]> Git Repo - linux.git/blob - fs/btrfs/file.c
Btrfs: heuristic: implement sampling logic
[linux.git] / fs / btrfs / file.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/compat.h>
31 #include <linux/slab.h>
32 #include <linux/btrfs.h>
33 #include <linux/uio.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "tree-log.h"
40 #include "locking.h"
41 #include "volumes.h"
42 #include "qgroup.h"
43 #include "compression.h"
44
45 static struct kmem_cache *btrfs_inode_defrag_cachep;
46 /*
47  * when auto defrag is enabled we
48  * queue up these defrag structs to remember which
49  * inodes need defragging passes
50  */
51 struct inode_defrag {
52         struct rb_node rb_node;
53         /* objectid */
54         u64 ino;
55         /*
56          * transid where the defrag was added, we search for
57          * extents newer than this
58          */
59         u64 transid;
60
61         /* root objectid */
62         u64 root;
63
64         /* last offset we were able to defrag */
65         u64 last_offset;
66
67         /* if we've wrapped around back to zero once already */
68         int cycled;
69 };
70
71 static int __compare_inode_defrag(struct inode_defrag *defrag1,
72                                   struct inode_defrag *defrag2)
73 {
74         if (defrag1->root > defrag2->root)
75                 return 1;
76         else if (defrag1->root < defrag2->root)
77                 return -1;
78         else if (defrag1->ino > defrag2->ino)
79                 return 1;
80         else if (defrag1->ino < defrag2->ino)
81                 return -1;
82         else
83                 return 0;
84 }
85
86 /* pop a record for an inode into the defrag tree.  The lock
87  * must be held already
88  *
89  * If you're inserting a record for an older transid than an
90  * existing record, the transid already in the tree is lowered
91  *
92  * If an existing record is found the defrag item you
93  * pass in is freed
94  */
95 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
96                                     struct inode_defrag *defrag)
97 {
98         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
99         struct inode_defrag *entry;
100         struct rb_node **p;
101         struct rb_node *parent = NULL;
102         int ret;
103
104         p = &fs_info->defrag_inodes.rb_node;
105         while (*p) {
106                 parent = *p;
107                 entry = rb_entry(parent, struct inode_defrag, rb_node);
108
109                 ret = __compare_inode_defrag(defrag, entry);
110                 if (ret < 0)
111                         p = &parent->rb_left;
112                 else if (ret > 0)
113                         p = &parent->rb_right;
114                 else {
115                         /* if we're reinserting an entry for
116                          * an old defrag run, make sure to
117                          * lower the transid of our existing record
118                          */
119                         if (defrag->transid < entry->transid)
120                                 entry->transid = defrag->transid;
121                         if (defrag->last_offset > entry->last_offset)
122                                 entry->last_offset = defrag->last_offset;
123                         return -EEXIST;
124                 }
125         }
126         set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
127         rb_link_node(&defrag->rb_node, parent, p);
128         rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
129         return 0;
130 }
131
132 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
133 {
134         if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
135                 return 0;
136
137         if (btrfs_fs_closing(fs_info))
138                 return 0;
139
140         return 1;
141 }
142
143 /*
144  * insert a defrag record for this inode if auto defrag is
145  * enabled
146  */
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148                            struct btrfs_inode *inode)
149 {
150         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
151         struct btrfs_root *root = inode->root;
152         struct inode_defrag *defrag;
153         u64 transid;
154         int ret;
155
156         if (!__need_auto_defrag(fs_info))
157                 return 0;
158
159         if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
160                 return 0;
161
162         if (trans)
163                 transid = trans->transid;
164         else
165                 transid = inode->root->last_trans;
166
167         defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
168         if (!defrag)
169                 return -ENOMEM;
170
171         defrag->ino = btrfs_ino(inode);
172         defrag->transid = transid;
173         defrag->root = root->root_key.objectid;
174
175         spin_lock(&fs_info->defrag_inodes_lock);
176         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
177                 /*
178                  * If we set IN_DEFRAG flag and evict the inode from memory,
179                  * and then re-read this inode, this new inode doesn't have
180                  * IN_DEFRAG flag. At the case, we may find the existed defrag.
181                  */
182                 ret = __btrfs_add_inode_defrag(inode, defrag);
183                 if (ret)
184                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185         } else {
186                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
187         }
188         spin_unlock(&fs_info->defrag_inodes_lock);
189         return 0;
190 }
191
192 /*
193  * Requeue the defrag object. If there is a defrag object that points to
194  * the same inode in the tree, we will merge them together (by
195  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
196  */
197 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
198                                        struct inode_defrag *defrag)
199 {
200         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
201         int ret;
202
203         if (!__need_auto_defrag(fs_info))
204                 goto out;
205
206         /*
207          * Here we don't check the IN_DEFRAG flag, because we need merge
208          * them together.
209          */
210         spin_lock(&fs_info->defrag_inodes_lock);
211         ret = __btrfs_add_inode_defrag(inode, defrag);
212         spin_unlock(&fs_info->defrag_inodes_lock);
213         if (ret)
214                 goto out;
215         return;
216 out:
217         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
218 }
219
220 /*
221  * pick the defragable inode that we want, if it doesn't exist, we will get
222  * the next one.
223  */
224 static struct inode_defrag *
225 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
226 {
227         struct inode_defrag *entry = NULL;
228         struct inode_defrag tmp;
229         struct rb_node *p;
230         struct rb_node *parent = NULL;
231         int ret;
232
233         tmp.ino = ino;
234         tmp.root = root;
235
236         spin_lock(&fs_info->defrag_inodes_lock);
237         p = fs_info->defrag_inodes.rb_node;
238         while (p) {
239                 parent = p;
240                 entry = rb_entry(parent, struct inode_defrag, rb_node);
241
242                 ret = __compare_inode_defrag(&tmp, entry);
243                 if (ret < 0)
244                         p = parent->rb_left;
245                 else if (ret > 0)
246                         p = parent->rb_right;
247                 else
248                         goto out;
249         }
250
251         if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
252                 parent = rb_next(parent);
253                 if (parent)
254                         entry = rb_entry(parent, struct inode_defrag, rb_node);
255                 else
256                         entry = NULL;
257         }
258 out:
259         if (entry)
260                 rb_erase(parent, &fs_info->defrag_inodes);
261         spin_unlock(&fs_info->defrag_inodes_lock);
262         return entry;
263 }
264
265 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
266 {
267         struct inode_defrag *defrag;
268         struct rb_node *node;
269
270         spin_lock(&fs_info->defrag_inodes_lock);
271         node = rb_first(&fs_info->defrag_inodes);
272         while (node) {
273                 rb_erase(node, &fs_info->defrag_inodes);
274                 defrag = rb_entry(node, struct inode_defrag, rb_node);
275                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
276
277                 cond_resched_lock(&fs_info->defrag_inodes_lock);
278
279                 node = rb_first(&fs_info->defrag_inodes);
280         }
281         spin_unlock(&fs_info->defrag_inodes_lock);
282 }
283
284 #define BTRFS_DEFRAG_BATCH      1024
285
286 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
287                                     struct inode_defrag *defrag)
288 {
289         struct btrfs_root *inode_root;
290         struct inode *inode;
291         struct btrfs_key key;
292         struct btrfs_ioctl_defrag_range_args range;
293         int num_defrag;
294         int index;
295         int ret;
296
297         /* get the inode */
298         key.objectid = defrag->root;
299         key.type = BTRFS_ROOT_ITEM_KEY;
300         key.offset = (u64)-1;
301
302         index = srcu_read_lock(&fs_info->subvol_srcu);
303
304         inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
305         if (IS_ERR(inode_root)) {
306                 ret = PTR_ERR(inode_root);
307                 goto cleanup;
308         }
309
310         key.objectid = defrag->ino;
311         key.type = BTRFS_INODE_ITEM_KEY;
312         key.offset = 0;
313         inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
314         if (IS_ERR(inode)) {
315                 ret = PTR_ERR(inode);
316                 goto cleanup;
317         }
318         srcu_read_unlock(&fs_info->subvol_srcu, index);
319
320         /* do a chunk of defrag */
321         clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
322         memset(&range, 0, sizeof(range));
323         range.len = (u64)-1;
324         range.start = defrag->last_offset;
325
326         sb_start_write(fs_info->sb);
327         num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
328                                        BTRFS_DEFRAG_BATCH);
329         sb_end_write(fs_info->sb);
330         /*
331          * if we filled the whole defrag batch, there
332          * must be more work to do.  Queue this defrag
333          * again
334          */
335         if (num_defrag == BTRFS_DEFRAG_BATCH) {
336                 defrag->last_offset = range.start;
337                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
338         } else if (defrag->last_offset && !defrag->cycled) {
339                 /*
340                  * we didn't fill our defrag batch, but
341                  * we didn't start at zero.  Make sure we loop
342                  * around to the start of the file.
343                  */
344                 defrag->last_offset = 0;
345                 defrag->cycled = 1;
346                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
347         } else {
348                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
349         }
350
351         iput(inode);
352         return 0;
353 cleanup:
354         srcu_read_unlock(&fs_info->subvol_srcu, index);
355         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
356         return ret;
357 }
358
359 /*
360  * run through the list of inodes in the FS that need
361  * defragging
362  */
363 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
364 {
365         struct inode_defrag *defrag;
366         u64 first_ino = 0;
367         u64 root_objectid = 0;
368
369         atomic_inc(&fs_info->defrag_running);
370         while (1) {
371                 /* Pause the auto defragger. */
372                 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
373                              &fs_info->fs_state))
374                         break;
375
376                 if (!__need_auto_defrag(fs_info))
377                         break;
378
379                 /* find an inode to defrag */
380                 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
381                                                  first_ino);
382                 if (!defrag) {
383                         if (root_objectid || first_ino) {
384                                 root_objectid = 0;
385                                 first_ino = 0;
386                                 continue;
387                         } else {
388                                 break;
389                         }
390                 }
391
392                 first_ino = defrag->ino + 1;
393                 root_objectid = defrag->root;
394
395                 __btrfs_run_defrag_inode(fs_info, defrag);
396         }
397         atomic_dec(&fs_info->defrag_running);
398
399         /*
400          * during unmount, we use the transaction_wait queue to
401          * wait for the defragger to stop
402          */
403         wake_up(&fs_info->transaction_wait);
404         return 0;
405 }
406
407 /* simple helper to fault in pages and copy.  This should go away
408  * and be replaced with calls into generic code.
409  */
410 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
411                                          struct page **prepared_pages,
412                                          struct iov_iter *i)
413 {
414         size_t copied = 0;
415         size_t total_copied = 0;
416         int pg = 0;
417         int offset = pos & (PAGE_SIZE - 1);
418
419         while (write_bytes > 0) {
420                 size_t count = min_t(size_t,
421                                      PAGE_SIZE - offset, write_bytes);
422                 struct page *page = prepared_pages[pg];
423                 /*
424                  * Copy data from userspace to the current page
425                  */
426                 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
427
428                 /* Flush processor's dcache for this page */
429                 flush_dcache_page(page);
430
431                 /*
432                  * if we get a partial write, we can end up with
433                  * partially up to date pages.  These add
434                  * a lot of complexity, so make sure they don't
435                  * happen by forcing this copy to be retried.
436                  *
437                  * The rest of the btrfs_file_write code will fall
438                  * back to page at a time copies after we return 0.
439                  */
440                 if (!PageUptodate(page) && copied < count)
441                         copied = 0;
442
443                 iov_iter_advance(i, copied);
444                 write_bytes -= copied;
445                 total_copied += copied;
446
447                 /* Return to btrfs_file_write_iter to fault page */
448                 if (unlikely(copied == 0))
449                         break;
450
451                 if (copied < PAGE_SIZE - offset) {
452                         offset += copied;
453                 } else {
454                         pg++;
455                         offset = 0;
456                 }
457         }
458         return total_copied;
459 }
460
461 /*
462  * unlocks pages after btrfs_file_write is done with them
463  */
464 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
465 {
466         size_t i;
467         for (i = 0; i < num_pages; i++) {
468                 /* page checked is some magic around finding pages that
469                  * have been modified without going through btrfs_set_page_dirty
470                  * clear it here. There should be no need to mark the pages
471                  * accessed as prepare_pages should have marked them accessed
472                  * in prepare_pages via find_or_create_page()
473                  */
474                 ClearPageChecked(pages[i]);
475                 unlock_page(pages[i]);
476                 put_page(pages[i]);
477         }
478 }
479
480 /*
481  * after copy_from_user, pages need to be dirtied and we need to make
482  * sure holes are created between the current EOF and the start of
483  * any next extents (if required).
484  *
485  * this also makes the decision about creating an inline extent vs
486  * doing real data extents, marking pages dirty and delalloc as required.
