1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
26 #include <trace/events/f2fs.h>
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
35 static unsigned long __reverse_ulong(unsigned char *str)
37 unsigned long tmp = 0;
38 int shift = 24, idx = 0;
40 #if BITS_PER_LONG == 64
44 tmp |= (unsigned long)str[idx++] << shift;
45 shift -= BITS_PER_BYTE;
51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52 * MSB and LSB are reversed in a byte by f2fs_set_bit.
54 static inline unsigned long __reverse_ffs(unsigned long word)
58 #if BITS_PER_LONG == 64
59 if ((word & 0xffffffff00000000UL) == 0)
64 if ((word & 0xffff0000) == 0)
69 if ((word & 0xff00) == 0)
74 if ((word & 0xf0) == 0)
79 if ((word & 0xc) == 0)
84 if ((word & 0x2) == 0)
90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91 * f2fs_set_bit makes MSB and LSB reversed in a byte.
92 * @size must be integral times of unsigned long.
95 * f2fs_set_bit(0, bitmap) => 1000 0000
96 * f2fs_set_bit(7, bitmap) => 0000 0001
98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 unsigned long size, unsigned long offset)
101 const unsigned long *p = addr + BIT_WORD(offset);
102 unsigned long result = size;
108 size -= (offset & ~(BITS_PER_LONG - 1));
109 offset %= BITS_PER_LONG;
115 tmp = __reverse_ulong((unsigned char *)p);
117 tmp &= ~0UL >> offset;
118 if (size < BITS_PER_LONG)
119 tmp &= (~0UL << (BITS_PER_LONG - size));
123 if (size <= BITS_PER_LONG)
125 size -= BITS_PER_LONG;
131 return result - size + __reverse_ffs(tmp);
134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 unsigned long size, unsigned long offset)
137 const unsigned long *p = addr + BIT_WORD(offset);
138 unsigned long result = size;
144 size -= (offset & ~(BITS_PER_LONG - 1));
145 offset %= BITS_PER_LONG;
151 tmp = __reverse_ulong((unsigned char *)p);
154 tmp |= ~0UL << (BITS_PER_LONG - offset);
155 if (size < BITS_PER_LONG)
160 if (size <= BITS_PER_LONG)
162 size -= BITS_PER_LONG;
168 return result - size + __reverse_ffz(tmp);
171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
177 if (f2fs_lfs_mode(sbi))
179 if (sbi->gc_mode == GC_URGENT_HIGH)
181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
190 struct f2fs_inode_info *fi = F2FS_I(inode);
192 if (!f2fs_is_atomic_file(inode))
195 clear_inode_flag(fi->cow_inode, FI_COW_FILE);
197 fi->cow_inode = NULL;
198 release_atomic_write_cnt(inode);
199 clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
200 clear_inode_flag(inode, FI_ATOMIC_REPLACE);
201 clear_inode_flag(inode, FI_ATOMIC_FILE);
202 stat_dec_atomic_inode(inode);
205 truncate_inode_pages_final(inode->i_mapping);
206 f2fs_i_size_write(inode, fi->original_i_size);
210 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
211 block_t new_addr, block_t *old_addr, bool recover)
213 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
214 struct dnode_of_data dn;
219 set_new_dnode(&dn, inode, NULL, NULL, 0);
220 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE_RA);
222 if (err == -ENOMEM) {
223 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
229 err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
236 /* dn.data_blkaddr is always valid */
237 if (!__is_valid_data_blkaddr(new_addr)) {
238 if (new_addr == NULL_ADDR)
239 dec_valid_block_count(sbi, inode, 1);
240 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
241 f2fs_update_data_blkaddr(&dn, new_addr);
243 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
244 new_addr, ni.version, true, true);
249 *old_addr = dn.data_blkaddr;
250 f2fs_truncate_data_blocks_range(&dn, 1);
251 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
252 inc_valid_block_count(sbi, inode, &count);
253 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
254 ni.version, true, false);
261 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
264 struct revoke_entry *cur, *tmp;
265 bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
267 list_for_each_entry_safe(cur, tmp, head, list) {
269 __replace_atomic_write_block(inode, cur->index,
270 cur->old_addr, NULL, true);
272 list_del(&cur->list);
273 kmem_cache_free(revoke_entry_slab, cur);
276 if (!revoke && truncate)
277 f2fs_do_truncate_blocks(inode, 0, false);
280 static int __f2fs_commit_atomic_write(struct inode *inode)
282 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
283 struct f2fs_inode_info *fi = F2FS_I(inode);
284 struct inode *cow_inode = fi->cow_inode;
285 struct revoke_entry *new;
286 struct list_head revoke_list;
288 struct dnode_of_data dn;
289 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
290 pgoff_t off = 0, blen, index;
293 INIT_LIST_HEAD(&revoke_list);
296 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
298 set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
299 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
300 if (ret && ret != -ENOENT) {
302 } else if (ret == -ENOENT) {
304 if (dn.max_level == 0)
309 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
312 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
313 blkaddr = f2fs_data_blkaddr(&dn);
315 if (!__is_valid_data_blkaddr(blkaddr)) {
317 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
318 DATA_GENERIC_ENHANCE)) {
321 f2fs_handle_error(sbi,
322 ERROR_INVALID_BLKADDR);
326 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
329 ret = __replace_atomic_write_block(inode, index, blkaddr,
330 &new->old_addr, false);
333 kmem_cache_free(revoke_entry_slab, new);
337 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
339 list_add_tail(&new->list, &revoke_list);
349 sbi->revoked_atomic_block += fi->atomic_write_cnt;
351 sbi->committed_atomic_block += fi->atomic_write_cnt;
352 set_inode_flag(inode, FI_ATOMIC_COMMITTED);
355 __complete_revoke_list(inode, &revoke_list, ret ? true : false);
360 int f2fs_commit_atomic_write(struct inode *inode)
362 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
363 struct f2fs_inode_info *fi = F2FS_I(inode);
366 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
370 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
373 err = __f2fs_commit_atomic_write(inode);
376 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
382 * This function balances dirty node and dentry pages.
383 * In addition, it controls garbage collection.
385 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
387 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
388 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
389 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
392 /* balance_fs_bg is able to be pending */
393 if (need && excess_cached_nats(sbi))
394 f2fs_balance_fs_bg(sbi, false);
396 if (!f2fs_is_checkpoint_ready(sbi))
400 * We should do GC or end up with checkpoint, if there are so many dirty
401 * dir/node pages without enough free segments.
403 if (has_not_enough_free_secs(sbi, 0, 0)) {
404 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
405 sbi->gc_thread->f2fs_gc_task) {
408 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
409 TASK_UNINTERRUPTIBLE);
410 wake_up(&sbi->gc_thread->gc_wait_queue_head);
412 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
414 struct f2fs_gc_control gc_control = {
415 .victim_segno = NULL_SEGNO,
416 .init_gc_type = BG_GC,
418 .should_migrate_blocks = false,
419 .err_gc_skipped = false,
421 f2fs_down_write(&sbi->gc_lock);
422 f2fs_gc(sbi, &gc_control);
427 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
429 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
430 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
431 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
432 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
433 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
434 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
435 unsigned int threshold = sbi->blocks_per_seg * factor *
436 DEFAULT_DIRTY_THRESHOLD;
437 unsigned int global_threshold = threshold * 3 / 2;
439 if (dents >= threshold || qdata >= threshold ||
440 nodes >= threshold || meta >= threshold ||
443 return dents + qdata + nodes + meta + imeta > global_threshold;
446 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
448 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
451 /* try to shrink extent cache when there is no enough memory */
452 if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
453 f2fs_shrink_read_extent_tree(sbi,
454 READ_EXTENT_CACHE_SHRINK_NUMBER);
456 /* try to shrink age extent cache when there is no enough memory */
457 if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
458 f2fs_shrink_age_extent_tree(sbi,
459 AGE_EXTENT_CACHE_SHRINK_NUMBER);
461 /* check the # of cached NAT entries */
462 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
463 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
465 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
466 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
468 f2fs_build_free_nids(sbi, false, false);
470 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
471 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
474 /* there is background inflight IO or foreground operation recently */
475 if (is_inflight_io(sbi, REQ_TIME) ||
476 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
479 /* exceed periodical checkpoint timeout threshold */
480 if (f2fs_time_over(sbi, CP_TIME))
483 /* checkpoint is the only way to shrink partial cached entries */
484 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
485 f2fs_available_free_memory(sbi, INO_ENTRIES))
489 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
490 struct blk_plug plug;
492 mutex_lock(&sbi->flush_lock);
494 blk_start_plug(&plug);
495 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
496 blk_finish_plug(&plug);
498 mutex_unlock(&sbi->flush_lock);
500 f2fs_sync_fs(sbi->sb, 1);
501 stat_inc_bg_cp_count(sbi->stat_info);
504 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
505 struct block_device *bdev)
507 int ret = blkdev_issue_flush(bdev);
509 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
510 test_opt(sbi, FLUSH_MERGE), ret);
514 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
519 if (!f2fs_is_multi_device(sbi))
520 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
522 for (i = 0; i < sbi->s_ndevs; i++) {
523 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
525 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
532 static int issue_flush_thread(void *data)
534 struct f2fs_sb_info *sbi = data;
535 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
536 wait_queue_head_t *q = &fcc->flush_wait_queue;
538 if (kthread_should_stop())
541 if (!llist_empty(&fcc->issue_list)) {
542 struct flush_cmd *cmd, *next;
545 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
546 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
548 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
550 ret = submit_flush_wait(sbi, cmd->ino);
551 atomic_inc(&fcc->issued_flush);
553 llist_for_each_entry_safe(cmd, next,
554 fcc->dispatch_list, llnode) {
556 complete(&cmd->wait);
558 fcc->dispatch_list = NULL;
561 wait_event_interruptible(*q,
562 kthread_should_stop() || !llist_empty(&fcc->issue_list));
566 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
568 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
569 struct flush_cmd cmd;
572 if (test_opt(sbi, NOBARRIER))
575 if (!test_opt(sbi, FLUSH_MERGE)) {
576 atomic_inc(&fcc->queued_flush);
577 ret = submit_flush_wait(sbi, ino);
578 atomic_dec(&fcc->queued_flush);
579 atomic_inc(&fcc->issued_flush);
583 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
584 f2fs_is_multi_device(sbi)) {
585 ret = submit_flush_wait(sbi, ino);
586 atomic_dec(&fcc->queued_flush);
588 atomic_inc(&fcc->issued_flush);
593 init_completion(&cmd.wait);
595 llist_add(&cmd.llnode, &fcc->issue_list);
598 * update issue_list before we wake up issue_flush thread, this
599 * smp_mb() pairs with another barrier in ___wait_event(), see
600 * more details in comments of waitqueue_active().
604 if (waitqueue_active(&fcc->flush_wait_queue))
605 wake_up(&fcc->flush_wait_queue);
607 if (fcc->f2fs_issue_flush) {
608 wait_for_completion(&cmd.wait);
609 atomic_dec(&fcc->queued_flush);
611 struct llist_node *list;
613 list = llist_del_all(&fcc->issue_list);
615 wait_for_completion(&cmd.wait);
616 atomic_dec(&fcc->queued_flush);
618 struct flush_cmd *tmp, *next;
620 ret = submit_flush_wait(sbi, ino);
622 llist_for_each_entry_safe(tmp, next, list, llnode) {
625 atomic_dec(&fcc->queued_flush);
629 complete(&tmp->wait);
637 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
639 dev_t dev = sbi->sb->s_bdev->bd_dev;
640 struct flush_cmd_control *fcc;
642 if (SM_I(sbi)->fcc_info) {
643 fcc = SM_I(sbi)->fcc_info;
644 if (fcc->f2fs_issue_flush)
649 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
652 atomic_set(&fcc->issued_flush, 0);
653 atomic_set(&fcc->queued_flush, 0);
654 init_waitqueue_head(&fcc->flush_wait_queue);
655 init_llist_head(&fcc->issue_list);
656 SM_I(sbi)->fcc_info = fcc;
657 if (!test_opt(sbi, FLUSH_MERGE))
661 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
662 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
663 if (IS_ERR(fcc->f2fs_issue_flush)) {
664 int err = PTR_ERR(fcc->f2fs_issue_flush);
666 fcc->f2fs_issue_flush = NULL;
673 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
675 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
677 if (fcc && fcc->f2fs_issue_flush) {
678 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
680 fcc->f2fs_issue_flush = NULL;
681 kthread_stop(flush_thread);
685 SM_I(sbi)->fcc_info = NULL;
689 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
693 if (!f2fs_is_multi_device(sbi))
696 if (test_opt(sbi, NOBARRIER))
699 for (i = 1; i < sbi->s_ndevs; i++) {
700 int count = DEFAULT_RETRY_IO_COUNT;
702 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
706 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
708 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
709 } while (ret && --count);
712 f2fs_stop_checkpoint(sbi, false,
713 STOP_CP_REASON_FLUSH_FAIL);
717 spin_lock(&sbi->dev_lock);
718 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
719 spin_unlock(&sbi->dev_lock);
725 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
726 enum dirty_type dirty_type)
728 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
730 /* need not be added */
731 if (IS_CURSEG(sbi, segno))
734 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
735 dirty_i->nr_dirty[dirty_type]++;
737 if (dirty_type == DIRTY) {
738 struct seg_entry *sentry = get_seg_entry(sbi, segno);
739 enum dirty_type t = sentry->type;
741 if (unlikely(t >= DIRTY)) {
745 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
746 dirty_i->nr_dirty[t]++;
748 if (__is_large_section(sbi)) {
749 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
750 block_t valid_blocks =
751 get_valid_blocks(sbi, segno, true);
753 f2fs_bug_on(sbi, unlikely(!valid_blocks ||
754 valid_blocks == CAP_BLKS_PER_SEC(sbi)));
756 if (!IS_CURSEC(sbi, secno))
757 set_bit(secno, dirty_i->dirty_secmap);
762 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
763 enum dirty_type dirty_type)
765 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
766 block_t valid_blocks;
768 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
769 dirty_i->nr_dirty[dirty_type]--;
771 if (dirty_type == DIRTY) {
772 struct seg_entry *sentry = get_seg_entry(sbi, segno);
773 enum dirty_type t = sentry->type;
775 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
776 dirty_i->nr_dirty[t]--;
778 valid_blocks = get_valid_blocks(sbi, segno, true);
779 if (valid_blocks == 0) {
780 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
781 dirty_i->victim_secmap);
782 #ifdef CONFIG_F2FS_CHECK_FS
783 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
786 if (__is_large_section(sbi)) {
787 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
790 valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
791 clear_bit(secno, dirty_i->dirty_secmap);
795 if (!IS_CURSEC(sbi, secno))
796 set_bit(secno, dirty_i->dirty_secmap);
802 * Should not occur error such as -ENOMEM.
