]> Git Repo - linux.git/blob - net/core/dev.c
net/sched: taprio: allow user input of per-tc max SDU
[linux.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <[email protected]>
8  *                              Mark Evans, <[email protected]>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <[email protected]>
12  *              Alan Cox <[email protected]>
13  *              David Hinds <[email protected]>
14  *              Alexey Kuznetsov <[email protected]>
15  *              Adam Sulmicki <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153
154 #include "dev.h"
155 #include "net-sysfs.h"
156
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;       /* Taps */
161
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164                                          struct netdev_notifier_info *info);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166                                            struct net_device *dev,
167                                            struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191
192 static DEFINE_MUTEX(ifalias_mutex);
193
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200 static DECLARE_RWSEM(devnet_rename_sem);
201
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204         while (++net->dev_base_seq == 0)
205                 ;
206 }
207
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221                                     unsigned long *flags)
222 {
223         if (IS_ENABLED(CONFIG_RPS))
224                 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226                 local_irq_save(*flags);
227 }
228
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231         if (IS_ENABLED(CONFIG_RPS))
232                 spin_lock_irq(&sd->input_pkt_queue.lock);
233         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234                 local_irq_disable();
235 }
236
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238                                           unsigned long *flags)
239 {
240         if (IS_ENABLED(CONFIG_RPS))
241                 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243                 local_irq_restore(*flags);
244 }
245
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248         if (IS_ENABLED(CONFIG_RPS))
249                 spin_unlock_irq(&sd->input_pkt_queue.lock);
250         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251                 local_irq_enable();
252 }
253
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255                                                        const char *name)
256 {
257         struct netdev_name_node *name_node;
258
259         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260         if (!name_node)
261                 return NULL;
262         INIT_HLIST_NODE(&name_node->hlist);
263         name_node->dev = dev;
264         name_node->name = name;
265         return name_node;
266 }
267
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271         struct netdev_name_node *name_node;
272
273         name_node = netdev_name_node_alloc(dev, dev->name);
274         if (!name_node)
275                 return NULL;
276         INIT_LIST_HEAD(&name_node->list);
277         return name_node;
278 }
279
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282         kfree(name_node);
283 }
284
285 static void netdev_name_node_add(struct net *net,
286                                  struct netdev_name_node *name_node)
287 {
288         hlist_add_head_rcu(&name_node->hlist,
289                            dev_name_hash(net, name_node->name));
290 }
291
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294         hlist_del_rcu(&name_node->hlist);
295 }
296
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298                                                         const char *name)
299 {
300         struct hlist_head *head = dev_name_hash(net, name);
301         struct netdev_name_node *name_node;
302
303         hlist_for_each_entry(name_node, head, hlist)
304                 if (!strcmp(name_node->name, name))
305                         return name_node;
306         return NULL;
307 }
308
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310                                                             const char *name)
311 {
312         struct hlist_head *head = dev_name_hash(net, name);
313         struct netdev_name_node *name_node;
314
315         hlist_for_each_entry_rcu(name_node, head, hlist)
316                 if (!strcmp(name_node->name, name))
317                         return name_node;
318         return NULL;
319 }
320
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323         return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329         struct netdev_name_node *name_node;
330         struct net *net = dev_net(dev);
331
332         name_node = netdev_name_node_lookup(net, name);
333         if (name_node)
334                 return -EEXIST;
335         name_node = netdev_name_node_alloc(dev, name);
336         if (!name_node)
337                 return -ENOMEM;
338         netdev_name_node_add(net, name_node);
339         /* The node that holds dev->name acts as a head of per-device list. */
340         list_add_tail(&name_node->list, &dev->name_node->list);
341
342         return 0;
343 }
344
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347         list_del(&name_node->list);
348         netdev_name_node_del(name_node);
349         kfree(name_node->name);
350         netdev_name_node_free(name_node);
351 }
352
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355         struct netdev_name_node *name_node;
356         struct net *net = dev_net(dev);
357
358         name_node = netdev_name_node_lookup(net, name);
359         if (!name_node)
360                 return -ENOENT;
361         /* lookup might have found our primary name or a name belonging
362          * to another device.
363          */
364         if (name_node == dev->name_node || name_node->dev != dev)
365                 return -EINVAL;
366
367         __netdev_name_node_alt_destroy(name_node);
368
369         return 0;
370 }
371
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374         struct netdev_name_node *name_node, *tmp;
375
376         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377                 __netdev_name_node_alt_destroy(name_node);
378 }
379
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383         struct net *net = dev_net(dev);
384
385         ASSERT_RTNL();
386
387         write_lock(&dev_base_lock);
388         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389         netdev_name_node_add(net, dev->name_node);
390         hlist_add_head_rcu(&dev->index_hlist,
391                            dev_index_hash(net, dev->ifindex));
392         write_unlock(&dev_base_lock);
393
394         dev_base_seq_inc(net);
395 }
396
397 /* Device list removal
398  * caller must respect a RCU grace period before freeing/reusing dev
399  */
400 static void unlist_netdevice(struct net_device *dev, bool lock)
401 {
402         ASSERT_RTNL();
403
404         /* Unlink dev from the device chain */
405         if (lock)
406                 write_lock(&dev_base_lock);
407         list_del_rcu(&dev->dev_list);
408         netdev_name_node_del(dev->name_node);
409         hlist_del_rcu(&dev->index_hlist);
410         if (lock)
411                 write_unlock(&dev_base_lock);
412
413         dev_base_seq_inc(dev_net(dev));
414 }
415
416 /*
417  *      Our notifier list
418  */
419
420 static RAW_NOTIFIER_HEAD(netdev_chain);
421
422 /*
423  *      Device drivers call our routines to queue packets here. We empty the
424  *      queue in the local softnet handler.
425  */
426
427 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
428 EXPORT_PER_CPU_SYMBOL(softnet_data);
429
430 #ifdef CONFIG_LOCKDEP
431 /*
432  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
433  * according to dev->type
434  */
435 static const unsigned short netdev_lock_type[] = {
436          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
437          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
438          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
439          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
440          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
441          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
442          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
443          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
444          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
445          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
446          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
447          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
448          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
449          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
450          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
451
452 static const char *const netdev_lock_name[] = {
453         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
454         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
455         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
456         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
457         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
458         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
459         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
460         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
461         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
462         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
463         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
464         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
465         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
466         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
467         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
468
469 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
470 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
471
472 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
473 {
474         int i;
475
476         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
477                 if (netdev_lock_type[i] == dev_type)
478                         return i;
479         /* the last key is used by default */
480         return ARRAY_SIZE(netdev_lock_type) - 1;
481 }
482
483 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
484                                                  unsigned short dev_type)
485 {
486         int i;
487
488         i = netdev_lock_pos(dev_type);
489         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
490                                    netdev_lock_name[i]);
491 }
492
493 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494 {
495         int i;
496
497         i = netdev_lock_pos(dev->type);
498         lockdep_set_class_and_name(&dev->addr_list_lock,
499                                    &netdev_addr_lock_key[i],
500                                    netdev_lock_name[i]);
501 }
502 #else
503 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
504                                                  unsigned short dev_type)
505 {
506 }
507
508 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509 {
510 }
511 #endif
512
513 /*******************************************************************************
514  *
515  *              Protocol management and registration routines
516  *
517  *******************************************************************************/
518
519
520 /*
521  *      Add a protocol ID to the list. Now that the input handler is
522  *      smarter we can dispense with all the messy stuff that used to be
523  *      here.
524  *
525  *      BEWARE!!! Protocol handlers, mangling input packets,
526  *      MUST BE last in hash buckets and checking protocol handlers
527  *      MUST start from promiscuous ptype_all chain in net_bh.
528  *      It is true now, do not change it.
529  *      Explanation follows: if protocol handler, mangling packet, will
530  *      be the first on list, it is not able to sense, that packet
531  *      is cloned and should be copied-on-write, so that it will
532  *      change it and subsequent readers will get broken packet.
533  *                                                      --ANK (980803)
534  */
535
536 static inline struct list_head *ptype_head(const struct packet_type *pt)
537 {
538         if (pt->type == htons(ETH_P_ALL))
539                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
540         else
541                 return pt->dev ? &pt->dev->ptype_specific :
542                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
543 }
544
545 /**
546  *      dev_add_pack - add packet handler
547  *      @pt: packet type declaration
548  *
549  *      Add a protocol handler to the networking stack. The passed &packet_type
550  *      is linked into kernel lists and may not be freed until it has been
551  *      removed from the kernel lists.
552  *
553  *      This call does not sleep therefore it can not
554  *      guarantee all CPU's that are in middle of receiving packets
555  *      will see the new packet type (until the next received packet).
556  */
557
558 void dev_add_pack(struct packet_type *pt)
559 {
560         struct list_head *head = ptype_head(pt);
561
562         spin_lock(&ptype_lock);
563         list_add_rcu(&pt->list, head);
564         spin_unlock(&ptype_lock);
565 }
566 EXPORT_SYMBOL(dev_add_pack);
567
568 /**
569  *      __dev_remove_pack        - remove packet handler
570  *      @pt: packet type declaration
571  *
572  *      Remove a protocol handler that was previously added to the kernel
573  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
574  *      from the kernel lists and can be freed or reused once this function
575  *      returns.
576  *
577  *      The packet type might still be in use by receivers
578  *      and must not be freed until after all the CPU's have gone
579  *      through a quiescent state.
580  */
581 void __dev_remove_pack(struct packet_type *pt)
582 {
583         struct list_head *head = ptype_head(pt);
584         struct packet_type *pt1;
585
586         spin_lock(&ptype_lock);
587
588         list_for_each_entry(pt1, head, list) {
589                 if (pt == pt1) {
590                         list_del_rcu(&pt->list);
591                         goto out;
592                 }
593         }
594
595         pr_warn("dev_remove_pack: %p not found\n", pt);
596 out:
597         spin_unlock(&ptype_lock);
598 }
599 EXPORT_SYMBOL(__dev_remove_pack);
600
601 /**
602  *      dev_remove_pack  - remove packet handler
603  *      @pt: packet type declaration
604  *
605  *      Remove a protocol handler that was previously added to the kernel
606  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
607  *      from the kernel lists and can be freed or reused once this function
608  *      returns.
609  *
610  *      This call sleeps to guarantee that no CPU is looking at the packet
611  *      type after return.
612  */
613 void dev_remove_pack(struct packet_type *pt)
614 {
615         __dev_remove_pack(pt);
616
617         synchronize_net();
618 }
619 EXPORT_SYMBOL(dev_remove_pack);
620
621
622 /*******************************************************************************
623  *
624  *                          Device Interface Subroutines
625  *
626  *******************************************************************************/
627
628 /**
629  *      dev_get_iflink  - get 'iflink' value of a interface
630  *      @dev: targeted interface
631  *
632  *      Indicates the ifindex the interface is linked to.
633  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
634  */
635
636 int dev_get_iflink(const struct net_device *dev)
637 {
638         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
639                 return dev->netdev_ops->ndo_get_iflink(dev);
640
641         return dev->ifindex;
642 }
643 EXPORT_SYMBOL(dev_get_iflink);
644
645 /**
646  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
647  *      @dev: targeted interface
648  *      @skb: The packet.
649  *
650  *      For better visibility of tunnel traffic OVS needs to retrieve
651  *      egress tunnel information for a packet. Following API allows
652  *      user to get this info.
653  */
654 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
655 {
656         struct ip_tunnel_info *info;
657
658         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
659                 return -EINVAL;
660
661         info = skb_tunnel_info_unclone(skb);
662         if (!info)
663                 return -ENOMEM;
664         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
665                 return -EINVAL;
666
667         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
668 }
669 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
670
671 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
672 {
673         int k = stack->num_paths++;
674
675         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
676                 return NULL;
677
678         return &stack->path[k];
679 }
680
681 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
682                           struct net_device_path_stack *stack)
683 {
684         const struct net_device *last_dev;
685         struct net_device_path_ctx ctx = {
686                 .dev    = dev,
687         };
688         struct net_device_path *path;
689         int ret = 0;
690
691         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
692         stack->num_paths = 0;
693         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
694                 last_dev = ctx.dev;
695                 path = dev_fwd_path(stack);
696                 if (!path)
697                         return -1;
698
699                 memset(path, 0, sizeof(struct net_device_path));
700                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
701                 if (ret < 0)
702                         return -1;
703
704                 if (WARN_ON_ONCE(last_dev == ctx.dev))
705                         return -1;
706         }
707
708         if (!ctx.dev)
709                 return ret;
710
711         path = dev_fwd_path(stack);
712         if (!path)
713                 return -1;
714         path->type = DEV_PATH_ETHERNET;
715         path->dev = ctx.dev;
716
717         return ret;
718 }
719 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
720
721 /**
722  *      __dev_get_by_name       - find a device by its name
723  *      @net: the applicable net namespace
724  *      @name: name to find
725  *
726  *      Find an interface by name. Must be called under RTNL semaphore
727  *      or @dev_base_lock. If the name is found a pointer to the device
728  *      is returned. If the name is not found then %NULL is returned. The
729  *      reference counters are not incremented so the caller must be
730  *      careful with locks.
731  */
732
733 struct net_device *__dev_get_by_name(struct net *net, const char *name)
734 {
735         struct netdev_name_node *node_name;
736
737         node_name = netdev_name_node_lookup(net, name);
738         return node_name ? node_name->dev : NULL;
739 }
740 EXPORT_SYMBOL(__dev_get_by_name);
741
742 /**
743  * dev_get_by_name_rcu  - find a device by its name
744  * @net: the applicable net namespace
745  * @name: name to find
746  *
747  * Find an interface by name.
748  * If the name is found a pointer to the device is returned.
749  * If the name is not found then %NULL is returned.
750  * The reference counters are not incremented so the caller must be
751  * careful with locks. The caller must hold RCU lock.
752  */
753
754 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
755 {
756         struct netdev_name_node *node_name;
757
758         node_name = netdev_name_node_lookup_rcu(net, name);
759         return node_name ? node_name->dev : NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762
763 /**
764  *      dev_get_by_name         - find a device by its name
765  *      @net: the applicable net namespace
766  *      @name: name to find
767  *
768  *      Find an interface by name. This can be called from any
769  *      context and does its own locking. The returned handle has
770  *      the usage count incremented and the caller must use dev_put() to
771  *      release it when it is no longer needed. %NULL is returned if no
772  *      matching device is found.
773  */
774
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777         struct net_device *dev;
778
779         rcu_read_lock();
780         dev = dev_get_by_name_rcu(net, name);
781         dev_hold(dev);
782         rcu_read_unlock();
783         return dev;
784 }
785 EXPORT_SYMBOL(dev_get_by_name);
786
787 /**
788  *      __dev_get_by_index - find a device by its ifindex
789  *      @net: the applicable net namespace
790  *      @ifindex: index of device
791  *
792  *      Search for an interface by index. Returns %NULL if the device
793  *      is not found or a pointer to the device. The device has not
794  *      had its reference counter increased so the caller must be careful
795  *      about locking. The caller must hold either the RTNL semaphore
796  *      or @dev_base_lock.
797  */
798
799 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
800 {
801         struct net_device *dev;
802         struct hlist_head *head = dev_index_hash(net, ifindex);
803
804         hlist_for_each_entry(dev, head, index_hlist)
805                 if (dev->ifindex == ifindex)
806                         return dev;
807
808         return NULL;
809 }
810 EXPORT_SYMBOL(__dev_get_by_index);
811
812 /**
813  *      dev_get_by_index_rcu - find a device by its ifindex
814  *      @net: the applicable net namespace
815  *      @ifindex: index of device
816  *
817  *      Search for an interface by index. Returns %NULL if the device
818  *      is not found or a pointer to the device. The device has not
819  *      had its reference counter increased so the caller must be careful
820  *      about locking. The caller must hold RCU lock.
821  */
822
823 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
824 {
825         struct net_device *dev;
826         struct hlist_head *head = dev_index_hash(net, ifindex);
827
828         hlist_for_each_entry_rcu(dev, head, index_hlist)
829                 if (dev->ifindex == ifindex)
830                         return dev;
831
832         return NULL;
833 }
834 EXPORT_SYMBOL(dev_get_by_index_rcu);
835
836
837 /**
838  *      dev_get_by_index - find a device by its ifindex
839  *      @net: the applicable net namespace
840  *      @ifindex: index of device
841  *
842  *      Search for an interface by index. Returns NULL if the device
843  *      is not found or a pointer to the device. The device returned has
844  *      had a reference added and the pointer is safe until the user calls
845  *      dev_put to indicate they have finished with it.
846  */
847
848 struct net_device *dev_get_by_index(struct net *net, int ifindex)
849 {
850         struct net_device *dev;
851
852         rcu_read_lock();
853         dev = dev_get_by_index_rcu(net, ifindex);
854         dev_hold(dev);
855         rcu_read_unlock();
856         return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859
860 /**
861  *      dev_get_by_napi_id - find a device by napi_id
862  *      @napi_id: ID of the NAPI struct
863  *
864  *      Search for an interface by NAPI ID. Returns %NULL if the device
865  *      is not found or a pointer to the device. The device has not had
866  *      its reference counter increased so the caller must be careful
867  *      about locking. The caller must hold RCU lock.
868  */
869
870 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
871 {
872         struct napi_struct *napi;
873
874         WARN_ON_ONCE(!rcu_read_lock_held());
875
876         if (napi_id < MIN_NAPI_ID)
877                 return NULL;
878
879         napi = napi_by_id(napi_id);
880
881         return napi ? napi->dev : NULL;
882 }
883 EXPORT_SYMBOL(dev_get_by_napi_id);
884
885 /**
886  *      netdev_get_name - get a netdevice name, knowing its ifindex.
887  *      @net: network namespace
888  *      @name: a pointer to the buffer where the name will be stored.
889  *      @ifindex: the ifindex of the interface to get the name from.
890  */
891 int netdev_get_name(struct net *net, char *name, int ifindex)
892 {
893         struct net_device *dev;
894         int ret;
895
896         down_read(&devnet_rename_sem);
897         rcu_read_lock();
898
899         dev = dev_get_by_index_rcu(net, ifindex);
900         if (!dev) {
901                 ret = -ENODEV;
902                 goto out;
903         }
904
905         strcpy(name, dev->name);
906
907         ret = 0;
908 out:
909         rcu_read_unlock();
910         up_read(&devnet_rename_sem);
911         return ret;
912 }
913
914 /**
915  *      dev_getbyhwaddr_rcu - find a device by its hardware address
916  *      @net: the applicable net namespace
917  *      @type: media type of device
918  *      @ha: hardware address
919  *
920  *      Search for an interface by MAC address. Returns NULL if the device
921  *      is not found or a pointer to the device.
922  *      The caller must hold RCU or RTNL.
923  *      The returned device has not had its ref count increased
924  *      and the caller must therefore be careful about locking
925  *
926  */
927
928 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
929                                        const char *ha)
930 {
931         struct net_device *dev;
932
933         for_each_netdev_rcu(net, dev)
934                 if (dev->type == type &&
935                     !memcmp(dev->dev_addr, ha, dev->addr_len))
936                         return dev;
937
938         return NULL;
939 }
940 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
941
942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943 {
944         struct net_device *dev, *ret = NULL;
945
946         rcu_read_lock();
947         for_each_netdev_rcu(net, dev)
948                 if (dev->type == type) {
949                         dev_hold(dev);
950                         ret = dev;
951                         break;
952                 }
953         rcu_read_unlock();
954         return ret;
955 }
956 EXPORT_SYMBOL(dev_getfirstbyhwtype);
957
958 /**
959  *      __dev_get_by_flags - find any device with given flags
960  *      @net: the applicable net namespace
961  *      @if_flags: IFF_* values
962  *      @mask: bitmask of bits in if_flags to check
963  *
964  *      Search for any interface with the given flags. Returns NULL if a device
965  *      is not found or a pointer to the device. Must be called inside
966  *      rtnl_lock(), and result refcount is unchanged.
967  */
968
969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970                                       unsigned short mask)
971 {
972         struct net_device *dev, *ret;
973
974         ASSERT_RTNL();
975
976         ret = NULL;
977         for_each_netdev(net, dev) {
978                 if (((dev->flags ^ if_flags) & mask) == 0) {
979                         ret = dev;
980                         break;
981                 }
982         }
983         return ret;
984 }
985 EXPORT_SYMBOL(__dev_get_by_flags);
986
987 /**
988  *      dev_valid_name - check if name is okay for network device
989  *      @name: name string
990  *
991  *      Network device names need to be valid file names to
992  *      allow sysfs to work.  We also disallow any kind of
993  *      whitespace.
994  */
995 bool dev_valid_name(const char *name)
996 {
997         if (*name == '\0')
998                 return false;
999         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1000                 return false;
1001         if (!strcmp(name, ".") || !strcmp(name, ".."))
1002                 return false;
1003
1004         while (*name) {
1005                 if (*name == '/' || *name == ':' || isspace(*name))
1006                         return false;
1007                 name++;
1008         }
1009         return true;
1010 }
1011 EXPORT_SYMBOL(dev_valid_name);
1012
1013 /**
1014  *      __dev_alloc_name - allocate a name for a device
1015  *      @net: network namespace to allocate the device name in
1016  *      @name: name format string
1017  *      @buf:  scratch buffer and result name string
1018  *
1019  *      Passed a format string - eg "lt%d" it will try and find a suitable
1020  *      id. It scans list of devices to build up a free map, then chooses
1021  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *      while allocating the name and adding the device in order to avoid
1023  *      duplicates.
1024  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *      Returns the number of the unit assigned or a negative errno code.
1026  */
1027
1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029 {
1030         int i = 0;
1031         const char *p;
1032         const int max_netdevices = 8*PAGE_SIZE;
1033         unsigned long *inuse;
1034         struct net_device *d;
1035
1036         if (!dev_valid_name(name))
1037                 return -EINVAL;
1038
1039         p = strchr(name, '%');
1040         if (p) {
1041                 /*
1042                  * Verify the string as this thing may have come from
1043                  * the user.  There must be either one "%d" and no other "%"
1044                  * characters.
1045                  */
1046                 if (p[1] != 'd' || strchr(p + 2, '%'))
1047                         return -EINVAL;
1048
1049                 /* Use one page as a bit array of possible slots */
1050                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1051                 if (!inuse)
1052                         return -ENOMEM;
1053
1054                 for_each_netdev(net, d) {
1055                         struct netdev_name_node *name_node;
1056                         list_for_each_entry(name_node, &d->name_node->list, list) {
1057                                 if (!sscanf(name_node->name, name, &i))
1058                                         continue;
1059                                 if (i < 0 || i >= max_netdevices)
1060                                         continue;
1061
1062                                 /*  avoid cases where sscanf is not exact inverse of printf */
1063                                 snprintf(buf, IFNAMSIZ, name, i);
1064                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1065                                         __set_bit(i, inuse);
1066                         }
1067                         if (!sscanf(d->name, name, &i))
1068                                 continue;
1069                         if (i < 0 || i >= max_netdevices)
1070                                 continue;
1071
1072                         /*  avoid cases where sscanf is not exact inverse of printf */
1073                         snprintf(buf, IFNAMSIZ, name, i);
1074                         if (!strncmp(buf, d->name, IFNAMSIZ))
1075                                 __set_bit(i, inuse);
1076                 }
1077
1078                 i = find_first_zero_bit(inuse, max_netdevices);
1079                 free_page((unsigned long) inuse);
1080         }
1081
1082         snprintf(buf, IFNAMSIZ, name, i);
1083         if (!netdev_name_in_use(net, buf))
1084                 return i;
1085
1086         /* It is possible to run out of possible slots
1087          * when the name is long and there isn't enough space left
1088          * for the digits, or if all bits are used.
1089          */
1090         return -ENFILE;
1091 }
1092
1093 static int dev_alloc_name_ns(struct net *net,
1094                              struct net_device *dev,
1095                              const char *name)
1096 {
1097         char buf[IFNAMSIZ];
1098         int ret;
1099
1100         BUG_ON(!net);
1101         ret = __dev_alloc_name(net, name, buf);
1102         if (ret >= 0)
1103                 strscpy(dev->name, buf, IFNAMSIZ);
1104         return ret;
1105 }
1106
1107 /**
1108  *      dev_alloc_name - allocate a name for a device
1109  *      @dev: device
1110  *      @name: name format string
1111  *
1112  *      Passed a format string - eg "lt%d" it will try and find a suitable
1113  *      id. It scans list of devices to build up a free map, then chooses
1114  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1115  *      while allocating the name and adding the device in order to avoid
1116  *      duplicates.
1117  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118  *      Returns the number of the unit assigned or a negative errno code.
1119  */
1120
1121 int dev_alloc_name(struct net_device *dev, const char *name)
1122 {
1123         return dev_alloc_name_ns(dev_net(dev), dev, name);
1124 }
1125 EXPORT_SYMBOL(dev_alloc_name);
1126
1127 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1128                               const char *name)
1129 {
1130         BUG_ON(!net);
1131
1132         if (!dev_valid_name(name))
1133                 return -EINVAL;
1134
1135         if (strchr(name, '%'))
1136                 return dev_alloc_name_ns(net, dev, name);
1137         else if (netdev_name_in_use(net, name))
1138                 return -EEXIST;
1139         else if (dev->name != name)
1140                 strscpy(dev->name, name, IFNAMSIZ);
1141
1142         return 0;
1143 }
1144
1145 /**
1146  *      dev_change_name - change name of a device
1147  *      @dev: device
1148  *      @newname: name (or format string) must be at least IFNAMSIZ
1149  *
1150  *      Change name of a device, can pass format strings "eth%d".
1151  *      for wildcarding.
1152  */
1153 int dev_change_name(struct net_device *dev, const char *newname)
1154 {
1155         unsigned char old_assign_type;
1156         char oldname[IFNAMSIZ];
1157         int err = 0;
1158         int ret;
1159         struct net *net;
1160
1161         ASSERT_RTNL();
1162         BUG_ON(!dev_net(dev));
1163
1164         net = dev_net(dev);
1165
1166         /* Some auto-enslaved devices e.g. failover slaves are
1167          * special, as userspace might rename the device after
1168          * the interface had been brought up and running since
1169          * the point kernel initiated auto-enslavement. Allow
1170          * live name change even when these slave devices are
1171          * up and running.
1172          *
1173          * Typically, users of these auto-enslaving devices
1174          * don't actually care about slave name change, as
1175          * they are supposed to operate on master interface
1176          * directly.
1177          */
1178         if (dev->flags & IFF_UP &&
1179             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1180                 return -EBUSY;
1181
1182         down_write(&devnet_rename_sem);
1183
1184         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1185                 up_write(&devnet_rename_sem);
1186                 return 0;
1187         }
1188
1189         memcpy(oldname, dev->name, IFNAMSIZ);
1190
1191         err = dev_get_valid_name(net, dev, newname);
1192         if (err < 0) {
1193                 up_write(&devnet_rename_sem);
1194                 return err;
1195         }
1196
1197         if (oldname[0] && !strchr(oldname, '%'))
1198                 netdev_info(dev, "renamed from %s\n", oldname);
1199
1200         old_assign_type = dev->name_assign_type;
1201         dev->name_assign_type = NET_NAME_RENAMED;
1202
1203 rollback:
1204         ret = device_rename(&dev->dev, dev->name);
1205         if (ret) {
1206                 memcpy(dev->name, oldname, IFNAMSIZ);
1207                 dev->name_assign_type = old_assign_type;
1208                 up_write(&devnet_rename_sem);
1209                 return ret;
1210         }
1211
1212         up_write(&devnet_rename_sem);
1213
1214         netdev_adjacent_rename_links(dev, oldname);
1215
1216         write_lock(&dev_base_lock);
1217         netdev_name_node_del(dev->name_node);
1218         write_unlock(&dev_base_lock);
1219
1220         synchronize_rcu();
1221
1222         write_lock(&dev_base_lock);
1223         netdev_name_node_add(net, dev->name_node);
1224         write_unlock(&dev_base_lock);
1225
1226         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1227         ret = notifier_to_errno(ret);
1228
1229         if (ret) {
1230                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1231                 if (err >= 0) {
1232                         err = ret;
1233                         down_write(&devnet_rename_sem);
1234                         memcpy(dev->name, oldname, IFNAMSIZ);
1235                         memcpy(oldname, newname, IFNAMSIZ);
1236                         dev->name_assign_type = old_assign_type;
1237                         old_assign_type = NET_NAME_RENAMED;
1238                         goto rollback;
1239                 } else {
1240                         netdev_err(dev, "name change rollback failed: %d\n",
1241                                    ret);
1242                 }
1243         }
1244
1245         return err;
1246 }
1247
1248 /**
1249  *      dev_set_alias - change ifalias of a device
1250  *      @dev: device
1251  *      @alias: name up to IFALIASZ
1252  *      @len: limit of bytes to copy from info
1253  *
1254  *      Set ifalias for a device,
1255  */
1256 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1257 {
1258         struct dev_ifalias *new_alias = NULL;
1259
1260         if (len >= IFALIASZ)
1261                 return -EINVAL;
1262
1263         if (len) {
1264                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1265                 if (!new_alias)
1266                         return -ENOMEM;
1267
1268                 memcpy(new_alias->ifalias, alias, len);
1269                 new_alias->ifalias[len] = 0;
1270         }
1271
1272         mutex_lock(&ifalias_mutex);
1273         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1274                                         mutex_is_locked(&ifalias_mutex));
1275         mutex_unlock(&ifalias_mutex);
1276
1277         if (new_alias)
1278                 kfree_rcu(new_alias, rcuhead);
1279
1280         return len;
1281 }
1282 EXPORT_SYMBOL(dev_set_alias);
1283
1284 /**
1285  *      dev_get_alias - get ifalias of a device
1286  *      @dev: device
1287  *      @name: buffer to store name of ifalias
1288  *      @len: size of buffer
1289  *
1290  *      get ifalias for a device.  Caller must make sure dev cannot go
1291  *      away,  e.g. rcu read lock or own a reference count to device.
1292  */
1293 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1294 {
1295         const struct dev_ifalias *alias;
1296         int ret = 0;
1297
1298         rcu_read_lock();
1299         alias = rcu_dereference(dev->ifalias);
1300         if (alias)
1301                 ret = snprintf(name, len, "%s", alias->ifalias);
1302         rcu_read_unlock();
1303
1304         return ret;
1305 }
1306
1307 /**
1308  *      netdev_features_change - device changes features
1309  *      @dev: device to cause notification
1310  *
1311  *      Called to indicate a device has changed features.
1312  */
1313 void netdev_features_change(struct net_device *dev)
1314 {
1315         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1316 }
1317 EXPORT_SYMBOL(netdev_features_change);
1318
1319 /**
1320  *      netdev_state_change - device changes state
1321  *      @dev: device to cause notification
1322  *
1323  *      Called to indicate a device has changed state. This function calls
1324  *      the notifier chains for netdev_chain and sends a NEWLINK message
1325  *      to the routing socket.
1326  */
1327 void netdev_state_change(struct net_device *dev)
1328 {
1329         if (dev->flags & IFF_UP) {
1330                 struct netdev_notifier_change_info change_info = {
1331                         .info.dev = dev,
1332                 };
1333
1334                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1335                                               &change_info.info);
1336                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1337         }
1338 }
1339 EXPORT_SYMBOL(netdev_state_change);
1340
1341 /**
1342  * __netdev_notify_peers - notify network peers about existence of @dev,
1343  * to be called when rtnl lock is already held.
1344  * @dev: network device
1345  *
1346  * Generate traffic such that interested network peers are aware of
1347  * @dev, such as by generating a gratuitous ARP. This may be used when
1348  * a device wants to inform the rest of the network about some sort of
1349  * reconfiguration such as a failover event or virtual machine
1350  * migration.
1351  */
1352 void __netdev_notify_peers(struct net_device *dev)
1353 {
1354         ASSERT_RTNL();
1355         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1356         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1357 }
1358 EXPORT_SYMBOL(__netdev_notify_peers);
1359
1360 /**
1361  * netdev_notify_peers - notify network peers about existence of @dev
1362  * @dev: network device
1363  *
1364  * Generate traffic such that interested network peers are aware of
1365  * @dev, such as by generating a gratuitous ARP. This may be used when
1366  * a device wants to inform the rest of the network about some sort of
1367  * reconfiguration such as a failover event or virtual machine
1368  * migration.
1369  */
1370 void netdev_notify_peers(struct net_device *dev)
1371 {
1372         rtnl_lock();
1373         __netdev_notify_peers(dev);
1374         rtnl_unlock();
1375 }
1376 EXPORT_SYMBOL(netdev_notify_peers);
1377
1378 static int napi_threaded_poll(void *data);
1379
1380 static int napi_kthread_create(struct napi_struct *n)
1381 {
1382         int err = 0;
1383
1384         /* Create and wake up the kthread once to put it in
1385          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1386          * warning and work with loadavg.
1387          */
1388         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1389                                 n->dev->name, n->napi_id);
1390         if (IS_ERR(n->thread)) {
1391                 err = PTR_ERR(n->thread);
1392                 pr_err("kthread_run failed with err %d\n", err);
1393                 n->thread = NULL;
1394         }
1395
1396         return err;
1397 }
1398
1399 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1400 {
1401         const struct net_device_ops *ops = dev->netdev_ops;
1402         int ret;
1403
1404         ASSERT_RTNL();
1405         dev_addr_check(dev);
1406
1407         if (!netif_device_present(dev)) {
1408                 /* may be detached because parent is runtime-suspended */
1409                 if (dev->dev.parent)
1410                         pm_runtime_resume(dev->dev.parent);
1411                 if (!netif_device_present(dev))
1412                         return -ENODEV;
1413         }
1414
1415         /* Block netpoll from trying to do any rx path servicing.
1416          * If we don't do this there is a chance ndo_poll_controller
1417          * or ndo_poll may be running while we open the device
1418          */
1419         netpoll_poll_disable(dev);
1420
1421         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1422         ret = notifier_to_errno(ret);
1423         if (ret)
1424                 return ret;
1425
1426         set_bit(__LINK_STATE_START, &dev->state);
1427
1428         if (ops->ndo_validate_addr)
1429                 ret = ops->ndo_validate_addr(dev);
1430
1431         if (!ret && ops->ndo_open)
1432                 ret = ops->ndo_open(dev);
1433
1434         netpoll_poll_enable(dev);
1435
1436         if (ret)
1437                 clear_bit(__LINK_STATE_START, &dev->state);
1438         else {
1439                 dev->flags |= IFF_UP;
1440                 dev_set_rx_mode(dev);
1441                 dev_activate(dev);
1442                 add_device_randomness(dev->dev_addr, dev->addr_len);
1443         }
1444
1445         return ret;
1446 }
1447
1448 /**
1449  *      dev_open        - prepare an interface for use.
1450  *      @dev: device to open
1451  *      @extack: netlink extended ack
1452  *
1453  *      Takes a device from down to up state. The device's private open
1454  *      function is invoked and then the multicast lists are loaded. Finally
1455  *      the device is moved into the up state and a %NETDEV_UP message is
1456  *      sent to the netdev notifier chain.
1457  *
1458  *      Calling this function on an active interface is a nop. On a failure
1459  *      a negative errno code is returned.
1460  */
1461 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1462 {
1463         int ret;
1464
1465         if (dev->flags & IFF_UP)
1466                 return 0;
1467
1468         ret = __dev_open(dev, extack);
1469         if (ret < 0)
1470                 return ret;
1471
1472         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1473         call_netdevice_notifiers(NETDEV_UP, dev);
1474
1475         return ret;
1476 }
1477 EXPORT_SYMBOL(dev_open);
1478
1479 static void __dev_close_many(struct list_head *head)
1480 {
1481         struct net_device *dev;
1482
1483         ASSERT_RTNL();
1484         might_sleep();
1485
1486         list_for_each_entry(dev, head, close_list) {
1487                 /* Temporarily disable netpoll until the interface is down */
1488                 netpoll_poll_disable(dev);
1489
1490                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1491
1492                 clear_bit(__LINK_STATE_START, &dev->state);
1493
1494                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1495                  * can be even on different cpu. So just clear netif_running().
1496                  *
1497                  * dev->stop() will invoke napi_disable() on all of it's
1498                  * napi_struct instances on this device.
1499                  */
1500                 smp_mb__after_atomic(); /* Commit netif_running(). */
1501         }
1502
1503         dev_deactivate_many(head);
1504
1505         list_for_each_entry(dev, head, close_list) {
1506                 const struct net_device_ops *ops = dev->netdev_ops;
1507
1508                 /*
1509                  *      Call the device specific close. This cannot fail.
1510                  *      Only if device is UP
1511                  *
1512                  *      We allow it to be called even after a DETACH hot-plug
1513                  *      event.
1514                  */
1515                 if (ops->ndo_stop)
1516                         ops->ndo_stop(dev);
1517
1518                 dev->flags &= ~IFF_UP;
1519                 netpoll_poll_enable(dev);
1520         }
1521 }
1522
1523 static void __dev_close(struct net_device *dev)
1524 {
1525         LIST_HEAD(single);
1526
1527         list_add(&dev->close_list, &single);
1528         __dev_close_many(&single);
1529         list_del(&single);
1530 }
1531
1532 void dev_close_many(struct list_head *head, bool unlink)
1533 {
1534         struct net_device *dev, *tmp;
1535
1536         /* Remove the devices that don't need to be closed */
1537         list_for_each_entry_safe(dev, tmp, head, close_list)
1538                 if (!(dev->flags & IFF_UP))
1539                         list_del_init(&dev->close_list);
1540
1541         __dev_close_many(head);
1542
1543         list_for_each_entry_safe(dev, tmp, head, close_list) {
1544                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1545                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1546                 if (unlink)
1547                         list_del_init(&dev->close_list);
1548         }
1549 }
1550 EXPORT_SYMBOL(dev_close_many);
1551
1552 /**
1553  *      dev_close - shutdown an interface.
1554  *      @dev: device to shutdown
1555  *
1556  *      This function moves an active device into down state. A
1557  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1558  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1559  *      chain.
1560  */
1561 void dev_close(struct net_device *dev)
1562 {
1563         if (dev->flags & IFF_UP) {
1564                 LIST_HEAD(single);
1565
1566                 list_add(&dev->close_list, &single);
1567                 dev_close_many(&single, true);
1568                 list_del(&single);
1569         }
1570 }
1571 EXPORT_SYMBOL(dev_close);
1572
1573
1574 /**
1575  *      dev_disable_lro - disable Large Receive Offload on a device
1576  *      @dev: device
1577  *
1578  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1579  *      called under RTNL.  This is needed if received packets may be
1580  *      forwarded to another interface.
1581  */
1582 void dev_disable_lro(struct net_device *dev)
1583 {
1584         struct net_device *lower_dev;
1585         struct list_head *iter;
1586
1587         dev->wanted_features &= ~NETIF_F_LRO;
1588         netdev_update_features(dev);
1589
1590         if (unlikely(dev->features & NETIF_F_LRO))
1591                 netdev_WARN(dev, "failed to disable LRO!\n");
1592
1593         netdev_for_each_lower_dev(dev, lower_dev, iter)
1594                 dev_disable_lro(lower_dev);
1595 }
1596 EXPORT_SYMBOL(dev_disable_lro);
1597
1598 /**
1599  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1600  *      @dev: device
1601  *
1602  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1603  *      called under RTNL.  This is needed if Generic XDP is installed on
1604  *      the device.
1605  */
1606 static void dev_disable_gro_hw(struct net_device *dev)
1607 {
1608         dev->wanted_features &= ~NETIF_F_GRO_HW;
1609         netdev_update_features(dev);
1610
1611         if (unlikely(dev->features & NETIF_F_GRO_HW))
1612                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1613 }
1614
1615 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1616 {
1617 #define N(val)                                          \
1618         case NETDEV_##val:                              \
1619                 return "NETDEV_" __stringify(val);
1620         switch (cmd) {
1621         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1622         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1623         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1624         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1625         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1626         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1627         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1628         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1629         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1630         N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1631         N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1632         }
1633 #undef N
1634         return "UNKNOWN_NETDEV_EVENT";
1635 }
1636 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1637
1638 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1639                                    struct net_device *dev)
1640 {
1641         struct netdev_notifier_info info = {
1642                 .dev = dev,
1643         };
1644
1645         return nb->notifier_call(nb, val, &info);
1646 }
1647
1648 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1649                                              struct net_device *dev)
1650 {
1651         int err;
1652
1653         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1654         err = notifier_to_errno(err);
1655         if (err)
1656                 return err;
1657
1658         if (!(dev->flags & IFF_UP))
1659                 return 0;
1660
1661         call_netdevice_notifier(nb, NETDEV_UP, dev);
1662         return 0;
1663 }
1664
1665 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1666                                                 struct net_device *dev)
1667 {
1668         if (dev->flags & IFF_UP) {
1669                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1670                                         dev);
1671                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1672         }
1673         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1674 }
1675
1676 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1677                                                  struct net *net)
1678 {
1679         struct net_device *dev;
1680         int err;
1681
1682         for_each_netdev(net, dev) {
1683                 err = call_netdevice_register_notifiers(nb, dev);
1684                 if (err)
1685                         goto rollback;
1686         }
1687         return 0;
1688
1689 rollback:
1690         for_each_netdev_continue_reverse(net, dev)
1691                 call_netdevice_unregister_notifiers(nb, dev);
1692         return err;
1693 }
1694
1695 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1696                                                     struct net *net)
1697 {
1698         struct net_device *dev;
1699
1700         for_each_netdev(net, dev)
1701                 call_netdevice_unregister_notifiers(nb, dev);
1702 }
1703
1704 static int dev_boot_phase = 1;
1705
1706 /**
1707  * register_netdevice_notifier - register a network notifier block
1708  * @nb: notifier
1709  *
1710  * Register a notifier to be called when network device events occur.
