1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * vrf.c: device driver to encapsulate a VRF space
5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
9 * Based on dummy, team and ipvlan drivers
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
17 #include <linux/init.h>
18 #include <linux/moduleparam.h>
19 #include <linux/netfilter.h>
20 #include <linux/rtnetlink.h>
21 #include <net/rtnetlink.h>
22 #include <linux/u64_stats_sync.h>
23 #include <linux/hashtable.h>
24 #include <linux/spinlock_types.h>
26 #include <linux/inetdevice.h>
29 #include <net/ip_fib.h>
30 #include <net/ip6_fib.h>
31 #include <net/ip6_route.h>
32 #include <net/route.h>
33 #include <net/addrconf.h>
34 #include <net/l3mdev.h>
35 #include <net/fib_rules.h>
36 #include <net/netns/generic.h>
38 #define DRV_NAME "vrf"
39 #define DRV_VERSION "1.1"
41 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
44 #define HASH_INITVAL ((u32)0xcafef00d)
47 DECLARE_HASHTABLE(ht, HT_MAP_BITS);
51 * count how many distinct tables do not comply with the strict mode
53 * shared_tables value must be 0 in order to enable the strict mode.
55 * example of the evolution of shared_tables:
57 * add vrf0 --> table 100 shared_tables = 0 | t0
58 * add vrf1 --> table 101 shared_tables = 0 | t1
59 * add vrf2 --> table 100 shared_tables = 1 | t2
60 * add vrf3 --> table 100 shared_tables = 1 | t3
61 * add vrf4 --> table 101 shared_tables = 2 v t4
63 * shared_tables is a "step function" (or "staircase function")
64 * and it is increased by one when the second vrf is associated to a
67 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
69 * at t3, another dev (vrf3) is bound to the same table 100 but the
70 * value of shared_tables is still 1.
71 * This means that no matter how many new vrfs will register on the
72 * table 100, the shared_tables will not increase (considering only
75 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
77 * Looking at the value of shared_tables we can immediately know if
78 * the strict_mode can or cannot be enforced. Indeed, strict_mode
79 * can be enforced iff shared_tables = 0.
81 * Conversely, shared_tables is decreased when a vrf is de-associated
82 * from a table with exactly two associated vrfs.
90 struct hlist_node hnode;
91 struct list_head vrf_list; /* VRFs registered to this table */
98 static unsigned int vrf_net_id;
100 /* per netns vrf data */
102 /* protected by rtnl lock */
106 struct ctl_table_header *ctl_hdr;
110 struct rtable __rcu *rth;
111 struct rt6_info __rcu *rt6;
112 #if IS_ENABLED(CONFIG_IPV6)
113 struct fib6_table *fib6_table;
117 struct list_head me_list; /* entry in vrf_map_elem */
128 struct u64_stats_sync syncp;
131 static void vrf_rx_stats(struct net_device *dev, int len)
133 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
135 u64_stats_update_begin(&dstats->syncp);
137 dstats->rx_bytes += len;
138 u64_stats_update_end(&dstats->syncp);
141 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
143 vrf_dev->stats.tx_errors++;
147 static void vrf_get_stats64(struct net_device *dev,
148 struct rtnl_link_stats64 *stats)
152 for_each_possible_cpu(i) {
153 const struct pcpu_dstats *dstats;
154 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
157 dstats = per_cpu_ptr(dev->dstats, i);
159 start = u64_stats_fetch_begin_irq(&dstats->syncp);
160 tbytes = dstats->tx_bytes;
161 tpkts = dstats->tx_pkts;
162 tdrops = dstats->tx_drps;
163 rbytes = dstats->rx_bytes;
164 rpkts = dstats->rx_pkts;
165 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
166 stats->tx_bytes += tbytes;
167 stats->tx_packets += tpkts;
168 stats->tx_dropped += tdrops;
169 stats->rx_bytes += rbytes;
170 stats->rx_packets += rpkts;
174 static struct vrf_map *netns_vrf_map(struct net *net)
176 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
178 return &nn_vrf->vmap;
181 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
183 return netns_vrf_map(dev_net(dev));
186 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
188 struct list_head *me_head = &me->vrf_list;
191 if (list_empty(me_head))
194 vrf = list_first_entry(me_head, struct net_vrf, me_list);
199 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
201 struct vrf_map_elem *me;
203 me = kmalloc(sizeof(*me), flags);
210 static void vrf_map_elem_free(struct vrf_map_elem *me)
215 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
216 int ifindex, int users)
218 me->table_id = table_id;
219 me->ifindex = ifindex;
221 INIT_LIST_HEAD(&me->vrf_list);
224 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
227 struct vrf_map_elem *me;
230 key = jhash_1word(table_id, HASH_INITVAL);
231 hash_for_each_possible(vmap->ht, me, hnode, key) {
232 if (me->table_id == table_id)
239 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
241 u32 table_id = me->table_id;
244 key = jhash_1word(table_id, HASH_INITVAL);
245 hash_add(vmap->ht, &me->hnode, key);
248 static void vrf_map_del_elem(struct vrf_map_elem *me)
250 hash_del(&me->hnode);
253 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
255 spin_lock(&vmap->vmap_lock);
258 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
260 spin_unlock(&vmap->vmap_lock);
263 /* called with rtnl lock held */
265 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
267 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
268 struct net_vrf *vrf = netdev_priv(dev);
269 struct vrf_map_elem *new_me, *me;
270 u32 table_id = vrf->tb_id;
271 bool free_new_me = false;
275 /* we pre-allocate elements used in the spin-locked section (so that we
276 * keep the spinlock as short as possibile).