487  */
488 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
489                       size_t num_pages, loff_t pos, size_t write_bytes,
490                       struct extent_state **cached)
491 {
492         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
493         int err = 0;
494         int i;
495         u64 num_bytes;
496         u64 start_pos;
497         u64 end_of_last_block;
498         u64 end_pos = pos + write_bytes;
499         loff_t isize = i_size_read(inode);
500
501         start_pos = pos & ~((u64) fs_info->sectorsize - 1);
502         num_bytes = round_up(write_bytes + pos - start_pos,
503                              fs_info->sectorsize);
504
505         end_of_last_block = start_pos + num_bytes - 1;
506         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
507                                         cached, 0);
508         if (err)
509                 return err;
510
511         for (i = 0; i < num_pages; i++) {
512                 struct page *p = pages[i];
513                 SetPageUptodate(p);
514                 ClearPageChecked(p);
515                 set_page_dirty(p);
516         }
517
518         /*
519          * we've only changed i_size in ram, and we haven't updated
520          * the disk i_size.  There is no need to log the inode
521          * at this time.
522          */
523         if (end_pos > isize)
524                 i_size_write(inode, end_pos);
525         return 0;
526 }
527
528 /*
529  * this drops all the extents in the cache that intersect the range
530  * [start, end].  Existing extents are split as required.
531  */
532 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
533                              int skip_pinned)
534 {
535         struct extent_map *em;
536         struct extent_map *split = NULL;
537         struct extent_map *split2 = NULL;
538         struct extent_map_tree *em_tree = &inode->extent_tree;
539         u64 len = end - start + 1;
540         u64 gen;
541         int ret;
542         int testend = 1;
543         unsigned long flags;
544         int compressed = 0;
545         bool modified;
546
547         WARN_ON(end < start);
548         if (end == (u64)-1) {
549                 len = (u64)-1;
550                 testend = 0;
551         }
552         while (1) {
553                 int no_splits = 0;
554
555                 modified = false;
556                 if (!split)
557                         split = alloc_extent_map();
558                 if (!split2)
559                         split2 = alloc_extent_map();
560                 if (!split || !split2)
561                         no_splits = 1;
562
563                 write_lock(&em_tree->lock);
564                 em = lookup_extent_mapping(em_tree, start, len);
565                 if (!em) {
566                         write_unlock(&em_tree->lock);
567                         break;
568                 }
569                 flags = em->flags;
570                 gen = em->generation;
571                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
572                         if (testend && em->start + em->len >= start + len) {
573                                 free_extent_map(em);
574                                 write_unlock(&em_tree->lock);
575                                 break;
576                         }
577                         start = em->start + em->len;
578                         if (testend)
579                                 len = start + len - (em->start + em->len);
580                         free_extent_map(em);
581                         write_unlock(&em_tree->lock);
582                         continue;
583                 }
584                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
585                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
586                 clear_bit(EXTENT_FLAG_LOGGING, &flags);
587                 modified = !list_empty(&em->list);
588                 if (no_splits)
589                         goto next;
590
591                 if (em->start < start) {
592                         split->start = em->start;
593                         split->len = start - em->start;
594
595                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
596                                 split->orig_start = em->orig_start;
597                                 split->block_start = em->block_start;
598
599                                 if (compressed)
600                                         split->block_len = em->block_len;
601                                 else
602                                         split->block_len = split->len;
603                                 split->orig_block_len = max(split->block_len,
604                                                 em->orig_block_len);
605                                 split->ram_bytes = em->ram_bytes;
606                         } else {
607                                 split->orig_start = split->start;
608                                 split->block_len = 0;
609                                 split->block_start = em->block_start;
610                                 split->orig_block_len = 0;
611                                 split->ram_bytes = split->len;
612                         }
613
614                         split->generation = gen;
615                         split->bdev = em->bdev;
616                         split->flags = flags;
617                         split->compress_type = em->compress_type;
618                         replace_extent_mapping(em_tree, em, split, modified);
619                         free_extent_map(split);
620                         split = split2;
621                         split2 = NULL;
622                 }
623                 if (testend && em->start + em->len > start + len) {
624                         u64 diff = start + len - em->start;
625
626                         split->start = start + len;
627                         split->len = em->start + em->len - (start + len);
628                         split->bdev = em->bdev;
629                         split->flags = flags;
630                         split->compress_type = em->compress_type;
631                         split->generation = gen;
632
633                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
634                                 split->orig_block_len = max(em->block_len,
635                                                     em->orig_block_len);
636
637                                 split->ram_bytes = em->ram_bytes;
638                                 if (compressed) {
639                                         split->block_len = em->block_len;
640                                         split->block_start = em->block_start;
641                                         split->orig_start = em->orig_start;
642                                 } else {
643                                         split->block_len = split->len;
644                                         split->block_start = em->block_start
645                                                 + diff;
646                                         split->orig_start = em->orig_start;
647                                 }
648                         } else {
649                                 split->ram_bytes = split->len;
650                                 split->orig_start = split->start;
651                                 split->block_len = 0;
652                                 split->block_start = em->block_start;
653                                 split->orig_block_len = 0;
654                         }
655
656                         if (extent_map_in_tree(em)) {
657                                 replace_extent_mapping(em_tree, em, split,
658                                                        modified);
659                         } else {
660                                 ret = add_extent_mapping(em_tree, split,
661                                                          modified);
662                                 ASSERT(ret == 0); /* Logic error */
663                         }
664                         free_extent_map(split);
665                         split = NULL;
666                 }
667 next:
668                 if (extent_map_in_tree(em))
669                         remove_extent_mapping(em_tree, em);
670                 write_unlock(&em_tree->lock);
671
672                 /* once for us */
673                 free_extent_map(em);
674                 /* once for the tree*/
675                 free_extent_map(em);
676         }
677         if (split)
678                 free_extent_map(split);
679         if (split2)
680                 free_extent_map(split2);
681 }
682
683 /*
684  * this is very complex, but the basic idea is to drop all extents
685  * in the range start - end.  hint_block is filled in with a block number
686  * that would be a good hint to the block allocator for this file.
687  *
688  * If an extent intersects the range but is not entirely inside the range
689  * it is either truncated or split.  Anything entirely inside the range
690  * is deleted from the tree.
691  */
692 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
693                          struct btrfs_root *root, struct inode *inode,
694                          struct btrfs_path *path, u64 start, u64 end,
695                          u64 *drop_end, int drop_cache,
696                          int replace_extent,
697                          u32 extent_item_size,
698                          int *key_inserted)
699 {
700         struct btrfs_fs_info *fs_info = root->fs_info;
701         struct extent_buffer *leaf;
702         struct btrfs_file_extent_item *fi;
703         struct btrfs_key key;
704         struct btrfs_key new_key;
705         u64 ino = btrfs_ino(BTRFS_I(inode));
706         u64 search_start = start;
707         u64 disk_bytenr = 0;
708         u64 num_bytes = 0;
709         u64 extent_offset = 0;
710         u64 extent_end = 0;
711         u64 last_end = start;
712         int del_nr = 0;
713         int del_slot = 0;
714         int extent_type;
715         int recow;
716         int ret;
717         int modify_tree = -1;
718         int update_refs;
719         int found = 0;
720         int leafs_visited = 0;
721
722         if (drop_cache)
723                 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
724
725         if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
726                 modify_tree = 0;
727
728         update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
729                        root == fs_info->tree_root);
730         while (1) {
731                 recow = 0;
732                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
733                                                search_start, modify_tree);
734                 if (ret < 0)
735                         break;
736                 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
737                         leaf = path->nodes[0];
738                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
739                         if (key.objectid == ino &&
740                             key.type == BTRFS_EXTENT_DATA_KEY)
741                                 path->slots[0]--;
742                 }
743                 ret = 0;
744                 leafs_visited++;
745 next_slot:
746                 leaf = path->nodes[0];
747                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
748                         BUG_ON(del_nr > 0);
749                         ret = btrfs_next_leaf(root, path);
750                         if (ret < 0)
751                                 break;
752                         if (ret > 0) {
753                                 ret = 0;
754                                 break;
755                         }
756                         leafs_visited++;
757                         leaf = path->nodes[0];
758                         recow = 1;
759                 }
760
761                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
762
763                 if (key.objectid > ino)
764                         break;
765                 if (WARN_ON_ONCE(key.objectid < ino) ||
766                     key.type < BTRFS_EXTENT_DATA_KEY) {
767                         ASSERT(del_nr == 0);
768                         path->slots[0]++;
769                         goto next_slot;
770                 }
771                 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
772                         break;
773
774                 fi = btrfs_item_ptr(leaf, path->slots[0],
775                                     struct btrfs_file_extent_item);
776                 extent_type = btrfs_file_extent_type(leaf, fi);
777
778                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
779                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
780                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
781                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
782                         extent_offset = btrfs_file_extent_offset(leaf, fi);
783                         extent_end = key.offset +
784                                 btrfs_file_extent_num_bytes(leaf, fi);
785                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
786                         extent_end = key.offset +
787                                 btrfs_file_extent_inline_len(leaf,
788                                                      path->slots[0], fi);
789                 } else {
790                         /* can't happen */
791                         BUG();
792                 }
793
794                 /*
795                  * Don't skip extent items representing 0 byte lengths. They
796                  * used to be created (bug) if while punching holes we hit
797                  * -ENOSPC condition. So if we find one here, just ensure we
798                  * delete it, otherwise we would insert a new file extent item
799                  * with the same key (offset) as that 0 bytes length file
800                  * extent item in the call to setup_items_for_insert() later
801                  * in this function.
802                  */
803                 if (extent_end == key.offset && extent_end >= search_start) {
804                         last_end = extent_end;
805                         goto delete_extent_item;
806                 }
807
808                 if (extent_end <= search_start) {
809                         path->slots[0]++;
810                         goto next_slot;
811                 }
812
813                 found = 1;
814                 search_start = max(key.offset, start);
815                 if (recow || !modify_tree) {
816                         modify_tree = -1;
817                         btrfs_release_path(path);
818                         continue;
819                 }
820
821                 /*
822                  *     | - range to drop - |
823                  *  | -------- extent -------- |
824                  */
825                 if (start > key.offset && end < extent_end) {
826                         BUG_ON(del_nr > 0);
827                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
828                                 ret = -EOPNOTSUPP;
829                                 break;
830                         }
831
832                         memcpy(&new_key, &key, sizeof(new_key));
833                         new_key.offset = start;
834                         ret = btrfs_duplicate_item(trans, root, path,
835                                                    &new_key);
836                         if (ret == -EAGAIN) {
837                                 btrfs_release_path(path);
838                                 continue;
839                         }
840                         if (ret < 0)
841                                 break;
842
843                         leaf = path->nodes[0];
844                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
845                                             struct btrfs_file_extent_item);
846                         btrfs_set_file_extent_num_bytes(leaf, fi,
847                                                         start - key.offset);
848
849                         fi = btrfs_item_ptr(leaf, path->slots[0],
850                                             struct btrfs_file_extent_item);
851
852                         extent_offset += start - key.offset;
853                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
854                         btrfs_set_file_extent_num_bytes(leaf, fi,
855                                                         extent_end - start);
856                         btrfs_mark_buffer_dirty(leaf);
857
858                         if (update_refs && disk_bytenr > 0) {
859                                 ret = btrfs_inc_extent_ref(trans, root,
860                                                 disk_bytenr, num_bytes, 0,
861                                                 root->root_key.objectid,
862                                                 new_key.objectid,
863                                                 start - extent_offset);
864                                 BUG_ON(ret); /* -ENOMEM */
865                         }
866                         key.offset = start;
867                 }
868                 /*
869                  * From here on out we will have actually dropped something, so
870                  * last_end can be updated.
