2 * Copyright © 2012 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
28 #include <linux/cpufreq.h>
29 #include <linux/pm_runtime.h>
30 #include <drm/drm_plane_helper.h>
32 #include "intel_drv.h"
33 #include "../../../platform/x86/intel_ips.h"
34 #include <linux/module.h>
35 #include <drm/drm_atomic_helper.h>
40 * RC6 is a special power stage which allows the GPU to enter an very
41 * low-voltage mode when idle, using down to 0V while at this stage. This
42 * stage is entered automatically when the GPU is idle when RC6 support is
43 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
45 * There are different RC6 modes available in Intel GPU, which differentiate
46 * among each other with the latency required to enter and leave RC6 and
47 * voltage consumed by the GPU in different states.
49 * The combination of the following flags define which states GPU is allowed
50 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
51 * RC6pp is deepest RC6. Their support by hardware varies according to the
52 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
53 * which brings the most power savings; deeper states save more power, but
54 * require higher latency to switch to and wake up.
57 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
59 if (HAS_LLC(dev_priv)) {
61 * WaCompressedResourceDisplayNewHashMode:skl,kbl
62 * Display WA #0390: skl,kbl
64 * Must match Sampler, Pixel Back End, and Media. See
65 * WaCompressedResourceSamplerPbeMediaNewHashMode.
67 I915_WRITE(CHICKEN_PAR1_1,
68 I915_READ(CHICKEN_PAR1_1) |
69 SKL_DE_COMPRESSED_HASH_MODE);
72 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
73 I915_WRITE(CHICKEN_PAR1_1,
74 I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
76 /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
77 I915_WRITE(GEN8_CHICKEN_DCPR_1,
78 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
80 /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
81 /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
82 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
84 DISP_FBC_MEMORY_WAKE);
86 /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
87 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
88 ILK_DPFC_DISABLE_DUMMY0);
90 if (IS_SKYLAKE(dev_priv)) {
91 /* WaDisableDopClockGating */
92 I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
93 & ~GEN7_DOP_CLOCK_GATE_ENABLE);
97 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
99 gen9_init_clock_gating(dev_priv);
101 /* WaDisableSDEUnitClockGating:bxt */
102 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
103 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
107 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
109 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
110 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
113 * Wa: Backlight PWM may stop in the asserted state, causing backlight
116 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
117 PWM1_GATING_DIS | PWM2_GATING_DIS);
120 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
122 gen9_init_clock_gating(dev_priv);
125 * WaDisablePWMClockGating:glk
126 * Backlight PWM may stop in the asserted state, causing backlight
129 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
130 PWM1_GATING_DIS | PWM2_GATING_DIS);
132 /* WaDDIIOTimeout:glk */
133 if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
134 u32 val = I915_READ(CHICKEN_MISC_2);
135 val &= ~(GLK_CL0_PWR_DOWN |
138 I915_WRITE(CHICKEN_MISC_2, val);
143 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
147 tmp = I915_READ(CLKCFG);
149 switch (tmp & CLKCFG_FSB_MASK) {
151 dev_priv->fsb_freq = 533; /* 133*4 */
154 dev_priv->fsb_freq = 800; /* 200*4 */
157 dev_priv->fsb_freq = 667; /* 167*4 */
160 dev_priv->fsb_freq = 400; /* 100*4 */
164 switch (tmp & CLKCFG_MEM_MASK) {
166 dev_priv->mem_freq = 533;
169 dev_priv->mem_freq = 667;
172 dev_priv->mem_freq = 800;
176 /* detect pineview DDR3 setting */
177 tmp = I915_READ(CSHRDDR3CTL);
178 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
181 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
185 ddrpll = I915_READ16(DDRMPLL1);
186 csipll = I915_READ16(CSIPLL0);
188 switch (ddrpll & 0xff) {
190 dev_priv->mem_freq = 800;
193 dev_priv->mem_freq = 1066;
196 dev_priv->mem_freq = 1333;
199 dev_priv->mem_freq = 1600;
202 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
204 dev_priv->mem_freq = 0;
208 dev_priv->ips.r_t = dev_priv->mem_freq;
210 switch (csipll & 0x3ff) {
212 dev_priv->fsb_freq = 3200;
215 dev_priv->fsb_freq = 3733;
218 dev_priv->fsb_freq = 4266;
221 dev_priv->fsb_freq = 4800;
224 dev_priv->fsb_freq = 5333;
227 dev_priv->fsb_freq = 5866;
230 dev_priv->fsb_freq = 6400;
233 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
235 dev_priv->fsb_freq = 0;
239 if (dev_priv->fsb_freq == 3200) {
240 dev_priv->ips.c_m = 0;
241 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
242 dev_priv->ips.c_m = 1;
244 dev_priv->ips.c_m = 2;
248 static const struct cxsr_latency cxsr_latency_table[] = {
249 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
250 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
251 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
252 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
253 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
255 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
256 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
257 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
258 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
259 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
261 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
262 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
263 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
264 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
265 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
267 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
268 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
269 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
270 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
271 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
273 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
274 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
275 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
276 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
277 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
279 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
280 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
281 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
282 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
283 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
286 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
291 const struct cxsr_latency *latency;
294 if (fsb == 0 || mem == 0)
297 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
298 latency = &cxsr_latency_table[i];
299 if (is_desktop == latency->is_desktop &&
300 is_ddr3 == latency->is_ddr3 &&
301 fsb == latency->fsb_freq && mem == latency->mem_freq)
305 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
310 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
314 mutex_lock(&dev_priv->pcu_lock);
316 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
318 val &= ~FORCE_DDR_HIGH_FREQ;
320 val |= FORCE_DDR_HIGH_FREQ;
321 val &= ~FORCE_DDR_LOW_FREQ;
322 val |= FORCE_DDR_FREQ_REQ_ACK;
323 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
325 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
326 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
327 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
329 mutex_unlock(&dev_priv->pcu_lock);
332 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
336 mutex_lock(&dev_priv->pcu_lock);
338 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
340 val |= DSP_MAXFIFO_PM5_ENABLE;
342 val &= ~DSP_MAXFIFO_PM5_ENABLE;
343 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
345 mutex_unlock(&dev_priv->pcu_lock);
348 #define FW_WM(value, plane) \
349 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
351 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
356 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
357 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
358 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
359 POSTING_READ(FW_BLC_SELF_VLV);
360 } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
361 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
362 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
363 POSTING_READ(FW_BLC_SELF);
364 } else if (IS_PINEVIEW(dev_priv)) {
365 val = I915_READ(DSPFW3);
366 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
368 val |= PINEVIEW_SELF_REFRESH_EN;
370 val &= ~PINEVIEW_SELF_REFRESH_EN;
371 I915_WRITE(DSPFW3, val);
372 POSTING_READ(DSPFW3);
373 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
374 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
375 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
376 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
377 I915_WRITE(FW_BLC_SELF, val);
378 POSTING_READ(FW_BLC_SELF);
379 } else if (IS_I915GM(dev_priv)) {
381 * FIXME can't find a bit like this for 915G, and
382 * and yet it does have the related watermark in
383 * FW_BLC_SELF. What's going on?
385 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
386 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
387 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
388 I915_WRITE(INSTPM, val);
389 POSTING_READ(INSTPM);
394 trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
396 DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
397 enableddisabled(enable),
398 enableddisabled(was_enabled));
404 * intel_set_memory_cxsr - Configure CxSR state
405 * @dev_priv: i915 device
406 * @enable: Allow vs. disallow CxSR
408 * Allow or disallow the system to enter a special CxSR
409 * (C-state self refresh) state. What typically happens in CxSR mode
410 * is that several display FIFOs may get combined into a single larger
411 * FIFO for a particular plane (so called max FIFO mode) to allow the
412 * system to defer memory fetches longer, and the memory will enter
415 * Note that enabling CxSR does not guarantee that the system enter
416 * this special mode, nor does it guarantee that the system stays
417 * in that mode once entered. So this just allows/disallows the system
418 * to autonomously utilize the CxSR mode. Other factors such as core
419 * C-states will affect when/if the system actually enters/exits the
422 * Note that on VLV/CHV this actually only controls the max FIFO mode,
423 * and the system is free to enter/exit memory self refresh at any time
424 * even when the use of CxSR has been disallowed.
426 * While the system is actually in the CxSR/max FIFO mode, some plane
427 * control registers will not get latched on vblank. Thus in order to
428 * guarantee the system will respond to changes in the plane registers
429 * we must always disallow CxSR prior to making changes to those registers.
430 * Unfortunately the system will re-evaluate the CxSR conditions at
431 * frame start which happens after vblank start (which is when the plane
432 * registers would get latched), so we can't proceed with the plane update
433 * during the same frame where we disallowed CxSR.
435 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
436 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
437 * the hardware w.r.t. HPLL SR when writing to plane registers.
438 * Disallowing just CxSR is sufficient.
440 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
444 mutex_lock(&dev_priv->wm.wm_mutex);
445 ret = _intel_set_memory_cxsr(dev_priv, enable);
446 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
447 dev_priv->wm.vlv.cxsr = enable;
448 else if (IS_G4X(dev_priv))
449 dev_priv->wm.g4x.cxsr = enable;
450 mutex_unlock(&dev_priv->wm.wm_mutex);
456 * Latency for FIFO fetches is dependent on several factors:
457 * - memory configuration (speed, channels)
459 * - current MCH state
460 * It can be fairly high in some situations, so here we assume a fairly
461 * pessimal value. It's a tradeoff between extra memory fetches (if we
462 * set this value too high, the FIFO will fetch frequently to stay full)
463 * and power consumption (set it too low to save power and we might see
464 * FIFO underruns and display "flicker").
466 * A value of 5us seems to be a good balance; safe for very low end
467 * platforms but not overly aggressive on lower latency configs.
469 static const int pessimal_latency_ns = 5000;
471 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
472 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
474 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
476 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
477 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
478 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
479 enum pipe pipe = crtc->pipe;
480 int sprite0_start, sprite1_start;
483 uint32_t dsparb, dsparb2, dsparb3;
485 dsparb = I915_READ(DSPARB);
486 dsparb2 = I915_READ(DSPARB2);
487 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
488 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
491 dsparb = I915_READ(DSPARB);
492 dsparb2 = I915_READ(DSPARB2);
493 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
494 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
497 dsparb2 = I915_READ(DSPARB2);
498 dsparb3 = I915_READ(DSPARB3);
499 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
500 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
507 fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
508 fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
509 fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
510 fifo_state->plane[PLANE_CURSOR] = 63;
513 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
514 enum i9xx_plane_id i9xx_plane)
516 uint32_t dsparb = I915_READ(DSPARB);
519 size = dsparb & 0x7f;
520 if (i9xx_plane == PLANE_B)
521 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
523 DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
524 dsparb, plane_name(i9xx_plane), size);
529 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
530 enum i9xx_plane_id i9xx_plane)
532 uint32_t dsparb = I915_READ(DSPARB);
535 size = dsparb & 0x1ff;
536 if (i9xx_plane == PLANE_B)
537 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
538 size >>= 1; /* Convert to cachelines */
540 DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
541 dsparb, plane_name(i9xx_plane), size);
546 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
547 enum i9xx_plane_id i9xx_plane)
549 uint32_t dsparb = I915_READ(DSPARB);
552 size = dsparb & 0x7f;
553 size >>= 2; /* Convert to cachelines */
555 DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
556 dsparb, plane_name(i9xx_plane), size);
561 /* Pineview has different values for various configs */
562 static const struct intel_watermark_params pineview_display_wm = {
563 .fifo_size = PINEVIEW_DISPLAY_FIFO,
564 .max_wm = PINEVIEW_MAX_WM,
565 .default_wm = PINEVIEW_DFT_WM,
566 .guard_size = PINEVIEW_GUARD_WM,
567 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
569 static const struct intel_watermark_params pineview_display_hplloff_wm = {
570 .fifo_size = PINEVIEW_DISPLAY_FIFO,
571 .max_wm = PINEVIEW_MAX_WM,
572 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
573 .guard_size = PINEVIEW_GUARD_WM,
574 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
576 static const struct intel_watermark_params pineview_cursor_wm = {
577 .fifo_size = PINEVIEW_CURSOR_FIFO,
578 .max_wm = PINEVIEW_CURSOR_MAX_WM,
579 .default_wm = PINEVIEW_CURSOR_DFT_WM,
580 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
581 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
583 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
584 .fifo_size = PINEVIEW_CURSOR_FIFO,
585 .max_wm = PINEVIEW_CURSOR_MAX_WM,
586 .default_wm = PINEVIEW_CURSOR_DFT_WM,
587 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
588 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
590 static const struct intel_watermark_params i965_cursor_wm_info = {
591 .fifo_size = I965_CURSOR_FIFO,
592 .max_wm = I965_CURSOR_MAX_WM,
593 .default_wm = I965_CURSOR_DFT_WM,
595 .cacheline_size = I915_FIFO_LINE_SIZE,
597 static const struct intel_watermark_params i945_wm_info = {
598 .fifo_size = I945_FIFO_SIZE,
599 .max_wm = I915_MAX_WM,
602 .cacheline_size = I915_FIFO_LINE_SIZE,
604 static const struct intel_watermark_params i915_wm_info = {
605 .fifo_size = I915_FIFO_SIZE,
606 .max_wm = I915_MAX_WM,
609 .cacheline_size = I915_FIFO_LINE_SIZE,
611 static const struct intel_watermark_params i830_a_wm_info = {
612 .fifo_size = I855GM_FIFO_SIZE,
613 .max_wm = I915_MAX_WM,
616 .cacheline_size = I830_FIFO_LINE_SIZE,
618 static const struct intel_watermark_params i830_bc_wm_info = {
619 .fifo_size = I855GM_FIFO_SIZE,
620 .max_wm = I915_MAX_WM/2,
623 .cacheline_size = I830_FIFO_LINE_SIZE,
625 static const struct intel_watermark_params i845_wm_info = {
626 .fifo_size = I830_FIFO_SIZE,
627 .max_wm = I915_MAX_WM,
630 .cacheline_size = I830_FIFO_LINE_SIZE,
634 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
635 * @pixel_rate: Pipe pixel rate in kHz
636 * @cpp: Plane bytes per pixel
637 * @latency: Memory wakeup latency in 0.1us units
639 * Compute the watermark using the method 1 or "small buffer"
640 * formula. The caller may additonally add extra cachelines
641 * to account for TLB misses and clock crossings.
643 * This method is concerned with the short term drain rate
644 * of the FIFO, ie. it does not account for blanking periods
645 * which would effectively reduce the average drain rate across
646 * a longer period. The name "small" refers to the fact the
647 * FIFO is relatively small compared to the amount of data
650 * The FIFO level vs. time graph might look something like:
654 * __---__---__ (- plane active, _ blanking)
657 * or perhaps like this:
660 * __----__----__ (- plane active, _ blanking)
664 * The watermark in bytes
666 static unsigned int intel_wm_method1(unsigned int pixel_rate,
668 unsigned int latency)
672 ret = (uint64_t) pixel_rate * cpp * latency;
673 ret = DIV_ROUND_UP_ULL(ret, 10000);
679 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
680 * @pixel_rate: Pipe pixel rate in kHz
681 * @htotal: Pipe horizontal total
682 * @width: Plane width in pixels
683 * @cpp: Plane bytes per pixel
684 * @latency: Memory wakeup latency in 0.1us units
686 * Compute the watermark using the method 2 or "large buffer"
687 * formula. The caller may additonally add extra cachelines
688 * to account for TLB misses and clock crossings.
690 * This method is concerned with the long term drain rate
691 * of the FIFO, ie. it does account for blanking periods
692 * which effectively reduce the average drain rate across
693 * a longer period. The name "large" refers to the fact the
694 * FIFO is relatively large compared to the amount of data
697 * The FIFO level vs. time graph might look something like:
702 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
706 * The watermark in bytes
708 static unsigned int intel_wm_method2(unsigned int pixel_rate,
712 unsigned int latency)
717 * FIXME remove once all users are computing
718 * watermarks in the correct place.
720 if (WARN_ON_ONCE(htotal == 0))
723 ret = (latency * pixel_rate) / (htotal * 10000);
724 ret = (ret + 1) * width * cpp;
730 * intel_calculate_wm - calculate watermark level
731 * @pixel_rate: pixel clock
732 * @wm: chip FIFO params
733 * @fifo_size: size of the FIFO buffer
734 * @cpp: bytes per pixel
735 * @latency_ns: memory latency for the platform
737 * Calculate the watermark level (the level at which the display plane will
738 * start fetching from memory again). Each chip has a different display
739 * FIFO size and allocation, so the caller needs to figure that out and pass
740 * in the correct intel_watermark_params structure.
742 * As the pixel clock runs, the FIFO will be drained at a rate that depends
743 * on the pixel size. When it reaches the watermark level, it'll start
744 * fetching FIFO line sized based chunks from memory until the FIFO fills
745 * past the watermark point. If the FIFO drains completely, a FIFO underrun
746 * will occur, and a display engine hang could result.
748 static unsigned int intel_calculate_wm(int pixel_rate,
749 const struct intel_watermark_params *wm,
750 int fifo_size, int cpp,
751 unsigned int latency_ns)
753 int entries, wm_size;
756 * Note: we need to make sure we don't overflow for various clock &
758 * clocks go from a few thousand to several hundred thousand.
759 * latency is usually a few thousand
761 entries = intel_wm_method1(pixel_rate, cpp,
763 entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
765 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
767 wm_size = fifo_size - entries;
768 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
770 /* Don't promote wm_size to unsigned... */
771 if (wm_size > wm->max_wm)
772 wm_size = wm->max_wm;
774 wm_size = wm->default_wm;
777 * Bspec seems to indicate that the value shouldn't be lower than
778 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
779 * Lets go for 8 which is the burst size since certain platforms
780 * already use a hardcoded 8 (which is what the spec says should be
789 static bool is_disabling(int old, int new, int threshold)
791 return old >= threshold && new < threshold;
794 static bool is_enabling(int old, int new, int threshold)
796 return old < threshold && new >= threshold;
799 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
801 return dev_priv->wm.max_level + 1;
804 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
805 const struct intel_plane_state *plane_state)
807 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
809 /* FIXME check the 'enable' instead */
810 if (!crtc_state->base.active)
814 * Treat cursor with fb as always visible since cursor updates
815 * can happen faster than the vrefresh rate, and the current
816 * watermark code doesn't handle that correctly. Cursor updates
817 * which set/clear the fb or change the cursor size are going
818 * to get throttled by intel_legacy_cursor_update() to work
819 * around this problem with the watermark code.
821 if (plane->id == PLANE_CURSOR)
822 return plane_state->base.fb != NULL;
824 return plane_state->base.visible;
827 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
829 struct intel_crtc *crtc, *enabled = NULL;
831 for_each_intel_crtc(&dev_priv->drm, crtc) {
832 if (intel_crtc_active(crtc)) {
842 static void pineview_update_wm(struct intel_crtc *unused_crtc)
844 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
845 struct intel_crtc *crtc;
846 const struct cxsr_latency *latency;
850 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
855 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
856 intel_set_memory_cxsr(dev_priv, false);
860 crtc = single_enabled_crtc(dev_priv);
862 const struct drm_display_mode *adjusted_mode =
863 &crtc->config->base.adjusted_mode;
864 const struct drm_framebuffer *fb =
865 crtc->base.primary->state->fb;
866 int cpp = fb->format->cpp[0];
867 int clock = adjusted_mode->crtc_clock;
870 wm = intel_calculate_wm(clock, &pineview_display_wm,
871 pineview_display_wm.fifo_size,
872 cpp, latency->display_sr);
873 reg = I915_READ(DSPFW1);
874 reg &= ~DSPFW_SR_MASK;
875 reg |= FW_WM(wm, SR);
876 I915_WRITE(DSPFW1, reg);
877 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
880 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
881 pineview_display_wm.fifo_size,
882 4, latency->cursor_sr);
883 reg = I915_READ(DSPFW3);
884 reg &= ~DSPFW_CURSOR_SR_MASK;
885 reg |= FW_WM(wm, CURSOR_SR);
886 I915_WRITE(DSPFW3, reg);
888 /* Display HPLL off SR */
889 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
890 pineview_display_hplloff_wm.fifo_size,
891 cpp, latency->display_hpll_disable);
892 reg = I915_READ(DSPFW3);
893 reg &= ~DSPFW_HPLL_SR_MASK;
894 reg |= FW_WM(wm, HPLL_SR);
895 I915_WRITE(DSPFW3, reg);
897 /* cursor HPLL off SR */
898 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
899 pineview_display_hplloff_wm.fifo_size,
900 4, latency->cursor_hpll_disable);
901 reg = I915_READ(DSPFW3);
902 reg &= ~DSPFW_HPLL_CURSOR_MASK;
903 reg |= FW_WM(wm, HPLL_CURSOR);
904 I915_WRITE(DSPFW3, reg);
905 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
907 intel_set_memory_cxsr(dev_priv, true);
909 intel_set_memory_cxsr(dev_priv, false);
914 * Documentation says:
915 * "If the line size is small, the TLB fetches can get in the way of the
916 * data fetches, causing some lag in the pixel data return which is not
917 * accounted for in the above formulas. The following adjustment only
918 * needs to be applied if eight whole lines fit in the buffer at once.
919 * The WM is adjusted upwards by the difference between the FIFO size
920 * and the size of 8 whole lines. This adjustment is always performed
921 * in the actual pixel depth regardless of whether FBC is enabled or not."
923 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
925 int tlb_miss = fifo_size * 64 - width * cpp * 8;
927 return max(0, tlb_miss);
930 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
931 const struct g4x_wm_values *wm)
935 for_each_pipe(dev_priv, pipe)
936 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
939 FW_WM(wm->sr.plane, SR) |
940 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
941 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
942 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
944 (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
945 FW_WM(wm->sr.fbc, FBC_SR) |
946 FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
947 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
948 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
949 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
951 (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
952 FW_WM(wm->sr.cursor, CURSOR_SR) |
953 FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
954 FW_WM(wm->hpll.plane, HPLL_SR));
956 POSTING_READ(DSPFW1);
959 #define FW_WM_VLV(value, plane) \
960 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
962 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
963 const struct vlv_wm_values *wm)
967 for_each_pipe(dev_priv, pipe) {
968 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
970 I915_WRITE(VLV_DDL(pipe),
971 (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
972 (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
973 (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
974 (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
978 * Zero the (unused) WM1 watermarks, and also clear all the
979 * high order bits so that there are no out of bounds values
980 * present in the registers during the reprogramming.
982 I915_WRITE(DSPHOWM, 0);
983 I915_WRITE(DSPHOWM1, 0);
984 I915_WRITE(DSPFW4, 0);
985 I915_WRITE(DSPFW5, 0);
986 I915_WRITE(DSPFW6, 0);
989 FW_WM(wm->sr.plane, SR) |
990 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
991 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
992 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
994 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
995 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
996 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
998 FW_WM(wm->sr.cursor, CURSOR_SR));
1000 if (IS_CHERRYVIEW(dev_priv)) {
1001 I915_WRITE(DSPFW7_CHV,
1002 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1003 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1004 I915_WRITE(DSPFW8_CHV,
1005 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1006 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1007 I915_WRITE(DSPFW9_CHV,
1008 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1009 FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1011 FW_WM(wm->sr.plane >> 9, SR_HI) |
1012 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1013 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1014 FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1015 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1016 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1017 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1018 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1019 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1020 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1023 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1024 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1026 FW_WM(wm->sr.plane >> 9, SR_HI) |
1027 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1028 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1029 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1030 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1031 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1032 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1035 POSTING_READ(DSPFW1);
1040 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1042 /* all latencies in usec */
1043 dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1044 dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1045 dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1047 dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1050 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1053 * DSPCNTR[13] supposedly controls whether the
1054 * primary plane can use the FIFO space otherwise
1055 * reserved for the sprite plane. It's not 100% clear
1056 * what the actual FIFO size is, but it looks like we
1057 * can happily set both primary and sprite watermarks
1058 * up to 127 cachelines. So that would seem to mean
1059 * that either DSPCNTR[13] doesn't do anything, or that
1060 * the total FIFO is >= 256 cachelines in size. Either
1061 * way, we don't seem to have to worry about this
1062 * repartitioning as the maximum watermark value the
1063 * register can hold for each plane is lower than the
1064 * minimum FIFO size.
1070 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1072 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1074 MISSING_CASE(plane_id);
1079 static int g4x_fbc_fifo_size(int level)
1082 case G4X_WM_LEVEL_SR:
1084 case G4X_WM_LEVEL_HPLL:
1087 MISSING_CASE(level);
1092 static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1093 const struct intel_plane_state *plane_state,
1096 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1097 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1098 const struct drm_display_mode *adjusted_mode =
1099 &crtc_state->base.adjusted_mode;
1100 unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1101 unsigned int clock, htotal, cpp, width, wm;
1106 if (!intel_wm_plane_visible(crtc_state, plane_state))
1110 * Not 100% sure which way ELK should go here as the
1111 * spec only says CL/CTG should assume 32bpp and BW
1112 * doesn't need to. But as these things followed the
1113 * mobile vs. desktop lines on gen3 as well, let's
1114 * assume ELK doesn't need this.
1116 * The spec also fails to list such a restriction for
1117 * the HPLL watermark, which seems a little strange.
1118 * Let's use 32bpp for the HPLL watermark as well.
1120 if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1121 level != G4X_WM_LEVEL_NORMAL)
1124 cpp = plane_state->base.fb->format->cpp[0];
1126 clock = adjusted_mode->crtc_clock;
1127 htotal = adjusted_mode->crtc_htotal;
1129 if (plane->id == PLANE_CURSOR)
1130 width = plane_state->base.crtc_w;
1132 width = drm_rect_width(&plane_state->base.dst);
1134 if (plane->id == PLANE_CURSOR) {
1135 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1136 } else if (plane->id == PLANE_PRIMARY &&
1137 level == G4X_WM_LEVEL_NORMAL) {
1138 wm = intel_wm_method1(clock, cpp, latency);
1140 unsigned int small, large;
1142 small = intel_wm_method1(clock, cpp, latency);
1143 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1145 wm = min(small, large);
1148 wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1151 wm = DIV_ROUND_UP(wm, 64) + 2;
1153 return min_t(unsigned int, wm, USHRT_MAX);
1156 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1157 int level, enum plane_id plane_id, u16 value)
1159 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1162 for (; level < intel_wm_num_levels(dev_priv); level++) {
1163 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1165 dirty |= raw->plane[plane_id] != value;
1166 raw->plane[plane_id] = value;
1172 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1173 int level, u16 value)
1175 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1178 /* NORMAL level doesn't have an FBC watermark */
1179 level = max(level, G4X_WM_LEVEL_SR);
1181 for (; level < intel_wm_num_levels(dev_priv); level++) {
1182 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1184 dirty |= raw->fbc != value;
1191 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1192 const struct intel_plane_state *pstate,
1195 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1196 const struct intel_plane_state *plane_state)
1198 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1199 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1200 enum plane_id plane_id = plane->id;
1204 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1205 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1206 if (plane_id == PLANE_PRIMARY)
1207 dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1211 for (level = 0; level < num_levels; level++) {
1212 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1215 wm = g4x_compute_wm(crtc_state, plane_state, level);
1216 max_wm = g4x_plane_fifo_size(plane_id, level);
1221 dirty |= raw->plane[plane_id] != wm;
1222 raw->plane[plane_id] = wm;
1224 if (plane_id != PLANE_PRIMARY ||
1225 level == G4X_WM_LEVEL_NORMAL)
1228 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1229 raw->plane[plane_id]);
1230 max_wm = g4x_fbc_fifo_size(level);
1233 * FBC wm is not mandatory as we
1234 * can always just disable its use.
1239 dirty |= raw->fbc != wm;
1243 /* mark watermarks as invalid */
1244 dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1246 if (plane_id == PLANE_PRIMARY)
1247 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1251 DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1253 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1254 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1255 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1257 if (plane_id == PLANE_PRIMARY)
1258 DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
1259 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1260 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1266 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1267 enum plane_id plane_id, int level)
1269 const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1271 return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1274 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1277 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1279 if (level > dev_priv->wm.max_level)
1282 return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1283 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1284 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1287 /* mark all levels starting from 'level' as invalid */
1288 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1289 struct g4x_wm_state *wm_state, int level)
1291 if (level <= G4X_WM_LEVEL_NORMAL) {
1292 enum plane_id plane_id;
1294 for_each_plane_id_on_crtc(crtc, plane_id)
1295 wm_state->wm.plane[plane_id] = USHRT_MAX;
1298 if (level <= G4X_WM_LEVEL_SR) {
1299 wm_state->cxsr = false;
1300 wm_state->sr.cursor = USHRT_MAX;
1301 wm_state->sr.plane = USHRT_MAX;
1302 wm_state->sr.fbc = USHRT_MAX;
1305 if (level <= G4X_WM_LEVEL_HPLL) {
1306 wm_state->hpll_en = false;
1307 wm_state->hpll.cursor = USHRT_MAX;
1308 wm_state->hpll.plane = USHRT_MAX;
1309 wm_state->hpll.fbc = USHRT_MAX;
1313 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1315 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1316 struct intel_atomic_state *state =
1317 to_intel_atomic_state(crtc_state->base.state);
1318 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1319 int num_active_planes = hweight32(crtc_state->active_planes &
1320 ~BIT(PLANE_CURSOR));
1321 const struct g4x_pipe_wm *raw;
1322 const struct intel_plane_state *old_plane_state;
1323 const struct intel_plane_state *new_plane_state;
1324 struct intel_plane *plane;
1325 enum plane_id plane_id;
1327 unsigned int dirty = 0;
1329 for_each_oldnew_intel_plane_in_state(state, plane,
1331 new_plane_state, i) {
1332 if (new_plane_state->base.crtc != &crtc->base &&
1333 old_plane_state->base.crtc != &crtc->base)
1336 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1337 dirty |= BIT(plane->id);
1343 level = G4X_WM_LEVEL_NORMAL;
1344 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1347 raw = &crtc_state->wm.g4x.raw[level];
1348 for_each_plane_id_on_crtc(crtc, plane_id)
1349 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1351 level = G4X_WM_LEVEL_SR;
1353 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1356 raw = &crtc_state->wm.g4x.raw[level];
1357 wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1358 wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1359 wm_state->sr.fbc = raw->fbc;
1361 wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1363 level = G4X_WM_LEVEL_HPLL;
1365 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1368 raw = &crtc_state->wm.g4x.raw[level];
1369 wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1370 wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1371 wm_state->hpll.fbc = raw->fbc;
1373 wm_state->hpll_en = wm_state->cxsr;
1378 if (level == G4X_WM_LEVEL_NORMAL)
1381 /* invalidate the higher levels */
1382 g4x_invalidate_wms(crtc, wm_state, level);
1385 * Determine if the FBC watermark(s) can be used. IF
1386 * this isn't the case we prefer to disable the FBC
1387 ( watermark(s) rather than disable the SR/HPLL
1388 * level(s) entirely.
