1 // SPDX-License-Identifier: GPL-2.0
3 * Architecture-specific setup.
5 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
8 * Copyright (C) 2000, 2004 Intel Corp
12 * Copyright (C) 1999 VA Linux Systems
15 * 12/26/04 S.Siddha, G.Jin, R.Seth
16 * Add multi-threading and multi-core detection
17 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
18 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
19 * 03/31/00 R.Seth cpu_initialized and current->processor fixes
20 * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
21 * 02/01/00 R.Seth fixed get_cpuinfo for SMP
22 * 01/07/99 S.Eranian added the support for command line argument
23 * 06/24/99 W.Drummond added boot_cpu_data.
24 * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
26 #include <linux/module.h>
27 #include <linux/init.h>
29 #include <linux/acpi.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/cpu.h>
33 #include <linux/kernel.h>
34 #include <linux/memblock.h>
35 #include <linux/reboot.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/clock.h>
38 #include <linux/sched/task_stack.h>
39 #include <linux/seq_file.h>
40 #include <linux/string.h>
41 #include <linux/threads.h>
42 #include <linux/screen_info.h>
43 #include <linux/dmi.h>
44 #include <linux/serial.h>
45 #include <linux/serial_core.h>
46 #include <linux/efi.h>
47 #include <linux/initrd.h>
49 #include <linux/cpufreq.h>
50 #include <linux/kexec.h>
51 #include <linux/crash_dump.h>
53 #include <asm/machvec.h>
55 #include <asm/meminit.h>
57 #include <asm/patch.h>
58 #include <asm/pgtable.h>
59 #include <asm/processor.h>
61 #include <asm/sections.h>
62 #include <asm/setup.h>
64 #include <asm/tlbflush.h>
65 #include <asm/unistd.h>
66 #include <asm/hpsim.h>
68 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
69 # error "struct cpuinfo_ia64 too big!"
73 unsigned long __per_cpu_offset[NR_CPUS];
74 EXPORT_SYMBOL(__per_cpu_offset);
77 DEFINE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
78 EXPORT_SYMBOL(ia64_cpu_info);
79 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
81 EXPORT_SYMBOL(local_per_cpu_offset);
83 unsigned long ia64_cycles_per_usec;
84 struct ia64_boot_param *ia64_boot_param;
85 struct screen_info screen_info;
86 unsigned long vga_console_iobase;
87 unsigned long vga_console_membase;
89 static struct resource data_resource = {
90 .name = "Kernel data",
91 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
94 static struct resource code_resource = {
95 .name = "Kernel code",
96 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
99 static struct resource bss_resource = {
100 .name = "Kernel bss",
101 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
104 unsigned long ia64_max_cacheline_size;
106 unsigned long ia64_iobase; /* virtual address for I/O accesses */
107 EXPORT_SYMBOL(ia64_iobase);
108 struct io_space io_space[MAX_IO_SPACES];
109 EXPORT_SYMBOL(io_space);
110 unsigned int num_io_spaces;
113 * "flush_icache_range()" needs to know what processor dependent stride size to use
114 * when it makes i-cache(s) coherent with d-caches.
116 #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
117 unsigned long ia64_i_cache_stride_shift = ~0;
119 * "clflush_cache_range()" needs to know what processor dependent stride size to
120 * use when it flushes cache lines including both d-cache and i-cache.
122 /* Safest way to go: 32 bytes by 32 bytes */
123 #define CACHE_STRIDE_SHIFT 5
124 unsigned long ia64_cache_stride_shift = ~0;
127 * We use a special marker for the end of memory and it uses the extra (+1) slot
129 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
130 int num_rsvd_regions __initdata;
134 * Filter incoming memory segments based on the primitive map created from the boot
135 * parameters. Segments contained in the map are removed from the memory ranges. A
136 * caller-specified function is called with the memory ranges that remain after filtering.
137 * This routine does not assume the incoming segments are sorted.
