1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright 2016,2017 IBM Corporation.
6 #define pr_fmt(fmt) "xive: " fmt
8 #include <linux/types.h>
9 #include <linux/threads.h>
10 #include <linux/kernel.h>
11 #include <linux/irq.h>
12 #include <linux/debugfs.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/seq_file.h>
16 #include <linux/init.h>
17 #include <linux/cpu.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/msi.h>
22 #include <linux/vmalloc.h>
27 #include <asm/machdep.h>
29 #include <asm/errno.h>
31 #include <asm/xive-regs.h>
34 #include "xive-internal.h"
40 #define DBG_VERBOSE(fmt, ...) pr_devel("cpu %d - " fmt, \
41 smp_processor_id(), ## __VA_ARGS__)
43 #define DBG_VERBOSE(fmt...) do { } while(0)
47 EXPORT_SYMBOL_GPL(__xive_enabled);
48 bool xive_cmdline_disabled;
50 /* We use only one priority for now */
51 static u8 xive_irq_priority;
53 /* TIMA exported to KVM */
54 void __iomem *xive_tima;
55 EXPORT_SYMBOL_GPL(xive_tima);
59 static const struct xive_ops *xive_ops;
61 /* Our global interrupt domain */
62 static struct irq_domain *xive_irq_domain;
65 /* The IPIs use the same logical irq number when on the same chip */
66 static struct xive_ipi_desc {
73 * Use early_cpu_to_node() for hot-plugged CPUs
75 static unsigned int xive_ipi_cpu_to_irq(unsigned int cpu)
77 return xive_ipis[early_cpu_to_node(cpu)].irq;
81 /* Xive state for each CPU */
82 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
84 /* An invalid CPU target */
85 #define XIVE_INVALID_TARGET (-1)
88 * Read the next entry in a queue, return its content if it's valid
89 * or 0 if there is no new entry.
91 * The queue pointer is moved forward unless "just_peek" is set
93 static u32 xive_read_eq(struct xive_q *q, bool just_peek)
99 cur = be32_to_cpup(q->qpage + q->idx);
101 /* Check valid bit (31) vs current toggle polarity */
102 if ((cur >> 31) == q->toggle)
105 /* If consuming from the queue ... */
108 q->idx = (q->idx + 1) & q->msk;
110 /* Wrap around: flip valid toggle */
114 /* Mask out the valid bit (31) */
115 return cur & 0x7fffffff;
119 * Scans all the queue that may have interrupts in them
120 * (based on "pending_prio") in priority order until an
121 * interrupt is found or all the queues are empty.
123 * Then updates the CPPR (Current Processor Priority
124 * Register) based on the most favored interrupt found
125 * (0xff if none) and return what was found (0 if none).
127 * If just_peek is set, return the most favored pending
128 * interrupt if any but don't update the queue pointers.
130 * Note: This function can operate generically on any number
131 * of queues (up to 8). The current implementation of the XIVE
132 * driver only uses a single queue however.
134 * Note2: This will also "flush" "the pending_count" of a queue
135 * into the "count" when that queue is observed to be empty.
136 * This is used to keep track of the amount of interrupts
137 * targetting a queue. When an interrupt is moved away from
138 * a queue, we only decrement that queue count once the queue
139 * has been observed empty to avoid races.
141 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
146 /* Find highest pending priority */
147 while (xc->pending_prio != 0) {
150 prio = ffs(xc->pending_prio) - 1;
151 DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
154 irq = xive_read_eq(&xc->queue[prio], just_peek);
156 /* Found something ? That's it */
158 if (just_peek || irq_to_desc(irq))
161 * We should never get here; if we do then we must
162 * have failed to synchronize the interrupt properly
163 * when shutting it down.
165 pr_crit("xive: got interrupt %d without descriptor, dropping\n",
171 /* Clear pending bits */
172 xc->pending_prio &= ~(1 << prio);
175 * Check if the queue count needs adjusting due to
176 * interrupts being moved away. See description of
177 * xive_dec_target_count()
179 q = &xc->queue[prio];
180 if (atomic_read(&q->pending_count)) {
181 int p = atomic_xchg(&q->pending_count, 0);
183 WARN_ON(p > atomic_read(&q->count));
184 atomic_sub(p, &q->count);
189 /* If nothing was found, set CPPR to 0xff */
193 /* Update HW CPPR to match if necessary */
194 if (prio != xc->cppr) {
195 DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
197 out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
204 * This is used to perform the magic loads from an ESB
205 * described in xive-regs.h
207 static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
211 if (offset == XIVE_ESB_SET_PQ_10 && xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
212 offset |= XIVE_ESB_LD_ST_MO;
214 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
215 val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
217 val = in_be64(xd->eoi_mmio + offset);
222 static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
224 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
225 xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
227 out_be64(xd->eoi_mmio + offset, data);
231 static notrace void xive_dump_eq(const char *name, struct xive_q *q)
238 i0 = be32_to_cpup(q->qpage + idx);
239 idx = (idx + 1) & q->msk;
240 i1 = be32_to_cpup(q->qpage + idx);
241 xmon_printf("%s idx=%d T=%d %08x %08x ...", name,
242 q->idx, q->toggle, i0, i1);
245 notrace void xmon_xive_do_dump(int cpu)
247 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
249 xmon_printf("CPU %d:", cpu);
251 xmon_printf("pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
255 u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
257 xmon_printf("IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
258 val & XIVE_ESB_VAL_P ? 'P' : '-',
259 val & XIVE_ESB_VAL_Q ? 'Q' : '-');