1390 wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1392 if (level >= G4X_WM_LEVEL_SR &&
1393 wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1394 wm_state->fbc_en = false;
1395 else if (level >= G4X_WM_LEVEL_HPLL &&
1396 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1397 wm_state->fbc_en = false;
1402 static int g4x_compute_intermediate_wm(struct drm_device *dev,
1403 struct intel_crtc *crtc,
1404 struct intel_crtc_state *new_crtc_state)
1406 struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1407 const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1408 struct intel_atomic_state *intel_state =
1409 to_intel_atomic_state(new_crtc_state->base.state);
1410 const struct intel_crtc_state *old_crtc_state =
1411 intel_atomic_get_old_crtc_state(intel_state, crtc);
1412 const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1413 enum plane_id plane_id;
1415 if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
1416 *intermediate = *optimal;
1418 intermediate->cxsr = false;
1419 intermediate->hpll_en = false;
1423 intermediate->cxsr = optimal->cxsr && active->cxsr &&
1424 !new_crtc_state->disable_cxsr;
1425 intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1426 !new_crtc_state->disable_cxsr;
1427 intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1429 for_each_plane_id_on_crtc(crtc, plane_id) {
1430 intermediate->wm.plane[plane_id] =
1431 max(optimal->wm.plane[plane_id],
1432 active->wm.plane[plane_id]);
1434 WARN_ON(intermediate->wm.plane[plane_id] >
1435 g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1438 intermediate->sr.plane = max(optimal->sr.plane,
1440 intermediate->sr.cursor = max(optimal->sr.cursor,
1442 intermediate->sr.fbc = max(optimal->sr.fbc,
1445 intermediate->hpll.plane = max(optimal->hpll.plane,
1446 active->hpll.plane);
1447 intermediate->hpll.cursor = max(optimal->hpll.cursor,
1448 active->hpll.cursor);
1449 intermediate->hpll.fbc = max(optimal->hpll.fbc,
1452 WARN_ON((intermediate->sr.plane >
1453 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1454 intermediate->sr.cursor >
1455 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1456 intermediate->cxsr);
1457 WARN_ON((intermediate->sr.plane >
1458 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1459 intermediate->sr.cursor >
1460 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1461 intermediate->hpll_en);
1463 WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1464 intermediate->fbc_en && intermediate->cxsr);
1465 WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1466 intermediate->fbc_en && intermediate->hpll_en);
1470 * If our intermediate WM are identical to the final WM, then we can
1471 * omit the post-vblank programming; only update if it's different.
1473 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1474 new_crtc_state->wm.need_postvbl_update = true;
1479 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1480 struct g4x_wm_values *wm)
1482 struct intel_crtc *crtc;
1483 int num_active_crtcs = 0;
1489 for_each_intel_crtc(&dev_priv->drm, crtc) {
1490 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1495 if (!wm_state->cxsr)
1497 if (!wm_state->hpll_en)
1498 wm->hpll_en = false;
1499 if (!wm_state->fbc_en)
1505 if (num_active_crtcs != 1) {
1507 wm->hpll_en = false;
1511 for_each_intel_crtc(&dev_priv->drm, crtc) {
1512 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1513 enum pipe pipe = crtc->pipe;
1515 wm->pipe[pipe] = wm_state->wm;
1516 if (crtc->active && wm->cxsr)
1517 wm->sr = wm_state->sr;
1518 if (crtc->active && wm->hpll_en)
1519 wm->hpll = wm_state->hpll;
1523 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1525 struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1526 struct g4x_wm_values new_wm = {};
1528 g4x_merge_wm(dev_priv, &new_wm);
1530 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1533 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1534 _intel_set_memory_cxsr(dev_priv, false);
1536 g4x_write_wm_values(dev_priv, &new_wm);
1538 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1539 _intel_set_memory_cxsr(dev_priv, true);
1544 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1545 struct intel_crtc_state *crtc_state)
1547 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1548 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1550 mutex_lock(&dev_priv->wm.wm_mutex);
1551 crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1552 g4x_program_watermarks(dev_priv);
1553 mutex_unlock(&dev_priv->wm.wm_mutex);
1556 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1557 struct intel_crtc_state *crtc_state)
1559 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1560 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
1562 if (!crtc_state->wm.need_postvbl_update)
1565 mutex_lock(&dev_priv->wm.wm_mutex);
1566 intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1567 g4x_program_watermarks(dev_priv);
1568 mutex_unlock(&dev_priv->wm.wm_mutex);
1571 /* latency must be in 0.1us units. */
1572 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1573 unsigned int htotal,
1576 unsigned int latency)
1580 ret = intel_wm_method2(pixel_rate, htotal,
1581 width, cpp, latency);
1582 ret = DIV_ROUND_UP(ret, 64);
1587 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1589 /* all latencies in usec */
1590 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1592 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1594 if (IS_CHERRYVIEW(dev_priv)) {
1595 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1596 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1598 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1602 static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1603 const struct intel_plane_state *plane_state,
1606 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1607 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1608 const struct drm_display_mode *adjusted_mode =
1609 &crtc_state->base.adjusted_mode;
1610 unsigned int clock, htotal, cpp, width, wm;
1612 if (dev_priv->wm.pri_latency[level] == 0)
1615 if (!intel_wm_plane_visible(crtc_state, plane_state))
1618 cpp = plane_state->base.fb->format->cpp[0];
1619 clock = adjusted_mode->crtc_clock;
1620 htotal = adjusted_mode->crtc_htotal;
1621 width = crtc_state->pipe_src_w;
1623 if (plane->id == PLANE_CURSOR) {
1625 * FIXME the formula gives values that are
1626 * too big for the cursor FIFO, and hence we
1627 * would never be able to use cursors. For
1628 * now just hardcode the watermark.
1632 wm = vlv_wm_method2(clock, htotal, width, cpp,
1633 dev_priv->wm.pri_latency[level] * 10);
1636 return min_t(unsigned int, wm, USHRT_MAX);
1639 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1641 return (active_planes & (BIT(PLANE_SPRITE0) |
1642 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1645 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1647 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1648 const struct g4x_pipe_wm *raw =
1649 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1650 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1651 unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1652 int num_active_planes = hweight32(active_planes);
1653 const int fifo_size = 511;
1654 int fifo_extra, fifo_left = fifo_size;
1655 int sprite0_fifo_extra = 0;
1656 unsigned int total_rate;
1657 enum plane_id plane_id;
1660 * When enabling sprite0 after sprite1 has already been enabled
1661 * we tend to get an underrun unless sprite0 already has some
1662 * FIFO space allcoated. Hence we always allocate at least one
1663 * cacheline for sprite0 whenever sprite1 is enabled.
1665 * All other plane enable sequences appear immune to this problem.
1667 if (vlv_need_sprite0_fifo_workaround(active_planes))
1668 sprite0_fifo_extra = 1;
1670 total_rate = raw->plane[PLANE_PRIMARY] +
1671 raw->plane[PLANE_SPRITE0] +
1672 raw->plane[PLANE_SPRITE1] +
1675 if (total_rate > fifo_size)
1678 if (total_rate == 0)
1681 for_each_plane_id_on_crtc(crtc, plane_id) {
1684 if ((active_planes & BIT(plane_id)) == 0) {
1685 fifo_state->plane[plane_id] = 0;
1689 rate = raw->plane[plane_id];
1690 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1691 fifo_left -= fifo_state->plane[plane_id];
1694 fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1695 fifo_left -= sprite0_fifo_extra;
1697 fifo_state->plane[PLANE_CURSOR] = 63;
1699 fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1701 /* spread the remainder evenly */
1702 for_each_plane_id_on_crtc(crtc, plane_id) {
1708 if ((active_planes & BIT(plane_id)) == 0)
1711 plane_extra = min(fifo_extra, fifo_left);
1712 fifo_state->plane[plane_id] += plane_extra;
1713 fifo_left -= plane_extra;
1716 WARN_ON(active_planes != 0 && fifo_left != 0);
1718 /* give it all to the first plane if none are active */
1719 if (active_planes == 0) {
1720 WARN_ON(fifo_left != fifo_size);
1721 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1727 /* mark all levels starting from 'level' as invalid */
1728 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1729 struct vlv_wm_state *wm_state, int level)
1731 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1733 for (; level < intel_wm_num_levels(dev_priv); level++) {
1734 enum plane_id plane_id;
1736 for_each_plane_id_on_crtc(crtc, plane_id)
1737 wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1739 wm_state->sr[level].cursor = USHRT_MAX;
1740 wm_state->sr[level].plane = USHRT_MAX;
1744 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1749 return fifo_size - wm;
1753 * Starting from 'level' set all higher
1754 * levels to 'value' in the "raw" watermarks.
1756 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1757 int level, enum plane_id plane_id, u16 value)
1759 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1760 int num_levels = intel_wm_num_levels(dev_priv);
1763 for (; level < num_levels; level++) {
1764 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1766 dirty |= raw->plane[plane_id] != value;
1767 raw->plane[plane_id] = value;
1773 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1774 const struct intel_plane_state *plane_state)
1776 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1777 enum plane_id plane_id = plane->id;
1778 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1782 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1783 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1787 for (level = 0; level < num_levels; level++) {
1788 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1789 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1790 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1795 dirty |= raw->plane[plane_id] != wm;
1796 raw->plane[plane_id] = wm;
1799 /* mark all higher levels as invalid */
1800 dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1804 DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1806 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1807 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1808 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1813 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1814 enum plane_id plane_id, int level)
1816 const struct g4x_pipe_wm *raw =
1817 &crtc_state->wm.vlv.raw[level];
1818 const struct vlv_fifo_state *fifo_state =
1819 &crtc_state->wm.vlv.fifo_state;
1821 return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1824 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1826 return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1827 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1828 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1829 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1832 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1834 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1835 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1836 struct intel_atomic_state *state =
1837 to_intel_atomic_state(crtc_state->base.state);
1838 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1839 const struct vlv_fifo_state *fifo_state =
1840 &crtc_state->wm.vlv.fifo_state;
1841 int num_active_planes = hweight32(crtc_state->active_planes &
1842 ~BIT(PLANE_CURSOR));
1843 bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1844 const struct intel_plane_state *old_plane_state;
1845 const struct intel_plane_state *new_plane_state;
1846 struct intel_plane *plane;
1847 enum plane_id plane_id;
1849 unsigned int dirty = 0;
1851 for_each_oldnew_intel_plane_in_state(state, plane,
1853 new_plane_state, i) {
1854 if (new_plane_state->base.crtc != &crtc->base &&
1855 old_plane_state->base.crtc != &crtc->base)
1858 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1859 dirty |= BIT(plane->id);
1863 * DSPARB registers may have been reset due to the
1864 * power well being turned off. Make sure we restore
1865 * them to a consistent state even if no primary/sprite
1866 * planes are initially active.
1869 crtc_state->fifo_changed = true;
1874 /* cursor changes don't warrant a FIFO recompute */
1875 if (dirty & ~BIT(PLANE_CURSOR)) {
1876 const struct intel_crtc_state *old_crtc_state =
1877 intel_atomic_get_old_crtc_state(state, crtc);
1878 const struct vlv_fifo_state *old_fifo_state =
1879 &old_crtc_state->wm.vlv.fifo_state;
1881 ret = vlv_compute_fifo(crtc_state);
1885 if (needs_modeset ||
1886 memcmp(old_fifo_state, fifo_state,
1887 sizeof(*fifo_state)) != 0)
1888 crtc_state->fifo_changed = true;
1891 /* initially allow all levels */
1892 wm_state->num_levels = intel_wm_num_levels(dev_priv);
1894 * Note that enabling cxsr with no primary/sprite planes
1895 * enabled can wedge the pipe. Hence we only allow cxsr
1896 * with exactly one enabled primary/sprite plane.
1898 wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1900 for (level = 0; level < wm_state->num_levels; level++) {
1901 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1902 const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1904 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1907 for_each_plane_id_on_crtc(crtc, plane_id) {
1908 wm_state->wm[level].plane[plane_id] =
1909 vlv_invert_wm_value(raw->plane[plane_id],
1910 fifo_state->plane[plane_id]);
1913 wm_state->sr[level].plane =
1914 vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1915 raw->plane[PLANE_SPRITE0],
1916 raw->plane[PLANE_SPRITE1]),
1919 wm_state->sr[level].cursor =
1920 vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1927 /* limit to only levels we can actually handle */
1928 wm_state->num_levels = level;
1930 /* invalidate the higher levels */
1931 vlv_invalidate_wms(crtc, wm_state, level);
1936 #define VLV_FIFO(plane, value) \
1937 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1939 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1940 struct intel_crtc_state *crtc_state)
1942 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1943 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1944 const struct vlv_fifo_state *fifo_state =
1945 &crtc_state->wm.vlv.fifo_state;
1946 int sprite0_start, sprite1_start, fifo_size;
1948 if (!crtc_state->fifo_changed)
1951 sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1952 sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1953 fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1955 WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1956 WARN_ON(fifo_size != 511);
1958 trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1961 * uncore.lock serves a double purpose here. It allows us to
1962 * use the less expensive I915_{READ,WRITE}_FW() functions, and
1963 * it protects the DSPARB registers from getting clobbered by
1964 * parallel updates from multiple pipes.
1966 * intel_pipe_update_start() has already disabled interrupts
1967 * for us, so a plain spin_lock() is sufficient here.
1969 spin_lock(&dev_priv->uncore.lock);
1971 switch (crtc->pipe) {
1972 uint32_t dsparb, dsparb2, dsparb3;
1974 dsparb = I915_READ_FW(DSPARB);
1975 dsparb2 = I915_READ_FW(DSPARB2);
1977 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1978 VLV_FIFO(SPRITEB, 0xff));
1979 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1980 VLV_FIFO(SPRITEB, sprite1_start));
1982 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1983 VLV_FIFO(SPRITEB_HI, 0x1));
1984 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1985 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1987 I915_WRITE_FW(DSPARB, dsparb);
1988 I915_WRITE_FW(DSPARB2, dsparb2);
1991 dsparb = I915_READ_FW(DSPARB);
1992 dsparb2 = I915_READ_FW(DSPARB2);
1994 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1995 VLV_FIFO(SPRITED, 0xff));
1996 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1997 VLV_FIFO(SPRITED, sprite1_start));
1999 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
2000 VLV_FIFO(SPRITED_HI, 0xff));
2001 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2002 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2004 I915_WRITE_FW(DSPARB, dsparb);
2005 I915_WRITE_FW(DSPARB2, dsparb2);
2008 dsparb3 = I915_READ_FW(DSPARB3);
2009 dsparb2 = I915_READ_FW(DSPARB2);
2011 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2012 VLV_FIFO(SPRITEF, 0xff));
2013 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2014 VLV_FIFO(SPRITEF, sprite1_start));
2016 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2017 VLV_FIFO(SPRITEF_HI, 0xff));
2018 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2019 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2021 I915_WRITE_FW(DSPARB3, dsparb3);
2022 I915_WRITE_FW(DSPARB2, dsparb2);
2028 POSTING_READ_FW(DSPARB);
2030 spin_unlock(&dev_priv->uncore.lock);
2035 static int vlv_compute_intermediate_wm(struct drm_device *dev,
2036 struct intel_crtc *crtc,
2037 struct intel_crtc_state *new_crtc_state)
2039 struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2040 const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2041 struct intel_atomic_state *intel_state =
2042 to_intel_atomic_state(new_crtc_state->base.state);
2043 const struct intel_crtc_state *old_crtc_state =
2044 intel_atomic_get_old_crtc_state(intel_state, crtc);
2045 const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2048 if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
2049 *intermediate = *optimal;
2051 intermediate->cxsr = false;
2055 intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2056 intermediate->cxsr = optimal->cxsr && active->cxsr &&
2057 !new_crtc_state->disable_cxsr;
2059 for (level = 0; level < intermediate->num_levels; level++) {
2060 enum plane_id plane_id;
2062 for_each_plane_id_on_crtc(crtc, plane_id) {
2063 intermediate->wm[level].plane[plane_id] =
2064 min(optimal->wm[level].plane[plane_id],
2065 active->wm[level].plane[plane_id]);
2068 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2069 active->sr[level].plane);
2070 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2071 active->sr[level].cursor);
2074 vlv_invalidate_wms(crtc, intermediate, level);
2078 * If our intermediate WM are identical to the final WM, then we can
2079 * omit the post-vblank programming; only update if it's different.
2081 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2082 new_crtc_state->wm.need_postvbl_update = true;
2087 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2088 struct vlv_wm_values *wm)
2090 struct intel_crtc *crtc;
2091 int num_active_crtcs = 0;
2093 wm->level = dev_priv->wm.max_level;
2096 for_each_intel_crtc(&dev_priv->drm, crtc) {
2097 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2102 if (!wm_state->cxsr)
2106 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2109 if (num_active_crtcs != 1)
2112 if (num_active_crtcs > 1)
2113 wm->level = VLV_WM_LEVEL_PM2;
2115 for_each_intel_crtc(&dev_priv->drm, crtc) {
2116 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2117 enum pipe pipe = crtc->pipe;
2119 wm->pipe[pipe] = wm_state->wm[wm->level];
2120 if (crtc->active && wm->cxsr)
2121 wm->sr = wm_state->sr[wm->level];
2123 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2124 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2125 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2126 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2130 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2132 struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2133 struct vlv_wm_values new_wm = {};
2135 vlv_merge_wm(dev_priv, &new_wm);
2137 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2140 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2141 chv_set_memory_dvfs(dev_priv, false);
2143 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2144 chv_set_memory_pm5(dev_priv, false);
2146 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2147 _intel_set_memory_cxsr(dev_priv, false);
2149 vlv_write_wm_values(dev_priv, &new_wm);
2151 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2152 _intel_set_memory_cxsr(dev_priv, true);
2154 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2155 chv_set_memory_pm5(dev_priv, true);
2157 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2158 chv_set_memory_dvfs(dev_priv, true);
2163 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2164 struct intel_crtc_state *crtc_state)
2166 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2167 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2169 mutex_lock(&dev_priv->wm.wm_mutex);
2170 crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2171 vlv_program_watermarks(dev_priv);
2172 mutex_unlock(&dev_priv->wm.wm_mutex);
2175 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2176 struct intel_crtc_state *crtc_state)
2178 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2179 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2181 if (!crtc_state->wm.need_postvbl_update)
2184 mutex_lock(&dev_priv->wm.wm_mutex);
2185 intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2186 vlv_program_watermarks(dev_priv);
2187 mutex_unlock(&dev_priv->wm.wm_mutex);
2190 static void i965_update_wm(struct intel_crtc *unused_crtc)
2192 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2193 struct intel_crtc *crtc;
2198 /* Calc sr entries for one plane configs */
2199 crtc = single_enabled_crtc(dev_priv);
2201 /* self-refresh has much higher latency */
2202 static const int sr_latency_ns = 12000;
2203 const struct drm_display_mode *adjusted_mode =
2204 &crtc->config->base.adjusted_mode;
2205 const struct drm_framebuffer *fb =
2206 crtc->base.primary->state->fb;
2207 int clock = adjusted_mode->crtc_clock;
2208 int htotal = adjusted_mode->crtc_htotal;
2209 int hdisplay = crtc->config->pipe_src_w;
2210 int cpp = fb->format->cpp[0];
2213 entries = intel_wm_method2(clock, htotal,
2214 hdisplay, cpp, sr_latency_ns / 100);
2215 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2216 srwm = I965_FIFO_SIZE - entries;
2220 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
2223 entries = intel_wm_method2(clock, htotal,
2224 crtc->base.cursor->state->crtc_w, 4,
2225 sr_latency_ns / 100);
2226 entries = DIV_ROUND_UP(entries,
2227 i965_cursor_wm_info.cacheline_size) +
2228 i965_cursor_wm_info.guard_size;
2230 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2231 if (cursor_sr > i965_cursor_wm_info.max_wm)
2232 cursor_sr = i965_cursor_wm_info.max_wm;
2234 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
2235 "cursor %d\n", srwm, cursor_sr);
2237 cxsr_enabled = true;
2239 cxsr_enabled = false;
2240 /* Turn off self refresh if both pipes are enabled */
2241 intel_set_memory_cxsr(dev_priv, false);
2244 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2247 /* 965 has limitations... */
2248 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2252 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2253 FW_WM(8, PLANEC_OLD));
2254 /* update cursor SR watermark */
2255 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2258 intel_set_memory_cxsr(dev_priv, true);
2263 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2265 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2266 const struct intel_watermark_params *wm_info;
2271 int planea_wm, planeb_wm;
2272 struct intel_crtc *crtc, *enabled = NULL;
2274 if (IS_I945GM(dev_priv))
2275 wm_info = &i945_wm_info;
2276 else if (!IS_GEN2(dev_priv))
2277 wm_info = &i915_wm_info;
2279 wm_info = &i830_a_wm_info;
2281 fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
2282 crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2283 if (intel_crtc_active(crtc)) {
2284 const struct drm_display_mode *adjusted_mode =
2285 &crtc->config->base.adjusted_mode;
2286 const struct drm_framebuffer *fb =
2287 crtc->base.primary->state->fb;
2290 if (IS_GEN2(dev_priv))
2293 cpp = fb->format->cpp[0];
2295 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2296 wm_info, fifo_size, cpp,
2297 pessimal_latency_ns);
2300 planea_wm = fifo_size - wm_info->guard_size;
2301 if (planea_wm > (long)wm_info->max_wm)
2302 planea_wm = wm_info->max_wm;
2305 if (IS_GEN2(dev_priv))
2306 wm_info = &i830_bc_wm_info;
2308 fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
2309 crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2310 if (intel_crtc_active(crtc)) {
2311 const struct drm_display_mode *adjusted_mode =
2312 &crtc->config->base.adjusted_mode;
2313 const struct drm_framebuffer *fb =
2314 crtc->base.primary->state->fb;
2317 if (IS_GEN2(dev_priv))
2320 cpp = fb->format->cpp[0];
2322 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2323 wm_info, fifo_size, cpp,
2324 pessimal_latency_ns);
2325 if (enabled == NULL)
2330 planeb_wm = fifo_size - wm_info->guard_size;
2331 if (planeb_wm > (long)wm_info->max_wm)
2332 planeb_wm = wm_info->max_wm;
2335 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2337 if (IS_I915GM(dev_priv) && enabled) {
2338 struct drm_i915_gem_object *obj;
2340 obj = intel_fb_obj(enabled->base.primary->state->fb);
2342 /* self-refresh seems busted with untiled */
2343 if (!i915_gem_object_is_tiled(obj))
2348 * Overlay gets an aggressive default since video jitter is bad.
2352 /* Play safe and disable self-refresh before adjusting watermarks. */
2353 intel_set_memory_cxsr(dev_priv, false);
2355 /* Calc sr entries for one plane configs */
2356 if (HAS_FW_BLC(dev_priv) && enabled) {
2357 /* self-refresh has much higher latency */
2358 static const int sr_latency_ns = 6000;
2359 const struct drm_display_mode *adjusted_mode =
2360 &enabled->config->base.adjusted_mode;
2361 const struct drm_framebuffer *fb =
2362 enabled->base.primary->state->fb;
2363 int clock = adjusted_mode->crtc_clock;
2364 int htotal = adjusted_mode->crtc_htotal;
2365 int hdisplay = enabled->config->pipe_src_w;
2369 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2372 cpp = fb->format->cpp[0];
2374 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2375 sr_latency_ns / 100);
2376 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2377 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
2378 srwm = wm_info->fifo_size - entries;
2382 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2383 I915_WRITE(FW_BLC_SELF,
2384 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2386 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2389 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2390 planea_wm, planeb_wm, cwm, srwm);
2392 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2393 fwater_hi = (cwm & 0x1f);
2395 /* Set request length to 8 cachelines per fetch */
2396 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2397 fwater_hi = fwater_hi | (1 << 8);
2399 I915_WRITE(FW_BLC, fwater_lo);
2400 I915_WRITE(FW_BLC2, fwater_hi);
2403 intel_set_memory_cxsr(dev_priv, true);
2406 static void i845_update_wm(struct intel_crtc *unused_crtc)
2408 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2409 struct intel_crtc *crtc;
2410 const struct drm_display_mode *adjusted_mode;
2414 crtc = single_enabled_crtc(dev_priv);
2418 adjusted_mode = &crtc->config->base.adjusted_mode;
2419 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2421 dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2422 4, pessimal_latency_ns);
2423 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2424 fwater_lo |= (3<<8) | planea_wm;
2426 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2428 I915_WRITE(FW_BLC, fwater_lo);
2431 /* latency must be in 0.1us units. */
2432 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2434 unsigned int latency)
2438 ret = intel_wm_method1(pixel_rate, cpp, latency);
2439 ret = DIV_ROUND_UP(ret, 64) + 2;
2444 /* latency must be in 0.1us units. */
2445 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2446 unsigned int htotal,
2449 unsigned int latency)
2453 ret = intel_wm_method2(pixel_rate, htotal,
2454 width, cpp, latency);
2455 ret = DIV_ROUND_UP(ret, 64) + 2;
2460 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2464 * Neither of these should be possible since this function shouldn't be
2465 * called if the CRTC is off or the plane is invisible. But let's be
2466 * extra paranoid to avoid a potential divide-by-zero if we screw up
2467 * elsewhere in the driver.
2471 if (WARN_ON(!horiz_pixels))
2474 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2477 struct ilk_wm_maximums {
2485 * For both WM_PIPE and WM_LP.
2486 * mem_value must be in 0.1us units.
2488 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2489 const struct intel_plane_state *pstate,
2493 uint32_t method1, method2;
2496 if (!intel_wm_plane_visible(cstate, pstate))
2499 cpp = pstate->base.fb->format->cpp[0];
2501 method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2506 method2 = ilk_wm_method2(cstate->pixel_rate,
2507 cstate->base.adjusted_mode.crtc_htotal,
2508 drm_rect_width(&pstate->base.dst),
2511 return min(method1, method2);
2515 * For both WM_PIPE and WM_LP.
2516 * mem_value must be in 0.1us units.
2518 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2519 const struct intel_plane_state *pstate,
2522 uint32_t method1, method2;
2525 if (!intel_wm_plane_visible(cstate, pstate))
2528 cpp = pstate->base.fb->format->cpp[0];
2530 method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2531 method2 = ilk_wm_method2(cstate->pixel_rate,
2532 cstate->base.adjusted_mode.crtc_htotal,
2533 drm_rect_width(&pstate->base.dst),
2535 return min(method1, method2);
2539 * For both WM_PIPE and WM_LP.
2540 * mem_value must be in 0.1us units.
2542 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2543 const struct intel_plane_state *pstate,
2548 if (!intel_wm_plane_visible(cstate, pstate))
2551 cpp = pstate->base.fb->format->cpp[0];
2553 return ilk_wm_method2(cstate->pixel_rate,
2554 cstate->base.adjusted_mode.crtc_htotal,
2555 pstate->base.crtc_w, cpp, mem_value);
2558 /* Only for WM_LP. */
2559 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2560 const struct intel_plane_state *pstate,
2565 if (!intel_wm_plane_visible(cstate, pstate))
2568 cpp = pstate->base.fb->format->cpp[0];
2570 return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2574 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2576 if (INTEL_GEN(dev_priv) >= 8)
2578 else if (INTEL_GEN(dev_priv) >= 7)
2585 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2586 int level, bool is_sprite)
2588 if (INTEL_GEN(dev_priv) >= 8)
2589 /* BDW primary/sprite plane watermarks */
2590 return level == 0 ? 255 : 2047;
2591 else if (INTEL_GEN(dev_priv) >= 7)
2592 /* IVB/HSW primary/sprite plane watermarks */
2593 return level == 0 ? 127 : 1023;
2594 else if (!is_sprite)
2595 /* ILK/SNB primary plane watermarks */
2596 return level == 0 ? 127 : 511;
2598 /* ILK/SNB sprite plane watermarks */
2599 return level == 0 ? 63 : 255;
2603 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2605 if (INTEL_GEN(dev_priv) >= 7)
2606 return level == 0 ? 63 : 255;
2608 return level == 0 ? 31 : 63;
2611 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2613 if (INTEL_GEN(dev_priv) >= 8)
2619 /* Calculate the maximum primary/sprite plane watermark */
2620 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2622 const struct intel_wm_config *config,
2623 enum intel_ddb_partitioning ddb_partitioning,
2626 struct drm_i915_private *dev_priv = to_i915(dev);
2627 unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2629 /* if sprites aren't enabled, sprites get nothing */
2630 if (is_sprite && !config->sprites_enabled)
2633 /* HSW allows LP1+ watermarks even with multiple pipes */
2634 if (level == 0 || config->num_pipes_active > 1) {
2635 fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2638 * For some reason the non self refresh
2639 * FIFO size is only half of the self
2640 * refresh FIFO size on ILK/SNB.