803 * Adding dirty entry into seglist is not critical operation.
804 * If a given segment is one of current working segments, it won't be added.
806 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
808 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
809 unsigned short valid_blocks, ckpt_valid_blocks;
810 unsigned int usable_blocks;
812 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
815 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
816 mutex_lock(&dirty_i->seglist_lock);
818 valid_blocks = get_valid_blocks(sbi, segno, false);
819 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
821 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
822 ckpt_valid_blocks == usable_blocks)) {
823 __locate_dirty_segment(sbi, segno, PRE);
824 __remove_dirty_segment(sbi, segno, DIRTY);
825 } else if (valid_blocks < usable_blocks) {
826 __locate_dirty_segment(sbi, segno, DIRTY);
828 /* Recovery routine with SSR needs this */
829 __remove_dirty_segment(sbi, segno, DIRTY);
832 mutex_unlock(&dirty_i->seglist_lock);
835 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
836 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
838 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
841 mutex_lock(&dirty_i->seglist_lock);
842 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
843 if (get_valid_blocks(sbi, segno, false))
845 if (IS_CURSEG(sbi, segno))
847 __locate_dirty_segment(sbi, segno, PRE);
848 __remove_dirty_segment(sbi, segno, DIRTY);
850 mutex_unlock(&dirty_i->seglist_lock);
853 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
856 (overprovision_segments(sbi) - reserved_segments(sbi));
857 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
858 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
859 block_t holes[2] = {0, 0}; /* DATA and NODE */
861 struct seg_entry *se;
864 mutex_lock(&dirty_i->seglist_lock);
865 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
866 se = get_seg_entry(sbi, segno);
867 if (IS_NODESEG(se->type))
868 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
871 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
874 mutex_unlock(&dirty_i->seglist_lock);
876 unusable = max(holes[DATA], holes[NODE]);
877 if (unusable > ovp_holes)
878 return unusable - ovp_holes;
882 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
885 (overprovision_segments(sbi) - reserved_segments(sbi));
886 if (unusable > F2FS_OPTION(sbi).unusable_cap)
888 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
889 dirty_segments(sbi) > ovp_hole_segs)
894 /* This is only used by SBI_CP_DISABLED */
895 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
897 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
898 unsigned int segno = 0;
900 mutex_lock(&dirty_i->seglist_lock);
901 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
902 if (get_valid_blocks(sbi, segno, false))
904 if (get_ckpt_valid_blocks(sbi, segno, false))
906 mutex_unlock(&dirty_i->seglist_lock);
909 mutex_unlock(&dirty_i->seglist_lock);
913 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
914 struct block_device *bdev, block_t lstart,
915 block_t start, block_t len)
917 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
918 struct list_head *pend_list;
919 struct discard_cmd *dc;
921 f2fs_bug_on(sbi, !len);
923 pend_list = &dcc->pend_list[plist_idx(len)];
925 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
926 INIT_LIST_HEAD(&dc->list);
935 init_completion(&dc->wait);
936 list_add_tail(&dc->list, pend_list);
937 spin_lock_init(&dc->lock);
939 atomic_inc(&dcc->discard_cmd_cnt);
940 dcc->undiscard_blks += len;
945 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
946 struct block_device *bdev, block_t lstart,
947 block_t start, block_t len,
948 struct rb_node *parent, struct rb_node **p,
951 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
952 struct discard_cmd *dc;
954 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
956 rb_link_node(&dc->rb_node, parent, p);
957 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
962 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
963 struct discard_cmd *dc)
965 if (dc->state == D_DONE)
966 atomic_sub(dc->queued, &dcc->queued_discard);
969 rb_erase_cached(&dc->rb_node, &dcc->root);
970 dcc->undiscard_blks -= dc->len;
972 kmem_cache_free(discard_cmd_slab, dc);
974 atomic_dec(&dcc->discard_cmd_cnt);
977 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
978 struct discard_cmd *dc)
980 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
983 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
985 spin_lock_irqsave(&dc->lock, flags);
987 spin_unlock_irqrestore(&dc->lock, flags);
990 spin_unlock_irqrestore(&dc->lock, flags);
992 f2fs_bug_on(sbi, dc->ref);
994 if (dc->error == -EOPNOTSUPP)
999 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1000 KERN_INFO, sbi->sb->s_id,
1001 dc->lstart, dc->start, dc->len, dc->error);
1002 __detach_discard_cmd(dcc, dc);
1005 static void f2fs_submit_discard_endio(struct bio *bio)
1007 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1008 unsigned long flags;
1010 spin_lock_irqsave(&dc->lock, flags);
1012 dc->error = blk_status_to_errno(bio->bi_status);
1014 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1016 complete_all(&dc->wait);
1018 spin_unlock_irqrestore(&dc->lock, flags);
1022 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1023 block_t start, block_t end)
1025 #ifdef CONFIG_F2FS_CHECK_FS
1026 struct seg_entry *sentry;
1028 block_t blk = start;
1029 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1033 segno = GET_SEGNO(sbi, blk);
1034 sentry = get_seg_entry(sbi, segno);
1035 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1037 if (end < START_BLOCK(sbi, segno + 1))
1038 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1041 map = (unsigned long *)(sentry->cur_valid_map);
1042 offset = __find_rev_next_bit(map, size, offset);
1043 f2fs_bug_on(sbi, offset != size);
1044 blk = START_BLOCK(sbi, segno + 1);
1049 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1050 struct discard_policy *dpolicy,
1051 int discard_type, unsigned int granularity)
1053 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1056 dpolicy->type = discard_type;
1057 dpolicy->sync = true;
1058 dpolicy->ordered = false;
1059 dpolicy->granularity = granularity;
1061 dpolicy->max_requests = dcc->max_discard_request;
1062 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1063 dpolicy->timeout = false;
1065 if (discard_type == DPOLICY_BG) {
1066 dpolicy->min_interval = dcc->min_discard_issue_time;
1067 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1068 dpolicy->max_interval = dcc->max_discard_issue_time;
1069 dpolicy->io_aware = true;
1070 dpolicy->sync = false;
1071 dpolicy->ordered = true;
1072 if (utilization(sbi) > dcc->discard_urgent_util) {
1073 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1074 if (atomic_read(&dcc->discard_cmd_cnt))
1075 dpolicy->max_interval =
1076 dcc->min_discard_issue_time;
1078 } else if (discard_type == DPOLICY_FORCE) {
1079 dpolicy->min_interval = dcc->min_discard_issue_time;
1080 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1081 dpolicy->max_interval = dcc->max_discard_issue_time;
1082 dpolicy->io_aware = false;
1083 } else if (discard_type == DPOLICY_FSTRIM) {
1084 dpolicy->io_aware = false;
1085 } else if (discard_type == DPOLICY_UMOUNT) {
1086 dpolicy->io_aware = false;
1087 /* we need to issue all to keep CP_TRIMMED_FLAG */
1088 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1089 dpolicy->timeout = true;
1093 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1094 struct block_device *bdev, block_t lstart,
1095 block_t start, block_t len);
1096 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1097 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1098 struct discard_policy *dpolicy,
1099 struct discard_cmd *dc,
1100 unsigned int *issued)
1102 struct block_device *bdev = dc->bdev;
1103 unsigned int max_discard_blocks =
1104 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1105 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1106 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1107 &(dcc->fstrim_list) : &(dcc->wait_list);
1108 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1109 block_t lstart, start, len, total_len;
1112 if (dc->state != D_PREP)
1115 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1118 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1120 lstart = dc->lstart;
1127 while (total_len && *issued < dpolicy->max_requests && !err) {
1128 struct bio *bio = NULL;
1129 unsigned long flags;
1132 if (len > max_discard_blocks) {
1133 len = max_discard_blocks;
1138 if (*issued == dpolicy->max_requests)
1143 if (time_to_inject(sbi, FAULT_DISCARD)) {
1144 f2fs_show_injection_info(sbi, FAULT_DISCARD);
1147 err = __blkdev_issue_discard(bdev,
1148 SECTOR_FROM_BLOCK(start),
1149 SECTOR_FROM_BLOCK(len),
1153 spin_lock_irqsave(&dc->lock, flags);
1154 if (dc->state == D_PARTIAL)
1155 dc->state = D_SUBMIT;
1156 spin_unlock_irqrestore(&dc->lock, flags);
1161 f2fs_bug_on(sbi, !bio);
1164 * should keep before submission to avoid D_DONE
1167 spin_lock_irqsave(&dc->lock, flags);
1169 dc->state = D_SUBMIT;
1171 dc->state = D_PARTIAL;
1173 spin_unlock_irqrestore(&dc->lock, flags);
1175 atomic_inc(&dcc->queued_discard);
1177 list_move_tail(&dc->list, wait_list);
1179 /* sanity check on discard range */
1180 __check_sit_bitmap(sbi, lstart, lstart + len);
1182 bio->bi_private = dc;
1183 bio->bi_end_io = f2fs_submit_discard_endio;
1184 bio->bi_opf |= flag;
1187 atomic_inc(&dcc->issued_discard);
1189 f2fs_update_iostat(sbi, NULL, FS_DISCARD, len * F2FS_BLKSIZE);
1198 dcc->undiscard_blks -= len;
1199 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1204 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1205 struct block_device *bdev, block_t lstart,
1206 block_t start, block_t len,
1207 struct rb_node **insert_p,
1208 struct rb_node *insert_parent)
1210 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1212 struct rb_node *parent = NULL;
1213 bool leftmost = true;
1215 if (insert_p && insert_parent) {
1216 parent = insert_parent;
1221 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1224 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1228 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1229 struct discard_cmd *dc)
1231 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1234 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1235 struct discard_cmd *dc, block_t blkaddr)
1237 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1238 struct discard_info di = dc->di;
1239 bool modified = false;
1241 if (dc->state == D_DONE || dc->len == 1) {
1242 __remove_discard_cmd(sbi, dc);
1246 dcc->undiscard_blks -= di.len;
1248 if (blkaddr > di.lstart) {
1249 dc->len = blkaddr - dc->lstart;
1250 dcc->undiscard_blks += dc->len;
1251 __relocate_discard_cmd(dcc, dc);
1255 if (blkaddr < di.lstart + di.len - 1) {
1257 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1258 di.start + blkaddr + 1 - di.lstart,
1259 di.lstart + di.len - 1 - blkaddr,
1265 dcc->undiscard_blks += dc->len;
1266 __relocate_discard_cmd(dcc, dc);
1271 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1272 struct block_device *bdev, block_t lstart,
1273 block_t start, block_t len)
1275 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1276 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1277 struct discard_cmd *dc;
1278 struct discard_info di = {0};
1279 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1280 unsigned int max_discard_blocks =
1281 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1282 block_t end = lstart + len;
1284 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1286 (struct rb_entry **)&prev_dc,
1287 (struct rb_entry **)&next_dc,
1288 &insert_p, &insert_parent, true, NULL);
1294 di.len = next_dc ? next_dc->lstart - lstart : len;
1295 di.len = min(di.len, len);
1300 struct rb_node *node;
1301 bool merged = false;
1302 struct discard_cmd *tdc = NULL;
1305 di.lstart = prev_dc->lstart + prev_dc->len;
1306 if (di.lstart < lstart)
1308 if (di.lstart >= end)
1311 if (!next_dc || next_dc->lstart > end)
1312 di.len = end - di.lstart;
1314 di.len = next_dc->lstart - di.lstart;
1315 di.start = start + di.lstart - lstart;
1321 if (prev_dc && prev_dc->state == D_PREP &&
1322 prev_dc->bdev == bdev &&
1323 __is_discard_back_mergeable(&di, &prev_dc->di,
1324 max_discard_blocks)) {
1325 prev_dc->di.len += di.len;
1326 dcc->undiscard_blks += di.len;
1327 __relocate_discard_cmd(dcc, prev_dc);
1333 if (next_dc && next_dc->state == D_PREP &&
1334 next_dc->bdev == bdev &&
1335 __is_discard_front_mergeable(&di, &next_dc->di,
1336 max_discard_blocks)) {
1337 next_dc->di.lstart = di.lstart;
1338 next_dc->di.len += di.len;
1339 next_dc->di.start = di.start;
1340 dcc->undiscard_blks += di.len;
1341 __relocate_discard_cmd(dcc, next_dc);
1343 __remove_discard_cmd(sbi, tdc);
1348 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1349 di.len, NULL, NULL);
1356 node = rb_next(&prev_dc->rb_node);
1357 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1361 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1362 struct block_device *bdev, block_t blkstart, block_t blklen)
1364 block_t lblkstart = blkstart;
1366 if (!f2fs_bdev_support_discard(bdev))
1369 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1371 if (f2fs_is_multi_device(sbi)) {
1372 int devi = f2fs_target_device_index(sbi, blkstart);
1374 blkstart -= FDEV(devi).start_blk;
1376 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1377 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1378 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1381 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1382 struct discard_policy *dpolicy)
1384 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1385 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1386 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1387 struct discard_cmd *dc;
1388 struct blk_plug plug;
1389 unsigned int pos = dcc->next_pos;
1390 unsigned int issued = 0;
1391 bool io_interrupted = false;
1393 mutex_lock(&dcc->cmd_lock);
1394 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1396 (struct rb_entry **)&prev_dc,
1397 (struct rb_entry **)&next_dc,
1398 &insert_p, &insert_parent, true, NULL);
1402 blk_start_plug(&plug);
1405 struct rb_node *node;
1408 if (dc->state != D_PREP)
1411 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1412 io_interrupted = true;
1416 dcc->next_pos = dc->lstart + dc->len;
1417 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1419 if (issued >= dpolicy->max_requests)
1422 node = rb_next(&dc->rb_node);
1424 __remove_discard_cmd(sbi, dc);
1425 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1428 blk_finish_plug(&plug);
1433 mutex_unlock(&dcc->cmd_lock);
1435 if (!issued && io_interrupted)
1440 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1441 struct discard_policy *dpolicy);
1443 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1444 struct discard_policy *dpolicy)
1446 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1447 struct list_head *pend_list;
1448 struct discard_cmd *dc, *tmp;
1449 struct blk_plug plug;
1451 bool io_interrupted = false;
1453 if (dpolicy->timeout)
1454 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1458 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1459 if (dpolicy->timeout &&
1460 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1463 if (i + 1 < dpolicy->granularity)
1466 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered)
1467 return __issue_discard_cmd_orderly(sbi, dpolicy);
1469 pend_list = &dcc->pend_list[i];
