2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
26 #include "print-tree.h"
29 #include "compression.h"
32 /* magic values for the inode_only field in btrfs_log_inode:
34 * LOG_INODE_ALL means to log everything
35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
38 #define LOG_INODE_ALL 0
39 #define LOG_INODE_EXISTS 1
42 * directory trouble cases
44 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
45 * log, we must force a full commit before doing an fsync of the directory
46 * where the unlink was done.
47 * ---> record transid of last unlink/rename per directory
51 * rename foo/some_dir foo2/some_dir
53 * fsync foo/some_dir/some_file
55 * The fsync above will unlink the original some_dir without recording
56 * it in its new location (foo2). After a crash, some_dir will be gone
57 * unless the fsync of some_file forces a full commit
59 * 2) we must log any new names for any file or dir that is in the fsync
60 * log. ---> check inode while renaming/linking.
62 * 2a) we must log any new names for any file or dir during rename
63 * when the directory they are being removed from was logged.
64 * ---> check inode and old parent dir during rename
66 * 2a is actually the more important variant. With the extra logging
67 * a crash might unlink the old name without recreating the new one
69 * 3) after a crash, we must go through any directories with a link count
70 * of zero and redo the rm -rf
77 * The directory f1 was fully removed from the FS, but fsync was never
78 * called on f1, only its parent dir. After a crash the rm -rf must
79 * be replayed. This must be able to recurse down the entire
80 * directory tree. The inode link count fixup code takes care of the
85 * stages for the tree walking. The first
86 * stage (0) is to only pin down the blocks we find
87 * the second stage (1) is to make sure that all the inodes
88 * we find in the log are created in the subvolume.
90 * The last stage is to deal with directories and links and extents
91 * and all the other fun semantics
93 #define LOG_WALK_PIN_ONLY 0
94 #define LOG_WALK_REPLAY_INODES 1
95 #define LOG_WALK_REPLAY_DIR_INDEX 2
96 #define LOG_WALK_REPLAY_ALL 3
98 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
99 struct btrfs_root *root, struct inode *inode,
103 struct btrfs_log_ctx *ctx);
104 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
105 struct btrfs_root *root,
106 struct btrfs_path *path, u64 objectid);
107 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
108 struct btrfs_root *root,
109 struct btrfs_root *log,
110 struct btrfs_path *path,
111 u64 dirid, int del_all);
114 * tree logging is a special write ahead log used to make sure that
115 * fsyncs and O_SYNCs can happen without doing full tree commits.
117 * Full tree commits are expensive because they require commonly
118 * modified blocks to be recowed, creating many dirty pages in the
119 * extent tree an 4x-6x higher write load than ext3.
121 * Instead of doing a tree commit on every fsync, we use the
122 * key ranges and transaction ids to find items for a given file or directory
123 * that have changed in this transaction. Those items are copied into
124 * a special tree (one per subvolume root), that tree is written to disk
125 * and then the fsync is considered complete.
127 * After a crash, items are copied out of the log-tree back into the
128 * subvolume tree. Any file data extents found are recorded in the extent
129 * allocation tree, and the log-tree freed.
131 * The log tree is read three times, once to pin down all the extents it is
132 * using in ram and once, once to create all the inodes logged in the tree
133 * and once to do all the other items.
137 * start a sub transaction and setup the log tree
138 * this increments the log tree writer count to make the people
139 * syncing the tree wait for us to finish
141 static int start_log_trans(struct btrfs_trans_handle *trans,
142 struct btrfs_root *root,
143 struct btrfs_log_ctx *ctx)
145 struct btrfs_fs_info *fs_info = root->fs_info;
148 mutex_lock(&root->log_mutex);
150 if (root->log_root) {
151 if (btrfs_need_log_full_commit(fs_info, trans)) {
156 if (!root->log_start_pid) {
157 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
158 root->log_start_pid = current->pid;
159 } else if (root->log_start_pid != current->pid) {
160 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
163 mutex_lock(&fs_info->tree_log_mutex);
164 if (!fs_info->log_root_tree)
165 ret = btrfs_init_log_root_tree(trans, fs_info);
166 mutex_unlock(&fs_info->tree_log_mutex);
170 ret = btrfs_add_log_tree(trans, root);
174 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
175 root->log_start_pid = current->pid;
178 atomic_inc(&root->log_batch);
179 atomic_inc(&root->log_writers);
181 int index = root->log_transid % 2;
182 list_add_tail(&ctx->list, &root->log_ctxs[index]);
183 ctx->log_transid = root->log_transid;
187 mutex_unlock(&root->log_mutex);
192 * returns 0 if there was a log transaction running and we were able
193 * to join, or returns -ENOENT if there were not transactions
196 static int join_running_log_trans(struct btrfs_root *root)
204 mutex_lock(&root->log_mutex);
205 if (root->log_root) {
207 atomic_inc(&root->log_writers);
209 mutex_unlock(&root->log_mutex);
214 * This either makes the current running log transaction wait
215 * until you call btrfs_end_log_trans() or it makes any future
216 * log transactions wait until you call btrfs_end_log_trans()
218 int btrfs_pin_log_trans(struct btrfs_root *root)
222 mutex_lock(&root->log_mutex);
223 atomic_inc(&root->log_writers);