140 filter_rsvd_memory (u64 start, u64 end, void *arg)
142 u64 range_start, range_end, prev_start;
143 void (*func)(unsigned long, unsigned long, int);
147 if (start == PAGE_OFFSET) {
148 printk(KERN_WARNING "warning: skipping physical page 0\n");
150 if (start >= end) return 0;
154 * lowest possible address(walker uses virtual)
156 prev_start = PAGE_OFFSET;
159 for (i = 0; i < num_rsvd_regions; ++i) {
160 range_start = max(start, prev_start);
161 range_end = min(end, rsvd_region[i].start);
163 if (range_start < range_end)
164 call_pernode_memory(__pa(range_start), range_end - range_start, func);
166 /* nothing more available in this segment */
167 if (range_end == end) return 0;
169 prev_start = rsvd_region[i].end;
171 /* end of memory marker allows full processing inside loop body */
176 * Similar to "filter_rsvd_memory()", but the reserved memory ranges
177 * are not filtered out.
180 filter_memory(u64 start, u64 end, void *arg)
182 void (*func)(unsigned long, unsigned long, int);
185 if (start == PAGE_OFFSET) {
186 printk(KERN_WARNING "warning: skipping physical page 0\n");
194 call_pernode_memory(__pa(start), end - start, func);
199 sort_regions (struct rsvd_region *rsvd_region, int max)
203 /* simple bubble sorting */
205 for (j = 0; j < max; ++j) {
206 if (rsvd_region[j].start > rsvd_region[j+1].start) {
207 struct rsvd_region tmp;
208 tmp = rsvd_region[j];
209 rsvd_region[j] = rsvd_region[j + 1];
210 rsvd_region[j + 1] = tmp;
218 merge_regions (struct rsvd_region *rsvd_region, int max)
221 for (i = 1; i < max; ++i) {
222 if (rsvd_region[i].start >= rsvd_region[i-1].end)
224 if (rsvd_region[i].end > rsvd_region[i-1].end)
225 rsvd_region[i-1].end = rsvd_region[i].end;
227 memmove(&rsvd_region[i], &rsvd_region[i+1],
228 (max - i) * sizeof(struct rsvd_region));
234 * Request address space for all standard resources
236 static int __init register_memory(void)
238 code_resource.start = ia64_tpa(_text);
239 code_resource.end = ia64_tpa(_etext) - 1;
240 data_resource.start = ia64_tpa(_etext);
241 data_resource.end = ia64_tpa(_edata) - 1;
242 bss_resource.start = ia64_tpa(__bss_start);
243 bss_resource.end = ia64_tpa(_end) - 1;
244 efi_initialize_iomem_resources(&code_resource, &data_resource,
250 __initcall(register_memory);
256 * This function checks if the reserved crashkernel is allowed on the specific
257 * IA64 machine flavour. Machines without an IO TLB use swiotlb and require
258 * some memory below 4 GB (i.e. in 32 bit area), see the implementation of
259 * lib/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
260 * in kdump case. See the comment in sba_init() in sba_iommu.c.
262 * So, the only machvec that really supports loading the kdump kernel
263 * over 4 GB is "sn2".
265 static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
267 if (ia64_platform_is("sn2") || ia64_platform_is("uv"))
270 return pbase < (1UL << 32);
273 static void __init setup_crashkernel(unsigned long total, int *n)
275 unsigned long long base = 0, size = 0;
278 ret = parse_crashkernel(boot_command_line, total,
280 if (ret == 0 && size > 0) {
282 sort_regions(rsvd_region, *n);
283 *n = merge_regions(rsvd_region, *n);
284 base = kdump_find_rsvd_region(size,
288 if (!check_crashkernel_memory(base, size)) {
289 pr_warning("crashkernel: There would be kdump memory "
290 "at %ld GB but this is unusable because it "
291 "must\nbe below 4 GB. Change the memory "
292 "configuration of the machine.\n",
293 (unsigned long)(base >> 30));
298 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
299 "for crashkernel (System RAM: %ldMB)\n",
300 (unsigned long)(size >> 20),
301 (unsigned long)(base >> 20),
302 (unsigned long)(total >> 20));
303 rsvd_region[*n].start =
304 (unsigned long)__va(base);
305 rsvd_region[*n].end =
306 (unsigned long)__va(base + size);
308 crashk_res.start = base;
309 crashk_res.end = base + size - 1;
312 efi_memmap_res.start = ia64_boot_param->efi_memmap;
313 efi_memmap_res.end = efi_memmap_res.start +
314 ia64_boot_param->efi_memmap_size;
315 boot_param_res.start = __pa(ia64_boot_param);
316 boot_param_res.end = boot_param_res.start +
317 sizeof(*ia64_boot_param);
320 static inline void __init setup_crashkernel(unsigned long total, int *n)
325 * reserve_memory - setup reserved memory areas
327 * Setup the reserved memory areas set aside for the boot parameters,
328 * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
329 * see arch/ia64/include/asm/meminit.h if you need to define more.