262 xive_dump_eq("EQ", &xc->queue[xive_irq_priority]);
267 static struct irq_data *xive_get_irq_data(u32 hw_irq)
269 unsigned int irq = irq_find_mapping(xive_irq_domain, hw_irq);
271 return irq ? irq_get_irq_data(irq) : NULL;
274 int xmon_xive_get_irq_config(u32 hw_irq, struct irq_data *d)
281 rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
283 xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
287 xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
288 hw_irq, target, prio, lirq);
291 d = xive_get_irq_data(hw_irq);
294 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
295 u64 val = xive_esb_read(xd, XIVE_ESB_GET);
297 xmon_printf("flags=%c%c%c PQ=%c%c",
298 xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ',
299 xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ',
300 xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ',
301 val & XIVE_ESB_VAL_P ? 'P' : '-',
302 val & XIVE_ESB_VAL_Q ? 'Q' : '-');
309 void xmon_xive_get_irq_all(void)
312 struct irq_desc *desc;
314 for_each_irq_desc(i, desc) {
315 struct irq_data *d = irq_domain_get_irq_data(xive_irq_domain, i);
318 xmon_xive_get_irq_config(irqd_to_hwirq(d), d);
322 #endif /* CONFIG_XMON */
324 static unsigned int xive_get_irq(void)
326 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
330 * This can be called either as a result of a HW interrupt or
331 * as a "replay" because EOI decided there was still something
332 * in one of the queues.
334 * First we perform an ACK cycle in order to update our mask
335 * of pending priorities. This will also have the effect of
336 * updating the CPPR to the most favored pending interrupts.
338 * In the future, if we have a way to differentiate a first
339 * entry (on HW interrupt) from a replay triggered by EOI,
340 * we could skip this on replays unless we soft-mask tells us
341 * that a new HW interrupt occurred.
343 xive_ops->update_pending(xc);
345 DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
347 /* Scan our queue(s) for interrupts */
348 irq = xive_scan_interrupts(xc, false);
350 DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
351 irq, xc->pending_prio);
353 /* Return pending interrupt if any */
354 if (irq == XIVE_BAD_IRQ)
360 * After EOI'ing an interrupt, we need to re-check the queue
361 * to see if another interrupt is pending since multiple
362 * interrupts can coalesce into a single notification to the
365 * If we find that there is indeed more in there, we call
366 * force_external_irq_replay() to make Linux synthetize an
367 * external interrupt on the next call to local_irq_restore().
369 static void xive_do_queue_eoi(struct xive_cpu *xc)
371 if (xive_scan_interrupts(xc, true) != 0) {
372 DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
373 force_external_irq_replay();
378 * EOI an interrupt at the source. There are several methods
379 * to do this depending on the HW version and source type
381 static void xive_do_source_eoi(struct xive_irq_data *xd)
387 /* If the XIVE supports the new "store EOI facility, use it */
388 if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI) {
389 xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
394 * For LSIs, we use the "EOI cycle" special load rather than
395 * PQ bits, as they are automatically re-triggered in HW when
398 if (xd->flags & XIVE_IRQ_FLAG_LSI) {
399 xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
404 * Otherwise, we use the special MMIO that does a clear of
405 * both P and Q and returns the old Q. This allows us to then
406 * do a re-trigger if Q was set rather than synthesizing an
407 * interrupt in software
409 eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
410 DBG_VERBOSE("eoi_val=%x\n", eoi_val);
412 /* Re-trigger if needed */
413 if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
414 out_be64(xd->trig_mmio, 0);
417 /* irq_chip eoi callback, called with irq descriptor lock held */
418 static void xive_irq_eoi(struct irq_data *d)
420 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
421 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
423 DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
424 d->irq, irqd_to_hwirq(d), xc->pending_prio);
427 * EOI the source if it hasn't been disabled and hasn't
428 * been passed-through to a KVM guest
430 if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) &&
431 !(xd->flags & XIVE_IRQ_FLAG_NO_EOI))
432 xive_do_source_eoi(xd);
437 * Clear saved_p to indicate that it's no longer occupying
438 * a queue slot on the target queue
442 /* Check for more work in the queue */
443 xive_do_queue_eoi(xc);
447 * Helper used to mask and unmask an interrupt source.
449 static void xive_do_source_set_mask(struct xive_irq_data *xd,
455 * If the interrupt had P set, it may be in a queue.
457 * We need to make sure we don't re-enable it until it
458 * has been fetched from that queue and EOId. We keep
459 * a copy of that P state and use it to restore the
460 * ESB accordingly on unmask.
463 val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
464 if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P))
467 } else if (xd->saved_p) {
468 xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
471 xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
477 * Try to chose "cpu" as a new interrupt target. Increments
478 * the queue accounting for that target if it's not already
481 static bool xive_try_pick_target(int cpu)
483 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
484 struct xive_q *q = &xc->queue[xive_irq_priority];
488 * Calculate max number of interrupts in that queue.
490 * We leave a gap of 1 just in case...
