2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/compat.h>
31 #include <linux/slab.h>
32 #include <linux/btrfs.h>
33 #include <linux/uio.h>
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
43 #include "compression.h"
45 static struct kmem_cache *btrfs_inode_defrag_cachep;
47 * when auto defrag is enabled we
48 * queue up these defrag structs to remember which
49 * inodes need defragging passes
52 struct rb_node rb_node;
56 * transid where the defrag was added, we search for
57 * extents newer than this
64 /* last offset we were able to defrag */
67 /* if we've wrapped around back to zero once already */
71 static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 struct inode_defrag *defrag2)
74 if (defrag1->root > defrag2->root)
76 else if (defrag1->root < defrag2->root)
78 else if (defrag1->ino > defrag2->ino)
80 else if (defrag1->ino < defrag2->ino)
86 /* pop a record for an inode into the defrag tree. The lock
87 * must be held already
89 * If you're inserting a record for an older transid than an
90 * existing record, the transid already in the tree is lowered
92 * If an existing record is found the defrag item you
95 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
96 struct inode_defrag *defrag)
98 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
99 struct inode_defrag *entry;
101 struct rb_node *parent = NULL;
104 p = &fs_info->defrag_inodes.rb_node;
107 entry = rb_entry(parent, struct inode_defrag, rb_node);
109 ret = __compare_inode_defrag(defrag, entry);
111 p = &parent->rb_left;
113 p = &parent->rb_right;
115 /* if we're reinserting an entry for
116 * an old defrag run, make sure to
117 * lower the transid of our existing record
119 if (defrag->transid < entry->transid)
120 entry->transid = defrag->transid;
121 if (defrag->last_offset > entry->last_offset)
122 entry->last_offset = defrag->last_offset;
126 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
127 rb_link_node(&defrag->rb_node, parent, p);
128 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
132 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
134 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
137 if (btrfs_fs_closing(fs_info))
144 * insert a defrag record for this inode if auto defrag is
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148 struct btrfs_inode *inode)
150 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
151 struct btrfs_root *root = inode->root;
152 struct inode_defrag *defrag;
156 if (!__need_auto_defrag(fs_info))
159 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
163 transid = trans->transid;
165 transid = inode->root->last_trans;
167 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
171 defrag->ino = btrfs_ino(inode);
172 defrag->transid = transid;
173 defrag->root = root->root_key.objectid;
175 spin_lock(&fs_info->defrag_inodes_lock);
176 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
178 * If we set IN_DEFRAG flag and evict the inode from memory,
179 * and then re-read this inode, this new inode doesn't have
180 * IN_DEFRAG flag. At the case, we may find the existed defrag.
182 ret = __btrfs_add_inode_defrag(inode, defrag);
184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
186 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
188 spin_unlock(&fs_info->defrag_inodes_lock);
193 * Requeue the defrag object. If there is a defrag object that points to
194 * the same inode in the tree, we will merge them together (by
195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
197 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
198 struct inode_defrag *defrag)
200 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
203 if (!__need_auto_defrag(fs_info))
207 * Here we don't check the IN_DEFRAG flag, because we need merge
210 spin_lock(&fs_info->defrag_inodes_lock);
211 ret = __btrfs_add_inode_defrag(inode, defrag);
212 spin_unlock(&fs_info->defrag_inodes_lock);
217 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
221 * pick the defragable inode that we want, if it doesn't exist, we will get
224 static struct inode_defrag *
225 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
227 struct inode_defrag *entry = NULL;
228 struct inode_defrag tmp;
230 struct rb_node *parent = NULL;
236 spin_lock(&fs_info->defrag_inodes_lock);
237 p = fs_info->defrag_inodes.rb_node;
240 entry = rb_entry(parent, struct inode_defrag, rb_node);
242 ret = __compare_inode_defrag(&tmp, entry);
246 p = parent->rb_right;
251 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
252 parent = rb_next(parent);
254 entry = rb_entry(parent, struct inode_defrag, rb_node);
260 rb_erase(parent, &fs_info->defrag_inodes);
261 spin_unlock(&fs_info->defrag_inodes_lock);
265 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
267 struct inode_defrag *defrag;
268 struct rb_node *node;
270 spin_lock(&fs_info->defrag_inodes_lock);
271 node = rb_first(&fs_info->defrag_inodes);
273 rb_erase(node, &fs_info->defrag_inodes);
274 defrag = rb_entry(node, struct inode_defrag, rb_node);
275 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
277 cond_resched_lock(&fs_info->defrag_inodes_lock);
279 node = rb_first(&fs_info->defrag_inodes);
281 spin_unlock(&fs_info->defrag_inodes_lock);
284 #define BTRFS_DEFRAG_BATCH 1024
286 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
287 struct inode_defrag *defrag)
289 struct btrfs_root *inode_root;
291 struct btrfs_key key;
292 struct btrfs_ioctl_defrag_range_args range;
298 key.objectid = defrag->root;
299 key.type = BTRFS_ROOT_ITEM_KEY;
300 key.offset = (u64)-1;
302 index = srcu_read_lock(&fs_info->subvol_srcu);
304 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
305 if (IS_ERR(inode_root)) {
306 ret = PTR_ERR(inode_root);
310 key.objectid = defrag->ino;
311 key.type = BTRFS_INODE_ITEM_KEY;
313 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
315 ret = PTR_ERR(inode);
318 srcu_read_unlock(&fs_info->subvol_srcu, index);
320 /* do a chunk of defrag */
321 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
322 memset(&range, 0, sizeof(range));
324 range.start = defrag->last_offset;
326 sb_start_write(fs_info->sb);
327 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
329 sb_end_write(fs_info->sb);
331 * if we filled the whole defrag batch, there
332 * must be more work to do. Queue this defrag
335 if (num_defrag == BTRFS_DEFRAG_BATCH) {
336 defrag->last_offset = range.start;
337 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
338 } else if (defrag->last_offset && !defrag->cycled) {
340 * we didn't fill our defrag batch, but
341 * we didn't start at zero. Make sure we loop
342 * around to the start of the file.
344 defrag->last_offset = 0;
346 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
348 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
354 srcu_read_unlock(&fs_info->subvol_srcu, index);
355 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
360 * run through the list of inodes in the FS that need
363 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
365 struct inode_defrag *defrag;
367 u64 root_objectid = 0;
369 atomic_inc(&fs_info->defrag_running);
371 /* Pause the auto defragger. */
372 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
376 if (!__need_auto_defrag(fs_info))
379 /* find an inode to defrag */
380 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
383 if (root_objectid || first_ino) {
392 first_ino = defrag->ino + 1;
393 root_objectid = defrag->root;
395 __btrfs_run_defrag_inode(fs_info, defrag);
397 atomic_dec(&fs_info->defrag_running);
400 * during unmount, we use the transaction_wait queue to
401 * wait for the defragger to stop
403 wake_up(&fs_info->transaction_wait);
407 /* simple helper to fault in pages and copy. This should go away
408 * and be replaced with calls into generic code.
410 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
411 struct page **prepared_pages,
415 size_t total_copied = 0;
417 int offset = pos & (PAGE_SIZE - 1);
419 while (write_bytes > 0) {
420 size_t count = min_t(size_t,
421 PAGE_SIZE - offset, write_bytes);
422 struct page *page = prepared_pages[pg];
424 * Copy data from userspace to the current page
426 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
428 /* Flush processor's dcache for this page */
429 flush_dcache_page(page);
432 * if we get a partial write, we can end up with
433 * partially up to date pages. These add
434 * a lot of complexity, so make sure they don't
435 * happen by forcing this copy to be retried.
437 * The rest of the btrfs_file_write code will fall
438 * back to page at a time copies after we return 0.
440 if (!PageUptodate(page) && copied < count)
443 iov_iter_advance(i, copied);
444 write_bytes -= copied;
445 total_copied += copied;
447 /* Return to btrfs_file_write_iter to fault page */
448 if (unlikely(copied == 0))
451 if (copied < PAGE_SIZE - offset) {
462 * unlocks pages after btrfs_file_write is done with them
464 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
467 for (i = 0; i < num_pages; i++) {
468 /* page checked is some magic around finding pages that
469 * have been modified without going through btrfs_set_page_dirty
470 * clear it here. There should be no need to mark the pages
471 * accessed as prepare_pages should have marked them accessed
472 * in prepare_pages via find_or_create_page()
474 ClearPageChecked(pages[i]);
475 unlock_page(pages[i]);
481 * after copy_from_user, pages need to be dirtied and we need to make
482 * sure holes are created between the current EOF and the start of
483 * any next extents (if required).
485 * this also makes the decision about creating an inline extent vs
486 * doing real data extents, marking pages dirty and delalloc as required.