1471 mutex_lock(&dcc->cmd_lock);
1472 if (list_empty(pend_list))
1474 if (unlikely(dcc->rbtree_check))
1475 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1476 &dcc->root, false));
1477 blk_start_plug(&plug);
1478 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1479 f2fs_bug_on(sbi, dc->state != D_PREP);
1481 if (dpolicy->timeout &&
1482 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1485 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1486 !is_idle(sbi, DISCARD_TIME)) {
1487 io_interrupted = true;
1491 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1493 if (issued >= dpolicy->max_requests)
1496 blk_finish_plug(&plug);
1498 mutex_unlock(&dcc->cmd_lock);
1500 if (issued >= dpolicy->max_requests || io_interrupted)
1504 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1505 __wait_all_discard_cmd(sbi, dpolicy);
1509 if (!issued && io_interrupted)
1515 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1517 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1518 struct list_head *pend_list;
1519 struct discard_cmd *dc, *tmp;
1521 bool dropped = false;
1523 mutex_lock(&dcc->cmd_lock);
1524 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1525 pend_list = &dcc->pend_list[i];
1526 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1527 f2fs_bug_on(sbi, dc->state != D_PREP);
1528 __remove_discard_cmd(sbi, dc);
1532 mutex_unlock(&dcc->cmd_lock);
1537 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1539 __drop_discard_cmd(sbi);
1542 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1543 struct discard_cmd *dc)
1545 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1546 unsigned int len = 0;
1548 wait_for_completion_io(&dc->wait);
1549 mutex_lock(&dcc->cmd_lock);
1550 f2fs_bug_on(sbi, dc->state != D_DONE);
1555 __remove_discard_cmd(sbi, dc);
1557 mutex_unlock(&dcc->cmd_lock);
1562 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1563 struct discard_policy *dpolicy,
1564 block_t start, block_t end)
1566 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1567 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1568 &(dcc->fstrim_list) : &(dcc->wait_list);
1569 struct discard_cmd *dc = NULL, *iter, *tmp;
1570 unsigned int trimmed = 0;
1575 mutex_lock(&dcc->cmd_lock);
1576 list_for_each_entry_safe(iter, tmp, wait_list, list) {
1577 if (iter->lstart + iter->len <= start || end <= iter->lstart)
1579 if (iter->len < dpolicy->granularity)
1581 if (iter->state == D_DONE && !iter->ref) {
1582 wait_for_completion_io(&iter->wait);
1584 trimmed += iter->len;
1585 __remove_discard_cmd(sbi, iter);
1592 mutex_unlock(&dcc->cmd_lock);
1595 trimmed += __wait_one_discard_bio(sbi, dc);
1602 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1603 struct discard_policy *dpolicy)
1605 struct discard_policy dp;
1606 unsigned int discard_blks;
1609 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1612 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1613 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1614 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1615 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1617 return discard_blks;
1620 /* This should be covered by global mutex, &sit_i->sentry_lock */
1621 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1623 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1624 struct discard_cmd *dc;
1625 bool need_wait = false;
1627 mutex_lock(&dcc->cmd_lock);
1628 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1631 if (dc->state == D_PREP) {
1632 __punch_discard_cmd(sbi, dc, blkaddr);
1638 mutex_unlock(&dcc->cmd_lock);
1641 __wait_one_discard_bio(sbi, dc);
1644 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1646 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1648 if (dcc && dcc->f2fs_issue_discard) {
1649 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1651 dcc->f2fs_issue_discard = NULL;
1652 kthread_stop(discard_thread);
1656 /* This comes from f2fs_put_super */
1657 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1659 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1660 struct discard_policy dpolicy;
1663 if (!atomic_read(&dcc->discard_cmd_cnt))
1666 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1667 dcc->discard_granularity);
1668 __issue_discard_cmd(sbi, &dpolicy);
1669 dropped = __drop_discard_cmd(sbi);
1671 /* just to make sure there is no pending discard commands */
1672 __wait_all_discard_cmd(sbi, NULL);
1674 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1678 static int issue_discard_thread(void *data)
1680 struct f2fs_sb_info *sbi = data;
1681 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1682 wait_queue_head_t *q = &dcc->discard_wait_queue;
1683 struct discard_policy dpolicy;
1684 unsigned int wait_ms = dcc->min_discard_issue_time;
1690 wait_event_interruptible_timeout(*q,
1691 kthread_should_stop() || freezing(current) ||
1693 msecs_to_jiffies(wait_ms));
1695 if (sbi->gc_mode == GC_URGENT_HIGH ||
1696 !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1697 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1699 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1700 dcc->discard_granularity);
1702 if (dcc->discard_wake)
1703 dcc->discard_wake = 0;
1705 /* clean up pending candidates before going to sleep */
1706 if (atomic_read(&dcc->queued_discard))
1707 __wait_all_discard_cmd(sbi, NULL);
1709 if (try_to_freeze())
1711 if (f2fs_readonly(sbi->sb))
1713 if (kthread_should_stop())
1715 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1716 !atomic_read(&dcc->discard_cmd_cnt)) {
1717 wait_ms = dpolicy.max_interval;
1721 sb_start_intwrite(sbi->sb);
1723 issued = __issue_discard_cmd(sbi, &dpolicy);
1725 __wait_all_discard_cmd(sbi, &dpolicy);
1726 wait_ms = dpolicy.min_interval;
1727 } else if (issued == -1) {
1728 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1730 wait_ms = dpolicy.mid_interval;
1732 wait_ms = dpolicy.max_interval;
1734 if (!atomic_read(&dcc->discard_cmd_cnt))
1735 wait_ms = dpolicy.max_interval;
1737 sb_end_intwrite(sbi->sb);
1739 } while (!kthread_should_stop());
1743 #ifdef CONFIG_BLK_DEV_ZONED
1744 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1745 struct block_device *bdev, block_t blkstart, block_t blklen)
1747 sector_t sector, nr_sects;
1748 block_t lblkstart = blkstart;
1751 if (f2fs_is_multi_device(sbi)) {
1752 devi = f2fs_target_device_index(sbi, blkstart);
1753 if (blkstart < FDEV(devi).start_blk ||
1754 blkstart > FDEV(devi).end_blk) {
1755 f2fs_err(sbi, "Invalid block %x", blkstart);
1758 blkstart -= FDEV(devi).start_blk;
1761 /* For sequential zones, reset the zone write pointer */
1762 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1763 sector = SECTOR_FROM_BLOCK(blkstart);
1764 nr_sects = SECTOR_FROM_BLOCK(blklen);
1766 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1767 nr_sects != bdev_zone_sectors(bdev)) {
1768 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1769 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1773 trace_f2fs_issue_reset_zone(bdev, blkstart);
1774 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1775 sector, nr_sects, GFP_NOFS);
1778 /* For conventional zones, use regular discard if supported */
1779 __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1784 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1785 struct block_device *bdev, block_t blkstart, block_t blklen)
1787 #ifdef CONFIG_BLK_DEV_ZONED
1788 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1789 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1791 __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1795 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1796 block_t blkstart, block_t blklen)
1798 sector_t start = blkstart, len = 0;
1799 struct block_device *bdev;
1800 struct seg_entry *se;
1801 unsigned int offset;
1805 bdev = f2fs_target_device(sbi, blkstart, NULL);
1807 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1809 struct block_device *bdev2 =
1810 f2fs_target_device(sbi, i, NULL);
1812 if (bdev2 != bdev) {
1813 err = __issue_discard_async(sbi, bdev,
1823 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1824 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1826 if (f2fs_block_unit_discard(sbi) &&
1827 !f2fs_test_and_set_bit(offset, se->discard_map))
1828 sbi->discard_blks--;
1832 err = __issue_discard_async(sbi, bdev, start, len);
1836 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1839 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1840 int max_blocks = sbi->blocks_per_seg;
1841 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1842 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1843 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1844 unsigned long *discard_map = (unsigned long *)se->discard_map;
1845 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1846 unsigned int start = 0, end = -1;
1847 bool force = (cpc->reason & CP_DISCARD);
1848 struct discard_entry *de = NULL;
1849 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1852 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1853 !f2fs_block_unit_discard(sbi))
1857 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1858 SM_I(sbi)->dcc_info->nr_discards >=
1859 SM_I(sbi)->dcc_info->max_discards)
1863 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1864 for (i = 0; i < entries; i++)
1865 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1866 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1868 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1869 SM_I(sbi)->dcc_info->max_discards) {
1870 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1871 if (start >= max_blocks)
1874 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1875 if (force && start && end != max_blocks
1876 && (end - start) < cpc->trim_minlen)
1883 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1884 GFP_F2FS_ZERO, true, NULL);
1885 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1886 list_add_tail(&de->list, head);
1889 for (i = start; i < end; i++)
1890 __set_bit_le(i, (void *)de->discard_map);
1892 SM_I(sbi)->dcc_info->nr_discards += end - start;
1897 static void release_discard_addr(struct discard_entry *entry)
1899 list_del(&entry->list);
1900 kmem_cache_free(discard_entry_slab, entry);
1903 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1905 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1906 struct discard_entry *entry, *this;
1909 list_for_each_entry_safe(entry, this, head, list)
1910 release_discard_addr(entry);
1914 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1916 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1918 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1921 mutex_lock(&dirty_i->seglist_lock);
1922 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1923 __set_test_and_free(sbi, segno, false);
1924 mutex_unlock(&dirty_i->seglist_lock);
1927 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1928 struct cp_control *cpc)
1930 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1931 struct list_head *head = &dcc->entry_list;
1932 struct discard_entry *entry, *this;
1933 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1934 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1935 unsigned int start = 0, end = -1;
1936 unsigned int secno, start_segno;
1937 bool force = (cpc->reason & CP_DISCARD);
1938 bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
1939 DISCARD_UNIT_SECTION;
1941 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
1942 section_alignment = true;
1944 mutex_lock(&dirty_i->seglist_lock);
1949 if (section_alignment && end != -1)
1951 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1952 if (start >= MAIN_SEGS(sbi))
1954 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1957 if (section_alignment) {
1958 start = rounddown(start, sbi->segs_per_sec);
1959 end = roundup(end, sbi->segs_per_sec);
1962 for (i = start; i < end; i++) {
1963 if (test_and_clear_bit(i, prefree_map))
1964 dirty_i->nr_dirty[PRE]--;
1967 if (!f2fs_realtime_discard_enable(sbi))
1970 if (force && start >= cpc->trim_start &&
1971 (end - 1) <= cpc->trim_end)
1974 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
1975 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1976 (end - start) << sbi->log_blocks_per_seg);
1980 secno = GET_SEC_FROM_SEG(sbi, start);
1981 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1982 if (!IS_CURSEC(sbi, secno) &&
1983 !get_valid_blocks(sbi, start, true))
1984 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1985 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1987 start = start_segno + sbi->segs_per_sec;
1993 mutex_unlock(&dirty_i->seglist_lock);
1995 if (!f2fs_block_unit_discard(sbi))
1998 /* send small discards */
1999 list_for_each_entry_safe(entry, this, head, list) {
2000 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2001 bool is_valid = test_bit_le(0, entry->discard_map);
2005 next_pos = find_next_zero_bit_le(entry->discard_map,
2006 sbi->blocks_per_seg, cur_pos);
2007 len = next_pos - cur_pos;
2009 if (f2fs_sb_has_blkzoned(sbi) ||
2010 (force && len < cpc->trim_minlen))
2013 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2017 next_pos = find_next_bit_le(entry->discard_map,
2018 sbi->blocks_per_seg, cur_pos);
2022 is_valid = !is_valid;
2024 if (cur_pos < sbi->blocks_per_seg)
2027 release_discard_addr(entry);
2028 dcc->nr_discards -= total_len;
2032 wake_up_discard_thread(sbi, false);
2035 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2037 dev_t dev = sbi->sb->s_bdev->bd_dev;
2038 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2041 if (!f2fs_realtime_discard_enable(sbi))
2044 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2045 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2046 if (IS_ERR(dcc->f2fs_issue_discard)) {
2047 err = PTR_ERR(dcc->f2fs_issue_discard);
2048 dcc->f2fs_issue_discard = NULL;
2054 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2056 struct discard_cmd_control *dcc;
2059 if (SM_I(sbi)->dcc_info) {
2060 dcc = SM_I(sbi)->dcc_info;
2064 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2068 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2069 dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2070 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2071 dcc->discard_granularity = sbi->blocks_per_seg;
2072 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2073 dcc->discard_granularity = BLKS_PER_SEC(sbi);
2075 INIT_LIST_HEAD(&dcc->entry_list);
2076 for (i = 0; i < MAX_PLIST_NUM; i++)
2077 INIT_LIST_HEAD(&dcc->pend_list[i]);
2078 INIT_LIST_HEAD(&dcc->wait_list);
2079 INIT_LIST_HEAD(&dcc->fstrim_list);
2080 mutex_init(&dcc->cmd_lock);
2081 atomic_set(&dcc->issued_discard, 0);
2082 atomic_set(&dcc->queued_discard, 0);
2083 atomic_set(&dcc->discard_cmd_cnt, 0);
2084 dcc->nr_discards = 0;
2085 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2086 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2087 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2088 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2089 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2090 dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2091 dcc->undiscard_blks = 0;
2093 dcc->root = RB_ROOT_CACHED;
2094 dcc->rbtree_check = false;
2096 init_waitqueue_head(&dcc->discard_wait_queue);
2097 SM_I(sbi)->dcc_info = dcc;
2099 err = f2fs_start_discard_thread(sbi);
2102 SM_I(sbi)->dcc_info = NULL;
2108 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2110 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2115 f2fs_stop_discard_thread(sbi);
2118 * Recovery can cache discard commands, so in error path of
2119 * fill_super(), it needs to give a chance to handle them.