492 max = (q->msk + 1) - 1;
493 return !!atomic_add_unless(&q->count, 1, max);
497 * Un-account an interrupt for a target CPU. We don't directly
498 * decrement q->count since the interrupt might still be present
501 * Instead increment a separate counter "pending_count" which
502 * will be substracted from "count" later when that CPU observes
503 * the queue to be empty.
505 static void xive_dec_target_count(int cpu)
507 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
508 struct xive_q *q = &xc->queue[xive_irq_priority];
510 if (WARN_ON(cpu < 0 || !xc)) {
511 pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
516 * We increment the "pending count" which will be used
517 * to decrement the target queue count whenever it's next
518 * processed and found empty. This ensure that we don't
519 * decrement while we still have the interrupt there
522 atomic_inc(&q->pending_count);
525 /* Find a tentative CPU target in a CPU mask */
526 static int xive_find_target_in_mask(const struct cpumask *mask,
529 int cpu, first, num, i;
531 /* Pick up a starting point CPU in the mask based on fuzz */
532 num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
536 cpu = cpumask_first(mask);
537 for (i = 0; i < first && cpu < nr_cpu_ids; i++)
538 cpu = cpumask_next(cpu, mask);
541 if (WARN_ON(cpu >= nr_cpu_ids))
542 cpu = cpumask_first(cpu_online_mask);
544 /* Remember first one to handle wrap-around */
548 * Now go through the entire mask until we find a valid
553 * We re-check online as the fallback case passes us
554 * an untested affinity mask
556 if (cpu_online(cpu) && xive_try_pick_target(cpu))
558 cpu = cpumask_next(cpu, mask);
560 if (cpu >= nr_cpu_ids)
561 cpu = cpumask_first(mask);
562 } while (cpu != first);
568 * Pick a target CPU for an interrupt. This is done at
569 * startup or if the affinity is changed in a way that
570 * invalidates the current target.
572 static int xive_pick_irq_target(struct irq_data *d,
573 const struct cpumask *affinity)
575 static unsigned int fuzz;
576 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
581 * If we have chip IDs, first we try to build a mask of
582 * CPUs matching the CPU and find a target in there
584 if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
585 zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
586 /* Build a mask of matching chip IDs */
587 for_each_cpu_and(cpu, affinity, cpu_online_mask) {
588 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
589 if (xc->chip_id == xd->src_chip)
590 cpumask_set_cpu(cpu, mask);
592 /* Try to find a target */
593 if (cpumask_empty(mask))
596 cpu = xive_find_target_in_mask(mask, fuzz++);
597 free_cpumask_var(mask);
603 /* No chip IDs, fallback to using the affinity mask */
604 return xive_find_target_in_mask(affinity, fuzz++);
607 static unsigned int xive_irq_startup(struct irq_data *d)
609 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
610 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
615 pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
619 target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
620 if (target == XIVE_INVALID_TARGET) {
621 /* Try again breaking affinity */
622 target = xive_pick_irq_target(d, cpu_online_mask);
623 if (target == XIVE_INVALID_TARGET)
625 pr_warn("irq %d started with broken affinity\n", d->irq);
629 if (WARN_ON(target == XIVE_INVALID_TARGET ||
630 target >= nr_cpu_ids))
631 target = smp_processor_id();
636 * Configure the logical number to be the Linux IRQ number
637 * and set the target queue
639 rc = xive_ops->configure_irq(hw_irq,
640 get_hard_smp_processor_id(target),
641 xive_irq_priority, d->irq);
646 xive_do_source_set_mask(xd, false);
651 /* called with irq descriptor lock held */
652 static void xive_irq_shutdown(struct irq_data *d)
654 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
655 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
657 pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
660 if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
663 /* Mask the interrupt at the source */
664 xive_do_source_set_mask(xd, true);
667 * Mask the interrupt in HW in the IVT/EAS and set the number
668 * to be the "bad" IRQ number
670 xive_ops->configure_irq(hw_irq,
671 get_hard_smp_processor_id(xd->target),
674 xive_dec_target_count(xd->target);
675 xd->target = XIVE_INVALID_TARGET;
678 static void xive_irq_unmask(struct irq_data *d)
680 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
682 pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
684 xive_do_source_set_mask(xd, false);
687 static void xive_irq_mask(struct irq_data *d)
689 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
691 pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
693 xive_do_source_set_mask(xd, true);
696 static int xive_irq_set_affinity(struct irq_data *d,
697 const struct cpumask *cpumask,
700 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
701 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
702 u32 target, old_target;
705 pr_debug("%s: irq %d/%x\n", __func__, d->irq, hw_irq);
707 /* Is this valid ? */
708 if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
712 * If existing target is already in the new mask, and is
713 * online then do nothing.
715 if (xd->target != XIVE_INVALID_TARGET &&
716 cpu_online(xd->target) &&
717 cpumask_test_cpu(xd->target, cpumask))
718 return IRQ_SET_MASK_OK;
720 /* Pick a new target */
721 target = xive_pick_irq_target(d, cpumask);
723 /* No target found */
724 if (target == XIVE_INVALID_TARGET)
728 if (WARN_ON(target >= nr_cpu_ids))
729 target = smp_processor_id();
731 old_target = xd->target;
734 * Only configure the irq if it's not currently passed-through to
737 if (!irqd_is_forwarded_to_vcpu(d))
738 rc = xive_ops->configure_irq(hw_irq,
739 get_hard_smp_processor_id(target),
740 xive_irq_priority, d->irq);
742 pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
746 pr_debug(" target: 0x%x\n", target);
749 /* Give up previous target */
750 if (old_target != XIVE_INVALID_TARGET)
751 xive_dec_target_count(old_target);
753 return IRQ_SET_MASK_OK;
756 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
758 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
761 * We only support these. This has really no effect other than setting
762 * the corresponding descriptor bits mind you but those will in turn
763 * affect the resend function when re-enabling an edge interrupt.