2642 if (INTEL_GEN(dev_priv) <= 6)
2646 if (config->sprites_enabled) {
2647 /* level 0 is always calculated with 1:1 split */
2648 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2657 /* clamp to max that the registers can hold */
2658 return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2661 /* Calculate the maximum cursor plane watermark */
2662 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2664 const struct intel_wm_config *config)
2666 /* HSW LP1+ watermarks w/ multiple pipes */
2667 if (level > 0 && config->num_pipes_active > 1)
2670 /* otherwise just report max that registers can hold */
2671 return ilk_cursor_wm_reg_max(to_i915(dev), level);
2674 static void ilk_compute_wm_maximums(const struct drm_device *dev,
2676 const struct intel_wm_config *config,
2677 enum intel_ddb_partitioning ddb_partitioning,
2678 struct ilk_wm_maximums *max)
2680 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2681 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2682 max->cur = ilk_cursor_wm_max(dev, level, config);
2683 max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2686 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2688 struct ilk_wm_maximums *max)
2690 max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2691 max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2692 max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2693 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2696 static bool ilk_validate_wm_level(int level,
2697 const struct ilk_wm_maximums *max,
2698 struct intel_wm_level *result)
2702 /* already determined to be invalid? */
2703 if (!result->enable)
2706 result->enable = result->pri_val <= max->pri &&
2707 result->spr_val <= max->spr &&
2708 result->cur_val <= max->cur;
2710 ret = result->enable;
2713 * HACK until we can pre-compute everything,
2714 * and thus fail gracefully if LP0 watermarks
2717 if (level == 0 && !result->enable) {
2718 if (result->pri_val > max->pri)
2719 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2720 level, result->pri_val, max->pri);
2721 if (result->spr_val > max->spr)
2722 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2723 level, result->spr_val, max->spr);
2724 if (result->cur_val > max->cur)
2725 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2726 level, result->cur_val, max->cur);
2728 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2729 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2730 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2731 result->enable = true;
2737 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2738 const struct intel_crtc *intel_crtc,
2740 struct intel_crtc_state *cstate,
2741 const struct intel_plane_state *pristate,
2742 const struct intel_plane_state *sprstate,
2743 const struct intel_plane_state *curstate,
2744 struct intel_wm_level *result)
2746 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2747 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2748 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2750 /* WM1+ latency values stored in 0.5us units */
2758 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2759 pri_latency, level);
2760 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2764 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2767 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2769 result->enable = true;
2773 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2775 const struct intel_atomic_state *intel_state =
2776 to_intel_atomic_state(cstate->base.state);
2777 const struct drm_display_mode *adjusted_mode =
2778 &cstate->base.adjusted_mode;
2779 u32 linetime, ips_linetime;
2781 if (!cstate->base.active)
2783 if (WARN_ON(adjusted_mode->crtc_clock == 0))
2785 if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2788 /* The WM are computed with base on how long it takes to fill a single
2789 * row at the given clock rate, multiplied by 8.
2791 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2792 adjusted_mode->crtc_clock);
2793 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2794 intel_state->cdclk.logical.cdclk);
2796 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2797 PIPE_WM_LINETIME_TIME(linetime);
2800 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2803 if (INTEL_GEN(dev_priv) >= 9) {
2806 int level, max_level = ilk_wm_max_level(dev_priv);
2808 /* read the first set of memory latencies[0:3] */
2809 val = 0; /* data0 to be programmed to 0 for first set */
2810 mutex_lock(&dev_priv->pcu_lock);
2811 ret = sandybridge_pcode_read(dev_priv,
2812 GEN9_PCODE_READ_MEM_LATENCY,
2814 mutex_unlock(&dev_priv->pcu_lock);
2817 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2821 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2822 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2823 GEN9_MEM_LATENCY_LEVEL_MASK;
2824 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2825 GEN9_MEM_LATENCY_LEVEL_MASK;
2826 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2827 GEN9_MEM_LATENCY_LEVEL_MASK;
2829 /* read the second set of memory latencies[4:7] */
2830 val = 1; /* data0 to be programmed to 1 for second set */
2831 mutex_lock(&dev_priv->pcu_lock);
2832 ret = sandybridge_pcode_read(dev_priv,
2833 GEN9_PCODE_READ_MEM_LATENCY,
2835 mutex_unlock(&dev_priv->pcu_lock);
2837 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2841 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2842 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2843 GEN9_MEM_LATENCY_LEVEL_MASK;
2844 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2845 GEN9_MEM_LATENCY_LEVEL_MASK;
2846 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2847 GEN9_MEM_LATENCY_LEVEL_MASK;
2850 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2851 * need to be disabled. We make sure to sanitize the values out
2852 * of the punit to satisfy this requirement.
2854 for (level = 1; level <= max_level; level++) {
2855 if (wm[level] == 0) {
2856 for (i = level + 1; i <= max_level; i++)
2863 * WaWmMemoryReadLatency:skl+,glk
2865 * punit doesn't take into account the read latency so we need
2866 * to add 2us to the various latency levels we retrieve from the
2867 * punit when level 0 response data us 0us.
2871 for (level = 1; level <= max_level; level++) {
2879 * WA Level-0 adjustment for 16GB DIMMs: SKL+
2880 * If we could not get dimm info enable this WA to prevent from
2881 * any underrun. If not able to get Dimm info assume 16GB dimm
2882 * to avoid any underrun.
2884 if (!dev_priv->dram_info.valid_dimm ||
2885 dev_priv->dram_info.is_16gb_dimm)
2888 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2889 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2891 wm[0] = (sskpd >> 56) & 0xFF;
2893 wm[0] = sskpd & 0xF;
2894 wm[1] = (sskpd >> 4) & 0xFF;
2895 wm[2] = (sskpd >> 12) & 0xFF;
2896 wm[3] = (sskpd >> 20) & 0x1FF;
2897 wm[4] = (sskpd >> 32) & 0x1FF;
2898 } else if (INTEL_GEN(dev_priv) >= 6) {
2899 uint32_t sskpd = I915_READ(MCH_SSKPD);
2901 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2902 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2903 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2904 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2905 } else if (INTEL_GEN(dev_priv) >= 5) {
2906 uint32_t mltr = I915_READ(MLTR_ILK);
2908 /* ILK primary LP0 latency is 700 ns */
2910 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2911 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2913 MISSING_CASE(INTEL_DEVID(dev_priv));
2917 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2920 /* ILK sprite LP0 latency is 1300 ns */
2921 if (IS_GEN5(dev_priv))
2925 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2928 /* ILK cursor LP0 latency is 1300 ns */
2929 if (IS_GEN5(dev_priv))
2933 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2935 /* how many WM levels are we expecting */
2936 if (INTEL_GEN(dev_priv) >= 9)
2938 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2940 else if (INTEL_GEN(dev_priv) >= 6)
2946 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2948 const uint16_t wm[8])
2950 int level, max_level = ilk_wm_max_level(dev_priv);
2952 for (level = 0; level <= max_level; level++) {
2953 unsigned int latency = wm[level];
2956 DRM_DEBUG_KMS("%s WM%d latency not provided\n",
2962 * - latencies are in us on gen9.
2963 * - before then, WM1+ latency values are in 0.5us units
2965 if (INTEL_GEN(dev_priv) >= 9)
2970 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2971 name, level, wm[level],
2972 latency / 10, latency % 10);
2976 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2977 uint16_t wm[5], uint16_t min)
2979 int level, max_level = ilk_wm_max_level(dev_priv);
2984 wm[0] = max(wm[0], min);
2985 for (level = 1; level <= max_level; level++)
2986 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2991 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2996 * The BIOS provided WM memory latency values are often
2997 * inadequate for high resolution displays. Adjust them.
2999 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
3000 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
3001 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
3006 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
3007 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3008 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3009 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3012 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3014 intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3016 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3017 sizeof(dev_priv->wm.pri_latency));
3018 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3019 sizeof(dev_priv->wm.pri_latency));
3021 intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3022 intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3024 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3025 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3026 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3028 if (IS_GEN6(dev_priv))
3029 snb_wm_latency_quirk(dev_priv);
3032 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3034 intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3035 intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3038 static bool ilk_validate_pipe_wm(struct drm_device *dev,
3039 struct intel_pipe_wm *pipe_wm)
3041 /* LP0 watermark maximums depend on this pipe alone */
3042 const struct intel_wm_config config = {
3043 .num_pipes_active = 1,
3044 .sprites_enabled = pipe_wm->sprites_enabled,
3045 .sprites_scaled = pipe_wm->sprites_scaled,
3047 struct ilk_wm_maximums max;
3049 /* LP0 watermarks always use 1/2 DDB partitioning */
3050 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
3052 /* At least LP0 must be valid */
3053 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3054 DRM_DEBUG_KMS("LP0 watermark invalid\n");
3061 /* Compute new watermarks for the pipe */
3062 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3064 struct drm_atomic_state *state = cstate->base.state;
3065 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3066 struct intel_pipe_wm *pipe_wm;
3067 struct drm_device *dev = state->dev;
3068 const struct drm_i915_private *dev_priv = to_i915(dev);
3069 struct drm_plane *plane;
3070 const struct drm_plane_state *plane_state;
3071 const struct intel_plane_state *pristate = NULL;
3072 const struct intel_plane_state *sprstate = NULL;
3073 const struct intel_plane_state *curstate = NULL;
3074 int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3075 struct ilk_wm_maximums max;
3077 pipe_wm = &cstate->wm.ilk.optimal;
3079 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
3080 const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3082 if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3084 else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3086 else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3090 pipe_wm->pipe_enabled = cstate->base.active;
3092 pipe_wm->sprites_enabled = sprstate->base.visible;
3093 pipe_wm->sprites_scaled = sprstate->base.visible &&
3094 (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
3095 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3098 usable_level = max_level;
3100 /* ILK/SNB: LP2+ watermarks only w/o sprites */
3101 if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3104 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3105 if (pipe_wm->sprites_scaled)
3108 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3109 ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
3110 pristate, sprstate, curstate, &pipe_wm->wm[0]);
3112 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3113 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3115 if (!ilk_validate_pipe_wm(dev, pipe_wm))
3118 ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3120 for (level = 1; level <= usable_level; level++) {
3121 struct intel_wm_level *wm = &pipe_wm->wm[level];
3123 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3124 pristate, sprstate, curstate, wm);
3127 * Disable any watermark level that exceeds the
3128 * register maximums since such watermarks are
3131 if (!ilk_validate_wm_level(level, &max, wm)) {
3132 memset(wm, 0, sizeof(*wm));
3141 * Build a set of 'intermediate' watermark values that satisfy both the old
3142 * state and the new state. These can be programmed to the hardware
3145 static int ilk_compute_intermediate_wm(struct drm_device *dev,
3146 struct intel_crtc *intel_crtc,
3147 struct intel_crtc_state *newstate)
3149 struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3150 struct intel_atomic_state *intel_state =
3151 to_intel_atomic_state(newstate->base.state);
3152 const struct intel_crtc_state *oldstate =
3153 intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3154 const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3155 int level, max_level = ilk_wm_max_level(to_i915(dev));
3158 * Start with the final, target watermarks, then combine with the
3159 * currently active watermarks to get values that are safe both before
3160 * and after the vblank.
3162 *a = newstate->wm.ilk.optimal;
3163 if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base))
3166 a->pipe_enabled |= b->pipe_enabled;
3167 a->sprites_enabled |= b->sprites_enabled;
3168 a->sprites_scaled |= b->sprites_scaled;
3170 for (level = 0; level <= max_level; level++) {
3171 struct intel_wm_level *a_wm = &a->wm[level];
3172 const struct intel_wm_level *b_wm = &b->wm[level];
3174 a_wm->enable &= b_wm->enable;
3175 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3176 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3177 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3178 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3182 * We need to make sure that these merged watermark values are
3183 * actually a valid configuration themselves. If they're not,
3184 * there's no safe way to transition from the old state to
3185 * the new state, so we need to fail the atomic transaction.
3187 if (!ilk_validate_pipe_wm(dev, a))
3191 * If our intermediate WM are identical to the final WM, then we can
3192 * omit the post-vblank programming; only update if it's different.
3194 if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3195 newstate->wm.need_postvbl_update = true;
3201 * Merge the watermarks from all active pipes for a specific level.
3203 static void ilk_merge_wm_level(struct drm_device *dev,
3205 struct intel_wm_level *ret_wm)
3207 const struct intel_crtc *intel_crtc;
3209 ret_wm->enable = true;
3211 for_each_intel_crtc(dev, intel_crtc) {
3212 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3213 const struct intel_wm_level *wm = &active->wm[level];
3215 if (!active->pipe_enabled)
3219 * The watermark values may have been used in the past,
3220 * so we must maintain them in the registers for some
3221 * time even if the level is now disabled.
3224 ret_wm->enable = false;
3226 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3227 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3228 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3229 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3234 * Merge all low power watermarks for all active pipes.
3236 static void ilk_wm_merge(struct drm_device *dev,
3237 const struct intel_wm_config *config,
3238 const struct ilk_wm_maximums *max,
3239 struct intel_pipe_wm *merged)
3241 struct drm_i915_private *dev_priv = to_i915(dev);
3242 int level, max_level = ilk_wm_max_level(dev_priv);
3243 int last_enabled_level = max_level;
3245 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3246 if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3247 config->num_pipes_active > 1)
3248 last_enabled_level = 0;
3250 /* ILK: FBC WM must be disabled always */
3251 merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3253 /* merge each WM1+ level */
3254 for (level = 1; level <= max_level; level++) {
3255 struct intel_wm_level *wm = &merged->wm[level];
3257 ilk_merge_wm_level(dev, level, wm);
3259 if (level > last_enabled_level)
3261 else if (!ilk_validate_wm_level(level, max, wm))
3262 /* make sure all following levels get disabled */
3263 last_enabled_level = level - 1;
3266 * The spec says it is preferred to disable
3267 * FBC WMs instead of disabling a WM level.
3269 if (wm->fbc_val > max->fbc) {
3271 merged->fbc_wm_enabled = false;
3276 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3278 * FIXME this is racy. FBC might get enabled later.
3279 * What we should check here is whether FBC can be
3280 * enabled sometime later.
3282 if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3283 intel_fbc_is_active(dev_priv)) {
3284 for (level = 2; level <= max_level; level++) {
3285 struct intel_wm_level *wm = &merged->wm[level];
3292 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3294 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3295 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3298 /* The value we need to program into the WM_LPx latency field */
3299 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
3301 struct drm_i915_private *dev_priv = to_i915(dev);
3303 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3306 return dev_priv->wm.pri_latency[level];
3309 static void ilk_compute_wm_results(struct drm_device *dev,
3310 const struct intel_pipe_wm *merged,
3311 enum intel_ddb_partitioning partitioning,
3312 struct ilk_wm_values *results)
3314 struct drm_i915_private *dev_priv = to_i915(dev);
3315 struct intel_crtc *intel_crtc;
3318 results->enable_fbc_wm = merged->fbc_wm_enabled;
3319 results->partitioning = partitioning;
3321 /* LP1+ register values */
3322 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3323 const struct intel_wm_level *r;
3325 level = ilk_wm_lp_to_level(wm_lp, merged);
3327 r = &merged->wm[level];
3330 * Maintain the watermark values even if the level is
3331 * disabled. Doing otherwise could cause underruns.
3333 results->wm_lp[wm_lp - 1] =
3334 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3335 (r->pri_val << WM1_LP_SR_SHIFT) |
3339 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3341 if (INTEL_GEN(dev_priv) >= 8)
3342 results->wm_lp[wm_lp - 1] |=
3343 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3345 results->wm_lp[wm_lp - 1] |=
3346 r->fbc_val << WM1_LP_FBC_SHIFT;
3349 * Always set WM1S_LP_EN when spr_val != 0, even if the
3350 * level is disabled. Doing otherwise could cause underruns.
3352 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3353 WARN_ON(wm_lp != 1);
3354 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3356 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3359 /* LP0 register values */
3360 for_each_intel_crtc(dev, intel_crtc) {
3361 enum pipe pipe = intel_crtc->pipe;
3362 const struct intel_wm_level *r =
3363 &intel_crtc->wm.active.ilk.wm[0];
3365 if (WARN_ON(!r->enable))
3368 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3370 results->wm_pipe[pipe] =
3371 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3372 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3377 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3378 * case both are at the same level. Prefer r1 in case they're the same. */
3379 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3380 struct intel_pipe_wm *r1,
3381 struct intel_pipe_wm *r2)
3383 int level, max_level = ilk_wm_max_level(to_i915(dev));
3384 int level1 = 0, level2 = 0;
3386 for (level = 1; level <= max_level; level++) {
3387 if (r1->wm[level].enable)
3389 if (r2->wm[level].enable)
3393 if (level1 == level2) {
3394 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3398 } else if (level1 > level2) {
3405 /* dirty bits used to track which watermarks need changes */
3406 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3407 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
3408 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3409 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3410 #define WM_DIRTY_FBC (1 << 24)
3411 #define WM_DIRTY_DDB (1 << 25)
3413 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3414 const struct ilk_wm_values *old,
3415 const struct ilk_wm_values *new)
3417 unsigned int dirty = 0;
3421 for_each_pipe(dev_priv, pipe) {
3422 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
3423 dirty |= WM_DIRTY_LINETIME(pipe);
3424 /* Must disable LP1+ watermarks too */
3425 dirty |= WM_DIRTY_LP_ALL;
3428 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3429 dirty |= WM_DIRTY_PIPE(pipe);
3430 /* Must disable LP1+ watermarks too */
3431 dirty |= WM_DIRTY_LP_ALL;
3435 if (old->enable_fbc_wm != new->enable_fbc_wm) {
3436 dirty |= WM_DIRTY_FBC;
3437 /* Must disable LP1+ watermarks too */
3438 dirty |= WM_DIRTY_LP_ALL;
3441 if (old->partitioning != new->partitioning) {
3442 dirty |= WM_DIRTY_DDB;
3443 /* Must disable LP1+ watermarks too */
3444 dirty |= WM_DIRTY_LP_ALL;
3447 /* LP1+ watermarks already deemed dirty, no need to continue */
3448 if (dirty & WM_DIRTY_LP_ALL)
3451 /* Find the lowest numbered LP1+ watermark in need of an update... */
3452 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3453 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3454 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3458 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3459 for (; wm_lp <= 3; wm_lp++)
3460 dirty |= WM_DIRTY_LP(wm_lp);
3465 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3468 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3469 bool changed = false;
3471 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3472 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3473 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3476 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3477 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3478 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3481 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3482 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3483 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3488 * Don't touch WM1S_LP_EN here.
3489 * Doing so could cause underruns.
3496 * The spec says we shouldn't write when we don't need, because every write
3497 * causes WMs to be re-evaluated, expending some power.
3499 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3500 struct ilk_wm_values *results)
3502 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3506 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3510 _ilk_disable_lp_wm(dev_priv, dirty);
3512 if (dirty & WM_DIRTY_PIPE(PIPE_A))
3513 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3514 if (dirty & WM_DIRTY_PIPE(PIPE_B))
3515 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3516 if (dirty & WM_DIRTY_PIPE(PIPE_C))
3517 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3519 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3520 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3521 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3522 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3523 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3524 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3526 if (dirty & WM_DIRTY_DDB) {
3527 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3528 val = I915_READ(WM_MISC);
3529 if (results->partitioning == INTEL_DDB_PART_1_2)
3530 val &= ~WM_MISC_DATA_PARTITION_5_6;
3532 val |= WM_MISC_DATA_PARTITION_5_6;
3533 I915_WRITE(WM_MISC, val);
3535 val = I915_READ(DISP_ARB_CTL2);
3536 if (results->partitioning == INTEL_DDB_PART_1_2)
3537 val &= ~DISP_DATA_PARTITION_5_6;
3539 val |= DISP_DATA_PARTITION_5_6;
3540 I915_WRITE(DISP_ARB_CTL2, val);
3544 if (dirty & WM_DIRTY_FBC) {
3545 val = I915_READ(DISP_ARB_CTL);
3546 if (results->enable_fbc_wm)
3547 val &= ~DISP_FBC_WM_DIS;
3549 val |= DISP_FBC_WM_DIS;
3550 I915_WRITE(DISP_ARB_CTL, val);
3553 if (dirty & WM_DIRTY_LP(1) &&
3554 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3555 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3557 if (INTEL_GEN(dev_priv) >= 7) {
3558 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3559 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3560 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3561 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3564 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3565 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3566 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3567 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3568 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3569 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3571 dev_priv->wm.hw = *results;
3574 bool ilk_disable_lp_wm(struct drm_device *dev)
3576 struct drm_i915_private *dev_priv = to_i915(dev);
3578 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3581 static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
3585 /* Slice 1 will always be enabled */
3588 /* Gen prior to GEN11 have only one DBuf slice */
3589 if (INTEL_GEN(dev_priv) < 11)
3590 return enabled_slices;
3592 if (I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3595 return enabled_slices;
3599 * FIXME: We still don't have the proper code detect if we need to apply the WA,
3600 * so assume we'll always need it in order to avoid underruns.
3602 static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
3604 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3606 if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3613 intel_has_sagv(struct drm_i915_private *dev_priv)
3615 if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
3616 IS_CANNONLAKE(dev_priv))
3619 if (IS_SKYLAKE(dev_priv) &&
3620 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
3627 * SAGV dynamically adjusts the system agent voltage and clock frequencies
3628 * depending on power and performance requirements. The display engine access
3629 * to system memory is blocked during the adjustment time. Because of the
3630 * blocking time, having this enabled can cause full system hangs and/or pipe
3631 * underruns if we don't meet all of the following requirements:
3633 * - <= 1 pipe enabled
3634 * - All planes can enable watermarks for latencies >= SAGV engine block time
3635 * - We're not using an interlaced display configuration
3638 intel_enable_sagv(struct drm_i915_private *dev_priv)
3642 if (!intel_has_sagv(dev_priv))
3645 if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3648 DRM_DEBUG_KMS("Enabling the SAGV\n");
3649 mutex_lock(&dev_priv->pcu_lock);
3651 ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3654 /* We don't need to wait for the SAGV when enabling */
3655 mutex_unlock(&dev_priv->pcu_lock);
3658 * Some skl systems, pre-release machines in particular,
3659 * don't actually have an SAGV.
3661 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3662 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3663 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3665 } else if (ret < 0) {
3666 DRM_ERROR("Failed to enable the SAGV\n");
3670 dev_priv->sagv_status = I915_SAGV_ENABLED;
3675 intel_disable_sagv(struct drm_i915_private *dev_priv)
3679 if (!intel_has_sagv(dev_priv))
3682 if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3685 DRM_DEBUG_KMS("Disabling the SAGV\n");
3686 mutex_lock(&dev_priv->pcu_lock);
3688 /* bspec says to keep retrying for at least 1 ms */
3689 ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3691 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3693 mutex_unlock(&dev_priv->pcu_lock);
3696 * Some skl systems, pre-release machines in particular,
3697 * don't actually have an SAGV.
3699 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3700 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3701 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3703 } else if (ret < 0) {
3704 DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
3708 dev_priv->sagv_status = I915_SAGV_DISABLED;
3712 bool intel_can_enable_sagv(struct drm_atomic_state *state)
3714 struct drm_device *dev = state->dev;
3715 struct drm_i915_private *dev_priv = to_i915(dev);
3716 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3717 struct intel_crtc *crtc;
3718 struct intel_plane *plane;
3719 struct intel_crtc_state *cstate;
3722 int sagv_block_time_us;
3724 if (!intel_has_sagv(dev_priv))
3727 if (IS_GEN9(dev_priv))
3728 sagv_block_time_us = 30;
3729 else if (IS_GEN10(dev_priv))
3730 sagv_block_time_us = 20;
3732 sagv_block_time_us = 10;
3735 * SKL+ workaround: bspec recommends we disable the SAGV when we have
3736 * more then one pipe enabled
3738 * If there are no active CRTCs, no additional checks need be performed
3740 if (hweight32(intel_state->active_crtcs) == 0)
3742 else if (hweight32(intel_state->active_crtcs) > 1)
3745 /* Since we're now guaranteed to only have one active CRTC... */
3746 pipe = ffs(intel_state->active_crtcs) - 1;
3747 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3748 cstate = to_intel_crtc_state(crtc->base.state);
3750 if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3753 for_each_intel_plane_on_crtc(dev, crtc, plane) {
3754 struct skl_plane_wm *wm =
3755 &cstate->wm.skl.optimal.planes[plane->id];
3757 /* Skip this plane if it's not enabled */
3758 if (!wm->wm[0].plane_en)
3761 /* Find the highest enabled wm level for this plane */
3762 for (level = ilk_wm_max_level(dev_priv);
3763 !wm->wm[level].plane_en; --level)
3766 latency = dev_priv->wm.skl_latency[level];
3768 if (skl_needs_memory_bw_wa(intel_state) &&
3769 plane->base.state->fb->modifier ==
3770 I915_FORMAT_MOD_X_TILED)
3774 * If any of the planes on this pipe don't enable wm levels that
3775 * incur memory latencies higher than sagv_block_time_us we
3776 * can't enable the SAGV.
3778 if (latency < sagv_block_time_us)
3785 static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
3786 const struct intel_crtc_state *cstate,
3787 const unsigned int total_data_rate,
3788 const int num_active,
3789 struct skl_ddb_allocation *ddb)
3791 const struct drm_display_mode *adjusted_mode;
3793 u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3795 WARN_ON(ddb_size == 0);
3797 if (INTEL_GEN(dev_priv) < 11)
3798 return ddb_size - 4; /* 4 blocks for bypass path allocation */
3800 adjusted_mode = &cstate->base.adjusted_mode;
3801 total_data_bw = (u64)total_data_rate * drm_mode_vrefresh(adjusted_mode);
3804 * 12GB/s is maximum BW supported by single DBuf slice.
3806 if (total_data_bw >= GBps(12) || num_active > 1) {
3807 ddb->enabled_slices = 2;
3809 ddb->enabled_slices = 1;
3817 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3818 const struct intel_crtc_state *cstate,
3819 const unsigned int total_data_rate,
3820 struct skl_ddb_allocation *ddb,
3821 struct skl_ddb_entry *alloc, /* out */
3822 int *num_active /* out */)
3824 struct drm_atomic_state *state = cstate->base.state;
3825 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3826 struct drm_i915_private *dev_priv = to_i915(dev);
3827 struct drm_crtc *for_crtc = cstate->base.crtc;
3828 const struct drm_crtc_state *crtc_state;
3829 const struct drm_crtc *crtc;
3830 u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
3831 enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
3835 if (WARN_ON(!state) || !cstate->base.active) {
3838 *num_active = hweight32(dev_priv->active_crtcs);
3842 if (intel_state->active_pipe_changes)
3843 *num_active = hweight32(intel_state->active_crtcs);
3845 *num_active = hweight32(dev_priv->active_crtcs);
3847 ddb_size = intel_get_ddb_size(dev_priv, cstate, total_data_rate,
3851 * If the state doesn't change the active CRTC's or there is no
3852 * modeset request, then there's no need to recalculate;
3853 * the existing pipe allocation limits should remain unchanged.
3854 * Note that we're safe from racing commits since any racing commit
3855 * that changes the active CRTC list or do modeset would need to
3856 * grab _all_ crtc locks, including the one we currently hold.
3858 if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3860 * alloc may be cleared by clear_intel_crtc_state,
3861 * copy from old state to be sure
3863 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3868 * Watermark/ddb requirement highly depends upon width of the
3869 * framebuffer, So instead of allocating DDB equally among pipes
3870 * distribute DDB based on resolution/width of the display.
3872 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
3873 const struct drm_display_mode *adjusted_mode;
3874 int hdisplay, vdisplay;
3877 if (!crtc_state->enable)
3880 pipe = to_intel_crtc(crtc)->pipe;
3881 adjusted_mode = &crtc_state->adjusted_mode;
3882 drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
3883 total_width += hdisplay;
3885 if (pipe < for_pipe)
3886 width_before_pipe += hdisplay;
3887 else if (pipe == for_pipe)
3888 pipe_width = hdisplay;
3891 alloc->start = ddb_size * width_before_pipe / total_width;
3892 alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
3895 static unsigned int skl_cursor_allocation(int num_active)
3897 if (num_active == 1)
3903 static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
3904 struct skl_ddb_entry *entry, u32 reg)
3908 if (INTEL_GEN(dev_priv) >= 11)
3909 mask = ICL_DDB_ENTRY_MASK;
3911 mask = SKL_DDB_ENTRY_MASK;
3912 entry->start = reg & mask;
3913 entry->end = (reg >> DDB_ENTRY_END_SHIFT) & mask;
3920 skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
3921 const enum pipe pipe,
3922 const enum plane_id plane_id,
3923 struct skl_ddb_allocation *ddb /* out */)
3926 int fourcc, pixel_format;
3928 /* Cursor doesn't support NV12/planar, so no extra calculation needed */
3929 if (plane_id == PLANE_CURSOR) {
3930 val = I915_READ(CUR_BUF_CFG(pipe));
3931 skl_ddb_entry_init_from_hw(dev_priv,
3932 &ddb->plane[pipe][plane_id], val);
3936 val = I915_READ(PLANE_CTL(pipe, plane_id));
3938 /* No DDB allocated for disabled planes */
3939 if (!(val & PLANE_CTL_ENABLE))
3942 pixel_format = val & PLANE_CTL_FORMAT_MASK;
3943 fourcc = skl_format_to_fourcc(pixel_format,
3944 val & PLANE_CTL_ORDER_RGBX,
3945 val & PLANE_CTL_ALPHA_MASK);
3947 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3949 * FIXME: add proper NV12 support for ICL. Avoid reading unclaimed
3950 * registers for now.
