2 * SMP boot-related support
4 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
6 * Copyright (C) 2001, 2004-2005 Intel Corp
15 * smp_boot_cpus()/smp_commence() is replaced by
16 * smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
20 * Add multi-threading and multi-core detection
22 * Setup cpu_sibling_map and cpu_core_map
25 #include <linux/module.h>
26 #include <linux/acpi.h>
27 #include <linux/memblock.h>
28 #include <linux/cpu.h>
29 #include <linux/delay.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/irq.h>
33 #include <linux/kernel.h>
34 #include <linux/kernel_stat.h>
36 #include <linux/notifier.h>
37 #include <linux/smp.h>
38 #include <linux/spinlock.h>
39 #include <linux/efi.h>
40 #include <linux/percpu.h>
41 #include <linux/bitops.h>
43 #include <linux/atomic.h>
44 #include <asm/cache.h>
45 #include <asm/current.h>
46 #include <asm/delay.h>
49 #include <asm/machvec.h>
52 #include <asm/pgalloc.h>
53 #include <asm/pgtable.h>
54 #include <asm/processor.h>
55 #include <asm/ptrace.h>
57 #include <asm/tlbflush.h>
58 #include <asm/unistd.h>
59 #include <asm/sn/arch.h>
64 #define Dprintk(x...) printk(x)
69 #ifdef CONFIG_HOTPLUG_CPU
70 #ifdef CONFIG_PERMIT_BSP_REMOVE
71 #define bsp_remove_ok 1
73 #define bsp_remove_ok 0
77 * Global array allocated for NR_CPUS at boot time
79 struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
82 * start_ap in head.S uses this to store current booting cpu
85 struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
87 #define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
90 #define set_brendez_area(x)
95 * ITC synchronization related stuff:
98 #define SLAVE (SMP_CACHE_BYTES/8)
100 #define NUM_ROUNDS 64 /* magic value */
101 #define NUM_ITERS 5 /* likewise */
103 static DEFINE_SPINLOCK(itc_sync_lock);
104 static volatile unsigned long go[SLAVE + 1];
106 #define DEBUG_ITC_SYNC 0
108 extern void start_ap (void);
109 extern unsigned long ia64_iobase;
111 struct task_struct *task_for_booting_cpu;
116 DEFINE_PER_CPU(int, cpu_state);
118 cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
119 EXPORT_SYMBOL(cpu_core_map);
120 DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
121 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
123 int smp_num_siblings = 1;
125 /* which logical CPU number maps to which CPU (physical APIC ID) */
126 volatile int ia64_cpu_to_sapicid[NR_CPUS];
127 EXPORT_SYMBOL(ia64_cpu_to_sapicid);
129 static cpumask_t cpu_callin_map;
131 struct smp_boot_data smp_boot_data __initdata;
133 unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
135 char __initdata no_int_routing;
137 unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
139 #ifdef CONFIG_FORCE_CPEI_RETARGET
140 #define CPEI_OVERRIDE_DEFAULT (1)
142 #define CPEI_OVERRIDE_DEFAULT (0)
145 unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
148 cmdl_force_cpei(char *str)
152 get_option (&str, &value);
153 force_cpei_retarget = value;
158 __setup("force_cpei=", cmdl_force_cpei);
161 nointroute (char *str)
164 printk ("no_int_routing on\n");
168 __setup("nointroute", nointroute);
170 static void fix_b0_for_bsp(void)
172 #ifdef CONFIG_HOTPLUG_CPU
174 static int fix_bsp_b0 = 1;
176 cpuid = smp_processor_id();
179 * Cache the b0 value on the first AP that comes up
181 if (!(fix_bsp_b0 && cpuid))
184 sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
185 printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
192 sync_master (void *arg)
194 unsigned long flags, i;
198 local_irq_save(flags);
200 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
204 go[SLAVE] = ia64_get_itc();
207 local_irq_restore(flags);
211 * Return the number of cycles by which our itc differs from the itc on the master
212 * (time-keeper) CPU. A positive number indicates our itc is ahead of the master,
213 * negative that it is behind.
