* Collect, and try to unmap source pages */
2975 migrate_vma_collect(&migrate);
2976 if (!migrate.cpages)
2979 /* Lock and isolate page */
2980 migrate_vma_prepare(&migrate);
2981 if (!migrate.cpages)
2985 migrate_vma_unmap(&migrate);
2986 if (!migrate.cpages)
2990 * At this point pages are locked and unmapped, and thus they have
2991 * stable content and can safely be copied to destination memory that
2992 * is allocated by the callback.
2994 * Note that migration can fail in migrate_vma_struct_page() for each
2997 ops->alloc_and_copy(vma, src, dst, start, end, private);
2999 /* This does the real migration of struct page */
3000 migrate_vma_pages(&migrate);
3002 ops->finalize_and_map(vma, src, dst, start, end, private);
3004 /* Unlock and remap pages */
3005 migrate_vma_finalize(&migrate);
3009 EXPORT_SYMBOL(migrate_vma);
3010 #endif /* defined(MIGRATE_VMA_HELPER) */