278 new_me = vrf_map_elem_alloc(GFP_KERNEL);
282 vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
286 me = vrf_map_lookup_elem(vmap, table_id);
289 vrf_map_add_elem(vmap, me);
293 /* we already have an entry in the vrf_map, so it means there is (at
294 * least) a vrf registered on the specific table.
297 if (vmap->strict_mode) {
298 /* vrfs cannot share the same table */
299 NL_SET_ERR_MSG(extack, "Table is used by another VRF");
307 ++vmap->shared_tables;
309 list_add(&vrf->me_list, &me->vrf_list);
314 vrf_map_unlock(vmap);
316 /* clean-up, if needed */
318 vrf_map_elem_free(new_me);
323 /* called with rtnl lock held */
324 static void vrf_map_unregister_dev(struct net_device *dev)
326 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
327 struct net_vrf *vrf = netdev_priv(dev);
328 u32 table_id = vrf->tb_id;
329 struct vrf_map_elem *me;
334 me = vrf_map_lookup_elem(vmap, table_id);
338 list_del(&vrf->me_list);
342 --vmap->shared_tables;
343 } else if (users == 0) {
344 vrf_map_del_elem(me);
346 /* no one will refer to this element anymore */
347 vrf_map_elem_free(me);
351 vrf_map_unlock(vmap);
354 /* return the vrf device index associated with the table_id */
355 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
357 struct vrf_map *vmap = netns_vrf_map(net);
358 struct vrf_map_elem *me;
363 if (!vmap->strict_mode) {
368 me = vrf_map_lookup_elem(vmap, table_id);
374 ifindex = vrf_map_elem_get_vrf_ifindex(me);
377 vrf_map_unlock(vmap);
382 /* by default VRF devices do not have a qdisc and are expected
383 * to be created with only a single queue.
385 static bool qdisc_tx_is_default(const struct net_device *dev)
387 struct netdev_queue *txq;
390 if (dev->num_tx_queues > 1)
393 txq = netdev_get_tx_queue(dev, 0);
394 qdisc = rcu_access_pointer(txq->qdisc);
396 return !qdisc->enqueue;
399 /* Local traffic destined to local address. Reinsert the packet to rx
400 * path, similar to loopback handling.
402 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
403 struct dst_entry *dst)
409 skb_dst_set(skb, dst);
411 /* set pkt_type to avoid skb hitting packet taps twice -
412 * once on Tx and again in Rx processing
414 skb->pkt_type = PACKET_LOOPBACK;
416 skb->protocol = eth_type_trans(skb, dev);
418 if (likely(netif_rx(skb) == NET_RX_SUCCESS))
419 vrf_rx_stats(dev, len);
421 this_cpu_inc(dev->dstats->rx_drps);
426 #if IS_ENABLED(CONFIG_IPV6)
427 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
432 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
433 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
435 if (likely(err == 1))
436 err = dst_output(net, sk, skb);
441 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
442 struct net_device *dev)
444 const struct ipv6hdr *iph;
445 struct net *net = dev_net(skb->dev);
447 int ret = NET_XMIT_DROP;
448 struct dst_entry *dst;
449 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
451 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
456 memset(&fl6, 0, sizeof(fl6));
457 /* needed to match OIF rule */
458 fl6.flowi6_oif = dev->ifindex;
459 fl6.flowi6_iif = LOOPBACK_IFINDEX;
460 fl6.daddr = iph->daddr;
461 fl6.saddr = iph->saddr;
462 fl6.flowlabel = ip6_flowinfo(iph);
463 fl6.flowi6_mark = skb->mark;
464 fl6.flowi6_proto = iph->nexthdr;
465 fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
467 dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
468 if (IS_ERR(dst) || dst == dst_null)
473 /* if dst.dev is loopback or the VRF device again this is locally
474 * originated traffic destined to a local address. Short circuit
478 return vrf_local_xmit(skb, dev, dst);
480 skb_dst_set(skb, dst);
482 /* strip the ethernet header added for pass through VRF device */
483 __skb_pull(skb, skb_network_offset(skb));
485 ret = vrf_ip6_local_out(net, skb->sk, skb);
486 if (unlikely(net_xmit_eval(ret)))
487 dev->stats.tx_errors++;
489 ret = NET_XMIT_SUCCESS;
493 vrf_tx_error(dev, skb);
494 return NET_XMIT_DROP;
497 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