871                  */
872                 last_end = extent_end;
873
874                 /*
875                  *  | ---- range to drop ----- |
876                  *      | -------- extent -------- |
877                  */
878                 if (start <= key.offset && end < extent_end) {
879                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
880                                 ret = -EOPNOTSUPP;
881                                 break;
882                         }
883
884                         memcpy(&new_key, &key, sizeof(new_key));
885                         new_key.offset = end;
886                         btrfs_set_item_key_safe(fs_info, path, &new_key);
887
888                         extent_offset += end - key.offset;
889                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
890                         btrfs_set_file_extent_num_bytes(leaf, fi,
891                                                         extent_end - end);
892                         btrfs_mark_buffer_dirty(leaf);
893                         if (update_refs && disk_bytenr > 0)
894                                 inode_sub_bytes(inode, end - key.offset);
895                         break;
896                 }
897
898                 search_start = extent_end;
899                 /*
900                  *       | ---- range to drop ----- |
901                  *  | -------- extent -------- |
902                  */
903                 if (start > key.offset && end >= extent_end) {
904                         BUG_ON(del_nr > 0);
905                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
906                                 ret = -EOPNOTSUPP;
907                                 break;
908                         }
909
910                         btrfs_set_file_extent_num_bytes(leaf, fi,
911                                                         start - key.offset);
912                         btrfs_mark_buffer_dirty(leaf);
913                         if (update_refs && disk_bytenr > 0)
914                                 inode_sub_bytes(inode, extent_end - start);
915                         if (end == extent_end)
916                                 break;
917
918                         path->slots[0]++;
919                         goto next_slot;
920                 }
921
922                 /*
923                  *  | ---- range to drop ----- |
924                  *    | ------ extent ------ |
925                  */
926                 if (start <= key.offset && end >= extent_end) {
927 delete_extent_item:
928                         if (del_nr == 0) {
929                                 del_slot = path->slots[0];
930                                 del_nr = 1;
931                         } else {
932                                 BUG_ON(del_slot + del_nr != path->slots[0]);
933                                 del_nr++;
934                         }
935
936                         if (update_refs &&
937                             extent_type == BTRFS_FILE_EXTENT_INLINE) {
938                                 inode_sub_bytes(inode,
939                                                 extent_end - key.offset);
940                                 extent_end = ALIGN(extent_end,
941                                                    fs_info->sectorsize);
942                         } else if (update_refs && disk_bytenr > 0) {
943                                 ret = btrfs_free_extent(trans, root,
944                                                 disk_bytenr, num_bytes, 0,
945                                                 root->root_key.objectid,
946                                                 key.objectid, key.offset -
947                                                 extent_offset);
948                                 BUG_ON(ret); /* -ENOMEM */
949                                 inode_sub_bytes(inode,
950                                                 extent_end - key.offset);
951                         }
952
953                         if (end == extent_end)
954                                 break;
955
956                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
957                                 path->slots[0]++;
958                                 goto next_slot;
959                         }
960
961                         ret = btrfs_del_items(trans, root, path, del_slot,
962                                               del_nr);
963                         if (ret) {
964                                 btrfs_abort_transaction(trans, ret);
965                                 break;
966                         }
967
968                         del_nr = 0;
969                         del_slot = 0;
970
971                         btrfs_release_path(path);
972                         continue;
973                 }
974
975                 BUG_ON(1);
976         }
977
978         if (!ret && del_nr > 0) {
979                 /*
980                  * Set path->slots[0] to first slot, so that after the delete
981                  * if items are move off from our leaf to its immediate left or
982                  * right neighbor leafs, we end up with a correct and adjusted
983                  * path->slots[0] for our insertion (if replace_extent != 0).
984                  */
985                 path->slots[0] = del_slot;
986                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
987                 if (ret)
988                         btrfs_abort_transaction(trans, ret);
989         }
990
991         leaf = path->nodes[0];
992         /*
993          * If btrfs_del_items() was called, it might have deleted a leaf, in
994          * which case it unlocked our path, so check path->locks[0] matches a
995          * write lock.
996          */
997         if (!ret && replace_extent && leafs_visited == 1 &&
998             (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
999              path->locks[0] == BTRFS_WRITE_LOCK) &&
1000             btrfs_leaf_free_space(fs_info, leaf) >=
1001             sizeof(struct btrfs_item) + extent_item_size) {
1002
1003                 key.objectid = ino;
1004                 key.type = BTRFS_EXTENT_DATA_KEY;
1005                 key.offset = start;
1006                 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1007                         struct btrfs_key slot_key;
1008
1009                         btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1010                         if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1011                                 path->slots[0]++;
1012                 }
1013                 setup_items_for_insert(root, path, &key,
1014                                        &extent_item_size,
1015                                        extent_item_size,
1016                                        sizeof(struct btrfs_item) +
1017                                        extent_item_size, 1);
1018                 *key_inserted = 1;
1019         }
1020
1021         if (!replace_extent || !(*key_inserted))
1022                 btrfs_release_path(path);
1023         if (drop_end)
1024                 *drop_end = found ? min(end, last_end) : end;
1025         return ret;
1026 }
1027
1028 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1029                        struct btrfs_root *root, struct inode *inode, u64 start,
1030                        u64 end, int drop_cache)
1031 {
1032         struct btrfs_path *path;
1033         int ret;
1034
1035         path = btrfs_alloc_path();
1036         if (!path)
1037                 return -ENOMEM;
1038         ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1039                                    drop_cache, 0, 0, NULL);
1040         btrfs_free_path(path);
1041         return ret;
1042 }
1043
1044 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1045                             u64 objectid, u64 bytenr, u64 orig_offset,
1046                             u64 *start, u64 *end)
1047 {
1048         struct btrfs_file_extent_item *fi;
1049         struct btrfs_key key;
1050         u64 extent_end;
1051
1052         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1053                 return 0;
1054
1055         btrfs_item_key_to_cpu(leaf, &key, slot);
1056         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1057                 return 0;
1058
1059         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1060         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1061             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1062             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1063             btrfs_file_extent_compression(leaf, fi) ||
1064             btrfs_file_extent_encryption(leaf, fi) ||
1065             btrfs_file_extent_other_encoding(leaf, fi))
1066                 return 0;
1067
1068         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1069         if ((*start && *start != key.offset) || (*end && *end != extent_end))
1070                 return 0;
1071
1072         *start = key.offset;
1073         *end = extent_end;
1074         return 1;
1075 }
1076
1077 /*
1078  * Mark extent in the range start - end as written.
1079  *
1080  * This changes extent type from 'pre-allocated' to 'regular'. If only
1081  * part of extent is marked as written, the extent will be split into
1082  * two or three.
1083  */
1084 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1085                               struct btrfs_inode *inode, u64 start, u64 end)
1086 {
1087         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1088         struct btrfs_root *root = inode->root;
1089         struct extent_buffer *leaf;
1090         struct btrfs_path *path;
1091         struct btrfs_file_extent_item *fi;
1092         struct btrfs_key key;
1093         struct btrfs_key new_key;
1094         u64 bytenr;
1095         u64 num_bytes;
1096         u64 extent_end;
1097         u64 orig_offset;
1098         u64 other_start;
1099         u64 other_end;
1100         u64 split;
1101         int del_nr = 0;
1102         int del_slot = 0;
1103         int recow;
1104         int ret;
1105         u64 ino = btrfs_ino(inode);
1106
1107         path = btrfs_alloc_path();
1108         if (!path)
1109                 return -ENOMEM;
1110 again:
1111         recow = 0;
1112         split = start;
1113         key.objectid = ino;
1114         key.type = BTRFS_EXTENT_DATA_KEY;
1115         key.offset = split;
1116
1117         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1118         if (ret < 0)
1119                 goto out;
1120         if (ret > 0 && path->slots[0] > 0)
1121                 path->slots[0]--;
1122
1123         leaf = path->nodes[0];
1124         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1125         if (key.objectid != ino ||
1126             key.type != BTRFS_EXTENT_DATA_KEY) {
1127                 ret = -EINVAL;
1128                 btrfs_abort_transaction(trans, ret);
1129                 goto out;
1130         }
1131         fi = btrfs_item_ptr(leaf, path->slots[0],
1132                             struct btrfs_file_extent_item);
1133         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1134                 ret = -EINVAL;
1135                 btrfs_abort_transaction(trans, ret);
1136                 goto out;
1137         }
1138         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1139         if (key.offset > start || extent_end < end) {
1140                 ret = -EINVAL;
1141                 btrfs_abort_transaction(trans, ret);
1142                 goto out;
1143         }
1144
1145         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1146         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1147         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1148         memcpy(&new_key, &key, sizeof(new_key));
1149
1150         if (start == key.offset && end < extent_end) {
1151                 other_start = 0;
1152                 other_end = start;
1153                 if (extent_mergeable(leaf, path->slots[0] - 1,
1154                                      ino, bytenr, orig_offset,
1155                                      &other_start, &other_end)) {
1156                         new_key.offset = end;
1157                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1158                         fi = btrfs_item_ptr(leaf, path->slots[0],
1159                                             struct btrfs_file_extent_item);
1160                         btrfs_set_file_extent_generation(leaf, fi,
1161                                                          trans->transid);
1162                         btrfs_set_file_extent_num_bytes(leaf, fi,
1163                                                         extent_end - end);
1164                         btrfs_set_file_extent_offset(leaf, fi,
1165                                                      end - orig_offset);
1166                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1167                                             struct btrfs_file_extent_item);
1168                         btrfs_set_file_extent_generation(leaf, fi,
1169                                                          trans->transid);
1170                         btrfs_set_file_extent_num_bytes(leaf, fi,
1171                                                         end - other_start);
1172                         btrfs_mark_buffer_dirty(leaf);
1173                         goto out;
1174                 }
1175         }
1176
1177         if (start > key.offset && end == extent_end) {
1178                 other_start = end;
1179                 other_end = 0;
1180                 if (extent_mergeable(leaf, path->slots[0] + 1,
1181                                      ino, bytenr, orig_offset,
1182                                      &other_start, &other_end)) {
1183                         fi = btrfs_item_ptr(leaf, path->slots[0],
1184                                             struct btrfs_file_extent_item);
1185                         btrfs_set_file_extent_num_bytes(leaf, fi,
1186                                                         start - key.offset);
1187                         btrfs_set_file_extent_generation(leaf, fi,
1188                                                          trans->transid);
1189                         path->slots[0]++;
1190                         new_key.offset = start;
1191                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1192
1193                         fi = btrfs_item_ptr(leaf, path->slots[0],
1194                                             struct btrfs_file_extent_item);
1195                         btrfs_set_file_extent_generation(leaf, fi,
1196                                                          trans->transid);
1197                         btrfs_set_file_extent_num_bytes(leaf, fi,
1198                                                         other_end - start);
1199                         btrfs_set_file_extent_offset(leaf, fi,
1200                                                      start - orig_offset);
1201                         btrfs_mark_buffer_dirty(leaf);
1202                         goto out;
1203                 }
1204         }
1205
1206         while (start > key.offset || end < extent_end) {
1207                 if (key.offset == start)
1208                         split = end;
1209
1210                 new_key.offset = split;
1211                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1212                 if (ret == -EAGAIN) {
1213                         btrfs_release_path(path);
1214                         goto again;
1215                 }
1216                 if (ret < 0) {
1217                         btrfs_abort_transaction(trans, ret);
1218                         goto out;
1219                 }
1220
1221                 leaf = path->nodes[0];
1222                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1223                                     struct btrfs_file_extent_item);
1224                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1225                 btrfs_set_file_extent_num_bytes(leaf, fi,
1226                                                 split - key.offset);
1227
1228                 fi = btrfs_item_ptr(leaf, path->slots[0],
1229                                     struct btrfs_file_extent_item);
1230
1231                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1232                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1233                 btrfs_set_file_extent_num_bytes(leaf, fi,
1234                                                 extent_end - split);
1235                 btrfs_mark_buffer_dirty(leaf);
1236
1237                 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
1238                                            0, root->root_key.objectid,
1239                                            ino, orig_offset);
1240                 if (ret) {
1241                         btrfs_abort_transaction(trans, ret);
1242                         goto out;
1243                 }
1244
1245                 if (split == start) {
1246                         key.offset = start;
1247                 } else {
1248                         if (start != key.offset) {
1249                                 ret = -EINVAL;
1250                                 btrfs_abort_transaction(trans, ret);
1251                                 goto out;
1252                         }
1253                         path->slots[0]--;
1254                         extent_end = end;
1255                 }
1256                 recow = 1;
1257         }
1258
1259         other_start = end;
1260         other_end = 0;
1261         if (extent_mergeable(leaf, path->slots[0] + 1,
1262                              ino, bytenr, orig_offset,
1263                              &other_start, &other_end)) {
1264                 if (recow) {
1265                         btrfs_release_path(path);
1266                         goto again;
1267                 }
1268                 extent_end = other_end;
1269                 del_slot = path->slots[0] + 1;
1270                 del_nr++;
1271                 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1272                                         0, root->root_key.objectid,
1273                                         ino, orig_offset);
1274                 if (ret) {
1275                         btrfs_abort_transaction(trans, ret);
1276                         goto out;
1277                 }
1278         }
1279         other_start = 0;
1280         other_end = start;
1281         if (extent_mergeable(leaf, path->slots[0] - 1,
1282                              ino, bytenr, orig_offset,
1283                              &other_start, &other_end)) {
1284                 if (recow) {
1285                         btrfs_release_path(path);
1286                         goto again;
1287                 }
1288                 key.offset = other_start;
1289                 del_slot = path->slots[0];
1290                 del_nr++;
1291                 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1292                                         0, root->root_key.objectid,
1293                                         ino, orig_offset);
1294                 if (ret) {
1295                         btrfs_abort_transaction(trans, ret);
1296                         goto out;
1297                 }
1298         }
1299         if (del_nr == 0) {
1300                 fi = btrfs_item_ptr(leaf, path->slots[0],
1301                            struct btrfs_file_extent_item);
1302                 btrfs_set_file_extent_type(leaf, fi,
1303                                            BTRFS_FILE_EXTENT_REG);
1304                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1305                 btrfs_mark_buffer_dirty(leaf);
1306         } else {
1307                 fi = btrfs_item_ptr(leaf, del_slot - 1,
1308                            struct btrfs_file_extent_item);
1309                 btrfs_set_file_extent_type(leaf, fi,
1310                                            BTRFS_FILE_EXTENT_REG);
1311                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1312                 btrfs_set_file_extent_num_bytes(leaf, fi,
1313                                                 extent_end - key.offset);
1314                 btrfs_mark_buffer_dirty(leaf);
1315
1316                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1317                 if (ret < 0) {
1318                         btrfs_abort_transaction(trans, ret);
1319                         goto out;
1320                 }
1321         }
1322 out:
1323         btrfs_free_path(path);
1324         return 0;
1325 }
1326
1327 /*
1328  * on error we return an unlocked page and the error value
1329  * on success we return a locked page and 0
1330  */
1331 static int prepare_uptodate_page(struct inode *inode,
1332                                  struct page *page, u64 pos,
1333                                  bool force_uptodate)
1334 {
1335         int ret = 0;
1336
1337         if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1338             !PageUptodate(page)) {
1339                 ret = btrfs_readpage(NULL, page);
1340                 if (ret)
1341                         return ret;
1342                 lock_page(page);
1343                 if (!PageUptodate(page)) {
1344                         unlock_page(page);
1345                         return -EIO;
1346                 }
1347                 if (page->mapping != inode->i_mapping) {
1348                         unlock_page(page);
1349                         return -EAGAIN;
1350                 }
1351         }
1352         return 0;
1353 }
1354
1355 /*
1356  * this just gets pages into the page cache and locks them down.