1711  * The notifier passed is linked into the kernel structures and must
1712  * not be reused until it has been unregistered. A negative errno code
1713  * is returned on a failure.
1714  *
1715  * When registered all registration and up events are replayed
1716  * to the new notifier to allow device to have a race free
1717  * view of the network device list.
1718  */
1719
1720 int register_netdevice_notifier(struct notifier_block *nb)
1721 {
1722         struct net *net;
1723         int err;
1724
1725         /* Close race with setup_net() and cleanup_net() */
1726         down_write(&pernet_ops_rwsem);
1727         rtnl_lock();
1728         err = raw_notifier_chain_register(&netdev_chain, nb);
1729         if (err)
1730                 goto unlock;
1731         if (dev_boot_phase)
1732                 goto unlock;
1733         for_each_net(net) {
1734                 err = call_netdevice_register_net_notifiers(nb, net);
1735                 if (err)
1736                         goto rollback;
1737         }
1738
1739 unlock:
1740         rtnl_unlock();
1741         up_write(&pernet_ops_rwsem);
1742         return err;
1743
1744 rollback:
1745         for_each_net_continue_reverse(net)
1746                 call_netdevice_unregister_net_notifiers(nb, net);
1747
1748         raw_notifier_chain_unregister(&netdev_chain, nb);
1749         goto unlock;
1750 }
1751 EXPORT_SYMBOL(register_netdevice_notifier);
1752
1753 /**
1754  * unregister_netdevice_notifier - unregister a network notifier block
1755  * @nb: notifier
1756  *
1757  * Unregister a notifier previously registered by
1758  * register_netdevice_notifier(). The notifier is unlinked into the
1759  * kernel structures and may then be reused. A negative errno code
1760  * is returned on a failure.
1761  *
1762  * After unregistering unregister and down device events are synthesized
1763  * for all devices on the device list to the removed notifier to remove
1764  * the need for special case cleanup code.
1765  */
1766
1767 int unregister_netdevice_notifier(struct notifier_block *nb)
1768 {
1769         struct net *net;
1770         int err;
1771
1772         /* Close race with setup_net() and cleanup_net() */
1773         down_write(&pernet_ops_rwsem);
1774         rtnl_lock();
1775         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1776         if (err)
1777                 goto unlock;
1778
1779         for_each_net(net)
1780                 call_netdevice_unregister_net_notifiers(nb, net);
1781
1782 unlock:
1783         rtnl_unlock();
1784         up_write(&pernet_ops_rwsem);
1785         return err;
1786 }
1787 EXPORT_SYMBOL(unregister_netdevice_notifier);
1788
1789 static int __register_netdevice_notifier_net(struct net *net,
1790                                              struct notifier_block *nb,
1791                                              bool ignore_call_fail)
1792 {
1793         int err;
1794
1795         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1796         if (err)
1797                 return err;
1798         if (dev_boot_phase)
1799                 return 0;
1800
1801         err = call_netdevice_register_net_notifiers(nb, net);
1802         if (err && !ignore_call_fail)
1803                 goto chain_unregister;
1804
1805         return 0;
1806
1807 chain_unregister:
1808         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1809         return err;
1810 }
1811
1812 static int __unregister_netdevice_notifier_net(struct net *net,
1813                                                struct notifier_block *nb)
1814 {
1815         int err;
1816
1817         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1818         if (err)
1819                 return err;
1820
1821         call_netdevice_unregister_net_notifiers(nb, net);
1822         return 0;
1823 }
1824
1825 /**
1826  * register_netdevice_notifier_net - register a per-netns network notifier block
1827  * @net: network namespace
1828  * @nb: notifier
1829  *
1830  * Register a notifier to be called when network device events occur.
1831  * The notifier passed is linked into the kernel structures and must
1832  * not be reused until it has been unregistered. A negative errno code
1833  * is returned on a failure.
1834  *
1835  * When registered all registration and up events are replayed
1836  * to the new notifier to allow device to have a race free
1837  * view of the network device list.
1838  */
1839
1840 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1841 {
1842         int err;
1843
1844         rtnl_lock();
1845         err = __register_netdevice_notifier_net(net, nb, false);
1846         rtnl_unlock();
1847         return err;
1848 }
1849 EXPORT_SYMBOL(register_netdevice_notifier_net);
1850
1851 /**
1852  * unregister_netdevice_notifier_net - unregister a per-netns
1853  *                                     network notifier block
1854  * @net: network namespace
1855  * @nb: notifier
1856  *
1857  * Unregister a notifier previously registered by
1858  * register_netdevice_notifier(). The notifier is unlinked into the
1859  * kernel structures and may then be reused. A negative errno code
1860  * is returned on a failure.
1861  *
1862  * After unregistering unregister and down device events are synthesized
1863  * for all devices on the device list to the removed notifier to remove
1864  * the need for special case cleanup code.
1865  */
1866
1867 int unregister_netdevice_notifier_net(struct net *net,
1868                                       struct notifier_block *nb)
1869 {
1870         int err;
1871
1872         rtnl_lock();
1873         err = __unregister_netdevice_notifier_net(net, nb);
1874         rtnl_unlock();
1875         return err;
1876 }
1877 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1878
1879 int register_netdevice_notifier_dev_net(struct net_device *dev,
1880                                         struct notifier_block *nb,
1881                                         struct netdev_net_notifier *nn)
1882 {
1883         int err;
1884
1885         rtnl_lock();
1886         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1887         if (!err) {
1888                 nn->nb = nb;
1889                 list_add(&nn->list, &dev->net_notifier_list);
1890         }
1891         rtnl_unlock();
1892         return err;
1893 }
1894 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1895
1896 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1897                                           struct notifier_block *nb,
1898                                           struct netdev_net_notifier *nn)
1899 {
1900         int err;
1901
1902         rtnl_lock();
1903         list_del(&nn->list);
1904         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1905         rtnl_unlock();
1906         return err;
1907 }
1908 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1909
1910 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1911                                              struct net *net)
1912 {
1913         struct netdev_net_notifier *nn;
1914
1915         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1916                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1917                 __register_netdevice_notifier_net(net, nn->nb, true);
1918         }
1919 }
1920
1921 /**
1922  *      call_netdevice_notifiers_info - call all network notifier blocks
1923  *      @val: value passed unmodified to notifier function
1924  *      @info: notifier information data
1925  *
1926  *      Call all network notifier blocks.  Parameters and return value
1927  *      are as for raw_notifier_call_chain().
1928  */
1929
1930 static int call_netdevice_notifiers_info(unsigned long val,
1931                                          struct netdev_notifier_info *info)
1932 {
1933         struct net *net = dev_net(info->dev);
1934         int ret;
1935
1936         ASSERT_RTNL();
1937
1938         /* Run per-netns notifier block chain first, then run the global one.
1939          * Hopefully, one day, the global one is going to be removed after
1940          * all notifier block registrators get converted to be per-netns.
1941          */
1942         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1943         if (ret & NOTIFY_STOP_MASK)
1944                 return ret;
1945         return raw_notifier_call_chain(&netdev_chain, val, info);
1946 }
1947
1948 /**
1949  *      call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1950  *                                             for and rollback on error
1951  *      @val_up: value passed unmodified to notifier function
1952  *      @val_down: value passed unmodified to the notifier function when
1953  *                 recovering from an error on @val_up
1954  *      @info: notifier information data
1955  *
1956  *      Call all per-netns network notifier blocks, but not notifier blocks on
1957  *      the global notifier chain. Parameters and return value are as for
1958  *      raw_notifier_call_chain_robust().
1959  */
1960
1961 static int
1962 call_netdevice_notifiers_info_robust(unsigned long val_up,
1963                                      unsigned long val_down,
1964                                      struct netdev_notifier_info *info)
1965 {
1966         struct net *net = dev_net(info->dev);
1967
1968         ASSERT_RTNL();
1969
1970         return raw_notifier_call_chain_robust(&net->netdev_chain,
1971                                               val_up, val_down, info);
1972 }
1973
1974 static int call_netdevice_notifiers_extack(unsigned long val,
1975                                            struct net_device *dev,
1976                                            struct netlink_ext_ack *extack)
1977 {
1978         struct netdev_notifier_info info = {
1979                 .dev = dev,
1980                 .extack = extack,
1981         };
1982
1983         return call_netdevice_notifiers_info(val, &info);
1984 }
1985
1986 /**
1987  *      call_netdevice_notifiers - call all network notifier blocks
1988  *      @val: value passed unmodified to notifier function
1989  *      @dev: net_device pointer passed unmodified to notifier function
1990  *
1991  *      Call all network notifier blocks.  Parameters and return value
1992  *      are as for raw_notifier_call_chain().
1993  */
1994
1995 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1996 {
1997         return call_netdevice_notifiers_extack(val, dev, NULL);
1998 }
1999 EXPORT_SYMBOL(call_netdevice_notifiers);
2000
2001 /**
2002  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2003  *      @val: value passed unmodified to notifier function
2004  *      @dev: net_device pointer passed unmodified to notifier function
2005  *      @arg: additional u32 argument passed to the notifier function
2006  *
2007  *      Call all network notifier blocks.  Parameters and return value
2008  *      are as for raw_notifier_call_chain().
2009  */
2010 static int call_netdevice_notifiers_mtu(unsigned long val,
2011                                         struct net_device *dev, u32 arg)
2012 {
2013         struct netdev_notifier_info_ext info = {
2014                 .info.dev = dev,
2015                 .ext.mtu = arg,
2016         };
2017
2018         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2019
2020         return call_netdevice_notifiers_info(val, &info.info);
2021 }
2022
2023 #ifdef CONFIG_NET_INGRESS
2024 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2025
2026 void net_inc_ingress_queue(void)
2027 {
2028         static_branch_inc(&ingress_needed_key);
2029 }
2030 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2031
2032 void net_dec_ingress_queue(void)
2033 {
2034         static_branch_dec(&ingress_needed_key);
2035 }
2036 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2037 #endif
2038
2039 #ifdef CONFIG_NET_EGRESS
2040 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2041
2042 void net_inc_egress_queue(void)
2043 {
2044         static_branch_inc(&egress_needed_key);
2045 }
2046 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2047
2048 void net_dec_egress_queue(void)
2049 {
2050         static_branch_dec(&egress_needed_key);
2051 }
2052 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2053 #endif
2054
2055 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2056 EXPORT_SYMBOL(netstamp_needed_key);
2057 #ifdef CONFIG_JUMP_LABEL
2058 static atomic_t netstamp_needed_deferred;
2059 static atomic_t netstamp_wanted;
2060 static void netstamp_clear(struct work_struct *work)
2061 {
2062         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2063         int wanted;
2064
2065         wanted = atomic_add_return(deferred, &netstamp_wanted);
2066         if (wanted > 0)
2067                 static_branch_enable(&netstamp_needed_key);
2068         else
2069                 static_branch_disable(&netstamp_needed_key);
2070 }
2071 static DECLARE_WORK(netstamp_work, netstamp_clear);
2072 #endif
2073
2074 void net_enable_timestamp(void)
2075 {
2076 #ifdef CONFIG_JUMP_LABEL
2077         int wanted;
2078
2079         while (1) {
2080                 wanted = atomic_read(&netstamp_wanted);
2081                 if (wanted <= 0)
2082                         break;
2083                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2084                         return;
2085         }
2086         atomic_inc(&netstamp_needed_deferred);
2087         schedule_work(&netstamp_work);
2088 #else
2089         static_branch_inc(&netstamp_needed_key);
2090 #endif
2091 }
2092 EXPORT_SYMBOL(net_enable_timestamp);
2093
2094 void net_disable_timestamp(void)
2095 {
2096 #ifdef CONFIG_JUMP_LABEL
2097         int wanted;
2098
2099         while (1) {
2100                 wanted = atomic_read(&netstamp_wanted);
2101                 if (wanted <= 1)
2102                         break;
2103                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2104                         return;
2105         }
2106         atomic_dec(&netstamp_needed_deferred);
2107         schedule_work(&netstamp_work);
2108 #else
2109         static_branch_dec(&netstamp_needed_key);
2110 #endif
2111 }
2112 EXPORT_SYMBOL(net_disable_timestamp);
2113
2114 static inline void net_timestamp_set(struct sk_buff *skb)
2115 {
2116         skb->tstamp = 0;
2117         skb->mono_delivery_time = 0;
2118         if (static_branch_unlikely(&netstamp_needed_key))
2119                 skb->tstamp = ktime_get_real();
2120 }
2121
2122 #define net_timestamp_check(COND, SKB)                          \
2123         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2124                 if ((COND) && !(SKB)->tstamp)                   \
2125                         (SKB)->tstamp = ktime_get_real();       \
2126         }                                                       \
2127
2128 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2129 {
2130         return __is_skb_forwardable(dev, skb, true);
2131 }
2132 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2133
2134 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2135                               bool check_mtu)
2136 {
2137         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2138
2139         if (likely(!ret)) {
2140                 skb->protocol = eth_type_trans(skb, dev);
2141                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2142         }
2143
2144         return ret;
2145 }
2146
2147 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2148 {
2149         return __dev_forward_skb2(dev, skb, true);
2150 }
2151 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2152
2153 /**
2154  * dev_forward_skb - loopback an skb to another netif
2155  *
2156  * @dev: destination network device
2157  * @skb: buffer to forward
2158  *
2159  * return values:
2160  *      NET_RX_SUCCESS  (no congestion)
2161  *      NET_RX_DROP     (packet was dropped, but freed)
2162  *
2163  * dev_forward_skb can be used for injecting an skb from the
2164  * start_xmit function of one device into the receive queue
2165  * of another device.
2166  *
2167  * The receiving device may be in another namespace, so
2168  * we have to clear all information in the skb that could
2169  * impact namespace isolation.
2170  */
2171 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2172 {
2173         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2174 }
2175 EXPORT_SYMBOL_GPL(dev_forward_skb);
2176
2177 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2178 {
2179         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2180 }
2181
2182 static inline int deliver_skb(struct sk_buff *skb,
2183                               struct packet_type *pt_prev,
2184                               struct net_device *orig_dev)
2185 {
2186         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2187                 return -ENOMEM;
2188         refcount_inc(&skb->users);
2189         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2190 }
2191
2192 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2193                                           struct packet_type **pt,
2194                                           struct net_device *orig_dev,
2195                                           __be16 type,
2196                                           struct list_head *ptype_list)
2197 {
2198         struct packet_type *ptype, *pt_prev = *pt;
2199
2200         list_for_each_entry_rcu(ptype, ptype_list, list) {
2201                 if (ptype->type != type)
2202                         continue;
2203                 if (pt_prev)
2204                         deliver_skb(skb, pt_prev, orig_dev);
2205                 pt_prev = ptype;
2206         }
2207         *pt = pt_prev;
2208 }
2209
2210 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2211 {
2212         if (!ptype->af_packet_priv || !skb->sk)
2213                 return false;
2214
2215         if (ptype->id_match)
2216                 return ptype->id_match(ptype, skb->sk);
2217         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2218                 return true;
2219
2220         return false;
2221 }
2222
2223 /**
2224  * dev_nit_active - return true if any network interface taps are in use
2225  *
2226  * @dev: network device to check for the presence of taps
2227  */
2228 bool dev_nit_active(struct net_device *dev)
2229 {
2230         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2231 }
2232 EXPORT_SYMBOL_GPL(dev_nit_active);
2233
2234 /*
2235  *      Support routine. Sends outgoing frames to any network
2236  *      taps currently in use.
2237  */
2238
2239 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2240 {
2241         struct packet_type *ptype;
2242         struct sk_buff *skb2 = NULL;
2243         struct packet_type *pt_prev = NULL;
2244         struct list_head *ptype_list = &ptype_all;
2245
2246         rcu_read_lock();
2247 again:
2248         list_for_each_entry_rcu(ptype, ptype_list, list) {
2249                 if (ptype->ignore_outgoing)
2250                         continue;
2251
2252                 /* Never send packets back to the socket
2253                  * they originated from - MvS ([email protected])
2254                  */
2255                 if (skb_loop_sk(ptype, skb))
2256                         continue;
2257
2258                 if (pt_prev) {
2259                         deliver_skb(skb2, pt_prev, skb->dev);
2260                         pt_prev = ptype;
2261                         continue;
2262                 }
2263
2264                 /* need to clone skb, done only once */
2265                 skb2 = skb_clone(skb, GFP_ATOMIC);
2266                 if (!skb2)
2267                         goto out_unlock;
2268
2269                 net_timestamp_set(skb2);
2270
2271                 /* skb->nh should be correctly
2272                  * set by sender, so that the second statement is
2273                  * just protection against buggy protocols.
2274                  */
2275                 skb_reset_mac_header(skb2);
2276
2277                 if (skb_network_header(skb2) < skb2->data ||
2278                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2279                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2280                                              ntohs(skb2->protocol),
2281                                              dev->name);
2282                         skb_reset_network_header(skb2);
2283                 }
2284
2285                 skb2->transport_header = skb2->network_header;
2286                 skb2->pkt_type = PACKET_OUTGOING;
2287                 pt_prev = ptype;
2288         }
2289
2290         if (ptype_list == &ptype_all) {
2291                 ptype_list = &dev->ptype_all;
2292                 goto again;
2293         }
2294 out_unlock:
2295         if (pt_prev) {
2296                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2297                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2298                 else
2299                         kfree_skb(skb2);
2300         }
2301         rcu_read_unlock();
2302 }
2303 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2304
2305 /**
2306  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2307  * @dev: Network device
2308  * @txq: number of queues available
2309  *
2310  * If real_num_tx_queues is changed the tc mappings may no longer be
2311  * valid. To resolve this verify the tc mapping remains valid and if
2312  * not NULL the mapping. With no priorities mapping to this
2313  * offset/count pair it will no longer be used. In the worst case TC0
2314  * is invalid nothing can be done so disable priority mappings. If is
2315  * expected that drivers will fix this mapping if they can before
2316  * calling netif_set_real_num_tx_queues.
2317  */
2318 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2319 {
2320         int i;
2321         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2322
2323         /* If TC0 is invalidated disable TC mapping */
2324         if (tc->offset + tc->count > txq) {
2325                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2326                 dev->num_tc = 0;
2327                 return;
2328         }
2329
2330         /* Invalidated prio to tc mappings set to TC0 */
2331         for (i = 1; i < TC_BITMASK + 1; i++) {
2332                 int q = netdev_get_prio_tc_map(dev, i);
2333
2334                 tc = &dev->tc_to_txq[q];
2335                 if (tc->offset + tc->count > txq) {
2336                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2337                                     i, q);
2338                         netdev_set_prio_tc_map(dev, i, 0);
2339                 }
2340         }
2341 }
2342
2343 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2344 {
2345         if (dev->num_tc) {
2346                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2347                 int i;
2348
2349                 /* walk through the TCs and see if it falls into any of them */
2350                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2351                         if ((txq - tc->offset) < tc->count)
2352                                 return i;
2353                 }
2354
2355                 /* didn't find it, just return -1 to indicate no match */
2356                 return -1;
2357         }
2358
2359         return 0;
2360 }
2361 EXPORT_SYMBOL(netdev_txq_to_tc);
2362
2363 #ifdef CONFIG_XPS
2364 static struct static_key xps_needed __read_mostly;
2365 static struct static_key xps_rxqs_needed __read_mostly;
2366 static DEFINE_MUTEX(xps_map_mutex);
2367 #define xmap_dereference(P)             \
2368         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2369
2370 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2371                              struct xps_dev_maps *old_maps, int tci, u16 index)
2372 {
2373         struct xps_map *map = NULL;
2374         int pos;
2375
2376         if (dev_maps)
2377                 map = xmap_dereference(dev_maps->attr_map[tci]);
2378         if (!map)
2379                 return false;
2380
2381         for (pos = map->len; pos--;) {
2382                 if (map->queues[pos] != index)
2383                         continue;
2384
2385                 if (map->len > 1) {
2386                         map->queues[pos] = map->queues[--map->len];
2387                         break;
2388                 }
2389
2390                 if (old_maps)
2391                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2392                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2393                 kfree_rcu(map, rcu);
2394                 return false;
2395         }
2396
2397         return true;
2398 }
2399
2400 static bool remove_xps_queue_cpu(struct net_device *dev,
2401                                  struct xps_dev_maps *dev_maps,
2402                                  int cpu, u16 offset, u16 count)
2403 {
2404         int num_tc = dev_maps->num_tc;
2405         bool active = false;
2406         int tci;
2407
2408         for (tci = cpu * num_tc; num_tc--; tci++) {
2409                 int i, j;
2410
2411                 for (i = count, j = offset; i--; j++) {
2412                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2413                                 break;
2414                 }
2415
2416                 active |= i < 0;
2417         }
2418
2419         return active;
2420 }
2421
2422 static void reset_xps_maps(struct net_device *dev,
2423                            struct xps_dev_maps *dev_maps,
2424                            enum xps_map_type type)
2425 {
2426         static_key_slow_dec_cpuslocked(&xps_needed);
2427         if (type == XPS_RXQS)
2428                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2429
2430         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2431
2432         kfree_rcu(dev_maps, rcu);
2433 }
2434
2435 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2436                            u16 offset, u16 count)
2437 {
2438         struct xps_dev_maps *dev_maps;
2439         bool active = false;
2440         int i, j;
2441
2442         dev_maps = xmap_dereference(dev->xps_maps[type]);
2443         if (!dev_maps)
2444                 return;
2445
2446         for (j = 0; j < dev_maps->nr_ids; j++)
2447                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2448         if (!active)
2449                 reset_xps_maps(dev, dev_maps, type);
2450
2451         if (type == XPS_CPUS) {
2452                 for (i = offset + (count - 1); count--; i--)
2453                         netdev_queue_numa_node_write(
2454                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2455         }
2456 }
2457
2458 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2459                                    u16 count)
2460 {
2461         if (!static_key_false(&xps_needed))
2462                 return;
2463
2464         cpus_read_lock();
2465         mutex_lock(&xps_map_mutex);
2466
2467         if (static_key_false(&xps_rxqs_needed))
2468                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2469
2470         clean_xps_maps(dev, XPS_CPUS, offset, count);
2471
2472         mutex_unlock(&xps_map_mutex);
2473         cpus_read_unlock();
2474 }
2475
2476 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2477 {
2478         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2479 }
2480
2481 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2482                                       u16 index, bool is_rxqs_map)
2483 {
2484         struct xps_map *new_map;
2485         int alloc_len = XPS_MIN_MAP_ALLOC;
2486         int i, pos;
2487
2488         for (pos = 0; map && pos < map->len; pos++) {
2489                 if (map->queues[pos] != index)
2490                         continue;
2491                 return map;
2492         }
2493
2494         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2495         if (map) {
2496                 if (pos < map->alloc_len)
2497                         return map;
2498
2499                 alloc_len = map->alloc_len * 2;
2500         }
2501
2502         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2503          *  map
2504          */
2505         if (is_rxqs_map)
2506                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2507         else
2508                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2509                                        cpu_to_node(attr_index));
2510         if (!new_map)
2511                 return NULL;
2512
2513         for (i = 0; i < pos; i++)
2514                 new_map->queues[i] = map->queues[i];
2515         new_map->alloc_len = alloc_len;
2516         new_map->len = pos;
2517
2518         return new_map;
2519 }
2520
2521 /* Copy xps maps at a given index */
2522 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2523                               struct xps_dev_maps *new_dev_maps, int index,
2524                               int tc, bool skip_tc)
2525 {
2526         int i, tci = index * dev_maps->num_tc;
2527         struct xps_map *map;
2528
2529         /* copy maps belonging to foreign traffic classes */
2530         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2531                 if (i == tc && skip_tc)
2532                         continue;
2533
2534                 /* fill in the new device map from the old device map */
2535                 map = xmap_dereference(dev_maps->attr_map[tci]);
2536                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2537         }
2538 }
2539
2540 /* Must be called under cpus_read_lock */
2541 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2542                           u16 index, enum xps_map_type type)
2543 {
2544         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2545         const unsigned long *online_mask = NULL;
2546         bool active = false, copy = false;
2547         int i, j, tci, numa_node_id = -2;
2548         int maps_sz, num_tc = 1, tc = 0;
2549         struct xps_map *map, *new_map;
2550         unsigned int nr_ids;
2551
2552         if (dev->num_tc) {
2553                 /* Do not allow XPS on subordinate device directly */
2554                 num_tc = dev->num_tc;
2555                 if (num_tc < 0)
2556                         return -EINVAL;
2557
2558                 /* If queue belongs to subordinate dev use its map */
2559                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2560
2561                 tc = netdev_txq_to_tc(dev, index);
2562                 if (tc < 0)
2563                         return -EINVAL;
2564         }
2565
2566         mutex_lock(&xps_map_mutex);
2567
2568         dev_maps = xmap_dereference(dev->xps_maps[type]);
2569         if (type == XPS_RXQS) {
2570                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2571                 nr_ids = dev->num_rx_queues;
2572         } else {
2573                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2574                 if (num_possible_cpus() > 1)
2575                         online_mask = cpumask_bits(cpu_online_mask);
2576                 nr_ids = nr_cpu_ids;
2577         }
2578
2579         if (maps_sz < L1_CACHE_BYTES)
2580                 maps_sz = L1_CACHE_BYTES;
2581
2582         /* The old dev_maps could be larger or smaller than the one we're
2583          * setting up now, as dev->num_tc or nr_ids could have been updated in
2584          * between. We could try to be smart, but let's be safe instead and only
2585          * copy foreign traffic classes if the two map sizes match.
2586          */
2587         if (dev_maps &&
2588             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2589                 copy = true;
2590
2591         /* allocate memory for queue storage */
2592         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2593              j < nr_ids;) {
2594                 if (!new_dev_maps) {
2595                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2596                         if (!new_dev_maps) {
2597                                 mutex_unlock(&xps_map_mutex);
2598                                 return -ENOMEM;
2599                         }
2600
2601                         new_dev_maps->nr_ids = nr_ids;
2602                         new_dev_maps->num_tc = num_tc;
2603                 }
2604
2605                 tci = j * num_tc + tc;
2606                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2607
2608                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2609                 if (!map)
2610                         goto error;
2611
2612                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2613         }
2614
2615         if (!new_dev_maps)
2616                 goto out_no_new_maps;
2617
2618         if (!dev_maps) {
2619                 /* Increment static keys at most once per type */
2620                 static_key_slow_inc_cpuslocked(&xps_needed);
2621                 if (type == XPS_RXQS)
2622                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2623         }
2624
2625         for (j = 0; j < nr_ids; j++) {
2626                 bool skip_tc = false;
2627
2628                 tci = j * num_tc + tc;
2629                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2630                     netif_attr_test_online(j, online_mask, nr_ids)) {
2631                         /* add tx-queue to CPU/rx-queue maps */
2632                         int pos = 0;
2633
2634                         skip_tc = true;
2635
2636                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2637                         while ((pos < map->len) && (map->queues[pos] != index))
2638                                 pos++;
2639
2640                         if (pos == map->len)
2641                                 map->queues[map->len++] = index;
2642 #ifdef CONFIG_NUMA
2643                         if (type == XPS_CPUS) {
2644                                 if (numa_node_id == -2)
2645                                         numa_node_id = cpu_to_node(j);
2646                                 else if (numa_node_id != cpu_to_node(j))
2647                                         numa_node_id = -1;
2648                         }
2649 #endif
2650                 }
2651
2652                 if (copy)
2653                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2654                                           skip_tc);
2655         }
2656
2657         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2658
2659         /* Cleanup old maps */
2660         if (!dev_maps)
2661                 goto out_no_old_maps;
2662
2663         for (j = 0; j < dev_maps->nr_ids; j++) {
2664                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2665                         map = xmap_dereference(dev_maps->attr_map[tci]);
2666                         if (!map)
2667                                 continue;
2668
2669                         if (copy) {
2670                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2671                                 if (map == new_map)
2672                                         continue;
2673                         }
2674
2675                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2676                         kfree_rcu(map, rcu);
2677                 }
2678         }
2679
2680         old_dev_maps = dev_maps;
2681
2682 out_no_old_maps:
2683         dev_maps = new_dev_maps;
2684         active = true;
2685
2686 out_no_new_maps:
2687         if (type == XPS_CPUS)
2688                 /* update Tx queue numa node */
2689                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2690                                              (numa_node_id >= 0) ?
2691                                              numa_node_id : NUMA_NO_NODE);
2692
2693         if (!dev_maps)
2694                 goto out_no_maps;
2695
2696         /* removes tx-queue from unused CPUs/rx-queues */
2697         for (j = 0; j < dev_maps->nr_ids; j++) {
2698                 tci = j * dev_maps->num_tc;
2699
2700                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2701                         if (i == tc &&
2702                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2703                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2704                                 continue;
2705
2706                         active |= remove_xps_queue(dev_maps,
2707                                                    copy ? old_dev_maps : NULL,
2708                                                    tci, index);
2709                 }
2710         }
2711
2712         if (old_dev_maps)
2713                 kfree_rcu(old_dev_maps, rcu);
2714
2715         /* free map if not active */
2716         if (!active)
2717                 reset_xps_maps(dev, dev_maps, type);
2718
2719 out_no_maps:
2720         mutex_unlock(&xps_map_mutex);
2721
2722         return 0;
2723 error:
2724         /* remove any maps that we added */
2725         for (j = 0; j < nr_ids; j++) {
2726                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2727                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2728                         map = copy ?
2729                               xmap_dereference(dev_maps->attr_map[tci]) :
2730                               NULL;
2731                         if (new_map && new_map != map)
2732                                 kfree(new_map);
2733                 }
2734         }
2735
2736         mutex_unlock(&xps_map_mutex);
2737
2738         kfree(new_dev_maps);
2739         return -ENOMEM;
2740 }
2741 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2742
2743 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2744                         u16 index)
2745 {
2746         int ret;
2747
2748         cpus_read_lock();
2749         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2750         cpus_read_unlock();
2751
2752         return ret;
2753 }
2754 EXPORT_SYMBOL(netif_set_xps_queue);
2755
2756 #endif
2757 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2758 {
2759         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2760
2761         /* Unbind any subordinate channels */
2762         while (txq-- != &dev->_tx[0]) {
2763                 if (txq->sb_dev)
2764                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2765         }
2766 }
2767
2768 void netdev_reset_tc(struct net_device *dev)
2769 {
2770 #ifdef CONFIG_XPS
2771         netif_reset_xps_queues_gt(dev, 0);
2772 #endif
2773         netdev_unbind_all_sb_channels(dev);
2774
2775         /* Reset TC configuration of device */
2776         dev->num_tc = 0;
2777         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2778         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2779 }
2780 EXPORT_SYMBOL(netdev_reset_tc);
2781
2782 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2783 {
2784         if (tc >= dev->num_tc)
2785                 return -EINVAL;
2786
2787 #ifdef CONFIG_XPS
2788         netif_reset_xps_queues(dev, offset, count);
2789 #endif
2790         dev->tc_to_txq[tc].count = count;
2791         dev->tc_to_txq[tc].offset = offset;
2792         return 0;
2793 }
2794 EXPORT_SYMBOL(netdev_set_tc_queue);
2795
2796 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2797 {
2798         if (num_tc > TC_MAX_QUEUE)
2799                 return -EINVAL;
2800
2801 #ifdef CONFIG_XPS
2802         netif_reset_xps_queues_gt(dev, 0);
2803 #endif
2804         netdev_unbind_all_sb_channels(dev);
2805
2806         dev->num_tc = num_tc;
2807         return 0;
2808 }
2809 EXPORT_SYMBOL(netdev_set_num_tc);
2810
2811 void netdev_unbind_sb_channel(struct net_device *dev,
2812                               struct net_device *sb_dev)
2813 {
2814         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2815
2816 #ifdef CONFIG_XPS
2817         netif_reset_xps_queues_gt(sb_dev, 0);
2818 #endif
2819         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2820         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2821
2822         while (txq-- != &dev->_tx[0]) {
2823                 if (txq->sb_dev == sb_dev)
2824                         txq->sb_dev = NULL;
2825         }
2826 }
2827 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2828
2829 int netdev_bind_sb_channel_queue(struct net_device *dev,
2830                                  struct net_device *sb_dev,
2831                                  u8 tc, u16 count, u16 offset)
2832 {
2833         /* Make certain the sb_dev and dev are already configured */
2834         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2835                 return -EINVAL;
2836
2837         /* We cannot hand out queues we don't have */
2838         if ((offset + count) > dev->real_num_tx_queues)
2839                 return -EINVAL;
2840
2841         /* Record the mapping */
2842         sb_dev->tc_to_txq[tc].count = count;
2843         sb_dev->tc_to_txq[tc].offset = offset;
2844
2845         /* Provide a way for Tx queue to find the tc_to_txq map or
2846          * XPS map for itself.
2847          */
2848         while (count--)
2849                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2850
2851         return 0;
2852 }
2853 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2854
2855 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2856 {
2857         /* Do not use a multiqueue device to represent a subordinate channel */
2858         if (netif_is_multiqueue(dev))
2859                 return -ENODEV;
2860
2861         /* We allow channels 1 - 32767 to be used for subordinate channels.
2862          * Channel 0 is meant to be "native" mode and used only to represent
2863          * the main root device. We allow writing 0 to reset the device back
2864          * to normal mode after being used as a subordinate channel.
2865          */
2866         if (channel > S16_MAX)
2867                 return -EINVAL;
2868
2869         dev->num_tc = -channel;
2870
2871         return 0;
2872 }
2873 EXPORT_SYMBOL(netdev_set_sb_channel);
2874
2875 /*
2876  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2877  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2878  */
2879 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2880 {
2881         bool disabling;
2882         int rc;
2883
2884         disabling = txq < dev->real_num_tx_queues;
2885
2886         if (txq < 1 || txq > dev->num_tx_queues)
2887                 return -EINVAL;
2888
2889         if (dev->reg_state == NETREG_REGISTERED ||
2890             dev->reg_state == NETREG_UNREGISTERING) {
2891                 ASSERT_RTNL();
2892
2893                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2894                                                   txq);
2895                 if (rc)
2896                         return rc;
2897
2898                 if (dev->num_tc)
2899                         netif_setup_tc(dev, txq);
2900
2901                 dev_qdisc_change_real_num_tx(dev, txq);
2902
2903                 dev->real_num_tx_queues = txq;
2904
2905                 if (disabling) {
2906                         synchronize_net();
2907                         qdisc_reset_all_tx_gt(dev, txq);
2908 #ifdef CONFIG_XPS
2909                         netif_reset_xps_queues_gt(dev, txq);
2910 #endif
2911                 }
2912         } else {
2913                 dev->real_num_tx_queues = txq;
2914         }
2915
2916         return 0;
2917 }
2918 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2919
2920 #ifdef CONFIG_SYSFS
2921 /**
2922  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2923  *      @dev: Network device
2924  *      @rxq: Actual number of RX queues
2925  *
2926  *      This must be called either with the rtnl_lock held or before
2927  *      registration of the net device.  Returns 0 on success, or a
2928  *      negative error code.  If called before registration, it always
2929  *      succeeds.
2930  */
2931 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2932 {
2933         int rc;
2934
2935         if (rxq < 1 || rxq > dev->num_rx_queues)
2936                 return -EINVAL;
2937
2938         if (dev->reg_state == NETREG_REGISTERED) {
2939                 ASSERT_RTNL();
2940
2941                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2942                                                   rxq);
2943                 if (rc)
2944                         return rc;
2945         }
2946
2947         dev->real_num_rx_queues = rxq;
2948         return 0;
2949 }
2950 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2951 #endif
2952
2953 /**
2954  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2955  *      @dev: Network device
2956  *      @txq: Actual number of TX queues
2957  *      @rxq: Actual number of RX queues
2958  *
2959  *      Set the real number of both TX and RX queues.
2960  *      Does nothing if the number of queues is already correct.
2961  */
2962 int netif_set_real_num_queues(struct net_device *dev,
2963                               unsigned int txq, unsigned int rxq)
2964 {
2965         unsigned int old_rxq = dev->real_num_rx_queues;
2966         int err;
2967
2968         if (txq < 1 || txq > dev->num_tx_queues ||
2969             rxq < 1 || rxq > dev->num_rx_queues)
2970                 return -EINVAL;
2971
2972         /* Start from increases, so the error path only does decreases -
2973          * decreases can't fail.
2974          */
2975         if (rxq > dev->real_num_rx_queues) {
2976                 err = netif_set_real_num_rx_queues(dev, rxq);
2977                 if (err)
2978                         return err;
2979         }
2980         if (txq > dev->real_num_tx_queues) {
2981                 err = netif_set_real_num_tx_queues(dev, txq);
2982                 if (err)
2983                         goto undo_rx;
2984         }
2985         if (rxq < dev->real_num_rx_queues)
2986                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2987         if (txq < dev->real_num_tx_queues)
2988                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2989
2990         return 0;
2991 undo_rx:
2992         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2993         return err;
2994 }
2995 EXPORT_SYMBOL(netif_set_real_num_queues);
2996
2997 /**
2998  * netif_set_tso_max_size() - set the max size of TSO frames supported
2999  * @dev:        netdev to update
3000  * @size:       max skb->len of a TSO frame
3001  *
3002  * Set the limit on the size of TSO super-frames the device can handle.
3003  * Unless explicitly set the stack will assume the value of
3004  * %GSO_LEGACY_MAX_SIZE.
3005  */
3006 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3007 {
3008         dev->tso_max_size = min(GSO_MAX_SIZE, size);
3009         if (size < READ_ONCE(dev->gso_max_size))
3010                 netif_set_gso_max_size(dev, size);
3011 }
3012 EXPORT_SYMBOL(netif_set_tso_max_size);
3013
3014 /**
3015  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3016  * @dev:        netdev to update
3017  * @segs:       max number of TCP segments
3018  *
3019  * Set the limit on the number of TCP segments the device can generate from
3020  * a single TSO super-frame.
3021  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3022  */
3023 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3024 {
3025         dev->tso_max_segs = segs;
3026         if (segs < READ_ONCE(dev->gso_max_segs))
3027                 netif_set_gso_max_segs(dev, segs);
3028 }
3029 EXPORT_SYMBOL(netif_set_tso_max_segs);
3030
3031 /**
3032  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3033  * @to:         netdev to update
3034  * @from:       netdev from which to copy the limits
3035  */
3036 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3037 {
3038         netif_set_tso_max_size(to, from->tso_max_size);
3039         netif_set_tso_max_segs(to, from->tso_max_segs);
3040 }
3041 EXPORT_SYMBOL(netif_inherit_tso_max);
3042
3043 /**
3044  * netif_get_num_default_rss_queues - default number of RSS queues
3045  *
3046  * Default value is the number of physical cores if there are only 1 or 2, or
3047  * divided by 2 if there are more.