2121 f2fs_issue_discard_timeout(sbi);
2124 SM_I(sbi)->dcc_info = NULL;
2127 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2129 struct sit_info *sit_i = SIT_I(sbi);
2131 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2132 sit_i->dirty_sentries++;
2139 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2140 unsigned int segno, int modified)
2142 struct seg_entry *se = get_seg_entry(sbi, segno);
2146 __mark_sit_entry_dirty(sbi, segno);
2149 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2152 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2154 if (segno == NULL_SEGNO)
2156 return get_seg_entry(sbi, segno)->mtime;
2159 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2160 unsigned long long old_mtime)
2162 struct seg_entry *se;
2163 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2164 unsigned long long ctime = get_mtime(sbi, false);
2165 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2167 if (segno == NULL_SEGNO)
2170 se = get_seg_entry(sbi, segno);
2175 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2176 se->valid_blocks + 1);
2178 if (ctime > SIT_I(sbi)->max_mtime)
2179 SIT_I(sbi)->max_mtime = ctime;
2182 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2184 struct seg_entry *se;
2185 unsigned int segno, offset;
2186 long int new_vblocks;
2188 #ifdef CONFIG_F2FS_CHECK_FS
2192 segno = GET_SEGNO(sbi, blkaddr);
2194 se = get_seg_entry(sbi, segno);
2195 new_vblocks = se->valid_blocks + del;
2196 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2198 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2199 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2201 se->valid_blocks = new_vblocks;
2203 /* Update valid block bitmap */
2205 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2206 #ifdef CONFIG_F2FS_CHECK_FS
2207 mir_exist = f2fs_test_and_set_bit(offset,
2208 se->cur_valid_map_mir);
2209 if (unlikely(exist != mir_exist)) {
2210 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2212 f2fs_bug_on(sbi, 1);
2215 if (unlikely(exist)) {
2216 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2218 f2fs_bug_on(sbi, 1);
2223 if (f2fs_block_unit_discard(sbi) &&
2224 !f2fs_test_and_set_bit(offset, se->discard_map))
2225 sbi->discard_blks--;
2228 * SSR should never reuse block which is checkpointed
2229 * or newly invalidated.
2231 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2232 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2233 se->ckpt_valid_blocks++;
2236 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2237 #ifdef CONFIG_F2FS_CHECK_FS
2238 mir_exist = f2fs_test_and_clear_bit(offset,
2239 se->cur_valid_map_mir);
2240 if (unlikely(exist != mir_exist)) {
2241 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2243 f2fs_bug_on(sbi, 1);
2246 if (unlikely(!exist)) {
2247 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2249 f2fs_bug_on(sbi, 1);
2252 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2254 * If checkpoints are off, we must not reuse data that
2255 * was used in the previous checkpoint. If it was used
2256 * before, we must track that to know how much space we
2259 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2260 spin_lock(&sbi->stat_lock);
2261 sbi->unusable_block_count++;
2262 spin_unlock(&sbi->stat_lock);
2266 if (f2fs_block_unit_discard(sbi) &&
2267 f2fs_test_and_clear_bit(offset, se->discard_map))
2268 sbi->discard_blks++;
2270 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2271 se->ckpt_valid_blocks += del;
2273 __mark_sit_entry_dirty(sbi, segno);
2275 /* update total number of valid blocks to be written in ckpt area */
2276 SIT_I(sbi)->written_valid_blocks += del;
2278 if (__is_large_section(sbi))
2279 get_sec_entry(sbi, segno)->valid_blocks += del;
2282 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2284 unsigned int segno = GET_SEGNO(sbi, addr);
2285 struct sit_info *sit_i = SIT_I(sbi);
2287 f2fs_bug_on(sbi, addr == NULL_ADDR);
2288 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2291 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2292 f2fs_invalidate_compress_page(sbi, addr);
2294 /* add it into sit main buffer */
2295 down_write(&sit_i->sentry_lock);
2297 update_segment_mtime(sbi, addr, 0);
2298 update_sit_entry(sbi, addr, -1);
2300 /* add it into dirty seglist */
2301 locate_dirty_segment(sbi, segno);
2303 up_write(&sit_i->sentry_lock);
2306 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2308 struct sit_info *sit_i = SIT_I(sbi);
2309 unsigned int segno, offset;
2310 struct seg_entry *se;
2313 if (!__is_valid_data_blkaddr(blkaddr))
2316 down_read(&sit_i->sentry_lock);
2318 segno = GET_SEGNO(sbi, blkaddr);
2319 se = get_seg_entry(sbi, segno);
2320 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2322 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2325 up_read(&sit_i->sentry_lock);
2331 * This function should be resided under the curseg_mutex lock
2333 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2334 struct f2fs_summary *sum)
2336 struct curseg_info *curseg = CURSEG_I(sbi, type);
2337 void *addr = curseg->sum_blk;
2339 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2340 memcpy(addr, sum, sizeof(struct f2fs_summary));
2344 * Calculate the number of current summary pages for writing
2346 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2348 int valid_sum_count = 0;
2351 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2352 if (sbi->ckpt->alloc_type[i] == SSR)
2353 valid_sum_count += sbi->blocks_per_seg;
2356 valid_sum_count += le16_to_cpu(
2357 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2359 valid_sum_count += curseg_blkoff(sbi, i);
2363 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2364 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2365 if (valid_sum_count <= sum_in_page)
2367 else if ((valid_sum_count - sum_in_page) <=
2368 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2374 * Caller should put this summary page
2376 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2378 if (unlikely(f2fs_cp_error(sbi)))
2379 return ERR_PTR(-EIO);
2380 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2383 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2384 void *src, block_t blk_addr)
2386 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2388 memcpy(page_address(page), src, PAGE_SIZE);
2389 set_page_dirty(page);
2390 f2fs_put_page(page, 1);
2393 static void write_sum_page(struct f2fs_sb_info *sbi,
2394 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2396 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2399 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2400 int type, block_t blk_addr)
2402 struct curseg_info *curseg = CURSEG_I(sbi, type);
2403 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2404 struct f2fs_summary_block *src = curseg->sum_blk;
2405 struct f2fs_summary_block *dst;
2407 dst = (struct f2fs_summary_block *)page_address(page);
2408 memset(dst, 0, PAGE_SIZE);
2410 mutex_lock(&curseg->curseg_mutex);
2412 down_read(&curseg->journal_rwsem);
2413 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2414 up_read(&curseg->journal_rwsem);
2416 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2417 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2419 mutex_unlock(&curseg->curseg_mutex);
2421 set_page_dirty(page);
2422 f2fs_put_page(page, 1);
2425 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2426 struct curseg_info *curseg, int type)
2428 unsigned int segno = curseg->segno + 1;
2429 struct free_segmap_info *free_i = FREE_I(sbi);
2431 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2432 return !test_bit(segno, free_i->free_segmap);
2437 * Find a new segment from the free segments bitmap to right order
2438 * This function should be returned with success, otherwise BUG
2440 static void get_new_segment(struct f2fs_sb_info *sbi,
2441 unsigned int *newseg, bool new_sec, int dir)
2443 struct free_segmap_info *free_i = FREE_I(sbi);
2444 unsigned int segno, secno, zoneno;
2445 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2446 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2447 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2448 unsigned int left_start = hint;
2453 spin_lock(&free_i->segmap_lock);
2455 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2456 segno = find_next_zero_bit(free_i->free_segmap,
2457 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2458 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2462 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2463 if (secno >= MAIN_SECS(sbi)) {
2464 if (dir == ALLOC_RIGHT) {
2465 secno = find_first_zero_bit(free_i->free_secmap,
2467 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2470 left_start = hint - 1;
2476 while (test_bit(left_start, free_i->free_secmap)) {
2477 if (left_start > 0) {
2481 left_start = find_first_zero_bit(free_i->free_secmap,
2483 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2488 segno = GET_SEG_FROM_SEC(sbi, secno);
2489 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2491 /* give up on finding another zone */
2494 if (sbi->secs_per_zone == 1)
2496 if (zoneno == old_zoneno)
2498 if (dir == ALLOC_LEFT) {
2499 if (!go_left && zoneno + 1 >= total_zones)
2501 if (go_left && zoneno == 0)
2504 for (i = 0; i < NR_CURSEG_TYPE; i++)
2505 if (CURSEG_I(sbi, i)->zone == zoneno)
2508 if (i < NR_CURSEG_TYPE) {
2509 /* zone is in user, try another */
2511 hint = zoneno * sbi->secs_per_zone - 1;
2512 else if (zoneno + 1 >= total_zones)
2515 hint = (zoneno + 1) * sbi->secs_per_zone;
2517 goto find_other_zone;
2520 /* set it as dirty segment in free segmap */
2521 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2522 __set_inuse(sbi, segno);
2524 spin_unlock(&free_i->segmap_lock);
2527 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2529 struct curseg_info *curseg = CURSEG_I(sbi, type);
2530 struct summary_footer *sum_footer;
2531 unsigned short seg_type = curseg->seg_type;
2533 curseg->inited = true;
2534 curseg->segno = curseg->next_segno;
2535 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2536 curseg->next_blkoff = 0;
2537 curseg->next_segno = NULL_SEGNO;
2539 sum_footer = &(curseg->sum_blk->footer);
2540 memset(sum_footer, 0, sizeof(struct summary_footer));
2542 sanity_check_seg_type(sbi, seg_type);
2544 if (IS_DATASEG(seg_type))
2545 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2546 if (IS_NODESEG(seg_type))
2547 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2548 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2551 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2553 struct curseg_info *curseg = CURSEG_I(sbi, type);
2554 unsigned short seg_type = curseg->seg_type;
2556 sanity_check_seg_type(sbi, seg_type);
2557 if (f2fs_need_rand_seg(sbi))
2558 return get_random_u32_below(MAIN_SECS(sbi) * sbi->segs_per_sec);
2560 /* if segs_per_sec is large than 1, we need to keep original policy. */
2561 if (__is_large_section(sbi))
2562 return curseg->segno;
2564 /* inmem log may not locate on any segment after mount */
2565 if (!curseg->inited)
2568 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2571 if (test_opt(sbi, NOHEAP) &&
2572 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2575 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2576 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2578 /* find segments from 0 to reuse freed segments */
2579 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2582 return curseg->segno;
2586 * Allocate a current working segment.
2587 * This function always allocates a free segment in LFS manner.