488 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
489 size_t num_pages, loff_t pos, size_t write_bytes,
490 struct extent_state **cached)
492 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
497 u64 end_of_last_block;
498 u64 end_pos = pos + write_bytes;
499 loff_t isize = i_size_read(inode);
501 start_pos = pos & ~((u64) fs_info->sectorsize - 1);
502 num_bytes = round_up(write_bytes + pos - start_pos,
503 fs_info->sectorsize);
505 end_of_last_block = start_pos + num_bytes - 1;
506 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
511 for (i = 0; i < num_pages; i++) {
512 struct page *p = pages[i];
519 * we've only changed i_size in ram, and we haven't updated
520 * the disk i_size. There is no need to log the inode
524 i_size_write(inode, end_pos);
529 * this drops all the extents in the cache that intersect the range
530 * [start, end]. Existing extents are split as required.
532 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
535 struct extent_map *em;
536 struct extent_map *split = NULL;
537 struct extent_map *split2 = NULL;
538 struct extent_map_tree *em_tree = &inode->extent_tree;
539 u64 len = end - start + 1;
547 WARN_ON(end < start);
548 if (end == (u64)-1) {
557 split = alloc_extent_map();
559 split2 = alloc_extent_map();
560 if (!split || !split2)
563 write_lock(&em_tree->lock);
564 em = lookup_extent_mapping(em_tree, start, len);
566 write_unlock(&em_tree->lock);
570 gen = em->generation;
571 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
572 if (testend && em->start + em->len >= start + len) {
574 write_unlock(&em_tree->lock);
577 start = em->start + em->len;
579 len = start + len - (em->start + em->len);
581 write_unlock(&em_tree->lock);
584 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
585 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
586 clear_bit(EXTENT_FLAG_LOGGING, &flags);
587 modified = !list_empty(&em->list);
591 if (em->start < start) {
592 split->start = em->start;
593 split->len = start - em->start;
595 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
596 split->orig_start = em->orig_start;
597 split->block_start = em->block_start;
600 split->block_len = em->block_len;
602 split->block_len = split->len;
603 split->orig_block_len = max(split->block_len,
605 split->ram_bytes = em->ram_bytes;
607 split->orig_start = split->start;
608 split->block_len = 0;
609 split->block_start = em->block_start;
610 split->orig_block_len = 0;
611 split->ram_bytes = split->len;
614 split->generation = gen;
615 split->bdev = em->bdev;
616 split->flags = flags;
617 split->compress_type = em->compress_type;
618 replace_extent_mapping(em_tree, em, split, modified);
619 free_extent_map(split);
623 if (testend && em->start + em->len > start + len) {
624 u64 diff = start + len - em->start;
626 split->start = start + len;
627 split->len = em->start + em->len - (start + len);
628 split->bdev = em->bdev;
629 split->flags = flags;
630 split->compress_type = em->compress_type;
631 split->generation = gen;
633 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
634 split->orig_block_len = max(em->block_len,
637 split->ram_bytes = em->ram_bytes;
639 split->block_len = em->block_len;
640 split->block_start = em->block_start;
641 split->orig_start = em->orig_start;
643 split->block_len = split->len;
644 split->block_start = em->block_start
646 split->orig_start = em->orig_start;
649 split->ram_bytes = split->len;
650 split->orig_start = split->start;
651 split->block_len = 0;
652 split->block_start = em->block_start;
653 split->orig_block_len = 0;
656 if (extent_map_in_tree(em)) {
657 replace_extent_mapping(em_tree, em, split,
660 ret = add_extent_mapping(em_tree, split,
662 ASSERT(ret == 0); /* Logic error */
664 free_extent_map(split);
668 if (extent_map_in_tree(em))
669 remove_extent_mapping(em_tree, em);
670 write_unlock(&em_tree->lock);
674 /* once for the tree*/
678 free_extent_map(split);
680 free_extent_map(split2);
684 * this is very complex, but the basic idea is to drop all extents
685 * in the range start - end. hint_block is filled in with a block number
686 * that would be a good hint to the block allocator for this file.
688 * If an extent intersects the range but is not entirely inside the range
689 * it is either truncated or split. Anything entirely inside the range
690 * is deleted from the tree.
692 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
693 struct btrfs_root *root, struct inode *inode,
694 struct btrfs_path *path, u64 start, u64 end,
695 u64 *drop_end, int drop_cache,
697 u32 extent_item_size,
700 struct btrfs_fs_info *fs_info = root->fs_info;
701 struct extent_buffer *leaf;
702 struct btrfs_file_extent_item *fi;
703 struct btrfs_key key;
704 struct btrfs_key new_key;
705 u64 ino = btrfs_ino(BTRFS_I(inode));
706 u64 search_start = start;
709 u64 extent_offset = 0;
711 u64 last_end = start;
717 int modify_tree = -1;
720 int leafs_visited = 0;
723 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
725 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
728 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
729 root == fs_info->tree_root);
732 ret = btrfs_lookup_file_extent(trans, root, path, ino,
733 search_start, modify_tree);
736 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
737 leaf = path->nodes[0];
738 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
739 if (key.objectid == ino &&
740 key.type == BTRFS_EXTENT_DATA_KEY)
746 leaf = path->nodes[0];
747 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
749 ret = btrfs_next_leaf(root, path);
757 leaf = path->nodes[0];
761 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
763 if (key.objectid > ino)
765 if (WARN_ON_ONCE(key.objectid < ino) ||
766 key.type < BTRFS_EXTENT_DATA_KEY) {
771 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
774 fi = btrfs_item_ptr(leaf, path->slots[0],
775 struct btrfs_file_extent_item);
776 extent_type = btrfs_file_extent_type(leaf, fi);
778 if (extent_type == BTRFS_FILE_EXTENT_REG ||
779 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
780 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
781 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
782 extent_offset = btrfs_file_extent_offset(leaf, fi);
783 extent_end = key.offset +
784 btrfs_file_extent_num_bytes(leaf, fi);
785 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
786 extent_end = key.offset +
787 btrfs_file_extent_inline_len(leaf,
795 * Don't skip extent items representing 0 byte lengths. They
796 * used to be created (bug) if while punching holes we hit
797 * -ENOSPC condition. So if we find one here, just ensure we
798 * delete it, otherwise we would insert a new file extent item
799 * with the same key (offset) as that 0 bytes length file
800 * extent item in the call to setup_items_for_insert() later
803 if (extent_end == key.offset && extent_end >= search_start) {
804 last_end = extent_end;
805 goto delete_extent_item;
808 if (extent_end <= search_start) {
814 search_start = max(key.offset, start);
815 if (recow || !modify_tree) {
817 btrfs_release_path(path);
822 * | - range to drop - |
823 * | -------- extent -------- |
825 if (start > key.offset && end < extent_end) {
827 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
832 memcpy(&new_key, &key, sizeof(new_key));
833 new_key.offset = start;
834 ret = btrfs_duplicate_item(trans, root, path,
836 if (ret == -EAGAIN) {
837 btrfs_release_path(path);
843 leaf = path->nodes[0];
844 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
845 struct btrfs_file_extent_item);
846 btrfs_set_file_extent_num_bytes(leaf, fi,
849 fi = btrfs_item_ptr(leaf, path->slots[0],
850 struct btrfs_file_extent_item);
852 extent_offset += start - key.offset;
853 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
854 btrfs_set_file_extent_num_bytes(leaf, fi,
856 btrfs_mark_buffer_dirty(leaf);
858 if (update_refs && disk_bytenr > 0) {
859 ret = btrfs_inc_extent_ref(trans, root,
860 disk_bytenr, num_bytes, 0,
861 root->root_key.objectid,
863 start - extent_offset);
864 BUG_ON(ret); /* -ENOMEM */
869 * From here on out we will have actually dropped something, so
870 * last_end can be updated.