498 struct net_device *dev)
500 vrf_tx_error(dev, skb);
501 return NET_XMIT_DROP;
505 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
506 static int vrf_ip_local_out(struct net *net, struct sock *sk,
511 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
512 skb, NULL, skb_dst(skb)->dev, dst_output);
513 if (likely(err == 1))
514 err = dst_output(net, sk, skb);
519 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
520 struct net_device *vrf_dev)
523 int ret = NET_XMIT_DROP;
525 struct net *net = dev_net(vrf_dev);
528 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
533 memset(&fl4, 0, sizeof(fl4));
534 /* needed to match OIF rule */
535 fl4.flowi4_oif = vrf_dev->ifindex;
536 fl4.flowi4_iif = LOOPBACK_IFINDEX;
537 fl4.flowi4_tos = RT_TOS(ip4h->tos);
538 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
539 fl4.flowi4_proto = ip4h->protocol;
540 fl4.daddr = ip4h->daddr;
541 fl4.saddr = ip4h->saddr;
543 rt = ip_route_output_flow(net, &fl4, NULL);
549 /* if dst.dev is loopback or the VRF device again this is locally
550 * originated traffic destined to a local address. Short circuit
553 if (rt->dst.dev == vrf_dev)
554 return vrf_local_xmit(skb, vrf_dev, &rt->dst);
556 skb_dst_set(skb, &rt->dst);
558 /* strip the ethernet header added for pass through VRF device */
559 __skb_pull(skb, skb_network_offset(skb));
562 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
566 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
567 if (unlikely(net_xmit_eval(ret)))
568 vrf_dev->stats.tx_errors++;
570 ret = NET_XMIT_SUCCESS;
575 vrf_tx_error(vrf_dev, skb);
579 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
581 switch (skb->protocol) {
582 case htons(ETH_P_IP):
583 return vrf_process_v4_outbound(skb, dev);
584 case htons(ETH_P_IPV6):
585 return vrf_process_v6_outbound(skb, dev);
587 vrf_tx_error(dev, skb);
588 return NET_XMIT_DROP;
592 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
595 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
597 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
598 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
600 u64_stats_update_begin(&dstats->syncp);
602 dstats->tx_bytes += len;
603 u64_stats_update_end(&dstats->syncp);
605 this_cpu_inc(dev->dstats->tx_drps);
611 static int vrf_finish_direct(struct net *net, struct sock *sk,
614 struct net_device *vrf_dev = skb->dev;
616 if (!list_empty(&vrf_dev->ptype_all) &&
617 likely(skb_headroom(skb) >= ETH_HLEN)) {
618 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
620 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
621 eth_zero_addr(eth->h_dest);
622 eth->h_proto = skb->protocol;
625 dev_queue_xmit_nit(skb, vrf_dev);
626 rcu_read_unlock_bh();
628 skb_pull(skb, ETH_HLEN);
634 #if IS_ENABLED(CONFIG_IPV6)
635 /* modelled after ip6_finish_output2 */
636 static int vrf_finish_output6(struct net *net, struct sock *sk,
639 struct dst_entry *dst = skb_dst(skb);
640 struct net_device *dev = dst->dev;
641 const struct in6_addr *nexthop;
642 struct neighbour *neigh;
647 skb->protocol = htons(ETH_P_IPV6);
651 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
652 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
653 if (unlikely(!neigh))
654 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
655 if (!IS_ERR(neigh)) {
656 sock_confirm_neigh(skb, neigh);
657 ret = neigh_output(neigh, skb, false);
658 rcu_read_unlock_bh();
661 rcu_read_unlock_bh();
663 IP6_INC_STATS(dev_net(dst->dev),
664 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
669 /* modelled after ip6_output */
670 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
672 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
673 net, sk, skb, NULL, skb_dst(skb)->dev,
675 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
678 /* set dst on skb to send packet to us via dev_xmit path. Allows
679 * packet to go through device based features such as qdisc, netfilter
680 * hooks and packet sockets with skb->dev set to vrf device.