3952 if (INTEL_GEN(dev_priv) < 11)
3953 val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
3955 if (fourcc == DRM_FORMAT_NV12) {
3956 skl_ddb_entry_init_from_hw(dev_priv,
3957 &ddb->plane[pipe][plane_id], val2);
3958 skl_ddb_entry_init_from_hw(dev_priv,
3959 &ddb->uv_plane[pipe][plane_id], val);
3961 skl_ddb_entry_init_from_hw(dev_priv,
3962 &ddb->plane[pipe][plane_id], val);
3966 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3967 struct skl_ddb_allocation *ddb /* out */)
3969 struct intel_crtc *crtc;
3971 memset(ddb, 0, sizeof(*ddb));
3973 ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
3975 for_each_intel_crtc(&dev_priv->drm, crtc) {
3976 enum intel_display_power_domain power_domain;
3977 enum plane_id plane_id;
3978 enum pipe pipe = crtc->pipe;
3980 power_domain = POWER_DOMAIN_PIPE(pipe);
3981 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3984 for_each_plane_id_on_crtc(crtc, plane_id)
3985 skl_ddb_get_hw_plane_state(dev_priv, pipe,
3988 intel_display_power_put(dev_priv, power_domain);
3993 * Determines the downscale amount of a plane for the purposes of watermark calculations.
3994 * The bspec defines downscale amount as:
3997 * Horizontal down scale amount = maximum[1, Horizontal source size /
3998 * Horizontal destination size]
3999 * Vertical down scale amount = maximum[1, Vertical source size /
4000 * Vertical destination size]
4001 * Total down scale amount = Horizontal down scale amount *
4002 * Vertical down scale amount
4005 * Return value is provided in 16.16 fixed point form to retain fractional part.
4006 * Caller should take care of dividing & rounding off the value.
4008 static uint_fixed_16_16_t
4009 skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
4010 const struct intel_plane_state *pstate)
4012 struct intel_plane *plane = to_intel_plane(pstate->base.plane);
4013 uint32_t src_w, src_h, dst_w, dst_h;
4014 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4015 uint_fixed_16_16_t downscale_h, downscale_w;
4017 if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4018 return u32_to_fixed16(0);
4020 /* n.b., src is 16.16 fixed point, dst is whole integer */
4021 if (plane->id == PLANE_CURSOR) {
4023 * Cursors only support 0/180 degree rotation,
4024 * hence no need to account for rotation here.
4026 src_w = pstate->base.src_w >> 16;
4027 src_h = pstate->base.src_h >> 16;
4028 dst_w = pstate->base.crtc_w;
4029 dst_h = pstate->base.crtc_h;
4032 * Src coordinates are already rotated by 270 degrees for
4033 * the 90/270 degree plane rotation cases (to match the
4034 * GTT mapping), hence no need to account for rotation here.
4036 src_w = drm_rect_width(&pstate->base.src) >> 16;
4037 src_h = drm_rect_height(&pstate->base.src) >> 16;
4038 dst_w = drm_rect_width(&pstate->base.dst);
4039 dst_h = drm_rect_height(&pstate->base.dst);
4042 fp_w_ratio = div_fixed16(src_w, dst_w);
4043 fp_h_ratio = div_fixed16(src_h, dst_h);
4044 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4045 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4047 return mul_fixed16(downscale_w, downscale_h);
4050 static uint_fixed_16_16_t
4051 skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
4053 uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4055 if (!crtc_state->base.enable)
4056 return pipe_downscale;
4058 if (crtc_state->pch_pfit.enabled) {
4059 uint32_t src_w, src_h, dst_w, dst_h;
4060 uint32_t pfit_size = crtc_state->pch_pfit.size;
4061 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4062 uint_fixed_16_16_t downscale_h, downscale_w;
4064 src_w = crtc_state->pipe_src_w;
4065 src_h = crtc_state->pipe_src_h;
4066 dst_w = pfit_size >> 16;
4067 dst_h = pfit_size & 0xffff;
4069 if (!dst_w || !dst_h)
4070 return pipe_downscale;
4072 fp_w_ratio = div_fixed16(src_w, dst_w);
4073 fp_h_ratio = div_fixed16(src_h, dst_h);
4074 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4075 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4077 pipe_downscale = mul_fixed16(downscale_w, downscale_h);
4080 return pipe_downscale;
4083 int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
4084 struct intel_crtc_state *cstate)
4086 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4087 struct drm_crtc_state *crtc_state = &cstate->base;
4088 struct drm_atomic_state *state = crtc_state->state;
4089 struct drm_plane *plane;
4090 const struct drm_plane_state *pstate;
4091 struct intel_plane_state *intel_pstate;
4092 int crtc_clock, dotclk;
4093 uint32_t pipe_max_pixel_rate;
4094 uint_fixed_16_16_t pipe_downscale;
4095 uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4097 if (!cstate->base.enable)
4100 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4101 uint_fixed_16_16_t plane_downscale;
4102 uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4105 if (!intel_wm_plane_visible(cstate,
4106 to_intel_plane_state(pstate)))
4109 if (WARN_ON(!pstate->fb))
4112 intel_pstate = to_intel_plane_state(pstate);
4113 plane_downscale = skl_plane_downscale_amount(cstate,
4115 bpp = pstate->fb->format->cpp[0] * 8;
4117 plane_downscale = mul_fixed16(plane_downscale,
4120 max_downscale = max_fixed16(plane_downscale, max_downscale);
4122 pipe_downscale = skl_pipe_downscale_amount(cstate);
4124 pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
4126 crtc_clock = crtc_state->adjusted_mode.crtc_clock;
4127 dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
4129 if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4132 pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4134 if (pipe_max_pixel_rate < crtc_clock) {
4135 DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4143 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
4144 const struct drm_plane_state *pstate,
4147 struct intel_plane *intel_plane = to_intel_plane(pstate->plane);
4148 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4150 uint32_t width = 0, height = 0;
4151 struct drm_framebuffer *fb;
4153 uint_fixed_16_16_t down_scale_amount;
4155 if (!intel_pstate->base.visible)
4159 format = fb->format->format;
4161 if (intel_plane->id == PLANE_CURSOR)
4163 if (plane == 1 && format != DRM_FORMAT_NV12)
4167 * Src coordinates are already rotated by 270 degrees for
4168 * the 90/270 degree plane rotation cases (to match the
4169 * GTT mapping), hence no need to account for rotation here.
4171 width = drm_rect_width(&intel_pstate->base.src) >> 16;
4172 height = drm_rect_height(&intel_pstate->base.src) >> 16;
4174 /* UV plane does 1/2 pixel sub-sampling */
4175 if (plane == 1 && format == DRM_FORMAT_NV12) {
4180 data_rate = width * height * fb->format->cpp[plane];
4182 down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4184 return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4188 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
4189 * a 8192x4096@32bpp framebuffer:
4190 * 3 * 4096 * 8192 * 4 < 2^32
4193 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4194 unsigned int *plane_data_rate,
4195 unsigned int *uv_plane_data_rate)
4197 struct drm_crtc_state *cstate = &intel_cstate->base;
4198 struct drm_atomic_state *state = cstate->state;
4199 struct drm_plane *plane;
4200 const struct drm_plane_state *pstate;
4201 unsigned int total_data_rate = 0;
4203 if (WARN_ON(!state))
4206 /* Calculate and cache data rate for each plane */
4207 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4208 enum plane_id plane_id = to_intel_plane(plane)->id;
4212 rate = skl_plane_relative_data_rate(intel_cstate,
4214 plane_data_rate[plane_id] = rate;
4216 total_data_rate += rate;
4219 rate = skl_plane_relative_data_rate(intel_cstate,
4221 uv_plane_data_rate[plane_id] = rate;
4223 total_data_rate += rate;
4226 return total_data_rate;
4230 skl_ddb_min_alloc(const struct drm_plane_state *pstate, const int plane)
4232 struct drm_framebuffer *fb = pstate->fb;
4233 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4234 uint32_t src_w, src_h;
4235 uint32_t min_scanlines = 8;
4241 /* For packed formats, and uv-plane, return 0 */
4242 if (plane == 1 && fb->format->format != DRM_FORMAT_NV12)
4245 /* For Non Y-tile return 8-blocks */
4246 if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
4247 fb->modifier != I915_FORMAT_MOD_Yf_TILED &&
4248 fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS &&
4249 fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS)
4253 * Src coordinates are already rotated by 270 degrees for
4254 * the 90/270 degree plane rotation cases (to match the
4255 * GTT mapping), hence no need to account for rotation here.
4257 src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
4258 src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4260 /* Halve UV plane width and height for NV12 */
4266 plane_bpp = fb->format->cpp[plane];
4268 if (drm_rotation_90_or_270(pstate->rotation)) {
4269 switch (plane_bpp) {
4283 WARN(1, "Unsupported pixel depth %u for rotation",
4289 return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
4293 skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
4294 uint16_t *minimum, uint16_t *uv_minimum)
4296 const struct drm_plane_state *pstate;
4297 struct drm_plane *plane;
4299 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4300 enum plane_id plane_id = to_intel_plane(plane)->id;
4302 if (plane_id == PLANE_CURSOR)
4305 if (!pstate->visible)
4308 minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
4309 uv_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4312 minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
4316 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4317 struct skl_ddb_allocation *ddb /* out */)
4319 struct drm_atomic_state *state = cstate->base.state;
4320 struct drm_crtc *crtc = cstate->base.crtc;
4321 struct drm_device *dev = crtc->dev;
4322 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4323 enum pipe pipe = intel_crtc->pipe;
4324 struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4325 uint16_t alloc_size, start;
4326 uint16_t minimum[I915_MAX_PLANES] = {};
4327 uint16_t uv_minimum[I915_MAX_PLANES] = {};
4328 unsigned int total_data_rate;
4329 enum plane_id plane_id;
4331 unsigned int plane_data_rate[I915_MAX_PLANES] = {};
4332 unsigned int uv_plane_data_rate[I915_MAX_PLANES] = {};
4333 uint16_t total_min_blocks = 0;
4335 /* Clear the partitioning for disabled planes. */
4336 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
4337 memset(ddb->uv_plane[pipe], 0, sizeof(ddb->uv_plane[pipe]));
4339 if (WARN_ON(!state))
4342 if (!cstate->base.active) {
4343 alloc->start = alloc->end = 0;
4347 total_data_rate = skl_get_total_relative_data_rate(cstate,
4349 uv_plane_data_rate);
4350 skl_ddb_get_pipe_allocation_limits(dev, cstate, total_data_rate, ddb,
4351 alloc, &num_active);
4352 alloc_size = skl_ddb_entry_size(alloc);
4353 if (alloc_size == 0)
4356 skl_ddb_calc_min(cstate, num_active, minimum, uv_minimum);
4359 * 1. Allocate the mininum required blocks for each active plane
4360 * and allocate the cursor, it doesn't require extra allocation
4361 * proportional to the data rate.
4364 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4365 total_min_blocks += minimum[plane_id];
4366 total_min_blocks += uv_minimum[plane_id];
4369 if (total_min_blocks > alloc_size) {
4370 DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4371 DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
4376 alloc_size -= total_min_blocks;
4377 ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4378 ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
4381 * 2. Distribute the remaining space in proportion to the amount of
4382 * data each plane needs to fetch from memory.
4384 * FIXME: we may not allocate every single block here.
4386 if (total_data_rate == 0)
4389 start = alloc->start;
4390 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4391 unsigned int data_rate, uv_data_rate;
4392 uint16_t plane_blocks, uv_plane_blocks;
4394 if (plane_id == PLANE_CURSOR)
4397 data_rate = plane_data_rate[plane_id];
4400 * allocation for (packed formats) or (uv-plane part of planar format):
4401 * promote the expression to 64 bits to avoid overflowing, the
4402 * result is < available as data_rate / total_data_rate < 1
4404 plane_blocks = minimum[plane_id];
4405 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
4408 /* Leave disabled planes at (0,0) */
4410 ddb->plane[pipe][plane_id].start = start;
4411 ddb->plane[pipe][plane_id].end = start + plane_blocks;
4414 start += plane_blocks;
4416 /* Allocate DDB for UV plane for planar format/NV12 */
4417 uv_data_rate = uv_plane_data_rate[plane_id];
4419 uv_plane_blocks = uv_minimum[plane_id];
4420 uv_plane_blocks += div_u64((uint64_t)alloc_size * uv_data_rate,
4424 ddb->uv_plane[pipe][plane_id].start = start;
4425 ddb->uv_plane[pipe][plane_id].end =
4426 start + uv_plane_blocks;
4429 start += uv_plane_blocks;
4436 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4437 * for the read latency) and cpp should always be <= 8, so that
4438 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4439 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4441 static uint_fixed_16_16_t
4442 skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
4443 uint8_t cpp, uint32_t latency, uint32_t dbuf_block_size)
4445 uint32_t wm_intermediate_val;
4446 uint_fixed_16_16_t ret;
4449 return FP_16_16_MAX;
4451 wm_intermediate_val = latency * pixel_rate * cpp;
4452 ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4454 if (INTEL_GEN(dev_priv) >= 10)
4455 ret = add_fixed16_u32(ret, 1);
4460 static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
4461 uint32_t pipe_htotal,
4463 uint_fixed_16_16_t plane_blocks_per_line)
4465 uint32_t wm_intermediate_val;
4466 uint_fixed_16_16_t ret;
4469 return FP_16_16_MAX;
4471 wm_intermediate_val = latency * pixel_rate;
4472 wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4473 pipe_htotal * 1000);
4474 ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4478 static uint_fixed_16_16_t
4479 intel_get_linetime_us(struct intel_crtc_state *cstate)
4481 uint32_t pixel_rate;
4482 uint32_t crtc_htotal;
4483 uint_fixed_16_16_t linetime_us;
4485 if (!cstate->base.active)
4486 return u32_to_fixed16(0);
4488 pixel_rate = cstate->pixel_rate;
4490 if (WARN_ON(pixel_rate == 0))
4491 return u32_to_fixed16(0);
4493 crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4494 linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4500 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
4501 const struct intel_plane_state *pstate)
4503 uint64_t adjusted_pixel_rate;
4504 uint_fixed_16_16_t downscale_amount;
4506 /* Shouldn't reach here on disabled planes... */
4507 if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4511 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4512 * with additional adjustments for plane-specific scaling.
4514 adjusted_pixel_rate = cstate->pixel_rate;
4515 downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4517 return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4522 skl_compute_plane_wm_params(const struct drm_i915_private *dev_priv,
4523 struct intel_crtc_state *cstate,
4524 const struct intel_plane_state *intel_pstate,
4525 struct skl_wm_params *wp, int plane_id)
4527 struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4528 const struct drm_plane_state *pstate = &intel_pstate->base;
4529 const struct drm_framebuffer *fb = pstate->fb;
4530 uint32_t interm_pbpl;
4531 struct intel_atomic_state *state =
4532 to_intel_atomic_state(cstate->base.state);
4533 bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4535 if (!intel_wm_plane_visible(cstate, intel_pstate))
4538 /* only NV12 format has two planes */
4539 if (plane_id == 1 && fb->format->format != DRM_FORMAT_NV12) {
4540 DRM_DEBUG_KMS("Non NV12 format have single plane\n");
4544 wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
4545 fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
4546 fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4547 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4548 wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
4549 wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4550 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4551 wp->is_planar = fb->format->format == DRM_FORMAT_NV12;
4553 if (plane->id == PLANE_CURSOR) {
4554 wp->width = intel_pstate->base.crtc_w;
4557 * Src coordinates are already rotated by 270 degrees for
4558 * the 90/270 degree plane rotation cases (to match the
4559 * GTT mapping), hence no need to account for rotation here.
4561 wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
4564 if (plane_id == 1 && wp->is_planar)
4567 wp->cpp = fb->format->cpp[plane_id];
4568 wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
4571 if (INTEL_GEN(dev_priv) >= 11 &&
4572 fb->modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 8)
4573 wp->dbuf_block_size = 256;
4575 wp->dbuf_block_size = 512;
4577 if (drm_rotation_90_or_270(pstate->rotation)) {
4581 wp->y_min_scanlines = 16;
4584 wp->y_min_scanlines = 8;
4587 wp->y_min_scanlines = 4;
4590 MISSING_CASE(wp->cpp);
4594 wp->y_min_scanlines = 4;
4597 if (apply_memory_bw_wa)
4598 wp->y_min_scanlines *= 2;
4600 wp->plane_bytes_per_line = wp->width * wp->cpp;
4602 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4603 wp->y_min_scanlines,
4604 wp->dbuf_block_size);
4606 if (INTEL_GEN(dev_priv) >= 10)
4609 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
4610 wp->y_min_scanlines);
4611 } else if (wp->x_tiled && IS_GEN9(dev_priv)) {
4612 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4613 wp->dbuf_block_size);
4614 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4616 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4617 wp->dbuf_block_size) + 1;
4618 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4621 wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
4622 wp->plane_blocks_per_line);
4623 wp->linetime_us = fixed16_to_u32_round_up(
4624 intel_get_linetime_us(cstate));
4629 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
4630 struct intel_crtc_state *cstate,
4631 const struct intel_plane_state *intel_pstate,
4632 uint16_t ddb_allocation,
4634 const struct skl_wm_params *wp,
4635 const struct skl_wm_level *result_prev,
4636 struct skl_wm_level *result /* out */)
4638 const struct drm_plane_state *pstate = &intel_pstate->base;
4639 uint32_t latency = dev_priv->wm.skl_latency[level];
4640 uint_fixed_16_16_t method1, method2;
4641 uint_fixed_16_16_t selected_result;
4642 uint32_t res_blocks, res_lines;
4643 struct intel_atomic_state *state =
4644 to_intel_atomic_state(cstate->base.state);
4645 bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4646 uint32_t min_disp_buf_needed;
4649 !intel_wm_plane_visible(cstate, intel_pstate)) {
4650 result->plane_en = false;
4654 /* Display WA #1141: kbl,cfl */
4655 if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
4656 IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4657 dev_priv->ipc_enabled)
4660 if (apply_memory_bw_wa && wp->x_tiled)
4663 method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4664 wp->cpp, latency, wp->dbuf_block_size);
4665 method2 = skl_wm_method2(wp->plane_pixel_rate,
4666 cstate->base.adjusted_mode.crtc_htotal,
4668 wp->plane_blocks_per_line);
4671 selected_result = max_fixed16(method2, wp->y_tile_minimum);
4673 if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4674 wp->dbuf_block_size < 1) &&
4675 (wp->plane_bytes_per_line / wp->dbuf_block_size < 1))
4676 selected_result = method2;
4677 else if (ddb_allocation >=
4678 fixed16_to_u32_round_up(wp->plane_blocks_per_line))
4679 selected_result = min_fixed16(method1, method2);
4680 else if (latency >= wp->linetime_us)
4681 selected_result = min_fixed16(method1, method2);
4683 selected_result = method1;
4686 res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4687 res_lines = div_round_up_fixed16(selected_result,
4688 wp->plane_blocks_per_line);
4690 /* Display WA #1125: skl,bxt,kbl,glk */
4691 if (level == 0 && wp->rc_surface)
4692 res_blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
4694 /* Display WA #1126: skl,bxt,kbl,glk */
4695 if (level >= 1 && level <= 7) {
4697 res_blocks += fixed16_to_u32_round_up(
4698 wp->y_tile_minimum);
4699 res_lines += wp->y_min_scanlines;
4705 * Make sure result blocks for higher latency levels are atleast
4706 * as high as level below the current level.
4707 * Assumption in DDB algorithm optimization for special cases.
4708 * Also covers Display WA #1125 for RC.
4710 if (result_prev->plane_res_b > res_blocks)
4711 res_blocks = result_prev->plane_res_b;
4714 if (INTEL_GEN(dev_priv) >= 11) {
4716 uint32_t extra_lines;
4717 uint_fixed_16_16_t fp_min_disp_buf_needed;
4719 if (res_lines % wp->y_min_scanlines == 0)
4720 extra_lines = wp->y_min_scanlines;
4722 extra_lines = wp->y_min_scanlines * 2 -
4723 res_lines % wp->y_min_scanlines;
4725 fp_min_disp_buf_needed = mul_u32_fixed16(res_lines +
4727 wp->plane_blocks_per_line);
4728 min_disp_buf_needed = fixed16_to_u32_round_up(
4729 fp_min_disp_buf_needed);
4731 min_disp_buf_needed = DIV_ROUND_UP(res_blocks * 11, 10);
4734 min_disp_buf_needed = res_blocks;
4737 if ((level > 0 && res_lines > 31) ||
4738 res_blocks >= ddb_allocation ||
4739 min_disp_buf_needed >= ddb_allocation) {
4740 result->plane_en = false;
4743 * If there are no valid level 0 watermarks, then we can't
4744 * support this display configuration.
4749 struct drm_plane *plane = pstate->plane;
4751 DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
4752 DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
4753 plane->base.id, plane->name,
4754 res_blocks, ddb_allocation, res_lines);
4760 * Display WA #826 (SKL:ALL, BXT:ALL) & #1059 (CNL:A)
4761 * disable wm level 1-7 on NV12 planes
4763 if (wp->is_planar && level >= 1 &&
4764 (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
4765 IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))) {
4766 result->plane_en = false;
4770 /* The number of lines are ignored for the level 0 watermark. */
4771 result->plane_res_b = res_blocks;
4772 result->plane_res_l = res_lines;
4773 result->plane_en = true;
4779 skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
4780 struct skl_ddb_allocation *ddb,
4781 struct intel_crtc_state *cstate,
4782 const struct intel_plane_state *intel_pstate,
4783 const struct skl_wm_params *wm_params,
4784 struct skl_plane_wm *wm,
4787 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4788 struct drm_plane *plane = intel_pstate->base.plane;
4789 struct intel_plane *intel_plane = to_intel_plane(plane);
4790 uint16_t ddb_blocks;
4791 enum pipe pipe = intel_crtc->pipe;
4792 int level, max_level = ilk_wm_max_level(dev_priv);
4793 enum plane_id intel_plane_id = intel_plane->id;
4796 if (WARN_ON(!intel_pstate->base.fb))
4799 ddb_blocks = plane_id ?
4800 skl_ddb_entry_size(&ddb->uv_plane[pipe][intel_plane_id]) :
4801 skl_ddb_entry_size(&ddb->plane[pipe][intel_plane_id]);
4803 for (level = 0; level <= max_level; level++) {
4804 struct skl_wm_level *result = plane_id ? &wm->uv_wm[level] :
4806 struct skl_wm_level *result_prev;
4809 result_prev = plane_id ? &wm->uv_wm[level - 1] :
4812 result_prev = plane_id ? &wm->uv_wm[0] : &wm->wm[0];
4814 ret = skl_compute_plane_wm(dev_priv,
4826 if (intel_pstate->base.fb->format->format == DRM_FORMAT_NV12)
4827 wm->is_planar = true;
4833 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4835 struct drm_atomic_state *state = cstate->base.state;
4836 struct drm_i915_private *dev_priv = to_i915(state->dev);
4837 uint_fixed_16_16_t linetime_us;
4838 uint32_t linetime_wm;
4840 linetime_us = intel_get_linetime_us(cstate);
4842 if (is_fixed16_zero(linetime_us))
4845 linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
4847 /* Display WA #1135: bxt:ALL GLK:ALL */
4848 if ((IS_BROXTON(dev_priv) || IS_GEMINILAKE(dev_priv)) &&
4849 dev_priv->ipc_enabled)
4855 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4856 struct skl_wm_params *wp,
4857 struct skl_wm_level *wm_l0,
4858 uint16_t ddb_allocation,
4859 struct skl_wm_level *trans_wm /* out */)
4861 struct drm_device *dev = cstate->base.crtc->dev;
4862 const struct drm_i915_private *dev_priv = to_i915(dev);
4863 uint16_t trans_min, trans_y_tile_min;
4864 const uint16_t trans_amount = 10; /* This is configurable amount */
4865 uint16_t trans_offset_b, res_blocks;
4867 if (!cstate->base.active)
4870 /* Transition WM are not recommended by HW team for GEN9 */
4871 if (INTEL_GEN(dev_priv) <= 9)
4874 /* Transition WM don't make any sense if ipc is disabled */
4875 if (!dev_priv->ipc_enabled)
4879 if (INTEL_GEN(dev_priv) >= 10)
4882 trans_offset_b = trans_min + trans_amount;
4885 trans_y_tile_min = (uint16_t) mul_round_up_u32_fixed16(2,
4886 wp->y_tile_minimum);
4887 res_blocks = max(wm_l0->plane_res_b, trans_y_tile_min) +
4890 res_blocks = wm_l0->plane_res_b + trans_offset_b;
4892 /* WA BUG:1938466 add one block for non y-tile planes */
4893 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
4900 if (res_blocks < ddb_allocation) {
4901 trans_wm->plane_res_b = res_blocks;
4902 trans_wm->plane_en = true;
4907 trans_wm->plane_en = false;
4910 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
4911 struct skl_ddb_allocation *ddb,
4912 struct skl_pipe_wm *pipe_wm)
4914 struct drm_device *dev = cstate->base.crtc->dev;
4915 struct drm_crtc_state *crtc_state = &cstate->base;
4916 const struct drm_i915_private *dev_priv = to_i915(dev);
4917 struct drm_plane *plane;
4918 const struct drm_plane_state *pstate;
4919 struct skl_plane_wm *wm;
4923 * We'll only calculate watermarks for planes that are actually
4924 * enabled, so make sure all other planes are set as disabled.