216 get_delta (long *rt, long *master)
218 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
219 unsigned long tcenter, t0, t1, tm;
222 for (i = 0; i < NUM_ITERS; ++i) {
225 while (!(tm = go[SLAVE]))
230 if (t1 - t0 < best_t1 - best_t0)
231 best_t0 = t0, best_t1 = t1, best_tm = tm;
234 *rt = best_t1 - best_t0;
235 *master = best_tm - best_t0;
237 /* average best_t0 and best_t1 without overflow: */
238 tcenter = (best_t0/2 + best_t1/2);
239 if (best_t0 % 2 + best_t1 % 2 == 2)
241 return tcenter - best_tm;
245 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
246 * (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of
247 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
248 * step). The basic idea is for the slave to ask the master what itc value it has and to
249 * read its own itc before and after the master responds. Each iteration gives us three
263 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
264 * and t1. If we achieve this, the clocks are synchronized provided the interconnect
265 * between the slave and the master is symmetric. Even if the interconnect were
266 * asymmetric, we would still know that the synchronization error is smaller than the
267 * roundtrip latency (t0 - t1).
269 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
270 * within one or two cycles. However, we can only *guarantee* that the synchronization is
271 * accurate to within a round-trip time, which is typically in the range of several
272 * hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually
273 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
274 * than half a micro second or so.
277 ia64_sync_itc (unsigned int master)
279 long i, delta, adj, adjust_latency = 0, done = 0;
280 unsigned long flags, rt, master_time_stamp, bound;
283 long rt; /* roundtrip time */
284 long master; /* master's timestamp */
285 long diff; /* difference between midpoint and master's timestamp */
286 long lat; /* estimate of itc adjustment latency */
291 * Make sure local timer ticks are disabled while we sync. If
292 * they were enabled, we'd have to worry about nasty issues
293 * like setting the ITC ahead of (or a long time before) the
294 * next scheduled tick.
296 BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
300 if (smp_call_function_single(master, sync_master, NULL, 0) < 0) {
301 printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
306 cpu_relax(); /* wait for master to be ready */
308 spin_lock_irqsave(&itc_sync_lock, flags);
310 for (i = 0; i < NUM_ROUNDS; ++i) {
311 delta = get_delta(&rt, &master_time_stamp);
313 done = 1; /* let's lock on to this... */
319 adjust_latency += -delta;
320 adj = -delta + adjust_latency/4;
324 ia64_set_itc(ia64_get_itc() + adj);
328 t[i].master = master_time_stamp;
330 t[i].lat = adjust_latency/4;
334 spin_unlock_irqrestore(&itc_sync_lock, flags);
337 for (i = 0; i < NUM_ROUNDS; ++i)
338 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
339 t[i].rt, t[i].master, t[i].diff, t[i].lat);
342 printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
343 "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
347 * Ideally sets up per-cpu profiling hooks. Doesn't do much now...
349 static inline void smp_setup_percpu_timer(void)
356 int cpuid, phys_id, itc_master;
357 struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
358 extern void ia64_init_itm(void);
359 extern volatile int time_keeper_id;
361 #ifdef CONFIG_PERFMON
362 extern void pfm_init_percpu(void);
365 cpuid = smp_processor_id();
366 phys_id = hard_smp_processor_id();
367 itc_master = time_keeper_id;
369 if (cpu_online(cpuid)) {
370 printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
378 * numa_node_id() works after this.
380 set_numa_node(cpu_to_node_map[cpuid]);
381 set_numa_mem(local_memory_node(cpu_to_node_map[cpuid]));
383 spin_lock(&vector_lock);
384 /* Setup the per cpu irq handling data structures */
385 __setup_vector_irq(cpuid);
386 notify_cpu_starting(cpuid);
387 set_cpu_online(cpuid, true);
388 per_cpu(cpu_state, cpuid) = CPU_ONLINE;
389 spin_unlock(&vector_lock);
391 smp_setup_percpu_timer();
393 ia64_mca_cmc_vector_setup(); /* Setup vector on AP */
395 #ifdef CONFIG_PERFMON
401 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
403 * Synchronize the ITC with the BP. Need to do this after irqs are
404 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
405 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
406 * local_bh_enable(), which bugs out if irqs are not enabled...
408 Dprintk("Going to syncup ITC with ITC Master.\n");
409 ia64_sync_itc(itc_master);
418 * Delay calibration can be skipped if new processor is identical to the
419 * previous processor.
421 last_cpuinfo = cpu_data(cpuid - 1);
422 this_cpuinfo = local_cpu_data;
423 if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
424 last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
425 last_cpuinfo->features != this_cpuinfo->features ||
426 last_cpuinfo->revision != this_cpuinfo->revision ||
427 last_cpuinfo->family != this_cpuinfo->family ||
428 last_cpuinfo->archrev != this_cpuinfo->archrev ||
429 last_cpuinfo->model != this_cpuinfo->model)
431 local_cpu_data->loops_per_jiffy = loops_per_jiffy;
434 * Allow the master to continue.
436 cpumask_set_cpu(cpuid, &cpu_callin_map);
437 Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
442 * Activate a secondary processor. head.S calls this.