2589 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2591 struct curseg_info *curseg = CURSEG_I(sbi, type);
2592 unsigned short seg_type = curseg->seg_type;
2593 unsigned int segno = curseg->segno;
2594 int dir = ALLOC_LEFT;
2597 write_sum_page(sbi, curseg->sum_blk,
2598 GET_SUM_BLOCK(sbi, segno));
2599 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2602 if (test_opt(sbi, NOHEAP))
2605 segno = __get_next_segno(sbi, type);
2606 get_new_segment(sbi, &segno, new_sec, dir);
2607 curseg->next_segno = segno;
2608 reset_curseg(sbi, type, 1);
2609 curseg->alloc_type = LFS;
2610 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2611 curseg->fragment_remained_chunk =
2612 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2615 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2616 int segno, block_t start)
2618 struct seg_entry *se = get_seg_entry(sbi, segno);
2619 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2620 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2621 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2622 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2625 for (i = 0; i < entries; i++)
2626 target_map[i] = ckpt_map[i] | cur_map[i];
2628 return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2632 * If a segment is written by LFS manner, next block offset is just obtained
2633 * by increasing the current block offset. However, if a segment is written by
2634 * SSR manner, next block offset obtained by calling __next_free_blkoff
2636 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2637 struct curseg_info *seg)
2639 if (seg->alloc_type == SSR) {
2641 __next_free_blkoff(sbi, seg->segno,
2642 seg->next_blkoff + 1);
2645 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) {
2646 /* To allocate block chunks in different sizes, use random number */
2647 if (--seg->fragment_remained_chunk <= 0) {
2648 seg->fragment_remained_chunk =
2649 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2651 get_random_u32_inclusive(1, sbi->max_fragment_hole);
2657 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2659 return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2663 * This function always allocates a used segment(from dirty seglist) by SSR
2664 * manner, so it should recover the existing segment information of valid blocks
2666 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2668 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2669 struct curseg_info *curseg = CURSEG_I(sbi, type);
2670 unsigned int new_segno = curseg->next_segno;
2671 struct f2fs_summary_block *sum_node;
2672 struct page *sum_page;
2674 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2676 __set_test_and_inuse(sbi, new_segno);
2678 mutex_lock(&dirty_i->seglist_lock);
2679 __remove_dirty_segment(sbi, new_segno, PRE);
2680 __remove_dirty_segment(sbi, new_segno, DIRTY);
2681 mutex_unlock(&dirty_i->seglist_lock);
2683 reset_curseg(sbi, type, 1);
2684 curseg->alloc_type = SSR;
2685 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2687 sum_page = f2fs_get_sum_page(sbi, new_segno);
2688 if (IS_ERR(sum_page)) {
2689 /* GC won't be able to use stale summary pages by cp_error */
2690 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2693 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2694 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2695 f2fs_put_page(sum_page, 1);
2698 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2699 int alloc_mode, unsigned long long age);
2701 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2702 int target_type, int alloc_mode,
2703 unsigned long long age)
2705 struct curseg_info *curseg = CURSEG_I(sbi, type);
2707 curseg->seg_type = target_type;
2709 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2710 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2712 curseg->seg_type = se->type;
2713 change_curseg(sbi, type);
2715 /* allocate cold segment by default */
2716 curseg->seg_type = CURSEG_COLD_DATA;
2717 new_curseg(sbi, type, true);
2719 stat_inc_seg_type(sbi, curseg);
2722 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2724 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2726 if (!sbi->am.atgc_enabled)
2729 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2731 mutex_lock(&curseg->curseg_mutex);
2732 down_write(&SIT_I(sbi)->sentry_lock);
2734 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2736 up_write(&SIT_I(sbi)->sentry_lock);
2737 mutex_unlock(&curseg->curseg_mutex);
2739 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2742 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2744 __f2fs_init_atgc_curseg(sbi);
2747 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2749 struct curseg_info *curseg = CURSEG_I(sbi, type);
2751 mutex_lock(&curseg->curseg_mutex);
2752 if (!curseg->inited)
2755 if (get_valid_blocks(sbi, curseg->segno, false)) {
2756 write_sum_page(sbi, curseg->sum_blk,
2757 GET_SUM_BLOCK(sbi, curseg->segno));
2759 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2760 __set_test_and_free(sbi, curseg->segno, true);
2761 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2764 mutex_unlock(&curseg->curseg_mutex);
2767 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2769 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2771 if (sbi->am.atgc_enabled)
2772 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2775 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2777 struct curseg_info *curseg = CURSEG_I(sbi, type);
2779 mutex_lock(&curseg->curseg_mutex);
2780 if (!curseg->inited)
2782 if (get_valid_blocks(sbi, curseg->segno, false))
2785 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2786 __set_test_and_inuse(sbi, curseg->segno);
2787 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2789 mutex_unlock(&curseg->curseg_mutex);
2792 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2794 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2796 if (sbi->am.atgc_enabled)
2797 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2800 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2801 int alloc_mode, unsigned long long age)
2803 struct curseg_info *curseg = CURSEG_I(sbi, type);
2804 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2805 unsigned segno = NULL_SEGNO;
2806 unsigned short seg_type = curseg->seg_type;
2808 bool reversed = false;
2810 sanity_check_seg_type(sbi, seg_type);
2812 /* f2fs_need_SSR() already forces to do this */
2813 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2814 curseg->next_segno = segno;
2818 /* For node segments, let's do SSR more intensively */
2819 if (IS_NODESEG(seg_type)) {
2820 if (seg_type >= CURSEG_WARM_NODE) {
2822 i = CURSEG_COLD_NODE;
2824 i = CURSEG_HOT_NODE;
2826 cnt = NR_CURSEG_NODE_TYPE;
2828 if (seg_type >= CURSEG_WARM_DATA) {
2830 i = CURSEG_COLD_DATA;
2832 i = CURSEG_HOT_DATA;
2834 cnt = NR_CURSEG_DATA_TYPE;
2837 for (; cnt-- > 0; reversed ? i-- : i++) {
2840 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2841 curseg->next_segno = segno;
2846 /* find valid_blocks=0 in dirty list */
2847 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2848 segno = get_free_segment(sbi);
2849 if (segno != NULL_SEGNO) {
2850 curseg->next_segno = segno;
2857 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
2859 struct curseg_info *curseg = CURSEG_I(sbi, type);
2861 if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2862 curseg->seg_type == CURSEG_WARM_NODE)
2864 if (curseg->alloc_type == LFS &&
2865 is_next_segment_free(sbi, curseg, type) &&
2866 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2868 if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
2873 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2874 unsigned int start, unsigned int end)
2876 struct curseg_info *curseg = CURSEG_I(sbi, type);
2879 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2880 mutex_lock(&curseg->curseg_mutex);
2881 down_write(&SIT_I(sbi)->sentry_lock);
2883 segno = CURSEG_I(sbi, type)->segno;
2884 if (segno < start || segno > end)
2887 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2888 change_curseg(sbi, type);
2890 new_curseg(sbi, type, true);
2892 stat_inc_seg_type(sbi, curseg);
2894 locate_dirty_segment(sbi, segno);
2896 up_write(&SIT_I(sbi)->sentry_lock);
2898 if (segno != curseg->segno)
2899 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2900 type, segno, curseg->segno);
2902 mutex_unlock(&curseg->curseg_mutex);
2903 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2906 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2907 bool new_sec, bool force)
2909 struct curseg_info *curseg = CURSEG_I(sbi, type);
2910 unsigned int old_segno;
2912 if (!curseg->inited)
2915 if (force || curseg->next_blkoff ||
2916 get_valid_blocks(sbi, curseg->segno, new_sec))
2919 if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2922 old_segno = curseg->segno;
2923 new_curseg(sbi, type, true);
2924 stat_inc_seg_type(sbi, curseg);
2925 locate_dirty_segment(sbi, old_segno);
2928 static void __allocate_new_section(struct f2fs_sb_info *sbi,
2929 int type, bool force)
2931 __allocate_new_segment(sbi, type, true, force);
2934 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2936 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2937 down_write(&SIT_I(sbi)->sentry_lock);
2938 __allocate_new_section(sbi, type, force);
2939 up_write(&SIT_I(sbi)->sentry_lock);
2940 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2943 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2947 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2948 down_write(&SIT_I(sbi)->sentry_lock);
2949 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2950 __allocate_new_segment(sbi, i, false, false);
2951 up_write(&SIT_I(sbi)->sentry_lock);
2952 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2955 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2956 struct cp_control *cpc)
2958 __u64 trim_start = cpc->trim_start;
2959 bool has_candidate = false;
2961 down_write(&SIT_I(sbi)->sentry_lock);
2962 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2963 if (add_discard_addrs(sbi, cpc, true)) {
2964 has_candidate = true;
2968 up_write(&SIT_I(sbi)->sentry_lock);
2970 cpc->trim_start = trim_start;
2971 return has_candidate;
2974 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2975 struct discard_policy *dpolicy,
2976 unsigned int start, unsigned int end)
2978 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2979 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2980 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2981 struct discard_cmd *dc;
2982 struct blk_plug plug;
2984 unsigned int trimmed = 0;
2989 mutex_lock(&dcc->cmd_lock);
2990 if (unlikely(dcc->rbtree_check))
2991 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2992 &dcc->root, false));
2994 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2996 (struct rb_entry **)&prev_dc,
2997 (struct rb_entry **)&next_dc,
2998 &insert_p, &insert_parent, true, NULL);
3002 blk_start_plug(&plug);
3004 while (dc && dc->lstart <= end) {
3005 struct rb_node *node;
3008 if (dc->len < dpolicy->granularity)
3011 if (dc->state != D_PREP) {
3012 list_move_tail(&dc->list, &dcc->fstrim_list);
3016 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3018 if (issued >= dpolicy->max_requests) {
3019 start = dc->lstart + dc->len;
3022 __remove_discard_cmd(sbi, dc);
3024 blk_finish_plug(&plug);
3025 mutex_unlock(&dcc->cmd_lock);
3026 trimmed += __wait_all_discard_cmd(sbi, NULL);
3027 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3031 node = rb_next(&dc->rb_node);
3033 __remove_discard_cmd(sbi, dc);
3034 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3036 if (fatal_signal_pending(current))
3040 blk_finish_plug(&plug);
3041 mutex_unlock(&dcc->cmd_lock);
3046 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3048 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3049 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3050 unsigned int start_segno, end_segno;
3051 block_t start_block, end_block;
3052 struct cp_control cpc;
3053 struct discard_policy dpolicy;
3054 unsigned long long trimmed = 0;
3056 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3058 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3061 if (end < MAIN_BLKADDR(sbi))
3064 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3065 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3066 return -EFSCORRUPTED;
3069 /* start/end segment number in main_area */
3070 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3071 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3072 GET_SEGNO(sbi, end);
3074 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3075 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3078 cpc.reason = CP_DISCARD;
3079 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3080 cpc.trim_start = start_segno;
3081 cpc.trim_end = end_segno;
3083 if (sbi->discard_blks == 0)
3086 f2fs_down_write(&sbi->gc_lock);
3087 err = f2fs_write_checkpoint(sbi, &cpc);
3088 f2fs_up_write(&sbi->gc_lock);
3093 * We filed discard candidates, but actually we don't need to wait for
3094 * all of them, since they'll be issued in idle time along with runtime
3095 * discard option. User configuration looks like using runtime discard
3096 * or periodic fstrim instead of it.
3098 if (f2fs_realtime_discard_enable(sbi))
3101 start_block = START_BLOCK(sbi, start_segno);
3102 end_block = START_BLOCK(sbi, end_segno + 1);
3104 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3105 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3106 start_block, end_block);
3108 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3109 start_block, end_block);
3112 range->len = F2FS_BLK_TO_BYTES(trimmed);
3116 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3117 struct curseg_info *curseg)
3119 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3123 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3126 case WRITE_LIFE_SHORT:
3127 return CURSEG_HOT_DATA;
3128 case WRITE_LIFE_EXTREME:
3129 return CURSEG_COLD_DATA;
3131 return CURSEG_WARM_DATA;
3135 static int __get_segment_type_2(struct f2fs_io_info *fio)
3137 if (fio->type == DATA)
3138 return CURSEG_HOT_DATA;
3140 return CURSEG_HOT_NODE;
3143 static int __get_segment_type_4(struct f2fs_io_info *fio)
3145 if (fio->type == DATA) {
3146 struct inode *inode = fio->page->mapping->host;
3148 if (S_ISDIR(inode->i_mode))
3149 return CURSEG_HOT_DATA;
3151 return CURSEG_COLD_DATA;
3153 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3154 return CURSEG_WARM_NODE;
3156 return CURSEG_COLD_NODE;
3160 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3162 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3163 struct extent_info ei = {};
3165 if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3167 return NO_CHECK_TYPE;
3168 if (ei.age <= sbi->hot_data_age_threshold)
3169 return CURSEG_HOT_DATA;
3170 if (ei.age <= sbi->warm_data_age_threshold)
3171 return CURSEG_WARM_DATA;
3172 return CURSEG_COLD_DATA;
3174 return NO_CHECK_TYPE;
3177 static int __get_segment_type_6(struct f2fs_io_info *fio)
3179 if (fio->type == DATA) {
3180 struct inode *inode = fio->page->mapping->host;
3183 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3184 return CURSEG_COLD_DATA_PINNED;
3186 if (page_private_gcing(fio->page)) {
3187 if (fio->sbi->am.atgc_enabled &&
3188 (fio->io_type == FS_DATA_IO) &&
3189 (fio->sbi->gc_mode != GC_URGENT_HIGH))
3190 return CURSEG_ALL_DATA_ATGC;
3192 return CURSEG_COLD_DATA;
3194 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3195 return CURSEG_COLD_DATA;
3197 type = __get_age_segment_type(inode, fio->page->index);
3198 if (type != NO_CHECK_TYPE)
3201 if (file_is_hot(inode) ||
3202 is_inode_flag_set(inode, FI_HOT_DATA) ||
3203 f2fs_is_cow_file(inode))
3204 return CURSEG_HOT_DATA;
3205 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3207 if (IS_DNODE(fio->page))
3208 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3210 return CURSEG_COLD_NODE;
3214 static int __get_segment_type(struct f2fs_io_info *fio)
3218 switch (F2FS_OPTION(fio->sbi).active_logs) {
3220 type = __get_segment_type_2(fio);
3223 type = __get_segment_type_4(fio);
3226 type = __get_segment_type_6(fio);
3229 f2fs_bug_on(fio->sbi, true);
3234 else if (IS_WARM(type))
3241 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3242 block_t old_blkaddr, block_t *new_blkaddr,
3243 struct f2fs_summary *sum, int type,
3244 struct f2fs_io_info *fio)
3246 struct sit_info *sit_i = SIT_I(sbi);
3247 struct curseg_info *curseg = CURSEG_I(sbi, type);
3248 unsigned long long old_mtime;
3249 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3250 struct seg_entry *se = NULL;
3252 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3254 mutex_lock(&curseg->curseg_mutex);
3255 down_write(&sit_i->sentry_lock);
3258 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3259 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3260 sanity_check_seg_type(sbi, se->type);
3261 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3263 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3265 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3267 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3270 * __add_sum_entry should be resided under the curseg_mutex
3271 * because, this function updates a summary entry in the
3272 * current summary block.
3274 __add_sum_entry(sbi, type, sum);
3276 __refresh_next_blkoff(sbi, curseg);
3278 stat_inc_block_count(sbi, curseg);
3281 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3283 update_segment_mtime(sbi, old_blkaddr, 0);
3286 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3289 * SIT information should be updated before segment allocation,
3290 * since SSR needs latest valid block information.
3292 update_sit_entry(sbi, *new_blkaddr, 1);
3293 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3294 update_sit_entry(sbi, old_blkaddr, -1);
3296 if (!__has_curseg_space(sbi, curseg)) {
3298 * Flush out current segment and replace it with new segment.
3301 get_atssr_segment(sbi, type, se->type,
3304 if (need_new_seg(sbi, type))
3305 new_curseg(sbi, type, false);
3307 change_curseg(sbi, type);
3308 stat_inc_seg_type(sbi, curseg);
3312 * segment dirty status should be updated after segment allocation,
3313 * so we just need to update status only one time after previous
3314 * segment being closed.