1357  */
1358 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1359                                   size_t num_pages, loff_t pos,
1360                                   size_t write_bytes, bool force_uptodate)
1361 {
1362         int i;
1363         unsigned long index = pos >> PAGE_SHIFT;
1364         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1365         int err = 0;
1366         int faili;
1367
1368         for (i = 0; i < num_pages; i++) {
1369 again:
1370                 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1371                                                mask | __GFP_WRITE);
1372                 if (!pages[i]) {
1373                         faili = i - 1;
1374                         err = -ENOMEM;
1375                         goto fail;
1376                 }
1377
1378                 if (i == 0)
1379                         err = prepare_uptodate_page(inode, pages[i], pos,
1380                                                     force_uptodate);
1381                 if (!err && i == num_pages - 1)
1382                         err = prepare_uptodate_page(inode, pages[i],
1383                                                     pos + write_bytes, false);
1384                 if (err) {
1385                         put_page(pages[i]);
1386                         if (err == -EAGAIN) {
1387                                 err = 0;
1388                                 goto again;
1389                         }
1390                         faili = i - 1;
1391                         goto fail;
1392                 }
1393                 wait_on_page_writeback(pages[i]);
1394         }
1395
1396         return 0;
1397 fail:
1398         while (faili >= 0) {
1399                 unlock_page(pages[faili]);
1400                 put_page(pages[faili]);
1401                 faili--;
1402         }
1403         return err;
1404
1405 }
1406
1407 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
1408                                          const u64 start,
1409                                          const u64 len,
1410                                          struct extent_state **cached_state)
1411 {
1412         u64 search_start = start;
1413         const u64 end = start + len - 1;
1414
1415         while (search_start < end) {
1416                 const u64 search_len = end - search_start + 1;
1417                 struct extent_map *em;
1418                 u64 em_len;
1419                 int ret = 0;
1420
1421                 em = btrfs_get_extent(inode, NULL, 0, search_start,
1422                                       search_len, 0);
1423                 if (IS_ERR(em))
1424                         return PTR_ERR(em);
1425
1426                 if (em->block_start != EXTENT_MAP_HOLE)
1427                         goto next;
1428
1429                 em_len = em->len;
1430                 if (em->start < search_start)
1431                         em_len -= search_start - em->start;
1432                 if (em_len > search_len)
1433                         em_len = search_len;
1434
1435                 ret = set_extent_bit(&inode->io_tree, search_start,
1436                                      search_start + em_len - 1,
1437                                      EXTENT_DELALLOC_NEW,
1438                                      NULL, cached_state, GFP_NOFS);
1439 next:
1440                 search_start = extent_map_end(em);
1441                 free_extent_map(em);
1442                 if (ret)
1443                         return ret;
1444         }
1445         return 0;
1446 }
1447
1448 /*
1449  * This function locks the extent and properly waits for data=ordered extents
1450  * to finish before allowing the pages to be modified if need.
1451  *
1452  * The return value:
1453  * 1 - the extent is locked
1454  * 0 - the extent is not locked, and everything is OK
1455  * -EAGAIN - need re-prepare the pages
1456  * the other < 0 number - Something wrong happens
1457  */
1458 static noinline int
1459 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1460                                 size_t num_pages, loff_t pos,
1461                                 size_t write_bytes,
1462                                 u64 *lockstart, u64 *lockend,
1463                                 struct extent_state **cached_state)
1464 {
1465         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1466         u64 start_pos;
1467         u64 last_pos;
1468         int i;
1469         int ret = 0;
1470
1471         start_pos = round_down(pos, fs_info->sectorsize);
1472         last_pos = start_pos
1473                 + round_up(pos + write_bytes - start_pos,
1474                            fs_info->sectorsize) - 1;
1475
1476         if (start_pos < inode->vfs_inode.i_size ||
1477             (inode->flags & BTRFS_INODE_PREALLOC)) {
1478                 struct btrfs_ordered_extent *ordered;
1479                 unsigned int clear_bits;
1480
1481                 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1482                                 cached_state);
1483                 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1484                                                      last_pos - start_pos + 1);
1485                 if (ordered &&
1486                     ordered->file_offset + ordered->len > start_pos &&
1487                     ordered->file_offset <= last_pos) {
1488                         unlock_extent_cached(&inode->io_tree, start_pos,
1489                                         last_pos, cached_state, GFP_NOFS);
1490                         for (i = 0; i < num_pages; i++) {
1491                                 unlock_page(pages[i]);
1492                                 put_page(pages[i]);
1493                         }
1494                         btrfs_start_ordered_extent(&inode->vfs_inode,
1495                                         ordered, 1);
1496                         btrfs_put_ordered_extent(ordered);
1497                         return -EAGAIN;
1498                 }
1499                 if (ordered)
1500                         btrfs_put_ordered_extent(ordered);
1501                 ret = btrfs_find_new_delalloc_bytes(inode, start_pos,
1502                                                     last_pos - start_pos + 1,
1503                                                     cached_state);
1504                 clear_bits = EXTENT_DIRTY | EXTENT_DELALLOC |
1505                         EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG;
1506                 if (ret)
1507                         clear_bits |= EXTENT_DELALLOC_NEW | EXTENT_LOCKED;
1508                 clear_extent_bit(&inode->io_tree, start_pos,
1509                                  last_pos, clear_bits,
1510                                  (clear_bits & EXTENT_LOCKED) ? 1 : 0,
1511                                  0, cached_state, GFP_NOFS);
1512                 if (ret)
1513                         return ret;
1514                 *lockstart = start_pos;
1515                 *lockend = last_pos;
1516                 ret = 1;
1517         }
1518
1519         for (i = 0; i < num_pages; i++) {
1520                 if (clear_page_dirty_for_io(pages[i]))
1521                         account_page_redirty(pages[i]);
1522                 set_page_extent_mapped(pages[i]);
1523                 WARN_ON(!PageLocked(pages[i]));
1524         }
1525
1526         return ret;
1527 }
1528
1529 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1530                                     size_t *write_bytes)
1531 {
1532         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1533         struct btrfs_root *root = inode->root;
1534         struct btrfs_ordered_extent *ordered;
1535         u64 lockstart, lockend;
1536         u64 num_bytes;
1537         int ret;
1538
1539         ret = btrfs_start_write_no_snapshotting(root);
1540         if (!ret)
1541                 return -ENOSPC;
1542
1543         lockstart = round_down(pos, fs_info->sectorsize);
1544         lockend = round_up(pos + *write_bytes,
1545                            fs_info->sectorsize) - 1;
1546
1547         while (1) {
1548                 lock_extent(&inode->io_tree, lockstart, lockend);
1549                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1550                                                      lockend - lockstart + 1);
1551                 if (!ordered) {
1552                         break;
1553                 }
1554                 unlock_extent(&inode->io_tree, lockstart, lockend);
1555                 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1556                 btrfs_put_ordered_extent(ordered);
1557         }
1558
1559         num_bytes = lockend - lockstart + 1;
1560         ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1561                         NULL, NULL, NULL);
1562         if (ret <= 0) {
1563                 ret = 0;
1564                 btrfs_end_write_no_snapshotting(root);
1565         } else {
1566                 *write_bytes = min_t(size_t, *write_bytes ,
1567                                      num_bytes - pos + lockstart);
1568         }
1569
1570         unlock_extent(&inode->io_tree, lockstart, lockend);
1571
1572         return ret;
1573 }
1574
1575 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1576                                                struct iov_iter *i,
1577                                                loff_t pos)
1578 {
1579         struct inode *inode = file_inode(file);
1580         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1581         struct btrfs_root *root = BTRFS_I(inode)->root;
1582         struct page **pages = NULL;
1583         struct extent_state *cached_state = NULL;
1584         struct extent_changeset *data_reserved = NULL;
1585         u64 release_bytes = 0;
1586         u64 lockstart;
1587         u64 lockend;
1588         size_t num_written = 0;
1589         int nrptrs;
1590         int ret = 0;
1591         bool only_release_metadata = false;
1592         bool force_page_uptodate = false;
1593
1594         nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1595                         PAGE_SIZE / (sizeof(struct page *)));
1596         nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1597         nrptrs = max(nrptrs, 8);
1598         pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1599         if (!pages)
1600                 return -ENOMEM;
1601
1602         while (iov_iter_count(i) > 0) {
1603                 size_t offset = pos & (PAGE_SIZE - 1);
1604                 size_t sector_offset;
1605                 size_t write_bytes = min(iov_iter_count(i),
1606                                          nrptrs * (size_t)PAGE_SIZE -
1607                                          offset);
1608                 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1609                                                 PAGE_SIZE);
1610                 size_t reserve_bytes;
1611                 size_t dirty_pages;
1612                 size_t copied;
1613                 size_t dirty_sectors;
1614                 size_t num_sectors;
1615                 int extents_locked;
1616
1617                 WARN_ON(num_pages > nrptrs);
1618
1619                 /*
1620                  * Fault pages before locking them in prepare_pages
1621                  * to avoid recursive lock
1622                  */
1623                 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1624                         ret = -EFAULT;
1625                         break;
1626                 }
1627
1628                 sector_offset = pos & (fs_info->sectorsize - 1);
1629                 reserve_bytes = round_up(write_bytes + sector_offset,
1630                                 fs_info->sectorsize);
1631
1632                 extent_changeset_release(data_reserved);
1633                 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1634                                                   write_bytes);
1635                 if (ret < 0) {
1636                         if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1637                                                       BTRFS_INODE_PREALLOC)) &&
1638                             check_can_nocow(BTRFS_I(inode), pos,
1639                                         &write_bytes) > 0) {
1640                                 /*
1641                                  * For nodata cow case, no need to reserve
1642                                  * data space.
1643                                  */
1644                                 only_release_metadata = true;
1645                                 /*
1646                                  * our prealloc extent may be smaller than
1647                                  * write_bytes, so scale down.