3048  */
3049 int netif_get_num_default_rss_queues(void)
3050 {
3051         cpumask_var_t cpus;
3052         int cpu, count = 0;
3053
3054         if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3055                 return 1;
3056
3057         cpumask_copy(cpus, cpu_online_mask);
3058         for_each_cpu(cpu, cpus) {
3059                 ++count;
3060                 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3061         }
3062         free_cpumask_var(cpus);
3063
3064         return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3065 }
3066 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3067
3068 static void __netif_reschedule(struct Qdisc *q)
3069 {
3070         struct softnet_data *sd;
3071         unsigned long flags;
3072
3073         local_irq_save(flags);
3074         sd = this_cpu_ptr(&softnet_data);
3075         q->next_sched = NULL;
3076         *sd->output_queue_tailp = q;
3077         sd->output_queue_tailp = &q->next_sched;
3078         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3079         local_irq_restore(flags);
3080 }
3081
3082 void __netif_schedule(struct Qdisc *q)
3083 {
3084         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3085                 __netif_reschedule(q);
3086 }
3087 EXPORT_SYMBOL(__netif_schedule);
3088
3089 struct dev_kfree_skb_cb {
3090         enum skb_free_reason reason;
3091 };
3092
3093 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3094 {
3095         return (struct dev_kfree_skb_cb *)skb->cb;
3096 }
3097
3098 void netif_schedule_queue(struct netdev_queue *txq)
3099 {
3100         rcu_read_lock();
3101         if (!netif_xmit_stopped(txq)) {
3102                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3103
3104                 __netif_schedule(q);
3105         }
3106         rcu_read_unlock();
3107 }
3108 EXPORT_SYMBOL(netif_schedule_queue);
3109
3110 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3111 {
3112         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3113                 struct Qdisc *q;
3114
3115                 rcu_read_lock();
3116                 q = rcu_dereference(dev_queue->qdisc);
3117                 __netif_schedule(q);
3118                 rcu_read_unlock();
3119         }
3120 }
3121 EXPORT_SYMBOL(netif_tx_wake_queue);
3122
3123 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3124 {
3125         unsigned long flags;
3126
3127         if (unlikely(!skb))
3128                 return;
3129
3130         if (likely(refcount_read(&skb->users) == 1)) {
3131                 smp_rmb();
3132                 refcount_set(&skb->users, 0);
3133         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3134                 return;
3135         }
3136         get_kfree_skb_cb(skb)->reason = reason;
3137         local_irq_save(flags);
3138         skb->next = __this_cpu_read(softnet_data.completion_queue);
3139         __this_cpu_write(softnet_data.completion_queue, skb);
3140         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3141         local_irq_restore(flags);
3142 }
3143 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3144
3145 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3146 {
3147         if (in_hardirq() || irqs_disabled())
3148                 __dev_kfree_skb_irq(skb, reason);
3149         else
3150                 dev_kfree_skb(skb);
3151 }
3152 EXPORT_SYMBOL(__dev_kfree_skb_any);
3153
3154
3155 /**
3156  * netif_device_detach - mark device as removed
3157  * @dev: network device
3158  *
3159  * Mark device as removed from system and therefore no longer available.
3160  */
3161 void netif_device_detach(struct net_device *dev)
3162 {
3163         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3164             netif_running(dev)) {
3165                 netif_tx_stop_all_queues(dev);
3166         }
3167 }
3168 EXPORT_SYMBOL(netif_device_detach);
3169
3170 /**
3171  * netif_device_attach - mark device as attached
3172  * @dev: network device
3173  *
3174  * Mark device as attached from system and restart if needed.
3175  */
3176 void netif_device_attach(struct net_device *dev)
3177 {
3178         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3179             netif_running(dev)) {
3180                 netif_tx_wake_all_queues(dev);
3181                 __netdev_watchdog_up(dev);
3182         }
3183 }
3184 EXPORT_SYMBOL(netif_device_attach);
3185
3186 /*
3187  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3188  * to be used as a distribution range.
3189  */
3190 static u16 skb_tx_hash(const struct net_device *dev,
3191                        const struct net_device *sb_dev,
3192                        struct sk_buff *skb)
3193 {
3194         u32 hash;
3195         u16 qoffset = 0;
3196         u16 qcount = dev->real_num_tx_queues;
3197
3198         if (dev->num_tc) {
3199                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3200
3201                 qoffset = sb_dev->tc_to_txq[tc].offset;
3202                 qcount = sb_dev->tc_to_txq[tc].count;
3203                 if (unlikely(!qcount)) {
3204                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3205                                              sb_dev->name, qoffset, tc);
3206                         qoffset = 0;
3207                         qcount = dev->real_num_tx_queues;
3208                 }
3209         }
3210
3211         if (skb_rx_queue_recorded(skb)) {
3212                 hash = skb_get_rx_queue(skb);
3213                 if (hash >= qoffset)
3214                         hash -= qoffset;
3215                 while (unlikely(hash >= qcount))
3216                         hash -= qcount;
3217                 return hash + qoffset;
3218         }
3219
3220         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3221 }
3222
3223 static void skb_warn_bad_offload(const struct sk_buff *skb)
3224 {
3225         static const netdev_features_t null_features;
3226         struct net_device *dev = skb->dev;
3227         const char *name = "";
3228
3229         if (!net_ratelimit())
3230                 return;
3231
3232         if (dev) {
3233                 if (dev->dev.parent)
3234                         name = dev_driver_string(dev->dev.parent);
3235                 else
3236                         name = netdev_name(dev);
3237         }
3238         skb_dump(KERN_WARNING, skb, false);
3239         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3240              name, dev ? &dev->features : &null_features,
3241              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3242 }
3243
3244 /*
3245  * Invalidate hardware checksum when packet is to be mangled, and
3246  * complete checksum manually on outgoing path.
3247  */
3248 int skb_checksum_help(struct sk_buff *skb)
3249 {
3250         __wsum csum;
3251         int ret = 0, offset;
3252
3253         if (skb->ip_summed == CHECKSUM_COMPLETE)
3254                 goto out_set_summed;
3255
3256         if (unlikely(skb_is_gso(skb))) {
3257                 skb_warn_bad_offload(skb);
3258                 return -EINVAL;
3259         }
3260
3261         /* Before computing a checksum, we should make sure no frag could
3262          * be modified by an external entity : checksum could be wrong.
3263          */
3264         if (skb_has_shared_frag(skb)) {
3265                 ret = __skb_linearize(skb);
3266                 if (ret)
3267                         goto out;
3268         }
3269
3270         offset = skb_checksum_start_offset(skb);
3271         ret = -EINVAL;
3272         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3273                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3274                 goto out;
3275         }
3276         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3277
3278         offset += skb->csum_offset;
3279         if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3280                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3281                 goto out;
3282         }
3283         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3284         if (ret)
3285                 goto out;
3286
3287         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3288 out_set_summed:
3289         skb->ip_summed = CHECKSUM_NONE;
3290 out:
3291         return ret;
3292 }
3293 EXPORT_SYMBOL(skb_checksum_help);
3294
3295 int skb_crc32c_csum_help(struct sk_buff *skb)
3296 {
3297         __le32 crc32c_csum;
3298         int ret = 0, offset, start;
3299
3300         if (skb->ip_summed != CHECKSUM_PARTIAL)
3301                 goto out;
3302
3303         if (unlikely(skb_is_gso(skb)))
3304                 goto out;
3305
3306         /* Before computing a checksum, we should make sure no frag could
3307          * be modified by an external entity : checksum could be wrong.
3308          */
3309         if (unlikely(skb_has_shared_frag(skb))) {
3310                 ret = __skb_linearize(skb);
3311                 if (ret)
3312                         goto out;
3313         }
3314         start = skb_checksum_start_offset(skb);
3315         offset = start + offsetof(struct sctphdr, checksum);
3316         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3317                 ret = -EINVAL;
3318                 goto out;
3319         }
3320
3321         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3322         if (ret)
3323                 goto out;
3324
3325         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3326                                                   skb->len - start, ~(__u32)0,
3327                                                   crc32c_csum_stub));
3328         *(__le32 *)(skb->data + offset) = crc32c_csum;
3329         skb->ip_summed = CHECKSUM_NONE;
3330         skb->csum_not_inet = 0;
3331 out:
3332         return ret;
3333 }
3334
3335 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3336 {
3337         __be16 type = skb->protocol;
3338
3339         /* Tunnel gso handlers can set protocol to ethernet. */
3340         if (type == htons(ETH_P_TEB)) {
3341                 struct ethhdr *eth;
3342
3343                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3344                         return 0;
3345
3346                 eth = (struct ethhdr *)skb->data;
3347                 type = eth->h_proto;
3348         }
3349
3350         return __vlan_get_protocol(skb, type, depth);
3351 }
3352
3353 /* openvswitch calls this on rx path, so we need a different check.
3354  */
3355 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3356 {
3357         if (tx_path)
3358                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3359                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3360
3361         return skb->ip_summed == CHECKSUM_NONE;
3362 }
3363
3364 /**
3365  *      __skb_gso_segment - Perform segmentation on skb.
3366  *      @skb: buffer to segment
3367  *      @features: features for the output path (see dev->features)
3368  *      @tx_path: whether it is called in TX path
3369  *
3370  *      This function segments the given skb and returns a list of segments.
3371  *
3372  *      It may return NULL if the skb requires no segmentation.  This is
3373  *      only possible when GSO is used for verifying header integrity.
3374  *
3375  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3376  */
3377 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3378                                   netdev_features_t features, bool tx_path)
3379 {
3380         struct sk_buff *segs;
3381
3382         if (unlikely(skb_needs_check(skb, tx_path))) {
3383                 int err;
3384
3385                 /* We're going to init ->check field in TCP or UDP header */
3386                 err = skb_cow_head(skb, 0);
3387                 if (err < 0)
3388                         return ERR_PTR(err);
3389         }
3390
3391         /* Only report GSO partial support if it will enable us to
3392          * support segmentation on this frame without needing additional
3393          * work.
3394          */
3395         if (features & NETIF_F_GSO_PARTIAL) {
3396                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3397                 struct net_device *dev = skb->dev;
3398
3399                 partial_features |= dev->features & dev->gso_partial_features;
3400                 if (!skb_gso_ok(skb, features | partial_features))
3401                         features &= ~NETIF_F_GSO_PARTIAL;
3402         }
3403
3404         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3405                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3406
3407         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3408         SKB_GSO_CB(skb)->encap_level = 0;
3409
3410         skb_reset_mac_header(skb);
3411         skb_reset_mac_len(skb);
3412
3413         segs = skb_mac_gso_segment(skb, features);
3414
3415         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3416                 skb_warn_bad_offload(skb);
3417
3418         return segs;
3419 }
3420 EXPORT_SYMBOL(__skb_gso_segment);
3421
3422 /* Take action when hardware reception checksum errors are detected. */
3423 #ifdef CONFIG_BUG
3424 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3425 {
3426         netdev_err(dev, "hw csum failure\n");
3427         skb_dump(KERN_ERR, skb, true);
3428         dump_stack();
3429 }
3430
3431 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3432 {
3433         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3434 }
3435 EXPORT_SYMBOL(netdev_rx_csum_fault);
3436 #endif
3437
3438 /* XXX: check that highmem exists at all on the given machine. */
3439 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3440 {
3441 #ifdef CONFIG_HIGHMEM
3442         int i;
3443
3444         if (!(dev->features & NETIF_F_HIGHDMA)) {
3445                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3446                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3447
3448                         if (PageHighMem(skb_frag_page(frag)))
3449                                 return 1;
3450                 }
3451         }
3452 #endif
3453         return 0;
3454 }
3455
3456 /* If MPLS offload request, verify we are testing hardware MPLS features
3457  * instead of standard features for the netdev.
3458  */
3459 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3460 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3461                                            netdev_features_t features,
3462                                            __be16 type)
3463 {
3464         if (eth_p_mpls(type))
3465                 features &= skb->dev->mpls_features;
3466
3467         return features;
3468 }
3469 #else
3470 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3471                                            netdev_features_t features,
3472                                            __be16 type)
3473 {
3474         return features;
3475 }
3476 #endif
3477
3478 static netdev_features_t harmonize_features(struct sk_buff *skb,
3479         netdev_features_t features)
3480 {
3481         __be16 type;
3482
3483         type = skb_network_protocol(skb, NULL);
3484         features = net_mpls_features(skb, features, type);
3485
3486         if (skb->ip_summed != CHECKSUM_NONE &&
3487             !can_checksum_protocol(features, type)) {
3488                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3489         }
3490         if (illegal_highdma(skb->dev, skb))
3491                 features &= ~NETIF_F_SG;
3492
3493         return features;
3494 }
3495
3496 netdev_features_t passthru_features_check(struct sk_buff *skb,
3497                                           struct net_device *dev,
3498                                           netdev_features_t features)
3499 {
3500         return features;
3501 }
3502 EXPORT_SYMBOL(passthru_features_check);
3503
3504 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3505                                              struct net_device *dev,
3506                                              netdev_features_t features)
3507 {
3508         return vlan_features_check(skb, features);
3509 }
3510
3511 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3512                                             struct net_device *dev,
3513                                             netdev_features_t features)
3514 {
3515         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3516
3517         if (gso_segs > READ_ONCE(dev->gso_max_segs))
3518                 return features & ~NETIF_F_GSO_MASK;
3519
3520         if (!skb_shinfo(skb)->gso_type) {
3521                 skb_warn_bad_offload(skb);
3522                 return features & ~NETIF_F_GSO_MASK;
3523         }
3524
3525         /* Support for GSO partial features requires software
3526          * intervention before we can actually process the packets
3527          * so we need to strip support for any partial features now
3528          * and we can pull them back in after we have partially
3529          * segmented the frame.
3530          */
3531         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3532                 features &= ~dev->gso_partial_features;
3533
3534         /* Make sure to clear the IPv4 ID mangling feature if the
3535          * IPv4 header has the potential to be fragmented.
3536          */
3537         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3538                 struct iphdr *iph = skb->encapsulation ?
3539                                     inner_ip_hdr(skb) : ip_hdr(skb);
3540
3541                 if (!(iph->frag_off & htons(IP_DF)))
3542                         features &= ~NETIF_F_TSO_MANGLEID;
3543         }
3544
3545         return features;
3546 }
3547
3548 netdev_features_t netif_skb_features(struct sk_buff *skb)
3549 {
3550         struct net_device *dev = skb->dev;
3551         netdev_features_t features = dev->features;
3552
3553         if (skb_is_gso(skb))
3554                 features = gso_features_check(skb, dev, features);
3555
3556         /* If encapsulation offload request, verify we are testing
3557          * hardware encapsulation features instead of standard
3558          * features for the netdev
3559          */
3560         if (skb->encapsulation)
3561                 features &= dev->hw_enc_features;
3562
3563         if (skb_vlan_tagged(skb))
3564                 features = netdev_intersect_features(features,
3565                                                      dev->vlan_features |
3566                                                      NETIF_F_HW_VLAN_CTAG_TX |
3567                                                      NETIF_F_HW_VLAN_STAG_TX);
3568
3569         if (dev->netdev_ops->ndo_features_check)
3570                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3571                                                                 features);
3572         else
3573                 features &= dflt_features_check(skb, dev, features);
3574
3575         return harmonize_features(skb, features);
3576 }
3577 EXPORT_SYMBOL(netif_skb_features);
3578
3579 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3580                     struct netdev_queue *txq, bool more)
3581 {
3582         unsigned int len;
3583         int rc;
3584
3585         if (dev_nit_active(dev))
3586                 dev_queue_xmit_nit(skb, dev);
3587
3588         len = skb->len;
3589         trace_net_dev_start_xmit(skb, dev);
3590         rc = netdev_start_xmit(skb, dev, txq, more);
3591         trace_net_dev_xmit(skb, rc, dev, len);
3592
3593         return rc;
3594 }
3595
3596 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3597                                     struct netdev_queue *txq, int *ret)
3598 {
3599         struct sk_buff *skb = first;
3600         int rc = NETDEV_TX_OK;
3601
3602         while (skb) {
3603                 struct sk_buff *next = skb->next;
3604
3605                 skb_mark_not_on_list(skb);
3606                 rc = xmit_one(skb, dev, txq, next != NULL);
3607                 if (unlikely(!dev_xmit_complete(rc))) {
3608                         skb->next = next;
3609                         goto out;
3610                 }
3611
3612                 skb = next;
3613                 if (netif_tx_queue_stopped(txq) && skb) {
3614                         rc = NETDEV_TX_BUSY;
3615                         break;
3616                 }
3617         }
3618
3619 out:
3620         *ret = rc;
3621         return skb;
3622 }
3623
3624 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3625                                           netdev_features_t features)
3626 {
3627         if (skb_vlan_tag_present(skb) &&
3628             !vlan_hw_offload_capable(features, skb->vlan_proto))
3629                 skb = __vlan_hwaccel_push_inside(skb);
3630         return skb;
3631 }
3632
3633 int skb_csum_hwoffload_help(struct sk_buff *skb,
3634                             const netdev_features_t features)
3635 {
3636         if (unlikely(skb_csum_is_sctp(skb)))
3637                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3638                         skb_crc32c_csum_help(skb);
3639
3640         if (features & NETIF_F_HW_CSUM)
3641                 return 0;
3642
3643         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3644                 switch (skb->csum_offset) {
3645                 case offsetof(struct tcphdr, check):
3646                 case offsetof(struct udphdr, check):
3647                         return 0;
3648                 }
3649         }
3650
3651         return skb_checksum_help(skb);
3652 }
3653 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3654
3655 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3656 {
3657         netdev_features_t features;
3658
3659         features = netif_skb_features(skb);
3660         skb = validate_xmit_vlan(skb, features);
3661         if (unlikely(!skb))
3662                 goto out_null;
3663
3664         skb = sk_validate_xmit_skb(skb, dev);
3665         if (unlikely(!skb))
3666                 goto out_null;
3667
3668         if (netif_needs_gso(skb, features)) {
3669                 struct sk_buff *segs;
3670
3671                 segs = skb_gso_segment(skb, features);
3672                 if (IS_ERR(segs)) {
3673                         goto out_kfree_skb;
3674                 } else if (segs) {
3675                         consume_skb(skb);
3676                         skb = segs;
3677                 }
3678         } else {
3679                 if (skb_needs_linearize(skb, features) &&
3680                     __skb_linearize(skb))
3681                         goto out_kfree_skb;
3682
3683                 /* If packet is not checksummed and device does not
3684                  * support checksumming for this protocol, complete
3685                  * checksumming here.
3686                  */
3687                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3688                         if (skb->encapsulation)
3689                                 skb_set_inner_transport_header(skb,
3690                                                                skb_checksum_start_offset(skb));
3691                         else
3692                                 skb_set_transport_header(skb,
3693                                                          skb_checksum_start_offset(skb));
3694                         if (skb_csum_hwoffload_help(skb, features))
3695                                 goto out_kfree_skb;
3696                 }
3697         }
3698
3699         skb = validate_xmit_xfrm(skb, features, again);
3700
3701         return skb;
3702
3703 out_kfree_skb:
3704         kfree_skb(skb);
3705 out_null:
3706         dev_core_stats_tx_dropped_inc(dev);
3707         return NULL;
3708 }
3709
3710 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3711 {
3712         struct sk_buff *next, *head = NULL, *tail;
3713
3714         for (; skb != NULL; skb = next) {
3715                 next = skb->next;
3716                 skb_mark_not_on_list(skb);
3717
3718                 /* in case skb wont be segmented, point to itself */
3719                 skb->prev = skb;
3720
3721                 skb = validate_xmit_skb(skb, dev, again);
3722                 if (!skb)
3723                         continue;
3724
3725                 if (!head)
3726                         head = skb;
3727                 else
3728                         tail->next = skb;
3729                 /* If skb was segmented, skb->prev points to
3730                  * the last segment. If not, it still contains skb.
3731                  */
3732                 tail = skb->prev;
3733         }
3734         return head;
3735 }
3736 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3737
3738 static void qdisc_pkt_len_init(struct sk_buff *skb)
3739 {
3740         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3741
3742         qdisc_skb_cb(skb)->pkt_len = skb->len;
3743
3744         /* To get more precise estimation of bytes sent on wire,
3745          * we add to pkt_len the headers size of all segments
3746          */
3747         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3748                 unsigned int hdr_len;
3749                 u16 gso_segs = shinfo->gso_segs;
3750
3751                 /* mac layer + network layer */
3752                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3753
3754                 /* + transport layer */
3755                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3756                         const struct tcphdr *th;
3757                         struct tcphdr _tcphdr;
3758
3759                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3760                                                 sizeof(_tcphdr), &_tcphdr);
3761                         if (likely(th))
3762                                 hdr_len += __tcp_hdrlen(th);
3763                 } else {
3764                         struct udphdr _udphdr;
3765
3766                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3767                                                sizeof(_udphdr), &_udphdr))
3768                                 hdr_len += sizeof(struct udphdr);
3769                 }
3770
3771                 if (shinfo->gso_type & SKB_GSO_DODGY)
3772                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3773                                                 shinfo->gso_size);
3774
3775                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3776         }
3777 }
3778
3779 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3780                              struct sk_buff **to_free,
3781                              struct netdev_queue *txq)
3782 {
3783         int rc;
3784
3785         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3786         if (rc == NET_XMIT_SUCCESS)
3787                 trace_qdisc_enqueue(q, txq, skb);
3788         return rc;
3789 }
3790
3791 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3792                                  struct net_device *dev,
3793                                  struct netdev_queue *txq)
3794 {
3795         spinlock_t *root_lock = qdisc_lock(q);
3796         struct sk_buff *to_free = NULL;
3797         bool contended;
3798         int rc;
3799
3800         qdisc_calculate_pkt_len(skb, q);
3801
3802         if (q->flags & TCQ_F_NOLOCK) {
3803                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3804                     qdisc_run_begin(q)) {
3805                         /* Retest nolock_qdisc_is_empty() within the protection
3806                          * of q->seqlock to protect from racing with requeuing.
3807                          */
3808                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3809                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3810                                 __qdisc_run(q);
3811                                 qdisc_run_end(q);
3812
3813                                 goto no_lock_out;
3814                         }
3815
3816                         qdisc_bstats_cpu_update(q, skb);
3817                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3818                             !nolock_qdisc_is_empty(q))
3819                                 __qdisc_run(q);
3820
3821                         qdisc_run_end(q);
3822                         return NET_XMIT_SUCCESS;
3823                 }
3824
3825                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3826                 qdisc_run(q);
3827
3828 no_lock_out:
3829                 if (unlikely(to_free))
3830                         kfree_skb_list_reason(to_free,
3831                                               SKB_DROP_REASON_QDISC_DROP);
3832                 return rc;
3833         }
3834
3835         /*
3836          * Heuristic to force contended enqueues to serialize on a
3837          * separate lock before trying to get qdisc main lock.
3838          * This permits qdisc->running owner to get the lock more
3839          * often and dequeue packets faster.
3840          * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3841          * and then other tasks will only enqueue packets. The packets will be
3842          * sent after the qdisc owner is scheduled again. To prevent this
3843          * scenario the task always serialize on the lock.
3844          */
3845         contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3846         if (unlikely(contended))
3847                 spin_lock(&q->busylock);
3848
3849         spin_lock(root_lock);
3850         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3851                 __qdisc_drop(skb, &to_free);
3852                 rc = NET_XMIT_DROP;
3853         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3854                    qdisc_run_begin(q)) {
3855                 /*
3856                  * This is a work-conserving queue; there are no old skbs
3857                  * waiting to be sent out; and the qdisc is not running -
3858                  * xmit the skb directly.
3859                  */
3860
3861                 qdisc_bstats_update(q, skb);
3862
3863                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3864                         if (unlikely(contended)) {
3865                                 spin_unlock(&q->busylock);
3866                                 contended = false;
3867                         }
3868                         __qdisc_run(q);
3869                 }
3870
3871                 qdisc_run_end(q);
3872                 rc = NET_XMIT_SUCCESS;
3873         } else {
3874                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3875                 if (qdisc_run_begin(q)) {
3876                         if (unlikely(contended)) {
3877                                 spin_unlock(&q->busylock);
3878                                 contended = false;
3879                         }
3880                         __qdisc_run(q);
3881                         qdisc_run_end(q);
3882                 }
3883         }
3884         spin_unlock(root_lock);
3885         if (unlikely(to_free))
3886                 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3887         if (unlikely(contended))
3888                 spin_unlock(&q->busylock);
3889         return rc;
3890 }
3891
3892 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3893 static void skb_update_prio(struct sk_buff *skb)
3894 {
3895         const struct netprio_map *map;
3896         const struct sock *sk;
3897         unsigned int prioidx;
3898
3899         if (skb->priority)
3900                 return;
3901         map = rcu_dereference_bh(skb->dev->priomap);
3902         if (!map)
3903                 return;
3904         sk = skb_to_full_sk(skb);
3905         if (!sk)
3906                 return;
3907
3908         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3909
3910         if (prioidx < map->priomap_len)
3911                 skb->priority = map->priomap[prioidx];
3912 }
3913 #else
3914 #define skb_update_prio(skb)
3915 #endif
3916
3917 /**
3918  *      dev_loopback_xmit - loop back @skb
3919  *      @net: network namespace this loopback is happening in
3920  *      @sk:  sk needed to be a netfilter okfn
3921  *      @skb: buffer to transmit
3922  */
3923 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3924 {
3925         skb_reset_mac_header(skb);
3926         __skb_pull(skb, skb_network_offset(skb));
3927         skb->pkt_type = PACKET_LOOPBACK;
3928         if (skb->ip_summed == CHECKSUM_NONE)
3929                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3930         DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3931         skb_dst_force(skb);
3932         netif_rx(skb);
3933         return 0;
3934 }
3935 EXPORT_SYMBOL(dev_loopback_xmit);
3936
3937 #ifdef CONFIG_NET_EGRESS
3938 static struct sk_buff *
3939 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3940 {
3941 #ifdef CONFIG_NET_CLS_ACT
3942         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3943         struct tcf_result cl_res;
3944
3945         if (!miniq)
3946                 return skb;
3947
3948         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3949         tc_skb_cb(skb)->mru = 0;
3950         tc_skb_cb(skb)->post_ct = false;
3951         mini_qdisc_bstats_cpu_update(miniq, skb);
3952
3953         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3954         case TC_ACT_OK:
3955         case TC_ACT_RECLASSIFY:
3956                 skb->tc_index = TC_H_MIN(cl_res.classid);
3957                 break;
3958         case TC_ACT_SHOT:
3959                 mini_qdisc_qstats_cpu_drop(miniq);
3960                 *ret = NET_XMIT_DROP;
3961                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3962                 return NULL;
3963         case TC_ACT_STOLEN:
3964         case TC_ACT_QUEUED:
3965         case TC_ACT_TRAP:
3966                 *ret = NET_XMIT_SUCCESS;
3967                 consume_skb(skb);
3968                 return NULL;
3969         case TC_ACT_REDIRECT:
3970                 /* No need to push/pop skb's mac_header here on egress! */
3971                 skb_do_redirect(skb);
3972                 *ret = NET_XMIT_SUCCESS;
3973                 return NULL;
3974         default:
3975                 break;
3976         }
3977 #endif /* CONFIG_NET_CLS_ACT */
3978
3979         return skb;
3980 }
3981
3982 static struct netdev_queue *
3983 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3984 {
3985         int qm = skb_get_queue_mapping(skb);
3986
3987         return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3988 }
3989
3990 static bool netdev_xmit_txqueue_skipped(void)
3991 {
3992         return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3993 }
3994
3995 void netdev_xmit_skip_txqueue(bool skip)
3996 {
3997         __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3998 }
3999 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4000 #endif /* CONFIG_NET_EGRESS */
4001
4002 #ifdef CONFIG_XPS
4003 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4004                                struct xps_dev_maps *dev_maps, unsigned int tci)
4005 {
4006         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4007         struct xps_map *map;
4008         int queue_index = -1;
4009
4010         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4011                 return queue_index;
4012
4013         tci *= dev_maps->num_tc;
4014         tci += tc;
4015
4016         map = rcu_dereference(dev_maps->attr_map[tci]);
4017         if (map) {
4018                 if (map->len == 1)
4019                         queue_index = map->queues[0];
4020                 else
4021                         queue_index = map->queues[reciprocal_scale(
4022                                                 skb_get_hash(skb), map->len)];
4023                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4024                         queue_index = -1;
4025         }
4026         return queue_index;
4027 }
4028 #endif
4029
4030 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4031                          struct sk_buff *skb)
4032 {
4033 #ifdef CONFIG_XPS
4034         struct xps_dev_maps *dev_maps;
4035         struct sock *sk = skb->sk;
4036         int queue_index = -1;
4037
4038         if (!static_key_false(&xps_needed))
4039                 return -1;
4040
4041         rcu_read_lock();
4042         if (!static_key_false(&xps_rxqs_needed))
4043                 goto get_cpus_map;
4044
4045         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4046         if (dev_maps) {
4047                 int tci = sk_rx_queue_get(sk);
4048
4049                 if (tci >= 0)
4050                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4051                                                           tci);
4052         }
4053
4054 get_cpus_map:
4055         if (queue_index < 0) {
4056                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4057                 if (dev_maps) {
4058                         unsigned int tci = skb->sender_cpu - 1;
4059
4060                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4061                                                           tci);
4062                 }
4063         }
4064         rcu_read_unlock();
4065
4066         return queue_index;
4067 #else
4068         return -1;
4069 #endif
4070 }
4071
4072 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4073                      struct net_device *sb_dev)
4074 {
4075         return 0;
4076 }
4077 EXPORT_SYMBOL(dev_pick_tx_zero);
4078
4079 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4080                        struct net_device *sb_dev)
4081 {
4082         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4083 }
4084 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4085
4086 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4087                      struct net_device *sb_dev)
4088 {
4089         struct sock *sk = skb->sk;
4090         int queue_index = sk_tx_queue_get(sk);
4091
4092         sb_dev = sb_dev ? : dev;
4093
4094         if (queue_index < 0 || skb->ooo_okay ||
4095             queue_index >= dev->real_num_tx_queues) {
4096                 int new_index = get_xps_queue(dev, sb_dev, skb);
4097
4098                 if (new_index < 0)
4099                         new_index = skb_tx_hash(dev, sb_dev, skb);
4100
4101                 if (queue_index != new_index && sk &&
4102                     sk_fullsock(sk) &&
4103                     rcu_access_pointer(sk->sk_dst_cache))
4104                         sk_tx_queue_set(sk, new_index);
4105
4106                 queue_index = new_index;
4107         }
4108
4109         return queue_index;
4110 }
4111 EXPORT_SYMBOL(netdev_pick_tx);
4112
4113 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4114                                          struct sk_buff *skb,
4115                                          struct net_device *sb_dev)
4116 {
4117         int queue_index = 0;
4118
4119 #ifdef CONFIG_XPS
4120         u32 sender_cpu = skb->sender_cpu - 1;
4121
4122         if (sender_cpu >= (u32)NR_CPUS)
4123                 skb->sender_cpu = raw_smp_processor_id() + 1;
4124 #endif
4125
4126         if (dev->real_num_tx_queues != 1) {
4127                 const struct net_device_ops *ops = dev->netdev_ops;
4128
4129                 if (ops->ndo_select_queue)
4130                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4131                 else
4132                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4133
4134                 queue_index = netdev_cap_txqueue(dev, queue_index);
4135         }
4136
4137         skb_set_queue_mapping(skb, queue_index);
4138         return netdev_get_tx_queue(dev, queue_index);
4139 }
4140
4141 /**
4142  * __dev_queue_xmit() - transmit a buffer
4143  * @skb:        buffer to transmit
4144  * @sb_dev:     suboordinate device used for L2 forwarding offload
4145  *
4146  * Queue a buffer for transmission to a network device. The caller must
4147  * have set the device and priority and built the buffer before calling
4148  * this function. The function can be called from an interrupt.
4149  *
4150  * When calling this method, interrupts MUST be enabled. This is because
4151  * the BH enable code must have IRQs enabled so that it will not deadlock.
4152  *
4153  * Regardless of the return value, the skb is consumed, so it is currently
4154  * difficult to retry a send to this method. (You can bump the ref count
4155  * before sending to hold a reference for retry if you are careful.)
4156  *
4157  * Return:
4158  * * 0                          - buffer successfully transmitted
4159  * * positive qdisc return code - NET_XMIT_DROP etc.
4160  * * negative errno             - other errors
4161  */
4162 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4163 {
4164         struct net_device *dev = skb->dev;
4165         struct netdev_queue *txq = NULL;
4166         struct Qdisc *q;
4167         int rc = -ENOMEM;
4168         bool again = false;
4169
4170         skb_reset_mac_header(skb);
4171         skb_assert_len(skb);
4172
4173         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4174                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4175
4176         /* Disable soft irqs for various locks below. Also
4177          * stops preemption for RCU.
4178          */
4179         rcu_read_lock_bh();
4180
4181         skb_update_prio(skb);
4182
4183         qdisc_pkt_len_init(skb);
4184 #ifdef CONFIG_NET_CLS_ACT
4185         skb->tc_at_ingress = 0;
4186 #endif
4187 #ifdef CONFIG_NET_EGRESS
4188         if (static_branch_unlikely(&egress_needed_key)) {
4189                 if (nf_hook_egress_active()) {
4190                         skb = nf_hook_egress(skb, &rc, dev);
4191                         if (!skb)
4192                                 goto out;
4193                 }
4194
4195                 netdev_xmit_skip_txqueue(false);
4196
4197                 nf_skip_egress(skb, true);
4198                 skb = sch_handle_egress(skb, &rc, dev);
4199                 if (!skb)
4200                         goto out;
4201                 nf_skip_egress(skb, false);
4202
4203                 if (netdev_xmit_txqueue_skipped())
4204                         txq = netdev_tx_queue_mapping(dev, skb);
4205         }
4206 #endif
4207         /* If device/qdisc don't need skb->dst, release it right now while
4208          * its hot in this cpu cache.
4209          */
4210         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4211                 skb_dst_drop(skb);
4212         else
4213                 skb_dst_force(skb);
4214
4215         if (!txq)
4216                 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4217
4218         q = rcu_dereference_bh(txq->qdisc);
4219
4220         trace_net_dev_queue(skb);
4221         if (q->enqueue) {
4222                 rc = __dev_xmit_skb(skb, q, dev, txq);
4223                 goto out;
4224         }
4225
4226         /* The device has no queue. Common case for software devices:
4227          * loopback, all the sorts of tunnels...
4228
4229          * Really, it is unlikely that netif_tx_lock protection is necessary
4230          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4231          * counters.)
4232          * However, it is possible, that they rely on protection
4233          * made by us here.
4234
4235          * Check this and shot the lock. It is not prone from deadlocks.
4236          *Either shot noqueue qdisc, it is even simpler 8)
4237          */
4238         if (dev->flags & IFF_UP) {
4239                 int cpu = smp_processor_id(); /* ok because BHs are off */
4240
4241                 /* Other cpus might concurrently change txq->xmit_lock_owner
4242                  * to -1 or to their cpu id, but not to our id.
4243                  */
4244                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4245                         if (dev_xmit_recursion())
4246                                 goto recursion_alert;
4247
4248                         skb = validate_xmit_skb(skb, dev, &again);
4249                         if (!skb)
4250                                 goto out;
4251
4252                         HARD_TX_LOCK(dev, txq, cpu);
4253
4254                         if (!netif_xmit_stopped(txq)) {
4255                                 dev_xmit_recursion_inc();
4256                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4257                                 dev_xmit_recursion_dec();
4258                                 if (dev_xmit_complete(rc)) {
4259                                         HARD_TX_UNLOCK(dev, txq);
4260                                         goto out;
4261                                 }
4262                         }
4263                         HARD_TX_UNLOCK(dev, txq);
4264                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4265                                              dev->name);
4266                 } else {
4267                         /* Recursion is detected! It is possible,
4268                          * unfortunately
4269                          */
4270 recursion_alert:
4271                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4272                                              dev->name);
4273                 }
4274         }
4275
4276         rc = -ENETDOWN;
4277         rcu_read_unlock_bh();
4278
4279         dev_core_stats_tx_dropped_inc(dev);
4280         kfree_skb_list(skb);
4281         return rc;
4282 out:
4283         rcu_read_unlock_bh();
4284         return rc;
4285 }
4286 EXPORT_SYMBOL(__dev_queue_xmit);
4287
4288 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4289 {
4290         struct net_device *dev = skb->dev;
4291         struct sk_buff *orig_skb = skb;
4292         struct netdev_queue *txq;
4293         int ret = NETDEV_TX_BUSY;
4294         bool again = false;
4295
4296         if (unlikely(!netif_running(dev) ||
4297                      !netif_carrier_ok(dev)))
4298                 goto drop;
4299
4300         skb = validate_xmit_skb_list(skb, dev, &again);
4301         if (skb != orig_skb)
4302                 goto drop;
4303
4304         skb_set_queue_mapping(skb, queue_id);
4305         txq = skb_get_tx_queue(dev, skb);
4306
4307         local_bh_disable();
4308
4309         dev_xmit_recursion_inc();
4310         HARD_TX_LOCK(dev, txq, smp_processor_id());
4311         if (!netif_xmit_frozen_or_drv_stopped(txq))
4312                 ret = netdev_start_xmit(skb, dev, txq, false);
4313         HARD_TX_UNLOCK(dev, txq);
4314         dev_xmit_recursion_dec();
4315
4316         local_bh_enable();
4317         return ret;
4318 drop:
4319         dev_core_stats_tx_dropped_inc(dev);
4320         kfree_skb_list(skb);
4321         return NET_XMIT_DROP;
4322 }
4323 EXPORT_SYMBOL(__dev_direct_xmit);
4324
4325 /*************************************************************************
4326  *                      Receiver routines
4327  *************************************************************************/
4328
4329 int netdev_max_backlog __read_mostly = 1000;
4330 EXPORT_SYMBOL(netdev_max_backlog);
4331
4332 int netdev_tstamp_prequeue __read_mostly = 1;
4333 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4334 int netdev_budget __read_mostly = 300;
4335 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4336 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4337 int weight_p __read_mostly = 64;           /* old backlog weight */
4338 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4339 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4340 int dev_rx_weight __read_mostly = 64;
4341 int dev_tx_weight __read_mostly = 64;
4342
4343 /* Called with irq disabled */
4344 static inline void ____napi_schedule(struct softnet_data *sd,
4345                                      struct napi_struct *napi)
4346 {
4347         struct task_struct *thread;
4348
4349         lockdep_assert_irqs_disabled();
4350
4351         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4352                 /* Paired with smp_mb__before_atomic() in
4353                  * napi_enable()/dev_set_threaded().
4354                  * Use READ_ONCE() to guarantee a complete
4355                  * read on napi->thread. Only call
4356                  * wake_up_process() when it's not NULL.
4357                  */
4358                 thread = READ_ONCE(napi->thread);
4359                 if (thread) {
4360                         /* Avoid doing set_bit() if the thread is in
4361                          * INTERRUPTIBLE state, cause napi_thread_wait()
4362                          * makes sure to proceed with napi polling
4363                          * if the thread is explicitly woken from here.
4364                          */
4365                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4366                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4367                         wake_up_process(thread);
4368                         return;
4369                 }
4370         }
4371
4372         list_add_tail(&napi->poll_list, &sd->poll_list);
4373         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4374 }
4375
4376 #ifdef CONFIG_RPS
4377
4378 /* One global table that all flow-based protocols share. */
4379 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4380 EXPORT_SYMBOL(rps_sock_flow_table);
4381 u32 rps_cpu_mask __read_mostly;
4382 EXPORT_SYMBOL(rps_cpu_mask);
4383
4384 struct static_key_false rps_needed __read_mostly;
4385 EXPORT_SYMBOL(rps_needed);
4386 struct static_key_false rfs_needed __read_mostly;
4387 EXPORT_SYMBOL(rfs_needed);
4388
4389 static struct rps_dev_flow *
4390 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4391             struct rps_dev_flow *rflow, u16 next_cpu)
4392 {
4393         if (next_cpu < nr_cpu_ids) {
4394 #ifdef CONFIG_RFS_ACCEL
4395                 struct netdev_rx_queue *rxqueue;
4396                 struct rps_dev_flow_table *flow_table;
4397                 struct rps_dev_flow *old_rflow;
4398                 u32 flow_id;
4399                 u16 rxq_index;
4400                 int rc;
4401
4402                 /* Should we steer this flow to a different hardware queue? */
4403                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4404                     !(dev->features & NETIF_F_NTUPLE))
4405                         goto out;
4406                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4407                 if (rxq_index == skb_get_rx_queue(skb))
4408                         goto out;
4409
4410                 rxqueue = dev->_rx + rxq_index;
4411                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4412                 if (!flow_table)
4413                         goto out;
4414                 flow_id = skb_get_hash(skb) & flow_table->mask;
4415                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4416                                                         rxq_index, flow_id);
4417                 if (rc < 0)
4418                         goto out;
4419                 old_rflow = rflow;
4420                 rflow = &flow_table->flows[flow_id];
4421                 rflow->filter = rc;
4422                 if (old_rflow->filter == rflow->filter)
4423                         old_rflow->filter = RPS_NO_FILTER;
4424         out:
4425 #endif
4426                 rflow->last_qtail =
4427                         per_cpu(softnet_data, next_cpu).input_queue_head;
4428         }
4429
4430         rflow->cpu = next_cpu;
4431         return rflow;
4432 }
4433
4434 /*
4435  * get_rps_cpu is called from netif_receive_skb and returns the target
4436  * CPU from the RPS map of the receiving queue for a given skb.
4437  * rcu_read_lock must be held on entry.