872 last_end = extent_end;
875 * | ---- range to drop ----- |
876 * | -------- extent -------- |
878 if (start <= key.offset && end < extent_end) {
879 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
884 memcpy(&new_key, &key, sizeof(new_key));
885 new_key.offset = end;
886 btrfs_set_item_key_safe(fs_info, path, &new_key);
888 extent_offset += end - key.offset;
889 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
890 btrfs_set_file_extent_num_bytes(leaf, fi,
892 btrfs_mark_buffer_dirty(leaf);
893 if (update_refs && disk_bytenr > 0)
894 inode_sub_bytes(inode, end - key.offset);
898 search_start = extent_end;
900 * | ---- range to drop ----- |
901 * | -------- extent -------- |
903 if (start > key.offset && end >= extent_end) {
905 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
910 btrfs_set_file_extent_num_bytes(leaf, fi,
912 btrfs_mark_buffer_dirty(leaf);
913 if (update_refs && disk_bytenr > 0)
914 inode_sub_bytes(inode, extent_end - start);
915 if (end == extent_end)
923 * | ---- range to drop ----- |
924 * | ------ extent ------ |
926 if (start <= key.offset && end >= extent_end) {
929 del_slot = path->slots[0];
932 BUG_ON(del_slot + del_nr != path->slots[0]);
937 extent_type == BTRFS_FILE_EXTENT_INLINE) {
938 inode_sub_bytes(inode,
939 extent_end - key.offset);
940 extent_end = ALIGN(extent_end,
941 fs_info->sectorsize);
942 } else if (update_refs && disk_bytenr > 0) {
943 ret = btrfs_free_extent(trans, root,
944 disk_bytenr, num_bytes, 0,
945 root->root_key.objectid,
946 key.objectid, key.offset -
948 BUG_ON(ret); /* -ENOMEM */
949 inode_sub_bytes(inode,
950 extent_end - key.offset);
953 if (end == extent_end)
956 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
961 ret = btrfs_del_items(trans, root, path, del_slot,
964 btrfs_abort_transaction(trans, ret);
971 btrfs_release_path(path);
978 if (!ret && del_nr > 0) {
980 * Set path->slots[0] to first slot, so that after the delete
981 * if items are move off from our leaf to its immediate left or
982 * right neighbor leafs, we end up with a correct and adjusted
983 * path->slots[0] for our insertion (if replace_extent != 0).
985 path->slots[0] = del_slot;
986 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
988 btrfs_abort_transaction(trans, ret);
991 leaf = path->nodes[0];
993 * If btrfs_del_items() was called, it might have deleted a leaf, in
994 * which case it unlocked our path, so check path->locks[0] matches a
997 if (!ret && replace_extent && leafs_visited == 1 &&
998 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
999 path->locks[0] == BTRFS_WRITE_LOCK) &&
1000 btrfs_leaf_free_space(fs_info, leaf) >=
1001 sizeof(struct btrfs_item) + extent_item_size) {
1004 key.type = BTRFS_EXTENT_DATA_KEY;
1006 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1007 struct btrfs_key slot_key;
1009 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1010 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1013 setup_items_for_insert(root, path, &key,
1016 sizeof(struct btrfs_item) +
1017 extent_item_size, 1);
1021 if (!replace_extent || !(*key_inserted))
1022 btrfs_release_path(path);
1024 *drop_end = found ? min(end, last_end) : end;
1028 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1029 struct btrfs_root *root, struct inode *inode, u64 start,
1030 u64 end, int drop_cache)
1032 struct btrfs_path *path;
1035 path = btrfs_alloc_path();
1038 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1039 drop_cache, 0, 0, NULL);
1040 btrfs_free_path(path);
1044 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1045 u64 objectid, u64 bytenr, u64 orig_offset,
1046 u64 *start, u64 *end)
1048 struct btrfs_file_extent_item *fi;
1049 struct btrfs_key key;
1052 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1055 btrfs_item_key_to_cpu(leaf, &key, slot);
1056 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1059 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1060 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1061 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1062 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1063 btrfs_file_extent_compression(leaf, fi) ||
1064 btrfs_file_extent_encryption(leaf, fi) ||
1065 btrfs_file_extent_other_encoding(leaf, fi))
1068 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1069 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1072 *start = key.offset;
1078 * Mark extent in the range start - end as written.
1080 * This changes extent type from 'pre-allocated' to 'regular'. If only
1081 * part of extent is marked as written, the extent will be split into
1084 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1085 struct btrfs_inode *inode, u64 start, u64 end)
1087 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1088 struct btrfs_root *root = inode->root;
1089 struct extent_buffer *leaf;
1090 struct btrfs_path *path;
1091 struct btrfs_file_extent_item *fi;
1092 struct btrfs_key key;
1093 struct btrfs_key new_key;
1105 u64 ino = btrfs_ino(inode);
1107 path = btrfs_alloc_path();
1114 key.type = BTRFS_EXTENT_DATA_KEY;
1117 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1120 if (ret > 0 && path->slots[0] > 0)
1123 leaf = path->nodes[0];
1124 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1125 if (key.objectid != ino ||
1126 key.type != BTRFS_EXTENT_DATA_KEY) {
1128 btrfs_abort_transaction(trans, ret);
1131 fi = btrfs_item_ptr(leaf, path->slots[0],
1132 struct btrfs_file_extent_item);
1133 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1135 btrfs_abort_transaction(trans, ret);
1138 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1139 if (key.offset > start || extent_end < end) {
1141 btrfs_abort_transaction(trans, ret);
1145 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1146 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1147 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1148 memcpy(&new_key, &key, sizeof(new_key));
1150 if (start == key.offset && end < extent_end) {
1153 if (extent_mergeable(leaf, path->slots[0] - 1,
1154 ino, bytenr, orig_offset,
1155 &other_start, &other_end)) {
1156 new_key.offset = end;
1157 btrfs_set_item_key_safe(fs_info, path, &new_key);
1158 fi = btrfs_item_ptr(leaf, path->slots[0],
1159 struct btrfs_file_extent_item);
1160 btrfs_set_file_extent_generation(leaf, fi,
1162 btrfs_set_file_extent_num_bytes(leaf, fi,
1164 btrfs_set_file_extent_offset(leaf, fi,
1166 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1167 struct btrfs_file_extent_item);
1168 btrfs_set_file_extent_generation(leaf, fi,
1170 btrfs_set_file_extent_num_bytes(leaf, fi,
1172 btrfs_mark_buffer_dirty(leaf);
1177 if (start > key.offset && end == extent_end) {
1180 if (extent_mergeable(leaf, path->slots[0] + 1,
1181 ino, bytenr, orig_offset,
1182 &other_start, &other_end)) {
1183 fi = btrfs_item_ptr(leaf, path->slots[0],
1184 struct btrfs_file_extent_item);
1185 btrfs_set_file_extent_num_bytes(leaf, fi,
1186 start - key.offset);
1187 btrfs_set_file_extent_generation(leaf, fi,
1190 new_key.offset = start;
1191 btrfs_set_item_key_safe(fs_info, path, &new_key);
1193 fi = btrfs_item_ptr(leaf, path->slots[0],
1194 struct btrfs_file_extent_item);
1195 btrfs_set_file_extent_generation(leaf, fi,
1197 btrfs_set_file_extent_num_bytes(leaf, fi,
1199 btrfs_set_file_extent_offset(leaf, fi,
1200 start - orig_offset);
1201 btrfs_mark_buffer_dirty(leaf);
1206 while (start > key.offset || end < extent_end) {
1207 if (key.offset == start)
1210 new_key.offset = split;
1211 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1212 if (ret == -EAGAIN) {
1213 btrfs_release_path(path);
1217 btrfs_abort_transaction(trans, ret);
1221 leaf = path->nodes[0];
1222 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1223 struct btrfs_file_extent_item);
1224 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1225 btrfs_set_file_extent_num_bytes(leaf, fi,
1226 split - key.offset);
1228 fi = btrfs_item_ptr(leaf, path->slots[0],
1229 struct btrfs_file_extent_item);
1231 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1232 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1233 btrfs_set_file_extent_num_bytes(leaf, fi,
1234 extent_end - split);
1235 btrfs_mark_buffer_dirty(leaf);
1237 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
1238 0, root->root_key.objectid,
1241 btrfs_abort_transaction(trans, ret);
1245 if (split == start) {
1248 if (start != key.offset) {
1250 btrfs_abort_transaction(trans, ret);
1261 if (extent_mergeable(leaf, path->slots[0] + 1,
1262 ino, bytenr, orig_offset,
1263 &other_start, &other_end)) {
1265 btrfs_release_path(path);
1268 extent_end = other_end;
1269 del_slot = path->slots[0] + 1;
1271 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1272 0, root->root_key.objectid,
1275 btrfs_abort_transaction(trans, ret);
1281 if (extent_mergeable(leaf, path->slots[0] - 1,
1282 ino, bytenr, orig_offset,
1283 &other_start, &other_end)) {
1285 btrfs_release_path(path);
1288 key.offset = other_start;
1289 del_slot = path->slots[0];
1291 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1292 0, root->root_key.objectid,
1295 btrfs_abort_transaction(trans, ret);
1300 fi = btrfs_item_ptr(leaf, path->slots[0],
1301 struct btrfs_file_extent_item);
1302 btrfs_set_file_extent_type(leaf, fi,
1303 BTRFS_FILE_EXTENT_REG);
1304 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1305 btrfs_mark_buffer_dirty(leaf);
1307 fi = btrfs_item_ptr(leaf, del_slot - 1,
1308 struct btrfs_file_extent_item);
1309 btrfs_set_file_extent_type(leaf, fi,
1310 BTRFS_FILE_EXTENT_REG);
1311 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1312 btrfs_set_file_extent_num_bytes(leaf, fi,
1313 extent_end - key.offset);
1314 btrfs_mark_buffer_dirty(leaf);
1316 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1318 btrfs_abort_transaction(trans, ret);
1323 btrfs_free_path(path);
1328 * on error we return an unlocked page and the error value
1329 * on success we return a locked page and 0
1331 static int prepare_uptodate_page(struct inode *inode,
1332 struct page *page, u64 pos,
1333 bool force_uptodate)
1337 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1338 !PageUptodate(page)) {
1339 ret = btrfs_readpage(NULL, page);
1343 if (!PageUptodate(page)) {
1347 if (page->mapping != inode->i_mapping) {
1356 * this just gets pages into the page cache and locks them down.