1648                                  */
1649                                 num_pages = DIV_ROUND_UP(write_bytes + offset,
1650                                                          PAGE_SIZE);
1651                                 reserve_bytes = round_up(write_bytes +
1652                                                          sector_offset,
1653                                                          fs_info->sectorsize);
1654                         } else {
1655                                 break;
1656                         }
1657                 }
1658
1659                 WARN_ON(reserve_bytes == 0);
1660                 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1661                                 reserve_bytes);
1662                 if (ret) {
1663                         if (!only_release_metadata)
1664                                 btrfs_free_reserved_data_space(inode,
1665                                                 data_reserved, pos,
1666                                                 write_bytes);
1667                         else
1668                                 btrfs_end_write_no_snapshotting(root);
1669                         break;
1670                 }
1671
1672                 release_bytes = reserve_bytes;
1673 again:
1674                 /*
1675                  * This is going to setup the pages array with the number of
1676                  * pages we want, so we don't really need to worry about the
1677                  * contents of pages from loop to loop
1678                  */
1679                 ret = prepare_pages(inode, pages, num_pages,
1680                                     pos, write_bytes,
1681                                     force_page_uptodate);
1682                 if (ret) {
1683                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1684                                                        reserve_bytes);
1685                         break;
1686                 }
1687
1688                 extents_locked = lock_and_cleanup_extent_if_need(
1689                                 BTRFS_I(inode), pages,
1690                                 num_pages, pos, write_bytes, &lockstart,
1691                                 &lockend, &cached_state);
1692                 if (extents_locked < 0) {
1693                         if (extents_locked == -EAGAIN)
1694                                 goto again;
1695                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1696                                                        reserve_bytes);
1697                         ret = extents_locked;
1698                         break;
1699                 }
1700
1701                 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1702
1703                 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1704                 dirty_sectors = round_up(copied + sector_offset,
1705                                         fs_info->sectorsize);
1706                 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1707
1708                 /*
1709                  * if we have trouble faulting in the pages, fall
1710                  * back to one page at a time
1711                  */
1712                 if (copied < write_bytes)
1713                         nrptrs = 1;
1714
1715                 if (copied == 0) {
1716                         force_page_uptodate = true;
1717                         dirty_sectors = 0;
1718                         dirty_pages = 0;
1719                 } else {
1720                         force_page_uptodate = false;
1721                         dirty_pages = DIV_ROUND_UP(copied + offset,
1722                                                    PAGE_SIZE);
1723                 }
1724
1725                 if (num_sectors > dirty_sectors) {
1726                         /* release everything except the sectors we dirtied */
1727                         release_bytes -= dirty_sectors <<
1728                                                 fs_info->sb->s_blocksize_bits;
1729                         if (only_release_metadata) {
1730                                 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1731                                                                 release_bytes);
1732                         } else {
1733                                 u64 __pos;
1734
1735                                 __pos = round_down(pos,
1736                                                    fs_info->sectorsize) +
1737                                         (dirty_pages << PAGE_SHIFT);
1738                                 btrfs_delalloc_release_space(inode,
1739                                                 data_reserved, __pos,
1740                                                 release_bytes);
1741                         }
1742                 }
1743
1744                 release_bytes = round_up(copied + sector_offset,
1745                                         fs_info->sectorsize);
1746
1747                 if (copied > 0)
1748                         ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1749                                                 pos, copied, NULL);
1750                 if (extents_locked)
1751                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1752                                              lockstart, lockend, &cached_state,
1753                                              GFP_NOFS);
1754                 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1755                 if (ret) {
1756                         btrfs_drop_pages(pages, num_pages);
1757                         break;
1758                 }
1759
1760                 release_bytes = 0;
1761                 if (only_release_metadata)
1762                         btrfs_end_write_no_snapshotting(root);
1763
1764                 if (only_release_metadata && copied > 0) {
1765                         lockstart = round_down(pos,
1766                                                fs_info->sectorsize);
1767                         lockend = round_up(pos + copied,
1768                                            fs_info->sectorsize) - 1;
1769
1770                         set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1771                                        lockend, EXTENT_NORESERVE, NULL,
1772                                        NULL, GFP_NOFS);
1773                         only_release_metadata = false;
1774                 }
1775
1776                 btrfs_drop_pages(pages, num_pages);
1777
1778                 cond_resched();
1779
1780                 balance_dirty_pages_ratelimited(inode->i_mapping);
1781                 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1782                         btrfs_btree_balance_dirty(fs_info);
1783
1784                 pos += copied;
1785                 num_written += copied;
1786         }
1787
1788         kfree(pages);
1789
1790         if (release_bytes) {
1791                 if (only_release_metadata) {
1792                         btrfs_end_write_no_snapshotting(root);
1793                         btrfs_delalloc_release_metadata(BTRFS_I(inode),
1794                                         release_bytes);
1795                 } else {
1796                         btrfs_delalloc_release_space(inode, data_reserved,
1797                                         round_down(pos, fs_info->sectorsize),
1798                                         release_bytes);
1799                 }
1800         }
1801
1802         extent_changeset_free(data_reserved);
1803         return num_written ? num_written : ret;
1804 }
1805
1806 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1807 {
1808         struct file *file = iocb->ki_filp;
1809         struct inode *inode = file_inode(file);
1810         loff_t pos = iocb->ki_pos;
1811         ssize_t written;
1812         ssize_t written_buffered;
1813         loff_t endbyte;
1814         int err;
1815
1816         written = generic_file_direct_write(iocb, from);
1817
1818         if (written < 0 || !iov_iter_count(from))
1819                 return written;
1820
1821         pos += written;
1822         written_buffered = __btrfs_buffered_write(file, from, pos);
1823         if (written_buffered < 0) {
1824                 err = written_buffered;
1825                 goto out;
1826         }
1827         /*
1828          * Ensure all data is persisted. We want the next direct IO read to be
1829          * able to read what was just written.
1830          */
1831         endbyte = pos + written_buffered - 1;
1832         err = btrfs_fdatawrite_range(inode, pos, endbyte);
1833         if (err)
1834                 goto out;
1835         err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1836         if (err)
1837                 goto out;
1838         written += written_buffered;
1839         iocb->ki_pos = pos + written_buffered;
1840         invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1841                                  endbyte >> PAGE_SHIFT);
1842 out:
1843         return written ? written : err;
1844 }
1845
1846 static void update_time_for_write(struct inode *inode)
1847 {
1848         struct timespec now;
1849
1850         if (IS_NOCMTIME(inode))
1851                 return;
1852
1853         now = current_time(inode);
1854         if (!timespec_equal(&inode->i_mtime, &now))
1855                 inode->i_mtime = now;
1856
1857         if (!timespec_equal(&inode->i_ctime, &now))
1858                 inode->i_ctime = now;
1859
1860         if (IS_I_VERSION(inode))
1861                 inode_inc_iversion(inode);
1862 }
1863
1864 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1865                                     struct iov_iter *from)
1866 {
1867         struct file *file = iocb->ki_filp;
1868         struct inode *inode = file_inode(file);
1869         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1870         struct btrfs_root *root = BTRFS_I(inode)->root;
1871         u64 start_pos;
1872         u64 end_pos;
1873         ssize_t num_written = 0;
1874         bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1875         ssize_t err;
1876         loff_t pos;
1877         size_t count = iov_iter_count(from);
1878         loff_t oldsize;
1879         int clean_page = 0;
1880
1881         if (!(iocb->ki_flags & IOCB_DIRECT) &&
1882             (iocb->ki_flags & IOCB_NOWAIT))
1883                 return -EOPNOTSUPP;
1884
1885         if (!inode_trylock(inode)) {
1886                 if (iocb->ki_flags & IOCB_NOWAIT)
1887                         return -EAGAIN;
1888                 inode_lock(inode);
1889         }
1890
1891         err = generic_write_checks(iocb, from);
1892         if (err <= 0) {
1893                 inode_unlock(inode);
1894                 return err;
1895         }
1896
1897         pos = iocb->ki_pos;
1898         if (iocb->ki_flags & IOCB_NOWAIT) {
1899                 /*
1900                  * We will allocate space in case nodatacow is not set,
1901                  * so bail
1902                  */
1903                 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1904                                               BTRFS_INODE_PREALLOC)) ||
1905                     check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1906                         inode_unlock(inode);
1907                         return -EAGAIN;
1908                 }
1909         }
1910
1911         current->backing_dev_info = inode_to_bdi(inode);
1912         err = file_remove_privs(file);
1913         if (err) {
1914                 inode_unlock(inode);
1915                 goto out;
1916         }
1917
1918         /*
1919          * If BTRFS flips readonly due to some impossible error
1920          * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1921          * although we have opened a file as writable, we have
1922          * to stop this write operation to ensure FS consistency.
1923          */
1924         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1925                 inode_unlock(inode);
1926                 err = -EROFS;
1927                 goto out;
1928         }
1929
1930         /*
1931          * We reserve space for updating the inode when we reserve space for the
1932          * extent we are going to write, so we will enospc out there.  We don't
1933          * need to start yet another transaction to update the inode as we will
1934          * update the inode when we finish writing whatever data we write.
1935          */
1936         update_time_for_write(inode);
1937
1938         start_pos = round_down(pos, fs_info->sectorsize);
1939         oldsize = i_size_read(inode);
1940         if (start_pos > oldsize) {
1941                 /* Expand hole size to cover write data, preventing empty gap */
1942                 end_pos = round_up(pos + count,
1943                                    fs_info->sectorsize);
1944                 err = btrfs_cont_expand(inode, oldsize, end_pos);
1945                 if (err) {
1946                         inode_unlock(inode);
1947                         goto out;
1948                 }
1949                 if (start_pos > round_up(oldsize, fs_info->sectorsize))
1950                         clean_page = 1;
1951         }
1952
1953         if (sync)
1954                 atomic_inc(&BTRFS_I(inode)->sync_writers);
1955
1956         if (iocb->ki_flags & IOCB_DIRECT) {
1957                 num_written = __btrfs_direct_write(iocb, from);
1958         } else {
1959                 num_written = __btrfs_buffered_write(file, from, pos);
1960                 if (num_written > 0)
1961                         iocb->ki_pos = pos + num_written;
1962                 if (clean_page)
1963                         pagecache_isize_extended(inode, oldsize,
1964                                                 i_size_read(inode));
1965         }
1966
1967         inode_unlock(inode);
1968
1969         /*
1970          * We also have to set last_sub_trans to the current log transid,
1971          * otherwise subsequent syncs to a file that's been synced in this
1972          * transaction will appear to have already occurred.
1973          */
1974         spin_lock(&BTRFS_I(inode)->lock);
1975         BTRFS_I(inode)->last_sub_trans = root->log_transid;
1976         spin_unlock(&BTRFS_I(inode)->lock);
1977         if (num_written > 0)
1978                 num_written = generic_write_sync(iocb, num_written);
1979
1980         if (sync)
1981                 atomic_dec(&BTRFS_I(inode)->sync_writers);
1982 out:
1983         current->backing_dev_info = NULL;
1984         return num_written ? num_written : err;
1985 }
1986
1987 int btrfs_release_file(struct inode *inode, struct file *filp)
1988 {
1989         struct btrfs_file_private *private = filp->private_data;
1990
1991         if (private && private->trans)
1992                 btrfs_ioctl_trans_end(filp);
1993         if (private && private->filldir_buf)
1994                 kfree(private->filldir_buf);
1995         kfree(private);
1996         filp->private_data = NULL;
1997
1998         /*
1999          * ordered_data_close is set by settattr when we are about to truncate
2000          * a file from a non-zero size to a zero size.  This tries to
2001          * flush down new bytes that may have been written if the
2002          * application were using truncate to replace a file in place.
2003          */
2004         if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2005                                &BTRFS_I(inode)->runtime_flags))
2006                         filemap_flush(inode->i_mapping);
2007         return 0;
2008 }
2009
2010 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2011 {
2012         int ret;
2013
2014         atomic_inc(&BTRFS_I(inode)->sync_writers);
2015         ret = btrfs_fdatawrite_range(inode, start, end);
2016         atomic_dec(&BTRFS_I(inode)->sync_writers);
2017
2018         return ret;
2019 }
2020
2021 /*
2022  * fsync call for both files and directories.  This logs the inode into
2023  * the tree log instead of forcing full commits whenever possible.
2024  *
2025  * It needs to call filemap_fdatawait so that all ordered extent updates are
2026  * in the metadata btree are up to date for copying to the log.
2027  *
2028  * It drops the inode mutex before doing the tree log commit.  This is an
2029  * important optimization for directories because holding the mutex prevents
2030  * new operations on the dir while we write to disk.
2031  */
2032 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2033 {
2034         struct dentry *dentry = file_dentry(file);
2035         struct inode *inode = d_inode(dentry);
2036         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2037         struct btrfs_root *root = BTRFS_I(inode)->root;
2038         struct btrfs_trans_handle *trans;
2039         struct btrfs_log_ctx ctx;
2040         int ret = 0, err;
2041         bool full_sync = false;
2042         u64 len;
2043
2044         /*
2045          * The range length can be represented by u64, we have to do the typecasts
2046          * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2047          */
2048         len = (u64)end - (u64)start + 1;
2049         trace_btrfs_sync_file(file, datasync);
2050
2051         /*
2052          * We write the dirty pages in the range and wait until they complete
2053          * out of the ->i_mutex. If so, we can flush the dirty pages by
2054          * multi-task, and make the performance up.  See
2055          * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2056          */
2057         ret = start_ordered_ops(inode, start, end);
2058         if (ret)
2059                 goto out;
2060
2061         inode_lock(inode);
2062         atomic_inc(&root->log_batch);
2063         full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2064                              &BTRFS_I(inode)->runtime_flags);
2065         /*
2066          * We might have have had more pages made dirty after calling
2067          * start_ordered_ops and before acquiring the inode's i_mutex.