4926 memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
4928 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4929 const struct intel_plane_state *intel_pstate =
4930 to_intel_plane_state(pstate);
4931 enum plane_id plane_id = to_intel_plane(plane)->id;
4932 struct skl_wm_params wm_params;
4933 enum pipe pipe = to_intel_crtc(cstate->base.crtc)->pipe;
4934 uint16_t ddb_blocks;
4936 wm = &pipe_wm->planes[plane_id];
4937 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][plane_id]);
4939 ret = skl_compute_plane_wm_params(dev_priv, cstate,
4940 intel_pstate, &wm_params, 0);
4944 ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4945 intel_pstate, &wm_params, wm, 0);
4949 skl_compute_transition_wm(cstate, &wm_params, &wm->wm[0],
4950 ddb_blocks, &wm->trans_wm);
4952 /* uv plane watermarks must also be validated for NV12/Planar */
4953 if (wm_params.is_planar) {
4954 memset(&wm_params, 0, sizeof(struct skl_wm_params));
4955 wm->is_planar = true;
4957 ret = skl_compute_plane_wm_params(dev_priv, cstate,
4963 ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4964 intel_pstate, &wm_params,
4971 pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4976 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
4978 const struct skl_ddb_entry *entry)
4981 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
4986 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
4988 const struct skl_wm_level *level)
4992 if (level->plane_en) {
4994 val |= level->plane_res_b;
4995 val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
4998 I915_WRITE(reg, val);
5001 static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
5002 const struct skl_plane_wm *wm,
5003 const struct skl_ddb_allocation *ddb,
5004 enum plane_id plane_id)
5006 struct drm_crtc *crtc = &intel_crtc->base;
5007 struct drm_device *dev = crtc->dev;
5008 struct drm_i915_private *dev_priv = to_i915(dev);
5009 int level, max_level = ilk_wm_max_level(dev_priv);
5010 enum pipe pipe = intel_crtc->pipe;
5012 for (level = 0; level <= max_level; level++) {
5013 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5016 skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5019 skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
5020 &ddb->plane[pipe][plane_id]);
5021 /* FIXME: add proper NV12 support for ICL. */
5022 if (INTEL_GEN(dev_priv) >= 11)
5023 return skl_ddb_entry_write(dev_priv,
5024 PLANE_BUF_CFG(pipe, plane_id),
5025 &ddb->plane[pipe][plane_id]);
5026 if (wm->is_planar) {
5027 skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
5028 &ddb->uv_plane[pipe][plane_id]);
5029 skl_ddb_entry_write(dev_priv,
5030 PLANE_NV12_BUF_CFG(pipe, plane_id),
5031 &ddb->plane[pipe][plane_id]);
5033 skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
5034 &ddb->plane[pipe][plane_id]);
5035 I915_WRITE(PLANE_NV12_BUF_CFG(pipe, plane_id), 0x0);
5039 static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
5040 const struct skl_plane_wm *wm,
5041 const struct skl_ddb_allocation *ddb)
5043 struct drm_crtc *crtc = &intel_crtc->base;
5044 struct drm_device *dev = crtc->dev;
5045 struct drm_i915_private *dev_priv = to_i915(dev);
5046 int level, max_level = ilk_wm_max_level(dev_priv);
5047 enum pipe pipe = intel_crtc->pipe;
5049 for (level = 0; level <= max_level; level++) {
5050 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5053 skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5055 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
5056 &ddb->plane[pipe][PLANE_CURSOR]);
5059 bool skl_wm_level_equals(const struct skl_wm_level *l1,
5060 const struct skl_wm_level *l2)
5062 if (l1->plane_en != l2->plane_en)
5065 /* If both planes aren't enabled, the rest shouldn't matter */
5069 return (l1->plane_res_l == l2->plane_res_l &&
5070 l1->plane_res_b == l2->plane_res_b);
5073 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
5074 const struct skl_ddb_entry *b)
5076 return a->start < b->end && b->start < a->end;
5079 bool skl_ddb_allocation_overlaps(struct drm_i915_private *dev_priv,
5080 const struct skl_ddb_entry **entries,
5081 const struct skl_ddb_entry *ddb,
5086 for_each_pipe(dev_priv, pipe) {
5087 if (pipe != ignore && entries[pipe] &&
5088 skl_ddb_entries_overlap(ddb, entries[pipe]))
5095 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
5096 const struct skl_pipe_wm *old_pipe_wm,
5097 struct skl_pipe_wm *pipe_wm, /* out */
5098 struct skl_ddb_allocation *ddb, /* out */
5099 bool *changed /* out */)
5101 struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
5104 ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
5108 if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
5117 pipes_modified(struct drm_atomic_state *state)
5119 struct drm_crtc *crtc;
5120 struct drm_crtc_state *cstate;
5121 uint32_t i, ret = 0;
5123 for_each_new_crtc_in_state(state, crtc, cstate, i)
5124 ret |= drm_crtc_mask(crtc);
5130 skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
5132 struct drm_atomic_state *state = cstate->base.state;
5133 struct drm_device *dev = state->dev;
5134 struct drm_crtc *crtc = cstate->base.crtc;
5135 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5136 struct drm_i915_private *dev_priv = to_i915(dev);
5137 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5138 struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
5139 struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
5140 struct drm_plane_state *plane_state;
5141 struct drm_plane *plane;
5142 enum pipe pipe = intel_crtc->pipe;
5144 drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
5145 enum plane_id plane_id = to_intel_plane(plane)->id;
5147 if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
5148 &new_ddb->plane[pipe][plane_id]) &&
5149 skl_ddb_entry_equal(&cur_ddb->uv_plane[pipe][plane_id],
5150 &new_ddb->uv_plane[pipe][plane_id]))
5153 plane_state = drm_atomic_get_plane_state(state, plane);
5154 if (IS_ERR(plane_state))
5155 return PTR_ERR(plane_state);
5162 skl_compute_ddb(struct drm_atomic_state *state)
5164 const struct drm_i915_private *dev_priv = to_i915(state->dev);
5165 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5166 struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
5167 struct intel_crtc *crtc;
5168 struct intel_crtc_state *cstate;
5171 memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
5173 for_each_new_intel_crtc_in_state(intel_state, crtc, cstate, i) {
5174 ret = skl_allocate_pipe_ddb(cstate, ddb);
5178 ret = skl_ddb_add_affected_planes(cstate);
5187 skl_print_wm_changes(const struct drm_atomic_state *state)
5189 const struct drm_device *dev = state->dev;
5190 const struct drm_i915_private *dev_priv = to_i915(dev);
5191 const struct intel_atomic_state *intel_state =
5192 to_intel_atomic_state(state);
5193 const struct drm_crtc *crtc;
5194 const struct drm_crtc_state *cstate;
5195 const struct intel_plane *intel_plane;
5196 const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
5197 const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
5200 for_each_new_crtc_in_state(state, crtc, cstate, i) {
5201 const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5202 enum pipe pipe = intel_crtc->pipe;
5204 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
5205 enum plane_id plane_id = intel_plane->id;
5206 const struct skl_ddb_entry *old, *new;
5208 old = &old_ddb->plane[pipe][plane_id];
5209 new = &new_ddb->plane[pipe][plane_id];
5211 if (skl_ddb_entry_equal(old, new))
5214 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
5215 intel_plane->base.base.id,
5216 intel_plane->base.name,
5217 old->start, old->end,
5218 new->start, new->end);
5224 skl_ddb_add_affected_pipes(struct drm_atomic_state *state, bool *changed)
5226 struct drm_device *dev = state->dev;
5227 const struct drm_i915_private *dev_priv = to_i915(dev);
5228 const struct drm_crtc *crtc;
5229 const struct drm_crtc_state *cstate;
5230 struct intel_crtc *intel_crtc;
5231 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5232 uint32_t realloc_pipes = pipes_modified(state);
5236 * When we distrust bios wm we always need to recompute to set the
5237 * expected DDB allocations for each CRTC.
5239 if (dev_priv->wm.distrust_bios_wm)
5243 * If this transaction isn't actually touching any CRTC's, don't
5244 * bother with watermark calculation. Note that if we pass this
5245 * test, we're guaranteed to hold at least one CRTC state mutex,
5246 * which means we can safely use values like dev_priv->active_crtcs
5247 * since any racing commits that want to update them would need to
5248 * hold _all_ CRTC state mutexes.
5250 for_each_new_crtc_in_state(state, crtc, cstate, i)
5257 * If this is our first atomic update following hardware readout,
5258 * we can't trust the DDB that the BIOS programmed for us. Let's
5259 * pretend that all pipes switched active status so that we'll
5260 * ensure a full DDB recompute.
5262 if (dev_priv->wm.distrust_bios_wm) {
5263 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
5264 state->acquire_ctx);
5268 intel_state->active_pipe_changes = ~0;
5271 * We usually only initialize intel_state->active_crtcs if we
5272 * we're doing a modeset; make sure this field is always
5273 * initialized during the sanitization process that happens
5274 * on the first commit too.
5276 if (!intel_state->modeset)
5277 intel_state->active_crtcs = dev_priv->active_crtcs;
5281 * If the modeset changes which CRTC's are active, we need to
5282 * recompute the DDB allocation for *all* active pipes, even
5283 * those that weren't otherwise being modified in any way by this
5284 * atomic commit. Due to the shrinking of the per-pipe allocations
5285 * when new active CRTC's are added, it's possible for a pipe that
5286 * we were already using and aren't changing at all here to suddenly
5287 * become invalid if its DDB needs exceeds its new allocation.
5289 * Note that if we wind up doing a full DDB recompute, we can't let
5290 * any other display updates race with this transaction, so we need
5291 * to grab the lock on *all* CRTC's.
5293 if (intel_state->active_pipe_changes || intel_state->modeset) {
5295 intel_state->wm_results.dirty_pipes = ~0;
5299 * We're not recomputing for the pipes not included in the commit, so
5300 * make sure we start with the current state.
5302 for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
5303 struct intel_crtc_state *cstate;
5305 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
5307 return PTR_ERR(cstate);
5314 skl_compute_wm(struct drm_atomic_state *state)
5316 struct drm_crtc *crtc;
5317 struct drm_crtc_state *cstate;
5318 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5319 struct skl_ddb_values *results = &intel_state->wm_results;
5320 struct skl_pipe_wm *pipe_wm;
5321 bool changed = false;
5324 /* Clear all dirty flags */
5325 results->dirty_pipes = 0;
5327 ret = skl_ddb_add_affected_pipes(state, &changed);
5328 if (ret || !changed)
5331 ret = skl_compute_ddb(state);
5336 * Calculate WM's for all pipes that are part of this transaction.
5337 * Note that the DDB allocation above may have added more CRTC's that
5338 * weren't otherwise being modified (and set bits in dirty_pipes) if
5339 * pipe allocations had to change.
5341 * FIXME: Now that we're doing this in the atomic check phase, we
5342 * should allow skl_update_pipe_wm() to return failure in cases where
5343 * no suitable watermark values can be found.
5345 for_each_new_crtc_in_state(state, crtc, cstate, i) {
5346 struct intel_crtc_state *intel_cstate =
5347 to_intel_crtc_state(cstate);
5348 const struct skl_pipe_wm *old_pipe_wm =
5349 &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
5351 pipe_wm = &intel_cstate->wm.skl.optimal;
5352 ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
5353 &results->ddb, &changed);
5358 results->dirty_pipes |= drm_crtc_mask(crtc);
5360 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
5361 /* This pipe's WM's did not change */
5364 intel_cstate->update_wm_pre = true;
5367 skl_print_wm_changes(state);
5372 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5373 struct intel_crtc_state *cstate)
5375 struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
5376 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5377 struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5378 const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5379 enum pipe pipe = crtc->pipe;
5380 enum plane_id plane_id;
5382 if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
5385 I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5387 for_each_plane_id_on_crtc(crtc, plane_id) {
5388 if (plane_id != PLANE_CURSOR)
5389 skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
5392 skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
5397 static void skl_initial_wm(struct intel_atomic_state *state,
5398 struct intel_crtc_state *cstate)
5400 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5401 struct drm_device *dev = intel_crtc->base.dev;
5402 struct drm_i915_private *dev_priv = to_i915(dev);
5403 struct skl_ddb_values *results = &state->wm_results;
5404 struct skl_ddb_values *hw_vals = &dev_priv->wm.skl_hw;
5405 enum pipe pipe = intel_crtc->pipe;
5407 if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5410 mutex_lock(&dev_priv->wm.wm_mutex);
5412 if (cstate->base.active_changed)
5413 skl_atomic_update_crtc_wm(state, cstate);
5415 memcpy(hw_vals->ddb.uv_plane[pipe], results->ddb.uv_plane[pipe],
5416 sizeof(hw_vals->ddb.uv_plane[pipe]));
5417 memcpy(hw_vals->ddb.plane[pipe], results->ddb.plane[pipe],
5418 sizeof(hw_vals->ddb.plane[pipe]));
5420 mutex_unlock(&dev_priv->wm.wm_mutex);
5423 static void ilk_compute_wm_config(struct drm_device *dev,
5424 struct intel_wm_config *config)
5426 struct intel_crtc *crtc;
5428 /* Compute the currently _active_ config */
5429 for_each_intel_crtc(dev, crtc) {
5430 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5432 if (!wm->pipe_enabled)
5435 config->sprites_enabled |= wm->sprites_enabled;
5436 config->sprites_scaled |= wm->sprites_scaled;
5437 config->num_pipes_active++;
5441 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5443 struct drm_device *dev = &dev_priv->drm;
5444 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5445 struct ilk_wm_maximums max;
5446 struct intel_wm_config config = {};
5447 struct ilk_wm_values results = {};
5448 enum intel_ddb_partitioning partitioning;
5450 ilk_compute_wm_config(dev, &config);
5452 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
5453 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5455 /* 5/6 split only in single pipe config on IVB+ */
5456 if (INTEL_GEN(dev_priv) >= 7 &&
5457 config.num_pipes_active == 1 && config.sprites_enabled) {
5458 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
5459 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5461 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5463 best_lp_wm = &lp_wm_1_2;
5466 partitioning = (best_lp_wm == &lp_wm_1_2) ?
5467 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5469 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5471 ilk_write_wm_values(dev_priv, &results);
5474 static void ilk_initial_watermarks(struct intel_atomic_state *state,
5475 struct intel_crtc_state *cstate)
5477 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5478 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5480 mutex_lock(&dev_priv->wm.wm_mutex);
5481 intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5482 ilk_program_watermarks(dev_priv);
5483 mutex_unlock(&dev_priv->wm.wm_mutex);
5486 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5487 struct intel_crtc_state *cstate)
5489 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5490 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5492 mutex_lock(&dev_priv->wm.wm_mutex);
5493 if (cstate->wm.need_postvbl_update) {
5494 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5495 ilk_program_watermarks(dev_priv);
5497 mutex_unlock(&dev_priv->wm.wm_mutex);
5500 static inline void skl_wm_level_from_reg_val(uint32_t val,
5501 struct skl_wm_level *level)
5503 level->plane_en = val & PLANE_WM_EN;
5504 level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5505 level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5506 PLANE_WM_LINES_MASK;
5509 void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
5510 struct skl_pipe_wm *out)
5512 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5513 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5514 enum pipe pipe = intel_crtc->pipe;
5515 int level, max_level;
5516 enum plane_id plane_id;
5519 max_level = ilk_wm_max_level(dev_priv);
5521 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
5522 struct skl_plane_wm *wm = &out->planes[plane_id];
5524 for (level = 0; level <= max_level; level++) {
5525 if (plane_id != PLANE_CURSOR)
5526 val = I915_READ(PLANE_WM(pipe, plane_id, level));
5528 val = I915_READ(CUR_WM(pipe, level));
5530 skl_wm_level_from_reg_val(val, &wm->wm[level]);
5533 if (plane_id != PLANE_CURSOR)
5534 val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5536 val = I915_READ(CUR_WM_TRANS(pipe));
5538 skl_wm_level_from_reg_val(val, &wm->trans_wm);
5541 if (!intel_crtc->active)
5544 out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5547 void skl_wm_get_hw_state(struct drm_device *dev)
5549 struct drm_i915_private *dev_priv = to_i915(dev);
5550 struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5551 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5552 struct drm_crtc *crtc;
5553 struct intel_crtc *intel_crtc;
5554 struct intel_crtc_state *cstate;
5556 skl_ddb_get_hw_state(dev_priv, ddb);
5557 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5558 intel_crtc = to_intel_crtc(crtc);
5559 cstate = to_intel_crtc_state(crtc->state);
5561 skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
5563 if (intel_crtc->active)
5564 hw->dirty_pipes |= drm_crtc_mask(crtc);
5567 if (dev_priv->active_crtcs) {
5568 /* Fully recompute DDB on first atomic commit */
5569 dev_priv->wm.distrust_bios_wm = true;
5572 * Easy/common case; just sanitize DDB now if everything off
5573 * Keep dbuf slice info intact
5575 memset(ddb->plane, 0, sizeof(ddb->plane));
5576 memset(ddb->uv_plane, 0, sizeof(ddb->uv_plane));
5580 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
5582 struct drm_device *dev = crtc->dev;
5583 struct drm_i915_private *dev_priv = to_i915(dev);
5584 struct ilk_wm_values *hw = &dev_priv->wm.hw;
5585 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5586 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5587 struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5588 enum pipe pipe = intel_crtc->pipe;
5589 static const i915_reg_t wm0_pipe_reg[] = {
5590 [PIPE_A] = WM0_PIPEA_ILK,
5591 [PIPE_B] = WM0_PIPEB_ILK,
5592 [PIPE_C] = WM0_PIPEC_IVB,
5595 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5596 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5597 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5599 memset(active, 0, sizeof(*active));
5601 active->pipe_enabled = intel_crtc->active;
5603 if (active->pipe_enabled) {
5604 u32 tmp = hw->wm_pipe[pipe];
5607 * For active pipes LP0 watermark is marked as
5608 * enabled, and LP1+ watermaks as disabled since
5609 * we can't really reverse compute them in case
5610 * multiple pipes are active.
5612 active->wm[0].enable = true;
5613 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5614 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5615 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5616 active->linetime = hw->wm_linetime[pipe];
5618 int level, max_level = ilk_wm_max_level(dev_priv);
5621 * For inactive pipes, all watermark levels
5622 * should be marked as enabled but zeroed,
5623 * which is what we'd compute them to.
5625 for (level = 0; level <= max_level; level++)
5626 active->wm[level].enable = true;
5629 intel_crtc->wm.active.ilk = *active;
5632 #define _FW_WM(value, plane) \
5633 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5634 #define _FW_WM_VLV(value, plane) \
5635 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5637 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5638 struct g4x_wm_values *wm)
5642 tmp = I915_READ(DSPFW1);
5643 wm->sr.plane = _FW_WM(tmp, SR);
5644 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5645 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
5646 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
5648 tmp = I915_READ(DSPFW2);
5649 wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
5650 wm->sr.fbc = _FW_WM(tmp, FBC_SR);
5651 wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
5652 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
5653 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5654 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
5656 tmp = I915_READ(DSPFW3);
5657 wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
5658 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5659 wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
5660 wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
5663 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
5664 struct vlv_wm_values *wm)
5669 for_each_pipe(dev_priv, pipe) {
5670 tmp = I915_READ(VLV_DDL(pipe));
5672 wm->ddl[pipe].plane[PLANE_PRIMARY] =
5673 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5674 wm->ddl[pipe].plane[PLANE_CURSOR] =
5675 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5676 wm->ddl[pipe].plane[PLANE_SPRITE0] =
5677 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5678 wm->ddl[pipe].plane[PLANE_SPRITE1] =
5679 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5682 tmp = I915_READ(DSPFW1);
5683 wm->sr.plane = _FW_WM(tmp, SR);
5684 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5685 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
5686 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5688 tmp = I915_READ(DSPFW2);
5689 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
5690 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5691 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5693 tmp = I915_READ(DSPFW3);
5694 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5696 if (IS_CHERRYVIEW(dev_priv)) {
5697 tmp = I915_READ(DSPFW7_CHV);
5698 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5699 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5701 tmp = I915_READ(DSPFW8_CHV);
5702 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
5703 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5705 tmp = I915_READ(DSPFW9_CHV);
5706 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
5707 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5709 tmp = I915_READ(DSPHOWM);
5710 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5711 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
5712 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
5713 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
5714 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5715 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5716 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5717 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5718 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5719 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5721 tmp = I915_READ(DSPFW7);
5722 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5723 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5725 tmp = I915_READ(DSPHOWM);
5726 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5727 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5728 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5729 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5730 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5731 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5732 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5739 void g4x_wm_get_hw_state(struct drm_device *dev)
5741 struct drm_i915_private *dev_priv = to_i915(dev);
5742 struct g4x_wm_values *wm = &dev_priv->wm.g4x;
5743 struct intel_crtc *crtc;
5745 g4x_read_wm_values(dev_priv, wm);
5747 wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5749 for_each_intel_crtc(dev, crtc) {
5750 struct intel_crtc_state *crtc_state =
5751 to_intel_crtc_state(crtc->base.state);
5752 struct g4x_wm_state *active = &crtc->wm.active.g4x;
5753 struct g4x_pipe_wm *raw;
5754 enum pipe pipe = crtc->pipe;
5755 enum plane_id plane_id;
5756 int level, max_level;
5758 active->cxsr = wm->cxsr;
5759 active->hpll_en = wm->hpll_en;
5760 active->fbc_en = wm->fbc_en;
5762 active->sr = wm->sr;
5763 active->hpll = wm->hpll;
5765 for_each_plane_id_on_crtc(crtc, plane_id) {
5766 active->wm.plane[plane_id] =
5767 wm->pipe[pipe].plane[plane_id];
5770 if (wm->cxsr && wm->hpll_en)
5771 max_level = G4X_WM_LEVEL_HPLL;
5773 max_level = G4X_WM_LEVEL_SR;
5775 max_level = G4X_WM_LEVEL_NORMAL;
5777 level = G4X_WM_LEVEL_NORMAL;
5778 raw = &crtc_state->wm.g4x.raw[level];
5779 for_each_plane_id_on_crtc(crtc, plane_id)
5780 raw->plane[plane_id] = active->wm.plane[plane_id];
5782 if (++level > max_level)
5785 raw = &crtc_state->wm.g4x.raw[level];
5786 raw->plane[PLANE_PRIMARY] = active->sr.plane;
5787 raw->plane[PLANE_CURSOR] = active->sr.cursor;
5788 raw->plane[PLANE_SPRITE0] = 0;
5789 raw->fbc = active->sr.fbc;
5791 if (++level > max_level)
5794 raw = &crtc_state->wm.g4x.raw[level];
5795 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
5796 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
5797 raw->plane[PLANE_SPRITE0] = 0;
5798 raw->fbc = active->hpll.fbc;
5801 for_each_plane_id_on_crtc(crtc, plane_id)
5802 g4x_raw_plane_wm_set(crtc_state, level,
5803 plane_id, USHRT_MAX);
5804 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
5806 crtc_state->wm.g4x.optimal = *active;
5807 crtc_state->wm.g4x.intermediate = *active;
5809 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
5811 wm->pipe[pipe].plane[PLANE_PRIMARY],
5812 wm->pipe[pipe].plane[PLANE_CURSOR],
5813 wm->pipe[pipe].plane[PLANE_SPRITE0]);
5816 DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
5817 wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
5818 DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
5819 wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
5820 DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
5821 yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
5824 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
5826 struct intel_plane *plane;
5827 struct intel_crtc *crtc;
5829 mutex_lock(&dev_priv->wm.wm_mutex);
5831 for_each_intel_plane(&dev_priv->drm, plane) {
5832 struct intel_crtc *crtc =
5833 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5834 struct intel_crtc_state *crtc_state =
5835 to_intel_crtc_state(crtc->base.state);
5836 struct intel_plane_state *plane_state =
5837 to_intel_plane_state(plane->base.state);
5838 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
5839 enum plane_id plane_id = plane->id;
5842 if (plane_state->base.visible)
5845 for (level = 0; level < 3; level++) {
5846 struct g4x_pipe_wm *raw =
5847 &crtc_state->wm.g4x.raw[level];
5849 raw->plane[plane_id] = 0;
5850 wm_state->wm.plane[plane_id] = 0;
5853 if (plane_id == PLANE_PRIMARY) {
5854 for (level = 0; level < 3; level++) {
5855 struct g4x_pipe_wm *raw =
5856 &crtc_state->wm.g4x.raw[level];
5860 wm_state->sr.fbc = 0;
5861 wm_state->hpll.fbc = 0;
5862 wm_state->fbc_en = false;
5866 for_each_intel_crtc(&dev_priv->drm, crtc) {
5867 struct intel_crtc_state *crtc_state =
5868 to_intel_crtc_state(crtc->base.state);
5870 crtc_state->wm.g4x.intermediate =
5871 crtc_state->wm.g4x.optimal;
5872 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
5875 g4x_program_watermarks(dev_priv);
5877 mutex_unlock(&dev_priv->wm.wm_mutex);
5880 void vlv_wm_get_hw_state(struct drm_device *dev)
5882 struct drm_i915_private *dev_priv = to_i915(dev);
5883 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5884 struct intel_crtc *crtc;
5887 vlv_read_wm_values(dev_priv, wm);
5889 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
5890 wm->level = VLV_WM_LEVEL_PM2;
5892 if (IS_CHERRYVIEW(dev_priv)) {
5893 mutex_lock(&dev_priv->pcu_lock);
5895 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5896 if (val & DSP_MAXFIFO_PM5_ENABLE)
5897 wm->level = VLV_WM_LEVEL_PM5;
5900 * If DDR DVFS is disabled in the BIOS, Punit
5901 * will never ack the request. So if that happens
5902 * assume we don't have to enable/disable DDR DVFS
5903 * dynamically. To test that just set the REQ_ACK
5904 * bit to poke the Punit, but don't change the
5905 * HIGH/LOW bits so that we don't actually change
5906 * the current state.
5908 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5909 val |= FORCE_DDR_FREQ_REQ_ACK;
5910 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
5912 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
5913 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
5914 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
5915 "assuming DDR DVFS is disabled\n");
5916 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
5918 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5919 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
5920 wm->level = VLV_WM_LEVEL_DDR_DVFS;
5923 mutex_unlock(&dev_priv->pcu_lock);
5926 for_each_intel_crtc(dev, crtc) {
5927 struct intel_crtc_state *crtc_state =
5928 to_intel_crtc_state(crtc->base.state);
5929 struct vlv_wm_state *active = &crtc->wm.active.vlv;
5930 const struct vlv_fifo_state *fifo_state =
5931 &crtc_state->wm.vlv.fifo_state;
5932 enum pipe pipe = crtc->pipe;
5933 enum plane_id plane_id;
5936 vlv_get_fifo_size(crtc_state);
5938 active->num_levels = wm->level + 1;
5939 active->cxsr = wm->cxsr;
5941 for (level = 0; level < active->num_levels; level++) {
5942 struct g4x_pipe_wm *raw =
5943 &crtc_state->wm.vlv.raw[level];
5945 active->sr[level].plane = wm->sr.plane;
5946 active->sr[level].cursor = wm->sr.cursor;
5948 for_each_plane_id_on_crtc(crtc, plane_id) {
5949 active->wm[level].plane[plane_id] =
5950 wm->pipe[pipe].plane[plane_id];
5952 raw->plane[plane_id] =
5953 vlv_invert_wm_value(active->wm[level].plane[plane_id],
5954 fifo_state->plane[plane_id]);
5958 for_each_plane_id_on_crtc(crtc, plane_id)
5959 vlv_raw_plane_wm_set(crtc_state, level,
5960 plane_id, USHRT_MAX);
5961 vlv_invalidate_wms(crtc, active, level);
5963 crtc_state->wm.vlv.optimal = *active;
5964 crtc_state->wm.vlv.intermediate = *active;
5966 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5968 wm->pipe[pipe].plane[PLANE_PRIMARY],
5969 wm->pipe[pipe].plane[PLANE_CURSOR],
5970 wm->pipe[pipe].plane[PLANE_SPRITE0],
5971 wm->pipe[pipe].plane[PLANE_SPRITE1]);
5974 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
5975 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
5978 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
5980 struct intel_plane *plane;
5981 struct intel_crtc *crtc;
5983 mutex_lock(&dev_priv->wm.wm_mutex);
5985 for_each_intel_plane(&dev_priv->drm, plane) {
5986 struct intel_crtc *crtc =
5987 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5988 struct intel_crtc_state *crtc_state =
5989 to_intel_crtc_state(crtc->base.state);
5990 struct intel_plane_state *plane_state =
5991 to_intel_plane_state(plane->base.state);
5992 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
5993 const struct vlv_fifo_state *fifo_state =
5994 &crtc_state->wm.vlv.fifo_state;
5995 enum plane_id plane_id = plane->id;
5998 if (plane_state->base.visible)
6001 for (level = 0; level < wm_state->num_levels; level++) {
6002 struct g4x_pipe_wm *raw =
6003 &crtc_state->wm.vlv.raw[level];
6005 raw->plane[plane_id] = 0;
6007 wm_state->wm[level].plane[plane_id] =
6008 vlv_invert_wm_value(raw->plane[plane_id],
6009 fifo_state->plane[plane_id]);
6013 for_each_intel_crtc(&dev_priv->drm, crtc) {
6014 struct intel_crtc_state *crtc_state =
6015 to_intel_crtc_state(crtc->base.state);
6017 crtc_state->wm.vlv.intermediate =
6018 crtc_state->wm.vlv.optimal;
6019 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
6022 vlv_program_watermarks(dev_priv);
6024 mutex_unlock(&dev_priv->wm.wm_mutex);
6028 * FIXME should probably kill this and improve
6029 * the real watermark readout/sanitation instead
6031 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6033 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6034 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6035 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6038 * Don't touch WM1S_LP_EN here.
6039 * Doing so could cause underruns.
6043 void ilk_wm_get_hw_state(struct drm_device *dev)
6045 struct drm_i915_private *dev_priv = to_i915(dev);
6046 struct ilk_wm_values *hw = &dev_priv->wm.hw;
6047 struct drm_crtc *crtc;
6049 ilk_init_lp_watermarks(dev_priv);
6051 for_each_crtc(dev, crtc)
6052 ilk_pipe_wm_get_hw_state(crtc);
6054 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
6055 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
6056 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
6058 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6059 if (INTEL_GEN(dev_priv) >= 7) {
6060 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
6061 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
6064 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6065 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
6066 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6067 else if (IS_IVYBRIDGE(dev_priv))
6068 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
6069 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6072 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
6076 * intel_update_watermarks - update FIFO watermark values based on current modes
6077 * @crtc: the #intel_crtc on which to compute the WM
6079 * Calculate watermark values for the various WM regs based on current mode
6080 * and plane configuration.
6082 * There are several cases to deal with here:
6083 * - normal (i.e. non-self-refresh)
6084 * - self-refresh (SR) mode
6085 * - lines are large relative to FIFO size (buffer can hold up to 2)
6086 * - lines are small relative to FIFO size (buffer can hold more than 2
6087 * lines), so need to account for TLB latency
6089 * The normal calculation is:
6090 * watermark = dotclock * bytes per pixel * latency
6091 * where latency is platform & configuration dependent (we assume pessimal
6094 * The SR calculation is:
6095 * watermark = (trunc(latency/line time)+1) * surface width *
6098 * line time = htotal / dotclock
6099 * surface width = hdisplay for normal plane and 64 for cursor
6100 * and latency is assumed to be high, as above.
6102 * The final value programmed to the register should always be rounded up,
6103 * and include an extra 2 entries to account for clock crossings.
6105 * We don't use the sprite, so we can ignore that. And on Crestline we have
6106 * to set the non-SR watermarks to 8.