1358 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1359 size_t num_pages, loff_t pos,
1360 size_t write_bytes, bool force_uptodate)
1363 unsigned long index = pos >> PAGE_SHIFT;
1364 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1368 for (i = 0; i < num_pages; i++) {
1370 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1371 mask | __GFP_WRITE);
1379 err = prepare_uptodate_page(inode, pages[i], pos,
1381 if (!err && i == num_pages - 1)
1382 err = prepare_uptodate_page(inode, pages[i],
1383 pos + write_bytes, false);
1386 if (err == -EAGAIN) {
1393 wait_on_page_writeback(pages[i]);
1398 while (faili >= 0) {
1399 unlock_page(pages[faili]);
1400 put_page(pages[faili]);
1407 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
1410 struct extent_state **cached_state)
1412 u64 search_start = start;
1413 const u64 end = start + len - 1;
1415 while (search_start < end) {
1416 const u64 search_len = end - search_start + 1;
1417 struct extent_map *em;
1421 em = btrfs_get_extent(inode, NULL, 0, search_start,
1426 if (em->block_start != EXTENT_MAP_HOLE)
1430 if (em->start < search_start)
1431 em_len -= search_start - em->start;
1432 if (em_len > search_len)
1433 em_len = search_len;
1435 ret = set_extent_bit(&inode->io_tree, search_start,
1436 search_start + em_len - 1,
1437 EXTENT_DELALLOC_NEW,
1438 NULL, cached_state, GFP_NOFS);
1440 search_start = extent_map_end(em);
1441 free_extent_map(em);
1449 * This function locks the extent and properly waits for data=ordered extents
1450 * to finish before allowing the pages to be modified if need.
1453 * 1 - the extent is locked
1454 * 0 - the extent is not locked, and everything is OK
1455 * -EAGAIN - need re-prepare the pages
1456 * the other < 0 number - Something wrong happens
1459 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1460 size_t num_pages, loff_t pos,
1462 u64 *lockstart, u64 *lockend,
1463 struct extent_state **cached_state)
1465 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1471 start_pos = round_down(pos, fs_info->sectorsize);
1472 last_pos = start_pos
1473 + round_up(pos + write_bytes - start_pos,
1474 fs_info->sectorsize) - 1;
1476 if (start_pos < inode->vfs_inode.i_size ||
1477 (inode->flags & BTRFS_INODE_PREALLOC)) {
1478 struct btrfs_ordered_extent *ordered;
1479 unsigned int clear_bits;
1481 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1483 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1484 last_pos - start_pos + 1);
1486 ordered->file_offset + ordered->len > start_pos &&
1487 ordered->file_offset <= last_pos) {
1488 unlock_extent_cached(&inode->io_tree, start_pos,
1489 last_pos, cached_state, GFP_NOFS);
1490 for (i = 0; i < num_pages; i++) {
1491 unlock_page(pages[i]);
1494 btrfs_start_ordered_extent(&inode->vfs_inode,
1496 btrfs_put_ordered_extent(ordered);
1500 btrfs_put_ordered_extent(ordered);
1501 ret = btrfs_find_new_delalloc_bytes(inode, start_pos,
1502 last_pos - start_pos + 1,
1504 clear_bits = EXTENT_DIRTY | EXTENT_DELALLOC |
1505 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG;
1507 clear_bits |= EXTENT_DELALLOC_NEW | EXTENT_LOCKED;
1508 clear_extent_bit(&inode->io_tree, start_pos,
1509 last_pos, clear_bits,
1510 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
1511 0, cached_state, GFP_NOFS);
1514 *lockstart = start_pos;
1515 *lockend = last_pos;
1519 for (i = 0; i < num_pages; i++) {
1520 if (clear_page_dirty_for_io(pages[i]))
1521 account_page_redirty(pages[i]);
1522 set_page_extent_mapped(pages[i]);
1523 WARN_ON(!PageLocked(pages[i]));
1529 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1530 size_t *write_bytes)
1532 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1533 struct btrfs_root *root = inode->root;
1534 struct btrfs_ordered_extent *ordered;
1535 u64 lockstart, lockend;
1539 ret = btrfs_start_write_no_snapshotting(root);
1543 lockstart = round_down(pos, fs_info->sectorsize);
1544 lockend = round_up(pos + *write_bytes,
1545 fs_info->sectorsize) - 1;
1548 lock_extent(&inode->io_tree, lockstart, lockend);
1549 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1550 lockend - lockstart + 1);
1554 unlock_extent(&inode->io_tree, lockstart, lockend);
1555 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1556 btrfs_put_ordered_extent(ordered);
1559 num_bytes = lockend - lockstart + 1;
1560 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1564 btrfs_end_write_no_snapshotting(root);
1566 *write_bytes = min_t(size_t, *write_bytes ,
1567 num_bytes - pos + lockstart);
1570 unlock_extent(&inode->io_tree, lockstart, lockend);
1575 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1579 struct inode *inode = file_inode(file);
1580 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1581 struct btrfs_root *root = BTRFS_I(inode)->root;
1582 struct page **pages = NULL;
1583 struct extent_state *cached_state = NULL;
1584 struct extent_changeset *data_reserved = NULL;
1585 u64 release_bytes = 0;
1588 size_t num_written = 0;
1591 bool only_release_metadata = false;
1592 bool force_page_uptodate = false;
1594 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1595 PAGE_SIZE / (sizeof(struct page *)));
1596 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1597 nrptrs = max(nrptrs, 8);
1598 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1602 while (iov_iter_count(i) > 0) {
1603 size_t offset = pos & (PAGE_SIZE - 1);
1604 size_t sector_offset;
1605 size_t write_bytes = min(iov_iter_count(i),
1606 nrptrs * (size_t)PAGE_SIZE -
1608 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1610 size_t reserve_bytes;
1613 size_t dirty_sectors;
1617 WARN_ON(num_pages > nrptrs);
1620 * Fault pages before locking them in prepare_pages
1621 * to avoid recursive lock
1623 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1628 sector_offset = pos & (fs_info->sectorsize - 1);
1629 reserve_bytes = round_up(write_bytes + sector_offset,
1630 fs_info->sectorsize);
1632 extent_changeset_release(data_reserved);
1633 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1636 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1637 BTRFS_INODE_PREALLOC)) &&
1638 check_can_nocow(BTRFS_I(inode), pos,
1639 &write_bytes) > 0) {
1641 * For nodata cow case, no need to reserve
1644 only_release_metadata = true;
1646 * our prealloc extent may be smaller than
1647 * write_bytes, so scale down.