2068          */
2069         if (full_sync) {
2070                 /*
2071                  * For a full sync, we need to make sure any ordered operations
2072                  * start and finish before we start logging the inode, so that
2073                  * all extents are persisted and the respective file extent
2074                  * items are in the fs/subvol btree.
2075                  */
2076                 ret = btrfs_wait_ordered_range(inode, start, len);
2077         } else {
2078                 /*
2079                  * Start any new ordered operations before starting to log the
2080                  * inode. We will wait for them to finish in btrfs_sync_log().
2081                  *
2082                  * Right before acquiring the inode's mutex, we might have new
2083                  * writes dirtying pages, which won't immediately start the
2084                  * respective ordered operations - that is done through the
2085                  * fill_delalloc callbacks invoked from the writepage and
2086                  * writepages address space operations. So make sure we start
2087                  * all ordered operations before starting to log our inode. Not
2088                  * doing this means that while logging the inode, writeback
2089                  * could start and invoke writepage/writepages, which would call
2090                  * the fill_delalloc callbacks (cow_file_range,
2091                  * submit_compressed_extents). These callbacks add first an
2092                  * extent map to the modified list of extents and then create
2093                  * the respective ordered operation, which means in
2094                  * tree-log.c:btrfs_log_inode() we might capture all existing
2095                  * ordered operations (with btrfs_get_logged_extents()) before
2096                  * the fill_delalloc callback adds its ordered operation, and by
2097                  * the time we visit the modified list of extent maps (with
2098                  * btrfs_log_changed_extents()), we see and process the extent
2099                  * map they created. We then use the extent map to construct a
2100                  * file extent item for logging without waiting for the
2101                  * respective ordered operation to finish - this file extent
2102                  * item points to a disk location that might not have yet been
2103                  * written to, containing random data - so after a crash a log
2104                  * replay will make our inode have file extent items that point
2105                  * to disk locations containing invalid data, as we returned
2106                  * success to userspace without waiting for the respective
2107                  * ordered operation to finish, because it wasn't captured by
2108                  * btrfs_get_logged_extents().
2109                  */
2110                 ret = start_ordered_ops(inode, start, end);
2111         }
2112         if (ret) {
2113                 inode_unlock(inode);
2114                 goto out;
2115         }
2116         atomic_inc(&root->log_batch);
2117
2118         /*
2119          * If the last transaction that changed this file was before the current
2120          * transaction and we have the full sync flag set in our inode, we can
2121          * bail out now without any syncing.
2122          *
2123          * Note that we can't bail out if the full sync flag isn't set. This is
2124          * because when the full sync flag is set we start all ordered extents
2125          * and wait for them to fully complete - when they complete they update
2126          * the inode's last_trans field through:
2127          *
2128          *     btrfs_finish_ordered_io() ->
2129          *         btrfs_update_inode_fallback() ->
2130          *             btrfs_update_inode() ->
2131          *                 btrfs_set_inode_last_trans()
2132          *
2133          * So we are sure that last_trans is up to date and can do this check to
2134          * bail out safely. For the fast path, when the full sync flag is not
2135          * set in our inode, we can not do it because we start only our ordered
2136          * extents and don't wait for them to complete (that is when
2137          * btrfs_finish_ordered_io runs), so here at this point their last_trans
2138          * value might be less than or equals to fs_info->last_trans_committed,
2139          * and setting a speculative last_trans for an inode when a buffered
2140          * write is made (such as fs_info->generation + 1 for example) would not
2141          * be reliable since after setting the value and before fsync is called
2142          * any number of transactions can start and commit (transaction kthread
2143          * commits the current transaction periodically), and a transaction
2144          * commit does not start nor waits for ordered extents to complete.
2145          */
2146         smp_mb();
2147         if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2148             (full_sync && BTRFS_I(inode)->last_trans <=
2149              fs_info->last_trans_committed) ||
2150             (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2151              BTRFS_I(inode)->last_trans
2152              <= fs_info->last_trans_committed)) {
2153                 /*
2154                  * We've had everything committed since the last time we were
2155                  * modified so clear this flag in case it was set for whatever
2156                  * reason, it's no longer relevant.
2157                  */
2158                 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2159                           &BTRFS_I(inode)->runtime_flags);
2160                 /*
2161                  * An ordered extent might have started before and completed
2162                  * already with io errors, in which case the inode was not
2163                  * updated and we end up here. So check the inode's mapping
2164                  * for any errors that might have happened since we last
2165                  * checked called fsync.
2166                  */
2167                 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2168                 inode_unlock(inode);
2169                 goto out;
2170         }
2171
2172         /*
2173          * ok we haven't committed the transaction yet, lets do a commit
2174          */
2175         if (file->private_data)
2176                 btrfs_ioctl_trans_end(file);
2177
2178         /*
2179          * We use start here because we will need to wait on the IO to complete
2180          * in btrfs_sync_log, which could require joining a transaction (for
2181          * example checking cross references in the nocow path).  If we use join
2182          * here we could get into a situation where we're waiting on IO to
2183          * happen that is blocked on a transaction trying to commit.  With start
2184          * we inc the extwriter counter, so we wait for all extwriters to exit
2185          * before we start blocking join'ers.  This comment is to keep somebody
2186          * from thinking they are super smart and changing this to
2187          * btrfs_join_transaction *cough*Josef*cough*.
2188          */
2189         trans = btrfs_start_transaction(root, 0);
2190         if (IS_ERR(trans)) {
2191                 ret = PTR_ERR(trans);
2192                 inode_unlock(inode);
2193                 goto out;
2194         }
2195         trans->sync = true;
2196
2197         btrfs_init_log_ctx(&ctx, inode);
2198
2199         ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2200         if (ret < 0) {
2201                 /* Fallthrough and commit/free transaction. */
2202                 ret = 1;
2203         }
2204
2205         /* we've logged all the items and now have a consistent
2206          * version of the file in the log.  It is possible that
2207          * someone will come in and modify the file, but that's
2208          * fine because the log is consistent on disk, and we
2209          * have references to all of the file's extents
2210          *
2211          * It is possible that someone will come in and log the
2212          * file again, but that will end up using the synchronization
2213          * inside btrfs_sync_log to keep things safe.
2214          */
2215         inode_unlock(inode);
2216
2217         /*
2218          * If any of the ordered extents had an error, just return it to user
2219          * space, so that the application knows some writes didn't succeed and
2220          * can take proper action (retry for e.g.). Blindly committing the
2221          * transaction in this case, would fool userspace that everything was
2222          * successful. And we also want to make sure our log doesn't contain
2223          * file extent items pointing to extents that weren't fully written to -
2224          * just like in the non fast fsync path, where we check for the ordered
2225          * operation's error flag before writing to the log tree and return -EIO
2226          * if any of them had this flag set (btrfs_wait_ordered_range) -
2227          * therefore we need to check for errors in the ordered operations,
2228          * which are indicated by ctx.io_err.
2229          */
2230         if (ctx.io_err) {
2231                 btrfs_end_transaction(trans);
2232                 ret = ctx.io_err;
2233                 goto out;
2234         }
2235
2236         if (ret != BTRFS_NO_LOG_SYNC) {
2237                 if (!ret) {
2238                         ret = btrfs_sync_log(trans, root, &ctx);
2239                         if (!ret) {
2240                                 ret = btrfs_end_transaction(trans);
2241                                 goto out;
2242                         }
2243                 }
2244                 if (!full_sync) {
2245                         ret = btrfs_wait_ordered_range(inode, start, len);
2246                         if (ret) {
2247                                 btrfs_end_transaction(trans);
2248                                 goto out;
2249                         }
2250                 }
2251                 ret = btrfs_commit_transaction(trans);
2252         } else {
2253                 ret = btrfs_end_transaction(trans);
2254         }
2255 out:
2256         err = file_check_and_advance_wb_err(file);
2257         if (!ret)
2258                 ret = err;
2259         return ret > 0 ? -EIO : ret;
2260 }
2261
2262 static const struct vm_operations_struct btrfs_file_vm_ops = {
2263         .fault          = filemap_fault,
2264         .map_pages      = filemap_map_pages,
2265         .page_mkwrite   = btrfs_page_mkwrite,
2266 };
2267
2268 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2269 {
2270         struct address_space *mapping = filp->f_mapping;
2271
2272         if (!mapping->a_ops->readpage)
2273                 return -ENOEXEC;
2274
2275         file_accessed(filp);
2276         vma->vm_ops = &btrfs_file_vm_ops;
2277
2278         return 0;
2279 }
2280
2281 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2282                           int slot, u64 start, u64 end)
2283 {
2284         struct btrfs_file_extent_item *fi;
2285         struct btrfs_key key;
2286
2287         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2288                 return 0;
2289
2290         btrfs_item_key_to_cpu(leaf, &key, slot);
2291         if (key.objectid != btrfs_ino(inode) ||
2292             key.type != BTRFS_EXTENT_DATA_KEY)
2293                 return 0;
2294
2295         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2296
2297         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2298                 return 0;
2299
2300         if (btrfs_file_extent_disk_bytenr(leaf, fi))
2301                 return 0;
2302
2303         if (key.offset == end)
2304                 return 1;
2305         if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2306                 return 1;
2307         return 0;
2308 }
2309
2310 static int fill_holes(struct btrfs_trans_handle *trans,
2311                 struct btrfs_inode *inode,
2312                 struct btrfs_path *path, u64 offset, u64 end)
2313 {
2314         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
2315         struct btrfs_root *root = inode->root;
2316         struct extent_buffer *leaf;
2317         struct btrfs_file_extent_item *fi;
2318         struct extent_map *hole_em;
2319         struct extent_map_tree *em_tree = &inode->extent_tree;
2320         struct btrfs_key key;
2321         int ret;
2322
2323         if (btrfs_fs_incompat(fs_info, NO_HOLES))
2324                 goto out;
2325
2326         key.objectid = btrfs_ino(inode);
2327         key.type = BTRFS_EXTENT_DATA_KEY;
2328         key.offset = offset;
2329
2330         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2331         if (ret <= 0) {
2332                 /*
2333                  * We should have dropped this offset, so if we find it then
2334                  * something has gone horribly wrong.
2335                  */
2336                 if (ret == 0)
2337                         ret = -EINVAL;
2338                 return ret;
2339         }
2340
2341         leaf = path->nodes[0];
2342         if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2343                 u64 num_bytes;
2344
2345                 path->slots[0]--;
2346                 fi = btrfs_item_ptr(leaf, path->slots[0],
2347                                     struct btrfs_file_extent_item);
2348                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2349                         end - offset;
2350                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2351                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2352                 btrfs_set_file_extent_offset(leaf, fi, 0);
2353                 btrfs_mark_buffer_dirty(leaf);
2354                 goto out;
2355         }
2356
2357         if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2358                 u64 num_bytes;
2359
2360                 key.offset = offset;
2361                 btrfs_set_item_key_safe(fs_info, path, &key);
2362                 fi = btrfs_item_ptr(leaf, path->slots[0],
2363                                     struct btrfs_file_extent_item);
2364                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2365                         offset;
2366                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2367                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2368                 btrfs_set_file_extent_offset(leaf, fi, 0);
2369                 btrfs_mark_buffer_dirty(leaf);
2370                 goto out;
2371         }
2372         btrfs_release_path(path);
2373
2374         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2375                         offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2376         if (ret)
2377                 return ret;
2378
2379 out:
2380         btrfs_release_path(path);
2381
2382         hole_em = alloc_extent_map();
2383         if (!hole_em) {
2384                 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2385                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2386         } else {
2387                 hole_em->start = offset;
2388                 hole_em->len = end - offset;
2389                 hole_em->ram_bytes = hole_em->len;
2390                 hole_em->orig_start = offset;
2391
2392                 hole_em->block_start = EXTENT_MAP_HOLE;
2393                 hole_em->block_len = 0;
2394                 hole_em->orig_block_len = 0;
2395                 hole_em->bdev = fs_info->fs_devices->latest_bdev;
2396                 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2397                 hole_em->generation = trans->transid;
2398
2399                 do {
2400                         btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2401                         write_lock(&em_tree->lock);
2402                         ret = add_extent_mapping(em_tree, hole_em, 1);
2403                         write_unlock(&em_tree->lock);
2404                 } while (ret == -EEXIST);
2405                 free_extent_map(hole_em);
2406                 if (ret)
2407                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2408                                         &inode->runtime_flags);
2409         }
2410
2411         return 0;
2412 }
2413
2414 /*
2415  * Find a hole extent on given inode and change start/len to the end of hole
2416  * extent.(hole/vacuum extent whose em->start <= start &&
2417  *         em->start + em->len > start)
2418  * When a hole extent is found, return 1 and modify start/len.