682 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
685 struct net_vrf *vrf = netdev_priv(vrf_dev);
686 struct dst_entry *dst = NULL;
687 struct rt6_info *rt6;
691 rt6 = rcu_dereference(vrf->rt6);
699 if (unlikely(!dst)) {
700 vrf_tx_error(vrf_dev, skb);
705 skb_dst_set(skb, dst);
710 static int vrf_output6_direct(struct net *net, struct sock *sk,
713 skb->protocol = htons(ETH_P_IPV6);
715 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
716 net, sk, skb, NULL, skb->dev,
718 !(IPCB(skb)->flags & IPSKB_REROUTED));
721 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
725 struct net *net = dev_net(vrf_dev);
730 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
731 skb, NULL, vrf_dev, vrf_output6_direct);
733 if (likely(err == 1))
734 err = vrf_output6_direct(net, sk, skb);
736 /* reset skb device */
737 if (likely(err == 1))
745 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
749 /* don't divert link scope packets */
750 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
753 if (qdisc_tx_is_default(vrf_dev) ||
754 IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
755 return vrf_ip6_out_direct(vrf_dev, sk, skb);
757 return vrf_ip6_out_redirect(vrf_dev, skb);
761 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
763 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
764 struct net *net = dev_net(dev);
765 struct dst_entry *dst;
767 RCU_INIT_POINTER(vrf->rt6, NULL);
770 /* move dev in dst's to loopback so this VRF device can be deleted
771 * - based on dst_ifdown
776 dst->dev = net->loopback_dev;
782 static int vrf_rt6_create(struct net_device *dev)
784 int flags = DST_NOPOLICY | DST_NOXFRM;
785 struct net_vrf *vrf = netdev_priv(dev);
786 struct net *net = dev_net(dev);
787 struct rt6_info *rt6;
790 /* IPv6 can be CONFIG enabled and then disabled runtime */
791 if (!ipv6_mod_enabled())
794 vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
795 if (!vrf->fib6_table)
798 /* create a dst for routing packets out a VRF device */
799 rt6 = ip6_dst_alloc(net, dev, flags);
803 rt6->dst.output = vrf_output6;
805 rcu_assign_pointer(vrf->rt6, rt6);
812 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
819 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
823 static int vrf_rt6_create(struct net_device *dev)
829 /* modelled after ip_finish_output2 */
830 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
832 struct dst_entry *dst = skb_dst(skb);
833 struct rtable *rt = (struct rtable *)dst;
834 struct net_device *dev = dst->dev;
835 unsigned int hh_len = LL_RESERVED_SPACE(dev);
836 struct neighbour *neigh;
837 bool is_v6gw = false;
842 /* Be paranoid, rather than too clever. */
843 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
844 struct sk_buff *skb2;
846 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
852 skb_set_owner_w(skb2, skb->sk);
860 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
861 if (!IS_ERR(neigh)) {
862 sock_confirm_neigh(skb, neigh);
863 /* if crossing protocols, can not use the cached header */
864 ret = neigh_output(neigh, skb, is_v6gw);
865 rcu_read_unlock_bh();
869 rcu_read_unlock_bh();
871 vrf_tx_error(skb->dev, skb);
875 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
877 struct net_device *dev = skb_dst(skb)->dev;
879 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
882 skb->protocol = htons(ETH_P_IP);
884 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
885 net, sk, skb, NULL, dev,
887 !(IPCB(skb)->flags & IPSKB_REROUTED));
890 /* set dst on skb to send packet to us via dev_xmit path. Allows
891 * packet to go through device based features such as qdisc, netfilter
892 * hooks and packet sockets with skb->dev set to vrf device.
894 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
897 struct net_vrf *vrf = netdev_priv(vrf_dev);
898 struct dst_entry *dst = NULL;
903 rth = rcu_dereference(vrf->rth);
911 if (unlikely(!dst)) {
912 vrf_tx_error(vrf_dev, skb);
917 skb_dst_set(skb, dst);
922 static int vrf_output_direct(struct net *net, struct sock *sk,
925 skb->protocol = htons(ETH_P_IP);
927 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
928 net, sk, skb, NULL, skb->dev,
930 !(IPCB(skb)->flags & IPSKB_REROUTED));
933 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
937 struct net *net = dev_net(vrf_dev);
942 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
943 skb, NULL, vrf_dev, vrf_output_direct);
945 if (likely(err == 1))
946 err = vrf_output_direct(net, sk, skb);
948 /* reset skb device */
949 if (likely(err == 1))
957 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
961 /* don't divert multicast or local broadcast */
962 if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
963 ipv4_is_lbcast(ip_hdr(skb)->daddr))
966 if (qdisc_tx_is_default(vrf_dev) ||
967 IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
968 return vrf_ip_out_direct(vrf_dev, sk, skb);
970 return vrf_ip_out_redirect(vrf_dev, skb);
973 /* called with rcu lock held */
974 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
981 return vrf_ip_out(vrf_dev, sk, skb);
983 return vrf_ip6_out(vrf_dev, sk, skb);
990 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
992 struct rtable *rth = rtnl_dereference(vrf->rth);
993 struct net *net = dev_net(dev);
994 struct dst_entry *dst;
996 RCU_INIT_POINTER(vrf->rth, NULL);
999 /* move dev in dst's to loopback so this VRF device can be deleted
1000 * - based on dst_ifdown
1005 dst->dev = net->loopback_dev;
1011 static int vrf_rtable_create(struct net_device *dev)
1013 struct net_vrf *vrf = netdev_priv(dev);
1016 if (!fib_new_table(dev_net(dev), vrf->tb_id))
1019 /* create a dst for routing packets out through a VRF device */
1020 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1);
1024 rth->dst.output = vrf_output;
1026 rcu_assign_pointer(vrf->rth, rth);
1031 /**************************** device handling ********************/
1033 /* cycle interface to flush neighbor cache and move routes across tables */
1034 static void cycle_netdev(struct net_device *dev,
1035 struct netlink_ext_ack *extack)
1037 unsigned int flags = dev->flags;
1040 if (!netif_running(dev))
1043 ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1045 ret = dev_change_flags(dev, flags, extack);
1049 "Failed to cycle device %s; route tables might be wrong!\n",
1054 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1055 struct netlink_ext_ack *extack)
1059 /* do not allow loopback device to be enslaved to a VRF.