4438  */
4439 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4440                        struct rps_dev_flow **rflowp)
4441 {
4442         const struct rps_sock_flow_table *sock_flow_table;
4443         struct netdev_rx_queue *rxqueue = dev->_rx;
4444         struct rps_dev_flow_table *flow_table;
4445         struct rps_map *map;
4446         int cpu = -1;
4447         u32 tcpu;
4448         u32 hash;
4449
4450         if (skb_rx_queue_recorded(skb)) {
4451                 u16 index = skb_get_rx_queue(skb);
4452
4453                 if (unlikely(index >= dev->real_num_rx_queues)) {
4454                         WARN_ONCE(dev->real_num_rx_queues > 1,
4455                                   "%s received packet on queue %u, but number "
4456                                   "of RX queues is %u\n",
4457                                   dev->name, index, dev->real_num_rx_queues);
4458                         goto done;
4459                 }
4460                 rxqueue += index;
4461         }
4462
4463         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4464
4465         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4466         map = rcu_dereference(rxqueue->rps_map);
4467         if (!flow_table && !map)
4468                 goto done;
4469
4470         skb_reset_network_header(skb);
4471         hash = skb_get_hash(skb);
4472         if (!hash)
4473                 goto done;
4474
4475         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4476         if (flow_table && sock_flow_table) {
4477                 struct rps_dev_flow *rflow;
4478                 u32 next_cpu;
4479                 u32 ident;
4480
4481                 /* First check into global flow table if there is a match */
4482                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4483                 if ((ident ^ hash) & ~rps_cpu_mask)
4484                         goto try_rps;
4485
4486                 next_cpu = ident & rps_cpu_mask;
4487
4488                 /* OK, now we know there is a match,
4489                  * we can look at the local (per receive queue) flow table
4490                  */
4491                 rflow = &flow_table->flows[hash & flow_table->mask];
4492                 tcpu = rflow->cpu;
4493
4494                 /*
4495                  * If the desired CPU (where last recvmsg was done) is
4496                  * different from current CPU (one in the rx-queue flow
4497                  * table entry), switch if one of the following holds:
4498                  *   - Current CPU is unset (>= nr_cpu_ids).
4499                  *   - Current CPU is offline.
4500                  *   - The current CPU's queue tail has advanced beyond the
4501                  *     last packet that was enqueued using this table entry.
4502                  *     This guarantees that all previous packets for the flow
4503                  *     have been dequeued, thus preserving in order delivery.
4504                  */
4505                 if (unlikely(tcpu != next_cpu) &&
4506                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4507                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4508                       rflow->last_qtail)) >= 0)) {
4509                         tcpu = next_cpu;
4510                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4511                 }
4512
4513                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4514                         *rflowp = rflow;
4515                         cpu = tcpu;
4516                         goto done;
4517                 }
4518         }
4519
4520 try_rps:
4521
4522         if (map) {
4523                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4524                 if (cpu_online(tcpu)) {
4525                         cpu = tcpu;
4526                         goto done;
4527                 }
4528         }
4529
4530 done:
4531         return cpu;
4532 }
4533
4534 #ifdef CONFIG_RFS_ACCEL
4535
4536 /**
4537  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4538  * @dev: Device on which the filter was set
4539  * @rxq_index: RX queue index
4540  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4541  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4542  *
4543  * Drivers that implement ndo_rx_flow_steer() should periodically call
4544  * this function for each installed filter and remove the filters for
4545  * which it returns %true.
4546  */
4547 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4548                          u32 flow_id, u16 filter_id)
4549 {
4550         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4551         struct rps_dev_flow_table *flow_table;
4552         struct rps_dev_flow *rflow;
4553         bool expire = true;
4554         unsigned int cpu;
4555
4556         rcu_read_lock();
4557         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4558         if (flow_table && flow_id <= flow_table->mask) {
4559                 rflow = &flow_table->flows[flow_id];
4560                 cpu = READ_ONCE(rflow->cpu);
4561                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4562                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4563                            rflow->last_qtail) <
4564                      (int)(10 * flow_table->mask)))
4565                         expire = false;
4566         }
4567         rcu_read_unlock();
4568         return expire;
4569 }
4570 EXPORT_SYMBOL(rps_may_expire_flow);
4571
4572 #endif /* CONFIG_RFS_ACCEL */
4573
4574 /* Called from hardirq (IPI) context */
4575 static void rps_trigger_softirq(void *data)
4576 {
4577         struct softnet_data *sd = data;
4578
4579         ____napi_schedule(sd, &sd->backlog);
4580         sd->received_rps++;
4581 }
4582
4583 #endif /* CONFIG_RPS */
4584
4585 /* Called from hardirq (IPI) context */
4586 static void trigger_rx_softirq(void *data)
4587 {
4588         struct softnet_data *sd = data;
4589
4590         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4591         smp_store_release(&sd->defer_ipi_scheduled, 0);
4592 }
4593
4594 /*
4595  * Check if this softnet_data structure is another cpu one
4596  * If yes, queue it to our IPI list and return 1
4597  * If no, return 0
4598  */
4599 static int napi_schedule_rps(struct softnet_data *sd)
4600 {
4601         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4602
4603 #ifdef CONFIG_RPS
4604         if (sd != mysd) {
4605                 sd->rps_ipi_next = mysd->rps_ipi_list;
4606                 mysd->rps_ipi_list = sd;
4607
4608                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4609                 return 1;
4610         }
4611 #endif /* CONFIG_RPS */
4612         __napi_schedule_irqoff(&mysd->backlog);
4613         return 0;
4614 }
4615
4616 #ifdef CONFIG_NET_FLOW_LIMIT
4617 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4618 #endif
4619
4620 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4621 {
4622 #ifdef CONFIG_NET_FLOW_LIMIT
4623         struct sd_flow_limit *fl;
4624         struct softnet_data *sd;
4625         unsigned int old_flow, new_flow;
4626
4627         if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4628                 return false;
4629
4630         sd = this_cpu_ptr(&softnet_data);
4631
4632         rcu_read_lock();
4633         fl = rcu_dereference(sd->flow_limit);
4634         if (fl) {
4635                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4636                 old_flow = fl->history[fl->history_head];
4637                 fl->history[fl->history_head] = new_flow;
4638
4639                 fl->history_head++;
4640                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4641
4642                 if (likely(fl->buckets[old_flow]))
4643                         fl->buckets[old_flow]--;
4644
4645                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4646                         fl->count++;
4647                         rcu_read_unlock();
4648                         return true;
4649                 }
4650         }
4651         rcu_read_unlock();
4652 #endif
4653         return false;
4654 }
4655
4656 /*
4657  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4658  * queue (may be a remote CPU queue).
4659  */
4660 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4661                               unsigned int *qtail)
4662 {
4663         enum skb_drop_reason reason;
4664         struct softnet_data *sd;
4665         unsigned long flags;
4666         unsigned int qlen;
4667
4668         reason = SKB_DROP_REASON_NOT_SPECIFIED;
4669         sd = &per_cpu(softnet_data, cpu);
4670
4671         rps_lock_irqsave(sd, &flags);
4672         if (!netif_running(skb->dev))
4673                 goto drop;
4674         qlen = skb_queue_len(&sd->input_pkt_queue);
4675         if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4676                 if (qlen) {
4677 enqueue:
4678                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4679                         input_queue_tail_incr_save(sd, qtail);
4680                         rps_unlock_irq_restore(sd, &flags);
4681                         return NET_RX_SUCCESS;
4682                 }
4683
4684                 /* Schedule NAPI for backlog device
4685                  * We can use non atomic operation since we own the queue lock
4686                  */
4687                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4688                         napi_schedule_rps(sd);
4689                 goto enqueue;
4690         }
4691         reason = SKB_DROP_REASON_CPU_BACKLOG;
4692
4693 drop:
4694         sd->dropped++;
4695         rps_unlock_irq_restore(sd, &flags);
4696
4697         dev_core_stats_rx_dropped_inc(skb->dev);
4698         kfree_skb_reason(skb, reason);
4699         return NET_RX_DROP;
4700 }
4701
4702 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4703 {
4704         struct net_device *dev = skb->dev;
4705         struct netdev_rx_queue *rxqueue;
4706
4707         rxqueue = dev->_rx;
4708
4709         if (skb_rx_queue_recorded(skb)) {
4710                 u16 index = skb_get_rx_queue(skb);
4711
4712                 if (unlikely(index >= dev->real_num_rx_queues)) {
4713                         WARN_ONCE(dev->real_num_rx_queues > 1,
4714                                   "%s received packet on queue %u, but number "
4715                                   "of RX queues is %u\n",
4716                                   dev->name, index, dev->real_num_rx_queues);
4717
4718                         return rxqueue; /* Return first rxqueue */
4719                 }
4720                 rxqueue += index;
4721         }
4722         return rxqueue;
4723 }
4724
4725 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4726                              struct bpf_prog *xdp_prog)
4727 {
4728         void *orig_data, *orig_data_end, *hard_start;
4729         struct netdev_rx_queue *rxqueue;
4730         bool orig_bcast, orig_host;
4731         u32 mac_len, frame_sz;
4732         __be16 orig_eth_type;
4733         struct ethhdr *eth;
4734         u32 metalen, act;
4735         int off;
4736
4737         /* The XDP program wants to see the packet starting at the MAC
4738          * header.
4739          */
4740         mac_len = skb->data - skb_mac_header(skb);
4741         hard_start = skb->data - skb_headroom(skb);
4742
4743         /* SKB "head" area always have tailroom for skb_shared_info */
4744         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4745         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4746
4747         rxqueue = netif_get_rxqueue(skb);
4748         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4749         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4750                          skb_headlen(skb) + mac_len, true);
4751
4752         orig_data_end = xdp->data_end;
4753         orig_data = xdp->data;
4754         eth = (struct ethhdr *)xdp->data;
4755         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4756         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4757         orig_eth_type = eth->h_proto;
4758
4759         act = bpf_prog_run_xdp(xdp_prog, xdp);
4760
4761         /* check if bpf_xdp_adjust_head was used */
4762         off = xdp->data - orig_data;
4763         if (off) {
4764                 if (off > 0)
4765                         __skb_pull(skb, off);
4766                 else if (off < 0)
4767                         __skb_push(skb, -off);
4768
4769                 skb->mac_header += off;
4770                 skb_reset_network_header(skb);
4771         }
4772
4773         /* check if bpf_xdp_adjust_tail was used */
4774         off = xdp->data_end - orig_data_end;
4775         if (off != 0) {
4776                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4777                 skb->len += off; /* positive on grow, negative on shrink */
4778         }
4779
4780         /* check if XDP changed eth hdr such SKB needs update */
4781         eth = (struct ethhdr *)xdp->data;
4782         if ((orig_eth_type != eth->h_proto) ||
4783             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4784                                                   skb->dev->dev_addr)) ||
4785             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4786                 __skb_push(skb, ETH_HLEN);
4787                 skb->pkt_type = PACKET_HOST;
4788                 skb->protocol = eth_type_trans(skb, skb->dev);
4789         }
4790
4791         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4792          * before calling us again on redirect path. We do not call do_redirect
4793          * as we leave that up to the caller.
4794          *
4795          * Caller is responsible for managing lifetime of skb (i.e. calling
4796          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4797          */
4798         switch (act) {
4799         case XDP_REDIRECT:
4800         case XDP_TX:
4801                 __skb_push(skb, mac_len);
4802                 break;
4803         case XDP_PASS:
4804                 metalen = xdp->data - xdp->data_meta;
4805                 if (metalen)
4806                         skb_metadata_set(skb, metalen);
4807                 break;
4808         }
4809
4810         return act;
4811 }
4812
4813 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4814                                      struct xdp_buff *xdp,
4815                                      struct bpf_prog *xdp_prog)
4816 {
4817         u32 act = XDP_DROP;
4818
4819         /* Reinjected packets coming from act_mirred or similar should
4820          * not get XDP generic processing.
4821          */
4822         if (skb_is_redirected(skb))
4823                 return XDP_PASS;
4824
4825         /* XDP packets must be linear and must have sufficient headroom
4826          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4827          * native XDP provides, thus we need to do it here as well.
4828          */
4829         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4830             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4831                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4832                 int troom = skb->tail + skb->data_len - skb->end;
4833
4834                 /* In case we have to go down the path and also linearize,
4835                  * then lets do the pskb_expand_head() work just once here.
4836                  */
4837                 if (pskb_expand_head(skb,
4838                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4839                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4840                         goto do_drop;
4841                 if (skb_linearize(skb))
4842                         goto do_drop;
4843         }
4844
4845         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4846         switch (act) {
4847         case XDP_REDIRECT:
4848         case XDP_TX:
4849         case XDP_PASS:
4850                 break;
4851         default:
4852                 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4853                 fallthrough;
4854         case XDP_ABORTED:
4855                 trace_xdp_exception(skb->dev, xdp_prog, act);
4856                 fallthrough;
4857         case XDP_DROP:
4858         do_drop:
4859                 kfree_skb(skb);
4860                 break;
4861         }
4862
4863         return act;
4864 }
4865
4866 /* When doing generic XDP we have to bypass the qdisc layer and the
4867  * network taps in order to match in-driver-XDP behavior. This also means
4868  * that XDP packets are able to starve other packets going through a qdisc,
4869  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4870  * queues, so they do not have this starvation issue.
4871  */
4872 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4873 {
4874         struct net_device *dev = skb->dev;
4875         struct netdev_queue *txq;
4876         bool free_skb = true;
4877         int cpu, rc;
4878
4879         txq = netdev_core_pick_tx(dev, skb, NULL);
4880         cpu = smp_processor_id();
4881         HARD_TX_LOCK(dev, txq, cpu);
4882         if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4883                 rc = netdev_start_xmit(skb, dev, txq, 0);
4884                 if (dev_xmit_complete(rc))
4885                         free_skb = false;
4886         }
4887         HARD_TX_UNLOCK(dev, txq);
4888         if (free_skb) {
4889                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4890                 dev_core_stats_tx_dropped_inc(dev);
4891                 kfree_skb(skb);
4892         }
4893 }
4894
4895 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4896
4897 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4898 {
4899         if (xdp_prog) {
4900                 struct xdp_buff xdp;
4901                 u32 act;
4902                 int err;
4903
4904                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4905                 if (act != XDP_PASS) {
4906                         switch (act) {
4907                         case XDP_REDIRECT:
4908                                 err = xdp_do_generic_redirect(skb->dev, skb,
4909                                                               &xdp, xdp_prog);
4910                                 if (err)
4911                                         goto out_redir;
4912                                 break;
4913                         case XDP_TX:
4914                                 generic_xdp_tx(skb, xdp_prog);
4915                                 break;
4916                         }
4917                         return XDP_DROP;
4918                 }
4919         }
4920         return XDP_PASS;
4921 out_redir:
4922         kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4923         return XDP_DROP;
4924 }
4925 EXPORT_SYMBOL_GPL(do_xdp_generic);
4926
4927 static int netif_rx_internal(struct sk_buff *skb)
4928 {
4929         int ret;
4930
4931         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4932
4933         trace_netif_rx(skb);
4934
4935 #ifdef CONFIG_RPS
4936         if (static_branch_unlikely(&rps_needed)) {
4937                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4938                 int cpu;
4939
4940                 rcu_read_lock();
4941
4942                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4943                 if (cpu < 0)
4944                         cpu = smp_processor_id();
4945
4946                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4947
4948                 rcu_read_unlock();
4949         } else
4950 #endif
4951         {
4952                 unsigned int qtail;
4953
4954                 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4955         }
4956         return ret;
4957 }
4958
4959 /**
4960  *      __netif_rx      -       Slightly optimized version of netif_rx
4961  *      @skb: buffer to post
4962  *
4963  *      This behaves as netif_rx except that it does not disable bottom halves.
4964  *      As a result this function may only be invoked from the interrupt context
4965  *      (either hard or soft interrupt).
4966  */
4967 int __netif_rx(struct sk_buff *skb)
4968 {
4969         int ret;
4970
4971         lockdep_assert_once(hardirq_count() | softirq_count());
4972
4973         trace_netif_rx_entry(skb);
4974         ret = netif_rx_internal(skb);
4975         trace_netif_rx_exit(ret);
4976         return ret;
4977 }
4978 EXPORT_SYMBOL(__netif_rx);
4979
4980 /**
4981  *      netif_rx        -       post buffer to the network code
4982  *      @skb: buffer to post
4983  *
4984  *      This function receives a packet from a device driver and queues it for
4985  *      the upper (protocol) levels to process via the backlog NAPI device. It
4986  *      always succeeds. The buffer may be dropped during processing for
4987  *      congestion control or by the protocol layers.
4988  *      The network buffer is passed via the backlog NAPI device. Modern NIC
4989  *      driver should use NAPI and GRO.
4990  *      This function can used from interrupt and from process context. The
4991  *      caller from process context must not disable interrupts before invoking
4992  *      this function.
4993  *
4994  *      return values:
4995  *      NET_RX_SUCCESS  (no congestion)
4996  *      NET_RX_DROP     (packet was dropped)
4997  *
4998  */
4999 int netif_rx(struct sk_buff *skb)
5000 {
5001         bool need_bh_off = !(hardirq_count() | softirq_count());
5002         int ret;
5003
5004         if (need_bh_off)
5005                 local_bh_disable();
5006         trace_netif_rx_entry(skb);
5007         ret = netif_rx_internal(skb);
5008         trace_netif_rx_exit(ret);
5009         if (need_bh_off)
5010                 local_bh_enable();
5011         return ret;
5012 }
5013 EXPORT_SYMBOL(netif_rx);
5014
5015 static __latent_entropy void net_tx_action(struct softirq_action *h)
5016 {
5017         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5018
5019         if (sd->completion_queue) {
5020                 struct sk_buff *clist;
5021
5022                 local_irq_disable();
5023                 clist = sd->completion_queue;
5024                 sd->completion_queue = NULL;
5025                 local_irq_enable();
5026
5027                 while (clist) {
5028                         struct sk_buff *skb = clist;
5029
5030                         clist = clist->next;
5031
5032                         WARN_ON(refcount_read(&skb->users));
5033                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5034                                 trace_consume_skb(skb);
5035                         else
5036                                 trace_kfree_skb(skb, net_tx_action,
5037                                                 SKB_DROP_REASON_NOT_SPECIFIED);
5038
5039                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5040                                 __kfree_skb(skb);
5041                         else
5042                                 __kfree_skb_defer(skb);
5043                 }
5044         }
5045
5046         if (sd->output_queue) {
5047                 struct Qdisc *head;
5048
5049                 local_irq_disable();
5050                 head = sd->output_queue;
5051                 sd->output_queue = NULL;
5052                 sd->output_queue_tailp = &sd->output_queue;
5053                 local_irq_enable();
5054
5055                 rcu_read_lock();
5056
5057                 while (head) {
5058                         struct Qdisc *q = head;
5059                         spinlock_t *root_lock = NULL;
5060
5061                         head = head->next_sched;
5062
5063                         /* We need to make sure head->next_sched is read
5064                          * before clearing __QDISC_STATE_SCHED
5065                          */
5066                         smp_mb__before_atomic();
5067
5068                         if (!(q->flags & TCQ_F_NOLOCK)) {
5069                                 root_lock = qdisc_lock(q);
5070                                 spin_lock(root_lock);
5071                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5072                                                      &q->state))) {
5073                                 /* There is a synchronize_net() between
5074                                  * STATE_DEACTIVATED flag being set and
5075                                  * qdisc_reset()/some_qdisc_is_busy() in
5076                                  * dev_deactivate(), so we can safely bail out
5077                                  * early here to avoid data race between
5078                                  * qdisc_deactivate() and some_qdisc_is_busy()
5079                                  * for lockless qdisc.
5080                                  */
5081                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5082                                 continue;
5083                         }
5084
5085                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5086                         qdisc_run(q);
5087                         if (root_lock)
5088                                 spin_unlock(root_lock);
5089                 }
5090
5091                 rcu_read_unlock();
5092         }
5093
5094         xfrm_dev_backlog(sd);
5095 }
5096
5097 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5098 /* This hook is defined here for ATM LANE */
5099 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5100                              unsigned char *addr) __read_mostly;
5101 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5102 #endif
5103
5104 static inline struct sk_buff *
5105 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5106                    struct net_device *orig_dev, bool *another)
5107 {
5108 #ifdef CONFIG_NET_CLS_ACT
5109         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5110         struct tcf_result cl_res;
5111
5112         /* If there's at least one ingress present somewhere (so
5113          * we get here via enabled static key), remaining devices
5114          * that are not configured with an ingress qdisc will bail
5115          * out here.
5116          */
5117         if (!miniq)
5118                 return skb;
5119
5120         if (*pt_prev) {
5121                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5122                 *pt_prev = NULL;
5123         }
5124
5125         qdisc_skb_cb(skb)->pkt_len = skb->len;
5126         tc_skb_cb(skb)->mru = 0;
5127         tc_skb_cb(skb)->post_ct = false;
5128         skb->tc_at_ingress = 1;
5129         mini_qdisc_bstats_cpu_update(miniq, skb);
5130
5131         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5132         case TC_ACT_OK:
5133         case TC_ACT_RECLASSIFY:
5134                 skb->tc_index = TC_H_MIN(cl_res.classid);
5135                 break;
5136         case TC_ACT_SHOT:
5137                 mini_qdisc_qstats_cpu_drop(miniq);
5138                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5139                 return NULL;
5140         case TC_ACT_STOLEN:
5141         case TC_ACT_QUEUED:
5142         case TC_ACT_TRAP:
5143                 consume_skb(skb);
5144                 return NULL;
5145         case TC_ACT_REDIRECT:
5146                 /* skb_mac_header check was done by cls/act_bpf, so
5147                  * we can safely push the L2 header back before
5148                  * redirecting to another netdev
5149                  */
5150                 __skb_push(skb, skb->mac_len);
5151                 if (skb_do_redirect(skb) == -EAGAIN) {
5152                         __skb_pull(skb, skb->mac_len);
5153                         *another = true;
5154                         break;
5155                 }
5156                 return NULL;
5157         case TC_ACT_CONSUMED:
5158                 return NULL;
5159         default:
5160                 break;
5161         }
5162 #endif /* CONFIG_NET_CLS_ACT */
5163         return skb;
5164 }
5165
5166 /**
5167  *      netdev_is_rx_handler_busy - check if receive handler is registered
5168  *      @dev: device to check
5169  *
5170  *      Check if a receive handler is already registered for a given device.
5171  *      Return true if there one.
5172  *
5173  *      The caller must hold the rtnl_mutex.
5174  */
5175 bool netdev_is_rx_handler_busy(struct net_device *dev)
5176 {
5177         ASSERT_RTNL();
5178         return dev && rtnl_dereference(dev->rx_handler);
5179 }
5180 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5181
5182 /**
5183  *      netdev_rx_handler_register - register receive handler
5184  *      @dev: device to register a handler for
5185  *      @rx_handler: receive handler to register
5186  *      @rx_handler_data: data pointer that is used by rx handler
5187  *
5188  *      Register a receive handler for a device. This handler will then be
5189  *      called from __netif_receive_skb. A negative errno code is returned
5190  *      on a failure.
5191  *
5192  *      The caller must hold the rtnl_mutex.
5193  *
5194  *      For a general description of rx_handler, see enum rx_handler_result.
5195  */
5196 int netdev_rx_handler_register(struct net_device *dev,
5197                                rx_handler_func_t *rx_handler,
5198                                void *rx_handler_data)
5199 {
5200         if (netdev_is_rx_handler_busy(dev))
5201                 return -EBUSY;
5202
5203         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5204                 return -EINVAL;
5205
5206         /* Note: rx_handler_data must be set before rx_handler */
5207         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5208         rcu_assign_pointer(dev->rx_handler, rx_handler);
5209
5210         return 0;
5211 }
5212 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5213
5214 /**
5215  *      netdev_rx_handler_unregister - unregister receive handler
5216  *      @dev: device to unregister a handler from
5217  *
5218  *      Unregister a receive handler from a device.
5219  *
5220  *      The caller must hold the rtnl_mutex.
5221  */
5222 void netdev_rx_handler_unregister(struct net_device *dev)
5223 {
5224
5225         ASSERT_RTNL();
5226         RCU_INIT_POINTER(dev->rx_handler, NULL);
5227         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5228          * section has a guarantee to see a non NULL rx_handler_data
5229          * as well.
5230          */
5231         synchronize_net();
5232         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5233 }
5234 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5235
5236 /*
5237  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5238  * the special handling of PFMEMALLOC skbs.
5239  */
5240 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5241 {
5242         switch (skb->protocol) {
5243         case htons(ETH_P_ARP):
5244         case htons(ETH_P_IP):
5245         case htons(ETH_P_IPV6):
5246         case htons(ETH_P_8021Q):
5247         case htons(ETH_P_8021AD):
5248                 return true;
5249         default:
5250                 return false;
5251         }
5252 }
5253
5254 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5255                              int *ret, struct net_device *orig_dev)
5256 {
5257         if (nf_hook_ingress_active(skb)) {
5258                 int ingress_retval;
5259
5260                 if (*pt_prev) {
5261                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5262                         *pt_prev = NULL;
5263                 }
5264
5265                 rcu_read_lock();
5266                 ingress_retval = nf_hook_ingress(skb);
5267                 rcu_read_unlock();
5268                 return ingress_retval;
5269         }
5270         return 0;
5271 }
5272
5273 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5274                                     struct packet_type **ppt_prev)
5275 {
5276         struct packet_type *ptype, *pt_prev;
5277         rx_handler_func_t *rx_handler;
5278         struct sk_buff *skb = *pskb;
5279         struct net_device *orig_dev;
5280         bool deliver_exact = false;
5281         int ret = NET_RX_DROP;
5282         __be16 type;
5283
5284         net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5285
5286         trace_netif_receive_skb(skb);
5287
5288         orig_dev = skb->dev;
5289
5290         skb_reset_network_header(skb);
5291         if (!skb_transport_header_was_set(skb))
5292                 skb_reset_transport_header(skb);
5293         skb_reset_mac_len(skb);
5294
5295         pt_prev = NULL;
5296
5297 another_round:
5298         skb->skb_iif = skb->dev->ifindex;
5299
5300         __this_cpu_inc(softnet_data.processed);
5301
5302         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5303                 int ret2;
5304
5305                 migrate_disable();
5306                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5307                 migrate_enable();
5308
5309                 if (ret2 != XDP_PASS) {
5310                         ret = NET_RX_DROP;
5311                         goto out;
5312                 }
5313         }
5314
5315         if (eth_type_vlan(skb->protocol)) {
5316                 skb = skb_vlan_untag(skb);
5317                 if (unlikely(!skb))
5318                         goto out;
5319         }
5320
5321         if (skb_skip_tc_classify(skb))
5322                 goto skip_classify;
5323
5324         if (pfmemalloc)
5325                 goto skip_taps;
5326
5327         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5328                 if (pt_prev)
5329                         ret = deliver_skb(skb, pt_prev, orig_dev);
5330                 pt_prev = ptype;
5331         }
5332
5333         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5334                 if (pt_prev)
5335                         ret = deliver_skb(skb, pt_prev, orig_dev);
5336                 pt_prev = ptype;
5337         }
5338
5339 skip_taps:
5340 #ifdef CONFIG_NET_INGRESS
5341         if (static_branch_unlikely(&ingress_needed_key)) {
5342                 bool another = false;
5343
5344                 nf_skip_egress(skb, true);
5345                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5346                                          &another);
5347                 if (another)
5348                         goto another_round;
5349                 if (!skb)
5350                         goto out;
5351
5352                 nf_skip_egress(skb, false);
5353                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5354                         goto out;
5355         }
5356 #endif
5357         skb_reset_redirect(skb);
5358 skip_classify:
5359         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5360                 goto drop;
5361
5362         if (skb_vlan_tag_present(skb)) {
5363                 if (pt_prev) {
5364                         ret = deliver_skb(skb, pt_prev, orig_dev);
5365                         pt_prev = NULL;
5366                 }
5367                 if (vlan_do_receive(&skb))
5368                         goto another_round;
5369                 else if (unlikely(!skb))
5370                         goto out;
5371         }
5372
5373         rx_handler = rcu_dereference(skb->dev->rx_handler);
5374         if (rx_handler) {
5375                 if (pt_prev) {
5376                         ret = deliver_skb(skb, pt_prev, orig_dev);
5377                         pt_prev = NULL;
5378                 }
5379                 switch (rx_handler(&skb)) {
5380                 case RX_HANDLER_CONSUMED:
5381                         ret = NET_RX_SUCCESS;
5382                         goto out;
5383                 case RX_HANDLER_ANOTHER:
5384                         goto another_round;
5385                 case RX_HANDLER_EXACT:
5386                         deliver_exact = true;
5387                         break;
5388                 case RX_HANDLER_PASS:
5389                         break;
5390                 default:
5391                         BUG();
5392                 }
5393         }
5394
5395         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5396 check_vlan_id:
5397                 if (skb_vlan_tag_get_id(skb)) {
5398                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5399                          * find vlan device.
5400                          */
5401                         skb->pkt_type = PACKET_OTHERHOST;
5402                 } else if (eth_type_vlan(skb->protocol)) {
5403                         /* Outer header is 802.1P with vlan 0, inner header is
5404                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5405                          * not find vlan dev for vlan id 0.
5406                          */
5407                         __vlan_hwaccel_clear_tag(skb);
5408                         skb = skb_vlan_untag(skb);
5409                         if (unlikely(!skb))
5410                                 goto out;
5411                         if (vlan_do_receive(&skb))
5412                                 /* After stripping off 802.1P header with vlan 0
5413                                  * vlan dev is found for inner header.
5414                                  */
5415                                 goto another_round;
5416                         else if (unlikely(!skb))
5417                                 goto out;
5418                         else
5419                                 /* We have stripped outer 802.1P vlan 0 header.
5420                                  * But could not find vlan dev.
5421                                  * check again for vlan id to set OTHERHOST.
5422                                  */
5423                                 goto check_vlan_id;
5424                 }
5425                 /* Note: we might in the future use prio bits
5426                  * and set skb->priority like in vlan_do_receive()
5427                  * For the time being, just ignore Priority Code Point
5428                  */
5429                 __vlan_hwaccel_clear_tag(skb);
5430         }
5431
5432         type = skb->protocol;
5433
5434         /* deliver only exact match when indicated */
5435         if (likely(!deliver_exact)) {
5436                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5437                                        &ptype_base[ntohs(type) &
5438                                                    PTYPE_HASH_MASK]);
5439         }
5440
5441         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5442                                &orig_dev->ptype_specific);
5443
5444         if (unlikely(skb->dev != orig_dev)) {
5445                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5446                                        &skb->dev->ptype_specific);
5447         }
5448
5449         if (pt_prev) {
5450                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5451                         goto drop;
5452                 *ppt_prev = pt_prev;
5453         } else {
5454 drop:
5455                 if (!deliver_exact)
5456                         dev_core_stats_rx_dropped_inc(skb->dev);
5457                 else
5458                         dev_core_stats_rx_nohandler_inc(skb->dev);
5459                 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5460                 /* Jamal, now you will not able to escape explaining
5461                  * me how you were going to use this. :-)
5462                  */
5463                 ret = NET_RX_DROP;
5464         }
5465
5466 out:
5467         /* The invariant here is that if *ppt_prev is not NULL
5468          * then skb should also be non-NULL.
5469          *
5470          * Apparently *ppt_prev assignment above holds this invariant due to
5471          * skb dereferencing near it.
5472          */
5473         *pskb = skb;
5474         return ret;
5475 }
5476
5477 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5478 {
5479         struct net_device *orig_dev = skb->dev;
5480         struct packet_type *pt_prev = NULL;
5481         int ret;
5482
5483         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5484         if (pt_prev)
5485                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5486                                          skb->dev, pt_prev, orig_dev);
5487         return ret;
5488 }
5489
5490 /**
5491  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5492  *      @skb: buffer to process
5493  *
5494  *      More direct receive version of netif_receive_skb().  It should
5495  *      only be used by callers that have a need to skip RPS and Generic XDP.
5496  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5497  *
5498  *      This function may only be called from softirq context and interrupts
5499  *      should be enabled.
5500  *
5501  *      Return values (usually ignored):
5502  *      NET_RX_SUCCESS: no congestion
5503  *      NET_RX_DROP: packet was dropped
5504  */
5505 int netif_receive_skb_core(struct sk_buff *skb)
5506 {
5507         int ret;
5508
5509         rcu_read_lock();
5510         ret = __netif_receive_skb_one_core(skb, false);
5511         rcu_read_unlock();
5512
5513         return ret;
5514 }
5515 EXPORT_SYMBOL(netif_receive_skb_core);
5516
5517 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5518                                                   struct packet_type *pt_prev,
5519                                                   struct net_device *orig_dev)
5520 {
5521         struct sk_buff *skb, *next;
5522
5523         if (!pt_prev)
5524                 return;
5525         if (list_empty(head))
5526                 return;
5527         if (pt_prev->list_func != NULL)
5528                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5529                                    ip_list_rcv, head, pt_prev, orig_dev);
5530         else
5531                 list_for_each_entry_safe(skb, next, head, list) {
5532                         skb_list_del_init(skb);
5533                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5534                 }
5535 }
5536
5537 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5538 {
5539         /* Fast-path assumptions:
5540          * - There is no RX handler.
5541          * - Only one packet_type matches.
5542          * If either of these fails, we will end up doing some per-packet
5543          * processing in-line, then handling the 'last ptype' for the whole
5544          * sublist.  This can't cause out-of-order delivery to any single ptype,
5545          * because the 'last ptype' must be constant across the sublist, and all
5546          * other ptypes are handled per-packet.
5547          */
5548         /* Current (common) ptype of sublist */
5549         struct packet_type *pt_curr = NULL;
5550         /* Current (common) orig_dev of sublist */
5551         struct net_device *od_curr = NULL;
5552         struct list_head sublist;
5553         struct sk_buff *skb, *next;
5554
5555         INIT_LIST_HEAD(&sublist);
5556         list_for_each_entry_safe(skb, next, head, list) {
5557                 struct net_device *orig_dev = skb->dev;
5558                 struct packet_type *pt_prev = NULL;
5559
5560                 skb_list_del_init(skb);
5561                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5562                 if (!pt_prev)
5563                         continue;
5564                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5565                         /* dispatch old sublist */
5566                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5567                         /* start new sublist */
5568                         INIT_LIST_HEAD(&sublist);
5569                         pt_curr = pt_prev;
5570                         od_curr = orig_dev;
5571                 }
5572                 list_add_tail(&skb->list, &sublist);
5573         }
5574
5575         /* dispatch final sublist */
5576         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5577 }
5578
5579 static int __netif_receive_skb(struct sk_buff *skb)
5580 {
5581         int ret;
5582
5583         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5584                 unsigned int noreclaim_flag;
5585
5586                 /*
5587                  * PFMEMALLOC skbs are special, they should
5588                  * - be delivered to SOCK_MEMALLOC sockets only
5589                  * - stay away from userspace
5590                  * - have bounded memory usage
5591                  *
5592                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5593                  * context down to all allocation sites.
5594                  */
5595                 noreclaim_flag = memalloc_noreclaim_save();
5596                 ret = __netif_receive_skb_one_core(skb, true);
5597                 memalloc_noreclaim_restore(noreclaim_flag);
5598         } else
5599                 ret = __netif_receive_skb_one_core(skb, false);
5600
5601         return ret;
5602 }
5603
5604 static void __netif_receive_skb_list(struct list_head *head)
5605 {
5606         unsigned long noreclaim_flag = 0;
5607         struct sk_buff *skb, *next;
5608         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5609
5610         list_for_each_entry_safe(skb, next, head, list) {
5611                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5612                         struct list_head sublist;
5613
5614                         /* Handle the previous sublist */
5615                         list_cut_before(&sublist, head, &skb->list);
5616                         if (!list_empty(&sublist))
5617                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5618                         pfmemalloc = !pfmemalloc;
5619                         /* See comments in __netif_receive_skb */
5620                         if (pfmemalloc)
5621                                 noreclaim_flag = memalloc_noreclaim_save();
5622                         else
5623                                 memalloc_noreclaim_restore(noreclaim_flag);
5624                 }
5625         }
5626         /* Handle the remaining sublist */
5627         if (!list_empty(head))
5628                 __netif_receive_skb_list_core(head, pfmemalloc);
5629         /* Restore pflags */
5630         if (pfmemalloc)
5631                 memalloc_noreclaim_restore(noreclaim_flag);
5632 }
5633
5634 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5635 {
5636         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5637         struct bpf_prog *new = xdp->prog;
5638         int ret = 0;
5639
5640         switch (xdp->command) {
5641         case XDP_SETUP_PROG:
5642                 rcu_assign_pointer(dev->xdp_prog, new);
5643                 if (old)
5644                         bpf_prog_put(old);
5645
5646                 if (old && !new) {
5647                         static_branch_dec(&generic_xdp_needed_key);
5648                 } else if (new && !old) {
5649                         static_branch_inc(&generic_xdp_needed_key);
5650                         dev_disable_lro(dev);
5651                         dev_disable_gro_hw(dev);
5652                 }
5653                 break;
5654
5655         default:
5656                 ret = -EINVAL;
5657                 break;
5658         }
5659
5660         return ret;
5661 }
5662
5663 static int netif_receive_skb_internal(struct sk_buff *skb)
5664 {
5665         int ret;
5666
5667         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5668
5669         if (skb_defer_rx_timestamp(skb))
5670                 return NET_RX_SUCCESS;
5671
5672         rcu_read_lock();
5673 #ifdef CONFIG_RPS
5674         if (static_branch_unlikely(&rps_needed)) {
5675                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5676                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5677
5678                 if (cpu >= 0) {
5679                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5680                         rcu_read_unlock();
5681                         return ret;
5682                 }
5683         }
5684 #endif
5685         ret = __netif_receive_skb(skb);
5686         rcu_read_unlock();
5687         return ret;
5688 }
5689
5690 void netif_receive_skb_list_internal(struct list_head *head)
5691 {
5692         struct sk_buff *skb, *next;
5693         struct list_head sublist;
5694
5695         INIT_LIST_HEAD(&sublist);
5696         list_for_each_entry_safe(skb, next, head, list) {
5697                 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5698                 skb_list_del_init(skb);
5699                 if (!skb_defer_rx_timestamp(skb))
5700                         list_add_tail(&skb->list, &sublist);
5701         }
5702         list_splice_init(&sublist, head);
5703
5704         rcu_read_lock();
5705 #ifdef CONFIG_RPS
5706         if (static_branch_unlikely(&rps_needed)) {
5707                 list_for_each_entry_safe(skb, next, head, list) {
5708                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5709                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5710
5711                         if (cpu >= 0) {
5712                                 /* Will be handled, remove from list */
5713                                 skb_list_del_init(skb);
5714                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5715                         }
5716                 }
5717         }
5718 #endif
5719         __netif_receive_skb_list(head);
5720         rcu_read_unlock();
5721 }
5722
5723 /**
5724  *      netif_receive_skb - process receive buffer from network
5725  *      @skb: buffer to process
5726  *
5727  *      netif_receive_skb() is the main receive data processing function.
5728  *      It always succeeds. The buffer may be dropped during processing
5729  *      for congestion control or by the protocol layers.
5730  *
5731  *      This function may only be called from softirq context and interrupts
5732  *      should be enabled.
5733  *
5734  *      Return values (usually ignored):
5735  *      NET_RX_SUCCESS: no congestion
5736  *      NET_RX_DROP: packet was dropped
5737  */
5738 int netif_receive_skb(struct sk_buff *skb)
5739 {
5740         int ret;
5741
5742         trace_netif_receive_skb_entry(skb);
5743
5744         ret = netif_receive_skb_internal(skb);
5745         trace_netif_receive_skb_exit(ret);
5746
5747         return ret;
5748 }
5749 EXPORT_SYMBOL(netif_receive_skb);
5750
5751 /**
5752  *      netif_receive_skb_list - process many receive buffers from network
5753  *      @head: list of skbs to process.
5754  *
5755  *      Since return value of netif_receive_skb() is normally ignored, and
5756  *      wouldn't be meaningful for a list, this function returns void.
5757  *
5758  *      This function may only be called from softirq context and interrupts
5759  *      should be enabled.
5760  */
5761 void netif_receive_skb_list(struct list_head *head)
5762 {
5763         struct sk_buff *skb;
5764
5765         if (list_empty(head))
5766                 return;
5767         if (trace_netif_receive_skb_list_entry_enabled()) {
5768                 list_for_each_entry(skb, head, list)
5769                         trace_netif_receive_skb_list_entry(skb);
5770         }
5771         netif_receive_skb_list_internal(head);
5772         trace_netif_receive_skb_list_exit(0);
5773 }
5774 EXPORT_SYMBOL(netif_receive_skb_list);
5775
5776 static DEFINE_PER_CPU(struct work_struct, flush_works);
5777
5778 /* Network device is going away, flush any packets still pending */
5779 static void flush_backlog(struct work_struct *work)
5780 {
5781         struct sk_buff *skb, *tmp;
5782         struct softnet_data *sd;
5783
5784         local_bh_disable();
5785         sd = this_cpu_ptr(&softnet_data);
5786
5787         rps_lock_irq_disable(sd);
5788         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5789                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5790                         __skb_unlink(skb, &sd->input_pkt_queue);
5791                         dev_kfree_skb_irq(skb);
5792                         input_queue_head_incr(sd);
5793                 }
5794         }
5795         rps_unlock_irq_enable(sd);
5796
5797         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5798                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5799                         __skb_unlink(skb, &sd->process_queue);
5800                         kfree_skb(skb);
5801                         input_queue_head_incr(sd);
5802                 }
5803         }
5804         local_bh_enable();
5805 }
5806
5807 static bool flush_required(int cpu)
5808 {
5809 #if IS_ENABLED(CONFIG_RPS)
5810         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5811         bool do_flush;
5812
5813         rps_lock_irq_disable(sd);
5814
5815         /* as insertion into process_queue happens with the rps lock held,
5816          * process_queue access may race only with dequeue
5817          */
5818         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5819                    !skb_queue_empty_lockless(&sd->process_queue);
5820         rps_unlock_irq_enable(sd);
5821
5822         return do_flush;
5823 #endif
5824         /* without RPS we can't safely check input_pkt_queue: during a
5825          * concurrent remote skb_queue_splice() we can detect as empty both
5826          * input_pkt_queue and process_queue even if the latter could end-up
5827          * containing a lot of packets.