765 * Set set the default to edge as explained in map().
767 if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
768 flow_type = IRQ_TYPE_EDGE_RISING;
770 if (flow_type != IRQ_TYPE_EDGE_RISING &&
771 flow_type != IRQ_TYPE_LEVEL_LOW)
774 irqd_set_trigger_type(d, flow_type);
777 * Double check it matches what the FW thinks
779 * NOTE: We don't know yet if the PAPR interface will provide
780 * the LSI vs MSI information apart from the device-tree so
781 * this check might have to move into an optional backend call
782 * that is specific to the native backend
784 if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
785 !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
786 pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
787 d->irq, (u32)irqd_to_hwirq(d),
788 (flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
789 (xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
792 return IRQ_SET_MASK_OK_NOCOPY;
795 static int xive_irq_retrigger(struct irq_data *d)
797 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
799 /* This should be only for MSIs */
800 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
804 * To perform a retrigger, we first set the PQ bits to
805 * 11, then perform an EOI.
807 xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
808 xive_do_source_eoi(xd);
814 * Caller holds the irq descriptor lock, so this won't be called
815 * concurrently with xive_get_irqchip_state on the same interrupt.
817 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
819 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
820 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
825 * This is called by KVM with state non-NULL for enabling
826 * pass-through or NULL for disabling it
829 irqd_set_forwarded_to_vcpu(d);
831 /* Set it to PQ=10 state to prevent further sends */
832 pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
834 xd->saved_p = !!(pq & XIVE_ESB_VAL_P);
835 xd->stale_p = !xd->saved_p;
838 /* No target ? nothing to do */
839 if (xd->target == XIVE_INVALID_TARGET) {
841 * An untargetted interrupt should have been
842 * also masked at the source
844 WARN_ON(xd->saved_p);
850 * If P was set, adjust state to PQ=11 to indicate
851 * that a resend is needed for the interrupt to reach
852 * the guest. Also remember the value of P.
854 * This also tells us that it's in flight to a host queue
855 * or has already been fetched but hasn't been EOIed yet
856 * by the host. This it's potentially using up a host
857 * queue slot. This is important to know because as long
858 * as this is the case, we must not hard-unmask it when
859 * "returning" that interrupt to the host.
861 * This saved_p is cleared by the host EOI, when we know
862 * for sure the queue slot is no longer in use.
865 xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
868 * Sync the XIVE source HW to ensure the interrupt
869 * has gone through the EAS before we change its
870 * target to the guest. That should guarantee us
871 * that we *will* eventually get an EOI for it on
872 * the host. Otherwise there would be a small window
873 * for P to be seen here but the interrupt going
874 * to the guest queue.
876 if (xive_ops->sync_source)
877 xive_ops->sync_source(hw_irq);
880 irqd_clr_forwarded_to_vcpu(d);
882 /* No host target ? hard mask and return */
883 if (xd->target == XIVE_INVALID_TARGET) {
884 xive_do_source_set_mask(xd, true);
889 * Sync the XIVE source HW to ensure the interrupt
890 * has gone through the EAS before we change its
891 * target to the host.
893 if (xive_ops->sync_source)
894 xive_ops->sync_source(hw_irq);
897 * By convention we are called with the interrupt in
898 * a PQ=10 or PQ=11 state, ie, it won't fire and will
899 * have latched in Q whether there's a pending HW
902 * First reconfigure the target.
904 rc = xive_ops->configure_irq(hw_irq,
905 get_hard_smp_processor_id(xd->target),
906 xive_irq_priority, d->irq);
911 * Then if saved_p is not set, effectively re-enable the
912 * interrupt with an EOI. If it is set, we know there is
913 * still a message in a host queue somewhere that will be
916 * Note: We don't check irqd_irq_disabled(). Effectively,
917 * we *will* let the irq get through even if masked if the
918 * HW is still firing it in order to deal with the whole
919 * saved_p business properly. If the interrupt triggers
920 * while masked, the generic code will re-mask it anyway.
923 xive_do_source_eoi(xd);
929 /* Called with irq descriptor lock held. */
930 static int xive_get_irqchip_state(struct irq_data *data,
931 enum irqchip_irq_state which, bool *state)
933 struct xive_irq_data *xd = irq_data_get_irq_handler_data(data);
937 case IRQCHIP_STATE_ACTIVE:
938 pq = xive_esb_read(xd, XIVE_ESB_GET);
941 * The esb value being all 1's means we couldn't get
942 * the PQ state of the interrupt through mmio. It may
943 * happen, for example when querying a PHB interrupt
944 * while the PHB is in an error state. We consider the
945 * interrupt to be inactive in that case.