1060 * The vrf device acts as the loopback for the vrf.
1062 if (port_dev == dev_net(dev)->loopback_dev) {
1063 NL_SET_ERR_MSG(extack,
1064 "Can not enslave loopback device to a VRF");
1068 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1069 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1073 cycle_netdev(port_dev, extack);
1078 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1082 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1083 struct netlink_ext_ack *extack)
1085 if (netif_is_l3_master(port_dev)) {
1086 NL_SET_ERR_MSG(extack,
1087 "Can not enslave an L3 master device to a VRF");
1091 if (netif_is_l3_slave(port_dev))
1094 return do_vrf_add_slave(dev, port_dev, extack);
1097 /* inverse of do_vrf_add_slave */
1098 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1100 netdev_upper_dev_unlink(port_dev, dev);
1101 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1103 cycle_netdev(port_dev, NULL);
1108 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1110 return do_vrf_del_slave(dev, port_dev);
1113 static void vrf_dev_uninit(struct net_device *dev)
1115 struct net_vrf *vrf = netdev_priv(dev);
1117 vrf_rtable_release(dev, vrf);
1118 vrf_rt6_release(dev, vrf);
1120 free_percpu(dev->dstats);
1124 static int vrf_dev_init(struct net_device *dev)
1126 struct net_vrf *vrf = netdev_priv(dev);
1128 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1132 /* create the default dst which points back to us */
1133 if (vrf_rtable_create(dev) != 0)
1136 if (vrf_rt6_create(dev) != 0)
1139 dev->flags = IFF_MASTER | IFF_NOARP;
1141 /* MTU is irrelevant for VRF device; set to 64k similar to lo */
1142 dev->mtu = 64 * 1024;
1144 /* similarly, oper state is irrelevant; set to up to avoid confusion */
1145 dev->operstate = IF_OPER_UP;
1146 netdev_lockdep_set_classes(dev);
1150 vrf_rtable_release(dev, vrf);
1152 free_percpu(dev->dstats);
1158 static const struct net_device_ops vrf_netdev_ops = {
1159 .ndo_init = vrf_dev_init,
1160 .ndo_uninit = vrf_dev_uninit,
1161 .ndo_start_xmit = vrf_xmit,
1162 .ndo_set_mac_address = eth_mac_addr,
1163 .ndo_get_stats64 = vrf_get_stats64,
1164 .ndo_add_slave = vrf_add_slave,
1165 .ndo_del_slave = vrf_del_slave,
1168 static u32 vrf_fib_table(const struct net_device *dev)
1170 struct net_vrf *vrf = netdev_priv(dev);
1175 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1181 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1182 struct sk_buff *skb,
1183 struct net_device *dev)
1185 struct net *net = dev_net(dev);
1187 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1188 skb = NULL; /* kfree_skb(skb) handled by nf code */
1193 #if IS_ENABLED(CONFIG_IPV6)
1194 /* neighbor handling is done with actual device; do not want
1195 * to flip skb->dev for those ndisc packets. This really fails
1196 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1199 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1201 const struct ipv6hdr *iph = ipv6_hdr(skb);
1204 if (iph->nexthdr == NEXTHDR_ICMP) {
1205 const struct icmp6hdr *icmph;
1206 struct icmp6hdr _icmph;
1208 icmph = skb_header_pointer(skb, sizeof(*iph),
1209 sizeof(_icmph), &_icmph);
1213 switch (icmph->icmp6_type) {
1214 case NDISC_ROUTER_SOLICITATION:
1215 case NDISC_ROUTER_ADVERTISEMENT:
1216 case NDISC_NEIGHBOUR_SOLICITATION:
1217 case NDISC_NEIGHBOUR_ADVERTISEMENT:
1218 case NDISC_REDIRECT:
1228 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1229 const struct net_device *dev,
1232 const struct sk_buff *skb,
1235 struct net_vrf *vrf = netdev_priv(dev);
1237 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1240 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1243 const struct ipv6hdr *iph = ipv6_hdr(skb);
1244 struct flowi6 fl6 = {
1245 .flowi6_iif = ifindex,
1246 .flowi6_mark = skb->mark,
1247 .flowi6_proto = iph->nexthdr,
1248 .daddr = iph->daddr,
1249 .saddr = iph->saddr,
1250 .flowlabel = ip6_flowinfo(iph),
1252 struct net *net = dev_net(vrf_dev);
1253 struct rt6_info *rt6;
1255 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1256 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1260 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1263 skb_dst_set(skb, &rt6->dst);