1649 num_pages = DIV_ROUND_UP(write_bytes + offset,
1651 reserve_bytes = round_up(write_bytes +
1653 fs_info->sectorsize);
1659 WARN_ON(reserve_bytes == 0);
1660 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1663 if (!only_release_metadata)
1664 btrfs_free_reserved_data_space(inode,
1668 btrfs_end_write_no_snapshotting(root);
1672 release_bytes = reserve_bytes;
1675 * This is going to setup the pages array with the number of
1676 * pages we want, so we don't really need to worry about the
1677 * contents of pages from loop to loop
1679 ret = prepare_pages(inode, pages, num_pages,
1681 force_page_uptodate);
1683 btrfs_delalloc_release_extents(BTRFS_I(inode),
1688 extents_locked = lock_and_cleanup_extent_if_need(
1689 BTRFS_I(inode), pages,
1690 num_pages, pos, write_bytes, &lockstart,
1691 &lockend, &cached_state);
1692 if (extents_locked < 0) {
1693 if (extents_locked == -EAGAIN)
1695 btrfs_delalloc_release_extents(BTRFS_I(inode),
1697 ret = extents_locked;
1701 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1703 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1704 dirty_sectors = round_up(copied + sector_offset,
1705 fs_info->sectorsize);
1706 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1709 * if we have trouble faulting in the pages, fall
1710 * back to one page at a time
1712 if (copied < write_bytes)
1716 force_page_uptodate = true;
1720 force_page_uptodate = false;
1721 dirty_pages = DIV_ROUND_UP(copied + offset,
1725 if (num_sectors > dirty_sectors) {
1726 /* release everything except the sectors we dirtied */
1727 release_bytes -= dirty_sectors <<
1728 fs_info->sb->s_blocksize_bits;
1729 if (only_release_metadata) {
1730 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1735 __pos = round_down(pos,
1736 fs_info->sectorsize) +
1737 (dirty_pages << PAGE_SHIFT);
1738 btrfs_delalloc_release_space(inode,
1739 data_reserved, __pos,
1744 release_bytes = round_up(copied + sector_offset,
1745 fs_info->sectorsize);
1748 ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1751 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1752 lockstart, lockend, &cached_state,
1754 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1756 btrfs_drop_pages(pages, num_pages);
1761 if (only_release_metadata)
1762 btrfs_end_write_no_snapshotting(root);
1764 if (only_release_metadata && copied > 0) {
1765 lockstart = round_down(pos,
1766 fs_info->sectorsize);
1767 lockend = round_up(pos + copied,
1768 fs_info->sectorsize) - 1;
1770 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1771 lockend, EXTENT_NORESERVE, NULL,
1773 only_release_metadata = false;
1776 btrfs_drop_pages(pages, num_pages);
1780 balance_dirty_pages_ratelimited(inode->i_mapping);
1781 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1782 btrfs_btree_balance_dirty(fs_info);
1785 num_written += copied;
1790 if (release_bytes) {
1791 if (only_release_metadata) {
1792 btrfs_end_write_no_snapshotting(root);
1793 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1796 btrfs_delalloc_release_space(inode, data_reserved,
1797 round_down(pos, fs_info->sectorsize),
1802 extent_changeset_free(data_reserved);
1803 return num_written ? num_written : ret;
1806 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1808 struct file *file = iocb->ki_filp;
1809 struct inode *inode = file_inode(file);
1810 loff_t pos = iocb->ki_pos;
1812 ssize_t written_buffered;
1816 written = generic_file_direct_write(iocb, from);
1818 if (written < 0 || !iov_iter_count(from))
1822 written_buffered = __btrfs_buffered_write(file, from, pos);
1823 if (written_buffered < 0) {
1824 err = written_buffered;
1828 * Ensure all data is persisted. We want the next direct IO read to be
1829 * able to read what was just written.
1831 endbyte = pos + written_buffered - 1;
1832 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1835 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1838 written += written_buffered;
1839 iocb->ki_pos = pos + written_buffered;
1840 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1841 endbyte >> PAGE_SHIFT);
1843 return written ? written : err;
1846 static void update_time_for_write(struct inode *inode)
1848 struct timespec now;
1850 if (IS_NOCMTIME(inode))
1853 now = current_time(inode);
1854 if (!timespec_equal(&inode->i_mtime, &now))
1855 inode->i_mtime = now;
1857 if (!timespec_equal(&inode->i_ctime, &now))
1858 inode->i_ctime = now;
1860 if (IS_I_VERSION(inode))
1861 inode_inc_iversion(inode);
1864 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1865 struct iov_iter *from)
1867 struct file *file = iocb->ki_filp;
1868 struct inode *inode = file_inode(file);
1869 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1870 struct btrfs_root *root = BTRFS_I(inode)->root;
1873 ssize_t num_written = 0;
1874 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1877 size_t count = iov_iter_count(from);
1881 if (!(iocb->ki_flags & IOCB_DIRECT) &&
1882 (iocb->ki_flags & IOCB_NOWAIT))
1885 if (!inode_trylock(inode)) {
1886 if (iocb->ki_flags & IOCB_NOWAIT)
1891 err = generic_write_checks(iocb, from);
1893 inode_unlock(inode);
1898 if (iocb->ki_flags & IOCB_NOWAIT) {
1900 * We will allocate space in case nodatacow is not set,
1903 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1904 BTRFS_INODE_PREALLOC)) ||
1905 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1906 inode_unlock(inode);
1911 current->backing_dev_info = inode_to_bdi(inode);
1912 err = file_remove_privs(file);
1914 inode_unlock(inode);
1919 * If BTRFS flips readonly due to some impossible error
1920 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1921 * although we have opened a file as writable, we have
1922 * to stop this write operation to ensure FS consistency.
1924 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1925 inode_unlock(inode);
1931 * We reserve space for updating the inode when we reserve space for the
1932 * extent we are going to write, so we will enospc out there. We don't
1933 * need to start yet another transaction to update the inode as we will
1934 * update the inode when we finish writing whatever data we write.
1936 update_time_for_write(inode);
1938 start_pos = round_down(pos, fs_info->sectorsize);
1939 oldsize = i_size_read(inode);
1940 if (start_pos > oldsize) {
1941 /* Expand hole size to cover write data, preventing empty gap */
1942 end_pos = round_up(pos + count,
1943 fs_info->sectorsize);
1944 err = btrfs_cont_expand(inode, oldsize, end_pos);
1946 inode_unlock(inode);
1949 if (start_pos > round_up(oldsize, fs_info->sectorsize))
1954 atomic_inc(&BTRFS_I(inode)->sync_writers);
1956 if (iocb->ki_flags & IOCB_DIRECT) {
1957 num_written = __btrfs_direct_write(iocb, from);
1959 num_written = __btrfs_buffered_write(file, from, pos);
1960 if (num_written > 0)
1961 iocb->ki_pos = pos + num_written;
1963 pagecache_isize_extended(inode, oldsize,
1964 i_size_read(inode));
1967 inode_unlock(inode);
1970 * We also have to set last_sub_trans to the current log transid,
1971 * otherwise subsequent syncs to a file that's been synced in this
1972 * transaction will appear to have already occurred.
1974 spin_lock(&BTRFS_I(inode)->lock);
1975 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1976 spin_unlock(&BTRFS_I(inode)->lock);
1977 if (num_written > 0)
1978 num_written = generic_write_sync(iocb, num_written);
1981 atomic_dec(&BTRFS_I(inode)->sync_writers);
1983 current->backing_dev_info = NULL;
1984 return num_written ? num_written : err;
1987 int btrfs_release_file(struct inode *inode, struct file *filp)
1989 struct btrfs_file_private *private = filp->private_data;
1991 if (private && private->trans)
1992 btrfs_ioctl_trans_end(filp);
1993 if (private && private->filldir_buf)
1994 kfree(private->filldir_buf);
1996 filp->private_data = NULL;
1999 * ordered_data_close is set by settattr when we are about to truncate
2000 * a file from a non-zero size to a zero size. This tries to
2001 * flush down new bytes that may have been written if the
2002 * application were using truncate to replace a file in place.
2004 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2005 &BTRFS_I(inode)->runtime_flags))
2006 filemap_flush(inode->i_mapping);
2010 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2014 atomic_inc(&BTRFS_I(inode)->sync_writers);
2015 ret = btrfs_fdatawrite_range(inode, start, end);
2016 atomic_dec(&BTRFS_I(inode)->sync_writers);
2022 * fsync call for both files and directories. This logs the inode into
2023 * the tree log instead of forcing full commits whenever possible.
2025 * It needs to call filemap_fdatawait so that all ordered extent updates are
2026 * in the metadata btree are up to date for copying to the log.
2028 * It drops the inode mutex before doing the tree log commit. This is an
2029 * important optimization for directories because holding the mutex prevents
2030 * new operations on the dir while we write to disk.
2032 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2034 struct dentry *dentry = file_dentry(file);
2035 struct inode *inode = d_inode(dentry);
2036 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2037 struct btrfs_root *root = BTRFS_I(inode)->root;
2038 struct btrfs_trans_handle *trans;
2039 struct btrfs_log_ctx ctx;
2041 bool full_sync = false;
2045 * The range length can be represented by u64, we have to do the typecasts
2046 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2048 len = (u64)end - (u64)start + 1;
2049 trace_btrfs_sync_file(file, datasync);
2052 * We write the dirty pages in the range and wait until they complete
2053 * out of the ->i_mutex. If so, we can flush the dirty pages by
2054 * multi-task, and make the performance up. See
2055 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2057 ret = start_ordered_ops(inode, start, end);
2062 atomic_inc(&root->log_batch);
2063 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2064 &BTRFS_I(inode)->runtime_flags);
2066 * We might have have had more pages made dirty after calling
2067 * start_ordered_ops and before acquiring the inode's i_mutex.
2071 * For a full sync, we need to make sure any ordered operations
2072 * start and finish before we start logging the inode, so that
2073 * all extents are persisted and the respective file extent
2074 * items are in the fs/subvol btree.
2076 ret = btrfs_wait_ordered_range(inode, start, len);
2079 * Start any new ordered operations before starting to log the
2080 * inode. We will wait for them to finish in btrfs_sync_log().