332 reserve_memory (void)
335 unsigned long total_memory;
338 * none of the entries in this table overlap
340 rsvd_region[n].start = (unsigned long) ia64_boot_param;
341 rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
344 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
345 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
348 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
349 rsvd_region[n].end = (rsvd_region[n].start
350 + strlen(__va(ia64_boot_param->command_line)) + 1);
353 rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
354 rsvd_region[n].end = (unsigned long) ia64_imva(_end);
357 #ifdef CONFIG_BLK_DEV_INITRD
358 if (ia64_boot_param->initrd_start) {
359 rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
360 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
365 #ifdef CONFIG_CRASH_DUMP
366 if (reserve_elfcorehdr(&rsvd_region[n].start,
367 &rsvd_region[n].end) == 0)
371 total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
374 setup_crashkernel(total_memory, &n);
376 /* end of memory marker */
377 rsvd_region[n].start = ~0UL;
378 rsvd_region[n].end = ~0UL;
381 num_rsvd_regions = n;
382 BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
384 sort_regions(rsvd_region, num_rsvd_regions);
385 num_rsvd_regions = merge_regions(rsvd_region, num_rsvd_regions);
387 /* reserve all regions except the end of memory marker with memblock */
388 for (n = 0; n < num_rsvd_regions - 1; n++) {
389 struct rsvd_region *region = &rsvd_region[n];
390 phys_addr_t addr = __pa(region->start);
391 phys_addr_t size = region->end - region->start;
393 memblock_reserve(addr, size);
398 * find_initrd - get initrd parameters from the boot parameter structure
400 * Grab the initrd start and end from the boot parameter struct given us by
406 #ifdef CONFIG_BLK_DEV_INITRD
407 if (ia64_boot_param->initrd_start) {
408 initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
409 initrd_end = initrd_start+ia64_boot_param->initrd_size;
411 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%llu bytes)\n",
412 initrd_start, ia64_boot_param->initrd_size);
420 unsigned long phys_iobase;
423 * Set `iobase' based on the EFI memory map or, failing that, the
424 * value firmware left in ar.k0.
426 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
427 * the port's virtual address, so ia32_load_state() loads it with a
428 * user virtual address. But in ia64 mode, glibc uses the
429 * *physical* address in ar.k0 to mmap the appropriate area from
430 * /dev/mem, and the inX()/outX() interfaces use MMIO. In both
431 * cases, user-mode can only use the legacy 0-64K I/O port space.
433 * ar.k0 is not involved in kernel I/O port accesses, which can use
434 * any of the I/O port spaces and are done via MMIO using the
435 * virtual mmio_base from the appropriate io_space[].
437 phys_iobase = efi_get_iobase();
439 phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
440 printk(KERN_INFO "No I/O port range found in EFI memory map, "
441 "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
443 ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
444 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
446 /* setup legacy IO port space */
447 io_space[0].mmio_base = ia64_iobase;
448 io_space[0].sparse = 1;
453 * early_console_setup - setup debugging console
455 * Consoles started here require little enough setup that we can start using
456 * them very early in the boot process, either right after the machine
457 * vector initialization, or even before if the drivers can detect their hw.
459 * Returns non-zero if a console couldn't be setup.
461 static inline int __init
462 early_console_setup (char *cmdline)
466 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
468 extern int sn_serial_console_early_setup(void);
469 if (!sn_serial_console_early_setup())
473 #ifdef CONFIG_EFI_PCDP
474 if (!efi_setup_pcdp_console(cmdline))
477 if (!simcons_register())
480 return (earlycons) ? 0 : -1;
484 mark_bsp_online (void)
487 /* If we register an early console, allow CPU 0 to printk */
488 set_cpu_online(smp_processor_id(), true);
492 static __initdata int nomca;
493 static __init int setup_nomca(char *s)
498 early_param("nomca", setup_nomca);
500 #ifdef CONFIG_CRASH_DUMP
501 int __init reserve_elfcorehdr(u64 *start, u64 *end)
505 /* We get the address using the kernel command line,
506 * but the size is extracted from the EFI tables.