2419  */
2420 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2421 {
2422         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2423         struct extent_map *em;
2424         int ret = 0;
2425
2426         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2427                               round_down(*start, fs_info->sectorsize),
2428                               round_up(*len, fs_info->sectorsize), 0);
2429         if (IS_ERR(em))
2430                 return PTR_ERR(em);
2431
2432         /* Hole or vacuum extent(only exists in no-hole mode) */
2433         if (em->block_start == EXTENT_MAP_HOLE) {
2434                 ret = 1;
2435                 *len = em->start + em->len > *start + *len ?
2436                        0 : *start + *len - em->start - em->len;
2437                 *start = em->start + em->len;
2438         }
2439         free_extent_map(em);
2440         return ret;
2441 }
2442
2443 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2444 {
2445         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2446         struct btrfs_root *root = BTRFS_I(inode)->root;
2447         struct extent_state *cached_state = NULL;
2448         struct btrfs_path *path;
2449         struct btrfs_block_rsv *rsv;
2450         struct btrfs_trans_handle *trans;
2451         u64 lockstart;
2452         u64 lockend;
2453         u64 tail_start;
2454         u64 tail_len;
2455         u64 orig_start = offset;
2456         u64 cur_offset;
2457         u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2458         u64 drop_end;
2459         int ret = 0;
2460         int err = 0;
2461         unsigned int rsv_count;
2462         bool same_block;
2463         bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
2464         u64 ino_size;
2465         bool truncated_block = false;
2466         bool updated_inode = false;
2467
2468         ret = btrfs_wait_ordered_range(inode, offset, len);
2469         if (ret)
2470                 return ret;
2471
2472         inode_lock(inode);
2473         ino_size = round_up(inode->i_size, fs_info->sectorsize);
2474         ret = find_first_non_hole(inode, &offset, &len);
2475         if (ret < 0)
2476                 goto out_only_mutex;
2477         if (ret && !len) {
2478                 /* Already in a large hole */
2479                 ret = 0;
2480                 goto out_only_mutex;
2481         }
2482
2483         lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2484         lockend = round_down(offset + len,
2485                              btrfs_inode_sectorsize(inode)) - 1;
2486         same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2487                 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2488         /*
2489          * We needn't truncate any block which is beyond the end of the file
2490          * because we are sure there is no data there.
2491          */
2492         /*
2493          * Only do this if we are in the same block and we aren't doing the
2494          * entire block.
2495          */
2496         if (same_block && len < fs_info->sectorsize) {
2497                 if (offset < ino_size) {
2498                         truncated_block = true;
2499                         ret = btrfs_truncate_block(inode, offset, len, 0);
2500                 } else {
2501                         ret = 0;
2502                 }
2503                 goto out_only_mutex;
2504         }
2505
2506         /* zero back part of the first block */
2507         if (offset < ino_size) {
2508                 truncated_block = true;
2509                 ret = btrfs_truncate_block(inode, offset, 0, 0);
2510                 if (ret) {
2511                         inode_unlock(inode);
2512                         return ret;
2513                 }
2514         }
2515
2516         /* Check the aligned pages after the first unaligned page,
2517          * if offset != orig_start, which means the first unaligned page
2518          * including several following pages are already in holes,
2519          * the extra check can be skipped */
2520         if (offset == orig_start) {
2521                 /* after truncate page, check hole again */
2522                 len = offset + len - lockstart;
2523                 offset = lockstart;
2524                 ret = find_first_non_hole(inode, &offset, &len);
2525                 if (ret < 0)
2526                         goto out_only_mutex;
2527                 if (ret && !len) {
2528                         ret = 0;
2529                         goto out_only_mutex;
2530                 }
2531                 lockstart = offset;
2532         }
2533
2534         /* Check the tail unaligned part is in a hole */
2535         tail_start = lockend + 1;
2536         tail_len = offset + len - tail_start;
2537         if (tail_len) {
2538                 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2539                 if (unlikely(ret < 0))
2540                         goto out_only_mutex;
2541                 if (!ret) {
2542                         /* zero the front end of the last page */
2543                         if (tail_start + tail_len < ino_size) {
2544                                 truncated_block = true;
2545                                 ret = btrfs_truncate_block(inode,
2546                                                         tail_start + tail_len,
2547                                                         0, 1);
2548                                 if (ret)
2549                                         goto out_only_mutex;
2550                         }
2551                 }
2552         }
2553
2554         if (lockend < lockstart) {
2555                 ret = 0;
2556                 goto out_only_mutex;
2557         }
2558
2559         while (1) {
2560                 struct btrfs_ordered_extent *ordered;
2561
2562                 truncate_pagecache_range(inode, lockstart, lockend);
2563
2564                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2565                                  &cached_state);
2566                 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2567
2568                 /*
2569                  * We need to make sure we have no ordered extents in this range
2570                  * and nobody raced in and read a page in this range, if we did
2571                  * we need to try again.
2572                  */
2573                 if ((!ordered ||
2574                     (ordered->file_offset + ordered->len <= lockstart ||
2575                      ordered->file_offset > lockend)) &&
2576                      !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2577                         if (ordered)
2578                                 btrfs_put_ordered_extent(ordered);
2579                         break;
2580                 }
2581                 if (ordered)
2582                         btrfs_put_ordered_extent(ordered);
2583                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2584                                      lockend, &cached_state, GFP_NOFS);
2585                 ret = btrfs_wait_ordered_range(inode, lockstart,
2586                                                lockend - lockstart + 1);
2587                 if (ret) {
2588                         inode_unlock(inode);
2589                         return ret;
2590                 }
2591         }
2592
2593         path = btrfs_alloc_path();
2594         if (!path) {
2595                 ret = -ENOMEM;
2596                 goto out;
2597         }
2598
2599         rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2600         if (!rsv) {
2601                 ret = -ENOMEM;
2602                 goto out_free;
2603         }
2604         rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2605         rsv->failfast = 1;
2606
2607         /*
2608          * 1 - update the inode
2609          * 1 - removing the extents in the range
2610          * 1 - adding the hole extent if no_holes isn't set
2611          */
2612         rsv_count = no_holes ? 2 : 3;
2613         trans = btrfs_start_transaction(root, rsv_count);
2614         if (IS_ERR(trans)) {
2615                 err = PTR_ERR(trans);
2616                 goto out_free;
2617         }
2618
2619         ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2620                                       min_size, 0);
2621         BUG_ON(ret);
2622         trans->block_rsv = rsv;
2623
2624         cur_offset = lockstart;
2625         len = lockend - cur_offset;
2626         while (cur_offset < lockend) {
2627                 ret = __btrfs_drop_extents(trans, root, inode, path,
2628                                            cur_offset, lockend + 1,
2629                                            &drop_end, 1, 0, 0, NULL);
2630                 if (ret != -ENOSPC)
2631                         break;
2632
2633                 trans->block_rsv = &fs_info->trans_block_rsv;
2634
2635                 if (cur_offset < drop_end && cur_offset < ino_size) {
2636                         ret = fill_holes(trans, BTRFS_I(inode), path,
2637                                         cur_offset, drop_end);
2638                         if (ret) {
2639                                 /*
2640                                  * If we failed then we didn't insert our hole
2641                                  * entries for the area we dropped, so now the
2642                                  * fs is corrupted, so we must abort the
2643                                  * transaction.
2644                                  */
2645                                 btrfs_abort_transaction(trans, ret);
2646                                 err = ret;
2647                                 break;
2648                         }
2649                 }
2650
2651                 cur_offset = drop_end;
2652
2653                 ret = btrfs_update_inode(trans, root, inode);
2654                 if (ret) {
2655                         err = ret;
2656                         break;
2657                 }
2658
2659                 btrfs_end_transaction(trans);
2660                 btrfs_btree_balance_dirty(fs_info);
2661
2662                 trans = btrfs_start_transaction(root, rsv_count);
2663                 if (IS_ERR(trans)) {
2664                         ret = PTR_ERR(trans);
2665                         trans = NULL;
2666                         break;
2667                 }
2668
2669                 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2670                                               rsv, min_size, 0);
2671                 BUG_ON(ret);    /* shouldn't happen */
2672                 trans->block_rsv = rsv;
2673
2674                 ret = find_first_non_hole(inode, &cur_offset, &len);
2675                 if (unlikely(ret < 0))
2676                         break;
2677                 if (ret && !len) {
2678                         ret = 0;
2679                         break;
2680                 }
2681         }
2682
2683         if (ret) {
2684                 err = ret;
2685                 goto out_trans;
2686         }
2687
2688         trans->block_rsv = &fs_info->trans_block_rsv;
2689         /*
2690          * If we are using the NO_HOLES feature we might have had already an
2691          * hole that overlaps a part of the region [lockstart, lockend] and
2692          * ends at (or beyond) lockend. Since we have no file extent items to
2693          * represent holes, drop_end can be less than lockend and so we must
2694          * make sure we have an extent map representing the existing hole (the
2695          * call to __btrfs_drop_extents() might have dropped the existing extent
2696          * map representing the existing hole), otherwise the fast fsync path
2697          * will not record the existence of the hole region
2698          * [existing_hole_start, lockend].
2699          */
2700         if (drop_end <= lockend)
2701                 drop_end = lockend + 1;
2702         /*
2703          * Don't insert file hole extent item if it's for a range beyond eof
2704          * (because it's useless) or if it represents a 0 bytes range (when
2705          * cur_offset == drop_end).
2706          */
2707         if (cur_offset < ino_size && cur_offset < drop_end) {
2708                 ret = fill_holes(trans, BTRFS_I(inode), path,
2709                                 cur_offset, drop_end);
2710                 if (ret) {
2711                         /* Same comment as above. */
2712                         btrfs_abort_transaction(trans, ret);
2713                         err = ret;
2714                         goto out_trans;
2715                 }
2716         }
2717
2718 out_trans:
2719         if (!trans)
2720                 goto out_free;
2721
2722         inode_inc_iversion(inode);
2723         inode->i_mtime = inode->i_ctime = current_time(inode);
2724
2725         trans->block_rsv = &fs_info->trans_block_rsv;
2726         ret = btrfs_update_inode(trans, root, inode);
2727         updated_inode = true;
2728         btrfs_end_transaction(trans);
2729         btrfs_btree_balance_dirty(fs_info);
2730 out_free:
2731         btrfs_free_path(path);
2732         btrfs_free_block_rsv(fs_info, rsv);
2733 out:
2734         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2735                              &cached_state, GFP_NOFS);
2736 out_only_mutex:
2737         if (!updated_inode && truncated_block && !ret && !err) {
2738                 /*
2739                  * If we only end up zeroing part of a page, we still need to
2740                  * update the inode item, so that all the time fields are
2741                  * updated as well as the necessary btrfs inode in memory fields
2742                  * for detecting, at fsync time, if the inode isn't yet in the
2743                  * log tree or it's there but not up to date.
2744                  */
2745                 trans = btrfs_start_transaction(root, 1);
2746                 if (IS_ERR(trans)) {
2747                         err = PTR_ERR(trans);
2748                 } else {
2749                         err = btrfs_update_inode(trans, root, inode);
2750                         ret = btrfs_end_transaction(trans);
2751                 }
2752         }
2753         inode_unlock(inode);
2754         if (ret && !err)
2755                 err = ret;
2756         return err;
2757 }
2758
2759 /* Helper structure to record which range is already reserved */
2760 struct falloc_range {
2761         struct list_head list;
2762         u64 start;
2763         u64 len;
2764 };
2765
2766 /*
2767  * Helper function to add falloc range
2768  *
2769  * Caller should have locked the larger range of extent containing
2770  * [start, len)
2771  */
2772 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2773 {
2774         struct falloc_range *prev = NULL;
2775         struct falloc_range *range = NULL;
2776
2777         if (list_empty(head))
2778                 goto insert;
2779
2780         /*
2781          * As fallocate iterate by bytenr order, we only need to check
2782          * the last range.