5828          */
5829         return true;
5830 }
5831
5832 static void flush_all_backlogs(void)
5833 {
5834         static cpumask_t flush_cpus;
5835         unsigned int cpu;
5836
5837         /* since we are under rtnl lock protection we can use static data
5838          * for the cpumask and avoid allocating on stack the possibly
5839          * large mask
5840          */
5841         ASSERT_RTNL();
5842
5843         cpus_read_lock();
5844
5845         cpumask_clear(&flush_cpus);
5846         for_each_online_cpu(cpu) {
5847                 if (flush_required(cpu)) {
5848                         queue_work_on(cpu, system_highpri_wq,
5849                                       per_cpu_ptr(&flush_works, cpu));
5850                         cpumask_set_cpu(cpu, &flush_cpus);
5851                 }
5852         }
5853
5854         /* we can have in flight packet[s] on the cpus we are not flushing,
5855          * synchronize_net() in unregister_netdevice_many() will take care of
5856          * them
5857          */
5858         for_each_cpu(cpu, &flush_cpus)
5859                 flush_work(per_cpu_ptr(&flush_works, cpu));
5860
5861         cpus_read_unlock();
5862 }
5863
5864 static void net_rps_send_ipi(struct softnet_data *remsd)
5865 {
5866 #ifdef CONFIG_RPS
5867         while (remsd) {
5868                 struct softnet_data *next = remsd->rps_ipi_next;
5869
5870                 if (cpu_online(remsd->cpu))
5871                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5872                 remsd = next;
5873         }
5874 #endif
5875 }
5876
5877 /*
5878  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5879  * Note: called with local irq disabled, but exits with local irq enabled.
5880  */
5881 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5882 {
5883 #ifdef CONFIG_RPS
5884         struct softnet_data *remsd = sd->rps_ipi_list;
5885
5886         if (remsd) {
5887                 sd->rps_ipi_list = NULL;
5888
5889                 local_irq_enable();
5890
5891                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5892                 net_rps_send_ipi(remsd);
5893         } else
5894 #endif
5895                 local_irq_enable();
5896 }
5897
5898 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5899 {
5900 #ifdef CONFIG_RPS
5901         return sd->rps_ipi_list != NULL;
5902 #else
5903         return false;
5904 #endif
5905 }
5906
5907 static int process_backlog(struct napi_struct *napi, int quota)
5908 {
5909         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5910         bool again = true;
5911         int work = 0;
5912
5913         /* Check if we have pending ipi, its better to send them now,
5914          * not waiting net_rx_action() end.
5915          */
5916         if (sd_has_rps_ipi_waiting(sd)) {
5917                 local_irq_disable();
5918                 net_rps_action_and_irq_enable(sd);
5919         }
5920
5921         napi->weight = READ_ONCE(dev_rx_weight);
5922         while (again) {
5923                 struct sk_buff *skb;
5924
5925                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5926                         rcu_read_lock();
5927                         __netif_receive_skb(skb);
5928                         rcu_read_unlock();
5929                         input_queue_head_incr(sd);
5930                         if (++work >= quota)
5931                                 return work;
5932
5933                 }
5934
5935                 rps_lock_irq_disable(sd);
5936                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5937                         /*
5938                          * Inline a custom version of __napi_complete().
5939                          * only current cpu owns and manipulates this napi,
5940                          * and NAPI_STATE_SCHED is the only possible flag set
5941                          * on backlog.
5942                          * We can use a plain write instead of clear_bit(),
5943                          * and we dont need an smp_mb() memory barrier.
5944                          */
5945                         napi->state = 0;
5946                         again = false;
5947                 } else {
5948                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5949                                                    &sd->process_queue);
5950                 }
5951                 rps_unlock_irq_enable(sd);
5952         }
5953
5954         return work;
5955 }
5956
5957 /**
5958  * __napi_schedule - schedule for receive
5959  * @n: entry to schedule
5960  *
5961  * The entry's receive function will be scheduled to run.
5962  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5963  */
5964 void __napi_schedule(struct napi_struct *n)
5965 {
5966         unsigned long flags;
5967
5968         local_irq_save(flags);
5969         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5970         local_irq_restore(flags);
5971 }
5972 EXPORT_SYMBOL(__napi_schedule);
5973
5974 /**
5975  *      napi_schedule_prep - check if napi can be scheduled
5976  *      @n: napi context
5977  *
5978  * Test if NAPI routine is already running, and if not mark
5979  * it as running.  This is used as a condition variable to
5980  * insure only one NAPI poll instance runs.  We also make
5981  * sure there is no pending NAPI disable.
5982  */
5983 bool napi_schedule_prep(struct napi_struct *n)
5984 {
5985         unsigned long val, new;
5986
5987         do {
5988                 val = READ_ONCE(n->state);
5989                 if (unlikely(val & NAPIF_STATE_DISABLE))
5990                         return false;
5991                 new = val | NAPIF_STATE_SCHED;
5992
5993                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5994                  * This was suggested by Alexander Duyck, as compiler
5995                  * emits better code than :
5996                  * if (val & NAPIF_STATE_SCHED)
5997                  *     new |= NAPIF_STATE_MISSED;
5998                  */
5999                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6000                                                    NAPIF_STATE_MISSED;
6001         } while (cmpxchg(&n->state, val, new) != val);
6002
6003         return !(val & NAPIF_STATE_SCHED);
6004 }
6005 EXPORT_SYMBOL(napi_schedule_prep);
6006
6007 /**
6008  * __napi_schedule_irqoff - schedule for receive
6009  * @n: entry to schedule
6010  *
6011  * Variant of __napi_schedule() assuming hard irqs are masked.
6012  *
6013  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6014  * because the interrupt disabled assumption might not be true
6015  * due to force-threaded interrupts and spinlock substitution.
6016  */
6017 void __napi_schedule_irqoff(struct napi_struct *n)
6018 {
6019         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6020                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6021         else
6022                 __napi_schedule(n);
6023 }
6024 EXPORT_SYMBOL(__napi_schedule_irqoff);
6025
6026 bool napi_complete_done(struct napi_struct *n, int work_done)
6027 {
6028         unsigned long flags, val, new, timeout = 0;
6029         bool ret = true;
6030
6031         /*
6032          * 1) Don't let napi dequeue from the cpu poll list
6033          *    just in case its running on a different cpu.
6034          * 2) If we are busy polling, do nothing here, we have
6035          *    the guarantee we will be called later.
6036          */
6037         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6038                                  NAPIF_STATE_IN_BUSY_POLL)))
6039                 return false;
6040
6041         if (work_done) {
6042                 if (n->gro_bitmask)
6043                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6044                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6045         }
6046         if (n->defer_hard_irqs_count > 0) {
6047                 n->defer_hard_irqs_count--;
6048                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6049                 if (timeout)
6050                         ret = false;
6051         }
6052         if (n->gro_bitmask) {
6053                 /* When the NAPI instance uses a timeout and keeps postponing
6054                  * it, we need to bound somehow the time packets are kept in
6055                  * the GRO layer
6056                  */
6057                 napi_gro_flush(n, !!timeout);
6058         }
6059
6060         gro_normal_list(n);
6061
6062         if (unlikely(!list_empty(&n->poll_list))) {
6063                 /* If n->poll_list is not empty, we need to mask irqs */
6064                 local_irq_save(flags);
6065                 list_del_init(&n->poll_list);
6066                 local_irq_restore(flags);
6067         }
6068
6069         do {
6070                 val = READ_ONCE(n->state);
6071
6072                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6073
6074                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6075                               NAPIF_STATE_SCHED_THREADED |
6076                               NAPIF_STATE_PREFER_BUSY_POLL);
6077
6078                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6079                  * because we will call napi->poll() one more time.
6080                  * This C code was suggested by Alexander Duyck to help gcc.
6081                  */
6082                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6083                                                     NAPIF_STATE_SCHED;
6084         } while (cmpxchg(&n->state, val, new) != val);
6085
6086         if (unlikely(val & NAPIF_STATE_MISSED)) {
6087                 __napi_schedule(n);
6088                 return false;
6089         }
6090
6091         if (timeout)
6092                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6093                               HRTIMER_MODE_REL_PINNED);
6094         return ret;
6095 }
6096 EXPORT_SYMBOL(napi_complete_done);
6097
6098 /* must be called under rcu_read_lock(), as we dont take a reference */
6099 static struct napi_struct *napi_by_id(unsigned int napi_id)
6100 {
6101         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6102         struct napi_struct *napi;
6103
6104         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6105                 if (napi->napi_id == napi_id)
6106                         return napi;
6107
6108         return NULL;
6109 }
6110
6111 #if defined(CONFIG_NET_RX_BUSY_POLL)
6112
6113 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6114 {
6115         if (!skip_schedule) {
6116                 gro_normal_list(napi);
6117                 __napi_schedule(napi);
6118                 return;
6119         }
6120
6121         if (napi->gro_bitmask) {
6122                 /* flush too old packets
6123                  * If HZ < 1000, flush all packets.
6124                  */
6125                 napi_gro_flush(napi, HZ >= 1000);
6126         }
6127
6128         gro_normal_list(napi);
6129         clear_bit(NAPI_STATE_SCHED, &napi->state);
6130 }
6131
6132 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6133                            u16 budget)
6134 {
6135         bool skip_schedule = false;
6136         unsigned long timeout;
6137         int rc;
6138
6139         /* Busy polling means there is a high chance device driver hard irq
6140          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6141          * set in napi_schedule_prep().
6142          * Since we are about to call napi->poll() once more, we can safely
6143          * clear NAPI_STATE_MISSED.
6144          *
6145          * Note: x86 could use a single "lock and ..." instruction
6146          * to perform these two clear_bit()
6147          */
6148         clear_bit(NAPI_STATE_MISSED, &napi->state);
6149         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6150
6151         local_bh_disable();
6152
6153         if (prefer_busy_poll) {
6154                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6155                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6156                 if (napi->defer_hard_irqs_count && timeout) {
6157                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6158                         skip_schedule = true;
6159                 }
6160         }
6161
6162         /* All we really want here is to re-enable device interrupts.
6163          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6164          */
6165         rc = napi->poll(napi, budget);
6166         /* We can't gro_normal_list() here, because napi->poll() might have
6167          * rearmed the napi (napi_complete_done()) in which case it could
6168          * already be running on another CPU.
6169          */
6170         trace_napi_poll(napi, rc, budget);
6171         netpoll_poll_unlock(have_poll_lock);
6172         if (rc == budget)
6173                 __busy_poll_stop(napi, skip_schedule);
6174         local_bh_enable();
6175 }
6176
6177 void napi_busy_loop(unsigned int napi_id,
6178                     bool (*loop_end)(void *, unsigned long),
6179                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6180 {
6181         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6182         int (*napi_poll)(struct napi_struct *napi, int budget);
6183         void *have_poll_lock = NULL;
6184         struct napi_struct *napi;
6185
6186 restart:
6187         napi_poll = NULL;
6188
6189         rcu_read_lock();
6190
6191         napi = napi_by_id(napi_id);
6192         if (!napi)
6193                 goto out;
6194
6195         preempt_disable();
6196         for (;;) {
6197                 int work = 0;
6198
6199                 local_bh_disable();
6200                 if (!napi_poll) {
6201                         unsigned long val = READ_ONCE(napi->state);
6202
6203                         /* If multiple threads are competing for this napi,
6204                          * we avoid dirtying napi->state as much as we can.
6205                          */
6206                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6207                                    NAPIF_STATE_IN_BUSY_POLL)) {
6208                                 if (prefer_busy_poll)
6209                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6210                                 goto count;
6211                         }
6212                         if (cmpxchg(&napi->state, val,
6213                                     val | NAPIF_STATE_IN_BUSY_POLL |
6214                                           NAPIF_STATE_SCHED) != val) {
6215                                 if (prefer_busy_poll)
6216                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6217                                 goto count;
6218                         }
6219                         have_poll_lock = netpoll_poll_lock(napi);
6220                         napi_poll = napi->poll;
6221                 }
6222                 work = napi_poll(napi, budget);
6223                 trace_napi_poll(napi, work, budget);
6224                 gro_normal_list(napi);
6225 count:
6226                 if (work > 0)
6227                         __NET_ADD_STATS(dev_net(napi->dev),
6228                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6229                 local_bh_enable();
6230
6231                 if (!loop_end || loop_end(loop_end_arg, start_time))
6232                         break;
6233
6234                 if (unlikely(need_resched())) {
6235                         if (napi_poll)
6236                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6237                         preempt_enable();
6238                         rcu_read_unlock();
6239                         cond_resched();
6240                         if (loop_end(loop_end_arg, start_time))
6241                                 return;
6242                         goto restart;
6243                 }
6244                 cpu_relax();
6245         }
6246         if (napi_poll)
6247                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6248         preempt_enable();
6249 out:
6250         rcu_read_unlock();
6251 }
6252 EXPORT_SYMBOL(napi_busy_loop);
6253
6254 #endif /* CONFIG_NET_RX_BUSY_POLL */
6255
6256 static void napi_hash_add(struct napi_struct *napi)
6257 {
6258         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6259                 return;
6260
6261         spin_lock(&napi_hash_lock);
6262
6263         /* 0..NR_CPUS range is reserved for sender_cpu use */
6264         do {
6265                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6266                         napi_gen_id = MIN_NAPI_ID;
6267         } while (napi_by_id(napi_gen_id));
6268         napi->napi_id = napi_gen_id;
6269
6270         hlist_add_head_rcu(&napi->napi_hash_node,
6271                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6272
6273         spin_unlock(&napi_hash_lock);
6274 }
6275
6276 /* Warning : caller is responsible to make sure rcu grace period
6277  * is respected before freeing memory containing @napi
6278  */
6279 static void napi_hash_del(struct napi_struct *napi)
6280 {
6281         spin_lock(&napi_hash_lock);
6282
6283         hlist_del_init_rcu(&napi->napi_hash_node);
6284
6285         spin_unlock(&napi_hash_lock);
6286 }
6287
6288 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6289 {
6290         struct napi_struct *napi;
6291
6292         napi = container_of(timer, struct napi_struct, timer);
6293
6294         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6295          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6296          */
6297         if (!napi_disable_pending(napi) &&
6298             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6299                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6300                 __napi_schedule_irqoff(napi);
6301         }
6302
6303         return HRTIMER_NORESTART;
6304 }
6305
6306 static void init_gro_hash(struct napi_struct *napi)
6307 {
6308         int i;
6309
6310         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6311                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6312                 napi->gro_hash[i].count = 0;
6313         }
6314         napi->gro_bitmask = 0;
6315 }
6316
6317 int dev_set_threaded(struct net_device *dev, bool threaded)
6318 {
6319         struct napi_struct *napi;
6320         int err = 0;
6321
6322         if (dev->threaded == threaded)
6323                 return 0;
6324
6325         if (threaded) {
6326                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6327                         if (!napi->thread) {
6328                                 err = napi_kthread_create(napi);
6329                                 if (err) {
6330                                         threaded = false;
6331                                         break;
6332                                 }
6333                         }
6334                 }
6335         }
6336
6337         dev->threaded = threaded;
6338
6339         /* Make sure kthread is created before THREADED bit
6340          * is set.
6341          */
6342         smp_mb__before_atomic();
6343
6344         /* Setting/unsetting threaded mode on a napi might not immediately
6345          * take effect, if the current napi instance is actively being
6346          * polled. In this case, the switch between threaded mode and
6347          * softirq mode will happen in the next round of napi_schedule().
6348          * This should not cause hiccups/stalls to the live traffic.
6349          */
6350         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6351                 if (threaded)
6352                         set_bit(NAPI_STATE_THREADED, &napi->state);
6353                 else
6354                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6355         }
6356
6357         return err;
6358 }
6359 EXPORT_SYMBOL(dev_set_threaded);
6360
6361 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6362                            int (*poll)(struct napi_struct *, int), int weight)
6363 {
6364         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6365                 return;
6366
6367         INIT_LIST_HEAD(&napi->poll_list);
6368         INIT_HLIST_NODE(&napi->napi_hash_node);
6369         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6370         napi->timer.function = napi_watchdog;
6371         init_gro_hash(napi);
6372         napi->skb = NULL;
6373         INIT_LIST_HEAD(&napi->rx_list);
6374         napi->rx_count = 0;
6375         napi->poll = poll;
6376         if (weight > NAPI_POLL_WEIGHT)
6377                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6378                                 weight);
6379         napi->weight = weight;
6380         napi->dev = dev;
6381 #ifdef CONFIG_NETPOLL
6382         napi->poll_owner = -1;
6383 #endif
6384         set_bit(NAPI_STATE_SCHED, &napi->state);
6385         set_bit(NAPI_STATE_NPSVC, &napi->state);
6386         list_add_rcu(&napi->dev_list, &dev->napi_list);
6387         napi_hash_add(napi);
6388         napi_get_frags_check(napi);
6389         /* Create kthread for this napi if dev->threaded is set.
6390          * Clear dev->threaded if kthread creation failed so that
6391          * threaded mode will not be enabled in napi_enable().
6392          */
6393         if (dev->threaded && napi_kthread_create(napi))
6394                 dev->threaded = 0;
6395 }
6396 EXPORT_SYMBOL(netif_napi_add_weight);
6397
6398 void napi_disable(struct napi_struct *n)
6399 {
6400         unsigned long val, new;
6401
6402         might_sleep();
6403         set_bit(NAPI_STATE_DISABLE, &n->state);
6404
6405         for ( ; ; ) {
6406                 val = READ_ONCE(n->state);
6407                 if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6408                         usleep_range(20, 200);
6409                         continue;
6410                 }
6411
6412                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6413                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6414
6415                 if (cmpxchg(&n->state, val, new) == val)
6416                         break;
6417         }
6418
6419         hrtimer_cancel(&n->timer);
6420
6421         clear_bit(NAPI_STATE_DISABLE, &n->state);
6422 }
6423 EXPORT_SYMBOL(napi_disable);
6424
6425 /**
6426  *      napi_enable - enable NAPI scheduling
6427  *      @n: NAPI context
6428  *
6429  * Resume NAPI from being scheduled on this context.
6430  * Must be paired with napi_disable.
6431  */
6432 void napi_enable(struct napi_struct *n)
6433 {
6434         unsigned long val, new;
6435
6436         do {
6437                 val = READ_ONCE(n->state);
6438                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6439
6440                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6441                 if (n->dev->threaded && n->thread)
6442                         new |= NAPIF_STATE_THREADED;
6443         } while (cmpxchg(&n->state, val, new) != val);
6444 }
6445 EXPORT_SYMBOL(napi_enable);
6446
6447 static void flush_gro_hash(struct napi_struct *napi)
6448 {
6449         int i;
6450
6451         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6452                 struct sk_buff *skb, *n;
6453
6454                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6455                         kfree_skb(skb);
6456                 napi->gro_hash[i].count = 0;
6457         }
6458 }
6459
6460 /* Must be called in process context */
6461 void __netif_napi_del(struct napi_struct *napi)
6462 {
6463         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6464                 return;
6465
6466         napi_hash_del(napi);
6467         list_del_rcu(&napi->dev_list);
6468         napi_free_frags(napi);
6469
6470         flush_gro_hash(napi);
6471         napi->gro_bitmask = 0;
6472
6473         if (napi->thread) {
6474                 kthread_stop(napi->thread);
6475                 napi->thread = NULL;
6476         }
6477 }
6478 EXPORT_SYMBOL(__netif_napi_del);
6479
6480 static int __napi_poll(struct napi_struct *n, bool *repoll)
6481 {
6482         int work, weight;
6483
6484         weight = n->weight;
6485
6486         /* This NAPI_STATE_SCHED test is for avoiding a race
6487          * with netpoll's poll_napi().  Only the entity which
6488          * obtains the lock and sees NAPI_STATE_SCHED set will
6489          * actually make the ->poll() call.  Therefore we avoid
6490          * accidentally calling ->poll() when NAPI is not scheduled.
6491          */
6492         work = 0;
6493         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6494                 work = n->poll(n, weight);
6495                 trace_napi_poll(n, work, weight);
6496         }
6497
6498         if (unlikely(work > weight))
6499                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6500                                 n->poll, work, weight);
6501
6502         if (likely(work < weight))
6503                 return work;
6504
6505         /* Drivers must not modify the NAPI state if they
6506          * consume the entire weight.  In such cases this code
6507          * still "owns" the NAPI instance and therefore can
6508          * move the instance around on the list at-will.
6509          */
6510         if (unlikely(napi_disable_pending(n))) {
6511                 napi_complete(n);
6512                 return work;
6513         }
6514
6515         /* The NAPI context has more processing work, but busy-polling
6516          * is preferred. Exit early.
6517          */
6518         if (napi_prefer_busy_poll(n)) {
6519                 if (napi_complete_done(n, work)) {
6520                         /* If timeout is not set, we need to make sure
6521                          * that the NAPI is re-scheduled.
6522                          */
6523                         napi_schedule(n);
6524                 }
6525                 return work;
6526         }
6527
6528         if (n->gro_bitmask) {
6529                 /* flush too old packets
6530                  * If HZ < 1000, flush all packets.
6531                  */
6532                 napi_gro_flush(n, HZ >= 1000);
6533         }
6534
6535         gro_normal_list(n);
6536
6537         /* Some drivers may have called napi_schedule
6538          * prior to exhausting their budget.
6539          */
6540         if (unlikely(!list_empty(&n->poll_list))) {
6541                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6542                              n->dev ? n->dev->name : "backlog");
6543                 return work;
6544         }
6545
6546         *repoll = true;
6547
6548         return work;
6549 }
6550
6551 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6552 {
6553         bool do_repoll = false;
6554         void *have;
6555         int work;
6556
6557         list_del_init(&n->poll_list);
6558
6559         have = netpoll_poll_lock(n);
6560
6561         work = __napi_poll(n, &do_repoll);
6562
6563         if (do_repoll)
6564                 list_add_tail(&n->poll_list, repoll);
6565
6566         netpoll_poll_unlock(have);
6567
6568         return work;
6569 }
6570
6571 static int napi_thread_wait(struct napi_struct *napi)
6572 {
6573         bool woken = false;
6574
6575         set_current_state(TASK_INTERRUPTIBLE);
6576
6577         while (!kthread_should_stop()) {
6578                 /* Testing SCHED_THREADED bit here to make sure the current
6579                  * kthread owns this napi and could poll on this napi.
6580                  * Testing SCHED bit is not enough because SCHED bit might be
6581                  * set by some other busy poll thread or by napi_disable().
6582                  */
6583                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6584                         WARN_ON(!list_empty(&napi->poll_list));
6585                         __set_current_state(TASK_RUNNING);
6586                         return 0;
6587                 }
6588
6589                 schedule();
6590                 /* woken being true indicates this thread owns this napi. */
6591                 woken = true;
6592                 set_current_state(TASK_INTERRUPTIBLE);
6593         }
6594         __set_current_state(TASK_RUNNING);
6595
6596         return -1;
6597 }
6598
6599 static int napi_threaded_poll(void *data)
6600 {
6601         struct napi_struct *napi = data;
6602         void *have;
6603
6604         while (!napi_thread_wait(napi)) {
6605                 for (;;) {
6606                         bool repoll = false;
6607
6608                         local_bh_disable();
6609
6610                         have = netpoll_poll_lock(napi);
6611                         __napi_poll(napi, &repoll);
6612                         netpoll_poll_unlock(have);
6613
6614                         local_bh_enable();
6615
6616                         if (!repoll)
6617                                 break;
6618
6619                         cond_resched();
6620                 }
6621         }
6622         return 0;
6623 }
6624
6625 static void skb_defer_free_flush(struct softnet_data *sd)
6626 {
6627         struct sk_buff *skb, *next;
6628         unsigned long flags;
6629
6630         /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6631         if (!READ_ONCE(sd->defer_list))
6632                 return;
6633
6634         spin_lock_irqsave(&sd->defer_lock, flags);
6635         skb = sd->defer_list;
6636         sd->defer_list = NULL;
6637         sd->defer_count = 0;
6638         spin_unlock_irqrestore(&sd->defer_lock, flags);
6639
6640         while (skb != NULL) {
6641                 next = skb->next;
6642                 napi_consume_skb(skb, 1);
6643                 skb = next;
6644         }
6645 }
6646
6647 static __latent_entropy void net_rx_action(struct softirq_action *h)
6648 {
6649         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6650         unsigned long time_limit = jiffies +
6651                 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6652         int budget = READ_ONCE(netdev_budget);
6653         LIST_HEAD(list);
6654         LIST_HEAD(repoll);
6655
6656         local_irq_disable();
6657         list_splice_init(&sd->poll_list, &list);
6658         local_irq_enable();
6659
6660         for (;;) {
6661                 struct napi_struct *n;
6662
6663                 skb_defer_free_flush(sd);
6664
6665                 if (list_empty(&list)) {
6666                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6667                                 goto end;
6668                         break;
6669                 }
6670
6671                 n = list_first_entry(&list, struct napi_struct, poll_list);
6672                 budget -= napi_poll(n, &repoll);
6673
6674                 /* If softirq window is exhausted then punt.
6675                  * Allow this to run for 2 jiffies since which will allow
6676                  * an average latency of 1.5/HZ.
6677                  */
6678                 if (unlikely(budget <= 0 ||
6679                              time_after_eq(jiffies, time_limit))) {
6680                         sd->time_squeeze++;
6681                         break;
6682                 }
6683         }
6684
6685         local_irq_disable();
6686
6687         list_splice_tail_init(&sd->poll_list, &list);
6688         list_splice_tail(&repoll, &list);
6689         list_splice(&list, &sd->poll_list);
6690         if (!list_empty(&sd->poll_list))
6691                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6692
6693         net_rps_action_and_irq_enable(sd);
6694 end:;
6695 }
6696
6697 struct netdev_adjacent {
6698         struct net_device *dev;
6699         netdevice_tracker dev_tracker;
6700
6701         /* upper master flag, there can only be one master device per list */
6702         bool master;
6703
6704         /* lookup ignore flag */
6705         bool ignore;
6706
6707         /* counter for the number of times this device was added to us */
6708         u16 ref_nr;
6709
6710         /* private field for the users */
6711         void *private;
6712
6713         struct list_head list;
6714         struct rcu_head rcu;
6715 };
6716
6717 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6718                                                  struct list_head *adj_list)
6719 {
6720         struct netdev_adjacent *adj;
6721
6722         list_for_each_entry(adj, adj_list, list) {
6723                 if (adj->dev == adj_dev)
6724                         return adj;
6725         }
6726         return NULL;
6727 }
6728
6729 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6730                                     struct netdev_nested_priv *priv)
6731 {
6732         struct net_device *dev = (struct net_device *)priv->data;
6733
6734         return upper_dev == dev;
6735 }
6736
6737 /**
6738  * netdev_has_upper_dev - Check if device is linked to an upper device
6739  * @dev: device
6740  * @upper_dev: upper device to check
6741  *
6742  * Find out if a device is linked to specified upper device and return true
6743  * in case it is. Note that this checks only immediate upper device,
6744  * not through a complete stack of devices. The caller must hold the RTNL lock.
6745  */
6746 bool netdev_has_upper_dev(struct net_device *dev,
6747                           struct net_device *upper_dev)
6748 {
6749         struct netdev_nested_priv priv = {
6750                 .data = (void *)upper_dev,
6751         };
6752
6753         ASSERT_RTNL();
6754
6755         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6756                                              &priv);
6757 }
6758 EXPORT_SYMBOL(netdev_has_upper_dev);
6759
6760 /**
6761  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6762  * @dev: device
6763  * @upper_dev: upper device to check
6764  *
6765  * Find out if a device is linked to specified upper device and return true
6766  * in case it is. Note that this checks the entire upper device chain.
6767  * The caller must hold rcu lock.
6768  */
6769
6770 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6771                                   struct net_device *upper_dev)
6772 {
6773         struct netdev_nested_priv priv = {
6774                 .data = (void *)upper_dev,
6775         };
6776
6777         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6778                                                &priv);
6779 }
6780 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6781
6782 /**
6783  * netdev_has_any_upper_dev - Check if device is linked to some device
6784  * @dev: device
6785  *
6786  * Find out if a device is linked to an upper device and return true in case
6787  * it is. The caller must hold the RTNL lock.
6788  */
6789 bool netdev_has_any_upper_dev(struct net_device *dev)
6790 {
6791         ASSERT_RTNL();
6792
6793         return !list_empty(&dev->adj_list.upper);
6794 }
6795 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6796
6797 /**
6798  * netdev_master_upper_dev_get - Get master upper device
6799  * @dev: device
6800  *
6801  * Find a master upper device and return pointer to it or NULL in case
6802  * it's not there. The caller must hold the RTNL lock.
6803  */
6804 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6805 {
6806         struct netdev_adjacent *upper;
6807
6808         ASSERT_RTNL();
6809
6810         if (list_empty(&dev->adj_list.upper))
6811                 return NULL;
6812
6813         upper = list_first_entry(&dev->adj_list.upper,
6814                                  struct netdev_adjacent, list);
6815         if (likely(upper->master))
6816                 return upper->dev;
6817         return NULL;
6818 }
6819 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6820
6821 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6822 {
6823         struct netdev_adjacent *upper;
6824
6825         ASSERT_RTNL();
6826
6827         if (list_empty(&dev->adj_list.upper))
6828                 return NULL;
6829
6830         upper = list_first_entry(&dev->adj_list.upper,
6831                                  struct netdev_adjacent, list);
6832         if (likely(upper->master) && !upper->ignore)
6833                 return upper->dev;
6834         return NULL;
6835 }
6836
6837 /**
6838  * netdev_has_any_lower_dev - Check if device is linked to some device
6839  * @dev: device
6840  *
6841  * Find out if a device is linked to a lower device and return true in case
6842  * it is. The caller must hold the RTNL lock.
6843  */
6844 static bool netdev_has_any_lower_dev(struct net_device *dev)
6845 {
6846         ASSERT_RTNL();
6847
6848         return !list_empty(&dev->adj_list.lower);
6849 }
6850
6851 void *netdev_adjacent_get_private(struct list_head *adj_list)
6852 {
6853         struct netdev_adjacent *adj;
6854
6855         adj = list_entry(adj_list, struct netdev_adjacent, list);
6856
6857         return adj->private;
6858 }
6859 EXPORT_SYMBOL(netdev_adjacent_get_private);
6860
6861 /**
6862  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6863  * @dev: device
6864  * @iter: list_head ** of the current position
6865  *
6866  * Gets the next device from the dev's upper list, starting from iter
6867  * position. The caller must hold RCU read lock.
6868  */
6869 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6870                                                  struct list_head **iter)
6871 {
6872         struct netdev_adjacent *upper;
6873
6874         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6875
6876         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6877
6878         if (&upper->list == &dev->adj_list.upper)
6879                 return NULL;
6880
6881         *iter = &upper->list;
6882
6883         return upper->dev;
6884 }
6885 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6886
6887 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6888                                                   struct list_head **iter,
6889                                                   bool *ignore)
6890 {
6891         struct netdev_adjacent *upper;
6892
6893         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6894
6895         if (&upper->list == &dev->adj_list.upper)
6896                 return NULL;
6897
6898         *iter = &upper->list;
6899         *ignore = upper->ignore;
6900
6901         return upper->dev;
6902 }
6903
6904 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6905                                                     struct list_head **iter)
6906 {
6907         struct netdev_adjacent *upper;
6908
6909         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6910
6911         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6912
6913         if (&upper->list == &dev->adj_list.upper)
6914                 return NULL;
6915
6916         *iter = &upper->list;
6917
6918         return upper->dev;
6919 }
6920
6921 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6922                                        int (*fn)(struct net_device *dev,
6923                                          struct netdev_nested_priv *priv),
6924                                        struct netdev_nested_priv *priv)
6925 {
6926         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6927         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6928         int ret, cur = 0;
6929         bool ignore;
6930
6931         now = dev;
6932         iter = &dev->adj_list.upper;
6933
6934         while (1) {
6935                 if (now != dev) {
6936                         ret = fn(now, priv);
6937                         if (ret)
6938                                 return ret;
6939                 }
6940
6941                 next = NULL;
6942                 while (1) {
6943                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
6944                         if (!udev)
6945                                 break;
6946                         if (ignore)
6947                                 continue;
6948
6949                         next = udev;
6950                         niter = &udev->adj_list.upper;
6951                         dev_stack[cur] = now;
6952                         iter_stack[cur++] = iter;
6953                         break;
6954                 }
6955
6956                 if (!next) {
6957                         if (!cur)
6958                                 return 0;
6959                         next = dev_stack[--cur];
6960                         niter = iter_stack[cur];
6961                 }
6962
6963                 now = next;
6964                 iter = niter;
6965         }
6966
6967         return 0;
6968 }
6969
6970 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6971                                   int (*fn)(struct net_device *dev,
6972                                             struct netdev_nested_priv *priv),
6973                                   struct netdev_nested_priv *priv)
6974 {
6975         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6976         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6977         int ret, cur = 0;
6978
6979         now = dev;
6980         iter = &dev->adj_list.upper;
6981
6982         while (1) {
6983                 if (now != dev) {
6984                         ret = fn(now, priv);
6985                         if (ret)
6986                                 return ret;
6987                 }
6988
6989                 next = NULL;
6990                 while (1) {
6991                         udev = netdev_next_upper_dev_rcu(now, &iter);
6992                         if (!udev)
6993                                 break;
6994
6995                         next = udev;
6996                         niter = &udev->adj_list.upper;
6997                         dev_stack[cur] = now;
6998                         iter_stack[cur++] = iter;
6999                         break;
7000                 }
7001
7002                 if (!next) {
7003                         if (!cur)
7004                                 return 0;
7005                         next = dev_stack[--cur];
7006                         niter = iter_stack[cur];
7007                 }
7008
7009                 now = next;
7010                 iter = niter;
7011         }
7012
7013         return 0;
7014 }
7015 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7016
7017 static bool __netdev_has_upper_dev(struct net_device *dev,
7018                                    struct net_device *upper_dev)
7019 {
7020         struct netdev_nested_priv priv = {
7021                 .flags = 0,
7022                 .data = (void *)upper_dev,
7023         };
7024
7025         ASSERT_RTNL();
7026
7027         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7028                                            &priv);
7029 }
7030
7031 /**
7032  * netdev_lower_get_next_private - Get the next ->private from the
7033  *                                 lower neighbour list
7034  * @dev: device
7035  * @iter: list_head ** of the current position
7036  *
7037  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7038  * list, starting from iter position. The caller must hold either hold the
7039  * RTNL lock or its own locking that guarantees that the neighbour lower
7040  * list will remain unchanged.
7041  */
7042 void *netdev_lower_get_next_private(struct net_device *dev,
7043                                     struct list_head **iter)
7044 {
7045         struct netdev_adjacent *lower;
7046
7047         lower = list_entry(*iter, struct netdev_adjacent, list);
7048
7049         if (&lower->list == &dev->adj_list.lower)
7050                 return NULL;
7051
7052         *iter = lower->list.next;
7053
7054         return lower->private;
7055 }
7056 EXPORT_SYMBOL(netdev_lower_get_next_private);
7057
7058 /**
7059  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7060  *                                     lower neighbour list, RCU
7061  *                                     variant
7062  * @dev: device
7063  * @iter: list_head ** of the current position
7064  *
7065  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7066  * list, starting from iter position. The caller must hold RCU read lock.
7067  */
7068 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7069                                         struct list_head **iter)
7070 {
7071         struct netdev_adjacent *lower;
7072
7073         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7074
7075         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7076
7077         if (&lower->list == &dev->adj_list.lower)
7078                 return NULL;
7079
7080         *iter = &lower->list;
7081
7082         return lower->private;
7083 }
7084 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7085
7086 /**
7087  * netdev_lower_get_next - Get the next device from the lower neighbour
7088  *                         list
7089  * @dev: device
7090  * @iter: list_head ** of the current position
7091  *
7092  * Gets the next netdev_adjacent from the dev's lower neighbour
7093  * list, starting from iter position. The caller must hold RTNL lock or
7094  * its own locking that guarantees that the neighbour lower
7095  * list will remain unchanged.
7096  */
7097 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7098 {
7099         struct netdev_adjacent *lower;
7100
7101         lower = list_entry(*iter, struct netdev_adjacent, list);
7102
7103         if (&lower->list == &dev->adj_list.lower)
7104                 return NULL;
7105
7106         *iter = lower->list.next;
7107
7108         return lower->dev;
7109 }
7110 EXPORT_SYMBOL(netdev_lower_get_next);
7111
7112 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7113                                                 struct list_head **iter)
7114 {
7115         struct netdev_adjacent *lower;
7116
7117         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7118
7119         if (&lower->list == &dev->adj_list.lower)
7120                 return NULL;
7121
7122         *iter = &lower->list;
7123
7124         return lower->dev;
7125 }
7126
7127 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7128                                                   struct list_head **iter,
7129                                                   bool *ignore)
7130 {
7131         struct netdev_adjacent *lower;
7132
7133         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7134
7135         if (&lower->list == &dev->adj_list.lower)
7136                 return NULL;
7137
7138         *iter = &lower->list;
7139         *ignore = lower->ignore;
7140
7141         return lower->dev;
7142 }
7143
7144 int netdev_walk_all_lower_dev(struct net_device *dev,
7145                               int (*fn)(struct net_device *dev,
7146                                         struct netdev_nested_priv *priv),
7147                               struct netdev_nested_priv *priv)
7148 {
7149         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7150         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7151         int ret, cur = 0;
7152
7153         now = dev;
7154         iter = &dev->adj_list.lower;
7155
7156         while (1) {
7157                 if (now != dev) {
7158                         ret = fn(now, priv);
7159                         if (ret)
7160                                 return ret;
7161                 }
7162
7163                 next = NULL;
7164                 while (1) {
7165                         ldev = netdev_next_lower_dev(now, &iter);
7166                         if (!ldev)
7167                                 break;
7168
7169                         next = ldev;
7170                         niter = &ldev->adj_list.lower;
7171                         dev_stack[cur] = now;
7172                         iter_stack[cur++] = iter;
7173                         break;
7174                 }
7175
7176                 if (!next) {
7177                         if (!cur)
7178                                 return 0;
7179                         next = dev_stack[--cur];
7180                         niter = iter_stack[cur];
7181                 }
7182
7183                 now = next;
7184                 iter = niter;
7185         }
7186
7187         return 0;
7188 }
7189 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7190
7191 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7192                                        int (*fn)(struct net_device *dev,
7193                                          struct netdev_nested_priv *priv),
7194                                        struct netdev_nested_priv *priv)
7195 {
7196         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7197         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7198         int ret, cur = 0;
7199         bool ignore;
7200
7201         now = dev;
7202         iter = &dev->adj_list.lower;
7203
7204         while (1) {
7205                 if (now != dev) {
7206                         ret = fn(now, priv);
7207                         if (ret)
7208                                 return ret;
7209                 }
7210
7211                 next = NULL;
7212                 while (1) {
7213                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7214                         if (!ldev)
7215                                 break;
7216                         if (ignore)
7217                                 continue;
7218
7219                         next = ldev;
7220                         niter = &ldev->adj_list.lower;
7221                         dev_stack[cur] = now;
7222                         iter_stack[cur++] = iter;
7223                         break;
7224                 }
7225
7226                 if (!next) {
7227                         if (!cur)
7228                                 return 0;
7229                         next = dev_stack[--cur];
7230                         niter = iter_stack[cur];
7231                 }
7232
7233                 now = next;
7234                 iter = niter;
7235         }
7236
7237         return 0;
7238 }
7239
7240 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7241                                              struct list_head **iter)
7242 {
7243         struct netdev_adjacent *lower;
7244
7245         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7246         if (&lower->list == &dev->adj_list.lower)
7247                 return NULL;
7248
7249         *iter = &lower->list;
7250
7251         return lower->dev;
7252 }
7253 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7254
7255 static u8 __netdev_upper_depth(struct net_device *dev)
7256 {
7257         struct net_device *udev;
7258         struct list_head *iter;
7259         u8 max_depth = 0;
7260         bool ignore;
7261
7262         for (iter = &dev->adj_list.upper,
7263              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7264              udev;
7265              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7266                 if (ignore)
7267                         continue;
7268                 if (max_depth < udev->upper_level)
7269                         max_depth = udev->upper_level;
7270         }
7271
7272         return max_depth;
7273 }
7274
7275 static u8 __netdev_lower_depth(struct net_device *dev)
7276 {
7277         struct net_device *ldev;
7278         struct list_head *iter;
7279         u8 max_depth = 0;
7280         bool ignore;
7281
7282         for (iter = &dev->adj_list.lower,
7283              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7284              ldev;
7285              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7286                 if (ignore)
7287                         continue;
7288                 if (max_depth < ldev->lower_level)
7289                         max_depth = ldev->lower_level;
7290         }
7291
7292         return max_depth;
7293 }
7294
7295 static int __netdev_update_upper_level(struct net_device *dev,
7296                                        struct netdev_nested_priv *__unused)
7297 {
7298         dev->upper_level = __netdev_upper_depth(dev) + 1;
7299         return 0;
7300 }
7301
7302 #ifdef CONFIG_LOCKDEP
7303 static LIST_HEAD(net_unlink_list);
7304
7305 static void net_unlink_todo(struct net_device *dev)
7306 {
7307         if (list_empty(&dev->unlink_list))
7308                 list_add_tail(&dev->unlink_list, &net_unlink_list);
7309 }
7310 #endif
7311
7312 static int __netdev_update_lower_level(struct net_device *dev,
7313                                        struct netdev_nested_priv *priv)
7314 {
7315         dev->lower_level = __netdev_lower_depth(dev) + 1;
7316
7317 #ifdef CONFIG_LOCKDEP
7318         if (!priv)
7319                 return 0;
7320
7321         if (priv->flags & NESTED_SYNC_IMM)
7322                 dev->nested_level = dev->lower_level - 1;
7323         if (priv->flags & NESTED_SYNC_TODO)
7324                 net_unlink_todo(dev);
7325 #endif
7326         return 0;
7327 }
7328
7329 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7330                                   int (*fn)(struct net_device *dev,
7331                                             struct netdev_nested_priv *priv),
7332                                   struct netdev_nested_priv *priv)
7333 {
7334         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7335         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7336         int ret, cur = 0;
7337
7338         now = dev;
7339         iter = &dev->adj_list.lower;
7340
7341         while (1) {
7342                 if (now != dev) {
7343                         ret = fn(now, priv);
7344                         if (ret)
7345                                 return ret;
7346                 }
7347
7348                 next = NULL;
7349                 while (1) {
7350                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7351                         if (!ldev)
7352                                 break;
7353
7354                         next = ldev;
7355                         niter = &ldev->adj_list.lower;
7356                         dev_stack[cur] = now;
7357                         iter_stack[cur++] = iter;
7358                         break;
7359                 }
7360
7361                 if (!next) {
7362                         if (!cur)
7363                                 return 0;
7364                         next = dev_stack[--cur];
7365                         niter = iter_stack[cur];
7366                 }
7367
7368                 now = next;
7369                 iter = niter;
7370         }
7371
7372         return 0;
7373 }
7374 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7375
7376 /**
7377  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7378  *                                     lower neighbour list, RCU
7379  *                                     variant
7380  * @dev: device
7381  *
7382  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7383  * list. The caller must hold RCU read lock.