2082 * Right before acquiring the inode's mutex, we might have new
2083 * writes dirtying pages, which won't immediately start the
2084 * respective ordered operations - that is done through the
2085 * fill_delalloc callbacks invoked from the writepage and
2086 * writepages address space operations. So make sure we start
2087 * all ordered operations before starting to log our inode. Not
2088 * doing this means that while logging the inode, writeback
2089 * could start and invoke writepage/writepages, which would call
2090 * the fill_delalloc callbacks (cow_file_range,
2091 * submit_compressed_extents). These callbacks add first an
2092 * extent map to the modified list of extents and then create
2093 * the respective ordered operation, which means in
2094 * tree-log.c:btrfs_log_inode() we might capture all existing
2095 * ordered operations (with btrfs_get_logged_extents()) before
2096 * the fill_delalloc callback adds its ordered operation, and by
2097 * the time we visit the modified list of extent maps (with
2098 * btrfs_log_changed_extents()), we see and process the extent
2099 * map they created. We then use the extent map to construct a
2100 * file extent item for logging without waiting for the
2101 * respective ordered operation to finish - this file extent
2102 * item points to a disk location that might not have yet been
2103 * written to, containing random data - so after a crash a log
2104 * replay will make our inode have file extent items that point
2105 * to disk locations containing invalid data, as we returned
2106 * success to userspace without waiting for the respective
2107 * ordered operation to finish, because it wasn't captured by
2108 * btrfs_get_logged_extents().
2110 ret = start_ordered_ops(inode, start, end);
2113 inode_unlock(inode);
2116 atomic_inc(&root->log_batch);
2119 * If the last transaction that changed this file was before the current
2120 * transaction and we have the full sync flag set in our inode, we can
2121 * bail out now without any syncing.
2123 * Note that we can't bail out if the full sync flag isn't set. This is
2124 * because when the full sync flag is set we start all ordered extents
2125 * and wait for them to fully complete - when they complete they update
2126 * the inode's last_trans field through:
2128 * btrfs_finish_ordered_io() ->
2129 * btrfs_update_inode_fallback() ->
2130 * btrfs_update_inode() ->
2131 * btrfs_set_inode_last_trans()
2133 * So we are sure that last_trans is up to date and can do this check to
2134 * bail out safely. For the fast path, when the full sync flag is not
2135 * set in our inode, we can not do it because we start only our ordered
2136 * extents and don't wait for them to complete (that is when
2137 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2138 * value might be less than or equals to fs_info->last_trans_committed,
2139 * and setting a speculative last_trans for an inode when a buffered
2140 * write is made (such as fs_info->generation + 1 for example) would not
2141 * be reliable since after setting the value and before fsync is called
2142 * any number of transactions can start and commit (transaction kthread
2143 * commits the current transaction periodically), and a transaction
2144 * commit does not start nor waits for ordered extents to complete.
2147 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2148 (full_sync && BTRFS_I(inode)->last_trans <=
2149 fs_info->last_trans_committed) ||
2150 (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2151 BTRFS_I(inode)->last_trans
2152 <= fs_info->last_trans_committed)) {
2154 * We've had everything committed since the last time we were
2155 * modified so clear this flag in case it was set for whatever
2156 * reason, it's no longer relevant.
2158 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2159 &BTRFS_I(inode)->runtime_flags);
2161 * An ordered extent might have started before and completed
2162 * already with io errors, in which case the inode was not
2163 * updated and we end up here. So check the inode's mapping
2164 * for any errors that might have happened since we last
2165 * checked called fsync.
2167 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2168 inode_unlock(inode);
2173 * ok we haven't committed the transaction yet, lets do a commit
2175 if (file->private_data)
2176 btrfs_ioctl_trans_end(file);
2179 * We use start here because we will need to wait on the IO to complete
2180 * in btrfs_sync_log, which could require joining a transaction (for
2181 * example checking cross references in the nocow path). If we use join
2182 * here we could get into a situation where we're waiting on IO to
2183 * happen that is blocked on a transaction trying to commit. With start
2184 * we inc the extwriter counter, so we wait for all extwriters to exit
2185 * before we start blocking join'ers. This comment is to keep somebody
2186 * from thinking they are super smart and changing this to
2187 * btrfs_join_transaction *cough*Josef*cough*.
2189 trans = btrfs_start_transaction(root, 0);
2190 if (IS_ERR(trans)) {
2191 ret = PTR_ERR(trans);
2192 inode_unlock(inode);
2197 btrfs_init_log_ctx(&ctx, inode);
2199 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2201 /* Fallthrough and commit/free transaction. */
2205 /* we've logged all the items and now have a consistent
2206 * version of the file in the log. It is possible that
2207 * someone will come in and modify the file, but that's
2208 * fine because the log is consistent on disk, and we
2209 * have references to all of the file's extents
2211 * It is possible that someone will come in and log the
2212 * file again, but that will end up using the synchronization
2213 * inside btrfs_sync_log to keep things safe.
2215 inode_unlock(inode);
2218 * If any of the ordered extents had an error, just return it to user
2219 * space, so that the application knows some writes didn't succeed and
2220 * can take proper action (retry for e.g.). Blindly committing the
2221 * transaction in this case, would fool userspace that everything was
2222 * successful. And we also want to make sure our log doesn't contain
2223 * file extent items pointing to extents that weren't fully written to -
2224 * just like in the non fast fsync path, where we check for the ordered
2225 * operation's error flag before writing to the log tree and return -EIO
2226 * if any of them had this flag set (btrfs_wait_ordered_range) -
2227 * therefore we need to check for errors in the ordered operations,
2228 * which are indicated by ctx.io_err.
2231 btrfs_end_transaction(trans);
2236 if (ret != BTRFS_NO_LOG_SYNC) {
2238 ret = btrfs_sync_log(trans, root, &ctx);
2240 ret = btrfs_end_transaction(trans);
2245 ret = btrfs_wait_ordered_range(inode, start, len);
2247 btrfs_end_transaction(trans);
2251 ret = btrfs_commit_transaction(trans);
2253 ret = btrfs_end_transaction(trans);
2256 err = file_check_and_advance_wb_err(file);
2259 return ret > 0 ? -EIO : ret;
2262 static const struct vm_operations_struct btrfs_file_vm_ops = {
2263 .fault = filemap_fault,
2264 .map_pages = filemap_map_pages,
2265 .page_mkwrite = btrfs_page_mkwrite,
2268 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2270 struct address_space *mapping = filp->f_mapping;
2272 if (!mapping->a_ops->readpage)
2275 file_accessed(filp);
2276 vma->vm_ops = &btrfs_file_vm_ops;
2281 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2282 int slot, u64 start, u64 end)
2284 struct btrfs_file_extent_item *fi;
2285 struct btrfs_key key;
2287 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2290 btrfs_item_key_to_cpu(leaf, &key, slot);
2291 if (key.objectid != btrfs_ino(inode) ||
2292 key.type != BTRFS_EXTENT_DATA_KEY)
2295 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2297 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2300 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2303 if (key.offset == end)
2305 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2310 static int fill_holes(struct btrfs_trans_handle *trans,
2311 struct btrfs_inode *inode,
2312 struct btrfs_path *path, u64 offset, u64 end)
2314 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
2315 struct btrfs_root *root = inode->root;
2316 struct extent_buffer *leaf;
2317 struct btrfs_file_extent_item *fi;
2318 struct extent_map *hole_em;
2319 struct extent_map_tree *em_tree = &inode->extent_tree;
2320 struct btrfs_key key;
2323 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2326 key.objectid = btrfs_ino(inode);
2327 key.type = BTRFS_EXTENT_DATA_KEY;
2328 key.offset = offset;
2330 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2333 * We should have dropped this offset, so if we find it then
2334 * something has gone horribly wrong.
2341 leaf = path->nodes[0];
2342 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2346 fi = btrfs_item_ptr(leaf, path->slots[0],
2347 struct btrfs_file_extent_item);
2348 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2350 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2351 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2352 btrfs_set_file_extent_offset(leaf, fi, 0);
2353 btrfs_mark_buffer_dirty(leaf);
2357 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2360 key.offset = offset;
2361 btrfs_set_item_key_safe(fs_info, path, &key);
2362 fi = btrfs_item_ptr(leaf, path->slots[0],
2363 struct btrfs_file_extent_item);
2364 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2366 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2367 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2368 btrfs_set_file_extent_offset(leaf, fi, 0);
2369 btrfs_mark_buffer_dirty(leaf);
2372 btrfs_release_path(path);
2374 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2375 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2380 btrfs_release_path(path);
2382 hole_em = alloc_extent_map();
2384 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2385 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2387 hole_em->start = offset;
2388 hole_em->len = end - offset;
2389 hole_em->ram_bytes = hole_em->len;
2390 hole_em->orig_start = offset;
2392 hole_em->block_start = EXTENT_MAP_HOLE;
2393 hole_em->block_len = 0;
2394 hole_em->orig_block_len = 0;
2395 hole_em->bdev = fs_info->fs_devices->latest_bdev;
2396 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2397 hole_em->generation = trans->transid;
2400 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2401 write_lock(&em_tree->lock);
2402 ret = add_extent_mapping(em_tree, hole_em, 1);
2403 write_unlock(&em_tree->lock);
2404 } while (ret == -EEXIST);
2405 free_extent_map(hole_em);
2407 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2408 &inode->runtime_flags);
2415 * Find a hole extent on given inode and change start/len to the end of hole
2416 * extent.(hole/vacuum extent whose em->start <= start &&
2417 * em->start + em->len > start)
2418 * When a hole extent is found, return 1 and modify start/len.