1266 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1267 struct sk_buff *skb)
1269 int orig_iif = skb->skb_iif;
1270 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1271 bool is_ndisc = ipv6_ndisc_frame(skb);
1273 /* loopback, multicast & non-ND link-local traffic; do not push through
1274 * packet taps again. Reset pkt_type for upper layers to process skb
1276 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1278 skb->skb_iif = vrf_dev->ifindex;
1279 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1280 if (skb->pkt_type == PACKET_LOOPBACK)
1281 skb->pkt_type = PACKET_HOST;
1285 /* if packet is NDISC then keep the ingress interface */
1287 vrf_rx_stats(vrf_dev, skb->len);
1289 skb->skb_iif = vrf_dev->ifindex;
1291 if (!list_empty(&vrf_dev->ptype_all)) {
1292 skb_push(skb, skb->mac_len);
1293 dev_queue_xmit_nit(skb, vrf_dev);
1294 skb_pull(skb, skb->mac_len);
1297 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1301 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1303 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1309 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1310 struct sk_buff *skb)
1316 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1317 struct sk_buff *skb)
1320 skb->skb_iif = vrf_dev->ifindex;
1321 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1323 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1326 /* loopback traffic; do not push through packet taps again.
1327 * Reset pkt_type for upper layers to process skb
1329 if (skb->pkt_type == PACKET_LOOPBACK) {
1330 skb->pkt_type = PACKET_HOST;
1334 vrf_rx_stats(vrf_dev, skb->len);
1336 if (!list_empty(&vrf_dev->ptype_all)) {
1337 skb_push(skb, skb->mac_len);
1338 dev_queue_xmit_nit(skb, vrf_dev);
1339 skb_pull(skb, skb->mac_len);
1342 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1347 /* called with rcu lock held */
1348 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1349 struct sk_buff *skb,
1354 return vrf_ip_rcv(vrf_dev, skb);
1356 return vrf_ip6_rcv(vrf_dev, skb);
1362 #if IS_ENABLED(CONFIG_IPV6)
1363 /* send to link-local or multicast address via interface enslaved to
1364 * VRF device. Force lookup to VRF table without changing flow struct
1365 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1366 * is taken on the dst by this function.
1368 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1371 struct net *net = dev_net(dev);
1372 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1373 struct dst_entry *dst = NULL;
1374 struct rt6_info *rt;
1376 /* VRF device does not have a link-local address and
1377 * sending packets to link-local or mcast addresses over
1378 * a VRF device does not make sense
1380 if (fl6->flowi6_oif == dev->ifindex) {
1381 dst = &net->ipv6.ip6_null_entry->dst;
1385 if (!ipv6_addr_any(&fl6->saddr))
1386 flags |= RT6_LOOKUP_F_HAS_SADDR;
1388 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1396 static const struct l3mdev_ops vrf_l3mdev_ops = {
1397 .l3mdev_fib_table = vrf_fib_table,
1398 .l3mdev_l3_rcv = vrf_l3_rcv,
1399 .l3mdev_l3_out = vrf_l3_out,
1400 #if IS_ENABLED(CONFIG_IPV6)
1401 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1405 static void vrf_get_drvinfo(struct net_device *dev,
1406 struct ethtool_drvinfo *info)
1408 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1409 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1412 static const struct ethtool_ops vrf_ethtool_ops = {
1413 .get_drvinfo = vrf_get_drvinfo,
1416 static inline size_t vrf_fib_rule_nl_size(void)
1420 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1421 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1422 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1423 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
1428 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1430 struct fib_rule_hdr *frh;
1431 struct nlmsghdr *nlh;
1432 struct sk_buff *skb;
1435 if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1436 !ipv6_mod_enabled())
1439 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1443 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1445 goto nla_put_failure;