445 start_secondary (void *unused)
447 /* Early console may use I/O ports */
448 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
449 #ifndef CONFIG_PRINTK_TIME
450 Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
457 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
462 do_boot_cpu (int sapicid, int cpu, struct task_struct *idle)
466 task_for_booting_cpu = idle;
467 Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
469 set_brendez_area(cpu);
470 platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
473 * Wait 10s total for the AP to start
475 Dprintk("Waiting on callin_map ...");
476 for (timeout = 0; timeout < 100000; timeout++) {
477 if (cpumask_test_cpu(cpu, &cpu_callin_map))
478 break; /* It has booted */
479 barrier(); /* Make sure we re-read cpu_callin_map */
484 if (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
485 printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
486 ia64_cpu_to_sapicid[cpu] = -1;
487 set_cpu_online(cpu, false); /* was set in smp_callin() */
497 get_option (&str, &ticks);
501 __setup("decay=", decay);
504 * Initialize the logical CPU number to SAPICID mapping
507 smp_build_cpu_map (void)
510 int boot_cpu_id = hard_smp_processor_id();
512 for (cpu = 0; cpu < NR_CPUS; cpu++) {
513 ia64_cpu_to_sapicid[cpu] = -1;
516 ia64_cpu_to_sapicid[0] = boot_cpu_id;
517 init_cpu_present(cpumask_of(0));
518 set_cpu_possible(0, true);
519 for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
520 sapicid = smp_boot_data.cpu_phys_id[i];
521 if (sapicid == boot_cpu_id)
523 set_cpu_present(cpu, true);
524 set_cpu_possible(cpu, true);
525 ia64_cpu_to_sapicid[cpu] = sapicid;
531 * Cycle through the APs sending Wakeup IPIs to boot each.
534 smp_prepare_cpus (unsigned int max_cpus)
536 int boot_cpu_id = hard_smp_processor_id();
539 * Initialize the per-CPU profiling counter/multiplier
542 smp_setup_percpu_timer();
544 cpumask_set_cpu(0, &cpu_callin_map);
546 local_cpu_data->loops_per_jiffy = loops_per_jiffy;
547 ia64_cpu_to_sapicid[0] = boot_cpu_id;
549 printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
551 current_thread_info()->cpu = 0;
554 * If SMP should be disabled, then really disable it!
557 printk(KERN_INFO "SMP mode deactivated.\n");
558 init_cpu_online(cpumask_of(0));
559 init_cpu_present(cpumask_of(0));
560 init_cpu_possible(cpumask_of(0));
565 void smp_prepare_boot_cpu(void)
567 set_cpu_online(smp_processor_id(), true);
568 cpumask_set_cpu(smp_processor_id(), &cpu_callin_map);
569 set_numa_node(cpu_to_node_map[smp_processor_id()]);
570 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
573 #ifdef CONFIG_HOTPLUG_CPU
575 clear_cpu_sibling_map(int cpu)
579 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
580 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
581 for_each_cpu(i, &cpu_core_map[cpu])
582 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
584 per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
588 remove_siblinginfo(int cpu)
592 if (cpu_data(cpu)->threads_per_core == 1 &&
593 cpu_data(cpu)->cores_per_socket == 1) {
594 cpumask_clear_cpu(cpu, &cpu_core_map[cpu]);
595 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
599 last = (cpumask_weight(&cpu_core_map[cpu]) == 1 ? 1 : 0);
601 /* remove it from all sibling map's */
602 clear_cpu_sibling_map(cpu);
605 extern void fixup_irqs(void);
607 int migrate_platform_irqs(unsigned int cpu)
610 struct irq_data *data = NULL;
611 const struct cpumask *mask;
615 * dont permit CPEI target to removed.
617 if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
618 printk ("CPU (%d) is CPEI Target\n", cpu);
619 if (can_cpei_retarget()) {
621 * Now re-target the CPEI to a different processor
623 new_cpei_cpu = cpumask_any(cpu_online_mask);
624 mask = cpumask_of(new_cpei_cpu);
625 set_cpei_target_cpu(new_cpei_cpu);
626 data = irq_get_irq_data(ia64_cpe_irq);
628 * Switch for now, immediately, we need to do fake intr
629 * as other interrupts, but need to study CPEI behaviour with
630 * polling before making changes.