6108 void intel_update_watermarks(struct intel_crtc *crtc)
6110 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6112 if (dev_priv->display.update_wm)
6113 dev_priv->display.update_wm(crtc);
6116 void intel_enable_ipc(struct drm_i915_private *dev_priv)
6120 /* Display WA #0477 WaDisableIPC: skl */
6121 if (IS_SKYLAKE(dev_priv))
6122 dev_priv->ipc_enabled = false;
6124 /* Display WA #1141: SKL:all KBL:all CFL */
6125 if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) &&
6126 !dev_priv->dram_info.symmetric_memory)
6127 dev_priv->ipc_enabled = false;
6129 val = I915_READ(DISP_ARB_CTL2);
6131 if (dev_priv->ipc_enabled)
6132 val |= DISP_IPC_ENABLE;
6134 val &= ~DISP_IPC_ENABLE;
6136 I915_WRITE(DISP_ARB_CTL2, val);
6139 void intel_init_ipc(struct drm_i915_private *dev_priv)
6141 dev_priv->ipc_enabled = false;
6142 if (!HAS_IPC(dev_priv))
6145 dev_priv->ipc_enabled = true;
6146 intel_enable_ipc(dev_priv);
6150 * Lock protecting IPS related data structures
6152 DEFINE_SPINLOCK(mchdev_lock);
6154 /* Global for IPS driver to get at the current i915 device. Protected by
6156 static struct drm_i915_private *i915_mch_dev;
6158 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
6162 lockdep_assert_held(&mchdev_lock);
6164 rgvswctl = I915_READ16(MEMSWCTL);
6165 if (rgvswctl & MEMCTL_CMD_STS) {
6166 DRM_DEBUG("gpu busy, RCS change rejected\n");
6167 return false; /* still busy with another command */
6170 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
6171 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
6172 I915_WRITE16(MEMSWCTL, rgvswctl);
6173 POSTING_READ16(MEMSWCTL);
6175 rgvswctl |= MEMCTL_CMD_STS;
6176 I915_WRITE16(MEMSWCTL, rgvswctl);
6181 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6184 u8 fmax, fmin, fstart, vstart;
6186 spin_lock_irq(&mchdev_lock);
6188 rgvmodectl = I915_READ(MEMMODECTL);
6190 /* Enable temp reporting */
6191 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
6192 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
6194 /* 100ms RC evaluation intervals */
6195 I915_WRITE(RCUPEI, 100000);
6196 I915_WRITE(RCDNEI, 100000);
6198 /* Set max/min thresholds to 90ms and 80ms respectively */
6199 I915_WRITE(RCBMAXAVG, 90000);
6200 I915_WRITE(RCBMINAVG, 80000);
6202 I915_WRITE(MEMIHYST, 1);
6204 /* Set up min, max, and cur for interrupt handling */
6205 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
6206 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
6207 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
6208 MEMMODE_FSTART_SHIFT;
6210 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
6213 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
6214 dev_priv->ips.fstart = fstart;
6216 dev_priv->ips.max_delay = fstart;
6217 dev_priv->ips.min_delay = fmin;
6218 dev_priv->ips.cur_delay = fstart;
6220 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
6221 fmax, fmin, fstart);
6223 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6226 * Interrupts will be enabled in ironlake_irq_postinstall
6229 I915_WRITE(VIDSTART, vstart);
6230 POSTING_READ(VIDSTART);
6232 rgvmodectl |= MEMMODE_SWMODE_EN;
6233 I915_WRITE(MEMMODECTL, rgvmodectl);
6235 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6236 DRM_ERROR("stuck trying to change perf mode\n");
6239 ironlake_set_drps(dev_priv, fstart);
6241 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
6242 I915_READ(DDREC) + I915_READ(CSIEC);
6243 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6244 dev_priv->ips.last_count2 = I915_READ(GFXEC);
6245 dev_priv->ips.last_time2 = ktime_get_raw_ns();
6247 spin_unlock_irq(&mchdev_lock);
6250 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
6254 spin_lock_irq(&mchdev_lock);
6256 rgvswctl = I915_READ16(MEMSWCTL);
6258 /* Ack interrupts, disable EFC interrupt */
6259 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
6260 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
6261 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
6262 I915_WRITE(DEIIR, DE_PCU_EVENT);
6263 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
6265 /* Go back to the starting frequency */
6266 ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
6268 rgvswctl |= MEMCTL_CMD_STS;
6269 I915_WRITE(MEMSWCTL, rgvswctl);
6272 spin_unlock_irq(&mchdev_lock);
6275 /* There's a funny hw issue where the hw returns all 0 when reading from
6276 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
6277 * ourselves, instead of doing a rmw cycle (which might result in us clearing
6278 * all limits and the gpu stuck at whatever frequency it is at atm).
6280 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6282 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6285 /* Only set the down limit when we've reached the lowest level to avoid
6286 * getting more interrupts, otherwise leave this clear. This prevents a
6287 * race in the hw when coming out of rc6: There's a tiny window where
6288 * the hw runs at the minimal clock before selecting the desired
6289 * frequency, if the down threshold expires in that window we will not
6290 * receive a down interrupt. */
6291 if (INTEL_GEN(dev_priv) >= 9) {
6292 limits = (rps->max_freq_softlimit) << 23;
6293 if (val <= rps->min_freq_softlimit)
6294 limits |= (rps->min_freq_softlimit) << 14;
6296 limits = rps->max_freq_softlimit << 24;
6297 if (val <= rps->min_freq_softlimit)
6298 limits |= rps->min_freq_softlimit << 16;
6304 static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
6306 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6307 u32 threshold_up = 0, threshold_down = 0; /* in % */
6308 u32 ei_up = 0, ei_down = 0;
6310 lockdep_assert_held(&rps->power.mutex);
6312 if (new_power == rps->power.mode)
6315 /* Note the units here are not exactly 1us, but 1280ns. */
6316 switch (new_power) {
6318 /* Upclock if more than 95% busy over 16ms */
6322 /* Downclock if less than 85% busy over 32ms */
6324 threshold_down = 85;
6328 /* Upclock if more than 90% busy over 13ms */
6332 /* Downclock if less than 75% busy over 32ms */
6334 threshold_down = 75;
6338 /* Upclock if more than 85% busy over 10ms */
6342 /* Downclock if less than 60% busy over 32ms */
6344 threshold_down = 60;
6348 /* When byt can survive without system hang with dynamic
6349 * sw freq adjustments, this restriction can be lifted.
6351 if (IS_VALLEYVIEW(dev_priv))
6354 I915_WRITE(GEN6_RP_UP_EI,
6355 GT_INTERVAL_FROM_US(dev_priv, ei_up));
6356 I915_WRITE(GEN6_RP_UP_THRESHOLD,
6357 GT_INTERVAL_FROM_US(dev_priv,
6358 ei_up * threshold_up / 100));
6360 I915_WRITE(GEN6_RP_DOWN_EI,
6361 GT_INTERVAL_FROM_US(dev_priv, ei_down));
6362 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6363 GT_INTERVAL_FROM_US(dev_priv,
6364 ei_down * threshold_down / 100));
6366 I915_WRITE(GEN6_RP_CONTROL,
6367 GEN6_RP_MEDIA_TURBO |
6368 GEN6_RP_MEDIA_HW_NORMAL_MODE |
6369 GEN6_RP_MEDIA_IS_GFX |
6371 GEN6_RP_UP_BUSY_AVG |
6372 GEN6_RP_DOWN_IDLE_AVG);
6375 rps->power.mode = new_power;
6376 rps->power.up_threshold = threshold_up;
6377 rps->power.down_threshold = threshold_down;
6380 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
6382 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6385 new_power = rps->power.mode;
6386 switch (rps->power.mode) {
6388 if (val > rps->efficient_freq + 1 &&
6389 val > rps->cur_freq)
6390 new_power = BETWEEN;
6394 if (val <= rps->efficient_freq &&
6395 val < rps->cur_freq)
6396 new_power = LOW_POWER;
6397 else if (val >= rps->rp0_freq &&
6398 val > rps->cur_freq)
6399 new_power = HIGH_POWER;
6403 if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
6404 val < rps->cur_freq)
6405 new_power = BETWEEN;
6408 /* Max/min bins are special */
6409 if (val <= rps->min_freq_softlimit)
6410 new_power = LOW_POWER;
6411 if (val >= rps->max_freq_softlimit)
6412 new_power = HIGH_POWER;
6414 mutex_lock(&rps->power.mutex);
6415 if (rps->power.interactive)
6416 new_power = HIGH_POWER;
6417 rps_set_power(dev_priv, new_power);
6418 mutex_unlock(&rps->power.mutex);
6421 void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
6423 struct intel_rps *rps = &i915->gt_pm.rps;
6425 if (INTEL_GEN(i915) < 6)
6428 mutex_lock(&rps->power.mutex);
6430 if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
6431 rps_set_power(i915, HIGH_POWER);
6433 GEM_BUG_ON(!rps->power.interactive);
6434 rps->power.interactive--;
6436 mutex_unlock(&rps->power.mutex);
6439 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
6441 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6444 /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6445 if (val > rps->min_freq_softlimit)
6446 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6447 if (val < rps->max_freq_softlimit)
6448 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6450 mask &= dev_priv->pm_rps_events;
6452 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6455 /* gen6_set_rps is called to update the frequency request, but should also be
6456 * called when the range (min_delay and max_delay) is modified so that we can
6457 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6458 static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6460 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6462 /* min/max delay may still have been modified so be sure to
6463 * write the limits value.
6465 if (val != rps->cur_freq) {
6466 gen6_set_rps_thresholds(dev_priv, val);
6468 if (INTEL_GEN(dev_priv) >= 9)
6469 I915_WRITE(GEN6_RPNSWREQ,
6470 GEN9_FREQUENCY(val));
6471 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6472 I915_WRITE(GEN6_RPNSWREQ,
6473 HSW_FREQUENCY(val));
6475 I915_WRITE(GEN6_RPNSWREQ,
6476 GEN6_FREQUENCY(val) |
6478 GEN6_AGGRESSIVE_TURBO);
6481 /* Make sure we continue to get interrupts
6482 * until we hit the minimum or maximum frequencies.
6484 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6485 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6487 rps->cur_freq = val;
6488 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6493 static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6497 if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6498 "Odd GPU freq value\n"))
6501 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6503 if (val != dev_priv->gt_pm.rps.cur_freq) {
6504 err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6508 gen6_set_rps_thresholds(dev_priv, val);
6511 dev_priv->gt_pm.rps.cur_freq = val;
6512 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6517 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6519 * * If Gfx is Idle, then
6520 * 1. Forcewake Media well.
6521 * 2. Request idle freq.
6522 * 3. Release Forcewake of Media well.
6524 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
6526 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6527 u32 val = rps->idle_freq;
6530 if (rps->cur_freq <= val)
6533 /* The punit delays the write of the frequency and voltage until it
6534 * determines the GPU is awake. During normal usage we don't want to
6535 * waste power changing the frequency if the GPU is sleeping (rc6).
6536 * However, the GPU and driver is now idle and we do not want to delay
6537 * switching to minimum voltage (reducing power whilst idle) as we do
6538 * not expect to be woken in the near future and so must flush the
6539 * change by waking the device.
6541 * We choose to take the media powerwell (either would do to trick the
6542 * punit into committing the voltage change) as that takes a lot less
6543 * power than the render powerwell.
6545 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6546 err = valleyview_set_rps(dev_priv, val);
6547 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6550 DRM_ERROR("Failed to set RPS for idle\n");
6553 void gen6_rps_busy(struct drm_i915_private *dev_priv)
6555 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6557 mutex_lock(&dev_priv->pcu_lock);
6561 if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6562 gen6_rps_reset_ei(dev_priv);
6563 I915_WRITE(GEN6_PMINTRMSK,
6564 gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6566 gen6_enable_rps_interrupts(dev_priv);
6568 /* Use the user's desired frequency as a guide, but for better
6569 * performance, jump directly to RPe as our starting frequency.
6571 freq = max(rps->cur_freq,
6572 rps->efficient_freq);
6574 if (intel_set_rps(dev_priv,
6576 rps->min_freq_softlimit,
6577 rps->max_freq_softlimit)))
6578 DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6580 mutex_unlock(&dev_priv->pcu_lock);
6583 void gen6_rps_idle(struct drm_i915_private *dev_priv)
6585 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6587 /* Flush our bottom-half so that it does not race with us
6588 * setting the idle frequency and so that it is bounded by
6589 * our rpm wakeref. And then disable the interrupts to stop any
6590 * futher RPS reclocking whilst we are asleep.
6592 gen6_disable_rps_interrupts(dev_priv);
6594 mutex_lock(&dev_priv->pcu_lock);
6596 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6597 vlv_set_rps_idle(dev_priv);
6599 gen6_set_rps(dev_priv, rps->idle_freq);
6601 I915_WRITE(GEN6_PMINTRMSK,
6602 gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6604 mutex_unlock(&dev_priv->pcu_lock);
6607 void gen6_rps_boost(struct i915_request *rq,
6608 struct intel_rps_client *rps_client)
6610 struct intel_rps *rps = &rq->i915->gt_pm.rps;
6611 unsigned long flags;
6614 /* This is intentionally racy! We peek at the state here, then
6615 * validate inside the RPS worker.
6620 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
6623 /* Serializes with i915_request_retire() */
6625 spin_lock_irqsave(&rq->lock, flags);
6626 if (!rq->waitboost && !dma_fence_is_signaled_locked(&rq->fence)) {
6627 boost = !atomic_fetch_inc(&rps->num_waiters);
6628 rq->waitboost = true;
6630 spin_unlock_irqrestore(&rq->lock, flags);
6634 if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
6635 schedule_work(&rps->work);
6637 atomic_inc(rps_client ? &rps_client->boosts : &rps->boosts);
6640 int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6642 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6645 lockdep_assert_held(&dev_priv->pcu_lock);
6646 GEM_BUG_ON(val > rps->max_freq);
6647 GEM_BUG_ON(val < rps->min_freq);
6649 if (!rps->enabled) {
6650 rps->cur_freq = val;
6654 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6655 err = valleyview_set_rps(dev_priv, val);
6657 err = gen6_set_rps(dev_priv, val);
6662 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
6664 I915_WRITE(GEN6_RC_CONTROL, 0);
6665 I915_WRITE(GEN9_PG_ENABLE, 0);
6668 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6670 I915_WRITE(GEN6_RP_CONTROL, 0);
6673 static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6675 I915_WRITE(GEN6_RC_CONTROL, 0);
6678 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6680 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6681 I915_WRITE(GEN6_RP_CONTROL, 0);
6684 static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6686 I915_WRITE(GEN6_RC_CONTROL, 0);
6689 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6691 I915_WRITE(GEN6_RP_CONTROL, 0);
6694 static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6696 /* We're doing forcewake before Disabling RC6,
6697 * This what the BIOS expects when going into suspend */
6698 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6700 I915_WRITE(GEN6_RC_CONTROL, 0);
6702 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6705 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6707 I915_WRITE(GEN6_RP_CONTROL, 0);
6710 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6712 bool enable_rc6 = true;
6713 unsigned long rc6_ctx_base;
6717 rc_ctl = I915_READ(GEN6_RC_CONTROL);
6718 rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
6719 RC_SW_TARGET_STATE_SHIFT;
6720 DRM_DEBUG_DRIVER("BIOS enabled RC states: "
6721 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
6722 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
6723 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
6726 if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6727 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6732 * The exact context size is not known for BXT, so assume a page size
6735 rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6736 if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
6737 (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
6738 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6742 if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
6743 ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
6744 ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
6745 ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6746 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6750 if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
6751 !I915_READ(GEN8_PUSHBUS_ENABLE) ||
6752 !I915_READ(GEN8_PUSHBUS_SHIFT)) {
6753 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
6757 if (!I915_READ(GEN6_GFXPAUSE)) {
6758 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
6762 if (!I915_READ(GEN8_MISC_CTRL0)) {
6763 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6770 static bool sanitize_rc6(struct drm_i915_private *i915)
6772 struct intel_device_info *info = mkwrite_device_info(i915);
6774 /* Powersaving is controlled by the host when inside a VM */
6775 if (intel_vgpu_active(i915))
6778 if (info->has_rc6 &&
6779 IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
6780 DRM_INFO("RC6 disabled by BIOS\n");
6785 * We assume that we do not have any deep rc6 levels if we don't have
6786 * have the previous rc6 level supported, i.e. we use HAS_RC6()
6787 * as the initial coarse check for rc6 in general, moving on to
6788 * progressively finer/deeper levels.
6790 if (!info->has_rc6 && info->has_rc6p)
6793 return info->has_rc6;
6796 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6798 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6800 /* All of these values are in units of 50MHz */
6802 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
6803 if (IS_GEN9_LP(dev_priv)) {
6804 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6805 rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
6806 rps->rp1_freq = (rp_state_cap >> 8) & 0xff;
6807 rps->min_freq = (rp_state_cap >> 0) & 0xff;
6809 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6810 rps->rp0_freq = (rp_state_cap >> 0) & 0xff;
6811 rps->rp1_freq = (rp_state_cap >> 8) & 0xff;
6812 rps->min_freq = (rp_state_cap >> 16) & 0xff;
6814 /* hw_max = RP0 until we check for overclocking */
6815 rps->max_freq = rps->rp0_freq;
6817 rps->efficient_freq = rps->rp1_freq;
6818 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6819 IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6820 u32 ddcc_status = 0;
6822 if (sandybridge_pcode_read(dev_priv,
6823 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
6825 rps->efficient_freq =
6827 ((ddcc_status >> 8) & 0xff),
6832 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6833 /* Store the frequency values in 16.66 MHZ units, which is
6834 * the natural hardware unit for SKL
6836 rps->rp0_freq *= GEN9_FREQ_SCALER;
6837 rps->rp1_freq *= GEN9_FREQ_SCALER;
6838 rps->min_freq *= GEN9_FREQ_SCALER;
6839 rps->max_freq *= GEN9_FREQ_SCALER;
6840 rps->efficient_freq *= GEN9_FREQ_SCALER;
6844 static void reset_rps(struct drm_i915_private *dev_priv,
6845 int (*set)(struct drm_i915_private *, u8))
6847 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6848 u8 freq = rps->cur_freq;
6851 rps->power.mode = -1;
6854 if (set(dev_priv, freq))
6855 DRM_ERROR("Failed to reset RPS to initial values\n");
6858 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
6859 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
6861 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6863 /* Program defaults and thresholds for RPS */
6864 if (IS_GEN9(dev_priv))
6865 I915_WRITE(GEN6_RC_VIDEO_FREQ,
6866 GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
6868 /* 1 second timeout*/
6869 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
6870 GT_INTERVAL_FROM_US(dev_priv, 1000000));
6872 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
6874 /* Leaning on the below call to gen6_set_rps to program/setup the
6875 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
6876 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6877 reset_rps(dev_priv, gen6_set_rps);
6879 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6882 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
6884 struct intel_engine_cs *engine;
6885 enum intel_engine_id id;
6888 /* 1a: Software RC state - RC0 */
6889 I915_WRITE(GEN6_RC_STATE, 0);
6891 /* 1b: Get forcewake during program sequence. Although the driver
6892 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6893 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6895 /* 2a: Disable RC states. */
6896 I915_WRITE(GEN6_RC_CONTROL, 0);
6898 /* 2b: Program RC6 thresholds.*/
6899 if (INTEL_GEN(dev_priv) >= 10) {
6900 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
6901 I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
6902 } else if (IS_SKYLAKE(dev_priv)) {
6904 * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
6905 * when CPG is enabled
6907 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
6909 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
6912 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6913 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6914 for_each_engine(engine, dev_priv, id)
6915 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6917 if (HAS_GUC(dev_priv))
6918 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
6920 I915_WRITE(GEN6_RC_SLEEP, 0);
6923 * 2c: Program Coarse Power Gating Policies.
6925 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
6926 * use instead is a more conservative estimate for the maximum time
6927 * it takes us to service a CS interrupt and submit a new ELSP - that
6928 * is the time which the GPU is idle waiting for the CPU to select the
6929 * next request to execute. If the idle hysteresis is less than that
6930 * interrupt service latency, the hardware will automatically gate
6931 * the power well and we will then incur the wake up cost on top of
6932 * the service latency. A similar guide from intel_pstate is that we
6933 * do not want the enable hysteresis to less than the wakeup latency.
6935 * igt/gem_exec_nop/sequential provides a rough estimate for the
6936 * service latency, and puts it around 10us for Broadwell (and other
6937 * big core) and around 40us for Broxton (and other low power cores).
6938 * [Note that for legacy ringbuffer submission, this is less than 1us!]
6939 * However, the wakeup latency on Broxton is closer to 100us. To be
6940 * conservative, we have to factor in a context switch on top (due
6943 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
6944 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
6946 /* 3a: Enable RC6 */
6947 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
6949 /* WaRsUseTimeoutMode:cnl (pre-prod) */
6950 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
6951 rc6_mode = GEN7_RC_CTL_TO_MODE;
6953 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
6955 I915_WRITE(GEN6_RC_CONTROL,
6956 GEN6_RC_CTL_HW_ENABLE |
6957 GEN6_RC_CTL_RC6_ENABLE |
6961 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6962 * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
6964 if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6965 I915_WRITE(GEN9_PG_ENABLE, 0);
6967 I915_WRITE(GEN9_PG_ENABLE,
6968 GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
6970 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6973 static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
6975 struct intel_engine_cs *engine;
6976 enum intel_engine_id id;
6978 /* 1a: Software RC state - RC0 */
6979 I915_WRITE(GEN6_RC_STATE, 0);
6981 /* 1b: Get forcewake during program sequence. Although the driver
6982 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6983 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6985 /* 2a: Disable RC states. */
6986 I915_WRITE(GEN6_RC_CONTROL, 0);
6988 /* 2b: Program RC6 thresholds.*/
6989 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6990 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6991 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6992 for_each_engine(engine, dev_priv, id)
6993 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6994 I915_WRITE(GEN6_RC_SLEEP, 0);
6995 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
6999 I915_WRITE(GEN6_RC_CONTROL,
7000 GEN6_RC_CTL_HW_ENABLE |
7001 GEN7_RC_CTL_TO_MODE |
7002 GEN6_RC_CTL_RC6_ENABLE);
7004 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7007 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
7009 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7011 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7013 /* 1 Program defaults and thresholds for RPS*/
7014 I915_WRITE(GEN6_RPNSWREQ,
7015 HSW_FREQUENCY(rps->rp1_freq));
7016 I915_WRITE(GEN6_RC_VIDEO_FREQ,
7017 HSW_FREQUENCY(rps->rp1_freq));
7018 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
7019 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
7021 /* Docs recommend 900MHz, and 300 MHz respectively */
7022 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7023 rps->max_freq_softlimit << 24 |
7024 rps->min_freq_softlimit << 16);
7026 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
7027 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
7028 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
7029 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
7031 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7034 I915_WRITE(GEN6_RP_CONTROL,
7035 GEN6_RP_MEDIA_TURBO |
7036 GEN6_RP_MEDIA_HW_NORMAL_MODE |
7037 GEN6_RP_MEDIA_IS_GFX |
7039 GEN6_RP_UP_BUSY_AVG |
7040 GEN6_RP_DOWN_IDLE_AVG);
7042 reset_rps(dev_priv, gen6_set_rps);
7044 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7047 static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
7049 struct intel_engine_cs *engine;
7050 enum intel_engine_id id;
7051 u32 rc6vids, rc6_mask;
7055 I915_WRITE(GEN6_RC_STATE, 0);
7057 /* Clear the DBG now so we don't confuse earlier errors */
7058 gtfifodbg = I915_READ(GTFIFODBG);
7060 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
7061 I915_WRITE(GTFIFODBG, gtfifodbg);
7064 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7066 /* disable the counters and set deterministic thresholds */
7067 I915_WRITE(GEN6_RC_CONTROL, 0);
7069 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7070 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7071 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7072 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7073 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7075 for_each_engine(engine, dev_priv, id)
7076 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7078 I915_WRITE(GEN6_RC_SLEEP, 0);
7079 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7080 if (IS_IVYBRIDGE(dev_priv))
7081 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
7083 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7084 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
7085 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7087 /* We don't use those on Haswell */
7088 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
7089 if (HAS_RC6p(dev_priv))
7090 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
7091 if (HAS_RC6pp(dev_priv))
7092 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
7093 I915_WRITE(GEN6_RC_CONTROL,
7095 GEN6_RC_CTL_EI_MODE(1) |
7096 GEN6_RC_CTL_HW_ENABLE);
7099 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
7100 if (IS_GEN6(dev_priv) && ret) {
7101 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
7102 } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
7103 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
7104 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
7105 rc6vids &= 0xffff00;
7106 rc6vids |= GEN6_ENCODE_RC6_VID(450);
7107 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
7109 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
7112 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7115 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
7117 /* Here begins a magic sequence of register writes to enable
7118 * auto-downclocking.
7120 * Perhaps there might be some value in exposing these to
7123 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7125 /* Power down if completely idle for over 50ms */
7126 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
7127 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7129 reset_rps(dev_priv, gen6_set_rps);
7131 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7134 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7136 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7137 const int min_freq = 15;
7138 const int scaling_factor = 180;
7139 unsigned int gpu_freq;
7140 unsigned int max_ia_freq, min_ring_freq;
7141 unsigned int max_gpu_freq, min_gpu_freq;
7142 struct cpufreq_policy *policy;
7144 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
7146 if (rps->max_freq <= rps->min_freq)
7149 policy = cpufreq_cpu_get(0);
7151 max_ia_freq = policy->cpuinfo.max_freq;
7152 cpufreq_cpu_put(policy);
7155 * Default to measured freq if none found, PCU will ensure we
7158 max_ia_freq = tsc_khz;
7161 /* Convert from kHz to MHz */
7162 max_ia_freq /= 1000;
7164 min_ring_freq = I915_READ(DCLK) & 0xf;
7165 /* convert DDR frequency from units of 266.6MHz to bandwidth */
7166 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7168 min_gpu_freq = rps->min_freq;
7169 max_gpu_freq = rps->max_freq;
7170 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7171 /* Convert GT frequency to 50 HZ units */
7172 min_gpu_freq /= GEN9_FREQ_SCALER;
7173 max_gpu_freq /= GEN9_FREQ_SCALER;
7177 * For each potential GPU frequency, load a ring frequency we'd like
7178 * to use for memory access. We do this by specifying the IA frequency
7179 * the PCU should use as a reference to determine the ring frequency.
7181 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7182 const int diff = max_gpu_freq - gpu_freq;
7183 unsigned int ia_freq = 0, ring_freq = 0;
7185 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7187 * ring_freq = 2 * GT. ring_freq is in 100MHz units
7188 * No floor required for ring frequency on SKL.
7190 ring_freq = gpu_freq;
7191 } else if (INTEL_GEN(dev_priv) >= 8) {
7192 /* max(2 * GT, DDR). NB: GT is 50MHz units */
7193 ring_freq = max(min_ring_freq, gpu_freq);
7194 } else if (IS_HASWELL(dev_priv)) {
7195 ring_freq = mult_frac(gpu_freq, 5, 4);
7196 ring_freq = max(min_ring_freq, ring_freq);
7197 /* leave ia_freq as the default, chosen by cpufreq */
7199 /* On older processors, there is no separate ring
7200 * clock domain, so in order to boost the bandwidth
7201 * of the ring, we need to upclock the CPU (ia_freq).
7203 * For GPU frequencies less than 750MHz,
7204 * just use the lowest ring freq.
7206 if (gpu_freq < min_freq)
7209 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
7210 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
7213 sandybridge_pcode_write(dev_priv,
7214 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7215 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
7216 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
7221 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7225 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7227 switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
7229 /* (2 * 4) config */
7230 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
7233 /* (2 * 6) config */
7234 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
7237 /* (2 * 8) config */
7239 /* Setting (2 * 8) Min RP0 for any other combination */
7240 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
7244 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
7249 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7253 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
7254 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
7259 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
7263 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7264 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
7269 static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
7273 val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
7274 rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
7275 FB_GFX_FREQ_FUSE_MASK);
7280 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
7284 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7286 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
7291 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7295 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7297 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
7299 rp0 = min_t(u32, rp0, 0xea);
7304 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7308 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7309 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7310 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7311 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
7316 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7320 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
7322 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
7323 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
7324 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
7325 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
7326 * to make sure it matches what Punit accepts.
7328 return max_t(u32, val, 0xc0);
7331 /* Check that the pctx buffer wasn't move under us. */
7332 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
7334 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7336 WARN_ON(pctx_addr != dev_priv->dsm.start +
7337 dev_priv->vlv_pctx->stolen->start);
7341 /* Check that the pcbr address is not empty. */
7342 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
7344 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7346 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
7349 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7351 resource_size_t pctx_paddr, paddr;
7352 resource_size_t pctx_size = 32*1024;
7355 pcbr = I915_READ(VLV_PCBR);
7356 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7357 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7358 paddr = dev_priv->dsm.end + 1 - pctx_size;
7359 GEM_BUG_ON(paddr > U32_MAX);
7361 pctx_paddr = (paddr & (~4095));
7362 I915_WRITE(VLV_PCBR, pctx_paddr);
7365 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7368 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7370 struct drm_i915_gem_object *pctx;
7371 resource_size_t pctx_paddr;
7372 resource_size_t pctx_size = 24*1024;
7375 pcbr = I915_READ(VLV_PCBR);
7377 /* BIOS set it up already, grab the pre-alloc'd space */
7378 resource_size_t pcbr_offset;
7380 pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7381 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7383 I915_GTT_OFFSET_NONE,
7388 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7391 * From the Gunit register HAS:
7392 * The Gfx driver is expected to program this register and ensure
7393 * proper allocation within Gfx stolen memory. For example, this
7394 * register should be programmed such than the PCBR range does not
7395 * overlap with other ranges, such as the frame buffer, protected
7396 * memory, or any other relevant ranges.