3316 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3317 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3319 if (IS_DATASEG(type))
3320 atomic64_inc(&sbi->allocated_data_blocks);
3322 up_write(&sit_i->sentry_lock);
3324 if (page && IS_NODESEG(type)) {
3325 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3327 f2fs_inode_chksum_set(sbi, page);
3331 struct f2fs_bio_info *io;
3333 if (F2FS_IO_ALIGNED(sbi))
3336 INIT_LIST_HEAD(&fio->list);
3337 fio->in_list = true;
3338 io = sbi->write_io[fio->type] + fio->temp;
3339 spin_lock(&io->io_lock);
3340 list_add_tail(&fio->list, &io->io_list);
3341 spin_unlock(&io->io_lock);
3344 mutex_unlock(&curseg->curseg_mutex);
3346 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3349 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3350 block_t blkaddr, unsigned int blkcnt)
3352 if (!f2fs_is_multi_device(sbi))
3356 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3357 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3359 /* update device state for fsync */
3360 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3362 /* update device state for checkpoint */
3363 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3364 spin_lock(&sbi->dev_lock);
3365 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3366 spin_unlock(&sbi->dev_lock);
3376 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3378 int type = __get_segment_type(fio);
3379 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3382 f2fs_down_read(&fio->sbi->io_order_lock);
3384 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3385 &fio->new_blkaddr, sum, type, fio);
3386 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3387 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3388 fio->old_blkaddr, fio->old_blkaddr);
3389 f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3392 /* writeout dirty page into bdev */
3393 f2fs_submit_page_write(fio);
3395 fio->old_blkaddr = fio->new_blkaddr;
3399 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3402 f2fs_up_read(&fio->sbi->io_order_lock);
3405 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3406 enum iostat_type io_type)
3408 struct f2fs_io_info fio = {
3413 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3414 .old_blkaddr = page->index,
3415 .new_blkaddr = page->index,
3417 .encrypted_page = NULL,
3421 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3422 fio.op_flags &= ~REQ_META;
3424 set_page_writeback(page);
3425 ClearPageError(page);
3426 f2fs_submit_page_write(&fio);
3428 stat_inc_meta_count(sbi, page->index);
3429 f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3432 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3434 struct f2fs_summary sum;
3436 set_summary(&sum, nid, 0, 0);
3437 do_write_page(&sum, fio);
3439 f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3442 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3443 struct f2fs_io_info *fio)
3445 struct f2fs_sb_info *sbi = fio->sbi;
3446 struct f2fs_summary sum;
3448 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3449 if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3450 f2fs_update_age_extent_cache(dn);
3451 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3452 do_write_page(&sum, fio);
3453 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3455 f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3458 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3461 struct f2fs_sb_info *sbi = fio->sbi;
3464 fio->new_blkaddr = fio->old_blkaddr;
3465 /* i/o temperature is needed for passing down write hints */
3466 __get_segment_type(fio);
3468 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3470 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3471 set_sbi_flag(sbi, SBI_NEED_FSCK);
3472 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3474 err = -EFSCORRUPTED;
3475 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3479 if (f2fs_cp_error(sbi)) {
3485 invalidate_mapping_pages(META_MAPPING(sbi),
3486 fio->new_blkaddr, fio->new_blkaddr);
3488 stat_inc_inplace_blocks(fio->sbi);
3490 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3491 err = f2fs_merge_page_bio(fio);
3493 err = f2fs_submit_page_bio(fio);
3495 f2fs_update_device_state(fio->sbi, fio->ino,
3496 fio->new_blkaddr, 1);
3497 f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3498 fio->io_type, F2FS_BLKSIZE);
3503 if (fio->bio && *(fio->bio)) {
3504 struct bio *bio = *(fio->bio);
3506 bio->bi_status = BLK_STS_IOERR;
3513 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3518 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3519 if (CURSEG_I(sbi, i)->segno == segno)
3525 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3526 block_t old_blkaddr, block_t new_blkaddr,
3527 bool recover_curseg, bool recover_newaddr,
3530 struct sit_info *sit_i = SIT_I(sbi);
3531 struct curseg_info *curseg;
3532 unsigned int segno, old_cursegno;
3533 struct seg_entry *se;
3535 unsigned short old_blkoff;
3536 unsigned char old_alloc_type;
3538 segno = GET_SEGNO(sbi, new_blkaddr);
3539 se = get_seg_entry(sbi, segno);
3542 f2fs_down_write(&SM_I(sbi)->curseg_lock);
3544 if (!recover_curseg) {
3545 /* for recovery flow */
3546 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3547 if (old_blkaddr == NULL_ADDR)
3548 type = CURSEG_COLD_DATA;
3550 type = CURSEG_WARM_DATA;
3553 if (IS_CURSEG(sbi, segno)) {
3554 /* se->type is volatile as SSR allocation */
3555 type = __f2fs_get_curseg(sbi, segno);
3556 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3558 type = CURSEG_WARM_DATA;
3562 f2fs_bug_on(sbi, !IS_DATASEG(type));
3563 curseg = CURSEG_I(sbi, type);
3565 mutex_lock(&curseg->curseg_mutex);
3566 down_write(&sit_i->sentry_lock);
3568 old_cursegno = curseg->segno;
3569 old_blkoff = curseg->next_blkoff;
3570 old_alloc_type = curseg->alloc_type;
3572 /* change the current segment */
3573 if (segno != curseg->segno) {
3574 curseg->next_segno = segno;
3575 change_curseg(sbi, type);
3578 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3579 __add_sum_entry(sbi, type, sum);
3581 if (!recover_curseg || recover_newaddr) {
3583 update_segment_mtime(sbi, new_blkaddr, 0);
3584 update_sit_entry(sbi, new_blkaddr, 1);
3586 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3587 invalidate_mapping_pages(META_MAPPING(sbi),
3588 old_blkaddr, old_blkaddr);
3589 f2fs_invalidate_compress_page(sbi, old_blkaddr);
3591 update_segment_mtime(sbi, old_blkaddr, 0);
3592 update_sit_entry(sbi, old_blkaddr, -1);
3595 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3596 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3598 locate_dirty_segment(sbi, old_cursegno);
3600 if (recover_curseg) {
3601 if (old_cursegno != curseg->segno) {
3602 curseg->next_segno = old_cursegno;
3603 change_curseg(sbi, type);
3605 curseg->next_blkoff = old_blkoff;
3606 curseg->alloc_type = old_alloc_type;
3609 up_write(&sit_i->sentry_lock);
3610 mutex_unlock(&curseg->curseg_mutex);
3611 f2fs_up_write(&SM_I(sbi)->curseg_lock);
3614 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3615 block_t old_addr, block_t new_addr,
3616 unsigned char version, bool recover_curseg,
3617 bool recover_newaddr)
3619 struct f2fs_summary sum;
3621 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3623 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3624 recover_curseg, recover_newaddr, false);
3626 f2fs_update_data_blkaddr(dn, new_addr);
3629 void f2fs_wait_on_page_writeback(struct page *page,
3630 enum page_type type, bool ordered, bool locked)
3632 if (PageWriteback(page)) {
3633 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3635 /* submit cached LFS IO */
3636 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3637 /* sbumit cached IPU IO */
3638 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3640 wait_on_page_writeback(page);
3641 f2fs_bug_on(sbi, locked && PageWriteback(page));
3643 wait_for_stable_page(page);
3648 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3650 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3653 if (!f2fs_post_read_required(inode))
3656 if (!__is_valid_data_blkaddr(blkaddr))
3659 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3661 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3662 f2fs_put_page(cpage, 1);
3666 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3669 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3672 if (!f2fs_post_read_required(inode))
3675 for (i = 0; i < len; i++)
3676 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3678 invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1);
3681 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3683 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3684 struct curseg_info *seg_i;
3685 unsigned char *kaddr;
3690 start = start_sum_block(sbi);
3692 page = f2fs_get_meta_page(sbi, start++);
3694 return PTR_ERR(page);
3695 kaddr = (unsigned char *)page_address(page);
3697 /* Step 1: restore nat cache */
3698 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3699 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3701 /* Step 2: restore sit cache */
3702 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3703 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3704 offset = 2 * SUM_JOURNAL_SIZE;
3706 /* Step 3: restore summary entries */
3707 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3708 unsigned short blk_off;
3711 seg_i = CURSEG_I(sbi, i);
3712 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3713 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3714 seg_i->next_segno = segno;
3715 reset_curseg(sbi, i, 0);
3716 seg_i->alloc_type = ckpt->alloc_type[i];
3717 seg_i->next_blkoff = blk_off;
3719 if (seg_i->alloc_type == SSR)
3720 blk_off = sbi->blocks_per_seg;
3722 for (j = 0; j < blk_off; j++) {
3723 struct f2fs_summary *s;
3725 s = (struct f2fs_summary *)(kaddr + offset);
3726 seg_i->sum_blk->entries[j] = *s;
3727 offset += SUMMARY_SIZE;
3728 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3732 f2fs_put_page(page, 1);
3735 page = f2fs_get_meta_page(sbi, start++);
3737 return PTR_ERR(page);
3738 kaddr = (unsigned char *)page_address(page);
3742 f2fs_put_page(page, 1);
3746 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3748 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3749 struct f2fs_summary_block *sum;
3750 struct curseg_info *curseg;
3752 unsigned short blk_off;
3753 unsigned int segno = 0;
3754 block_t blk_addr = 0;
3757 /* get segment number and block addr */
3758 if (IS_DATASEG(type)) {
3759 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3760 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3762 if (__exist_node_summaries(sbi))
3763 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3765 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3767 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3769 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3771 if (__exist_node_summaries(sbi))
3772 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3773 type - CURSEG_HOT_NODE);
3775 blk_addr = GET_SUM_BLOCK(sbi, segno);
3778 new = f2fs_get_meta_page(sbi, blk_addr);
3780 return PTR_ERR(new);
3781 sum = (struct f2fs_summary_block *)page_address(new);
3783 if (IS_NODESEG(type)) {
3784 if (__exist_node_summaries(sbi)) {
3785 struct f2fs_summary *ns = &sum->entries[0];
3788 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3790 ns->ofs_in_node = 0;
3793 err = f2fs_restore_node_summary(sbi, segno, sum);
3799 /* set uncompleted segment to curseg */
3800 curseg = CURSEG_I(sbi, type);
3801 mutex_lock(&curseg->curseg_mutex);
3803 /* update journal info */
3804 down_write(&curseg->journal_rwsem);
3805 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3806 up_write(&curseg->journal_rwsem);
3808 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3809 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3810 curseg->next_segno = segno;
3811 reset_curseg(sbi, type, 0);
3812 curseg->alloc_type = ckpt->alloc_type[type];
3813 curseg->next_blkoff = blk_off;
3814 mutex_unlock(&curseg->curseg_mutex);
3816 f2fs_put_page(new, 1);
3820 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3822 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3823 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3824 int type = CURSEG_HOT_DATA;
3827 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3828 int npages = f2fs_npages_for_summary_flush(sbi, true);
3831 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3834 /* restore for compacted data summary */
3835 err = read_compacted_summaries(sbi);
3838 type = CURSEG_HOT_NODE;
3841 if (__exist_node_summaries(sbi))
3842 f2fs_ra_meta_pages(sbi,
3843 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3844 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3846 for (; type <= CURSEG_COLD_NODE; type++) {
3847 err = read_normal_summaries(sbi, type);
3852 /* sanity check for summary blocks */
3853 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3854 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3855 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3856 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3863 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3866 unsigned char *kaddr;
3867 struct f2fs_summary *summary;
3868 struct curseg_info *seg_i;
3869 int written_size = 0;
3872 page = f2fs_grab_meta_page(sbi, blkaddr++);
3873 kaddr = (unsigned char *)page_address(page);
3874 memset(kaddr, 0, PAGE_SIZE);
3876 /* Step 1: write nat cache */
3877 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3878 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3879 written_size += SUM_JOURNAL_SIZE;
3881 /* Step 2: write sit cache */
3882 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3883 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3884 written_size += SUM_JOURNAL_SIZE;
3886 /* Step 3: write summary entries */
3887 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3888 unsigned short blkoff;
3890 seg_i = CURSEG_I(sbi, i);
3891 if (sbi->ckpt->alloc_type[i] == SSR)
3892 blkoff = sbi->blocks_per_seg;
3894 blkoff = curseg_blkoff(sbi, i);
3896 for (j = 0; j < blkoff; j++) {
3898 page = f2fs_grab_meta_page(sbi, blkaddr++);
3899 kaddr = (unsigned char *)page_address(page);
3900 memset(kaddr, 0, PAGE_SIZE);
3903 summary = (struct f2fs_summary *)(kaddr + written_size);
3904 *summary = seg_i->sum_blk->entries[j];
3905 written_size += SUMMARY_SIZE;
3907 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3911 set_page_dirty(page);
3912 f2fs_put_page(page, 1);
3917 set_page_dirty(page);
3918 f2fs_put_page(page, 1);
3922 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3923 block_t blkaddr, int type)
3927 if (IS_DATASEG(type))
3928 end = type + NR_CURSEG_DATA_TYPE;
3930 end = type + NR_CURSEG_NODE_TYPE;
3932 for (i = type; i < end; i++)
3933 write_current_sum_page(sbi, i, blkaddr + (i - type));
3936 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3938 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3939 write_compacted_summaries(sbi, start_blk);
3941 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3944 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3946 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3949 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3950 unsigned int val, int alloc)
3954 if (type == NAT_JOURNAL) {
3955 for (i = 0; i < nats_in_cursum(journal); i++) {
3956 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3959 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3960 return update_nats_in_cursum(journal, 1);
3961 } else if (type == SIT_JOURNAL) {
3962 for (i = 0; i < sits_in_cursum(journal); i++)
3963 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3965 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3966 return update_sits_in_cursum(journal, 1);
3971 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3974 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
3977 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3980 struct sit_info *sit_i = SIT_I(sbi);
3982 pgoff_t src_off, dst_off;
3984 src_off = current_sit_addr(sbi, start);
3985 dst_off = next_sit_addr(sbi, src_off);
3987 page = f2fs_grab_meta_page(sbi, dst_off);
3988 seg_info_to_sit_page(sbi, page, start);
3990 set_page_dirty(page);
3991 set_to_next_sit(sit_i, start);
3996 static struct sit_entry_set *grab_sit_entry_set(void)
3998 struct sit_entry_set *ses =
3999 f2fs_kmem_cache_alloc(sit_entry_set_slab,
4000 GFP_NOFS, true, NULL);
4003 INIT_LIST_HEAD(&ses->set_list);
4007 static void release_sit_entry_set(struct sit_entry_set *ses)
4009 list_del(&ses->set_list);
4010 kmem_cache_free(sit_entry_set_slab, ses);
4013 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4014 struct list_head *head)
4016 struct sit_entry_set *next = ses;
4018 if (list_is_last(&ses->set_list, head))
4021 list_for_each_entry_continue(next, head, set_list)
4022 if (ses->entry_cnt <= next->entry_cnt) {
4023 list_move_tail(&ses->set_list, &next->set_list);
4027 list_move_tail(&ses->set_list, head);
4030 static void add_sit_entry(unsigned int segno, struct list_head *head)
4032 struct sit_entry_set *ses;
4033 unsigned int start_segno = START_SEGNO(segno);
4035 list_for_each_entry(ses, head, set_list) {
4036 if (ses->start_segno == start_segno) {
4038 adjust_sit_entry_set(ses, head);
4043 ses = grab_sit_entry_set();
4045 ses->start_segno = start_segno;
4047 list_add(&ses->set_list, head);
4050 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4052 struct f2fs_sm_info *sm_info = SM_I(sbi);
4053 struct list_head *set_list = &sm_info->sit_entry_set;
4054 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4057 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4058 add_sit_entry(segno, set_list);
4061 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4063 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4064 struct f2fs_journal *journal = curseg->journal;
4067 down_write(&curseg->journal_rwsem);
4068 for (i = 0; i < sits_in_cursum(journal); i++) {
4072 segno = le32_to_cpu(segno_in_journal(journal, i));
4073 dirtied = __mark_sit_entry_dirty(sbi, segno);
4076 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4078 update_sits_in_cursum(journal, -i);
4079 up_write(&curseg->journal_rwsem);
4083 * CP calls this function, which flushes SIT entries including sit_journal,
4084 * and moves prefree segs to free segs.