507 * Both address and size are required for reservation
511 if (!is_vmcore_usable())
514 if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
519 *start = (unsigned long)__va(elfcorehdr_addr);
520 *end = *start + length;
524 #endif /* CONFIG_PROC_VMCORE */
527 setup_arch (char **cmdline_p)
531 ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
533 *cmdline_p = __va(ia64_boot_param->command_line);
534 strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
539 #ifdef CONFIG_IA64_GENERIC
540 /* machvec needs to be parsed from the command line
541 * before parse_early_param() is called to ensure
542 * that ia64_mv is initialised before any command line
543 * settings may cause console setup to occur
545 machvec_init_from_cmdline(*cmdline_p);
550 if (early_console_setup(*cmdline_p) == 0)
554 /* Initialize the ACPI boot-time table parser */
556 early_acpi_boot_init();
557 # ifdef CONFIG_ACPI_NUMA
560 # ifdef CONFIG_ACPI_HOTPLUG_CPU
561 prefill_possible_map();
563 per_cpu_scan_finalize((cpumask_weight(&early_cpu_possible_map) == 0 ?
564 32 : cpumask_weight(&early_cpu_possible_map)),
565 additional_cpus > 0 ? additional_cpus : 0);
567 #endif /* CONFIG_APCI_BOOT */
574 /* process SAL system table: */
575 ia64_sal_init(__va(efi.sal_systab));
577 #ifdef CONFIG_ITANIUM
578 ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
581 unsigned long num_phys_stacked;
583 if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96)
584 ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
589 cpu_physical_id(0) = hard_smp_processor_id();
592 cpu_init(); /* initialize the bootstrap CPU */
593 mmu_context_init(); /* initialize context_id bitmap */
597 # if defined(CONFIG_DUMMY_CONSOLE)
598 conswitchp = &dummy_con;
600 # if defined(CONFIG_VGA_CONSOLE)
602 * Non-legacy systems may route legacy VGA MMIO range to system
603 * memory. vga_con probes the MMIO hole, so memory looks like
604 * a VGA device to it. The EFI memory map can tell us if it's
605 * memory so we can avoid this problem.
607 if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
608 conswitchp = &vga_con;
613 /* enable IA-64 Machine Check Abort Handling unless disabled */
617 platform_setup(cmdline_p);
618 #ifndef CONFIG_IA64_HP_SIM
619 check_sal_cache_flush();
623 clear_sched_clock_stable();
627 * Display cpu info for all CPUs.
630 show_cpuinfo (struct seq_file *m, void *v)
633 # define lpj c->loops_per_jiffy
634 # define cpunum c->cpu
636 # define lpj loops_per_jiffy
641 const char *feature_name;
643 { 1UL << 0, "branchlong" },
644 { 1UL << 1, "spontaneous deferral"},
645 { 1UL << 2, "16-byte atomic ops" }
647 char features[128], *cp, *sep;
648 struct cpuinfo_ia64 *c = v;
650 unsigned long proc_freq;
655 /* build the feature string: */
656 memcpy(features, "standard", 9);
658 size = sizeof(features);
660 for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
661 if (mask & feature_bits[i].mask) {
662 cp += snprintf(cp, size, "%s%s", sep,
663 feature_bits[i].feature_name),
665 mask &= ~feature_bits[i].mask;
666 size = sizeof(features) - (cp - features);
669 if (mask && size > 1) {
670 /* print unknown features as a hex value */
671 snprintf(cp, size, "%s0x%lx", sep, mask);
674 proc_freq = cpufreq_quick_get(cpunum);
676 proc_freq = c->proc_freq / 1000;
690 "cpu MHz : %lu.%03lu\n"
691 "itc MHz : %lu.%06lu\n"
692 "BogoMIPS : %lu.%02lu\n",
693 cpunum, c->vendor, c->family, c->model,
694 c->model_name, c->revision, c->archrev,
695 features, c->ppn, c->number,
696 proc_freq / 1000, proc_freq % 1000,
697 c->itc_freq / 1000000, c->itc_freq % 1000000,
698 lpj*HZ/500000, (lpj*HZ/5000) % 100);
700 seq_printf(m, "siblings : %u\n",
701 cpumask_weight(&cpu_core_map[cpunum]));
702 if (c->socket_id != -1)
703 seq_printf(m, "physical id: %u\n", c->socket_id);
704 if (c->threads_per_core > 1 || c->cores_per_socket > 1)
708 c->core_id, c->thread_id);
716 c_start (struct seq_file *m, loff_t *pos)
719 while (*pos < nr_cpu_ids && !cpu_online(*pos))
722 return *pos < nr_cpu_ids ? cpu_data(*pos) : NULL;
726 c_next (struct seq_file *m, void *v, loff_t *pos)
729 return c_start(m, pos);
733 c_stop (struct seq_file *m, void *v)