2420 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2422 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2423 struct extent_map *em;
2426 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2427 round_down(*start, fs_info->sectorsize),
2428 round_up(*len, fs_info->sectorsize), 0);
2432 /* Hole or vacuum extent(only exists in no-hole mode) */
2433 if (em->block_start == EXTENT_MAP_HOLE) {
2435 *len = em->start + em->len > *start + *len ?
2436 0 : *start + *len - em->start - em->len;
2437 *start = em->start + em->len;
2439 free_extent_map(em);
2443 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2445 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2446 struct btrfs_root *root = BTRFS_I(inode)->root;
2447 struct extent_state *cached_state = NULL;
2448 struct btrfs_path *path;
2449 struct btrfs_block_rsv *rsv;
2450 struct btrfs_trans_handle *trans;
2455 u64 orig_start = offset;
2457 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2461 unsigned int rsv_count;
2463 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
2465 bool truncated_block = false;
2466 bool updated_inode = false;
2468 ret = btrfs_wait_ordered_range(inode, offset, len);
2473 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2474 ret = find_first_non_hole(inode, &offset, &len);
2476 goto out_only_mutex;
2478 /* Already in a large hole */
2480 goto out_only_mutex;
2483 lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2484 lockend = round_down(offset + len,
2485 btrfs_inode_sectorsize(inode)) - 1;
2486 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2487 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2489 * We needn't truncate any block which is beyond the end of the file
2490 * because we are sure there is no data there.
2493 * Only do this if we are in the same block and we aren't doing the
2496 if (same_block && len < fs_info->sectorsize) {
2497 if (offset < ino_size) {
2498 truncated_block = true;
2499 ret = btrfs_truncate_block(inode, offset, len, 0);
2503 goto out_only_mutex;
2506 /* zero back part of the first block */
2507 if (offset < ino_size) {
2508 truncated_block = true;
2509 ret = btrfs_truncate_block(inode, offset, 0, 0);
2511 inode_unlock(inode);
2516 /* Check the aligned pages after the first unaligned page,
2517 * if offset != orig_start, which means the first unaligned page
2518 * including several following pages are already in holes,
2519 * the extra check can be skipped */
2520 if (offset == orig_start) {
2521 /* after truncate page, check hole again */
2522 len = offset + len - lockstart;
2524 ret = find_first_non_hole(inode, &offset, &len);
2526 goto out_only_mutex;
2529 goto out_only_mutex;
2534 /* Check the tail unaligned part is in a hole */
2535 tail_start = lockend + 1;
2536 tail_len = offset + len - tail_start;
2538 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2539 if (unlikely(ret < 0))
2540 goto out_only_mutex;
2542 /* zero the front end of the last page */
2543 if (tail_start + tail_len < ino_size) {
2544 truncated_block = true;
2545 ret = btrfs_truncate_block(inode,
2546 tail_start + tail_len,
2549 goto out_only_mutex;
2554 if (lockend < lockstart) {
2556 goto out_only_mutex;
2560 struct btrfs_ordered_extent *ordered;
2562 truncate_pagecache_range(inode, lockstart, lockend);
2564 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2566 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2569 * We need to make sure we have no ordered extents in this range
2570 * and nobody raced in and read a page in this range, if we did
2571 * we need to try again.
2574 (ordered->file_offset + ordered->len <= lockstart ||
2575 ordered->file_offset > lockend)) &&
2576 !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2578 btrfs_put_ordered_extent(ordered);
2582 btrfs_put_ordered_extent(ordered);
2583 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2584 lockend, &cached_state, GFP_NOFS);
2585 ret = btrfs_wait_ordered_range(inode, lockstart,
2586 lockend - lockstart + 1);
2588 inode_unlock(inode);
2593 path = btrfs_alloc_path();
2599 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2604 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2608 * 1 - update the inode
2609 * 1 - removing the extents in the range
2610 * 1 - adding the hole extent if no_holes isn't set
2612 rsv_count = no_holes ? 2 : 3;
2613 trans = btrfs_start_transaction(root, rsv_count);
2614 if (IS_ERR(trans)) {
2615 err = PTR_ERR(trans);
2619 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2622 trans->block_rsv = rsv;
2624 cur_offset = lockstart;
2625 len = lockend - cur_offset;
2626 while (cur_offset < lockend) {
2627 ret = __btrfs_drop_extents(trans, root, inode, path,
2628 cur_offset, lockend + 1,
2629 &drop_end, 1, 0, 0, NULL);
2633 trans->block_rsv = &fs_info->trans_block_rsv;
2635 if (cur_offset < drop_end && cur_offset < ino_size) {
2636 ret = fill_holes(trans, BTRFS_I(inode), path,
2637 cur_offset, drop_end);
2640 * If we failed then we didn't insert our hole
2641 * entries for the area we dropped, so now the
2642 * fs is corrupted, so we must abort the
2645 btrfs_abort_transaction(trans, ret);
2651 cur_offset = drop_end;
2653 ret = btrfs_update_inode(trans, root, inode);
2659 btrfs_end_transaction(trans);
2660 btrfs_btree_balance_dirty(fs_info);
2662 trans = btrfs_start_transaction(root, rsv_count);
2663 if (IS_ERR(trans)) {
2664 ret = PTR_ERR(trans);
2669 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2671 BUG_ON(ret); /* shouldn't happen */
2672 trans->block_rsv = rsv;
2674 ret = find_first_non_hole(inode, &cur_offset, &len);
2675 if (unlikely(ret < 0))
2688 trans->block_rsv = &fs_info->trans_block_rsv;
2690 * If we are using the NO_HOLES feature we might have had already an
2691 * hole that overlaps a part of the region [lockstart, lockend] and
2692 * ends at (or beyond) lockend. Since we have no file extent items to
2693 * represent holes, drop_end can be less than lockend and so we must
2694 * make sure we have an extent map representing the existing hole (the
2695 * call to __btrfs_drop_extents() might have dropped the existing extent
2696 * map representing the existing hole), otherwise the fast fsync path
2697 * will not record the existence of the hole region
2698 * [existing_hole_start, lockend].
2700 if (drop_end <= lockend)
2701 drop_end = lockend + 1;
2703 * Don't insert file hole extent item if it's for a range beyond eof
2704 * (because it's useless) or if it represents a 0 bytes range (when
2705 * cur_offset == drop_end).
2707 if (cur_offset < ino_size && cur_offset < drop_end) {
2708 ret = fill_holes(trans, BTRFS_I(inode), path,
2709 cur_offset, drop_end);
2711 /* Same comment as above. */
2712 btrfs_abort_transaction(trans, ret);
2722 inode_inc_iversion(inode);
2723 inode->i_mtime = inode->i_ctime = current_time(inode);
2725 trans->block_rsv = &fs_info->trans_block_rsv;
2726 ret = btrfs_update_inode(trans, root, inode);
2727 updated_inode = true;
2728 btrfs_end_transaction(trans);
2729 btrfs_btree_balance_dirty(fs_info);
2731 btrfs_free_path(path);
2732 btrfs_free_block_rsv(fs_info, rsv);
2734 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2735 &cached_state, GFP_NOFS);
2737 if (!updated_inode && truncated_block && !ret && !err) {
2739 * If we only end up zeroing part of a page, we still need to
2740 * update the inode item, so that all the time fields are
2741 * updated as well as the necessary btrfs inode in memory fields
2742 * for detecting, at fsync time, if the inode isn't yet in the
2743 * log tree or it's there but not up to date.