947 *state = (pq != XIVE_ESB_INVALID) && !xd->stale_p &&
948 (xd->saved_p || !!(pq & XIVE_ESB_VAL_P));
955 static struct irq_chip xive_irq_chip = {
957 .irq_startup = xive_irq_startup,
958 .irq_shutdown = xive_irq_shutdown,
959 .irq_eoi = xive_irq_eoi,
960 .irq_mask = xive_irq_mask,
961 .irq_unmask = xive_irq_unmask,
962 .irq_set_affinity = xive_irq_set_affinity,
963 .irq_set_type = xive_irq_set_type,
964 .irq_retrigger = xive_irq_retrigger,
965 .irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
966 .irq_get_irqchip_state = xive_get_irqchip_state,
969 bool is_xive_irq(struct irq_chip *chip)
971 return chip == &xive_irq_chip;
973 EXPORT_SYMBOL_GPL(is_xive_irq);
975 void xive_cleanup_irq_data(struct xive_irq_data *xd)
977 pr_debug("%s for HW %x\n", __func__, xd->hw_irq);
980 iounmap(xd->eoi_mmio);
981 if (xd->eoi_mmio == xd->trig_mmio)
982 xd->trig_mmio = NULL;
986 iounmap(xd->trig_mmio);
987 xd->trig_mmio = NULL;
990 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
992 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
994 struct xive_irq_data *xd;
997 xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
1000 rc = xive_ops->populate_irq_data(hw, xd);
1005 xd->target = XIVE_INVALID_TARGET;
1006 irq_set_handler_data(virq, xd);
1009 * Turn OFF by default the interrupt being mapped. A side
1010 * effect of this check is the mapping the ESB page of the
1011 * interrupt in the Linux address space. This prevents page
1012 * fault issues in the crash handler which masks all
1015 xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
1020 void xive_irq_free_data(unsigned int virq)
1022 struct xive_irq_data *xd = irq_get_handler_data(virq);
1026 irq_set_handler_data(virq, NULL);
1027 xive_cleanup_irq_data(xd);
1030 EXPORT_SYMBOL_GPL(xive_irq_free_data);
1034 static void xive_cause_ipi(int cpu)
1036 struct xive_cpu *xc;
1037 struct xive_irq_data *xd;
1039 xc = per_cpu(xive_cpu, cpu);
1041 DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
1042 smp_processor_id(), cpu, xc->hw_ipi);
1045 if (WARN_ON(!xd->trig_mmio))
1047 out_be64(xd->trig_mmio, 0);
1050 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
1052 return smp_ipi_demux();
1055 static void xive_ipi_eoi(struct irq_data *d)
1057 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1059 /* Handle possible race with unplug and drop stale IPIs */
1063 DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1064 d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
1066 xive_do_source_eoi(&xc->ipi_data);
1067 xive_do_queue_eoi(xc);
1070 static void xive_ipi_do_nothing(struct irq_data *d)
1073 * Nothing to do, we never mask/unmask IPIs, but the callback
1074 * has to exist for the struct irq_chip.
1078 static struct irq_chip xive_ipi_chip = {
1080 .irq_eoi = xive_ipi_eoi,
1081 .irq_mask = xive_ipi_do_nothing,
1082 .irq_unmask = xive_ipi_do_nothing,
1086 * IPIs are marked per-cpu. We use separate HW interrupts under the
1087 * hood but associated with the same "linux" interrupt
1089 struct xive_ipi_alloc_info {
1090 irq_hw_number_t hwirq;
1093 static int xive_ipi_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1094 unsigned int nr_irqs, void *arg)
1096 struct xive_ipi_alloc_info *info = arg;
1099 for (i = 0; i < nr_irqs; i++) {
1100 irq_domain_set_info(domain, virq + i, info->hwirq + i, &xive_ipi_chip,
1101 domain->host_data, handle_percpu_irq,
1107 static const struct irq_domain_ops xive_ipi_irq_domain_ops = {
1108 .alloc = xive_ipi_irq_domain_alloc,
1111 static int __init xive_init_ipis(void)
1113 struct fwnode_handle *fwnode;
1114 struct irq_domain *ipi_domain;
1118 fwnode = irq_domain_alloc_named_fwnode("XIVE-IPI");
1122 ipi_domain = irq_domain_create_linear(fwnode, nr_node_ids,
1123 &xive_ipi_irq_domain_ops, NULL);
1125 goto out_free_fwnode;
1127 xive_ipis = kcalloc(nr_node_ids, sizeof(*xive_ipis), GFP_KERNEL | __GFP_NOFAIL);
1129 goto out_free_domain;
1131 for_each_node(node) {
1132 struct xive_ipi_desc *xid = &xive_ipis[node];
1133 struct xive_ipi_alloc_info info = { node };
1136 * Map one IPI interrupt per node for all cpus of that node.
1137 * Since the HW interrupt number doesn't have any meaning,
1138 * simply use the node number.