7384  */
7385 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7386 {
7387         struct netdev_adjacent *lower;
7388
7389         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7390                         struct netdev_adjacent, list);
7391         if (lower)
7392                 return lower->private;
7393         return NULL;
7394 }
7395 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7396
7397 /**
7398  * netdev_master_upper_dev_get_rcu - Get master upper device
7399  * @dev: device
7400  *
7401  * Find a master upper device and return pointer to it or NULL in case
7402  * it's not there. The caller must hold the RCU read lock.
7403  */
7404 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7405 {
7406         struct netdev_adjacent *upper;
7407
7408         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7409                                        struct netdev_adjacent, list);
7410         if (upper && likely(upper->master))
7411                 return upper->dev;
7412         return NULL;
7413 }
7414 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7415
7416 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7417                               struct net_device *adj_dev,
7418                               struct list_head *dev_list)
7419 {
7420         char linkname[IFNAMSIZ+7];
7421
7422         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7423                 "upper_%s" : "lower_%s", adj_dev->name);
7424         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7425                                  linkname);
7426 }
7427 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7428                                char *name,
7429                                struct list_head *dev_list)
7430 {
7431         char linkname[IFNAMSIZ+7];
7432
7433         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7434                 "upper_%s" : "lower_%s", name);
7435         sysfs_remove_link(&(dev->dev.kobj), linkname);
7436 }
7437
7438 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7439                                                  struct net_device *adj_dev,
7440                                                  struct list_head *dev_list)
7441 {
7442         return (dev_list == &dev->adj_list.upper ||
7443                 dev_list == &dev->adj_list.lower) &&
7444                 net_eq(dev_net(dev), dev_net(adj_dev));
7445 }
7446
7447 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7448                                         struct net_device *adj_dev,
7449                                         struct list_head *dev_list,
7450                                         void *private, bool master)
7451 {
7452         struct netdev_adjacent *adj;
7453         int ret;
7454
7455         adj = __netdev_find_adj(adj_dev, dev_list);
7456
7457         if (adj) {
7458                 adj->ref_nr += 1;
7459                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7460                          dev->name, adj_dev->name, adj->ref_nr);
7461
7462                 return 0;
7463         }
7464
7465         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7466         if (!adj)
7467                 return -ENOMEM;
7468
7469         adj->dev = adj_dev;
7470         adj->master = master;
7471         adj->ref_nr = 1;
7472         adj->private = private;
7473         adj->ignore = false;
7474         netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7475
7476         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7477                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7478
7479         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7480                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7481                 if (ret)
7482                         goto free_adj;
7483         }
7484
7485         /* Ensure that master link is always the first item in list. */
7486         if (master) {
7487                 ret = sysfs_create_link(&(dev->dev.kobj),
7488                                         &(adj_dev->dev.kobj), "master");
7489                 if (ret)
7490                         goto remove_symlinks;
7491
7492                 list_add_rcu(&adj->list, dev_list);
7493         } else {
7494                 list_add_tail_rcu(&adj->list, dev_list);
7495         }
7496
7497         return 0;
7498
7499 remove_symlinks:
7500         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7501                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7502 free_adj:
7503         netdev_put(adj_dev, &adj->dev_tracker);
7504         kfree(adj);
7505
7506         return ret;
7507 }
7508
7509 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7510                                          struct net_device *adj_dev,
7511                                          u16 ref_nr,
7512                                          struct list_head *dev_list)
7513 {
7514         struct netdev_adjacent *adj;
7515
7516         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7517                  dev->name, adj_dev->name, ref_nr);
7518
7519         adj = __netdev_find_adj(adj_dev, dev_list);
7520
7521         if (!adj) {
7522                 pr_err("Adjacency does not exist for device %s from %s\n",
7523                        dev->name, adj_dev->name);
7524                 WARN_ON(1);
7525                 return;
7526         }
7527
7528         if (adj->ref_nr > ref_nr) {
7529                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7530                          dev->name, adj_dev->name, ref_nr,
7531                          adj->ref_nr - ref_nr);
7532                 adj->ref_nr -= ref_nr;
7533                 return;
7534         }
7535
7536         if (adj->master)
7537                 sysfs_remove_link(&(dev->dev.kobj), "master");
7538
7539         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7540                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7541
7542         list_del_rcu(&adj->list);
7543         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7544                  adj_dev->name, dev->name, adj_dev->name);
7545         netdev_put(adj_dev, &adj->dev_tracker);
7546         kfree_rcu(adj, rcu);
7547 }
7548
7549 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7550                                             struct net_device *upper_dev,
7551                                             struct list_head *up_list,
7552                                             struct list_head *down_list,
7553                                             void *private, bool master)
7554 {
7555         int ret;
7556
7557         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7558                                            private, master);
7559         if (ret)
7560                 return ret;
7561
7562         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7563                                            private, false);
7564         if (ret) {
7565                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7566                 return ret;
7567         }
7568
7569         return 0;
7570 }
7571
7572 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7573                                                struct net_device *upper_dev,
7574                                                u16 ref_nr,
7575                                                struct list_head *up_list,
7576                                                struct list_head *down_list)
7577 {
7578         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7579         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7580 }
7581
7582 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7583                                                 struct net_device *upper_dev,
7584                                                 void *private, bool master)
7585 {
7586         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7587                                                 &dev->adj_list.upper,
7588                                                 &upper_dev->adj_list.lower,
7589                                                 private, master);
7590 }
7591
7592 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7593                                                    struct net_device *upper_dev)
7594 {
7595         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7596                                            &dev->adj_list.upper,
7597                                            &upper_dev->adj_list.lower);
7598 }
7599
7600 static int __netdev_upper_dev_link(struct net_device *dev,
7601                                    struct net_device *upper_dev, bool master,
7602                                    void *upper_priv, void *upper_info,
7603                                    struct netdev_nested_priv *priv,
7604                                    struct netlink_ext_ack *extack)
7605 {
7606         struct netdev_notifier_changeupper_info changeupper_info = {
7607                 .info = {
7608                         .dev = dev,
7609                         .extack = extack,
7610                 },
7611                 .upper_dev = upper_dev,
7612                 .master = master,
7613                 .linking = true,
7614                 .upper_info = upper_info,
7615         };
7616         struct net_device *master_dev;
7617         int ret = 0;
7618
7619         ASSERT_RTNL();
7620
7621         if (dev == upper_dev)
7622                 return -EBUSY;
7623
7624         /* To prevent loops, check if dev is not upper device to upper_dev. */
7625         if (__netdev_has_upper_dev(upper_dev, dev))
7626                 return -EBUSY;
7627
7628         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7629                 return -EMLINK;
7630
7631         if (!master) {
7632                 if (__netdev_has_upper_dev(dev, upper_dev))
7633                         return -EEXIST;
7634         } else {
7635                 master_dev = __netdev_master_upper_dev_get(dev);
7636                 if (master_dev)
7637                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7638         }
7639
7640         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7641                                             &changeupper_info.info);
7642         ret = notifier_to_errno(ret);
7643         if (ret)
7644                 return ret;
7645
7646         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7647                                                    master);
7648         if (ret)
7649                 return ret;
7650
7651         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7652                                             &changeupper_info.info);
7653         ret = notifier_to_errno(ret);
7654         if (ret)
7655                 goto rollback;
7656
7657         __netdev_update_upper_level(dev, NULL);
7658         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7659
7660         __netdev_update_lower_level(upper_dev, priv);
7661         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7662                                     priv);
7663
7664         return 0;
7665
7666 rollback:
7667         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7668
7669         return ret;
7670 }
7671
7672 /**
7673  * netdev_upper_dev_link - Add a link to the upper device
7674  * @dev: device
7675  * @upper_dev: new upper device
7676  * @extack: netlink extended ack
7677  *
7678  * Adds a link to device which is upper to this one. The caller must hold
7679  * the RTNL lock. On a failure a negative errno code is returned.
7680  * On success the reference counts are adjusted and the function
7681  * returns zero.
7682  */
7683 int netdev_upper_dev_link(struct net_device *dev,
7684                           struct net_device *upper_dev,
7685                           struct netlink_ext_ack *extack)
7686 {
7687         struct netdev_nested_priv priv = {
7688                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7689                 .data = NULL,
7690         };
7691
7692         return __netdev_upper_dev_link(dev, upper_dev, false,
7693                                        NULL, NULL, &priv, extack);
7694 }
7695 EXPORT_SYMBOL(netdev_upper_dev_link);
7696
7697 /**
7698  * netdev_master_upper_dev_link - Add a master link to the upper device
7699  * @dev: device
7700  * @upper_dev: new upper device
7701  * @upper_priv: upper device private
7702  * @upper_info: upper info to be passed down via notifier
7703  * @extack: netlink extended ack
7704  *
7705  * Adds a link to device which is upper to this one. In this case, only
7706  * one master upper device can be linked, although other non-master devices
7707  * might be linked as well. The caller must hold the RTNL lock.
7708  * On a failure a negative errno code is returned. On success the reference
7709  * counts are adjusted and the function returns zero.
7710  */
7711 int netdev_master_upper_dev_link(struct net_device *dev,
7712                                  struct net_device *upper_dev,
7713                                  void *upper_priv, void *upper_info,
7714                                  struct netlink_ext_ack *extack)
7715 {
7716         struct netdev_nested_priv priv = {
7717                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7718                 .data = NULL,
7719         };
7720
7721         return __netdev_upper_dev_link(dev, upper_dev, true,
7722                                        upper_priv, upper_info, &priv, extack);
7723 }
7724 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7725
7726 static void __netdev_upper_dev_unlink(struct net_device *dev,
7727                                       struct net_device *upper_dev,
7728                                       struct netdev_nested_priv *priv)
7729 {
7730         struct netdev_notifier_changeupper_info changeupper_info = {
7731                 .info = {
7732                         .dev = dev,
7733                 },
7734                 .upper_dev = upper_dev,
7735                 .linking = false,
7736         };
7737
7738         ASSERT_RTNL();
7739
7740         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7741
7742         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7743                                       &changeupper_info.info);
7744
7745         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7746
7747         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7748                                       &changeupper_info.info);
7749
7750         __netdev_update_upper_level(dev, NULL);
7751         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7752
7753         __netdev_update_lower_level(upper_dev, priv);
7754         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7755                                     priv);
7756 }
7757
7758 /**
7759  * netdev_upper_dev_unlink - Removes a link to upper device
7760  * @dev: device
7761  * @upper_dev: new upper device
7762  *
7763  * Removes a link to device which is upper to this one. The caller must hold
7764  * the RTNL lock.
7765  */
7766 void netdev_upper_dev_unlink(struct net_device *dev,
7767                              struct net_device *upper_dev)
7768 {
7769         struct netdev_nested_priv priv = {
7770                 .flags = NESTED_SYNC_TODO,
7771                 .data = NULL,
7772         };
7773
7774         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7775 }
7776 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7777
7778 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7779                                       struct net_device *lower_dev,
7780                                       bool val)
7781 {
7782         struct netdev_adjacent *adj;
7783
7784         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7785         if (adj)
7786                 adj->ignore = val;
7787
7788         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7789         if (adj)
7790                 adj->ignore = val;
7791 }
7792
7793 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7794                                         struct net_device *lower_dev)
7795 {
7796         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7797 }
7798
7799 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7800                                        struct net_device *lower_dev)
7801 {
7802         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7803 }
7804
7805 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7806                                    struct net_device *new_dev,
7807                                    struct net_device *dev,
7808                                    struct netlink_ext_ack *extack)
7809 {
7810         struct netdev_nested_priv priv = {
7811                 .flags = 0,
7812                 .data = NULL,
7813         };
7814         int err;
7815
7816         if (!new_dev)
7817                 return 0;
7818
7819         if (old_dev && new_dev != old_dev)
7820                 netdev_adjacent_dev_disable(dev, old_dev);
7821         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7822                                       extack);
7823         if (err) {
7824                 if (old_dev && new_dev != old_dev)
7825                         netdev_adjacent_dev_enable(dev, old_dev);
7826                 return err;
7827         }
7828
7829         return 0;
7830 }
7831 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7832
7833 void netdev_adjacent_change_commit(struct net_device *old_dev,
7834                                    struct net_device *new_dev,
7835                                    struct net_device *dev)
7836 {
7837         struct netdev_nested_priv priv = {
7838                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7839                 .data = NULL,
7840         };
7841
7842         if (!new_dev || !old_dev)
7843                 return;
7844
7845         if (new_dev == old_dev)
7846                 return;
7847
7848         netdev_adjacent_dev_enable(dev, old_dev);
7849         __netdev_upper_dev_unlink(old_dev, dev, &priv);
7850 }
7851 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7852
7853 void netdev_adjacent_change_abort(struct net_device *old_dev,
7854                                   struct net_device *new_dev,
7855                                   struct net_device *dev)
7856 {
7857         struct netdev_nested_priv priv = {
7858                 .flags = 0,
7859                 .data = NULL,
7860         };
7861
7862         if (!new_dev)
7863                 return;
7864
7865         if (old_dev && new_dev != old_dev)
7866                 netdev_adjacent_dev_enable(dev, old_dev);
7867
7868         __netdev_upper_dev_unlink(new_dev, dev, &priv);
7869 }
7870 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7871
7872 /**
7873  * netdev_bonding_info_change - Dispatch event about slave change
7874  * @dev: device
7875  * @bonding_info: info to dispatch
7876  *
7877  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7878  * The caller must hold the RTNL lock.
7879  */
7880 void netdev_bonding_info_change(struct net_device *dev,
7881                                 struct netdev_bonding_info *bonding_info)
7882 {
7883         struct netdev_notifier_bonding_info info = {
7884                 .info.dev = dev,
7885         };
7886
7887         memcpy(&info.bonding_info, bonding_info,
7888                sizeof(struct netdev_bonding_info));
7889         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7890                                       &info.info);
7891 }
7892 EXPORT_SYMBOL(netdev_bonding_info_change);
7893
7894 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7895                                            struct netlink_ext_ack *extack)
7896 {
7897         struct netdev_notifier_offload_xstats_info info = {
7898                 .info.dev = dev,
7899                 .info.extack = extack,
7900                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7901         };
7902         int err;
7903         int rc;
7904
7905         dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7906                                          GFP_KERNEL);
7907         if (!dev->offload_xstats_l3)
7908                 return -ENOMEM;
7909
7910         rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7911                                                   NETDEV_OFFLOAD_XSTATS_DISABLE,
7912                                                   &info.info);
7913         err = notifier_to_errno(rc);
7914         if (err)
7915                 goto free_stats;
7916
7917         return 0;
7918
7919 free_stats:
7920         kfree(dev->offload_xstats_l3);
7921         dev->offload_xstats_l3 = NULL;
7922         return err;
7923 }
7924
7925 int netdev_offload_xstats_enable(struct net_device *dev,
7926                                  enum netdev_offload_xstats_type type,
7927                                  struct netlink_ext_ack *extack)
7928 {
7929         ASSERT_RTNL();
7930
7931         if (netdev_offload_xstats_enabled(dev, type))
7932                 return -EALREADY;
7933
7934         switch (type) {
7935         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7936                 return netdev_offload_xstats_enable_l3(dev, extack);
7937         }
7938
7939         WARN_ON(1);
7940         return -EINVAL;
7941 }
7942 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7943
7944 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7945 {
7946         struct netdev_notifier_offload_xstats_info info = {
7947                 .info.dev = dev,
7948                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7949         };
7950
7951         call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7952                                       &info.info);
7953         kfree(dev->offload_xstats_l3);
7954         dev->offload_xstats_l3 = NULL;
7955 }
7956
7957 int netdev_offload_xstats_disable(struct net_device *dev,
7958                                   enum netdev_offload_xstats_type type)
7959 {
7960         ASSERT_RTNL();
7961
7962         if (!netdev_offload_xstats_enabled(dev, type))
7963                 return -EALREADY;
7964
7965         switch (type) {
7966         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7967                 netdev_offload_xstats_disable_l3(dev);
7968                 return 0;
7969         }
7970
7971         WARN_ON(1);
7972         return -EINVAL;
7973 }
7974 EXPORT_SYMBOL(netdev_offload_xstats_disable);
7975
7976 static void netdev_offload_xstats_disable_all(struct net_device *dev)
7977 {
7978         netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7979 }
7980
7981 static struct rtnl_hw_stats64 *
7982 netdev_offload_xstats_get_ptr(const struct net_device *dev,
7983                               enum netdev_offload_xstats_type type)
7984 {
7985         switch (type) {
7986         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7987                 return dev->offload_xstats_l3;
7988         }
7989
7990         WARN_ON(1);
7991         return NULL;
7992 }
7993
7994 bool netdev_offload_xstats_enabled(const struct net_device *dev,
7995                                    enum netdev_offload_xstats_type type)
7996 {
7997         ASSERT_RTNL();
7998
7999         return netdev_offload_xstats_get_ptr(dev, type);
8000 }
8001 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8002
8003 struct netdev_notifier_offload_xstats_ru {
8004         bool used;
8005 };
8006
8007 struct netdev_notifier_offload_xstats_rd {
8008         struct rtnl_hw_stats64 stats;
8009         bool used;
8010 };
8011
8012 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8013                                   const struct rtnl_hw_stats64 *src)
8014 {
8015         dest->rx_packets          += src->rx_packets;
8016         dest->tx_packets          += src->tx_packets;
8017         dest->rx_bytes            += src->rx_bytes;
8018         dest->tx_bytes            += src->tx_bytes;
8019         dest->rx_errors           += src->rx_errors;
8020         dest->tx_errors           += src->tx_errors;
8021         dest->rx_dropped          += src->rx_dropped;
8022         dest->tx_dropped          += src->tx_dropped;
8023         dest->multicast           += src->multicast;
8024 }
8025
8026 static int netdev_offload_xstats_get_used(struct net_device *dev,
8027                                           enum netdev_offload_xstats_type type,
8028                                           bool *p_used,
8029                                           struct netlink_ext_ack *extack)
8030 {
8031         struct netdev_notifier_offload_xstats_ru report_used = {};
8032         struct netdev_notifier_offload_xstats_info info = {
8033                 .info.dev = dev,
8034                 .info.extack = extack,
8035                 .type = type,
8036                 .report_used = &report_used,
8037         };
8038         int rc;
8039
8040         WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8041         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8042                                            &info.info);
8043         *p_used = report_used.used;
8044         return notifier_to_errno(rc);
8045 }
8046
8047 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8048                                            enum netdev_offload_xstats_type type,
8049                                            struct rtnl_hw_stats64 *p_stats,
8050                                            bool *p_used,
8051                                            struct netlink_ext_ack *extack)
8052 {
8053         struct netdev_notifier_offload_xstats_rd report_delta = {};
8054         struct netdev_notifier_offload_xstats_info info = {
8055                 .info.dev = dev,
8056                 .info.extack = extack,
8057                 .type = type,
8058                 .report_delta = &report_delta,
8059         };
8060         struct rtnl_hw_stats64 *stats;
8061         int rc;
8062
8063         stats = netdev_offload_xstats_get_ptr(dev, type);
8064         if (WARN_ON(!stats))
8065                 return -EINVAL;
8066
8067         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8068                                            &info.info);
8069
8070         /* Cache whatever we got, even if there was an error, otherwise the
8071          * successful stats retrievals would get lost.
8072          */
8073         netdev_hw_stats64_add(stats, &report_delta.stats);
8074
8075         if (p_stats)
8076                 *p_stats = *stats;
8077         *p_used = report_delta.used;
8078
8079         return notifier_to_errno(rc);
8080 }
8081
8082 int netdev_offload_xstats_get(struct net_device *dev,
8083                               enum netdev_offload_xstats_type type,
8084                               struct rtnl_hw_stats64 *p_stats, bool *p_used,
8085                               struct netlink_ext_ack *extack)
8086 {
8087         ASSERT_RTNL();
8088
8089         if (p_stats)
8090                 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8091                                                        p_used, extack);
8092         else
8093                 return netdev_offload_xstats_get_used(dev, type, p_used,
8094                                                       extack);
8095 }
8096 EXPORT_SYMBOL(netdev_offload_xstats_get);
8097
8098 void
8099 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8100                                    const struct rtnl_hw_stats64 *stats)
8101 {
8102         report_delta->used = true;
8103         netdev_hw_stats64_add(&report_delta->stats, stats);
8104 }
8105 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8106
8107 void
8108 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8109 {
8110         report_used->used = true;
8111 }
8112 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8113
8114 void netdev_offload_xstats_push_delta(struct net_device *dev,
8115                                       enum netdev_offload_xstats_type type,
8116                                       const struct rtnl_hw_stats64 *p_stats)
8117 {
8118         struct rtnl_hw_stats64 *stats;
8119
8120         ASSERT_RTNL();
8121
8122         stats = netdev_offload_xstats_get_ptr(dev, type);
8123         if (WARN_ON(!stats))
8124                 return;
8125
8126         netdev_hw_stats64_add(stats, p_stats);
8127 }
8128 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8129
8130 /**
8131  * netdev_get_xmit_slave - Get the xmit slave of master device
8132  * @dev: device
8133  * @skb: The packet
8134  * @all_slaves: assume all the slaves are active
8135  *
8136  * The reference counters are not incremented so the caller must be
8137  * careful with locks. The caller must hold RCU lock.
8138  * %NULL is returned if no slave is found.
8139  */
8140
8141 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8142                                          struct sk_buff *skb,
8143                                          bool all_slaves)
8144 {
8145         const struct net_device_ops *ops = dev->netdev_ops;
8146
8147         if (!ops->ndo_get_xmit_slave)
8148                 return NULL;
8149         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8150 }
8151 EXPORT_SYMBOL(netdev_get_xmit_slave);
8152
8153 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8154                                                   struct sock *sk)
8155 {
8156         const struct net_device_ops *ops = dev->netdev_ops;
8157
8158         if (!ops->ndo_sk_get_lower_dev)
8159                 return NULL;
8160         return ops->ndo_sk_get_lower_dev(dev, sk);
8161 }
8162
8163 /**
8164  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8165  * @dev: device
8166  * @sk: the socket
8167  *
8168  * %NULL is returned if no lower device is found.
8169  */
8170
8171 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8172                                             struct sock *sk)
8173 {
8174         struct net_device *lower;
8175
8176         lower = netdev_sk_get_lower_dev(dev, sk);
8177         while (lower) {
8178                 dev = lower;
8179                 lower = netdev_sk_get_lower_dev(dev, sk);
8180         }
8181
8182         return dev;
8183 }
8184 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8185
8186 static void netdev_adjacent_add_links(struct net_device *dev)
8187 {
8188         struct netdev_adjacent *iter;
8189
8190         struct net *net = dev_net(dev);
8191
8192         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8193                 if (!net_eq(net, dev_net(iter->dev)))
8194                         continue;
8195                 netdev_adjacent_sysfs_add(iter->dev, dev,
8196                                           &iter->dev->adj_list.lower);
8197                 netdev_adjacent_sysfs_add(dev, iter->dev,
8198                                           &dev->adj_list.upper);
8199         }
8200
8201         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8202                 if (!net_eq(net, dev_net(iter->dev)))
8203                         continue;
8204                 netdev_adjacent_sysfs_add(iter->dev, dev,
8205                                           &iter->dev->adj_list.upper);
8206                 netdev_adjacent_sysfs_add(dev, iter->dev,
8207                                           &dev->adj_list.lower);
8208         }
8209 }
8210
8211 static void netdev_adjacent_del_links(struct net_device *dev)
8212 {
8213         struct netdev_adjacent *iter;
8214
8215         struct net *net = dev_net(dev);
8216
8217         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8218                 if (!net_eq(net, dev_net(iter->dev)))
8219                         continue;
8220                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8221                                           &iter->dev->adj_list.lower);
8222                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8223                                           &dev->adj_list.upper);
8224         }
8225
8226         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8227                 if (!net_eq(net, dev_net(iter->dev)))
8228                         continue;
8229                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8230                                           &iter->dev->adj_list.upper);
8231                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8232                                           &dev->adj_list.lower);
8233         }
8234 }
8235
8236 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8237 {
8238         struct netdev_adjacent *iter;
8239
8240         struct net *net = dev_net(dev);
8241
8242         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8243                 if (!net_eq(net, dev_net(iter->dev)))
8244                         continue;
8245                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8246                                           &iter->dev->adj_list.lower);
8247                 netdev_adjacent_sysfs_add(iter->dev, dev,
8248                                           &iter->dev->adj_list.lower);
8249         }
8250
8251         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8252                 if (!net_eq(net, dev_net(iter->dev)))
8253                         continue;
8254                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8255                                           &iter->dev->adj_list.upper);
8256                 netdev_adjacent_sysfs_add(iter->dev, dev,
8257                                           &iter->dev->adj_list.upper);
8258         }
8259 }
8260
8261 void *netdev_lower_dev_get_private(struct net_device *dev,
8262                                    struct net_device *lower_dev)
8263 {
8264         struct netdev_adjacent *lower;
8265
8266         if (!lower_dev)
8267                 return NULL;
8268         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8269         if (!lower)
8270                 return NULL;
8271
8272         return lower->private;
8273 }
8274 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8275
8276
8277 /**
8278  * netdev_lower_state_changed - Dispatch event about lower device state change
8279  * @lower_dev: device
8280  * @lower_state_info: state to dispatch
8281  *
8282  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8283  * The caller must hold the RTNL lock.
8284  */
8285 void netdev_lower_state_changed(struct net_device *lower_dev,
8286                                 void *lower_state_info)
8287 {
8288         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8289                 .info.dev = lower_dev,
8290         };
8291
8292         ASSERT_RTNL();
8293         changelowerstate_info.lower_state_info = lower_state_info;
8294         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8295                                       &changelowerstate_info.info);
8296 }
8297 EXPORT_SYMBOL(netdev_lower_state_changed);
8298
8299 static void dev_change_rx_flags(struct net_device *dev, int flags)
8300 {
8301         const struct net_device_ops *ops = dev->netdev_ops;
8302
8303         if (ops->ndo_change_rx_flags)
8304                 ops->ndo_change_rx_flags(dev, flags);
8305 }
8306
8307 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8308 {
8309         unsigned int old_flags = dev->flags;
8310         kuid_t uid;
8311         kgid_t gid;
8312
8313         ASSERT_RTNL();
8314
8315         dev->flags |= IFF_PROMISC;
8316         dev->promiscuity += inc;
8317         if (dev->promiscuity == 0) {
8318                 /*
8319                  * Avoid overflow.
8320                  * If inc causes overflow, untouch promisc and return error.
8321                  */
8322                 if (inc < 0)
8323                         dev->flags &= ~IFF_PROMISC;
8324                 else {
8325                         dev->promiscuity -= inc;
8326                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8327                         return -EOVERFLOW;
8328                 }
8329         }
8330         if (dev->flags != old_flags) {
8331                 pr_info("device %s %s promiscuous mode\n",
8332                         dev->name,
8333                         dev->flags & IFF_PROMISC ? "entered" : "left");
8334                 if (audit_enabled) {
8335                         current_uid_gid(&uid, &gid);
8336                         audit_log(audit_context(), GFP_ATOMIC,
8337                                   AUDIT_ANOM_PROMISCUOUS,
8338                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8339                                   dev->name, (dev->flags & IFF_PROMISC),
8340                                   (old_flags & IFF_PROMISC),
8341                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8342                                   from_kuid(&init_user_ns, uid),
8343                                   from_kgid(&init_user_ns, gid),
8344                                   audit_get_sessionid(current));
8345                 }
8346
8347                 dev_change_rx_flags(dev, IFF_PROMISC);
8348         }
8349         if (notify)
8350                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8351         return 0;
8352 }
8353
8354 /**
8355  *      dev_set_promiscuity     - update promiscuity count on a device
8356  *      @dev: device
8357  *      @inc: modifier
8358  *
8359  *      Add or remove promiscuity from a device. While the count in the device
8360  *      remains above zero the interface remains promiscuous. Once it hits zero
8361  *      the device reverts back to normal filtering operation. A negative inc
8362  *      value is used to drop promiscuity on the device.
8363  *      Return 0 if successful or a negative errno code on error.
8364  */
8365 int dev_set_promiscuity(struct net_device *dev, int inc)
8366 {
8367         unsigned int old_flags = dev->flags;
8368         int err;
8369
8370         err = __dev_set_promiscuity(dev, inc, true);
8371         if (err < 0)
8372                 return err;
8373         if (dev->flags != old_flags)
8374                 dev_set_rx_mode(dev);
8375         return err;
8376 }
8377 EXPORT_SYMBOL(dev_set_promiscuity);
8378
8379 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8380 {
8381         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8382
8383         ASSERT_RTNL();
8384
8385         dev->flags |= IFF_ALLMULTI;
8386         dev->allmulti += inc;
8387         if (dev->allmulti == 0) {
8388                 /*
8389                  * Avoid overflow.
8390                  * If inc causes overflow, untouch allmulti and return error.
8391                  */
8392                 if (inc < 0)
8393                         dev->flags &= ~IFF_ALLMULTI;
8394                 else {
8395                         dev->allmulti -= inc;
8396                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8397                         return -EOVERFLOW;
8398                 }
8399         }
8400         if (dev->flags ^ old_flags) {
8401                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8402                 dev_set_rx_mode(dev);
8403                 if (notify)
8404                         __dev_notify_flags(dev, old_flags,
8405                                            dev->gflags ^ old_gflags);
8406         }
8407         return 0;
8408 }
8409
8410 /**
8411  *      dev_set_allmulti        - update allmulti count on a device
8412  *      @dev: device
8413  *      @inc: modifier
8414  *
8415  *      Add or remove reception of all multicast frames to a device. While the
8416  *      count in the device remains above zero the interface remains listening
8417  *      to all interfaces. Once it hits zero the device reverts back to normal
8418  *      filtering operation. A negative @inc value is used to drop the counter
8419  *      when releasing a resource needing all multicasts.
8420  *      Return 0 if successful or a negative errno code on error.
8421  */
8422
8423 int dev_set_allmulti(struct net_device *dev, int inc)
8424 {
8425         return __dev_set_allmulti(dev, inc, true);
8426 }
8427 EXPORT_SYMBOL(dev_set_allmulti);
8428
8429 /*
8430  *      Upload unicast and multicast address lists to device and
8431  *      configure RX filtering. When the device doesn't support unicast
8432  *      filtering it is put in promiscuous mode while unicast addresses
8433  *      are present.
8434  */
8435 void __dev_set_rx_mode(struct net_device *dev)
8436 {
8437         const struct net_device_ops *ops = dev->netdev_ops;
8438
8439         /* dev_open will call this function so the list will stay sane. */
8440         if (!(dev->flags&IFF_UP))
8441                 return;
8442
8443         if (!netif_device_present(dev))
8444                 return;
8445
8446         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8447                 /* Unicast addresses changes may only happen under the rtnl,
8448                  * therefore calling __dev_set_promiscuity here is safe.
8449                  */
8450                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8451                         __dev_set_promiscuity(dev, 1, false);
8452                         dev->uc_promisc = true;
8453                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8454                         __dev_set_promiscuity(dev, -1, false);
8455                         dev->uc_promisc = false;
8456                 }
8457         }
8458
8459         if (ops->ndo_set_rx_mode)
8460                 ops->ndo_set_rx_mode(dev);
8461 }
8462
8463 void dev_set_rx_mode(struct net_device *dev)
8464 {
8465         netif_addr_lock_bh(dev);
8466         __dev_set_rx_mode(dev);
8467         netif_addr_unlock_bh(dev);
8468 }
8469
8470 /**
8471  *      dev_get_flags - get flags reported to userspace
8472  *      @dev: device
8473  *
8474  *      Get the combination of flag bits exported through APIs to userspace.
8475  */
8476 unsigned int dev_get_flags(const struct net_device *dev)
8477 {
8478         unsigned int flags;
8479
8480         flags = (dev->flags & ~(IFF_PROMISC |
8481                                 IFF_ALLMULTI |
8482                                 IFF_RUNNING |
8483                                 IFF_LOWER_UP |
8484                                 IFF_DORMANT)) |
8485                 (dev->gflags & (IFF_PROMISC |
8486                                 IFF_ALLMULTI));
8487
8488         if (netif_running(dev)) {
8489                 if (netif_oper_up(dev))
8490                         flags |= IFF_RUNNING;
8491                 if (netif_carrier_ok(dev))
8492                         flags |= IFF_LOWER_UP;
8493                 if (netif_dormant(dev))
8494                         flags |= IFF_DORMANT;
8495         }
8496
8497         return flags;
8498 }
8499 EXPORT_SYMBOL(dev_get_flags);
8500
8501 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8502                        struct netlink_ext_ack *extack)
8503 {
8504         unsigned int old_flags = dev->flags;
8505         int ret;
8506
8507         ASSERT_RTNL();
8508
8509         /*
8510          *      Set the flags on our device.
8511          */
8512
8513         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8514                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8515                                IFF_AUTOMEDIA)) |
8516                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8517                                     IFF_ALLMULTI));
8518
8519         /*
8520          *      Load in the correct multicast list now the flags have changed.
8521          */
8522
8523         if ((old_flags ^ flags) & IFF_MULTICAST)
8524                 dev_change_rx_flags(dev, IFF_MULTICAST);
8525
8526         dev_set_rx_mode(dev);
8527
8528         /*
8529          *      Have we downed the interface. We handle IFF_UP ourselves
8530          *      according to user attempts to set it, rather than blindly
8531          *      setting it.
8532          */
8533
8534         ret = 0;
8535         if ((old_flags ^ flags) & IFF_UP) {
8536                 if (old_flags & IFF_UP)
8537                         __dev_close(dev);
8538                 else
8539                         ret = __dev_open(dev, extack);
8540         }
8541
8542         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8543                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8544                 unsigned int old_flags = dev->flags;
8545
8546                 dev->gflags ^= IFF_PROMISC;
8547
8548                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8549                         if (dev->flags != old_flags)
8550                                 dev_set_rx_mode(dev);
8551         }
8552
8553         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8554          * is important. Some (broken) drivers set IFF_PROMISC, when
8555          * IFF_ALLMULTI is requested not asking us and not reporting.
8556          */
8557         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8558                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8559
8560                 dev->gflags ^= IFF_ALLMULTI;
8561                 __dev_set_allmulti(dev, inc, false);
8562         }
8563
8564         return ret;
8565 }
8566
8567 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8568                         unsigned int gchanges)
8569 {
8570         unsigned int changes = dev->flags ^ old_flags;
8571
8572         if (gchanges)
8573                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8574
8575         if (changes & IFF_UP) {
8576                 if (dev->flags & IFF_UP)
8577                         call_netdevice_notifiers(NETDEV_UP, dev);
8578                 else
8579                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8580         }
8581
8582         if (dev->flags & IFF_UP &&
8583             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8584                 struct netdev_notifier_change_info change_info = {
8585                         .info = {
8586                                 .dev = dev,
8587                         },
8588                         .flags_changed = changes,
8589                 };
8590
8591                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8592         }
8593 }
8594
8595 /**
8596  *      dev_change_flags - change device settings
8597  *      @dev: device
8598  *      @flags: device state flags
8599  *      @extack: netlink extended ack
8600  *
8601  *      Change settings on device based state flags. The flags are
8602  *      in the userspace exported format.
8603  */
8604 int dev_change_flags(struct net_device *dev, unsigned int flags,
8605                      struct netlink_ext_ack *extack)
8606 {
8607         int ret;
8608         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8609
8610         ret = __dev_change_flags(dev, flags, extack);
8611         if (ret < 0)
8612                 return ret;
8613
8614         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8615         __dev_notify_flags(dev, old_flags, changes);
8616         return ret;
8617 }
8618 EXPORT_SYMBOL(dev_change_flags);
8619
8620 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8621 {
8622         const struct net_device_ops *ops = dev->netdev_ops;
8623
8624         if (ops->ndo_change_mtu)
8625                 return ops->ndo_change_mtu(dev, new_mtu);
8626
8627         /* Pairs with all the lockless reads of dev->mtu in the stack */
8628         WRITE_ONCE(dev->mtu, new_mtu);
8629         return 0;
8630 }
8631 EXPORT_SYMBOL(__dev_set_mtu);
8632
8633 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8634                      struct netlink_ext_ack *extack)
8635 {
8636         /* MTU must be positive, and in range */
8637         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8638                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8639                 return -EINVAL;
8640         }
8641
8642         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8643                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8644                 return -EINVAL;
8645         }
8646         return 0;
8647 }
8648
8649 /**
8650  *      dev_set_mtu_ext - Change maximum transfer unit
8651  *      @dev: device
8652  *      @new_mtu: new transfer unit
8653  *      @extack: netlink extended ack
8654  *
8655  *      Change the maximum transfer size of the network device.
8656  */
8657 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8658                     struct netlink_ext_ack *extack)
8659 {
8660         int err, orig_mtu;
8661
8662         if (new_mtu == dev->mtu)
8663                 return 0;
8664
8665         err = dev_validate_mtu(dev, new_mtu, extack);
8666         if (err)
8667                 return err;
8668
8669         if (!netif_device_present(dev))
8670                 return -ENODEV;
8671
8672         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8673         err = notifier_to_errno(err);
8674         if (err)
8675                 return err;
8676
8677         orig_mtu = dev->mtu;
8678         err = __dev_set_mtu(dev, new_mtu);
8679
8680         if (!err) {
8681                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8682                                                    orig_mtu);
8683                 err = notifier_to_errno(err);
8684                 if (err) {
8685                         /* setting mtu back and notifying everyone again,
8686                          * so that they have a chance to revert changes.