2745 trans = btrfs_start_transaction(root, 1);
2746 if (IS_ERR(trans)) {
2747 err = PTR_ERR(trans);
2749 err = btrfs_update_inode(trans, root, inode);
2750 ret = btrfs_end_transaction(trans);
2753 inode_unlock(inode);
2759 /* Helper structure to record which range is already reserved */
2760 struct falloc_range {
2761 struct list_head list;
2767 * Helper function to add falloc range
2769 * Caller should have locked the larger range of extent containing
2772 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2774 struct falloc_range *prev = NULL;
2775 struct falloc_range *range = NULL;
2777 if (list_empty(head))
2781 * As fallocate iterate by bytenr order, we only need to check
2784 prev = list_entry(head->prev, struct falloc_range, list);
2785 if (prev->start + prev->len == start) {
2790 range = kmalloc(sizeof(*range), GFP_KERNEL);
2793 range->start = start;
2795 list_add_tail(&range->list, head);
2799 static long btrfs_fallocate(struct file *file, int mode,
2800 loff_t offset, loff_t len)
2802 struct inode *inode = file_inode(file);
2803 struct extent_state *cached_state = NULL;
2804 struct extent_changeset *data_reserved = NULL;
2805 struct falloc_range *range;
2806 struct falloc_range *tmp;
2807 struct list_head reserve_list;
2815 struct extent_map *em;
2816 int blocksize = btrfs_inode_sectorsize(inode);
2819 alloc_start = round_down(offset, blocksize);
2820 alloc_end = round_up(offset + len, blocksize);
2821 cur_offset = alloc_start;
2823 /* Make sure we aren't being give some crap mode */
2824 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2827 if (mode & FALLOC_FL_PUNCH_HOLE)
2828 return btrfs_punch_hole(inode, offset, len);
2831 * Only trigger disk allocation, don't trigger qgroup reserve
2833 * For qgroup space, it will be checked later.
2835 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2836 alloc_end - alloc_start);
2842 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2843 ret = inode_newsize_ok(inode, offset + len);
2849 * TODO: Move these two operations after we have checked
2850 * accurate reserved space, or fallocate can still fail but
2851 * with page truncated or size expanded.
2853 * But that's a minor problem and won't do much harm BTW.
2855 if (alloc_start > inode->i_size) {
2856 ret = btrfs_cont_expand(inode, i_size_read(inode),
2860 } else if (offset + len > inode->i_size) {
2862 * If we are fallocating from the end of the file onward we
2863 * need to zero out the end of the block if i_size lands in the
2864 * middle of a block.
2866 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
2872 * wait for ordered IO before we have any locks. We'll loop again
2873 * below with the locks held.
2875 ret = btrfs_wait_ordered_range(inode, alloc_start,
2876 alloc_end - alloc_start);
2880 locked_end = alloc_end - 1;
2882 struct btrfs_ordered_extent *ordered;
2884 /* the extent lock is ordered inside the running
2887 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2888 locked_end, &cached_state);
2889 ordered = btrfs_lookup_first_ordered_extent(inode,
2892 ordered->file_offset + ordered->len > alloc_start &&
2893 ordered->file_offset < alloc_end) {
2894 btrfs_put_ordered_extent(ordered);
2895 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2896 alloc_start, locked_end,
2897 &cached_state, GFP_KERNEL);
2899 * we can't wait on the range with the transaction
2900 * running or with the extent lock held
2902 ret = btrfs_wait_ordered_range(inode, alloc_start,
2903 alloc_end - alloc_start);
2908 btrfs_put_ordered_extent(ordered);
2913 /* First, check if we exceed the qgroup limit */
2914 INIT_LIST_HEAD(&reserve_list);
2916 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
2917 alloc_end - cur_offset, 0);
2922 last_byte = min(extent_map_end(em), alloc_end);
2923 actual_end = min_t(u64, extent_map_end(em), offset + len);
2924 last_byte = ALIGN(last_byte, blocksize);
2925 if (em->block_start == EXTENT_MAP_HOLE ||
2926 (cur_offset >= inode->i_size &&
2927 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2928 ret = add_falloc_range(&reserve_list, cur_offset,
2929 last_byte - cur_offset);
2931 free_extent_map(em);
2934 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
2935 cur_offset, last_byte - cur_offset);
2937 free_extent_map(em);
2942 * Do not need to reserve unwritten extent for this
2943 * range, free reserved data space first, otherwise
2944 * it'll result in false ENOSPC error.
2946 btrfs_free_reserved_data_space(inode, data_reserved,
2947 cur_offset, last_byte - cur_offset);
2949 free_extent_map(em);
2950 cur_offset = last_byte;
2951 if (cur_offset >= alloc_end)
2956 * If ret is still 0, means we're OK to fallocate.
2957 * Or just cleanup the list and exit.
2959 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2961 ret = btrfs_prealloc_file_range(inode, mode,
2963 range->len, i_blocksize(inode),
2964 offset + len, &alloc_hint);
2966 btrfs_free_reserved_data_space(inode,
2967 data_reserved, range->start,
2969 list_del(&range->list);
2975 if (actual_end > inode->i_size &&
2976 !(mode & FALLOC_FL_KEEP_SIZE)) {
2977 struct btrfs_trans_handle *trans;
2978 struct btrfs_root *root = BTRFS_I(inode)->root;
2981 * We didn't need to allocate any more space, but we
2982 * still extended the size of the file so we need to
2983 * update i_size and the inode item.
2985 trans = btrfs_start_transaction(root, 1);
2986 if (IS_ERR(trans)) {
2987 ret = PTR_ERR(trans);
2989 inode->i_ctime = current_time(inode);
2990 i_size_write(inode, actual_end);
2991 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2992 ret = btrfs_update_inode(trans, root, inode);
2994 btrfs_end_transaction(trans);
2996 ret = btrfs_end_transaction(trans);
3000 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3001 &cached_state, GFP_KERNEL);
3003 inode_unlock(inode);
3004 /* Let go of our reservation. */
3006 btrfs_free_reserved_data_space(inode, data_reserved,
3007 alloc_start, alloc_end - cur_offset);
3008 extent_changeset_free(data_reserved);
3012 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
3014 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3015 struct extent_map *em = NULL;
3016 struct extent_state *cached_state = NULL;
3023 if (inode->i_size == 0)
3027 * *offset can be negative, in this case we start finding DATA/HOLE from
3028 * the very start of the file.
3030 start = max_t(loff_t, 0, *offset);
3032 lockstart = round_down(start, fs_info->sectorsize);
3033 lockend = round_up(i_size_read(inode),
3034 fs_info->sectorsize);
3035 if (lockend <= lockstart)
3036 lockend = lockstart + fs_info->sectorsize;
3038 len = lockend - lockstart + 1;
3040 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3043 while (start < inode->i_size) {
3044 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0,
3052 if (whence == SEEK_HOLE &&
3053 (em->block_start == EXTENT_MAP_HOLE ||
3054 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3056 else if (whence == SEEK_DATA &&
3057 (em->block_start != EXTENT_MAP_HOLE &&
3058 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3061 start = em->start + em->len;
3062 free_extent_map(em);
3066 free_extent_map(em);
3068 if (whence == SEEK_DATA && start >= inode->i_size)
3071 *offset = min_t(loff_t, start, inode->i_size);
3073 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3074 &cached_state, GFP_NOFS);
3078 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3080 struct inode *inode = file->f_mapping->host;
3087 offset = generic_file_llseek(file, offset, whence);
3091 if (offset >= i_size_read(inode)) {
3092 inode_unlock(inode);
3096 ret = find_desired_extent(inode, &offset, whence);
3098 inode_unlock(inode);
3103 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3105 inode_unlock(inode);
3109 static int btrfs_file_open(struct inode *inode, struct file *filp)
3111 filp->f_mode |= FMODE_NOWAIT;
3112 return generic_file_open(inode, filp);
3115 const struct file_operations btrfs_file_operations = {
3116 .llseek = btrfs_file_llseek,
3117 .read_iter = generic_file_read_iter,
3118 .splice_read = generic_file_splice_read,
3119 .write_iter = btrfs_file_write_iter,
3120 .mmap = btrfs_file_mmap,
3121 .open = btrfs_file_open,
3122 .release = btrfs_release_file,
3123 .fsync = btrfs_sync_file,
3124 .fallocate = btrfs_fallocate,
3125 .unlocked_ioctl = btrfs_ioctl,
3126 #ifdef CONFIG_COMPAT
3127 .compat_ioctl = btrfs_compat_ioctl,
3129 .clone_file_range = btrfs_clone_file_range,
3130 .dedupe_file_range = btrfs_dedupe_file_range,
3133 void btrfs_auto_defrag_exit(void)
3135 kmem_cache_destroy(btrfs_inode_defrag_cachep);
3138 int btrfs_auto_defrag_init(void)
3140 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3141 sizeof(struct inode_defrag), 0,
3144 if (!btrfs_inode_defrag_cachep)
3150 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3155 * So with compression we will find and lock a dirty page and clear the
3156 * first one as dirty, setup an async extent, and immediately return
3157 * with the entire range locked but with nobody actually marked with
3158 * writeback. So we can't just filemap_write_and_wait_range() and
3159 * expect it to work since it will just kick off a thread to do the
3160 * actual work. So we need to call filemap_fdatawrite_range _again_
3161 * since it will wait on the page lock, which won't be unlocked until
3162 * after the pages have been marked as writeback and so we're good to go
3163 * from there. We have to do this otherwise we'll miss the ordered
3164 * extents and that results in badness. Please Josef, do not think you
3165 * know better and pull this out at some point in the future, it is
3166 * right and you are wrong.
3168 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3169 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3170 &BTRFS_I(inode)->runtime_flags))
3171 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);