1140 ret = irq_domain_alloc_irqs(ipi_domain, 1, node, &info);
1142 goto out_free_xive_ipis;
1145 snprintf(xid->name, sizeof(xid->name), "IPI-%d", node);
1153 irq_domain_remove(ipi_domain);
1155 irq_domain_free_fwnode(fwnode);
1160 static int xive_request_ipi(unsigned int cpu)
1162 struct xive_ipi_desc *xid = &xive_ipis[early_cpu_to_node(cpu)];
1165 if (atomic_inc_return(&xid->started) > 1)
1168 ret = request_irq(xid->irq, xive_muxed_ipi_action,
1169 IRQF_NO_DEBUG | IRQF_PERCPU | IRQF_NO_THREAD,
1172 WARN(ret < 0, "Failed to request IPI %d: %d\n", xid->irq, ret);
1176 static int xive_setup_cpu_ipi(unsigned int cpu)
1178 unsigned int xive_ipi_irq = xive_ipi_cpu_to_irq(cpu);
1179 struct xive_cpu *xc;
1182 pr_debug("Setting up IPI for CPU %d\n", cpu);
1184 xc = per_cpu(xive_cpu, cpu);
1186 /* Check if we are already setup */
1187 if (xc->hw_ipi != XIVE_BAD_IRQ)
1190 /* Register the IPI */
1191 xive_request_ipi(cpu);
1193 /* Grab an IPI from the backend, this will populate xc->hw_ipi */
1194 if (xive_ops->get_ipi(cpu, xc))
1198 * Populate the IRQ data in the xive_cpu structure and
1199 * configure the HW / enable the IPIs.
1201 rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1203 pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1206 rc = xive_ops->configure_irq(xc->hw_ipi,
1207 get_hard_smp_processor_id(cpu),
1208 xive_irq_priority, xive_ipi_irq);
1210 pr_err("Failed to map IPI CPU %d\n", cpu);
1213 pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
1214 xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1217 xive_do_source_set_mask(&xc->ipi_data, false);
1222 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1224 unsigned int xive_ipi_irq = xive_ipi_cpu_to_irq(cpu);
1226 /* Disable the IPI and free the IRQ data */
1228 /* Already cleaned up ? */
1229 if (xc->hw_ipi == XIVE_BAD_IRQ)
1232 /* TODO: clear IPI mapping */
1235 xive_do_source_set_mask(&xc->ipi_data, true);
1238 * Note: We don't call xive_cleanup_irq_data() to free
1239 * the mappings as this is called from an IPI on kexec
1240 * which is not a safe environment to call iounmap()
1243 /* Deconfigure/mask in the backend */
1244 xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1245 0xff, xive_ipi_irq);
1247 /* Free the IPIs in the backend */
1248 xive_ops->put_ipi(cpu, xc);
1251 void __init xive_smp_probe(void)
1253 smp_ops->cause_ipi = xive_cause_ipi;
1255 /* Register the IPI */
1258 /* Allocate and setup IPI for the boot CPU */
1259 xive_setup_cpu_ipi(smp_processor_id());
1262 #endif /* CONFIG_SMP */
1264 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1270 * Mark interrupts as edge sensitive by default so that resend
1271 * actually works. Will fix that up below if needed.
1273 irq_clear_status_flags(virq, IRQ_LEVEL);
1275 rc = xive_irq_alloc_data(virq, hw);
1279 irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1284 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1286 xive_irq_free_data(virq);
1289 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1290 const u32 *intspec, unsigned int intsize,
1291 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1294 *out_hwirq = intspec[0];
1297 * If intsize is at least 2, we look for the type in the second cell,
1298 * we assume the LSB indicates a level interrupt.
1302 *out_flags = IRQ_TYPE_LEVEL_LOW;
1304 *out_flags = IRQ_TYPE_EDGE_RISING;
1306 *out_flags = IRQ_TYPE_LEVEL_LOW;
1311 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1312 enum irq_domain_bus_token bus_token)
1314 return xive_ops->match(node);
1317 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
1318 static const char * const esb_names[] = { "RESET", "OFF", "PENDING", "QUEUED" };
1320 static const struct {
1323 } xive_irq_flags[] = {
1324 { XIVE_IRQ_FLAG_STORE_EOI, "STORE_EOI" },
1325 { XIVE_IRQ_FLAG_LSI, "LSI" },
1326 { XIVE_IRQ_FLAG_H_INT_ESB, "H_INT_ESB" },
1327 { XIVE_IRQ_FLAG_NO_EOI, "NO_EOI" },
1330 static void xive_irq_domain_debug_show(struct seq_file *m, struct irq_domain *d,
1331 struct irq_data *irqd, int ind)
1333 struct xive_irq_data *xd;
1337 /* No IRQ domain level information. To be done */
1341 if (!is_xive_irq(irq_data_get_irq_chip(irqd)))
1344 seq_printf(m, "%*sXIVE:\n", ind, "");
1347 xd = irq_data_get_irq_handler_data(irqd);
1349 seq_printf(m, "%*snot assigned\n", ind, "");
1353 val = xive_esb_read(xd, XIVE_ESB_GET);
1354 seq_printf(m, "%*sESB: %s\n", ind, "", esb_names[val & 0x3]);
1355 seq_printf(m, "%*sPstate: %s %s\n", ind, "", xd->stale_p ? "stale" : "",
1356 xd->saved_p ? "saved" : "");
1357 seq_printf(m, "%*sTarget: %d\n", ind, "", xd->target);
1358 seq_printf(m, "%*sChip: %d\n", ind, "", xd->src_chip);
1359 seq_printf(m, "%*sTrigger: 0x%016llx\n", ind, "", xd->trig_page);
1360 seq_printf(m, "%*sEOI: 0x%016llx\n", ind, "", xd->eoi_page);
1361 seq_printf(m, "%*sFlags: 0x%llx\n", ind, "", xd->flags);
1362 for (i = 0; i < ARRAY_SIZE(xive_irq_flags); i++) {
1363 if (xd->flags & xive_irq_flags[i].mask)
1364 seq_printf(m, "%*s%s\n", ind + 12, "", xive_irq_flags[i].name);
1369 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1370 static int xive_irq_domain_translate(struct irq_domain *d,
1371 struct irq_fwspec *fwspec,
1372 unsigned long *hwirq,
1375 return xive_irq_domain_xlate(d, to_of_node(fwspec->fwnode),
1376 fwspec->param, fwspec->param_count,
1380 static int xive_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1381 unsigned int nr_irqs, void *arg)
1383 struct irq_fwspec *fwspec = arg;
1384 irq_hw_number_t hwirq;
1385 unsigned int type = IRQ_TYPE_NONE;
1388 rc = xive_irq_domain_translate(domain, fwspec, &hwirq, &type);
1392 pr_debug("%s %d/%lx #%d\n", __func__, virq, hwirq, nr_irqs);
1394 for (i = 0; i < nr_irqs; i++) {
1395 /* TODO: call xive_irq_domain_map() */
1398 * Mark interrupts as edge sensitive by default so that resend
1399 * actually works. Will fix that up below if needed.