737 const struct seq_operations cpuinfo_op = {
745 static char brandname[MAX_BRANDS][128];
748 get_model_name(__u8 family, __u8 model)
754 memcpy(brand, "Unknown", 8);
755 if (ia64_pal_get_brand_info(brand)) {
757 memcpy(brand, "Merced", 7);
758 else if (family == 0x1f) switch (model) {
759 case 0: memcpy(brand, "McKinley", 9); break;
760 case 1: memcpy(brand, "Madison", 8); break;
761 case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
764 for (i = 0; i < MAX_BRANDS; i++)
765 if (strcmp(brandname[i], brand) == 0)
767 for (i = 0; i < MAX_BRANDS; i++)
768 if (brandname[i][0] == '\0')
769 return strcpy(brandname[i], brand);
772 "%s: Table overflow. Some processor model information will be missing\n",
778 identify_cpu (struct cpuinfo_ia64 *c)
781 unsigned long bits[5];
787 u64 ppn; /* processor serial number */
791 unsigned revision : 8;
794 unsigned archrev : 8;
795 unsigned reserved : 24;
801 pal_vm_info_1_u_t vm1;
802 pal_vm_info_2_u_t vm2;
804 unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
806 for (i = 0; i < 5; ++i)
807 cpuid.bits[i] = ia64_get_cpuid(i);
809 memcpy(c->vendor, cpuid.field.vendor, 16);
811 c->cpu = smp_processor_id();
813 /* below default values will be overwritten by identify_siblings()
814 * for Multi-Threading/Multi-Core capable CPUs
816 c->threads_per_core = c->cores_per_socket = c->num_log = 1;
819 identify_siblings(c);
821 if (c->threads_per_core > smp_num_siblings)
822 smp_num_siblings = c->threads_per_core;
824 c->ppn = cpuid.field.ppn;
825 c->number = cpuid.field.number;
826 c->revision = cpuid.field.revision;
827 c->model = cpuid.field.model;
828 c->family = cpuid.field.family;
829 c->archrev = cpuid.field.archrev;
830 c->features = cpuid.field.features;
831 c->model_name = get_model_name(c->family, c->model);
833 status = ia64_pal_vm_summary(&vm1, &vm2);
834 if (status == PAL_STATUS_SUCCESS) {
835 impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
836 phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
838 c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
839 c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
843 * Do the following calculations:
845 * 1. the max. cache line size.
846 * 2. the minimum of the i-cache stride sizes for "flush_icache_range()".
847 * 3. the minimum of the cache stride sizes for "clflush_cache_range()".
852 unsigned long line_size, max = 1;
853 unsigned long l, levels, unique_caches;
854 pal_cache_config_info_t cci;
857 status = ia64_pal_cache_summary(&levels, &unique_caches);
859 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
861 max = SMP_CACHE_BYTES;
862 /* Safest setup for "flush_icache_range()" */
863 ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
864 /* Safest setup for "clflush_cache_range()" */
865 ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
869 for (l = 0; l < levels; ++l) {
870 /* cache_type (data_or_unified)=2 */
871 status = ia64_pal_cache_config_info(l, 2, &cci);
873 printk(KERN_ERR "%s: ia64_pal_cache_config_info"
874 "(l=%lu, 2) failed (status=%ld)\n",
875 __func__, l, status);
876 max = SMP_CACHE_BYTES;
877 /* The safest setup for "flush_icache_range()" */
878 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
879 /* The safest setup for "clflush_cache_range()" */
880 ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
881 cci.pcci_unified = 1;
883 if (cci.pcci_stride < ia64_cache_stride_shift)
884 ia64_cache_stride_shift = cci.pcci_stride;
886 line_size = 1 << cci.pcci_line_size;
891 if (!cci.pcci_unified) {
892 /* cache_type (instruction)=1*/
893 status = ia64_pal_cache_config_info(l, 1, &cci);
895 printk(KERN_ERR "%s: ia64_pal_cache_config_info"
896 "(l=%lu, 1) failed (status=%ld)\n",
897 __func__, l, status);
898 /* The safest setup for flush_icache_range() */
899 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
902 if (cci.pcci_stride < ia64_i_cache_stride_shift)
903 ia64_i_cache_stride_shift = cci.pcci_stride;
906 if (max > ia64_max_cacheline_size)
907 ia64_max_cacheline_size = max;
911 * cpu_init() initializes state that is per-CPU. This function acts
912 * as a 'CPU state barrier', nothing should get across.