7398 pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7400 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7404 GEM_BUG_ON(range_overflows_t(u64,
7405 dev_priv->dsm.start,
7406 pctx->stolen->start,
7408 pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7409 I915_WRITE(VLV_PCBR, pctx_paddr);
7412 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7413 dev_priv->vlv_pctx = pctx;
7416 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7418 struct drm_i915_gem_object *pctx;
7420 pctx = fetch_and_zero(&dev_priv->vlv_pctx);
7422 i915_gem_object_put(pctx);
7425 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
7427 dev_priv->gt_pm.rps.gpll_ref_freq =
7428 vlv_get_cck_clock(dev_priv, "GPLL ref",
7429 CCK_GPLL_CLOCK_CONTROL,
7430 dev_priv->czclk_freq);
7432 DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7433 dev_priv->gt_pm.rps.gpll_ref_freq);
7436 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7438 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7441 valleyview_setup_pctx(dev_priv);
7443 vlv_init_gpll_ref_freq(dev_priv);
7445 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7446 switch ((val >> 6) & 3) {
7449 dev_priv->mem_freq = 800;
7452 dev_priv->mem_freq = 1066;
7455 dev_priv->mem_freq = 1333;
7458 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7460 rps->max_freq = valleyview_rps_max_freq(dev_priv);
7461 rps->rp0_freq = rps->max_freq;
7462 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7463 intel_gpu_freq(dev_priv, rps->max_freq),
7466 rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7467 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7468 intel_gpu_freq(dev_priv, rps->efficient_freq),
7469 rps->efficient_freq);
7471 rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7472 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7473 intel_gpu_freq(dev_priv, rps->rp1_freq),
7476 rps->min_freq = valleyview_rps_min_freq(dev_priv);
7477 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7478 intel_gpu_freq(dev_priv, rps->min_freq),
7482 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7484 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7487 cherryview_setup_pctx(dev_priv);
7489 vlv_init_gpll_ref_freq(dev_priv);
7491 mutex_lock(&dev_priv->sb_lock);
7492 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
7493 mutex_unlock(&dev_priv->sb_lock);
7495 switch ((val >> 2) & 0x7) {
7497 dev_priv->mem_freq = 2000;
7500 dev_priv->mem_freq = 1600;
7503 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7505 rps->max_freq = cherryview_rps_max_freq(dev_priv);
7506 rps->rp0_freq = rps->max_freq;
7507 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7508 intel_gpu_freq(dev_priv, rps->max_freq),
7511 rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7512 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7513 intel_gpu_freq(dev_priv, rps->efficient_freq),
7514 rps->efficient_freq);
7516 rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7517 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7518 intel_gpu_freq(dev_priv, rps->rp1_freq),
7521 rps->min_freq = cherryview_rps_min_freq(dev_priv);
7522 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7523 intel_gpu_freq(dev_priv, rps->min_freq),
7526 WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
7528 "Odd GPU freq values\n");
7531 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7533 valleyview_cleanup_pctx(dev_priv);
7536 static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7538 struct intel_engine_cs *engine;
7539 enum intel_engine_id id;
7540 u32 gtfifodbg, rc6_mode, pcbr;
7542 gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
7543 GT_FIFO_FREE_ENTRIES_CHV);
7545 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7547 I915_WRITE(GTFIFODBG, gtfifodbg);
7550 cherryview_check_pctx(dev_priv);
7552 /* 1a & 1b: Get forcewake during program sequence. Although the driver
7553 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7554 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7556 /* Disable RC states. */
7557 I915_WRITE(GEN6_RC_CONTROL, 0);
7559 /* 2a: Program RC6 thresholds.*/
7560 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7561 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7562 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7564 for_each_engine(engine, dev_priv, id)
7565 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7566 I915_WRITE(GEN6_RC_SLEEP, 0);
7568 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
7569 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7571 /* Allows RC6 residency counter to work */
7572 I915_WRITE(VLV_COUNTER_CONTROL,
7573 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7574 VLV_MEDIA_RC6_COUNT_EN |
7575 VLV_RENDER_RC6_COUNT_EN));
7577 /* For now we assume BIOS is allocating and populating the PCBR */
7578 pcbr = I915_READ(VLV_PCBR);
7582 if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7583 rc6_mode = GEN7_RC_CTL_TO_MODE;
7584 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7586 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7589 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7593 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7595 /* 1: Program defaults and thresholds for RPS*/
7596 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7597 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7598 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7599 I915_WRITE(GEN6_RP_UP_EI, 66000);
7600 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7602 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7605 I915_WRITE(GEN6_RP_CONTROL,
7606 GEN6_RP_MEDIA_HW_NORMAL_MODE |
7607 GEN6_RP_MEDIA_IS_GFX |
7609 GEN6_RP_UP_BUSY_AVG |
7610 GEN6_RP_DOWN_IDLE_AVG);
7612 /* Setting Fixed Bias */
7613 val = VLV_OVERRIDE_EN |
7615 CHV_BIAS_CPU_50_SOC_50;
7616 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7618 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7620 /* RPS code assumes GPLL is used */
7621 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7623 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7624 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7626 reset_rps(dev_priv, valleyview_set_rps);
7628 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7631 static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7633 struct intel_engine_cs *engine;
7634 enum intel_engine_id id;
7637 valleyview_check_pctx(dev_priv);
7639 gtfifodbg = I915_READ(GTFIFODBG);
7641 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7643 I915_WRITE(GTFIFODBG, gtfifodbg);
7646 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7648 /* Disable RC states. */
7649 I915_WRITE(GEN6_RC_CONTROL, 0);
7651 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
7652 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7653 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7655 for_each_engine(engine, dev_priv, id)
7656 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7658 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7660 /* Allows RC6 residency counter to work */
7661 I915_WRITE(VLV_COUNTER_CONTROL,
7662 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7663 VLV_MEDIA_RC0_COUNT_EN |
7664 VLV_RENDER_RC0_COUNT_EN |
7665 VLV_MEDIA_RC6_COUNT_EN |
7666 VLV_RENDER_RC6_COUNT_EN));
7668 I915_WRITE(GEN6_RC_CONTROL,
7669 GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
7671 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7674 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
7678 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7680 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7681 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7682 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7683 I915_WRITE(GEN6_RP_UP_EI, 66000);
7684 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7686 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7688 I915_WRITE(GEN6_RP_CONTROL,
7689 GEN6_RP_MEDIA_TURBO |
7690 GEN6_RP_MEDIA_HW_NORMAL_MODE |
7691 GEN6_RP_MEDIA_IS_GFX |
7693 GEN6_RP_UP_BUSY_AVG |
7694 GEN6_RP_DOWN_IDLE_CONT);
7696 /* Setting Fixed Bias */
7697 val = VLV_OVERRIDE_EN |
7699 VLV_BIAS_CPU_125_SOC_875;
7700 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7702 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7704 /* RPS code assumes GPLL is used */
7705 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7707 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7708 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7710 reset_rps(dev_priv, valleyview_set_rps);
7712 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7715 static unsigned long intel_pxfreq(u32 vidfreq)
7718 int div = (vidfreq & 0x3f0000) >> 16;
7719 int post = (vidfreq & 0x3000) >> 12;
7720 int pre = (vidfreq & 0x7);
7725 freq = ((div * 133333) / ((1<<post) * pre));
7730 static const struct cparams {
7736 { 1, 1333, 301, 28664 },
7737 { 1, 1066, 294, 24460 },
7738 { 1, 800, 294, 25192 },
7739 { 0, 1333, 276, 27605 },
7740 { 0, 1066, 276, 27605 },
7741 { 0, 800, 231, 23784 },
7744 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7746 u64 total_count, diff, ret;
7747 u32 count1, count2, count3, m = 0, c = 0;
7748 unsigned long now = jiffies_to_msecs(jiffies), diff1;
7751 lockdep_assert_held(&mchdev_lock);
7753 diff1 = now - dev_priv->ips.last_time1;
7755 /* Prevent division-by-zero if we are asking too fast.
7756 * Also, we don't get interesting results if we are polling
7757 * faster than once in 10ms, so just return the saved value
7761 return dev_priv->ips.chipset_power;
7763 count1 = I915_READ(DMIEC);
7764 count2 = I915_READ(DDREC);
7765 count3 = I915_READ(CSIEC);
7767 total_count = count1 + count2 + count3;
7769 /* FIXME: handle per-counter overflow */
7770 if (total_count < dev_priv->ips.last_count1) {
7771 diff = ~0UL - dev_priv->ips.last_count1;
7772 diff += total_count;
7774 diff = total_count - dev_priv->ips.last_count1;
7777 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7778 if (cparams[i].i == dev_priv->ips.c_m &&
7779 cparams[i].t == dev_priv->ips.r_t) {
7786 diff = div_u64(diff, diff1);
7787 ret = ((m * diff) + c);
7788 ret = div_u64(ret, 10);
7790 dev_priv->ips.last_count1 = total_count;
7791 dev_priv->ips.last_time1 = now;
7793 dev_priv->ips.chipset_power = ret;
7798 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
7802 if (!IS_GEN5(dev_priv))
7805 spin_lock_irq(&mchdev_lock);
7807 val = __i915_chipset_val(dev_priv);
7809 spin_unlock_irq(&mchdev_lock);
7814 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
7816 unsigned long m, x, b;
7819 tsfs = I915_READ(TSFS);
7821 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
7822 x = I915_READ8(TR1);
7824 b = tsfs & TSFS_INTR_MASK;
7826 return ((m * x) / 127) - b;
7829 static int _pxvid_to_vd(u8 pxvid)
7834 if (pxvid >= 8 && pxvid < 31)
7837 return (pxvid + 2) * 125;
7840 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7842 const int vd = _pxvid_to_vd(pxvid);
7843 const int vm = vd - 1125;
7845 if (INTEL_INFO(dev_priv)->is_mobile)
7846 return vm > 0 ? vm : 0;
7851 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7853 u64 now, diff, diffms;
7856 lockdep_assert_held(&mchdev_lock);
7858 now = ktime_get_raw_ns();
7859 diffms = now - dev_priv->ips.last_time2;
7860 do_div(diffms, NSEC_PER_MSEC);
7862 /* Don't divide by 0 */
7866 count = I915_READ(GFXEC);
7868 if (count < dev_priv->ips.last_count2) {
7869 diff = ~0UL - dev_priv->ips.last_count2;
7872 diff = count - dev_priv->ips.last_count2;
7875 dev_priv->ips.last_count2 = count;
7876 dev_priv->ips.last_time2 = now;
7878 /* More magic constants... */
7880 diff = div_u64(diff, diffms * 10);
7881 dev_priv->ips.gfx_power = diff;
7884 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
7886 if (!IS_GEN5(dev_priv))
7889 spin_lock_irq(&mchdev_lock);
7891 __i915_update_gfx_val(dev_priv);
7893 spin_unlock_irq(&mchdev_lock);
7896 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7898 unsigned long t, corr, state1, corr2, state2;
7901 lockdep_assert_held(&mchdev_lock);
7903 pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
7904 pxvid = (pxvid >> 24) & 0x7f;
7905 ext_v = pvid_to_extvid(dev_priv, pxvid);
7909 t = i915_mch_val(dev_priv);
7911 /* Revel in the empirically derived constants */
7913 /* Correction factor in 1/100000 units */
7915 corr = ((t * 2349) + 135940);
7917 corr = ((t * 964) + 29317);
7919 corr = ((t * 301) + 1004);
7921 corr = corr * ((150142 * state1) / 10000 - 78642);
7923 corr2 = (corr * dev_priv->ips.corr);
7925 state2 = (corr2 * state1) / 10000;
7926 state2 /= 100; /* convert to mW */
7928 __i915_update_gfx_val(dev_priv);
7930 return dev_priv->ips.gfx_power + state2;
7933 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
7937 if (!IS_GEN5(dev_priv))
7940 spin_lock_irq(&mchdev_lock);
7942 val = __i915_gfx_val(dev_priv);
7944 spin_unlock_irq(&mchdev_lock);
7950 * i915_read_mch_val - return value for IPS use
7952 * Calculate and return a value for the IPS driver to use when deciding whether
7953 * we have thermal and power headroom to increase CPU or GPU power budget.
7955 unsigned long i915_read_mch_val(void)
7957 struct drm_i915_private *dev_priv;
7958 unsigned long chipset_val, graphics_val, ret = 0;
7960 spin_lock_irq(&mchdev_lock);
7963 dev_priv = i915_mch_dev;
7965 chipset_val = __i915_chipset_val(dev_priv);
7966 graphics_val = __i915_gfx_val(dev_priv);
7968 ret = chipset_val + graphics_val;
7971 spin_unlock_irq(&mchdev_lock);
7975 EXPORT_SYMBOL_GPL(i915_read_mch_val);
7978 * i915_gpu_raise - raise GPU frequency limit
7980 * Raise the limit; IPS indicates we have thermal headroom.
7982 bool i915_gpu_raise(void)
7984 struct drm_i915_private *dev_priv;
7987 spin_lock_irq(&mchdev_lock);
7988 if (!i915_mch_dev) {
7992 dev_priv = i915_mch_dev;
7994 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
7995 dev_priv->ips.max_delay--;
7998 spin_unlock_irq(&mchdev_lock);
8002 EXPORT_SYMBOL_GPL(i915_gpu_raise);
8005 * i915_gpu_lower - lower GPU frequency limit
8007 * IPS indicates we're close to a thermal limit, so throttle back the GPU
8008 * frequency maximum.
8010 bool i915_gpu_lower(void)
8012 struct drm_i915_private *dev_priv;
8015 spin_lock_irq(&mchdev_lock);
8016 if (!i915_mch_dev) {
8020 dev_priv = i915_mch_dev;
8022 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
8023 dev_priv->ips.max_delay++;
8026 spin_unlock_irq(&mchdev_lock);
8030 EXPORT_SYMBOL_GPL(i915_gpu_lower);
8033 * i915_gpu_busy - indicate GPU business to IPS
8035 * Tell the IPS driver whether or not the GPU is busy.
8037 bool i915_gpu_busy(void)
8041 spin_lock_irq(&mchdev_lock);
8043 ret = i915_mch_dev->gt.awake;
8044 spin_unlock_irq(&mchdev_lock);
8048 EXPORT_SYMBOL_GPL(i915_gpu_busy);
8051 * i915_gpu_turbo_disable - disable graphics turbo
8053 * Disable graphics turbo by resetting the max frequency and setting the
8054 * current frequency to the default.
8056 bool i915_gpu_turbo_disable(void)
8058 struct drm_i915_private *dev_priv;
8061 spin_lock_irq(&mchdev_lock);
8062 if (!i915_mch_dev) {
8066 dev_priv = i915_mch_dev;
8068 dev_priv->ips.max_delay = dev_priv->ips.fstart;
8070 if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
8074 spin_unlock_irq(&mchdev_lock);
8078 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
8081 * Tells the intel_ips driver that the i915 driver is now loaded, if
8082 * IPS got loaded first.
8084 * This awkward dance is so that neither module has to depend on the
8085 * other in order for IPS to do the appropriate communication of
8086 * GPU turbo limits to i915.
8089 ips_ping_for_i915_load(void)
8093 link = symbol_get(ips_link_to_i915_driver);
8096 symbol_put(ips_link_to_i915_driver);
8100 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
8102 /* We only register the i915 ips part with intel-ips once everything is
8103 * set up, to avoid intel-ips sneaking in and reading bogus values. */
8104 spin_lock_irq(&mchdev_lock);
8105 i915_mch_dev = dev_priv;
8106 spin_unlock_irq(&mchdev_lock);
8108 ips_ping_for_i915_load();
8111 void intel_gpu_ips_teardown(void)
8113 spin_lock_irq(&mchdev_lock);
8114 i915_mch_dev = NULL;
8115 spin_unlock_irq(&mchdev_lock);
8118 static void intel_init_emon(struct drm_i915_private *dev_priv)
8124 /* Disable to program */
8128 /* Program energy weights for various events */
8129 I915_WRITE(SDEW, 0x15040d00);
8130 I915_WRITE(CSIEW0, 0x007f0000);
8131 I915_WRITE(CSIEW1, 0x1e220004);
8132 I915_WRITE(CSIEW2, 0x04000004);
8134 for (i = 0; i < 5; i++)
8135 I915_WRITE(PEW(i), 0);
8136 for (i = 0; i < 3; i++)
8137 I915_WRITE(DEW(i), 0);
8139 /* Program P-state weights to account for frequency power adjustment */
8140 for (i = 0; i < 16; i++) {
8141 u32 pxvidfreq = I915_READ(PXVFREQ(i));
8142 unsigned long freq = intel_pxfreq(pxvidfreq);
8143 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8148 val *= (freq / 1000);
8150 val /= (127*127*900);
8152 DRM_ERROR("bad pxval: %ld\n", val);
8155 /* Render standby states get 0 weight */
8159 for (i = 0; i < 4; i++) {
8160 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8161 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8162 I915_WRITE(PXW(i), val);
8165 /* Adjust magic regs to magic values (more experimental results) */
8166 I915_WRITE(OGW0, 0);
8167 I915_WRITE(OGW1, 0);
8168 I915_WRITE(EG0, 0x00007f00);
8169 I915_WRITE(EG1, 0x0000000e);
8170 I915_WRITE(EG2, 0x000e0000);
8171 I915_WRITE(EG3, 0x68000300);
8172 I915_WRITE(EG4, 0x42000000);
8173 I915_WRITE(EG5, 0x00140031);
8177 for (i = 0; i < 8; i++)
8178 I915_WRITE(PXWL(i), 0);
8180 /* Enable PMON + select events */
8181 I915_WRITE(ECR, 0x80000019);
8183 lcfuse = I915_READ(LCFUSE02);
8185 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
8188 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
8190 struct intel_rps *rps = &dev_priv->gt_pm.rps;
8193 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
8196 if (!sanitize_rc6(dev_priv)) {
8197 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
8198 pm_runtime_get(&dev_priv->drm.pdev->dev);
8201 mutex_lock(&dev_priv->pcu_lock);
8203 /* Initialize RPS limits (for userspace) */
8204 if (IS_CHERRYVIEW(dev_priv))
8205 cherryview_init_gt_powersave(dev_priv);
8206 else if (IS_VALLEYVIEW(dev_priv))
8207 valleyview_init_gt_powersave(dev_priv);
8208 else if (INTEL_GEN(dev_priv) >= 6)
8209 gen6_init_rps_frequencies(dev_priv);
8211 /* Derive initial user preferences/limits from the hardware limits */
8212 rps->idle_freq = rps->min_freq;
8213 rps->cur_freq = rps->idle_freq;
8215 rps->max_freq_softlimit = rps->max_freq;
8216 rps->min_freq_softlimit = rps->min_freq;
8218 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
8219 rps->min_freq_softlimit =
8221 rps->efficient_freq,
8222 intel_freq_opcode(dev_priv, 450));
8224 /* After setting max-softlimit, find the overclock max freq */
8225 if (IS_GEN6(dev_priv) ||
8226 IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
8229 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, ¶ms);
8230 if (params & BIT(31)) { /* OC supported */
8231 DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
8232 (rps->max_freq & 0xff) * 50,
8233 (params & 0xff) * 50);
8234 rps->max_freq = params & 0xff;
8238 /* Finally allow us to boost to max by default */
8239 rps->boost_freq = rps->max_freq;
8241 mutex_unlock(&dev_priv->pcu_lock);
8244 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
8246 if (IS_VALLEYVIEW(dev_priv))
8247 valleyview_cleanup_gt_powersave(dev_priv);
8249 if (!HAS_RC6(dev_priv))
8250 pm_runtime_put(&dev_priv->drm.pdev->dev);
8254 * intel_suspend_gt_powersave - suspend PM work and helper threads
8255 * @dev_priv: i915 device
8257 * We don't want to disable RC6 or other features here, we just want
8258 * to make sure any work we've queued has finished and won't bother
8259 * us while we're suspended.
8261 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
8263 if (INTEL_GEN(dev_priv) < 6)
8266 /* gen6_rps_idle() will be called later to disable interrupts */
8269 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
8271 dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
8272 dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8273 intel_disable_gt_powersave(dev_priv);
8275 if (INTEL_GEN(dev_priv) >= 11)
8276 gen11_reset_rps_interrupts(dev_priv);
8277 else if (INTEL_GEN(dev_priv) >= 6)
8278 gen6_reset_rps_interrupts(dev_priv);
8281 static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
8283 lockdep_assert_held(&i915->pcu_lock);
8285 if (!i915->gt_pm.llc_pstate.enabled)
8288 /* Currently there is no HW configuration to be done to disable. */
8290 i915->gt_pm.llc_pstate.enabled = false;
8293 static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8295 lockdep_assert_held(&dev_priv->pcu_lock);
8297 if (!dev_priv->gt_pm.rc6.enabled)
8300 if (INTEL_GEN(dev_priv) >= 9)
8301 gen9_disable_rc6(dev_priv);
8302 else if (IS_CHERRYVIEW(dev_priv))
8303 cherryview_disable_rc6(dev_priv);
8304 else if (IS_VALLEYVIEW(dev_priv))
8305 valleyview_disable_rc6(dev_priv);
8306 else if (INTEL_GEN(dev_priv) >= 6)
8307 gen6_disable_rc6(dev_priv);
8309 dev_priv->gt_pm.rc6.enabled = false;
8312 static void intel_disable_rps(struct drm_i915_private *dev_priv)
8314 lockdep_assert_held(&dev_priv->pcu_lock);
8316 if (!dev_priv->gt_pm.rps.enabled)
8319 if (INTEL_GEN(dev_priv) >= 9)
8320 gen9_disable_rps(dev_priv);
8321 else if (IS_CHERRYVIEW(dev_priv))
8322 cherryview_disable_rps(dev_priv);
8323 else if (IS_VALLEYVIEW(dev_priv))
8324 valleyview_disable_rps(dev_priv);
8325 else if (INTEL_GEN(dev_priv) >= 6)
8326 gen6_disable_rps(dev_priv);
8327 else if (IS_IRONLAKE_M(dev_priv))
8328 ironlake_disable_drps(dev_priv);
8330 dev_priv->gt_pm.rps.enabled = false;
8333 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
8335 mutex_lock(&dev_priv->pcu_lock);
8337 intel_disable_rc6(dev_priv);
8338 intel_disable_rps(dev_priv);
8339 if (HAS_LLC(dev_priv))
8340 intel_disable_llc_pstate(dev_priv);
8342 mutex_unlock(&dev_priv->pcu_lock);
8345 static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
8347 lockdep_assert_held(&i915->pcu_lock);
8349 if (i915->gt_pm.llc_pstate.enabled)
8352 gen6_update_ring_freq(i915);
8354 i915->gt_pm.llc_pstate.enabled = true;
8357 static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8359 lockdep_assert_held(&dev_priv->pcu_lock);
8361 if (dev_priv->gt_pm.rc6.enabled)
8364 if (IS_CHERRYVIEW(dev_priv))
8365 cherryview_enable_rc6(dev_priv);
8366 else if (IS_VALLEYVIEW(dev_priv))
8367 valleyview_enable_rc6(dev_priv);
8368 else if (INTEL_GEN(dev_priv) >= 9)
8369 gen9_enable_rc6(dev_priv);
8370 else if (IS_BROADWELL(dev_priv))
8371 gen8_enable_rc6(dev_priv);
8372 else if (INTEL_GEN(dev_priv) >= 6)
8373 gen6_enable_rc6(dev_priv);
8375 dev_priv->gt_pm.rc6.enabled = true;
8378 static void intel_enable_rps(struct drm_i915_private *dev_priv)
8380 struct intel_rps *rps = &dev_priv->gt_pm.rps;
8382 lockdep_assert_held(&dev_priv->pcu_lock);
8387 if (IS_CHERRYVIEW(dev_priv)) {
8388 cherryview_enable_rps(dev_priv);
8389 } else if (IS_VALLEYVIEW(dev_priv)) {
8390 valleyview_enable_rps(dev_priv);
8391 } else if (INTEL_GEN(dev_priv) >= 9) {
8392 gen9_enable_rps(dev_priv);
8393 } else if (IS_BROADWELL(dev_priv)) {
8394 gen8_enable_rps(dev_priv);
8395 } else if (INTEL_GEN(dev_priv) >= 6) {
8396 gen6_enable_rps(dev_priv);
8397 } else if (IS_IRONLAKE_M(dev_priv)) {
8398 ironlake_enable_drps(dev_priv);
8399 intel_init_emon(dev_priv);
8402 WARN_ON(rps->max_freq < rps->min_freq);
8403 WARN_ON(rps->idle_freq > rps->max_freq);
8405 WARN_ON(rps->efficient_freq < rps->min_freq);
8406 WARN_ON(rps->efficient_freq > rps->max_freq);
8408 rps->enabled = true;
8411 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
8413 /* Powersaving is controlled by the host when inside a VM */
8414 if (intel_vgpu_active(dev_priv))
8417 mutex_lock(&dev_priv->pcu_lock);
8419 if (HAS_RC6(dev_priv))
8420 intel_enable_rc6(dev_priv);
8421 intel_enable_rps(dev_priv);
8422 if (HAS_LLC(dev_priv))
8423 intel_enable_llc_pstate(dev_priv);
8425 mutex_unlock(&dev_priv->pcu_lock);
8428 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8431 * On Ibex Peak and Cougar Point, we need to disable clock
8432 * gating for the panel power sequencer or it will fail to
8433 * start up when no ports are active.
8435 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8438 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8442 for_each_pipe(dev_priv, pipe) {
8443 I915_WRITE(DSPCNTR(pipe),
8444 I915_READ(DSPCNTR(pipe)) |
8445 DISPPLANE_TRICKLE_FEED_DISABLE);
8447 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
8448 POSTING_READ(DSPSURF(pipe));
8452 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8454 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8458 * WaFbcDisableDpfcClockGating:ilk
8460 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
8461 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
8462 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8464 I915_WRITE(PCH_3DCGDIS0,
8465 MARIUNIT_CLOCK_GATE_DISABLE |
8466 SVSMUNIT_CLOCK_GATE_DISABLE);
8467 I915_WRITE(PCH_3DCGDIS1,
8468 VFMUNIT_CLOCK_GATE_DISABLE);
8471 * According to the spec the following bits should be set in
8472 * order to enable memory self-refresh
8473 * The bit 22/21 of 0x42004
8474 * The bit 5 of 0x42020
8475 * The bit 15 of 0x45000
8477 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8478 (I915_READ(ILK_DISPLAY_CHICKEN2) |
8479 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8480 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8481 I915_WRITE(DISP_ARB_CTL,
8482 (I915_READ(DISP_ARB_CTL) |
8486 * Based on the document from hardware guys the following bits
8487 * should be set unconditionally in order to enable FBC.
8488 * The bit 22 of 0x42000
8489 * The bit 22 of 0x42004
8490 * The bit 7,8,9 of 0x42020.
8492 if (IS_IRONLAKE_M(dev_priv)) {
8493 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
8494 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8495 I915_READ(ILK_DISPLAY_CHICKEN1) |
8497 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8498 I915_READ(ILK_DISPLAY_CHICKEN2) |
8502 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8504 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8505 I915_READ(ILK_DISPLAY_CHICKEN2) |
8506 ILK_ELPIN_409_SELECT);
8507 I915_WRITE(_3D_CHICKEN2,
8508 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8509 _3D_CHICKEN2_WM_READ_PIPELINED);
8511 /* WaDisableRenderCachePipelinedFlush:ilk */
8512 I915_WRITE(CACHE_MODE_0,
8513 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8515 /* WaDisable_RenderCache_OperationalFlush:ilk */
8516 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8518 g4x_disable_trickle_feed(dev_priv);
8520 ibx_init_clock_gating(dev_priv);
8523 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8529 * On Ibex Peak and Cougar Point, we need to disable clock
8530 * gating for the panel power sequencer or it will fail to
8531 * start up when no ports are active.
8533 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
8534 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
8535 PCH_CPUNIT_CLOCK_GATE_DISABLE);
8536 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8537 DPLS_EDP_PPS_FIX_DIS);
8538 /* The below fixes the weird display corruption, a few pixels shifted
8539 * downward, on (only) LVDS of some HP laptops with IVY.
8541 for_each_pipe(dev_priv, pipe) {
8542 val = I915_READ(TRANS_CHICKEN2(pipe));
8543 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
8544 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8545 if (dev_priv->vbt.fdi_rx_polarity_inverted)
8546 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8547 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
8548 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
8549 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8550 I915_WRITE(TRANS_CHICKEN2(pipe), val);
8552 /* WADP0ClockGatingDisable */
8553 for_each_pipe(dev_priv, pipe) {
8554 I915_WRITE(TRANS_CHICKEN1(pipe),
8555 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8559 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8563 tmp = I915_READ(MCH_SSKPD);
8564 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
8565 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
8569 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8571 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8573 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8575 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8576 I915_READ(ILK_DISPLAY_CHICKEN2) |
8577 ILK_ELPIN_409_SELECT);
8579 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8580 I915_WRITE(_3D_CHICKEN,
8581 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
8583 /* WaDisable_RenderCache_OperationalFlush:snb */
8584 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8587 * BSpec recoomends 8x4 when MSAA is used,
8588 * however in practice 16x4 seems fastest.
8590 * Note that PS/WM thread counts depend on the WIZ hashing
8591 * disable bit, which we don't touch here, but it's good
8592 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8594 I915_WRITE(GEN6_GT_MODE,
8595 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8597 I915_WRITE(CACHE_MODE_0,
8598 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8600 I915_WRITE(GEN6_UCGCTL1,
8601 I915_READ(GEN6_UCGCTL1) |
8602 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
8603 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8605 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8606 * gating disable must be set. Failure to set it results in
8607 * flickering pixels due to Z write ordering failures after
8608 * some amount of runtime in the Mesa "fire" demo, and Unigine
8609 * Sanctuary and Tropics, and apparently anything else with
8610 * alpha test or pixel discard.
8612 * According to the spec, bit 11 (RCCUNIT) must also be set,
8613 * but we didn't debug actual testcases to find it out.