1401 irq_clear_status_flags(virq, IRQ_LEVEL);
1403 /* allocates and sets handler data */
1404 rc = xive_irq_alloc_data(virq + i, hwirq + i);
1408 irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i,
1409 &xive_irq_chip, domain->host_data);
1410 irq_set_handler(virq + i, handle_fasteoi_irq);
1416 static void xive_irq_domain_free(struct irq_domain *domain,
1417 unsigned int virq, unsigned int nr_irqs)
1421 pr_debug("%s %d #%d\n", __func__, virq, nr_irqs);
1423 for (i = 0; i < nr_irqs; i++)
1424 xive_irq_free_data(virq + i);
1428 static const struct irq_domain_ops xive_irq_domain_ops = {
1429 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1430 .alloc = xive_irq_domain_alloc,
1431 .free = xive_irq_domain_free,
1432 .translate = xive_irq_domain_translate,
1434 .match = xive_irq_domain_match,
1435 .map = xive_irq_domain_map,
1436 .unmap = xive_irq_domain_unmap,
1437 .xlate = xive_irq_domain_xlate,
1438 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
1439 .debug_show = xive_irq_domain_debug_show,
1443 static void __init xive_init_host(struct device_node *np)
1445 xive_irq_domain = irq_domain_add_nomap(np, XIVE_MAX_IRQ,
1446 &xive_irq_domain_ops, NULL);
1447 if (WARN_ON(xive_irq_domain == NULL))
1449 irq_set_default_host(xive_irq_domain);
1452 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1454 if (xc->queue[xive_irq_priority].qpage)
1455 xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1458 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1462 /* We setup 1 queues for now with a 64k page */
1463 if (!xc->queue[xive_irq_priority].qpage)
1464 rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1469 static int xive_prepare_cpu(unsigned int cpu)
1471 struct xive_cpu *xc;
1473 xc = per_cpu(xive_cpu, cpu);
1475 xc = kzalloc_node(sizeof(struct xive_cpu),
1476 GFP_KERNEL, cpu_to_node(cpu));
1479 xc->hw_ipi = XIVE_BAD_IRQ;
1480 xc->chip_id = XIVE_INVALID_CHIP_ID;
1481 if (xive_ops->prepare_cpu)
1482 xive_ops->prepare_cpu(cpu, xc);
1484 per_cpu(xive_cpu, cpu) = xc;
1487 /* Setup EQs if not already */
1488 return xive_setup_cpu_queues(cpu, xc);
1491 static void xive_setup_cpu(void)
1493 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1495 /* The backend might have additional things to do */
1496 if (xive_ops->setup_cpu)
1497 xive_ops->setup_cpu(smp_processor_id(), xc);
1499 /* Set CPPR to 0xff to enable flow of interrupts */
1501 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1505 void xive_smp_setup_cpu(void)
1507 pr_devel("SMP setup CPU %d\n", smp_processor_id());
1509 /* This will have already been done on the boot CPU */
1510 if (smp_processor_id() != boot_cpuid)
1515 int xive_smp_prepare_cpu(unsigned int cpu)
1519 /* Allocate per-CPU data and queues */
1520 rc = xive_prepare_cpu(cpu);
1524 /* Allocate and setup IPI for the new CPU */
1525 return xive_setup_cpu_ipi(cpu);
1528 #ifdef CONFIG_HOTPLUG_CPU
1529 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1533 /* We assume local irqs are disabled */
1534 WARN_ON(!irqs_disabled());
1536 /* Check what's already in the CPU queue */
1537 while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1539 * We need to re-route that interrupt to its new destination.
1540 * First get and lock the descriptor
1542 struct irq_desc *desc = irq_to_desc(irq);
1543 struct irq_data *d = irq_desc_get_irq_data(desc);
1544 struct xive_irq_data *xd;
1547 * Ignore anything that isn't a XIVE irq and ignore
1548 * IPIs, so can just be dropped.
1550 if (d->domain != xive_irq_domain)
1554 * The IRQ should have already been re-routed, it's just a
1555 * stale in the old queue, so re-trigger it in order to make
1556 * it reach is new destination.