917 extern void ia64_mmu_init(void *);
918 static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
919 unsigned long num_phys_stacked;
920 pal_vm_info_2_u_t vmi;
921 unsigned int max_ctx;
922 struct cpuinfo_ia64 *cpu_info;
925 cpu_data = per_cpu_init();
928 * insert boot cpu into sibling and core mapes
929 * (must be done after per_cpu area is setup)
931 if (smp_processor_id() == 0) {
932 cpumask_set_cpu(0, &per_cpu(cpu_sibling_map, 0));
933 cpumask_set_cpu(0, &cpu_core_map[0]);
936 * Set ar.k3 so that assembly code in MCA handler can compute
937 * physical addresses of per cpu variables with a simple:
938 * phys = ar.k3 + &per_cpu_var
939 * and the alt-dtlb-miss handler can set per-cpu mapping into
940 * the TLB when needed. head.S already did this for cpu0.
942 ia64_set_kr(IA64_KR_PER_CPU_DATA,
943 ia64_tpa(cpu_data) - (long) __per_cpu_start);
950 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
951 * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
952 * depends on the data returned by identify_cpu(). We break the dependency by
953 * accessing cpu_data() through the canonical per-CPU address.
955 cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(ia64_cpu_info) - __per_cpu_start);
956 identify_cpu(cpu_info);
958 #ifdef CONFIG_MCKINLEY
960 # define FEATURE_SET 16
961 struct ia64_pal_retval iprv;
963 if (cpu_info->family == 0x1f) {
964 PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
965 if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
966 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
967 (iprv.v1 | 0x80), FEATURE_SET, 0);
972 /* Clear the stack memory reserved for pt_regs: */
973 memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
975 ia64_set_kr(IA64_KR_FPU_OWNER, 0);
978 * Initialize the page-table base register to a global
979 * directory with all zeroes. This ensure that we can handle
980 * TLB-misses to user address-space even before we created the
981 * first user address-space. This may happen, e.g., due to
982 * aggressive use of lfetch.fault.
984 ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
987 * Initialize default control register to defer speculative faults except
988 * for those arising from TLB misses, which are not deferred. The
989 * kernel MUST NOT depend on a particular setting of these bits (in other words,
990 * the kernel must have recovery code for all speculative accesses). Turn on
991 * dcr.lc as per recommendation by the architecture team. Most IA-32 apps
992 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
995 ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
996 | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
998 current->active_mm = &init_mm;
1001 ia64_mmu_init(ia64_imva(cpu_data));
1002 ia64_mca_cpu_init(ia64_imva(cpu_data));
1004 /* Clear ITC to eliminate sched_clock() overflows in human time. */
1007 /* disable all local interrupt sources: */
1008 ia64_set_itv(1 << 16);
1009 ia64_set_lrr0(1 << 16);
1010 ia64_set_lrr1(1 << 16);
1011 ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
1012 ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
1014 /* clear TPR & XTP to enable all interrupt classes: */
1015 ia64_setreg(_IA64_REG_CR_TPR, 0);
1017 /* Clear any pending interrupts left by SAL/EFI */
1018 while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
1025 /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
1026 if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
1027 max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
1028 setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
1030 printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
1031 max_ctx = (1U << 15) - 1; /* use architected minimum */
1033 while (max_ctx < ia64_ctx.max_ctx) {
1034 unsigned int old = ia64_ctx.max_ctx;
1035 if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
1039 if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
1040 printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
1042 num_phys_stacked = 96;
1044 /* size of physical stacked register partition plus 8 bytes: */
1045 if (num_phys_stacked > max_num_phys_stacked) {
1046 ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
1047 max_num_phys_stacked = num_phys_stacked;
1049 platform_cpu_init();
1055 ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1056 (unsigned long) __end___mckinley_e9_bundles);
1059 static int __init run_dmi_scan(void)
1063 dmi_set_dump_stack_arch_desc();
1066 core_initcall(run_dmi_scan);