8615 * WaDisableRCCUnitClockGating:snb
8616 * WaDisableRCPBUnitClockGating:snb
8618 I915_WRITE(GEN6_UCGCTL2,
8619 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8620 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8622 /* WaStripsFansDisableFastClipPerformanceFix:snb */
8623 I915_WRITE(_3D_CHICKEN3,
8624 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8628 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
8629 * 3DSTATE_SF number of SF output attributes is more than 16."
8631 I915_WRITE(_3D_CHICKEN3,
8632 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
8635 * According to the spec the following bits should be
8636 * set in order to enable memory self-refresh and fbc:
8637 * The bit21 and bit22 of 0x42000
8638 * The bit21 and bit22 of 0x42004
8639 * The bit5 and bit7 of 0x42020
8640 * The bit14 of 0x70180
8641 * The bit14 of 0x71180
8643 * WaFbcAsynchFlipDisableFbcQueue:snb
8645 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8646 I915_READ(ILK_DISPLAY_CHICKEN1) |
8647 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8648 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8649 I915_READ(ILK_DISPLAY_CHICKEN2) |
8650 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8651 I915_WRITE(ILK_DSPCLK_GATE_D,
8652 I915_READ(ILK_DSPCLK_GATE_D) |
8653 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
8654 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8656 g4x_disable_trickle_feed(dev_priv);
8658 cpt_init_clock_gating(dev_priv);
8660 gen6_check_mch_setup(dev_priv);
8663 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
8665 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
8668 * WaVSThreadDispatchOverride:ivb,vlv
8670 * This actually overrides the dispatch
8671 * mode for all thread types.
8673 reg &= ~GEN7_FF_SCHED_MASK;
8674 reg |= GEN7_FF_TS_SCHED_HW;
8675 reg |= GEN7_FF_VS_SCHED_HW;
8676 reg |= GEN7_FF_DS_SCHED_HW;
8678 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
8681 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8684 * TODO: this bit should only be enabled when really needed, then
8685 * disabled when not needed anymore in order to save power.
8687 if (HAS_PCH_LPT_LP(dev_priv))
8688 I915_WRITE(SOUTH_DSPCLK_GATE_D,
8689 I915_READ(SOUTH_DSPCLK_GATE_D) |
8690 PCH_LP_PARTITION_LEVEL_DISABLE);
8692 /* WADPOClockGatingDisable:hsw */
8693 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
8694 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8695 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8698 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8700 if (HAS_PCH_LPT_LP(dev_priv)) {
8701 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
8703 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8704 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8708 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
8709 int general_prio_credits,
8710 int high_prio_credits)
8715 /* WaTempDisableDOPClkGating:bdw */
8716 misccpctl = I915_READ(GEN7_MISCCPCTL);
8717 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
8719 val = I915_READ(GEN8_L3SQCREG1);
8720 val &= ~L3_PRIO_CREDITS_MASK;
8721 val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
8722 val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
8723 I915_WRITE(GEN8_L3SQCREG1, val);
8726 * Wait at least 100 clocks before re-enabling clock gating.
8727 * See the definition of L3SQCREG1 in BSpec.
8729 POSTING_READ(GEN8_L3SQCREG1);
8731 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
8734 static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
8736 /* This is not an Wa. Enable to reduce Sampler power */
8737 I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
8738 I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
8741 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
8743 if (!HAS_PCH_CNP(dev_priv))
8746 /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
8747 I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
8748 CNP_PWM_CGE_GATING_DISABLE);
8751 static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8754 cnp_init_clock_gating(dev_priv);
8756 /* This is not an Wa. Enable for better image quality */
8757 I915_WRITE(_3D_CHICKEN3,
8758 _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
8760 /* WaEnableChickenDCPR:cnl */
8761 I915_WRITE(GEN8_CHICKEN_DCPR_1,
8762 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
8764 /* WaFbcWakeMemOn:cnl */
8765 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
8766 DISP_FBC_MEMORY_WAKE);
8768 val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
8769 /* ReadHitWriteOnlyDisable:cnl */
8770 val |= RCCUNIT_CLKGATE_DIS;
8771 /* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
8772 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8773 val |= SARBUNIT_CLKGATE_DIS;
8774 I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
8776 /* Wa_2201832410:cnl */
8777 val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
8778 val |= GWUNIT_CLKGATE_DIS;
8779 I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);
8781 /* WaDisableVFclkgate:cnl */
8782 /* WaVFUnitClockGatingDisable:cnl */
8783 val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
8784 val |= VFUNIT_CLKGATE_DIS;
8785 I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
8788 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
8790 cnp_init_clock_gating(dev_priv);
8791 gen9_init_clock_gating(dev_priv);
8793 /* WaFbcNukeOnHostModify:cfl */
8794 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8795 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8798 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8800 gen9_init_clock_gating(dev_priv);
8802 /* WaDisableSDEUnitClockGating:kbl */
8803 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8804 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8805 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8807 /* WaDisableGamClockGating:kbl */
8808 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8809 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8810 GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8812 /* WaFbcNukeOnHostModify:kbl */
8813 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8814 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8817 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8819 gen9_init_clock_gating(dev_priv);
8821 /* WAC6entrylatency:skl */
8822 I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
8823 FBC_LLC_FULLY_OPEN);
8825 /* WaFbcNukeOnHostModify:skl */
8826 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8827 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8830 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
8832 /* The GTT cache must be disabled if the system is using 2M pages. */
8833 bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
8834 I915_GTT_PAGE_SIZE_2M);
8837 /* WaSwitchSolVfFArbitrationPriority:bdw */
8838 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8840 /* WaPsrDPAMaskVBlankInSRD:bdw */
8841 I915_WRITE(CHICKEN_PAR1_1,
8842 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
8844 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8845 for_each_pipe(dev_priv, pipe) {
8846 I915_WRITE(CHICKEN_PIPESL_1(pipe),
8847 I915_READ(CHICKEN_PIPESL_1(pipe)) |
8848 BDW_DPRS_MASK_VBLANK_SRD);
8851 /* WaVSRefCountFullforceMissDisable:bdw */
8852 /* WaDSRefCountFullforceMissDisable:bdw */
8853 I915_WRITE(GEN7_FF_THREAD_MODE,
8854 I915_READ(GEN7_FF_THREAD_MODE) &
8855 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8857 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8858 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8860 /* WaDisableSDEUnitClockGating:bdw */
8861 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8862 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8864 /* WaProgramL3SqcReg1Default:bdw */
8865 gen8_set_l3sqc_credits(dev_priv, 30, 2);
8867 /* WaGttCachingOffByDefault:bdw */
8868 I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
8870 /* WaKVMNotificationOnConfigChange:bdw */
8871 I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
8872 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
8874 lpt_init_clock_gating(dev_priv);
8876 /* WaDisableDopClockGating:bdw
8878 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
8881 I915_WRITE(GEN6_UCGCTL1,
8882 I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
8885 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
8887 /* L3 caching of data atomics doesn't work -- disable it. */
8888 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
8889 I915_WRITE(HSW_ROW_CHICKEN3,
8890 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
8892 /* This is required by WaCatErrorRejectionIssue:hsw */
8893 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8894 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8895 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8897 /* WaVSRefCountFullforceMissDisable:hsw */
8898 I915_WRITE(GEN7_FF_THREAD_MODE,
8899 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8901 /* WaDisable_RenderCache_OperationalFlush:hsw */
8902 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8904 /* enable HiZ Raw Stall Optimization */
8905 I915_WRITE(CACHE_MODE_0_GEN7,
8906 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8908 /* WaDisable4x2SubspanOptimization:hsw */
8909 I915_WRITE(CACHE_MODE_1,
8910 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8913 * BSpec recommends 8x4 when MSAA is used,
8914 * however in practice 16x4 seems fastest.
8916 * Note that PS/WM thread counts depend on the WIZ hashing
8917 * disable bit, which we don't touch here, but it's good
8918 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8920 I915_WRITE(GEN7_GT_MODE,
8921 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8923 /* WaSampleCChickenBitEnable:hsw */
8924 I915_WRITE(HALF_SLICE_CHICKEN3,
8925 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
8927 /* WaSwitchSolVfFArbitrationPriority:hsw */
8928 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8930 lpt_init_clock_gating(dev_priv);
8933 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
8937 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8939 /* WaDisableEarlyCull:ivb */
8940 I915_WRITE(_3D_CHICKEN3,
8941 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8943 /* WaDisableBackToBackFlipFix:ivb */
8944 I915_WRITE(IVB_CHICKEN3,
8945 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8946 CHICKEN3_DGMG_DONE_FIX_DISABLE);
8948 /* WaDisablePSDDualDispatchEnable:ivb */
8949 if (IS_IVB_GT1(dev_priv))
8950 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8951 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8953 /* WaDisable_RenderCache_OperationalFlush:ivb */
8954 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8956 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8957 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8958 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8960 /* WaApplyL3ControlAndL3ChickenMode:ivb */
8961 I915_WRITE(GEN7_L3CNTLREG1,
8962 GEN7_WA_FOR_GEN7_L3_CONTROL);
8963 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8964 GEN7_WA_L3_CHICKEN_MODE);
8965 if (IS_IVB_GT1(dev_priv))
8966 I915_WRITE(GEN7_ROW_CHICKEN2,
8967 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8969 /* must write both registers */
8970 I915_WRITE(GEN7_ROW_CHICKEN2,
8971 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8972 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
8973 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8976 /* WaForceL3Serialization:ivb */
8977 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8978 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8981 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8982 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8984 I915_WRITE(GEN6_UCGCTL2,
8985 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8987 /* This is required by WaCatErrorRejectionIssue:ivb */
8988 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8989 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8990 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8992 g4x_disable_trickle_feed(dev_priv);
8994 gen7_setup_fixed_func_scheduler(dev_priv);
8996 if (0) { /* causes HiZ corruption on ivb:gt1 */
8997 /* enable HiZ Raw Stall Optimization */
8998 I915_WRITE(CACHE_MODE_0_GEN7,
8999 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
9002 /* WaDisable4x2SubspanOptimization:ivb */
9003 I915_WRITE(CACHE_MODE_1,
9004 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9007 * BSpec recommends 8x4 when MSAA is used,
9008 * however in practice 16x4 seems fastest.
9010 * Note that PS/WM thread counts depend on the WIZ hashing
9011 * disable bit, which we don't touch here, but it's good
9012 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9014 I915_WRITE(GEN7_GT_MODE,
9015 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9017 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
9018 snpcr &= ~GEN6_MBC_SNPCR_MASK;
9019 snpcr |= GEN6_MBC_SNPCR_MED;
9020 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
9022 if (!HAS_PCH_NOP(dev_priv))
9023 cpt_init_clock_gating(dev_priv);
9025 gen6_check_mch_setup(dev_priv);
9028 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
9030 /* WaDisableEarlyCull:vlv */
9031 I915_WRITE(_3D_CHICKEN3,
9032 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
9034 /* WaDisableBackToBackFlipFix:vlv */
9035 I915_WRITE(IVB_CHICKEN3,
9036 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
9037 CHICKEN3_DGMG_DONE_FIX_DISABLE);
9039 /* WaPsdDispatchEnable:vlv */
9040 /* WaDisablePSDDualDispatchEnable:vlv */
9041 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9042 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
9043 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9045 /* WaDisable_RenderCache_OperationalFlush:vlv */
9046 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9048 /* WaForceL3Serialization:vlv */
9049 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
9050 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
9052 /* WaDisableDopClockGating:vlv */
9053 I915_WRITE(GEN7_ROW_CHICKEN2,
9054 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9056 /* This is required by WaCatErrorRejectionIssue:vlv */
9057 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9058 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9059 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9061 gen7_setup_fixed_func_scheduler(dev_priv);
9064 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9065 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
9067 I915_WRITE(GEN6_UCGCTL2,
9068 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9070 /* WaDisableL3Bank2xClockGate:vlv
9071 * Disabling L3 clock gating- MMIO 940c[25] = 1
9072 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
9073 I915_WRITE(GEN7_UCGCTL4,
9074 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
9077 * BSpec says this must be set, even though
9078 * WaDisable4x2SubspanOptimization isn't listed for VLV.
9080 I915_WRITE(CACHE_MODE_1,
9081 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9084 * BSpec recommends 8x4 when MSAA is used,
9085 * however in practice 16x4 seems fastest.
9087 * Note that PS/WM thread counts depend on the WIZ hashing
9088 * disable bit, which we don't touch here, but it's good
9089 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9091 I915_WRITE(GEN7_GT_MODE,
9092 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9095 * WaIncreaseL3CreditsForVLVB0:vlv
9096 * This is the hardware default actually.
9098 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
9101 * WaDisableVLVClockGating_VBIIssue:vlv
9102 * Disable clock gating on th GCFG unit to prevent a delay
9103 * in the reporting of vblank events.
9105 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
9108 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
9110 /* WaVSRefCountFullforceMissDisable:chv */
9111 /* WaDSRefCountFullforceMissDisable:chv */
9112 I915_WRITE(GEN7_FF_THREAD_MODE,
9113 I915_READ(GEN7_FF_THREAD_MODE) &
9114 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9116 /* WaDisableSemaphoreAndSyncFlipWait:chv */
9117 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
9118 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9120 /* WaDisableCSUnitClockGating:chv */
9121 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
9122 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9124 /* WaDisableSDEUnitClockGating:chv */
9125 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9126 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9129 * WaProgramL3SqcReg1Default:chv
9130 * See gfxspecs/Related Documents/Performance Guide/
9131 * LSQC Setting Recommendations.
9133 gen8_set_l3sqc_credits(dev_priv, 38, 2);
9136 * GTT cache may not work with big pages, so if those
9137 * are ever enabled GTT cache may need to be disabled.
9139 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
9142 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
9144 uint32_t dspclk_gate;
9146 I915_WRITE(RENCLK_GATE_D1, 0);
9147 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
9148 GS_UNIT_CLOCK_GATE_DISABLE |
9149 CL_UNIT_CLOCK_GATE_DISABLE);
9150 I915_WRITE(RAMCLK_GATE_D, 0);
9151 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
9152 OVRUNIT_CLOCK_GATE_DISABLE |
9153 OVCUNIT_CLOCK_GATE_DISABLE;
9154 if (IS_GM45(dev_priv))
9155 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
9156 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9158 /* WaDisableRenderCachePipelinedFlush */
9159 I915_WRITE(CACHE_MODE_0,
9160 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
9162 /* WaDisable_RenderCache_OperationalFlush:g4x */
9163 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9165 g4x_disable_trickle_feed(dev_priv);
9168 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
9170 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
9171 I915_WRITE(RENCLK_GATE_D2, 0);
9172 I915_WRITE(DSPCLK_GATE_D, 0);
9173 I915_WRITE(RAMCLK_GATE_D, 0);
9174 I915_WRITE16(DEUC, 0);
9175 I915_WRITE(MI_ARB_STATE,
9176 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9178 /* WaDisable_RenderCache_OperationalFlush:gen4 */
9179 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9182 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
9184 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
9185 I965_RCC_CLOCK_GATE_DISABLE |
9186 I965_RCPB_CLOCK_GATE_DISABLE |
9187 I965_ISC_CLOCK_GATE_DISABLE |
9188 I965_FBC_CLOCK_GATE_DISABLE);
9189 I915_WRITE(RENCLK_GATE_D2, 0);
9190 I915_WRITE(MI_ARB_STATE,
9191 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9193 /* WaDisable_RenderCache_OperationalFlush:gen4 */
9194 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9197 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
9199 u32 dstate = I915_READ(D_STATE);
9201 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
9202 DSTATE_DOT_CLOCK_GATING;
9203 I915_WRITE(D_STATE, dstate);
9205 if (IS_PINEVIEW(dev_priv))
9206 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
9208 /* IIR "flip pending" means done if this bit is set */
9209 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
9211 /* interrupts should cause a wake up from C3 */
9212 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
9214 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
9215 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
9217 I915_WRITE(MI_ARB_STATE,
9218 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9221 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
9223 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9225 /* interrupts should cause a wake up from C3 */
9226 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
9227 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
9229 I915_WRITE(MEM_MODE,
9230 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
9233 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
9235 I915_WRITE(MEM_MODE,
9236 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
9237 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
9240 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9242 dev_priv->display.init_clock_gating(dev_priv);
9245 void intel_suspend_hw(struct drm_i915_private *dev_priv)
9247 if (HAS_PCH_LPT(dev_priv))
9248 lpt_suspend_hw(dev_priv);
9251 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9253 DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
9257 * intel_init_clock_gating_hooks - setup the clock gating hooks
9258 * @dev_priv: device private
9260 * Setup the hooks that configure which clocks of a given platform can be
9261 * gated and also apply various GT and display specific workarounds for these
9262 * platforms. Note that some GT specific workarounds are applied separately
9263 * when GPU contexts or batchbuffers start their execution.
9265 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
9267 if (IS_ICELAKE(dev_priv))
9268 dev_priv->display.init_clock_gating = icl_init_clock_gating;
9269 else if (IS_CANNONLAKE(dev_priv))
9270 dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9271 else if (IS_COFFEELAKE(dev_priv))
9272 dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9273 else if (IS_SKYLAKE(dev_priv))
9274 dev_priv->display.init_clock_gating = skl_init_clock_gating;
9275 else if (IS_KABYLAKE(dev_priv))
9276 dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9277 else if (IS_BROXTON(dev_priv))
9278 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9279 else if (IS_GEMINILAKE(dev_priv))
9280 dev_priv->display.init_clock_gating = glk_init_clock_gating;
9281 else if (IS_BROADWELL(dev_priv))
9282 dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9283 else if (IS_CHERRYVIEW(dev_priv))
9284 dev_priv->display.init_clock_gating = chv_init_clock_gating;
9285 else if (IS_HASWELL(dev_priv))
9286 dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9287 else if (IS_IVYBRIDGE(dev_priv))
9288 dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9289 else if (IS_VALLEYVIEW(dev_priv))
9290 dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9291 else if (IS_GEN6(dev_priv))
9292 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9293 else if (IS_GEN5(dev_priv))
9294 dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9295 else if (IS_G4X(dev_priv))
9296 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9297 else if (IS_I965GM(dev_priv))
9298 dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9299 else if (IS_I965G(dev_priv))
9300 dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9301 else if (IS_GEN3(dev_priv))
9302 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9303 else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
9304 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9305 else if (IS_GEN2(dev_priv))
9306 dev_priv->display.init_clock_gating = i830_init_clock_gating;
9308 MISSING_CASE(INTEL_DEVID(dev_priv));
9309 dev_priv->display.init_clock_gating = nop_init_clock_gating;
9313 /* Set up chip specific power management-related functions */
9314 void intel_init_pm(struct drm_i915_private *dev_priv)
9316 intel_fbc_init(dev_priv);
9319 if (IS_PINEVIEW(dev_priv))
9320 i915_pineview_get_mem_freq(dev_priv);
9321 else if (IS_GEN5(dev_priv))
9322 i915_ironlake_get_mem_freq(dev_priv);
9324 /* For FIFO watermark updates */
9325 if (INTEL_GEN(dev_priv) >= 9) {
9326 skl_setup_wm_latency(dev_priv);
9327 dev_priv->display.initial_watermarks = skl_initial_wm;
9328 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9329 dev_priv->display.compute_global_watermarks = skl_compute_wm;
9330 } else if (HAS_PCH_SPLIT(dev_priv)) {
9331 ilk_setup_wm_latency(dev_priv);
9333 if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
9334 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9335 (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
9336 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9337 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9338 dev_priv->display.compute_intermediate_wm =
9339 ilk_compute_intermediate_wm;
9340 dev_priv->display.initial_watermarks =
9341 ilk_initial_watermarks;
9342 dev_priv->display.optimize_watermarks =
9343 ilk_optimize_watermarks;
9345 DRM_DEBUG_KMS("Failed to read display plane latency. "
9348 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9349 vlv_setup_wm_latency(dev_priv);
9350 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9351 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9352 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9353 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9354 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9355 } else if (IS_G4X(dev_priv)) {
9356 g4x_setup_wm_latency(dev_priv);
9357 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
9358 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
9359 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
9360 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9361 } else if (IS_PINEVIEW(dev_priv)) {
9362 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
9365 dev_priv->mem_freq)) {
9366 DRM_INFO("failed to find known CxSR latency "
9367 "(found ddr%s fsb freq %d, mem freq %d), "
9369 (dev_priv->is_ddr3 == 1) ? "3" : "2",
9370 dev_priv->fsb_freq, dev_priv->mem_freq);
9371 /* Disable CxSR and never update its watermark again */
9372 intel_set_memory_cxsr(dev_priv, false);
9373 dev_priv->display.update_wm = NULL;
9375 dev_priv->display.update_wm = pineview_update_wm;
9376 } else if (IS_GEN4(dev_priv)) {
9377 dev_priv->display.update_wm = i965_update_wm;
9378 } else if (IS_GEN3(dev_priv)) {
9379 dev_priv->display.update_wm = i9xx_update_wm;
9380 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9381 } else if (IS_GEN2(dev_priv)) {
9382 if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9383 dev_priv->display.update_wm = i845_update_wm;
9384 dev_priv->display.get_fifo_size = i845_get_fifo_size;
9386 dev_priv->display.update_wm = i9xx_update_wm;
9387 dev_priv->display.get_fifo_size = i830_get_fifo_size;
9390 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9394 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
9397 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9400 case GEN6_PCODE_SUCCESS:
9402 case GEN6_PCODE_UNIMPLEMENTED_CMD:
9404 case GEN6_PCODE_ILLEGAL_CMD:
9406 case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9407 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9409 case GEN6_PCODE_TIMEOUT:
9412 MISSING_CASE(flags);
9417 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
9420 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9423 case GEN6_PCODE_SUCCESS:
9425 case GEN6_PCODE_ILLEGAL_CMD:
9427 case GEN7_PCODE_TIMEOUT:
9429 case GEN7_PCODE_ILLEGAL_DATA:
9431 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9434 MISSING_CASE(flags);
9439 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
9443 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9445 /* GEN6_PCODE_* are outside of the forcewake domain, we can
9446 * use te fw I915_READ variants to reduce the amount of work
9447 * required when reading/writing.
9450 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9451 DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
9452 mbox, __builtin_return_address(0));
9456 I915_WRITE_FW(GEN6_PCODE_DATA, *val);
9457 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9458 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9460 if (__intel_wait_for_register_fw(dev_priv,
9461 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9463 DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
9464 mbox, __builtin_return_address(0));
9468 *val = I915_READ_FW(GEN6_PCODE_DATA);
9469 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9471 if (INTEL_GEN(dev_priv) > 6)
9472 status = gen7_check_mailbox_status(dev_priv);
9474 status = gen6_check_mailbox_status(dev_priv);
9477 DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
9478 mbox, __builtin_return_address(0), status);
9485 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv,
9487 int fast_timeout_us, int slow_timeout_ms)
9491 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9493 /* GEN6_PCODE_* are outside of the forcewake domain, we can
9494 * use te fw I915_READ variants to reduce the amount of work
9495 * required when reading/writing.
9498 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9499 DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
9500 val, mbox, __builtin_return_address(0));
9504 I915_WRITE_FW(GEN6_PCODE_DATA, val);
9505 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9506 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9508 if (__intel_wait_for_register_fw(dev_priv,
9509 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9510 fast_timeout_us, slow_timeout_ms,
9512 DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
9513 val, mbox, __builtin_return_address(0));
9517 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9519 if (INTEL_GEN(dev_priv) > 6)
9520 status = gen7_check_mailbox_status(dev_priv);
9522 status = gen6_check_mailbox_status(dev_priv);
9525 DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
9526 val, mbox, __builtin_return_address(0), status);
9533 static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
9534 u32 request, u32 reply_mask, u32 reply,
9539 *status = sandybridge_pcode_read(dev_priv, mbox, &val);
9541 return *status || ((val & reply_mask) == reply);
9545 * skl_pcode_request - send PCODE request until acknowledgment
9546 * @dev_priv: device private
9547 * @mbox: PCODE mailbox ID the request is targeted for
9548 * @request: request ID
9549 * @reply_mask: mask used to check for request acknowledgment
9550 * @reply: value used to check for request acknowledgment
9551 * @timeout_base_ms: timeout for polling with preemption enabled
9553 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9554 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9555 * The request is acknowledged once the PCODE reply dword equals @reply after
9556 * applying @reply_mask. Polling is first attempted with preemption enabled
9557 * for @timeout_base_ms and if this times out for another 50 ms with
9558 * preemption disabled.
9560 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
9561 * other error as reported by PCODE.
9563 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
9564 u32 reply_mask, u32 reply, int timeout_base_ms)
9569 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9571 #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
9575 * Prime the PCODE by doing a request first. Normally it guarantees
9576 * that a subsequent request, at most @timeout_base_ms later, succeeds.
9577 * _wait_for() doesn't guarantee when its passed condition is evaluated
9578 * first, so send the first request explicitly.
9584 ret = _wait_for(COND, timeout_base_ms * 1000, 10, 10);
9589 * The above can time out if the number of requests was low (2 in the
9590 * worst case) _and_ PCODE was busy for some reason even after a
9591 * (queued) request and @timeout_base_ms delay. As a workaround retry
9592 * the poll with preemption disabled to maximize the number of
9593 * requests. Increase the timeout from @timeout_base_ms to 50ms to
9594 * account for interrupts that could reduce the number of these
9595 * requests, and for any quirks of the PCODE firmware that delays
9596 * the request completion.
9598 DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
9599 WARN_ON_ONCE(timeout_base_ms > 3);
9601 ret = wait_for_atomic(COND, 50);
9605 return ret ? ret : status;
9609 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
9611 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9615 * Slow = Fast = GPLL ref * N
9617 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9620 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9622 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9624 return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9627 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9629 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9633 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
9635 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9638 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9640 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9642 /* CHV needs even values */
9643 return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9646 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9648 if (INTEL_GEN(dev_priv) >= 9)
9649 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
9651 else if (IS_CHERRYVIEW(dev_priv))
9652 return chv_gpu_freq(dev_priv, val);
9653 else if (IS_VALLEYVIEW(dev_priv))
9654 return byt_gpu_freq(dev_priv, val);
9656 return val * GT_FREQUENCY_MULTIPLIER;
9659 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
9661 if (INTEL_GEN(dev_priv) >= 9)
9662 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
9663 GT_FREQUENCY_MULTIPLIER);
9664 else if (IS_CHERRYVIEW(dev_priv))
9665 return chv_freq_opcode(dev_priv, val);
9666 else if (IS_VALLEYVIEW(dev_priv))
9667 return byt_freq_opcode(dev_priv, val);
9669 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9672 void intel_pm_setup(struct drm_i915_private *dev_priv)
9674 mutex_init(&dev_priv->pcu_lock);
9675 mutex_init(&dev_priv->gt_pm.rps.power.mutex);
9677 atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9679 dev_priv->runtime_pm.suspended = false;
9680 atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9683 static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
9684 const i915_reg_t reg)
9686 u32 lower, upper, tmp;
9690 * The register accessed do not need forcewake. We borrow
9691 * uncore lock to prevent concurrent access to range reg.
9693 lockdep_assert_held(&dev_priv->uncore.lock);
9696 * vlv and chv residency counters are 40 bits in width.
9697 * With a control bit, we can choose between upper or lower
9698 * 32bit window into this counter.
9700 * Although we always use the counter in high-range mode elsewhere,
9701 * userspace may attempt to read the value before rc6 is initialised,
9702 * before we have set the default VLV_COUNTER_CONTROL value. So always
9703 * set the high bit to be safe.
9705 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9706 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9707 upper = I915_READ_FW(reg);
9711 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9712 _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
9713 lower = I915_READ_FW(reg);
9715 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9716 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9717 upper = I915_READ_FW(reg);
9718 } while (upper != tmp && --loop);
9721 * Everywhere else we always use VLV_COUNTER_CONTROL with the
9722 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
9726 return lower | (u64)upper << 8;
9729 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
9730 const i915_reg_t reg)
9732 u64 time_hw, prev_hw, overflow_hw;
9733 unsigned int fw_domains;
9734 unsigned long flags;
9738 if (!HAS_RC6(dev_priv))
9742 * Store previous hw counter values for counter wrap-around handling.
9744 * There are only four interesting registers and they live next to each
9745 * other so we can use the relative address, compared to the smallest
9746 * one as the index into driver storage.
9748 i = (i915_mmio_reg_offset(reg) -
9749 i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
9750 if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
9753 fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg, FW_REG_READ);
9755 spin_lock_irqsave(&dev_priv->uncore.lock, flags);
9756 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
9758 /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
9759 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9761 div = dev_priv->czclk_freq;
9762 overflow_hw = BIT_ULL(40);
9763 time_hw = vlv_residency_raw(dev_priv, reg);
9765 /* 833.33ns units on Gen9LP, 1.28us elsewhere. */
9766 if (IS_GEN9_LP(dev_priv)) {
9774 overflow_hw = BIT_ULL(32);
9775 time_hw = I915_READ_FW(reg);
9779 * Counter wrap handling.
9781 * But relying on a sufficient frequency of queries otherwise counters
9784 prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
9785 dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;
9787 /* RC6 delta from last sample. */
9788 if (time_hw >= prev_hw)
9791 time_hw += overflow_hw - prev_hw;
9793 /* Add delta to RC6 extended raw driver copy. */
9794 time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
9795 dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;
9797 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
9798 spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
9800 return mul_u64_u32_div(time_hw, mul, div);
9803 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
9807 if (INTEL_GEN(dev_priv) >= 9)
9808 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
9809 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
9810 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
9812 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;