2783          */
2784         prev = list_entry(head->prev, struct falloc_range, list);
2785         if (prev->start + prev->len == start) {
2786                 prev->len += len;
2787                 return 0;
2788         }
2789 insert:
2790         range = kmalloc(sizeof(*range), GFP_KERNEL);
2791         if (!range)
2792                 return -ENOMEM;
2793         range->start = start;
2794         range->len = len;
2795         list_add_tail(&range->list, head);
2796         return 0;
2797 }
2798
2799 static long btrfs_fallocate(struct file *file, int mode,
2800                             loff_t offset, loff_t len)
2801 {
2802         struct inode *inode = file_inode(file);
2803         struct extent_state *cached_state = NULL;
2804         struct extent_changeset *data_reserved = NULL;
2805         struct falloc_range *range;
2806         struct falloc_range *tmp;
2807         struct list_head reserve_list;
2808         u64 cur_offset;
2809         u64 last_byte;
2810         u64 alloc_start;
2811         u64 alloc_end;
2812         u64 alloc_hint = 0;
2813         u64 locked_end;
2814         u64 actual_end = 0;
2815         struct extent_map *em;
2816         int blocksize = btrfs_inode_sectorsize(inode);
2817         int ret;
2818
2819         alloc_start = round_down(offset, blocksize);
2820         alloc_end = round_up(offset + len, blocksize);
2821         cur_offset = alloc_start;
2822
2823         /* Make sure we aren't being give some crap mode */
2824         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2825                 return -EOPNOTSUPP;
2826
2827         if (mode & FALLOC_FL_PUNCH_HOLE)
2828                 return btrfs_punch_hole(inode, offset, len);
2829
2830         /*
2831          * Only trigger disk allocation, don't trigger qgroup reserve
2832          *
2833          * For qgroup space, it will be checked later.
2834          */
2835         ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2836                         alloc_end - alloc_start);
2837         if (ret < 0)
2838                 return ret;
2839
2840         inode_lock(inode);
2841
2842         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2843                 ret = inode_newsize_ok(inode, offset + len);
2844                 if (ret)
2845                         goto out;
2846         }
2847
2848         /*
2849          * TODO: Move these two operations after we have checked
2850          * accurate reserved space, or fallocate can still fail but
2851          * with page truncated or size expanded.
2852          *
2853          * But that's a minor problem and won't do much harm BTW.
2854          */
2855         if (alloc_start > inode->i_size) {
2856                 ret = btrfs_cont_expand(inode, i_size_read(inode),
2857                                         alloc_start);
2858                 if (ret)
2859                         goto out;
2860         } else if (offset + len > inode->i_size) {
2861                 /*
2862                  * If we are fallocating from the end of the file onward we
2863                  * need to zero out the end of the block if i_size lands in the
2864                  * middle of a block.
2865                  */
2866                 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
2867                 if (ret)
2868                         goto out;
2869         }
2870
2871         /*
2872          * wait for ordered IO before we have any locks.  We'll loop again
2873          * below with the locks held.
2874          */
2875         ret = btrfs_wait_ordered_range(inode, alloc_start,
2876                                        alloc_end - alloc_start);
2877         if (ret)
2878                 goto out;
2879
2880         locked_end = alloc_end - 1;
2881         while (1) {
2882                 struct btrfs_ordered_extent *ordered;
2883
2884                 /* the extent lock is ordered inside the running
2885                  * transaction
2886                  */
2887                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2888                                  locked_end, &cached_state);
2889                 ordered = btrfs_lookup_first_ordered_extent(inode,
2890                                                             alloc_end - 1);
2891                 if (ordered &&
2892                     ordered->file_offset + ordered->len > alloc_start &&
2893                     ordered->file_offset < alloc_end) {
2894                         btrfs_put_ordered_extent(ordered);
2895                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2896                                              alloc_start, locked_end,
2897                                              &cached_state, GFP_KERNEL);
2898                         /*
2899                          * we can't wait on the range with the transaction
2900                          * running or with the extent lock held
2901                          */
2902                         ret = btrfs_wait_ordered_range(inode, alloc_start,
2903                                                        alloc_end - alloc_start);
2904                         if (ret)
2905                                 goto out;
2906                 } else {
2907                         if (ordered)
2908                                 btrfs_put_ordered_extent(ordered);
2909                         break;
2910                 }
2911         }
2912
2913         /* First, check if we exceed the qgroup limit */
2914         INIT_LIST_HEAD(&reserve_list);
2915         while (1) {
2916                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
2917                                       alloc_end - cur_offset, 0);
2918                 if (IS_ERR(em)) {
2919                         ret = PTR_ERR(em);
2920                         break;
2921                 }
2922                 last_byte = min(extent_map_end(em), alloc_end);
2923                 actual_end = min_t(u64, extent_map_end(em), offset + len);
2924                 last_byte = ALIGN(last_byte, blocksize);
2925                 if (em->block_start == EXTENT_MAP_HOLE ||
2926                     (cur_offset >= inode->i_size &&
2927                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2928                         ret = add_falloc_range(&reserve_list, cur_offset,
2929                                                last_byte - cur_offset);
2930                         if (ret < 0) {
2931                                 free_extent_map(em);
2932                                 break;
2933                         }
2934                         ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
2935                                         cur_offset, last_byte - cur_offset);
2936                         if (ret < 0) {
2937                                 free_extent_map(em);
2938                                 break;
2939                         }
2940                 } else {
2941                         /*
2942                          * Do not need to reserve unwritten extent for this
2943                          * range, free reserved data space first, otherwise
2944                          * it'll result in false ENOSPC error.
2945                          */
2946                         btrfs_free_reserved_data_space(inode, data_reserved,
2947                                         cur_offset, last_byte - cur_offset);
2948                 }
2949                 free_extent_map(em);
2950                 cur_offset = last_byte;
2951                 if (cur_offset >= alloc_end)
2952                         break;
2953         }
2954
2955         /*
2956          * If ret is still 0, means we're OK to fallocate.
2957          * Or just cleanup the list and exit.
2958          */
2959         list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2960                 if (!ret)
2961                         ret = btrfs_prealloc_file_range(inode, mode,
2962                                         range->start,
2963                                         range->len, i_blocksize(inode),
2964                                         offset + len, &alloc_hint);
2965                 else
2966                         btrfs_free_reserved_data_space(inode,
2967                                         data_reserved, range->start,
2968                                         range->len);
2969                 list_del(&range->list);
2970                 kfree(range);
2971         }
2972         if (ret < 0)
2973                 goto out_unlock;
2974
2975         if (actual_end > inode->i_size &&
2976             !(mode & FALLOC_FL_KEEP_SIZE)) {
2977                 struct btrfs_trans_handle *trans;
2978                 struct btrfs_root *root = BTRFS_I(inode)->root;
2979
2980                 /*
2981                  * We didn't need to allocate any more space, but we
2982                  * still extended the size of the file so we need to
2983                  * update i_size and the inode item.
2984                  */
2985                 trans = btrfs_start_transaction(root, 1);
2986                 if (IS_ERR(trans)) {
2987                         ret = PTR_ERR(trans);
2988                 } else {
2989                         inode->i_ctime = current_time(inode);
2990                         i_size_write(inode, actual_end);
2991                         btrfs_ordered_update_i_size(inode, actual_end, NULL);
2992                         ret = btrfs_update_inode(trans, root, inode);
2993                         if (ret)
2994                                 btrfs_end_transaction(trans);
2995                         else
2996                                 ret = btrfs_end_transaction(trans);
2997                 }
2998         }
2999 out_unlock:
3000         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3001                              &cached_state, GFP_KERNEL);
3002 out:
3003         inode_unlock(inode);
3004         /* Let go of our reservation. */
3005         if (ret != 0)
3006                 btrfs_free_reserved_data_space(inode, data_reserved,
3007                                 alloc_start, alloc_end - cur_offset);
3008         extent_changeset_free(data_reserved);
3009         return ret;
3010 }
3011
3012 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
3013 {
3014         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3015         struct extent_map *em = NULL;
3016         struct extent_state *cached_state = NULL;
3017         u64 lockstart;
3018         u64 lockend;
3019         u64 start;
3020         u64 len;
3021         int ret = 0;
3022
3023         if (inode->i_size == 0)
3024                 return -ENXIO;
3025
3026         /*
3027          * *offset can be negative, in this case we start finding DATA/HOLE from
3028          * the very start of the file.
3029          */
3030         start = max_t(loff_t, 0, *offset);
3031
3032         lockstart = round_down(start, fs_info->sectorsize);
3033         lockend = round_up(i_size_read(inode),
3034                            fs_info->sectorsize);
3035         if (lockend <= lockstart)
3036                 lockend = lockstart + fs_info->sectorsize;
3037         lockend--;
3038         len = lockend - lockstart + 1;
3039
3040         lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3041                          &cached_state);
3042
3043         while (start < inode->i_size) {
3044                 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0,
3045                                 start, len, 0);
3046                 if (IS_ERR(em)) {
3047                         ret = PTR_ERR(em);
3048                         em = NULL;
3049                         break;
3050                 }
3051
3052                 if (whence == SEEK_HOLE &&
3053                     (em->block_start == EXTENT_MAP_HOLE ||
3054                      test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3055                         break;
3056                 else if (whence == SEEK_DATA &&
3057                            (em->block_start != EXTENT_MAP_HOLE &&
3058                             !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3059                         break;
3060
3061                 start = em->start + em->len;
3062                 free_extent_map(em);
3063                 em = NULL;
3064                 cond_resched();
3065         }
3066         free_extent_map(em);
3067         if (!ret) {
3068                 if (whence == SEEK_DATA && start >= inode->i_size)
3069                         ret = -ENXIO;
3070                 else
3071                         *offset = min_t(loff_t, start, inode->i_size);
3072         }
3073         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3074                              &cached_state, GFP_NOFS);
3075         return ret;
3076 }
3077
3078 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3079 {
3080         struct inode *inode = file->f_mapping->host;
3081         int ret;
3082
3083         inode_lock(inode);
3084         switch (whence) {
3085         case SEEK_END:
3086         case SEEK_CUR:
3087                 offset = generic_file_llseek(file, offset, whence);
3088                 goto out;
3089         case SEEK_DATA:
3090         case SEEK_HOLE:
3091                 if (offset >= i_size_read(inode)) {
3092                         inode_unlock(inode);
3093                         return -ENXIO;
3094                 }
3095
3096                 ret = find_desired_extent(inode, &offset, whence);
3097                 if (ret) {
3098                         inode_unlock(inode);
3099                         return ret;
3100                 }
3101         }
3102
3103         offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3104 out:
3105         inode_unlock(inode);
3106         return offset;
3107 }
3108
3109 static int btrfs_file_open(struct inode *inode, struct file *filp)
3110 {
3111         filp->f_mode |= FMODE_NOWAIT;
3112         return generic_file_open(inode, filp);
3113 }
3114
3115 const struct file_operations btrfs_file_operations = {
3116         .llseek         = btrfs_file_llseek,
3117         .read_iter      = generic_file_read_iter,
3118         .splice_read    = generic_file_splice_read,
3119         .write_iter     = btrfs_file_write_iter,
3120         .mmap           = btrfs_file_mmap,
3121         .open           = btrfs_file_open,
3122         .release        = btrfs_release_file,
3123         .fsync          = btrfs_sync_file,
3124         .fallocate      = btrfs_fallocate,
3125         .unlocked_ioctl = btrfs_ioctl,
3126 #ifdef CONFIG_COMPAT
3127         .compat_ioctl   = btrfs_compat_ioctl,
3128 #endif
3129         .clone_file_range = btrfs_clone_file_range,
3130         .dedupe_file_range = btrfs_dedupe_file_range,
3131 };
3132
3133 void btrfs_auto_defrag_exit(void)
3134 {
3135         kmem_cache_destroy(btrfs_inode_defrag_cachep);
3136 }
3137
3138 int btrfs_auto_defrag_init(void)
3139 {
3140         btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3141                                         sizeof(struct inode_defrag), 0,
3142                                         SLAB_MEM_SPREAD,
3143                                         NULL);
3144         if (!btrfs_inode_defrag_cachep)
3145                 return -ENOMEM;
3146
3147         return 0;
3148 }
3149
3150 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3151 {
3152         int ret;
3153
3154         /*
3155          * So with compression we will find and lock a dirty page and clear the
3156          * first one as dirty, setup an async extent, and immediately return
3157          * with the entire range locked but with nobody actually marked with
3158          * writeback.  So we can't just filemap_write_and_wait_range() and
3159          * expect it to work since it will just kick off a thread to do the
3160          * actual work.  So we need to call filemap_fdatawrite_range _again_
3161          * since it will wait on the page lock, which won't be unlocked until
3162          * after the pages have been marked as writeback and so we're good to go
3163          * from there.  We have to do this otherwise we'll miss the ordered
3164          * extents and that results in badness.  Please Josef, do not think you
3165          * know better and pull this out at some point in the future, it is
3166          * right and you are wrong.
3167          */
3168         ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3169         if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3170                              &BTRFS_I(inode)->runtime_flags))
3171                 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3172
3173         return ret;
3174 }
This page took 0.214093 seconds and 4 git commands to generate.