8687                          */
8688                         __dev_set_mtu(dev, orig_mtu);
8689                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8690                                                      new_mtu);
8691                 }
8692         }
8693         return err;
8694 }
8695
8696 int dev_set_mtu(struct net_device *dev, int new_mtu)
8697 {
8698         struct netlink_ext_ack extack;
8699         int err;
8700
8701         memset(&extack, 0, sizeof(extack));
8702         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8703         if (err && extack._msg)
8704                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8705         return err;
8706 }
8707 EXPORT_SYMBOL(dev_set_mtu);
8708
8709 /**
8710  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8711  *      @dev: device
8712  *      @new_len: new tx queue length
8713  */
8714 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8715 {
8716         unsigned int orig_len = dev->tx_queue_len;
8717         int res;
8718
8719         if (new_len != (unsigned int)new_len)
8720                 return -ERANGE;
8721
8722         if (new_len != orig_len) {
8723                 dev->tx_queue_len = new_len;
8724                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8725                 res = notifier_to_errno(res);
8726                 if (res)
8727                         goto err_rollback;
8728                 res = dev_qdisc_change_tx_queue_len(dev);
8729                 if (res)
8730                         goto err_rollback;
8731         }
8732
8733         return 0;
8734
8735 err_rollback:
8736         netdev_err(dev, "refused to change device tx_queue_len\n");
8737         dev->tx_queue_len = orig_len;
8738         return res;
8739 }
8740
8741 /**
8742  *      dev_set_group - Change group this device belongs to
8743  *      @dev: device
8744  *      @new_group: group this device should belong to
8745  */
8746 void dev_set_group(struct net_device *dev, int new_group)
8747 {
8748         dev->group = new_group;
8749 }
8750
8751 /**
8752  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8753  *      @dev: device
8754  *      @addr: new address
8755  *      @extack: netlink extended ack
8756  */
8757 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8758                               struct netlink_ext_ack *extack)
8759 {
8760         struct netdev_notifier_pre_changeaddr_info info = {
8761                 .info.dev = dev,
8762                 .info.extack = extack,
8763                 .dev_addr = addr,
8764         };
8765         int rc;
8766
8767         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8768         return notifier_to_errno(rc);
8769 }
8770 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8771
8772 /**
8773  *      dev_set_mac_address - Change Media Access Control Address
8774  *      @dev: device
8775  *      @sa: new address
8776  *      @extack: netlink extended ack
8777  *
8778  *      Change the hardware (MAC) address of the device
8779  */
8780 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8781                         struct netlink_ext_ack *extack)
8782 {
8783         const struct net_device_ops *ops = dev->netdev_ops;
8784         int err;
8785
8786         if (!ops->ndo_set_mac_address)
8787                 return -EOPNOTSUPP;
8788         if (sa->sa_family != dev->type)
8789                 return -EINVAL;
8790         if (!netif_device_present(dev))
8791                 return -ENODEV;
8792         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8793         if (err)
8794                 return err;
8795         err = ops->ndo_set_mac_address(dev, sa);
8796         if (err)
8797                 return err;
8798         dev->addr_assign_type = NET_ADDR_SET;
8799         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8800         add_device_randomness(dev->dev_addr, dev->addr_len);
8801         return 0;
8802 }
8803 EXPORT_SYMBOL(dev_set_mac_address);
8804
8805 static DECLARE_RWSEM(dev_addr_sem);
8806
8807 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8808                              struct netlink_ext_ack *extack)
8809 {
8810         int ret;
8811
8812         down_write(&dev_addr_sem);
8813         ret = dev_set_mac_address(dev, sa, extack);
8814         up_write(&dev_addr_sem);
8815         return ret;
8816 }
8817 EXPORT_SYMBOL(dev_set_mac_address_user);
8818
8819 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8820 {
8821         size_t size = sizeof(sa->sa_data);
8822         struct net_device *dev;
8823         int ret = 0;
8824
8825         down_read(&dev_addr_sem);
8826         rcu_read_lock();
8827
8828         dev = dev_get_by_name_rcu(net, dev_name);
8829         if (!dev) {
8830                 ret = -ENODEV;
8831                 goto unlock;
8832         }
8833         if (!dev->addr_len)
8834                 memset(sa->sa_data, 0, size);
8835         else
8836                 memcpy(sa->sa_data, dev->dev_addr,
8837                        min_t(size_t, size, dev->addr_len));
8838         sa->sa_family = dev->type;
8839
8840 unlock:
8841         rcu_read_unlock();
8842         up_read(&dev_addr_sem);
8843         return ret;
8844 }
8845 EXPORT_SYMBOL(dev_get_mac_address);
8846
8847 /**
8848  *      dev_change_carrier - Change device carrier
8849  *      @dev: device
8850  *      @new_carrier: new value
8851  *
8852  *      Change device carrier
8853  */
8854 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8855 {
8856         const struct net_device_ops *ops = dev->netdev_ops;
8857
8858         if (!ops->ndo_change_carrier)
8859                 return -EOPNOTSUPP;
8860         if (!netif_device_present(dev))
8861                 return -ENODEV;
8862         return ops->ndo_change_carrier(dev, new_carrier);
8863 }
8864
8865 /**
8866  *      dev_get_phys_port_id - Get device physical port ID
8867  *      @dev: device
8868  *      @ppid: port ID
8869  *
8870  *      Get device physical port ID
8871  */
8872 int dev_get_phys_port_id(struct net_device *dev,
8873                          struct netdev_phys_item_id *ppid)
8874 {
8875         const struct net_device_ops *ops = dev->netdev_ops;
8876
8877         if (!ops->ndo_get_phys_port_id)
8878                 return -EOPNOTSUPP;
8879         return ops->ndo_get_phys_port_id(dev, ppid);
8880 }
8881
8882 /**
8883  *      dev_get_phys_port_name - Get device physical port name
8884  *      @dev: device
8885  *      @name: port name
8886  *      @len: limit of bytes to copy to name
8887  *
8888  *      Get device physical port name
8889  */
8890 int dev_get_phys_port_name(struct net_device *dev,
8891                            char *name, size_t len)
8892 {
8893         const struct net_device_ops *ops = dev->netdev_ops;
8894         int err;
8895
8896         if (ops->ndo_get_phys_port_name) {
8897                 err = ops->ndo_get_phys_port_name(dev, name, len);
8898                 if (err != -EOPNOTSUPP)
8899                         return err;
8900         }
8901         return devlink_compat_phys_port_name_get(dev, name, len);
8902 }
8903
8904 /**
8905  *      dev_get_port_parent_id - Get the device's port parent identifier
8906  *      @dev: network device
8907  *      @ppid: pointer to a storage for the port's parent identifier
8908  *      @recurse: allow/disallow recursion to lower devices
8909  *
8910  *      Get the devices's port parent identifier
8911  */
8912 int dev_get_port_parent_id(struct net_device *dev,
8913                            struct netdev_phys_item_id *ppid,
8914                            bool recurse)
8915 {
8916         const struct net_device_ops *ops = dev->netdev_ops;
8917         struct netdev_phys_item_id first = { };
8918         struct net_device *lower_dev;
8919         struct list_head *iter;
8920         int err;
8921
8922         if (ops->ndo_get_port_parent_id) {
8923                 err = ops->ndo_get_port_parent_id(dev, ppid);
8924                 if (err != -EOPNOTSUPP)
8925                         return err;
8926         }
8927
8928         err = devlink_compat_switch_id_get(dev, ppid);
8929         if (!recurse || err != -EOPNOTSUPP)
8930                 return err;
8931
8932         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8933                 err = dev_get_port_parent_id(lower_dev, ppid, true);
8934                 if (err)
8935                         break;
8936                 if (!first.id_len)
8937                         first = *ppid;
8938                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8939                         return -EOPNOTSUPP;
8940         }
8941
8942         return err;
8943 }
8944 EXPORT_SYMBOL(dev_get_port_parent_id);
8945
8946 /**
8947  *      netdev_port_same_parent_id - Indicate if two network devices have
8948  *      the same port parent identifier
8949  *      @a: first network device
8950  *      @b: second network device
8951  */
8952 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8953 {
8954         struct netdev_phys_item_id a_id = { };
8955         struct netdev_phys_item_id b_id = { };
8956
8957         if (dev_get_port_parent_id(a, &a_id, true) ||
8958             dev_get_port_parent_id(b, &b_id, true))
8959                 return false;
8960
8961         return netdev_phys_item_id_same(&a_id, &b_id);
8962 }
8963 EXPORT_SYMBOL(netdev_port_same_parent_id);
8964
8965 /**
8966  *      dev_change_proto_down - set carrier according to proto_down.
8967  *
8968  *      @dev: device
8969  *      @proto_down: new value
8970  */
8971 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8972 {
8973         if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8974                 return -EOPNOTSUPP;
8975         if (!netif_device_present(dev))
8976                 return -ENODEV;
8977         if (proto_down)
8978                 netif_carrier_off(dev);
8979         else
8980                 netif_carrier_on(dev);
8981         dev->proto_down = proto_down;
8982         return 0;
8983 }
8984
8985 /**
8986  *      dev_change_proto_down_reason - proto down reason
8987  *
8988  *      @dev: device
8989  *      @mask: proto down mask
8990  *      @value: proto down value
8991  */
8992 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8993                                   u32 value)
8994 {
8995         int b;
8996
8997         if (!mask) {
8998                 dev->proto_down_reason = value;
8999         } else {
9000                 for_each_set_bit(b, &mask, 32) {
9001                         if (value & (1 << b))
9002                                 dev->proto_down_reason |= BIT(b);
9003                         else
9004                                 dev->proto_down_reason &= ~BIT(b);
9005                 }
9006         }
9007 }
9008
9009 struct bpf_xdp_link {
9010         struct bpf_link link;
9011         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9012         int flags;
9013 };
9014
9015 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9016 {
9017         if (flags & XDP_FLAGS_HW_MODE)
9018                 return XDP_MODE_HW;
9019         if (flags & XDP_FLAGS_DRV_MODE)
9020                 return XDP_MODE_DRV;
9021         if (flags & XDP_FLAGS_SKB_MODE)
9022                 return XDP_MODE_SKB;
9023         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9024 }
9025
9026 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9027 {
9028         switch (mode) {
9029         case XDP_MODE_SKB:
9030                 return generic_xdp_install;
9031         case XDP_MODE_DRV:
9032         case XDP_MODE_HW:
9033                 return dev->netdev_ops->ndo_bpf;
9034         default:
9035                 return NULL;
9036         }
9037 }
9038
9039 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9040                                          enum bpf_xdp_mode mode)
9041 {
9042         return dev->xdp_state[mode].link;
9043 }
9044
9045 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9046                                      enum bpf_xdp_mode mode)
9047 {
9048         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9049
9050         if (link)
9051                 return link->link.prog;
9052         return dev->xdp_state[mode].prog;
9053 }
9054
9055 u8 dev_xdp_prog_count(struct net_device *dev)
9056 {
9057         u8 count = 0;
9058         int i;
9059
9060         for (i = 0; i < __MAX_XDP_MODE; i++)
9061                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9062                         count++;
9063         return count;
9064 }
9065 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9066
9067 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9068 {
9069         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9070
9071         return prog ? prog->aux->id : 0;
9072 }
9073
9074 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9075                              struct bpf_xdp_link *link)
9076 {
9077         dev->xdp_state[mode].link = link;
9078         dev->xdp_state[mode].prog = NULL;
9079 }
9080
9081 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9082                              struct bpf_prog *prog)
9083 {
9084         dev->xdp_state[mode].link = NULL;
9085         dev->xdp_state[mode].prog = prog;
9086 }
9087
9088 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9089                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9090                            u32 flags, struct bpf_prog *prog)
9091 {
9092         struct netdev_bpf xdp;
9093         int err;
9094
9095         memset(&xdp, 0, sizeof(xdp));
9096         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9097         xdp.extack = extack;
9098         xdp.flags = flags;
9099         xdp.prog = prog;
9100
9101         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9102          * "moved" into driver), so they don't increment it on their own, but
9103          * they do decrement refcnt when program is detached or replaced.
9104          * Given net_device also owns link/prog, we need to bump refcnt here
9105          * to prevent drivers from underflowing it.
9106          */
9107         if (prog)
9108                 bpf_prog_inc(prog);
9109         err = bpf_op(dev, &xdp);
9110         if (err) {
9111                 if (prog)
9112                         bpf_prog_put(prog);
9113                 return err;
9114         }
9115
9116         if (mode != XDP_MODE_HW)
9117                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9118
9119         return 0;
9120 }
9121
9122 static void dev_xdp_uninstall(struct net_device *dev)
9123 {
9124         struct bpf_xdp_link *link;
9125         struct bpf_prog *prog;
9126         enum bpf_xdp_mode mode;
9127         bpf_op_t bpf_op;
9128
9129         ASSERT_RTNL();
9130
9131         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9132                 prog = dev_xdp_prog(dev, mode);
9133                 if (!prog)
9134                         continue;
9135
9136                 bpf_op = dev_xdp_bpf_op(dev, mode);
9137                 if (!bpf_op)
9138                         continue;
9139
9140                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9141
9142                 /* auto-detach link from net device */
9143                 link = dev_xdp_link(dev, mode);
9144                 if (link)
9145                         link->dev = NULL;
9146                 else
9147                         bpf_prog_put(prog);
9148
9149                 dev_xdp_set_link(dev, mode, NULL);
9150         }
9151 }
9152
9153 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9154                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9155                           struct bpf_prog *old_prog, u32 flags)
9156 {
9157         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9158         struct bpf_prog *cur_prog;
9159         struct net_device *upper;
9160         struct list_head *iter;
9161         enum bpf_xdp_mode mode;
9162         bpf_op_t bpf_op;
9163         int err;
9164
9165         ASSERT_RTNL();
9166
9167         /* either link or prog attachment, never both */
9168         if (link && (new_prog || old_prog))
9169                 return -EINVAL;
9170         /* link supports only XDP mode flags */
9171         if (link && (flags & ~XDP_FLAGS_MODES)) {
9172                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9173                 return -EINVAL;
9174         }
9175         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9176         if (num_modes > 1) {
9177                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9178                 return -EINVAL;
9179         }
9180         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9181         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9182                 NL_SET_ERR_MSG(extack,
9183                                "More than one program loaded, unset mode is ambiguous");
9184                 return -EINVAL;
9185         }
9186         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9187         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9188                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9189                 return -EINVAL;
9190         }
9191
9192         mode = dev_xdp_mode(dev, flags);
9193         /* can't replace attached link */
9194         if (dev_xdp_link(dev, mode)) {
9195                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9196                 return -EBUSY;
9197         }
9198
9199         /* don't allow if an upper device already has a program */
9200         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9201                 if (dev_xdp_prog_count(upper) > 0) {
9202                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9203                         return -EEXIST;
9204                 }
9205         }
9206
9207         cur_prog = dev_xdp_prog(dev, mode);
9208         /* can't replace attached prog with link */
9209         if (link && cur_prog) {
9210                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9211                 return -EBUSY;
9212         }
9213         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9214                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9215                 return -EEXIST;
9216         }
9217
9218         /* put effective new program into new_prog */
9219         if (link)
9220                 new_prog = link->link.prog;
9221
9222         if (new_prog) {
9223                 bool offload = mode == XDP_MODE_HW;
9224                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9225                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9226
9227                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9228                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9229                         return -EBUSY;
9230                 }
9231                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9232                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9233                         return -EEXIST;
9234                 }
9235                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9236                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9237                         return -EINVAL;
9238                 }
9239                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9240                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9241                         return -EINVAL;
9242                 }
9243                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9244                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9245                         return -EINVAL;
9246                 }
9247         }
9248
9249         /* don't call drivers if the effective program didn't change */
9250         if (new_prog != cur_prog) {
9251                 bpf_op = dev_xdp_bpf_op(dev, mode);
9252                 if (!bpf_op) {
9253                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9254                         return -EOPNOTSUPP;
9255                 }
9256
9257                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9258                 if (err)
9259                         return err;
9260         }
9261
9262         if (link)
9263                 dev_xdp_set_link(dev, mode, link);
9264         else
9265                 dev_xdp_set_prog(dev, mode, new_prog);
9266         if (cur_prog)
9267                 bpf_prog_put(cur_prog);
9268
9269         return 0;
9270 }
9271
9272 static int dev_xdp_attach_link(struct net_device *dev,
9273                                struct netlink_ext_ack *extack,
9274                                struct bpf_xdp_link *link)
9275 {
9276         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9277 }
9278
9279 static int dev_xdp_detach_link(struct net_device *dev,
9280                                struct netlink_ext_ack *extack,
9281                                struct bpf_xdp_link *link)
9282 {
9283         enum bpf_xdp_mode mode;
9284         bpf_op_t bpf_op;
9285
9286         ASSERT_RTNL();
9287
9288         mode = dev_xdp_mode(dev, link->flags);
9289         if (dev_xdp_link(dev, mode) != link)
9290                 return -EINVAL;
9291
9292         bpf_op = dev_xdp_bpf_op(dev, mode);
9293         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9294         dev_xdp_set_link(dev, mode, NULL);
9295         return 0;
9296 }
9297
9298 static void bpf_xdp_link_release(struct bpf_link *link)
9299 {
9300         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9301
9302         rtnl_lock();
9303
9304         /* if racing with net_device's tear down, xdp_link->dev might be
9305          * already NULL, in which case link was already auto-detached
9306          */
9307         if (xdp_link->dev) {
9308                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9309                 xdp_link->dev = NULL;
9310         }
9311
9312         rtnl_unlock();
9313 }
9314
9315 static int bpf_xdp_link_detach(struct bpf_link *link)
9316 {
9317         bpf_xdp_link_release(link);
9318         return 0;
9319 }
9320
9321 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9322 {
9323         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9324
9325         kfree(xdp_link);
9326 }
9327
9328 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9329                                      struct seq_file *seq)
9330 {
9331         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9332         u32 ifindex = 0;
9333
9334         rtnl_lock();
9335         if (xdp_link->dev)
9336                 ifindex = xdp_link->dev->ifindex;
9337         rtnl_unlock();
9338
9339         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9340 }
9341
9342 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9343                                        struct bpf_link_info *info)
9344 {
9345         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9346         u32 ifindex = 0;
9347
9348         rtnl_lock();
9349         if (xdp_link->dev)
9350                 ifindex = xdp_link->dev->ifindex;
9351         rtnl_unlock();
9352
9353         info->xdp.ifindex = ifindex;
9354         return 0;
9355 }
9356
9357 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9358                                struct bpf_prog *old_prog)
9359 {
9360         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9361         enum bpf_xdp_mode mode;
9362         bpf_op_t bpf_op;
9363         int err = 0;
9364
9365         rtnl_lock();
9366
9367         /* link might have been auto-released already, so fail */
9368         if (!xdp_link->dev) {
9369                 err = -ENOLINK;
9370                 goto out_unlock;
9371         }
9372
9373         if (old_prog && link->prog != old_prog) {
9374                 err = -EPERM;
9375                 goto out_unlock;
9376         }
9377         old_prog = link->prog;
9378         if (old_prog->type != new_prog->type ||
9379             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9380                 err = -EINVAL;
9381                 goto out_unlock;
9382         }
9383
9384         if (old_prog == new_prog) {
9385                 /* no-op, don't disturb drivers */
9386                 bpf_prog_put(new_prog);
9387                 goto out_unlock;
9388         }
9389
9390         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9391         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9392         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9393                               xdp_link->flags, new_prog);
9394         if (err)
9395                 goto out_unlock;
9396
9397         old_prog = xchg(&link->prog, new_prog);
9398         bpf_prog_put(old_prog);
9399
9400 out_unlock:
9401         rtnl_unlock();
9402         return err;
9403 }
9404
9405 static const struct bpf_link_ops bpf_xdp_link_lops = {
9406         .release = bpf_xdp_link_release,
9407         .dealloc = bpf_xdp_link_dealloc,
9408         .detach = bpf_xdp_link_detach,
9409         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9410         .fill_link_info = bpf_xdp_link_fill_link_info,
9411         .update_prog = bpf_xdp_link_update,
9412 };
9413
9414 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9415 {
9416         struct net *net = current->nsproxy->net_ns;
9417         struct bpf_link_primer link_primer;
9418         struct bpf_xdp_link *link;
9419         struct net_device *dev;
9420         int err, fd;
9421
9422         rtnl_lock();
9423         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9424         if (!dev) {
9425                 rtnl_unlock();
9426                 return -EINVAL;
9427         }
9428
9429         link = kzalloc(sizeof(*link), GFP_USER);
9430         if (!link) {
9431                 err = -ENOMEM;
9432                 goto unlock;
9433         }
9434
9435         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9436         link->dev = dev;
9437         link->flags = attr->link_create.flags;
9438
9439         err = bpf_link_prime(&link->link, &link_primer);
9440         if (err) {
9441                 kfree(link);
9442                 goto unlock;
9443         }
9444
9445         err = dev_xdp_attach_link(dev, NULL, link);
9446         rtnl_unlock();
9447
9448         if (err) {
9449                 link->dev = NULL;
9450                 bpf_link_cleanup(&link_primer);
9451                 goto out_put_dev;
9452         }
9453
9454         fd = bpf_link_settle(&link_primer);
9455         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9456         dev_put(dev);
9457         return fd;
9458
9459 unlock:
9460         rtnl_unlock();
9461
9462 out_put_dev:
9463         dev_put(dev);
9464         return err;
9465 }
9466
9467 /**
9468  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9469  *      @dev: device
9470  *      @extack: netlink extended ack
9471  *      @fd: new program fd or negative value to clear
9472  *      @expected_fd: old program fd that userspace expects to replace or clear
9473  *      @flags: xdp-related flags
9474  *
9475  *      Set or clear a bpf program for a device
9476  */
9477 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9478                       int fd, int expected_fd, u32 flags)
9479 {
9480         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9481         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9482         int err;
9483
9484         ASSERT_RTNL();
9485
9486         if (fd >= 0) {
9487                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9488                                                  mode != XDP_MODE_SKB);
9489                 if (IS_ERR(new_prog))
9490                         return PTR_ERR(new_prog);
9491         }
9492
9493         if (expected_fd >= 0) {
9494                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9495                                                  mode != XDP_MODE_SKB);
9496                 if (IS_ERR(old_prog)) {
9497                         err = PTR_ERR(old_prog);
9498                         old_prog = NULL;
9499                         goto err_out;
9500                 }
9501         }
9502
9503         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9504
9505 err_out:
9506         if (err && new_prog)
9507                 bpf_prog_put(new_prog);
9508         if (old_prog)
9509                 bpf_prog_put(old_prog);
9510         return err;
9511 }
9512
9513 /**
9514  *      dev_new_index   -       allocate an ifindex
9515  *      @net: the applicable net namespace
9516  *
9517  *      Returns a suitable unique value for a new device interface
9518  *      number.  The caller must hold the rtnl semaphore or the
9519  *      dev_base_lock to be sure it remains unique.
9520  */
9521 static int dev_new_index(struct net *net)
9522 {
9523         int ifindex = net->ifindex;
9524
9525         for (;;) {
9526                 if (++ifindex <= 0)
9527                         ifindex = 1;
9528                 if (!__dev_get_by_index(net, ifindex))
9529                         return net->ifindex = ifindex;
9530         }
9531 }
9532
9533 /* Delayed registration/unregisteration */
9534 LIST_HEAD(net_todo_list);
9535 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9536
9537 static void net_set_todo(struct net_device *dev)
9538 {
9539         list_add_tail(&dev->todo_list, &net_todo_list);
9540         atomic_inc(&dev_net(dev)->dev_unreg_count);
9541 }
9542
9543 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9544         struct net_device *upper, netdev_features_t features)
9545 {
9546         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9547         netdev_features_t feature;
9548         int feature_bit;
9549
9550         for_each_netdev_feature(upper_disables, feature_bit) {
9551                 feature = __NETIF_F_BIT(feature_bit);
9552                 if (!(upper->wanted_features & feature)
9553                     && (features & feature)) {
9554                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9555                                    &feature, upper->name);
9556                         features &= ~feature;
9557                 }
9558         }
9559
9560         return features;
9561 }
9562
9563 static void netdev_sync_lower_features(struct net_device *upper,
9564         struct net_device *lower, netdev_features_t features)
9565 {
9566         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9567         netdev_features_t feature;
9568         int feature_bit;
9569
9570         for_each_netdev_feature(upper_disables, feature_bit) {
9571                 feature = __NETIF_F_BIT(feature_bit);
9572                 if (!(features & feature) && (lower->features & feature)) {
9573                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9574                                    &feature, lower->name);
9575                         lower->wanted_features &= ~feature;
9576                         __netdev_update_features(lower);
9577
9578                         if (unlikely(lower->features & feature))
9579                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9580                                             &feature, lower->name);
9581                         else
9582                                 netdev_features_change(lower);
9583                 }
9584         }
9585 }
9586
9587 static netdev_features_t netdev_fix_features(struct net_device *dev,
9588         netdev_features_t features)
9589 {
9590         /* Fix illegal checksum combinations */
9591         if ((features & NETIF_F_HW_CSUM) &&
9592             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9593                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9594                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9595         }
9596
9597         /* TSO requires that SG is present as well. */
9598         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9599                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9600                 features &= ~NETIF_F_ALL_TSO;
9601         }
9602
9603         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9604                                         !(features & NETIF_F_IP_CSUM)) {
9605                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9606                 features &= ~NETIF_F_TSO;
9607                 features &= ~NETIF_F_TSO_ECN;
9608         }
9609
9610         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9611                                          !(features & NETIF_F_IPV6_CSUM)) {
9612                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9613                 features &= ~NETIF_F_TSO6;
9614         }
9615
9616         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9617         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9618                 features &= ~NETIF_F_TSO_MANGLEID;
9619
9620         /* TSO ECN requires that TSO is present as well. */
9621         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9622                 features &= ~NETIF_F_TSO_ECN;
9623
9624         /* Software GSO depends on SG. */
9625         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9626                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9627                 features &= ~NETIF_F_GSO;
9628         }
9629
9630         /* GSO partial features require GSO partial be set */
9631         if ((features & dev->gso_partial_features) &&
9632             !(features & NETIF_F_GSO_PARTIAL)) {
9633                 netdev_dbg(dev,
9634                            "Dropping partially supported GSO features since no GSO partial.\n");
9635                 features &= ~dev->gso_partial_features;
9636         }
9637
9638         if (!(features & NETIF_F_RXCSUM)) {
9639                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9640                  * successfully merged by hardware must also have the
9641                  * checksum verified by hardware.  If the user does not
9642                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9643                  */
9644                 if (features & NETIF_F_GRO_HW) {
9645                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9646                         features &= ~NETIF_F_GRO_HW;
9647                 }
9648         }
9649
9650         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9651         if (features & NETIF_F_RXFCS) {
9652                 if (features & NETIF_F_LRO) {
9653                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9654                         features &= ~NETIF_F_LRO;
9655                 }
9656
9657                 if (features & NETIF_F_GRO_HW) {
9658                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9659                         features &= ~NETIF_F_GRO_HW;
9660                 }
9661         }
9662
9663         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9664                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9665                 features &= ~NETIF_F_LRO;
9666         }
9667
9668         if (features & NETIF_F_HW_TLS_TX) {
9669                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9670                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9671                 bool hw_csum = features & NETIF_F_HW_CSUM;
9672
9673                 if (!ip_csum && !hw_csum) {
9674                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9675                         features &= ~NETIF_F_HW_TLS_TX;
9676                 }
9677         }
9678
9679         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9680                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9681                 features &= ~NETIF_F_HW_TLS_RX;
9682         }
9683
9684         return features;
9685 }
9686
9687 int __netdev_update_features(struct net_device *dev)
9688 {
9689         struct net_device *upper, *lower;
9690         netdev_features_t features;
9691         struct list_head *iter;
9692         int err = -1;
9693
9694         ASSERT_RTNL();
9695
9696         features = netdev_get_wanted_features(dev);
9697
9698         if (dev->netdev_ops->ndo_fix_features)
9699                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9700
9701         /* driver might be less strict about feature dependencies */
9702         features = netdev_fix_features(dev, features);
9703
9704         /* some features can't be enabled if they're off on an upper device */
9705         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9706                 features = netdev_sync_upper_features(dev, upper, features);
9707
9708         if (dev->features == features)
9709                 goto sync_lower;
9710
9711         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9712                 &dev->features, &features);
9713
9714         if (dev->netdev_ops->ndo_set_features)
9715                 err = dev->netdev_ops->ndo_set_features(dev, features);
9716         else
9717                 err = 0;
9718
9719         if (unlikely(err < 0)) {
9720                 netdev_err(dev,
9721                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9722                         err, &features, &dev->features);
9723                 /* return non-0 since some features might have changed and
9724                  * it's better to fire a spurious notification than miss it
9725                  */
9726                 return -1;
9727         }
9728
9729 sync_lower:
9730         /* some features must be disabled on lower devices when disabled
9731          * on an upper device (think: bonding master or bridge)
9732          */
9733         netdev_for_each_lower_dev(dev, lower, iter)
9734                 netdev_sync_lower_features(dev, lower, features);
9735
9736         if (!err) {
9737                 netdev_features_t diff = features ^ dev->features;
9738
9739                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9740                         /* udp_tunnel_{get,drop}_rx_info both need
9741                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9742                          * device, or they won't do anything.
9743                          * Thus we need to update dev->features
9744                          * *before* calling udp_tunnel_get_rx_info,
9745                          * but *after* calling udp_tunnel_drop_rx_info.
9746                          */
9747                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9748                                 dev->features = features;
9749                                 udp_tunnel_get_rx_info(dev);
9750                         } else {
9751                                 udp_tunnel_drop_rx_info(dev);
9752                         }
9753                 }
9754
9755                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9756                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9757                                 dev->features = features;
9758                                 err |= vlan_get_rx_ctag_filter_info(dev);
9759                         } else {
9760                                 vlan_drop_rx_ctag_filter_info(dev);
9761                         }
9762                 }
9763
9764                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9765                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9766                                 dev->features = features;
9767                                 err |= vlan_get_rx_stag_filter_info(dev);
9768                         } else {
9769                                 vlan_drop_rx_stag_filter_info(dev);
9770                         }
9771                 }
9772
9773                 dev->features = features;
9774         }
9775
9776         return err < 0 ? 0 : 1;
9777 }
9778
9779 /**
9780  *      netdev_update_features - recalculate device features
9781  *      @dev: the device to check
9782  *
9783  *      Recalculate dev->features set and send notifications if it
9784  *      has changed. Should be called after driver or hardware dependent
9785  *      conditions might have changed that influence the features.
9786  */
9787 void netdev_update_features(struct net_device *dev)
9788 {
9789         if (__netdev_update_features(dev))
9790                 netdev_features_change(dev);
9791 }
9792 EXPORT_SYMBOL(netdev_update_features);
9793
9794 /**
9795  *      netdev_change_features - recalculate device features
9796  *      @dev: the device to check
9797  *
9798  *      Recalculate dev->features set and send notifications even
9799  *      if they have not changed. Should be called instead of
9800  *      netdev_update_features() if also dev->vlan_features might
9801  *      have changed to allow the changes to be propagated to stacked
9802  *      VLAN devices.
9803  */
9804 void netdev_change_features(struct net_device *dev)
9805 {
9806         __netdev_update_features(dev);
9807         netdev_features_change(dev);
9808 }
9809 EXPORT_SYMBOL(netdev_change_features);
9810
9811 /**
9812  *      netif_stacked_transfer_operstate -      transfer operstate
9813  *      @rootdev: the root or lower level device to transfer state from
9814  *      @dev: the device to transfer operstate to
9815  *
9816  *      Transfer operational state from root to device. This is normally
9817  *      called when a stacking relationship exists between the root
9818  *      device and the device(a leaf device).
9819  */
9820 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9821                                         struct net_device *dev)
9822 {
9823         if (rootdev->operstate == IF_OPER_DORMANT)
9824                 netif_dormant_on(dev);
9825         else
9826                 netif_dormant_off(dev);
9827
9828         if (rootdev->operstate == IF_OPER_TESTING)
9829                 netif_testing_on(dev);
9830         else
9831                 netif_testing_off(dev);
9832
9833         if (netif_carrier_ok(rootdev))
9834                 netif_carrier_on(dev);
9835         else
9836                 netif_carrier_off(dev);
9837 }
9838 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9839
9840 static int netif_alloc_rx_queues(struct net_device *dev)
9841 {
9842         unsigned int i, count = dev->num_rx_queues;
9843         struct netdev_rx_queue *rx;
9844         size_t sz = count * sizeof(*rx);
9845         int err = 0;
9846
9847         BUG_ON(count < 1);
9848
9849         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9850         if (!rx)
9851                 return -ENOMEM;
9852
9853         dev->_rx = rx;
9854
9855         for (i = 0; i < count; i++) {
9856                 rx[i].dev = dev;
9857
9858                 /* XDP RX-queue setup */
9859                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9860                 if (err < 0)
9861                         goto err_rxq_info;
9862         }
9863         return 0;
9864
9865 err_rxq_info:
9866         /* Rollback successful reg's and free other resources */
9867         while (i--)
9868                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9869         kvfree(dev->_rx);
9870         dev->_rx = NULL;
9871         return err;
9872 }
9873
9874 static void netif_free_rx_queues(struct net_device *dev)
9875 {
9876         unsigned int i, count = dev->num_rx_queues;
9877
9878         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9879         if (!dev->_rx)
9880                 return;
9881
9882         for (i = 0; i < count; i++)
9883                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9884
9885         kvfree(dev->_rx);
9886 }
9887
9888 static void netdev_init_one_queue(struct net_device *dev,
9889                                   struct netdev_queue *queue, void *_unused)
9890 {
9891         /* Initialize queue lock */
9892         spin_lock_init(&queue->_xmit_lock);
9893         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9894         queue->xmit_lock_owner = -1;
9895         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9896         queue->dev = dev;
9897 #ifdef CONFIG_BQL
9898         dql_init(&queue->dql, HZ);
9899 #endif
9900 }
9901
9902 static void netif_free_tx_queues(struct net_device *dev)
9903 {
9904         kvfree(dev->_tx);
9905 }
9906
9907 static int netif_alloc_netdev_queues(struct net_device *dev)
9908 {
9909         unsigned int count = dev->num_tx_queues;
9910         struct netdev_queue *tx;
9911         size_t sz = count * sizeof(*tx);
9912
9913         if (count < 1 || count > 0xffff)
9914                 return -EINVAL;
9915
9916         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9917         if (!tx)
9918                 return -ENOMEM;
9919
9920         dev->_tx = tx;
9921
9922         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9923         spin_lock_init(&dev->tx_global_lock);
9924
9925         return 0;
9926 }
9927
9928 void netif_tx_stop_all_queues(struct net_device *dev)
9929 {
9930         unsigned int i;
9931
9932         for (i = 0; i < dev->num_tx_queues; i++) {
9933                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9934
9935                 netif_tx_stop_queue(txq);
9936         }
9937 }
9938 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9939
9940 /**
9941  * register_netdevice() - register a network device
9942  * @dev: device to register
9943  *
9944  * Take a prepared network device structure and make it externally accessible.
9945  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9946  * Callers must hold the rtnl lock - you may want register_netdev()
9947  * instead of this.
9948  */
9949 int register_netdevice(struct net_device *dev)
9950 {
9951         int ret;
9952         struct net *net = dev_net(dev);
9953
9954         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9955                      NETDEV_FEATURE_COUNT);
9956         BUG_ON(dev_boot_phase);
9957         ASSERT_RTNL();
9958
9959         might_sleep();
9960
9961         /* When net_device's are persistent, this will be fatal. */
9962         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9963         BUG_ON(!net);
9964
9965         ret = ethtool_check_ops(dev->ethtool_ops);
9966         if (ret)
9967                 return ret;
9968
9969         spin_lock_init(&dev->addr_list_lock);
9970         netdev_set_addr_lockdep_class(dev);
9971
9972         ret = dev_get_valid_name(net, dev, dev->name);
9973         if (ret < 0)
9974                 goto out;
9975
9976         ret = -ENOMEM;
9977         dev->name_node = netdev_name_node_head_alloc(dev);
9978         if (!dev->name_node)
9979                 goto out;
9980
9981         /* Init, if this function is available */
9982         if (dev->netdev_ops->ndo_init) {
9983                 ret = dev->netdev_ops->ndo_init(dev);
9984                 if (ret) {
9985                         if (ret > 0)
9986                                 ret = -EIO;
9987                         goto err_free_name;
9988                 }
9989         }
9990
9991         if (((dev->hw_features | dev->features) &
9992              NETIF_F_HW_VLAN_CTAG_FILTER) &&
9993             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9994              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9995                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9996                 ret = -EINVAL;
9997                 goto err_uninit;
9998         }
9999
10000         ret = -EBUSY;
10001         if (!dev->ifindex)
10002                 dev->ifindex = dev_new_index(net);
10003         else if (__dev_get_by_index(net, dev->ifindex))
10004                 goto err_uninit;
10005
10006         /* Transfer changeable features to wanted_features and enable
10007          * software offloads (GSO and GRO).
10008          */
10009         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10010         dev->features |= NETIF_F_SOFT_FEATURES;
10011
10012         if (dev->udp_tunnel_nic_info) {
10013                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10014                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10015         }
10016
10017         dev->wanted_features = dev->features & dev->hw_features;
10018
10019         if (!(dev->flags & IFF_LOOPBACK))
10020                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10021
10022         /* If IPv4 TCP segmentation offload is supported we should also
10023          * allow the device to enable segmenting the frame with the option
10024          * of ignoring a static IP ID value.  This doesn't enable the
10025          * feature itself but allows the user to enable it later.
10026          */
10027         if (dev->hw_features & NETIF_F_TSO)
10028                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10029         if (dev->vlan_features & NETIF_F_TSO)
10030                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10031         if (dev->mpls_features & NETIF_F_TSO)
10032                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10033         if (dev->hw_enc_features & NETIF_F_TSO)
10034                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10035
10036         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10037          */
10038         dev->vlan_features |= NETIF_F_HIGHDMA;
10039
10040         /* Make NETIF_F_SG inheritable to tunnel devices.
10041          */
10042         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10043
10044         /* Make NETIF_F_SG inheritable to MPLS.
10045          */
10046         dev->mpls_features |= NETIF_F_SG;
10047
10048         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10049         ret = notifier_to_errno(ret);
10050         if (ret)
10051                 goto err_uninit;
10052
10053         ret = netdev_register_kobject(dev);
10054         write_lock(&dev_base_lock);
10055         dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10056         write_unlock(&dev_base_lock);
10057         if (ret)
10058                 goto err_uninit;
10059
10060         __netdev_update_features(dev);
10061
10062         /*
10063          *      Default initial state at registry is that the
10064          *      device is present.
10065          */
10066
10067         set_bit(__LINK_STATE_PRESENT, &dev->state);
10068
10069         linkwatch_init_dev(dev);
10070
10071         dev_init_scheduler(dev);
10072
10073         netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10074         list_netdevice(dev);
10075
10076         add_device_randomness(dev->dev_addr, dev->addr_len);
10077
10078         /* If the device has permanent device address, driver should
10079          * set dev_addr and also addr_assign_type should be set to
10080          * NET_ADDR_PERM (default value).
10081          */
10082         if (dev->addr_assign_type == NET_ADDR_PERM)
10083                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10084
10085         /* Notify protocols, that a new device appeared. */
10086         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10087         ret = notifier_to_errno(ret);
10088         if (ret) {
10089                 /* Expect explicit free_netdev() on failure */
10090                 dev->needs_free_netdev = false;
10091                 unregister_netdevice_queue(dev, NULL);
10092                 goto out;
10093         }
10094         /*
10095          *      Prevent userspace races by waiting until the network
10096          *      device is fully setup before sending notifications.
10097          */
10098         if (!dev->rtnl_link_ops ||
10099             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10100                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10101
10102 out:
10103         return ret;
10104
10105 err_uninit:
10106         if (dev->netdev_ops->ndo_uninit)
10107                 dev->netdev_ops->ndo_uninit(dev);
10108         if (dev->priv_destructor)
10109                 dev->priv_destructor(dev);
10110 err_free_name:
10111         netdev_name_node_free(dev->name_node);
10112         goto out;
10113 }
10114 EXPORT_SYMBOL(register_netdevice);
10115
10116 /**
10117  *      init_dummy_netdev       - init a dummy network device for NAPI
10118  *      @dev: device to init
10119  *
10120  *      This takes a network device structure and initialize the minimum
10121  *      amount of fields so it can be used to schedule NAPI polls without
10122  *      registering a full blown interface. This is to be used by drivers
10123  *      that need to tie several hardware interfaces to a single NAPI
10124  *      poll scheduler due to HW limitations.