1559 pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1562 raw_spin_lock(&desc->lock);
1563 xd = irq_desc_get_handler_data(desc);
1566 * Clear saved_p to indicate that it's no longer pending
1568 xd->saved_p = false;
1571 * For LSIs, we EOI, this will cause a resend if it's
1572 * still asserted. Otherwise do an MSI retrigger.
1574 if (xd->flags & XIVE_IRQ_FLAG_LSI)
1575 xive_do_source_eoi(xd);
1577 xive_irq_retrigger(d);
1579 raw_spin_unlock(&desc->lock);
1583 void xive_smp_disable_cpu(void)
1585 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1586 unsigned int cpu = smp_processor_id();
1588 /* Migrate interrupts away from the CPU */
1589 irq_migrate_all_off_this_cpu();
1591 /* Set CPPR to 0 to disable flow of interrupts */
1593 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1595 /* Flush everything still in the queue */
1596 xive_flush_cpu_queue(cpu, xc);
1598 /* Re-enable CPPR */
1600 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1603 void xive_flush_interrupt(void)
1605 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1606 unsigned int cpu = smp_processor_id();
1608 /* Called if an interrupt occurs while the CPU is hot unplugged */
1609 xive_flush_cpu_queue(cpu, xc);
1612 #endif /* CONFIG_HOTPLUG_CPU */
1614 #endif /* CONFIG_SMP */
1616 void xive_teardown_cpu(void)
1618 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1619 unsigned int cpu = smp_processor_id();
1621 /* Set CPPR to 0 to disable flow of interrupts */
1623 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1625 if (xive_ops->teardown_cpu)
1626 xive_ops->teardown_cpu(cpu, xc);
1629 /* Get rid of IPI */
1630 xive_cleanup_cpu_ipi(cpu, xc);
1633 /* Disable and free the queues */
1634 xive_cleanup_cpu_queues(cpu, xc);
1637 void xive_shutdown(void)
1639 xive_ops->shutdown();
1642 bool __init xive_core_init(struct device_node *np, const struct xive_ops *ops,
1643 void __iomem *area, u32 offset, u8 max_prio)
1646 xive_tima_offset = offset;
1648 xive_irq_priority = max_prio;
1650 ppc_md.get_irq = xive_get_irq;
1651 __xive_enabled = true;
1653 pr_devel("Initializing host..\n");
1656 pr_devel("Initializing boot CPU..\n");
1658 /* Allocate per-CPU data and queues */
1659 xive_prepare_cpu(smp_processor_id());
1661 /* Get ready for interrupts */
1664 pr_info("Interrupt handling initialized with %s backend\n",
1666 pr_info("Using priority %d for all interrupts\n", max_prio);
1671 __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
1673 unsigned int alloc_order;
1677 alloc_order = xive_alloc_order(queue_shift);
1678 pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
1680 return ERR_PTR(-ENOMEM);
1681 qpage = (__be32 *)page_address(pages);
1682 memset(qpage, 0, 1 << queue_shift);
1687 static int __init xive_off(char *arg)
1689 xive_cmdline_disabled = true;
1692 __setup("xive=off", xive_off);
1694 static void xive_debug_show_cpu(struct seq_file *m, int cpu)
1696 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
1698 seq_printf(m, "CPU %d:", cpu);
1700 seq_printf(m, "pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
1704 u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
1706 seq_printf(m, "IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
1707 val & XIVE_ESB_VAL_P ? 'P' : '-',
1708 val & XIVE_ESB_VAL_Q ? 'Q' : '-');
1712 struct xive_q *q = &xc->queue[xive_irq_priority];
1717 i0 = be32_to_cpup(q->qpage + idx);
1718 idx = (idx + 1) & q->msk;
1719 i1 = be32_to_cpup(q->qpage + idx);
1720 seq_printf(m, "EQ idx=%d T=%d %08x %08x ...",
1721 q->idx, q->toggle, i0, i1);
1728 static void xive_debug_show_irq(struct seq_file *m, struct irq_data *d)
1730 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1735 struct xive_irq_data *xd;
1738 rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
1740 seq_printf(m, "IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
1744 seq_printf(m, "IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
1745 hw_irq, target, prio, lirq);
1747 xd = irq_data_get_irq_handler_data(d);
1748 val = xive_esb_read(xd, XIVE_ESB_GET);
1749 seq_printf(m, "flags=%c%c%c PQ=%c%c",
1750 xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ',
1751 xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ',
1752 xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ',
1753 val & XIVE_ESB_VAL_P ? 'P' : '-',
1754 val & XIVE_ESB_VAL_Q ? 'Q' : '-');
1758 static int xive_core_debug_show(struct seq_file *m, void *private)
1761 struct irq_desc *desc;
1764 if (xive_ops->debug_show)
1765 xive_ops->debug_show(m, private);
1767 for_each_possible_cpu(cpu)
1768 xive_debug_show_cpu(m, cpu);
1770 for_each_irq_desc(i, desc) {
1771 struct irq_data *d = irq_domain_get_irq_data(xive_irq_domain, i);
1774 xive_debug_show_irq(m, d);
1778 DEFINE_SHOW_ATTRIBUTE(xive_core_debug);
1780 int xive_core_debug_init(void)
1783 debugfs_create_file("xive", 0400, arch_debugfs_dir,
1784 NULL, &xive_core_debug_fops);