4086 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4088 struct sit_info *sit_i = SIT_I(sbi);
4089 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4090 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4091 struct f2fs_journal *journal = curseg->journal;
4092 struct sit_entry_set *ses, *tmp;
4093 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4094 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4095 struct seg_entry *se;
4097 down_write(&sit_i->sentry_lock);
4099 if (!sit_i->dirty_sentries)
4103 * add and account sit entries of dirty bitmap in sit entry
4106 add_sits_in_set(sbi);
4109 * if there are no enough space in journal to store dirty sit
4110 * entries, remove all entries from journal and add and account
4111 * them in sit entry set.
4113 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4115 remove_sits_in_journal(sbi);
4118 * there are two steps to flush sit entries:
4119 * #1, flush sit entries to journal in current cold data summary block.
4120 * #2, flush sit entries to sit page.
4122 list_for_each_entry_safe(ses, tmp, head, set_list) {
4123 struct page *page = NULL;
4124 struct f2fs_sit_block *raw_sit = NULL;
4125 unsigned int start_segno = ses->start_segno;
4126 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4127 (unsigned long)MAIN_SEGS(sbi));
4128 unsigned int segno = start_segno;
4131 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4135 down_write(&curseg->journal_rwsem);
4137 page = get_next_sit_page(sbi, start_segno);
4138 raw_sit = page_address(page);
4141 /* flush dirty sit entries in region of current sit set */
4142 for_each_set_bit_from(segno, bitmap, end) {
4143 int offset, sit_offset;
4145 se = get_seg_entry(sbi, segno);
4146 #ifdef CONFIG_F2FS_CHECK_FS
4147 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4148 SIT_VBLOCK_MAP_SIZE))
4149 f2fs_bug_on(sbi, 1);
4152 /* add discard candidates */
4153 if (!(cpc->reason & CP_DISCARD)) {
4154 cpc->trim_start = segno;
4155 add_discard_addrs(sbi, cpc, false);
4159 offset = f2fs_lookup_journal_in_cursum(journal,
4160 SIT_JOURNAL, segno, 1);
4161 f2fs_bug_on(sbi, offset < 0);
4162 segno_in_journal(journal, offset) =
4164 seg_info_to_raw_sit(se,
4165 &sit_in_journal(journal, offset));
4166 check_block_count(sbi, segno,
4167 &sit_in_journal(journal, offset));
4169 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4170 seg_info_to_raw_sit(se,
4171 &raw_sit->entries[sit_offset]);
4172 check_block_count(sbi, segno,
4173 &raw_sit->entries[sit_offset]);
4176 __clear_bit(segno, bitmap);
4177 sit_i->dirty_sentries--;
4182 up_write(&curseg->journal_rwsem);
4184 f2fs_put_page(page, 1);
4186 f2fs_bug_on(sbi, ses->entry_cnt);
4187 release_sit_entry_set(ses);
4190 f2fs_bug_on(sbi, !list_empty(head));
4191 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4193 if (cpc->reason & CP_DISCARD) {
4194 __u64 trim_start = cpc->trim_start;
4196 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4197 add_discard_addrs(sbi, cpc, false);
4199 cpc->trim_start = trim_start;
4201 up_write(&sit_i->sentry_lock);
4203 set_prefree_as_free_segments(sbi);
4206 static int build_sit_info(struct f2fs_sb_info *sbi)
4208 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4209 struct sit_info *sit_i;
4210 unsigned int sit_segs, start;
4211 char *src_bitmap, *bitmap;
4212 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4213 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4215 /* allocate memory for SIT information */
4216 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4220 SM_I(sbi)->sit_info = sit_i;
4223 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4226 if (!sit_i->sentries)
4229 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4230 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4232 if (!sit_i->dirty_sentries_bitmap)
4235 #ifdef CONFIG_F2FS_CHECK_FS
4236 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4238 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4240 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4244 bitmap = sit_i->bitmap;
4246 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4247 sit_i->sentries[start].cur_valid_map = bitmap;
4248 bitmap += SIT_VBLOCK_MAP_SIZE;
4250 sit_i->sentries[start].ckpt_valid_map = bitmap;
4251 bitmap += SIT_VBLOCK_MAP_SIZE;
4253 #ifdef CONFIG_F2FS_CHECK_FS
4254 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4255 bitmap += SIT_VBLOCK_MAP_SIZE;
4259 sit_i->sentries[start].discard_map = bitmap;
4260 bitmap += SIT_VBLOCK_MAP_SIZE;
4264 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4265 if (!sit_i->tmp_map)
4268 if (__is_large_section(sbi)) {
4269 sit_i->sec_entries =
4270 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4273 if (!sit_i->sec_entries)
4277 /* get information related with SIT */
4278 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4280 /* setup SIT bitmap from ckeckpoint pack */
4281 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4282 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4284 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4285 if (!sit_i->sit_bitmap)
4288 #ifdef CONFIG_F2FS_CHECK_FS
4289 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4290 sit_bitmap_size, GFP_KERNEL);
4291 if (!sit_i->sit_bitmap_mir)
4294 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4295 main_bitmap_size, GFP_KERNEL);
4296 if (!sit_i->invalid_segmap)
4300 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4301 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4302 sit_i->written_valid_blocks = 0;
4303 sit_i->bitmap_size = sit_bitmap_size;
4304 sit_i->dirty_sentries = 0;
4305 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4306 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4307 sit_i->mounted_time = ktime_get_boottime_seconds();
4308 init_rwsem(&sit_i->sentry_lock);
4312 static int build_free_segmap(struct f2fs_sb_info *sbi)
4314 struct free_segmap_info *free_i;
4315 unsigned int bitmap_size, sec_bitmap_size;
4317 /* allocate memory for free segmap information */
4318 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4322 SM_I(sbi)->free_info = free_i;
4324 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4325 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4326 if (!free_i->free_segmap)
4329 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4330 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4331 if (!free_i->free_secmap)
4334 /* set all segments as dirty temporarily */
4335 memset(free_i->free_segmap, 0xff, bitmap_size);
4336 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4338 /* init free segmap information */
4339 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4340 free_i->free_segments = 0;
4341 free_i->free_sections = 0;
4342 spin_lock_init(&free_i->segmap_lock);
4346 static int build_curseg(struct f2fs_sb_info *sbi)
4348 struct curseg_info *array;
4351 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4352 sizeof(*array)), GFP_KERNEL);
4356 SM_I(sbi)->curseg_array = array;
4358 for (i = 0; i < NO_CHECK_TYPE; i++) {
4359 mutex_init(&array[i].curseg_mutex);
4360 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4361 if (!array[i].sum_blk)
4363 init_rwsem(&array[i].journal_rwsem);
4364 array[i].journal = f2fs_kzalloc(sbi,
4365 sizeof(struct f2fs_journal), GFP_KERNEL);
4366 if (!array[i].journal)
4368 if (i < NR_PERSISTENT_LOG)
4369 array[i].seg_type = CURSEG_HOT_DATA + i;
4370 else if (i == CURSEG_COLD_DATA_PINNED)
4371 array[i].seg_type = CURSEG_COLD_DATA;
4372 else if (i == CURSEG_ALL_DATA_ATGC)
4373 array[i].seg_type = CURSEG_COLD_DATA;
4374 array[i].segno = NULL_SEGNO;
4375 array[i].next_blkoff = 0;
4376 array[i].inited = false;
4378 return restore_curseg_summaries(sbi);
4381 static int build_sit_entries(struct f2fs_sb_info *sbi)
4383 struct sit_info *sit_i = SIT_I(sbi);
4384 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4385 struct f2fs_journal *journal = curseg->journal;
4386 struct seg_entry *se;
4387 struct f2fs_sit_entry sit;
4388 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4389 unsigned int i, start, end;
4390 unsigned int readed, start_blk = 0;
4392 block_t sit_valid_blocks[2] = {0, 0};
4395 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4398 start = start_blk * sit_i->sents_per_block;
4399 end = (start_blk + readed) * sit_i->sents_per_block;
4401 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4402 struct f2fs_sit_block *sit_blk;
4405 se = &sit_i->sentries[start];
4406 page = get_current_sit_page(sbi, start);
4408 return PTR_ERR(page);
4409 sit_blk = (struct f2fs_sit_block *)page_address(page);
4410 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4411 f2fs_put_page(page, 1);
4413 err = check_block_count(sbi, start, &sit);
4416 seg_info_from_raw_sit(se, &sit);
4418 if (se->type >= NR_PERSISTENT_LOG) {
4419 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4421 f2fs_handle_error(sbi,
4422 ERROR_INCONSISTENT_SUM_TYPE);
4423 return -EFSCORRUPTED;
4426 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4428 if (f2fs_block_unit_discard(sbi)) {
4429 /* build discard map only one time */
4430 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4431 memset(se->discard_map, 0xff,
4432 SIT_VBLOCK_MAP_SIZE);
4434 memcpy(se->discard_map,
4436 SIT_VBLOCK_MAP_SIZE);
4437 sbi->discard_blks +=
4438 sbi->blocks_per_seg -
4443 if (__is_large_section(sbi))
4444 get_sec_entry(sbi, start)->valid_blocks +=
4447 start_blk += readed;
4448 } while (start_blk < sit_blk_cnt);
4450 down_read(&curseg->journal_rwsem);
4451 for (i = 0; i < sits_in_cursum(journal); i++) {
4452 unsigned int old_valid_blocks;
4454 start = le32_to_cpu(segno_in_journal(journal, i));
4455 if (start >= MAIN_SEGS(sbi)) {
4456 f2fs_err(sbi, "Wrong journal entry on segno %u",
4458 err = -EFSCORRUPTED;
4459 f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4463 se = &sit_i->sentries[start];
4464 sit = sit_in_journal(journal, i);
4466 old_valid_blocks = se->valid_blocks;
4468 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4470 err = check_block_count(sbi, start, &sit);
4473 seg_info_from_raw_sit(se, &sit);
4475 if (se->type >= NR_PERSISTENT_LOG) {
4476 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4478 err = -EFSCORRUPTED;
4479 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4483 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4485 if (f2fs_block_unit_discard(sbi)) {
4486 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4487 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4489 memcpy(se->discard_map, se->cur_valid_map,
4490 SIT_VBLOCK_MAP_SIZE);
4491 sbi->discard_blks += old_valid_blocks;
4492 sbi->discard_blks -= se->valid_blocks;
4496 if (__is_large_section(sbi)) {
4497 get_sec_entry(sbi, start)->valid_blocks +=
4499 get_sec_entry(sbi, start)->valid_blocks -=
4503 up_read(&curseg->journal_rwsem);
4508 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4509 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4510 sit_valid_blocks[NODE], valid_node_count(sbi));
4511 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4512 return -EFSCORRUPTED;
4515 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4516 valid_user_blocks(sbi)) {
4517 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4518 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4519 valid_user_blocks(sbi));
4520 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4521 return -EFSCORRUPTED;
4527 static void init_free_segmap(struct f2fs_sb_info *sbi)
4531 struct seg_entry *sentry;
4533 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4534 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4536 sentry = get_seg_entry(sbi, start);
4537 if (!sentry->valid_blocks)
4538 __set_free(sbi, start);
4540 SIT_I(sbi)->written_valid_blocks +=
4541 sentry->valid_blocks;
4544 /* set use the current segments */
4545 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4546 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4548 __set_test_and_inuse(sbi, curseg_t->segno);
4552 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4554 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4555 struct free_segmap_info *free_i = FREE_I(sbi);
4556 unsigned int segno = 0, offset = 0, secno;
4557 block_t valid_blocks, usable_blks_in_seg;
4560 /* find dirty segment based on free segmap */
4561 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4562 if (segno >= MAIN_SEGS(sbi))
4565 valid_blocks = get_valid_blocks(sbi, segno, false);
4566 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4567 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4569 if (valid_blocks > usable_blks_in_seg) {
4570 f2fs_bug_on(sbi, 1);
4573 mutex_lock(&dirty_i->seglist_lock);
4574 __locate_dirty_segment(sbi, segno, DIRTY);
4575 mutex_unlock(&dirty_i->seglist_lock);
4578 if (!__is_large_section(sbi))
4581 mutex_lock(&dirty_i->seglist_lock);
4582 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4583 valid_blocks = get_valid_blocks(sbi, segno, true);
4584 secno = GET_SEC_FROM_SEG(sbi, segno);
4586 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4588 if (IS_CURSEC(sbi, secno))
4590 set_bit(secno, dirty_i->dirty_secmap);
4592 mutex_unlock(&dirty_i->seglist_lock);
4595 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4597 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4598 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4600 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4601 if (!dirty_i->victim_secmap)
4604 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4605 if (!dirty_i->pinned_secmap)
4608 dirty_i->pinned_secmap_cnt = 0;
4609 dirty_i->enable_pin_section = true;
4613 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4615 struct dirty_seglist_info *dirty_i;
4616 unsigned int bitmap_size, i;
4618 /* allocate memory for dirty segments list information */
4619 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4624 SM_I(sbi)->dirty_info = dirty_i;
4625 mutex_init(&dirty_i->seglist_lock);
4627 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4629 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4630 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4632 if (!dirty_i->dirty_segmap[i])
4636 if (__is_large_section(sbi)) {
4637 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4638 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4639 bitmap_size, GFP_KERNEL);
4640 if (!dirty_i->dirty_secmap)
4644 init_dirty_segmap(sbi);
4645 return init_victim_secmap(sbi);
4648 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4653 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4654 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4656 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4657 struct curseg_info *curseg = CURSEG_I(sbi, i);
4658 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4659 unsigned int blkofs = curseg->next_blkoff;
4661 if (f2fs_sb_has_readonly(sbi) &&
4662 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4665 sanity_check_seg_type(sbi, curseg->seg_type);
4667 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4669 "Current segment has invalid alloc_type:%d",
4670 curseg->alloc_type);
4671 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4672 return -EFSCORRUPTED;
4675 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4678 if (curseg->alloc_type == SSR)
4681 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4682 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4686 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4687 i, curseg->segno, curseg->alloc_type,
4688 curseg->next_blkoff, blkofs);
4689 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4690 return -EFSCORRUPTED;
4696 #ifdef CONFIG_BLK_DEV_ZONED
4698 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4699 struct f2fs_dev_info *fdev,
4700 struct blk_zone *zone)
4702 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4703 block_t zone_block, wp_block, last_valid_block;
4704 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4706 struct seg_entry *se;
4708 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4711 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4712 wp_segno = GET_SEGNO(sbi, wp_block);
4713 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4714 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4715 zone_segno = GET_SEGNO(sbi, zone_block);
4716 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4718 if (zone_segno >= MAIN_SEGS(sbi))
4722 * Skip check of zones cursegs point to, since
4723 * fix_curseg_write_pointer() checks them.