1447 /* rule only needs to appear once */
1448 nlh->nlmsg_flags |= NLM_F_EXCL;
1450 frh = nlmsg_data(nlh);
1451 memset(frh, 0, sizeof(*frh));
1452 frh->family = family;
1453 frh->action = FR_ACT_TO_TBL;
1455 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1456 goto nla_put_failure;
1458 if (nla_put_u8(skb, FRA_L3MDEV, 1))
1459 goto nla_put_failure;
1461 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1462 goto nla_put_failure;
1464 nlmsg_end(skb, nlh);
1466 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1467 skb->sk = dev_net(dev)->rtnl;
1469 err = fib_nl_newrule(skb, nlh, NULL);
1473 err = fib_nl_delrule(skb, nlh, NULL);
1487 static int vrf_add_fib_rules(const struct net_device *dev)
1491 err = vrf_fib_rule(dev, AF_INET, true);
1495 err = vrf_fib_rule(dev, AF_INET6, true);
1499 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1500 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1505 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1506 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1513 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1515 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false);
1518 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1520 vrf_fib_rule(dev, AF_INET6, false);
1524 vrf_fib_rule(dev, AF_INET, false);
1527 netdev_err(dev, "Failed to add FIB rules.\n");
1531 static void vrf_setup(struct net_device *dev)
1535 /* Initialize the device structure. */
1536 dev->netdev_ops = &vrf_netdev_ops;
1537 dev->l3mdev_ops = &vrf_l3mdev_ops;
1538 dev->ethtool_ops = &vrf_ethtool_ops;
1539 dev->needs_free_netdev = true;
1541 /* Fill in device structure with ethernet-generic values. */
1542 eth_hw_addr_random(dev);
1544 /* don't acquire vrf device's netif_tx_lock when transmitting */
1545 dev->features |= NETIF_F_LLTX;
1547 /* don't allow vrf devices to change network namespaces. */
1548 dev->features |= NETIF_F_NETNS_LOCAL;
1550 /* does not make sense for a VLAN to be added to a vrf device */
1551 dev->features |= NETIF_F_VLAN_CHALLENGED;
1553 /* enable offload features */
1554 dev->features |= NETIF_F_GSO_SOFTWARE;
1555 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1556 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1558 dev->hw_features = dev->features;
1559 dev->hw_enc_features = dev->features;
1561 /* default to no qdisc; user can add if desired */
1562 dev->priv_flags |= IFF_NO_QUEUE;
1563 dev->priv_flags |= IFF_NO_RX_HANDLER;
1564 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1566 /* VRF devices do not care about MTU, but if the MTU is set
1567 * too low then the ipv4 and ipv6 protocols are disabled
1568 * which breaks networking.
1570 dev->min_mtu = IPV6_MIN_MTU;
1571 dev->max_mtu = ETH_MAX_MTU;
1574 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1575 struct netlink_ext_ack *extack)
1577 if (tb[IFLA_ADDRESS]) {
1578 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1579 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1582 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1583 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1584 return -EADDRNOTAVAIL;
1590 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1592 struct net_device *port_dev;
1593 struct list_head *iter;
1595 netdev_for_each_lower_dev(dev, port_dev, iter)
1596 vrf_del_slave(dev, port_dev);
1598 vrf_map_unregister_dev(dev);
1600 unregister_netdevice_queue(dev, head);
1603 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1604 struct nlattr *tb[], struct nlattr *data[],
1605 struct netlink_ext_ack *extack)
1607 struct net_vrf *vrf = netdev_priv(dev);
1608 struct netns_vrf *nn_vrf;
1609 bool *add_fib_rules;
1613 if (!data || !data[IFLA_VRF_TABLE]) {
1614 NL_SET_ERR_MSG(extack, "VRF table id is missing");
1618 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1619 if (vrf->tb_id == RT_TABLE_UNSPEC) {
1620 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1621 "Invalid VRF table id");
1625 dev->priv_flags |= IFF_L3MDEV_MASTER;
1627 err = register_netdevice(dev);
1631 /* mapping between table_id and vrf;
1632 * note: such binding could not be done in the dev init function
1633 * because dev->ifindex id is not available yet.