632 if (data && data->chip) {
633 data->chip->irq_disable(data);
634 data->chip->irq_set_affinity(data, mask, false);
635 data->chip->irq_enable(data);
636 printk ("Re-targeting CPEI to cpu %d\n", new_cpei_cpu);
640 printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
647 /* must be called with cpucontrol mutex held */
648 int __cpu_disable(void)
650 int cpu = smp_processor_id();
653 * dont permit boot processor for now
655 if (cpu == 0 && !bsp_remove_ok) {
656 printk ("Your platform does not support removal of BSP\n");
660 if (ia64_platform_is("sn2")) {
661 if (!sn_cpu_disable_allowed(cpu))
665 set_cpu_online(cpu, false);
667 if (migrate_platform_irqs(cpu)) {
668 set_cpu_online(cpu, true);
672 remove_siblinginfo(cpu);
674 local_flush_tlb_all();
675 cpumask_clear_cpu(cpu, &cpu_callin_map);
679 void __cpu_die(unsigned int cpu)
683 for (i = 0; i < 100; i++) {
684 /* They ack this in play_dead by setting CPU_DEAD */
685 if (per_cpu(cpu_state, cpu) == CPU_DEAD)
687 printk ("CPU %d is now offline\n", cpu);
692 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
694 #endif /* CONFIG_HOTPLUG_CPU */
697 smp_cpus_done (unsigned int dummy)
700 unsigned long bogosum = 0;
703 * Allow the user to impress friends.
706 for_each_online_cpu(cpu) {
707 bogosum += cpu_data(cpu)->loops_per_jiffy;
710 printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
711 (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
714 static inline void set_cpu_sibling_map(int cpu)
718 for_each_online_cpu(i) {
719 if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
720 cpumask_set_cpu(i, &cpu_core_map[cpu]);
721 cpumask_set_cpu(cpu, &cpu_core_map[i]);
722 if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
724 &per_cpu(cpu_sibling_map, cpu));
726 &per_cpu(cpu_sibling_map, i));
733 __cpu_up(unsigned int cpu, struct task_struct *tidle)
738 sapicid = ia64_cpu_to_sapicid[cpu];
743 * Already booted cpu? not valid anymore since we dont
744 * do idle loop tightspin anymore.
746 if (cpumask_test_cpu(cpu, &cpu_callin_map))
749 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
750 /* Processor goes to start_secondary(), sets online flag */
751 ret = do_boot_cpu(sapicid, cpu, tidle);
755 if (cpu_data(cpu)->threads_per_core == 1 &&
756 cpu_data(cpu)->cores_per_socket == 1) {
757 cpumask_set_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
758 cpumask_set_cpu(cpu, &cpu_core_map[cpu]);
762 set_cpu_sibling_map(cpu);
768 * Assume that CPUs have been discovered by some platform-dependent interface. For
769 * SoftSDV/Lion, that would be ACPI.
771 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
774 init_smp_config(void)
782 /* Tell SAL where to drop the APs. */
783 ap_startup = (struct fptr *) start_ap;
784 sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
785 ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
787 printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
788 ia64_sal_strerror(sal_ret));
792 * identify_siblings(cpu) gets called from identify_cpu. This populates the
793 * information related to logical execution units in per_cpu_data structure.
795 void identify_siblings(struct cpuinfo_ia64 *c)
799 pal_logical_to_physical_t info;
801 status = ia64_pal_logical_to_phys(-1, &info);
802 if (status != PAL_STATUS_SUCCESS) {
803 if (status != PAL_STATUS_UNIMPLEMENTED) {
805 "ia64_pal_logical_to_phys failed with %ld\n",
810 info.overview_ppid = 0;
811 info.overview_cpp = 1;
812 info.overview_tpc = 1;
815 status = ia64_sal_physical_id_info(&pltid);
816 if (status != PAL_STATUS_SUCCESS) {
817 if (status != PAL_STATUS_UNIMPLEMENTED)
819 "ia64_sal_pltid failed with %ld\n",
824 c->socket_id = (pltid << 8) | info.overview_ppid;
826 if (info.overview_cpp == 1 && info.overview_tpc == 1)
829 c->cores_per_socket = info.overview_cpp;
830 c->threads_per_core = info.overview_tpc;
831 c->num_log = info.overview_num_log;
833 c->core_id = info.log1_cid;
834 c->thread_id = info.log1_tid;
838 * returns non zero, if multi-threading is enabled
839 * on at least one physical package. Due to hotplug cpu
840 * and (maxcpus=), all threads may not necessarily be enabled
841 * even though the processor supports multi-threading.
843 int is_multithreading_enabled(void)
847 for_each_present_cpu(i) {
848 for_each_present_cpu(j) {
851 if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
852 if (cpu_data(j)->core_id == cpu_data(i)->core_id)
859 EXPORT_SYMBOL_GPL(is_multithreading_enabled);