4725 for (i = 0; i < NO_CHECK_TYPE; i++)
4726 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4727 CURSEG_I(sbi, i)->segno))
4731 * Get last valid block of the zone.
4733 last_valid_block = zone_block - 1;
4734 for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4735 segno = zone_segno + s;
4736 se = get_seg_entry(sbi, segno);
4737 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4738 if (f2fs_test_bit(b, se->cur_valid_map)) {
4739 last_valid_block = START_BLOCK(sbi, segno) + b;
4742 if (last_valid_block >= zone_block)
4747 * If last valid block is beyond the write pointer, report the
4748 * inconsistency. This inconsistency does not cause write error
4749 * because the zone will not be selected for write operation until
4750 * it get discarded. Just report it.
4752 if (last_valid_block >= wp_block) {
4753 f2fs_notice(sbi, "Valid block beyond write pointer: "
4754 "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4755 GET_SEGNO(sbi, last_valid_block),
4756 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4757 wp_segno, wp_blkoff);
4762 * If there is no valid block in the zone and if write pointer is
4763 * not at zone start, reset the write pointer.
4765 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4767 "Zone without valid block has non-zero write "
4768 "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4769 wp_segno, wp_blkoff);
4770 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4771 zone->len >> log_sectors_per_block);
4773 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4782 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4783 block_t zone_blkaddr)
4787 for (i = 0; i < sbi->s_ndevs; i++) {
4788 if (!bdev_is_zoned(FDEV(i).bdev))
4790 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4791 zone_blkaddr <= FDEV(i).end_blk))
4798 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4801 memcpy(data, zone, sizeof(struct blk_zone));
4805 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4807 struct curseg_info *cs = CURSEG_I(sbi, type);
4808 struct f2fs_dev_info *zbd;
4809 struct blk_zone zone;
4810 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4811 block_t cs_zone_block, wp_block;
4812 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4813 sector_t zone_sector;
4816 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4817 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4819 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4823 /* report zone for the sector the curseg points to */
4824 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4825 << log_sectors_per_block;
4826 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4827 report_one_zone_cb, &zone);
4829 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4834 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4837 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4838 wp_segno = GET_SEGNO(sbi, wp_block);
4839 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4840 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4842 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4846 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4847 "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4848 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4850 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4851 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4853 f2fs_allocate_new_section(sbi, type, true);
4855 /* check consistency of the zone curseg pointed to */
4856 if (check_zone_write_pointer(sbi, zbd, &zone))
4859 /* check newly assigned zone */
4860 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4861 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4863 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4867 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4868 << log_sectors_per_block;
4869 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4870 report_one_zone_cb, &zone);
4872 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4877 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4880 if (zone.wp != zone.start) {
4882 "New zone for curseg[%d] is not yet discarded. "
4883 "Reset the zone: curseg[0x%x,0x%x]",
4884 type, cs->segno, cs->next_blkoff);
4885 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4886 zone_sector >> log_sectors_per_block,
4887 zone.len >> log_sectors_per_block);
4889 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4898 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4902 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4903 ret = fix_curseg_write_pointer(sbi, i);
4911 struct check_zone_write_pointer_args {
4912 struct f2fs_sb_info *sbi;
4913 struct f2fs_dev_info *fdev;
4916 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4919 struct check_zone_write_pointer_args *args;
4921 args = (struct check_zone_write_pointer_args *)data;
4923 return check_zone_write_pointer(args->sbi, args->fdev, zone);
4926 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4929 struct check_zone_write_pointer_args args;
4931 for (i = 0; i < sbi->s_ndevs; i++) {
4932 if (!bdev_is_zoned(FDEV(i).bdev))
4936 args.fdev = &FDEV(i);
4937 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4938 check_zone_write_pointer_cb, &args);
4946 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4947 unsigned int dev_idx)
4949 if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4951 return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4954 /* Return the zone index in the given device */
4955 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4958 block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4960 return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4961 sbi->log_blocks_per_blkz;
4965 * Return the usable segments in a section based on the zone's
4966 * corresponding zone capacity. Zone is equal to a section.
4968 static inline unsigned int f2fs_usable_zone_segs_in_sec(
4969 struct f2fs_sb_info *sbi, unsigned int segno)
4971 unsigned int dev_idx, zone_idx;
4973 dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4974 zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4976 /* Conventional zone's capacity is always equal to zone size */
4977 if (is_conv_zone(sbi, zone_idx, dev_idx))
4978 return sbi->segs_per_sec;
4980 if (!sbi->unusable_blocks_per_sec)
4981 return sbi->segs_per_sec;
4983 /* Get the segment count beyond zone capacity block */
4984 return sbi->segs_per_sec - (sbi->unusable_blocks_per_sec >>
4985 sbi->log_blocks_per_seg);
4989 * Return the number of usable blocks in a segment. The number of blocks
4990 * returned is always equal to the number of blocks in a segment for
4991 * segments fully contained within a sequential zone capacity or a
4992 * conventional zone. For segments partially contained in a sequential
4993 * zone capacity, the number of usable blocks up to the zone capacity
4994 * is returned. 0 is returned in all other cases.
4996 static inline unsigned int f2fs_usable_zone_blks_in_seg(
4997 struct f2fs_sb_info *sbi, unsigned int segno)
4999 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5000 unsigned int zone_idx, dev_idx, secno;
5002 secno = GET_SEC_FROM_SEG(sbi, segno);
5003 seg_start = START_BLOCK(sbi, segno);
5004 dev_idx = f2fs_target_device_index(sbi, seg_start);
5005 zone_idx = get_zone_idx(sbi, secno, dev_idx);
5008 * Conventional zone's capacity is always equal to zone size,
5009 * so, blocks per segment is unchanged.
5011 if (is_conv_zone(sbi, zone_idx, dev_idx))
5012 return sbi->blocks_per_seg;
5014 if (!sbi->unusable_blocks_per_sec)
5015 return sbi->blocks_per_seg;
5017 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5018 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5021 * If segment starts before zone capacity and spans beyond
5022 * zone capacity, then usable blocks are from seg start to
5023 * zone capacity. If the segment starts after the zone capacity,
5024 * then there are no usable blocks.
5026 if (seg_start >= sec_cap_blkaddr)
5028 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5029 return sec_cap_blkaddr - seg_start;
5031 return sbi->blocks_per_seg;
5034 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5039 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5044 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5050 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5056 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5059 if (f2fs_sb_has_blkzoned(sbi))
5060 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5062 return sbi->blocks_per_seg;
5065 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5068 if (f2fs_sb_has_blkzoned(sbi))
5069 return f2fs_usable_zone_segs_in_sec(sbi, segno);
5071 return sbi->segs_per_sec;
5075 * Update min, max modified time for cost-benefit GC algorithm
5077 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5079 struct sit_info *sit_i = SIT_I(sbi);
5082 down_write(&sit_i->sentry_lock);
5084 sit_i->min_mtime = ULLONG_MAX;
5086 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5088 unsigned long long mtime = 0;
5090 for (i = 0; i < sbi->segs_per_sec; i++)
5091 mtime += get_seg_entry(sbi, segno + i)->mtime;
5093 mtime = div_u64(mtime, sbi->segs_per_sec);
5095 if (sit_i->min_mtime > mtime)
5096 sit_i->min_mtime = mtime;
5098 sit_i->max_mtime = get_mtime(sbi, false);
5099 sit_i->dirty_max_mtime = 0;
5100 up_write(&sit_i->sentry_lock);
5103 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5105 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5106 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5107 struct f2fs_sm_info *sm_info;
5110 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5115 sbi->sm_info = sm_info;
5116 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5117 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5118 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5119 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5120 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5121 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5122 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5123 sm_info->rec_prefree_segments = sm_info->main_segments *
5124 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5125 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5126 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5128 if (!f2fs_lfs_mode(sbi))
5129 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5130 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5131 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5132 sm_info->min_seq_blocks = sbi->blocks_per_seg;
5133 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5134 sm_info->min_ssr_sections = reserved_sections(sbi);
5136 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5138 init_f2fs_rwsem(&sm_info->curseg_lock);
5140 err = f2fs_create_flush_cmd_control(sbi);
5144 err = create_discard_cmd_control(sbi);
5148 err = build_sit_info(sbi);
5151 err = build_free_segmap(sbi);
5154 err = build_curseg(sbi);
5158 /* reinit free segmap based on SIT */
5159 err = build_sit_entries(sbi);
5163 init_free_segmap(sbi);
5164 err = build_dirty_segmap(sbi);
5168 err = sanity_check_curseg(sbi);
5172 init_min_max_mtime(sbi);
5176 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5177 enum dirty_type dirty_type)
5179 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5181 mutex_lock(&dirty_i->seglist_lock);
5182 kvfree(dirty_i->dirty_segmap[dirty_type]);
5183 dirty_i->nr_dirty[dirty_type] = 0;
5184 mutex_unlock(&dirty_i->seglist_lock);
5187 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5189 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5191 kvfree(dirty_i->pinned_secmap);
5192 kvfree(dirty_i->victim_secmap);
5195 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5197 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5203 /* discard pre-free/dirty segments list */
5204 for (i = 0; i < NR_DIRTY_TYPE; i++)
5205 discard_dirty_segmap(sbi, i);
5207 if (__is_large_section(sbi)) {
5208 mutex_lock(&dirty_i->seglist_lock);
5209 kvfree(dirty_i->dirty_secmap);
5210 mutex_unlock(&dirty_i->seglist_lock);
5213 destroy_victim_secmap(sbi);
5214 SM_I(sbi)->dirty_info = NULL;
5218 static void destroy_curseg(struct f2fs_sb_info *sbi)
5220 struct curseg_info *array = SM_I(sbi)->curseg_array;
5225 SM_I(sbi)->curseg_array = NULL;
5226 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5227 kfree(array[i].sum_blk);
5228 kfree(array[i].journal);
5233 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5235 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5239 SM_I(sbi)->free_info = NULL;
5240 kvfree(free_i->free_segmap);
5241 kvfree(free_i->free_secmap);
5245 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5247 struct sit_info *sit_i = SIT_I(sbi);
5252 if (sit_i->sentries)
5253 kvfree(sit_i->bitmap);
5254 kfree(sit_i->tmp_map);
5256 kvfree(sit_i->sentries);
5257 kvfree(sit_i->sec_entries);
5258 kvfree(sit_i->dirty_sentries_bitmap);
5260 SM_I(sbi)->sit_info = NULL;
5261 kvfree(sit_i->sit_bitmap);
5262 #ifdef CONFIG_F2FS_CHECK_FS
5263 kvfree(sit_i->sit_bitmap_mir);
5264 kvfree(sit_i->invalid_segmap);
5269 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5271 struct f2fs_sm_info *sm_info = SM_I(sbi);
5275 f2fs_destroy_flush_cmd_control(sbi, true);
5276 destroy_discard_cmd_control(sbi);
5277 destroy_dirty_segmap(sbi);
5278 destroy_curseg(sbi);
5279 destroy_free_segmap(sbi);
5280 destroy_sit_info(sbi);
5281 sbi->sm_info = NULL;
5285 int __init f2fs_create_segment_manager_caches(void)
5287 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5288 sizeof(struct discard_entry));
5289 if (!discard_entry_slab)
5292 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5293 sizeof(struct discard_cmd));
5294 if (!discard_cmd_slab)
5295 goto destroy_discard_entry;
5297 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5298 sizeof(struct sit_entry_set));
5299 if (!sit_entry_set_slab)
5300 goto destroy_discard_cmd;
5302 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5303 sizeof(struct revoke_entry));
5304 if (!revoke_entry_slab)
5305 goto destroy_sit_entry_set;
5308 destroy_sit_entry_set:
5309 kmem_cache_destroy(sit_entry_set_slab);
5310 destroy_discard_cmd:
5311 kmem_cache_destroy(discard_cmd_slab);
5312 destroy_discard_entry:
5313 kmem_cache_destroy(discard_entry_slab);
5318 void f2fs_destroy_segment_manager_caches(void)
5320 kmem_cache_destroy(sit_entry_set_slab);
5321 kmem_cache_destroy(discard_cmd_slab);
5322 kmem_cache_destroy(discard_entry_slab);
5323 kmem_cache_destroy(revoke_entry_slab);