1635 vrf->ifindex = dev->ifindex;
1637 err = vrf_map_register_dev(dev, extack);
1639 unregister_netdevice(dev);
1644 nn_vrf = net_generic(net, vrf_net_id);
1646 add_fib_rules = &nn_vrf->add_fib_rules;
1647 if (*add_fib_rules) {
1648 err = vrf_add_fib_rules(dev);
1650 vrf_map_unregister_dev(dev);
1651 unregister_netdevice(dev);
1654 *add_fib_rules = false;
1661 static size_t vrf_nl_getsize(const struct net_device *dev)
1663 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1666 static int vrf_fillinfo(struct sk_buff *skb,
1667 const struct net_device *dev)
1669 struct net_vrf *vrf = netdev_priv(dev);
1671 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1674 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1675 const struct net_device *slave_dev)
1677 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1680 static int vrf_fill_slave_info(struct sk_buff *skb,
1681 const struct net_device *vrf_dev,
1682 const struct net_device *slave_dev)
1684 struct net_vrf *vrf = netdev_priv(vrf_dev);
1686 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1692 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1693 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1696 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1698 .priv_size = sizeof(struct net_vrf),
1700 .get_size = vrf_nl_getsize,
1701 .policy = vrf_nl_policy,
1702 .validate = vrf_validate,
1703 .fill_info = vrf_fillinfo,
1705 .get_slave_size = vrf_get_slave_size,
1706 .fill_slave_info = vrf_fill_slave_info,
1708 .newlink = vrf_newlink,
1709 .dellink = vrf_dellink,
1711 .maxtype = IFLA_VRF_MAX,
1714 static int vrf_device_event(struct notifier_block *unused,
1715 unsigned long event, void *ptr)
1717 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1719 /* only care about unregister events to drop slave references */
1720 if (event == NETDEV_UNREGISTER) {
1721 struct net_device *vrf_dev;
1723 if (!netif_is_l3_slave(dev))
1726 vrf_dev = netdev_master_upper_dev_get(dev);
1727 vrf_del_slave(vrf_dev, dev);
1733 static struct notifier_block vrf_notifier_block __read_mostly = {
1734 .notifier_call = vrf_device_event,
1737 static int vrf_map_init(struct vrf_map *vmap)
1739 spin_lock_init(&vmap->vmap_lock);
1740 hash_init(vmap->ht);
1742 vmap->strict_mode = false;
1747 #ifdef CONFIG_SYSCTL
1748 static bool vrf_strict_mode(struct vrf_map *vmap)
1753 strict_mode = vmap->strict_mode;
1754 vrf_map_unlock(vmap);
1759 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1766 cur_mode = &vmap->strict_mode;
1767 if (*cur_mode == new_mode)
1771 /* disable strict mode */
1774 if (vmap->shared_tables) {
1775 /* we cannot allow strict_mode because there are some
1776 * vrfs that share one or more tables.
1782 /* no tables are shared among vrfs, so we can go back
1783 * to 1:1 association between a vrf with its table.
1789 vrf_map_unlock(vmap);
1794 static int vrf_shared_table_handler(struct ctl_table *table, int write,
1795 void *buffer, size_t *lenp, loff_t *ppos)
1797 struct net *net = (struct net *)table->extra1;
1798 struct vrf_map *vmap = netns_vrf_map(net);
1799 int proc_strict_mode = 0;
1800 struct ctl_table tmp = {
1801 .procname = table->procname,
1802 .data = &proc_strict_mode,
1803 .maxlen = sizeof(int),
1804 .mode = table->mode,
1805 .extra1 = SYSCTL_ZERO,
1806 .extra2 = SYSCTL_ONE,
1811 proc_strict_mode = vrf_strict_mode(vmap);
1813 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1815 if (write && ret == 0)
1816 ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1821 static const struct ctl_table vrf_table[] = {
1823 .procname = "strict_mode",
1825 .maxlen = sizeof(int),
1827 .proc_handler = vrf_shared_table_handler,
1828 /* set by the vrf_netns_init */
1834 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1836 struct ctl_table *table;
1838 table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1842 /* init the extra1 parameter with the reference to current netns */
1843 table[0].extra1 = net;
1845 nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
1846 if (!nn_vrf->ctl_hdr) {
1854 static void vrf_netns_exit_sysctl(struct net *net)
1856 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1857 struct ctl_table *table;
1859 table = nn_vrf->ctl_hdr->ctl_table_arg;
1860 unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1864 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1869 static void vrf_netns_exit_sysctl(struct net *net)
1874 /* Initialize per network namespace state */
1875 static int __net_init vrf_netns_init(struct net *net)
1877 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1879 nn_vrf->add_fib_rules = true;
1880 vrf_map_init(&nn_vrf->vmap);
1882 return vrf_netns_init_sysctl(net, nn_vrf);
1885 static void __net_exit vrf_netns_exit(struct net *net)
1887 vrf_netns_exit_sysctl(net);
1890 static struct pernet_operations vrf_net_ops __net_initdata = {
1891 .init = vrf_netns_init,
1892 .exit = vrf_netns_exit,
1894 .size = sizeof(struct netns_vrf),
1897 static int __init vrf_init_module(void)
1901 register_netdevice_notifier(&vrf_notifier_block);
1903 rc = register_pernet_subsys(&vrf_net_ops);
1907 rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
1908 vrf_ifindex_lookup_by_table_id);
1912 rc = rtnl_link_register(&vrf_link_ops);
1914 goto table_lookup_unreg;
1919 l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
1920 vrf_ifindex_lookup_by_table_id);
1923 unregister_pernet_subsys(&vrf_net_ops);
1926 unregister_netdevice_notifier(&vrf_notifier_block);
1930 module_init(vrf_init_module);
1931 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1932 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1933 MODULE_LICENSE("GPL");
1934 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1935 MODULE_VERSION(DRV_VERSION);