10125  */
10126 int init_dummy_netdev(struct net_device *dev)
10127 {
10128         /* Clear everything. Note we don't initialize spinlocks
10129          * are they aren't supposed to be taken by any of the
10130          * NAPI code and this dummy netdev is supposed to be
10131          * only ever used for NAPI polls
10132          */
10133         memset(dev, 0, sizeof(struct net_device));
10134
10135         /* make sure we BUG if trying to hit standard
10136          * register/unregister code path
10137          */
10138         dev->reg_state = NETREG_DUMMY;
10139
10140         /* NAPI wants this */
10141         INIT_LIST_HEAD(&dev->napi_list);
10142
10143         /* a dummy interface is started by default */
10144         set_bit(__LINK_STATE_PRESENT, &dev->state);
10145         set_bit(__LINK_STATE_START, &dev->state);
10146
10147         /* napi_busy_loop stats accounting wants this */
10148         dev_net_set(dev, &init_net);
10149
10150         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10151          * because users of this 'device' dont need to change
10152          * its refcount.
10153          */
10154
10155         return 0;
10156 }
10157 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10158
10159
10160 /**
10161  *      register_netdev - register a network device
10162  *      @dev: device to register
10163  *
10164  *      Take a completed network device structure and add it to the kernel
10165  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10166  *      chain. 0 is returned on success. A negative errno code is returned
10167  *      on a failure to set up the device, or if the name is a duplicate.
10168  *
10169  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10170  *      and expands the device name if you passed a format string to
10171  *      alloc_netdev.
10172  */
10173 int register_netdev(struct net_device *dev)
10174 {
10175         int err;
10176
10177         if (rtnl_lock_killable())
10178                 return -EINTR;
10179         err = register_netdevice(dev);
10180         rtnl_unlock();
10181         return err;
10182 }
10183 EXPORT_SYMBOL(register_netdev);
10184
10185 int netdev_refcnt_read(const struct net_device *dev)
10186 {
10187 #ifdef CONFIG_PCPU_DEV_REFCNT
10188         int i, refcnt = 0;
10189
10190         for_each_possible_cpu(i)
10191                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10192         return refcnt;
10193 #else
10194         return refcount_read(&dev->dev_refcnt);
10195 #endif
10196 }
10197 EXPORT_SYMBOL(netdev_refcnt_read);
10198
10199 int netdev_unregister_timeout_secs __read_mostly = 10;
10200
10201 #define WAIT_REFS_MIN_MSECS 1
10202 #define WAIT_REFS_MAX_MSECS 250
10203 /**
10204  * netdev_wait_allrefs_any - wait until all references are gone.
10205  * @list: list of net_devices to wait on
10206  *
10207  * This is called when unregistering network devices.
10208  *
10209  * Any protocol or device that holds a reference should register
10210  * for netdevice notification, and cleanup and put back the
10211  * reference if they receive an UNREGISTER event.
10212  * We can get stuck here if buggy protocols don't correctly
10213  * call dev_put.
10214  */
10215 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10216 {
10217         unsigned long rebroadcast_time, warning_time;
10218         struct net_device *dev;
10219         int wait = 0;
10220
10221         rebroadcast_time = warning_time = jiffies;
10222
10223         list_for_each_entry(dev, list, todo_list)
10224                 if (netdev_refcnt_read(dev) == 1)
10225                         return dev;
10226
10227         while (true) {
10228                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10229                         rtnl_lock();
10230
10231                         /* Rebroadcast unregister notification */
10232                         list_for_each_entry(dev, list, todo_list)
10233                                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10234
10235                         __rtnl_unlock();
10236                         rcu_barrier();
10237                         rtnl_lock();
10238
10239                         list_for_each_entry(dev, list, todo_list)
10240                                 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10241                                              &dev->state)) {
10242                                         /* We must not have linkwatch events
10243                                          * pending on unregister. If this
10244                                          * happens, we simply run the queue
10245                                          * unscheduled, resulting in a noop
10246                                          * for this device.
10247                                          */
10248                                         linkwatch_run_queue();
10249                                         break;
10250                                 }
10251
10252                         __rtnl_unlock();
10253
10254                         rebroadcast_time = jiffies;
10255                 }
10256
10257                 if (!wait) {
10258                         rcu_barrier();
10259                         wait = WAIT_REFS_MIN_MSECS;
10260                 } else {
10261                         msleep(wait);
10262                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10263                 }
10264
10265                 list_for_each_entry(dev, list, todo_list)
10266                         if (netdev_refcnt_read(dev) == 1)
10267                                 return dev;
10268
10269                 if (time_after(jiffies, warning_time +
10270                                READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10271                         list_for_each_entry(dev, list, todo_list) {
10272                                 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10273                                          dev->name, netdev_refcnt_read(dev));
10274                                 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10275                         }
10276
10277                         warning_time = jiffies;
10278                 }
10279         }
10280 }
10281
10282 /* The sequence is:
10283  *
10284  *      rtnl_lock();
10285  *      ...
10286  *      register_netdevice(x1);
10287  *      register_netdevice(x2);
10288  *      ...
10289  *      unregister_netdevice(y1);
10290  *      unregister_netdevice(y2);
10291  *      ...
10292  *      rtnl_unlock();
10293  *      free_netdev(y1);
10294  *      free_netdev(y2);
10295  *
10296  * We are invoked by rtnl_unlock().
10297  * This allows us to deal with problems:
10298  * 1) We can delete sysfs objects which invoke hotplug
10299  *    without deadlocking with linkwatch via keventd.
10300  * 2) Since we run with the RTNL semaphore not held, we can sleep
10301  *    safely in order to wait for the netdev refcnt to drop to zero.
10302  *
10303  * We must not return until all unregister events added during
10304  * the interval the lock was held have been completed.
10305  */
10306 void netdev_run_todo(void)
10307 {
10308         struct net_device *dev, *tmp;
10309         struct list_head list;
10310 #ifdef CONFIG_LOCKDEP
10311         struct list_head unlink_list;
10312
10313         list_replace_init(&net_unlink_list, &unlink_list);
10314
10315         while (!list_empty(&unlink_list)) {
10316                 struct net_device *dev = list_first_entry(&unlink_list,
10317                                                           struct net_device,
10318                                                           unlink_list);
10319                 list_del_init(&dev->unlink_list);
10320                 dev->nested_level = dev->lower_level - 1;
10321         }
10322 #endif
10323
10324         /* Snapshot list, allow later requests */
10325         list_replace_init(&net_todo_list, &list);
10326
10327         __rtnl_unlock();
10328
10329         /* Wait for rcu callbacks to finish before next phase */
10330         if (!list_empty(&list))
10331                 rcu_barrier();
10332
10333         list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10334                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10335                         netdev_WARN(dev, "run_todo but not unregistering\n");
10336                         list_del(&dev->todo_list);
10337                         continue;
10338                 }
10339
10340                 write_lock(&dev_base_lock);
10341                 dev->reg_state = NETREG_UNREGISTERED;
10342                 write_unlock(&dev_base_lock);
10343                 linkwatch_forget_dev(dev);
10344         }
10345
10346         while (!list_empty(&list)) {
10347                 dev = netdev_wait_allrefs_any(&list);
10348                 list_del(&dev->todo_list);
10349
10350                 /* paranoia */
10351                 BUG_ON(netdev_refcnt_read(dev) != 1);
10352                 BUG_ON(!list_empty(&dev->ptype_all));
10353                 BUG_ON(!list_empty(&dev->ptype_specific));
10354                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10355                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10356
10357                 if (dev->priv_destructor)
10358                         dev->priv_destructor(dev);
10359                 if (dev->needs_free_netdev)
10360                         free_netdev(dev);
10361
10362                 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10363                         wake_up(&netdev_unregistering_wq);
10364
10365                 /* Free network device */
10366                 kobject_put(&dev->dev.kobj);
10367         }
10368 }
10369
10370 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10371  * all the same fields in the same order as net_device_stats, with only
10372  * the type differing, but rtnl_link_stats64 may have additional fields
10373  * at the end for newer counters.
10374  */
10375 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10376                              const struct net_device_stats *netdev_stats)
10377 {
10378 #if BITS_PER_LONG == 64
10379         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10380         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10381         /* zero out counters that only exist in rtnl_link_stats64 */
10382         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10383                sizeof(*stats64) - sizeof(*netdev_stats));
10384 #else
10385         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10386         const unsigned long *src = (const unsigned long *)netdev_stats;
10387         u64 *dst = (u64 *)stats64;
10388
10389         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10390         for (i = 0; i < n; i++)
10391                 dst[i] = src[i];
10392         /* zero out counters that only exist in rtnl_link_stats64 */
10393         memset((char *)stats64 + n * sizeof(u64), 0,
10394                sizeof(*stats64) - n * sizeof(u64));
10395 #endif
10396 }
10397 EXPORT_SYMBOL(netdev_stats_to_stats64);
10398
10399 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10400 {
10401         struct net_device_core_stats __percpu *p;
10402
10403         p = alloc_percpu_gfp(struct net_device_core_stats,
10404                              GFP_ATOMIC | __GFP_NOWARN);
10405
10406         if (p && cmpxchg(&dev->core_stats, NULL, p))
10407                 free_percpu(p);
10408
10409         /* This READ_ONCE() pairs with the cmpxchg() above */
10410         return READ_ONCE(dev->core_stats);
10411 }
10412 EXPORT_SYMBOL(netdev_core_stats_alloc);
10413
10414 /**
10415  *      dev_get_stats   - get network device statistics
10416  *      @dev: device to get statistics from
10417  *      @storage: place to store stats
10418  *
10419  *      Get network statistics from device. Return @storage.
10420  *      The device driver may provide its own method by setting
10421  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10422  *      otherwise the internal statistics structure is used.
10423  */
10424 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10425                                         struct rtnl_link_stats64 *storage)
10426 {
10427         const struct net_device_ops *ops = dev->netdev_ops;
10428         const struct net_device_core_stats __percpu *p;
10429
10430         if (ops->ndo_get_stats64) {
10431                 memset(storage, 0, sizeof(*storage));
10432                 ops->ndo_get_stats64(dev, storage);
10433         } else if (ops->ndo_get_stats) {
10434                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10435         } else {
10436                 netdev_stats_to_stats64(storage, &dev->stats);
10437         }
10438
10439         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10440         p = READ_ONCE(dev->core_stats);
10441         if (p) {
10442                 const struct net_device_core_stats *core_stats;
10443                 int i;
10444
10445                 for_each_possible_cpu(i) {
10446                         core_stats = per_cpu_ptr(p, i);
10447                         storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10448                         storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10449                         storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10450                         storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10451                 }
10452         }
10453         return storage;
10454 }
10455 EXPORT_SYMBOL(dev_get_stats);
10456
10457 /**
10458  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10459  *      @s: place to store stats
10460  *      @netstats: per-cpu network stats to read from
10461  *
10462  *      Read per-cpu network statistics and populate the related fields in @s.
10463  */
10464 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10465                            const struct pcpu_sw_netstats __percpu *netstats)
10466 {
10467         int cpu;
10468
10469         for_each_possible_cpu(cpu) {
10470                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10471                 const struct pcpu_sw_netstats *stats;
10472                 unsigned int start;
10473
10474                 stats = per_cpu_ptr(netstats, cpu);
10475                 do {
10476                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10477                         rx_packets = u64_stats_read(&stats->rx_packets);
10478                         rx_bytes   = u64_stats_read(&stats->rx_bytes);
10479                         tx_packets = u64_stats_read(&stats->tx_packets);
10480                         tx_bytes   = u64_stats_read(&stats->tx_bytes);
10481                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10482
10483                 s->rx_packets += rx_packets;
10484                 s->rx_bytes   += rx_bytes;
10485                 s->tx_packets += tx_packets;
10486                 s->tx_bytes   += tx_bytes;
10487         }
10488 }
10489 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10490
10491 /**
10492  *      dev_get_tstats64 - ndo_get_stats64 implementation
10493  *      @dev: device to get statistics from
10494  *      @s: place to store stats
10495  *
10496  *      Populate @s from dev->stats and dev->tstats. Can be used as
10497  *      ndo_get_stats64() callback.
10498  */
10499 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10500 {
10501         netdev_stats_to_stats64(s, &dev->stats);
10502         dev_fetch_sw_netstats(s, dev->tstats);
10503 }
10504 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10505
10506 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10507 {
10508         struct netdev_queue *queue = dev_ingress_queue(dev);
10509
10510 #ifdef CONFIG_NET_CLS_ACT
10511         if (queue)
10512                 return queue;
10513         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10514         if (!queue)
10515                 return NULL;
10516         netdev_init_one_queue(dev, queue, NULL);
10517         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10518         queue->qdisc_sleeping = &noop_qdisc;
10519         rcu_assign_pointer(dev->ingress_queue, queue);
10520 #endif
10521         return queue;
10522 }
10523
10524 static const struct ethtool_ops default_ethtool_ops;
10525
10526 void netdev_set_default_ethtool_ops(struct net_device *dev,
10527                                     const struct ethtool_ops *ops)
10528 {
10529         if (dev->ethtool_ops == &default_ethtool_ops)
10530                 dev->ethtool_ops = ops;
10531 }
10532 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10533
10534 void netdev_freemem(struct net_device *dev)
10535 {
10536         char *addr = (char *)dev - dev->padded;
10537
10538         kvfree(addr);
10539 }
10540
10541 /**
10542  * alloc_netdev_mqs - allocate network device
10543  * @sizeof_priv: size of private data to allocate space for
10544  * @name: device name format string
10545  * @name_assign_type: origin of device name
10546  * @setup: callback to initialize device
10547  * @txqs: the number of TX subqueues to allocate
10548  * @rxqs: the number of RX subqueues to allocate
10549  *
10550  * Allocates a struct net_device with private data area for driver use
10551  * and performs basic initialization.  Also allocates subqueue structs
10552  * for each queue on the device.
10553  */
10554 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10555                 unsigned char name_assign_type,
10556                 void (*setup)(struct net_device *),
10557                 unsigned int txqs, unsigned int rxqs)
10558 {
10559         struct net_device *dev;
10560         unsigned int alloc_size;
10561         struct net_device *p;
10562
10563         BUG_ON(strlen(name) >= sizeof(dev->name));
10564
10565         if (txqs < 1) {
10566                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10567                 return NULL;
10568         }
10569
10570         if (rxqs < 1) {
10571                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10572                 return NULL;
10573         }
10574
10575         alloc_size = sizeof(struct net_device);
10576         if (sizeof_priv) {
10577                 /* ensure 32-byte alignment of private area */
10578                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10579                 alloc_size += sizeof_priv;
10580         }
10581         /* ensure 32-byte alignment of whole construct */
10582         alloc_size += NETDEV_ALIGN - 1;
10583
10584         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10585         if (!p)
10586                 return NULL;
10587
10588         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10589         dev->padded = (char *)dev - (char *)p;
10590
10591         ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10592 #ifdef CONFIG_PCPU_DEV_REFCNT
10593         dev->pcpu_refcnt = alloc_percpu(int);
10594         if (!dev->pcpu_refcnt)
10595                 goto free_dev;
10596         __dev_hold(dev);
10597 #else
10598         refcount_set(&dev->dev_refcnt, 1);
10599 #endif
10600
10601         if (dev_addr_init(dev))
10602                 goto free_pcpu;
10603
10604         dev_mc_init(dev);
10605         dev_uc_init(dev);
10606
10607         dev_net_set(dev, &init_net);
10608
10609         dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10610         dev->gso_max_segs = GSO_MAX_SEGS;
10611         dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10612         dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10613         dev->tso_max_segs = TSO_MAX_SEGS;
10614         dev->upper_level = 1;
10615         dev->lower_level = 1;
10616 #ifdef CONFIG_LOCKDEP
10617         dev->nested_level = 0;
10618         INIT_LIST_HEAD(&dev->unlink_list);
10619 #endif
10620
10621         INIT_LIST_HEAD(&dev->napi_list);
10622         INIT_LIST_HEAD(&dev->unreg_list);
10623         INIT_LIST_HEAD(&dev->close_list);
10624         INIT_LIST_HEAD(&dev->link_watch_list);
10625         INIT_LIST_HEAD(&dev->adj_list.upper);
10626         INIT_LIST_HEAD(&dev->adj_list.lower);
10627         INIT_LIST_HEAD(&dev->ptype_all);
10628         INIT_LIST_HEAD(&dev->ptype_specific);
10629         INIT_LIST_HEAD(&dev->net_notifier_list);
10630 #ifdef CONFIG_NET_SCHED
10631         hash_init(dev->qdisc_hash);
10632 #endif
10633         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10634         setup(dev);
10635
10636         if (!dev->tx_queue_len) {
10637                 dev->priv_flags |= IFF_NO_QUEUE;
10638                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10639         }
10640
10641         dev->num_tx_queues = txqs;
10642         dev->real_num_tx_queues = txqs;
10643         if (netif_alloc_netdev_queues(dev))
10644                 goto free_all;
10645
10646         dev->num_rx_queues = rxqs;
10647         dev->real_num_rx_queues = rxqs;
10648         if (netif_alloc_rx_queues(dev))
10649                 goto free_all;
10650
10651         strcpy(dev->name, name);
10652         dev->name_assign_type = name_assign_type;
10653         dev->group = INIT_NETDEV_GROUP;
10654         if (!dev->ethtool_ops)
10655                 dev->ethtool_ops = &default_ethtool_ops;
10656
10657         nf_hook_netdev_init(dev);
10658
10659         return dev;
10660
10661 free_all:
10662         free_netdev(dev);
10663         return NULL;
10664
10665 free_pcpu:
10666 #ifdef CONFIG_PCPU_DEV_REFCNT
10667         free_percpu(dev->pcpu_refcnt);
10668 free_dev:
10669 #endif
10670         netdev_freemem(dev);
10671         return NULL;
10672 }
10673 EXPORT_SYMBOL(alloc_netdev_mqs);
10674
10675 /**
10676  * free_netdev - free network device
10677  * @dev: device
10678  *
10679  * This function does the last stage of destroying an allocated device
10680  * interface. The reference to the device object is released. If this
10681  * is the last reference then it will be freed.Must be called in process
10682  * context.
10683  */
10684 void free_netdev(struct net_device *dev)
10685 {
10686         struct napi_struct *p, *n;
10687
10688         might_sleep();
10689
10690         /* When called immediately after register_netdevice() failed the unwind
10691          * handling may still be dismantling the device. Handle that case by
10692          * deferring the free.
10693          */
10694         if (dev->reg_state == NETREG_UNREGISTERING) {
10695                 ASSERT_RTNL();
10696                 dev->needs_free_netdev = true;
10697                 return;
10698         }
10699
10700         netif_free_tx_queues(dev);
10701         netif_free_rx_queues(dev);
10702
10703         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10704
10705         /* Flush device addresses */
10706         dev_addr_flush(dev);
10707
10708         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10709                 netif_napi_del(p);
10710
10711         ref_tracker_dir_exit(&dev->refcnt_tracker);
10712 #ifdef CONFIG_PCPU_DEV_REFCNT
10713         free_percpu(dev->pcpu_refcnt);
10714         dev->pcpu_refcnt = NULL;
10715 #endif
10716         free_percpu(dev->core_stats);
10717         dev->core_stats = NULL;
10718         free_percpu(dev->xdp_bulkq);
10719         dev->xdp_bulkq = NULL;
10720
10721         /*  Compatibility with error handling in drivers */
10722         if (dev->reg_state == NETREG_UNINITIALIZED) {
10723                 netdev_freemem(dev);
10724                 return;
10725         }
10726
10727         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10728         dev->reg_state = NETREG_RELEASED;
10729
10730         /* will free via device release */
10731         put_device(&dev->dev);
10732 }
10733 EXPORT_SYMBOL(free_netdev);
10734
10735 /**
10736  *      synchronize_net -  Synchronize with packet receive processing
10737  *
10738  *      Wait for packets currently being received to be done.
10739  *      Does not block later packets from starting.
10740  */
10741 void synchronize_net(void)
10742 {
10743         might_sleep();
10744         if (rtnl_is_locked())
10745                 synchronize_rcu_expedited();
10746         else
10747                 synchronize_rcu();
10748 }
10749 EXPORT_SYMBOL(synchronize_net);
10750
10751 /**
10752  *      unregister_netdevice_queue - remove device from the kernel
10753  *      @dev: device
10754  *      @head: list
10755  *
10756  *      This function shuts down a device interface and removes it
10757  *      from the kernel tables.
10758  *      If head not NULL, device is queued to be unregistered later.
10759  *
10760  *      Callers must hold the rtnl semaphore.  You may want
10761  *      unregister_netdev() instead of this.
10762  */
10763
10764 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10765 {
10766         ASSERT_RTNL();
10767
10768         if (head) {
10769                 list_move_tail(&dev->unreg_list, head);
10770         } else {
10771                 LIST_HEAD(single);
10772
10773                 list_add(&dev->unreg_list, &single);
10774                 unregister_netdevice_many(&single);
10775         }
10776 }
10777 EXPORT_SYMBOL(unregister_netdevice_queue);
10778
10779 /**
10780  *      unregister_netdevice_many - unregister many devices
10781  *      @head: list of devices
10782  *
10783  *  Note: As most callers use a stack allocated list_head,
10784  *  we force a list_del() to make sure stack wont be corrupted later.
10785  */
10786 void unregister_netdevice_many(struct list_head *head)
10787 {
10788         struct net_device *dev, *tmp;
10789         LIST_HEAD(close_head);
10790
10791         BUG_ON(dev_boot_phase);
10792         ASSERT_RTNL();
10793
10794         if (list_empty(head))
10795                 return;
10796
10797         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10798                 /* Some devices call without registering
10799                  * for initialization unwind. Remove those
10800                  * devices and proceed with the remaining.
10801                  */
10802                 if (dev->reg_state == NETREG_UNINITIALIZED) {
10803                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10804                                  dev->name, dev);
10805
10806                         WARN_ON(1);
10807                         list_del(&dev->unreg_list);
10808                         continue;
10809                 }
10810                 dev->dismantle = true;
10811                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10812         }
10813
10814         /* If device is running, close it first. */
10815         list_for_each_entry(dev, head, unreg_list)
10816                 list_add_tail(&dev->close_list, &close_head);
10817         dev_close_many(&close_head, true);
10818
10819         list_for_each_entry(dev, head, unreg_list) {
10820                 /* And unlink it from device chain. */
10821                 write_lock(&dev_base_lock);
10822                 unlist_netdevice(dev, false);
10823                 dev->reg_state = NETREG_UNREGISTERING;
10824                 write_unlock(&dev_base_lock);
10825         }
10826         flush_all_backlogs();
10827
10828         synchronize_net();
10829
10830         list_for_each_entry(dev, head, unreg_list) {
10831                 struct sk_buff *skb = NULL;
10832
10833                 /* Shutdown queueing discipline. */
10834                 dev_shutdown(dev);
10835
10836                 dev_xdp_uninstall(dev);
10837
10838                 netdev_offload_xstats_disable_all(dev);
10839
10840                 /* Notify protocols, that we are about to destroy
10841                  * this device. They should clean all the things.
10842                  */
10843                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10844
10845                 if (!dev->rtnl_link_ops ||
10846                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10847                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10848                                                      GFP_KERNEL, NULL, 0);
10849
10850                 /*
10851                  *      Flush the unicast and multicast chains
10852                  */
10853                 dev_uc_flush(dev);
10854                 dev_mc_flush(dev);
10855
10856                 netdev_name_node_alt_flush(dev);
10857                 netdev_name_node_free(dev->name_node);
10858
10859                 if (dev->netdev_ops->ndo_uninit)
10860                         dev->netdev_ops->ndo_uninit(dev);
10861
10862                 if (skb)
10863                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10864
10865                 /* Notifier chain MUST detach us all upper devices. */
10866                 WARN_ON(netdev_has_any_upper_dev(dev));
10867                 WARN_ON(netdev_has_any_lower_dev(dev));
10868
10869                 /* Remove entries from kobject tree */
10870                 netdev_unregister_kobject(dev);
10871 #ifdef CONFIG_XPS
10872                 /* Remove XPS queueing entries */
10873                 netif_reset_xps_queues_gt(dev, 0);
10874 #endif
10875         }
10876
10877         synchronize_net();
10878
10879         list_for_each_entry(dev, head, unreg_list) {
10880                 netdev_put(dev, &dev->dev_registered_tracker);
10881                 net_set_todo(dev);
10882         }
10883
10884         list_del(head);
10885 }
10886 EXPORT_SYMBOL(unregister_netdevice_many);
10887
10888 /**
10889  *      unregister_netdev - remove device from the kernel
10890  *      @dev: device
10891  *
10892  *      This function shuts down a device interface and removes it
10893  *      from the kernel tables.
10894  *
10895  *      This is just a wrapper for unregister_netdevice that takes
10896  *      the rtnl semaphore.  In general you want to use this and not
10897  *      unregister_netdevice.
10898  */
10899 void unregister_netdev(struct net_device *dev)
10900 {
10901         rtnl_lock();
10902         unregister_netdevice(dev);
10903         rtnl_unlock();
10904 }
10905 EXPORT_SYMBOL(unregister_netdev);
10906
10907 /**
10908  *      __dev_change_net_namespace - move device to different nethost namespace
10909  *      @dev: device
10910  *      @net: network namespace
10911  *      @pat: If not NULL name pattern to try if the current device name
10912  *            is already taken in the destination network namespace.
10913  *      @new_ifindex: If not zero, specifies device index in the target
10914  *                    namespace.
10915  *
10916  *      This function shuts down a device interface and moves it
10917  *      to a new network namespace. On success 0 is returned, on
10918  *      a failure a netagive errno code is returned.
10919  *
10920  *      Callers must hold the rtnl semaphore.
10921  */
10922
10923 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10924                                const char *pat, int new_ifindex)
10925 {
10926         struct net *net_old = dev_net(dev);
10927         int err, new_nsid;
10928
10929         ASSERT_RTNL();
10930
10931         /* Don't allow namespace local devices to be moved. */
10932         err = -EINVAL;
10933         if (dev->features & NETIF_F_NETNS_LOCAL)
10934                 goto out;
10935
10936         /* Ensure the device has been registrered */
10937         if (dev->reg_state != NETREG_REGISTERED)
10938                 goto out;
10939
10940         /* Get out if there is nothing todo */
10941         err = 0;
10942         if (net_eq(net_old, net))
10943                 goto out;
10944
10945         /* Pick the destination device name, and ensure
10946          * we can use it in the destination network namespace.
10947          */
10948         err = -EEXIST;
10949         if (netdev_name_in_use(net, dev->name)) {
10950                 /* We get here if we can't use the current device name */
10951                 if (!pat)
10952                         goto out;
10953                 err = dev_get_valid_name(net, dev, pat);
10954                 if (err < 0)
10955                         goto out;
10956         }
10957
10958         /* Check that new_ifindex isn't used yet. */
10959         err = -EBUSY;
10960         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10961                 goto out;
10962
10963         /*
10964          * And now a mini version of register_netdevice unregister_netdevice.
10965          */
10966
10967         /* If device is running close it first. */
10968         dev_close(dev);
10969
10970         /* And unlink it from device chain */
10971         unlist_netdevice(dev, true);
10972
10973         synchronize_net();
10974
10975         /* Shutdown queueing discipline. */
10976         dev_shutdown(dev);
10977
10978         /* Notify protocols, that we are about to destroy
10979          * this device. They should clean all the things.
10980          *
10981          * Note that dev->reg_state stays at NETREG_REGISTERED.
10982          * This is wanted because this way 8021q and macvlan know
10983          * the device is just moving and can keep their slaves up.
10984          */
10985         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10986         rcu_barrier();
10987
10988         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10989         /* If there is an ifindex conflict assign a new one */
10990         if (!new_ifindex) {
10991                 if (__dev_get_by_index(net, dev->ifindex))
10992                         new_ifindex = dev_new_index(net);
10993                 else
10994                         new_ifindex = dev->ifindex;
10995         }
10996
10997         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10998                             new_ifindex);
10999
11000         /*
11001          *      Flush the unicast and multicast chains
11002          */
11003         dev_uc_flush(dev);
11004         dev_mc_flush(dev);
11005
11006         /* Send a netdev-removed uevent to the old namespace */
11007         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11008         netdev_adjacent_del_links(dev);
11009
11010         /* Move per-net netdevice notifiers that are following the netdevice */
11011         move_netdevice_notifiers_dev_net(dev, net);
11012
11013         /* Actually switch the network namespace */
11014         dev_net_set(dev, net);
11015         dev->ifindex = new_ifindex;
11016
11017         /* Send a netdev-add uevent to the new namespace */
11018         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11019         netdev_adjacent_add_links(dev);
11020
11021         /* Fixup kobjects */
11022         err = device_rename(&dev->dev, dev->name);
11023         WARN_ON(err);
11024
11025         /* Adapt owner in case owning user namespace of target network
11026          * namespace is different from the original one.
11027          */
11028         err = netdev_change_owner(dev, net_old, net);
11029         WARN_ON(err);
11030
11031         /* Add the device back in the hashes */
11032         list_netdevice(dev);
11033
11034         /* Notify protocols, that a new device appeared. */
11035         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11036
11037         /*
11038          *      Prevent userspace races by waiting until the network
11039          *      device is fully setup before sending notifications.
11040          */
11041         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11042
11043         synchronize_net();
11044         err = 0;
11045 out:
11046         return err;
11047 }
11048 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11049
11050 static int dev_cpu_dead(unsigned int oldcpu)
11051 {
11052         struct sk_buff **list_skb;
11053         struct sk_buff *skb;
11054         unsigned int cpu;
11055         struct softnet_data *sd, *oldsd, *remsd = NULL;
11056
11057         local_irq_disable();
11058         cpu = smp_processor_id();
11059         sd = &per_cpu(softnet_data, cpu);
11060         oldsd = &per_cpu(softnet_data, oldcpu);
11061
11062         /* Find end of our completion_queue. */
11063         list_skb = &sd->completion_queue;
11064         while (*list_skb)
11065                 list_skb = &(*list_skb)->next;
11066         /* Append completion queue from offline CPU. */
11067         *list_skb = oldsd->completion_queue;
11068         oldsd->completion_queue = NULL;
11069
11070         /* Append output queue from offline CPU. */
11071         if (oldsd->output_queue) {
11072                 *sd->output_queue_tailp = oldsd->output_queue;
11073                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11074                 oldsd->output_queue = NULL;
11075                 oldsd->output_queue_tailp = &oldsd->output_queue;
11076         }
11077         /* Append NAPI poll list from offline CPU, with one exception :
11078          * process_backlog() must be called by cpu owning percpu backlog.
11079          * We properly handle process_queue & input_pkt_queue later.
11080          */
11081         while (!list_empty(&oldsd->poll_list)) {
11082                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11083                                                             struct napi_struct,
11084                                                             poll_list);
11085
11086                 list_del_init(&napi->poll_list);
11087                 if (napi->poll == process_backlog)
11088                         napi->state = 0;
11089                 else
11090                         ____napi_schedule(sd, napi);
11091         }
11092
11093         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11094         local_irq_enable();
11095
11096 #ifdef CONFIG_RPS
11097         remsd = oldsd->rps_ipi_list;
11098         oldsd->rps_ipi_list = NULL;
11099 #endif
11100         /* send out pending IPI's on offline CPU */
11101         net_rps_send_ipi(remsd);
11102
11103         /* Process offline CPU's input_pkt_queue */
11104         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11105                 netif_rx(skb);
11106                 input_queue_head_incr(oldsd);
11107         }
11108         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11109                 netif_rx(skb);
11110                 input_queue_head_incr(oldsd);
11111         }
11112
11113         return 0;
11114 }
11115
11116 /**
11117  *      netdev_increment_features - increment feature set by one
11118  *      @all: current feature set
11119  *      @one: new feature set
11120  *      @mask: mask feature set
11121  *
11122  *      Computes a new feature set after adding a device with feature set
11123  *      @one to the master device with current feature set @all.  Will not
11124  *      enable anything that is off in @mask. Returns the new feature set.
11125  */
11126 netdev_features_t netdev_increment_features(netdev_features_t all,
11127         netdev_features_t one, netdev_features_t mask)
11128 {
11129         if (mask & NETIF_F_HW_CSUM)
11130                 mask |= NETIF_F_CSUM_MASK;
11131         mask |= NETIF_F_VLAN_CHALLENGED;
11132
11133         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11134         all &= one | ~NETIF_F_ALL_FOR_ALL;
11135
11136         /* If one device supports hw checksumming, set for all. */
11137         if (all & NETIF_F_HW_CSUM)
11138                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11139
11140         return all;
11141 }
11142 EXPORT_SYMBOL(netdev_increment_features);
11143
11144 static struct hlist_head * __net_init netdev_create_hash(void)
11145 {
11146         int i;
11147         struct hlist_head *hash;
11148
11149         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11150         if (hash != NULL)
11151                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11152                         INIT_HLIST_HEAD(&hash[i]);
11153
11154         return hash;
11155 }
11156
11157 /* Initialize per network namespace state */
11158 static int __net_init netdev_init(struct net *net)
11159 {
11160         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11161                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11162
11163         INIT_LIST_HEAD(&net->dev_base_head);
11164
11165         net->dev_name_head = netdev_create_hash();
11166         if (net->dev_name_head == NULL)
11167                 goto err_name;
11168
11169         net->dev_index_head = netdev_create_hash();
11170         if (net->dev_index_head == NULL)
11171                 goto err_idx;
11172
11173         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11174
11175         return 0;
11176
11177 err_idx:
11178         kfree(net->dev_name_head);
11179 err_name:
11180         return -ENOMEM;
11181 }
11182
11183 /**
11184  *      netdev_drivername - network driver for the device
11185  *      @dev: network device
11186  *
11187  *      Determine network driver for device.
11188  */
11189 const char *netdev_drivername(const struct net_device *dev)
11190 {
11191         const struct device_driver *driver;
11192         const struct device *parent;
11193         const char *empty = "";
11194
11195         parent = dev->dev.parent;
11196         if (!parent)
11197                 return empty;
11198
11199         driver = parent->driver;
11200         if (driver && driver->name)
11201                 return driver->name;
11202         return empty;
11203 }
11204
11205 static void __netdev_printk(const char *level, const struct net_device *dev,
11206                             struct va_format *vaf)
11207 {
11208         if (dev && dev->dev.parent) {
11209                 dev_printk_emit(level[1] - '0',
11210                                 dev->dev.parent,
11211                                 "%s %s %s%s: %pV",
11212                                 dev_driver_string(dev->dev.parent),
11213                                 dev_name(dev->dev.parent),
11214                                 netdev_name(dev), netdev_reg_state(dev),
11215                                 vaf);
11216         } else if (dev) {
11217                 printk("%s%s%s: %pV",
11218                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11219         } else {
11220                 printk("%s(NULL net_device): %pV", level, vaf);
11221         }
11222 }
11223
11224 void netdev_printk(const char *level, const struct net_device *dev,
11225                    const char *format, ...)
11226 {
11227         struct va_format vaf;
11228         va_list args;
11229
11230         va_start(args, format);
11231
11232         vaf.fmt = format;
11233         vaf.va = &args;
11234
11235         __netdev_printk(level, dev, &vaf);
11236
11237         va_end(args);
11238 }
11239 EXPORT_SYMBOL(netdev_printk);
11240
11241 #define define_netdev_printk_level(func, level)                 \
11242 void func(const struct net_device *dev, const char *fmt, ...)   \
11243 {                                                               \
11244         struct va_format vaf;                                   \
11245         va_list args;                                           \
11246                                                                 \
11247         va_start(args, fmt);                                    \
11248                                                                 \
11249         vaf.fmt = fmt;                                          \
11250         vaf.va = &args;                                         \
11251                                                                 \
11252         __netdev_printk(level, dev, &vaf);                      \
11253                                                                 \
11254         va_end(args);                                           \
11255 }                                                               \
11256 EXPORT_SYMBOL(func);
11257
11258 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11259 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11260 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11261 define_netdev_printk_level(netdev_err, KERN_ERR);
11262 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11263 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11264 define_netdev_printk_level(netdev_info, KERN_INFO);
11265
11266 static void __net_exit netdev_exit(struct net *net)
11267 {
11268         kfree(net->dev_name_head);
11269         kfree(net->dev_index_head);
11270         if (net != &init_net)
11271                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11272 }
11273
11274 static struct pernet_operations __net_initdata netdev_net_ops = {
11275         .init = netdev_init,
11276         .exit = netdev_exit,
11277 };
11278
11279 static void __net_exit default_device_exit_net(struct net *net)
11280 {
11281         struct net_device *dev, *aux;
11282         /*
11283          * Push all migratable network devices back to the
11284          * initial network namespace
11285          */
11286         ASSERT_RTNL();
11287         for_each_netdev_safe(net, dev, aux) {
11288                 int err;
11289                 char fb_name[IFNAMSIZ];
11290
11291                 /* Ignore unmoveable devices (i.e. loopback) */
11292                 if (dev->features & NETIF_F_NETNS_LOCAL)
11293                         continue;
11294
11295                 /* Leave virtual devices for the generic cleanup */
11296                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11297                         continue;
11298
11299                 /* Push remaining network devices to init_net */
11300                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11301                 if (netdev_name_in_use(&init_net, fb_name))
11302                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11303                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11304                 if (err) {
11305                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11306                                  __func__, dev->name, err);
11307                         BUG();
11308                 }
11309         }
11310 }
11311
11312 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11313 {
11314         /* At exit all network devices most be removed from a network
11315          * namespace.  Do this in the reverse order of registration.
11316          * Do this across as many network namespaces as possible to
11317          * improve batching efficiency.
11318          */
11319         struct net_device *dev;
11320         struct net *net;
11321         LIST_HEAD(dev_kill_list);
11322
11323         rtnl_lock();
11324         list_for_each_entry(net, net_list, exit_list) {
11325                 default_device_exit_net(net);
11326                 cond_resched();
11327         }
11328
11329         list_for_each_entry(net, net_list, exit_list) {
11330                 for_each_netdev_reverse(net, dev) {
11331                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11332                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11333                         else
11334                                 unregister_netdevice_queue(dev, &dev_kill_list);
11335                 }
11336         }
11337         unregister_netdevice_many(&dev_kill_list);
11338         rtnl_unlock();
11339 }
11340
11341 static struct pernet_operations __net_initdata default_device_ops = {
11342         .exit_batch = default_device_exit_batch,
11343 };
11344
11345 /*
11346  *      Initialize the DEV module. At boot time this walks the device list and
11347  *      unhooks any devices that fail to initialise (normally hardware not
11348  *      present) and leaves us with a valid list of present and active devices.
11349  *
11350  */
11351
11352 /*
11353  *       This is called single threaded during boot, so no need
11354  *       to take the rtnl semaphore.
11355  */
11356 static int __init net_dev_init(void)
11357 {
11358         int i, rc = -ENOMEM;
11359
11360         BUG_ON(!dev_boot_phase);
11361
11362         if (dev_proc_init())
11363                 goto out;
11364
11365         if (netdev_kobject_init())
11366                 goto out;
11367
11368         INIT_LIST_HEAD(&ptype_all);
11369         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11370                 INIT_LIST_HEAD(&ptype_base[i]);
11371
11372         if (register_pernet_subsys(&netdev_net_ops))
11373                 goto out;
11374
11375         /*
11376          *      Initialise the packet receive queues.
11377          */
11378
11379         for_each_possible_cpu(i) {
11380                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11381                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11382
11383                 INIT_WORK(flush, flush_backlog);
11384
11385                 skb_queue_head_init(&sd->input_pkt_queue);
11386                 skb_queue_head_init(&sd->process_queue);
11387 #ifdef CONFIG_XFRM_OFFLOAD
11388                 skb_queue_head_init(&sd->xfrm_backlog);
11389 #endif
11390                 INIT_LIST_HEAD(&sd->poll_list);
11391                 sd->output_queue_tailp = &sd->output_queue;
11392 #ifdef CONFIG_RPS
11393                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11394                 sd->cpu = i;
11395 #endif
11396                 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11397                 spin_lock_init(&sd->defer_lock);
11398
11399                 init_gro_hash(&sd->backlog);
11400                 sd->backlog.poll = process_backlog;
11401                 sd->backlog.weight = weight_p;
11402         }
11403
11404         dev_boot_phase = 0;
11405
11406         /* The loopback device is special if any other network devices
11407          * is present in a network namespace the loopback device must
11408          * be present. Since we now dynamically allocate and free the
11409          * loopback device ensure this invariant is maintained by
11410          * keeping the loopback device as the first device on the
11411          * list of network devices.  Ensuring the loopback devices
11412          * is the first device that appears and the last network device
11413          * that disappears.
11414          */
11415         if (register_pernet_device(&loopback_net_ops))
11416                 goto out;
11417
11418         if (register_pernet_device(&default_device_ops))
11419                 goto out;
11420
11421         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11422         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11423
11424         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11425                                        NULL, dev_cpu_dead);
11426         WARN_ON(rc < 0);
11427         rc = 0;
11428 out:
11429         return rc;
11430 }
11431
11432 subsys_initcall(net_dev_init);
This page took 0.663991 seconds and 4 git commands to generate.