224 mutex_unlock(&root->log_mutex);
229 * indicate we're done making changes to the log tree
230 * and wake up anyone waiting to do a sync
232 void btrfs_end_log_trans(struct btrfs_root *root)
234 if (atomic_dec_and_test(&root->log_writers)) {
236 * Implicit memory barrier after atomic_dec_and_test
238 if (waitqueue_active(&root->log_writer_wait))
239 wake_up(&root->log_writer_wait);
245 * the walk control struct is used to pass state down the chain when
246 * processing the log tree. The stage field tells us which part
247 * of the log tree processing we are currently doing. The others
248 * are state fields used for that specific part
250 struct walk_control {
251 /* should we free the extent on disk when done? This is used
252 * at transaction commit time while freeing a log tree
256 /* should we write out the extent buffer? This is used
257 * while flushing the log tree to disk during a sync
261 /* should we wait for the extent buffer io to finish? Also used
262 * while flushing the log tree to disk for a sync
266 /* pin only walk, we record which extents on disk belong to the
271 /* what stage of the replay code we're currently in */
274 /* the root we are currently replaying */
275 struct btrfs_root *replay_dest;
277 /* the trans handle for the current replay */
278 struct btrfs_trans_handle *trans;
280 /* the function that gets used to process blocks we find in the
281 * tree. Note the extent_buffer might not be up to date when it is
282 * passed in, and it must be checked or read if you need the data
285 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
286 struct walk_control *wc, u64 gen);
290 * process_func used to pin down extents, write them or wait on them
292 static int process_one_buffer(struct btrfs_root *log,
293 struct extent_buffer *eb,
294 struct walk_control *wc, u64 gen)
296 struct btrfs_fs_info *fs_info = log->fs_info;
300 * If this fs is mixed then we need to be able to process the leaves to
301 * pin down any logged extents, so we have to read the block.
303 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
304 ret = btrfs_read_buffer(eb, gen);
310 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
313 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
314 if (wc->pin && btrfs_header_level(eb) == 0)
315 ret = btrfs_exclude_logged_extents(fs_info, eb);
317 btrfs_write_tree_block(eb);
319 btrfs_wait_tree_block_writeback(eb);
325 * Item overwrite used by replay and tree logging. eb, slot and key all refer
326 * to the src data we are copying out.
328 * root is the tree we are copying into, and path is a scratch
329 * path for use in this function (it should be released on entry and
330 * will be released on exit).
332 * If the key is already in the destination tree the existing item is
333 * overwritten. If the existing item isn't big enough, it is extended.
334 * If it is too large, it is truncated.
336 * If the key isn't in the destination yet, a new item is inserted.
338 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
339 struct btrfs_root *root,
340 struct btrfs_path *path,
341 struct extent_buffer *eb, int slot,
342 struct btrfs_key *key)
344 struct btrfs_fs_info *fs_info = root->fs_info;
347 u64 saved_i_size = 0;
348 int save_old_i_size = 0;
349 unsigned long src_ptr;
350 unsigned long dst_ptr;
351 int overwrite_root = 0;
352 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
354 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
357 item_size = btrfs_item_size_nr(eb, slot);
358 src_ptr = btrfs_item_ptr_offset(eb, slot);
360 /* look for the key in the destination tree */
361 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
368 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
370 if (dst_size != item_size)
373 if (item_size == 0) {
374 btrfs_release_path(path);
377 dst_copy = kmalloc(item_size, GFP_NOFS);
378 src_copy = kmalloc(item_size, GFP_NOFS);
379 if (!dst_copy || !src_copy) {
380 btrfs_release_path(path);
386 read_extent_buffer(eb, src_copy, src_ptr, item_size);
388 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
389 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
391 ret = memcmp(dst_copy, src_copy, item_size);
396 * they have the same contents, just return, this saves
397 * us from cowing blocks in the destination tree and doing
398 * extra writes that may not have been done by a previous
402 btrfs_release_path(path);
407 * We need to load the old nbytes into the inode so when we
408 * replay the extents we've logged we get the right nbytes.
411 struct btrfs_inode_item *item;
415 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
416 struct btrfs_inode_item);
417 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
418 item = btrfs_item_ptr(eb, slot,
419 struct btrfs_inode_item);
420 btrfs_set_inode_nbytes(eb, item, nbytes);
423 * If this is a directory we need to reset the i_size to
424 * 0 so that we can set it up properly when replaying
425 * the rest of the items in this log.
427 mode = btrfs_inode_mode(eb, item);
429 btrfs_set_inode_size(eb, item, 0);
431 } else if (inode_item) {
432 struct btrfs_inode_item *item;
436 * New inode, set nbytes to 0 so that the nbytes comes out
437 * properly when we replay the extents.
439 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
440 btrfs_set_inode_nbytes(eb, item, 0);
443 * If this is a directory we need to reset the i_size to 0 so
444 * that we can set it up properly when replaying the rest of
445 * the items in this log.
447 mode = btrfs_inode_mode(eb, item);
449 btrfs_set_inode_size(eb, item, 0);
452 btrfs_release_path(path);
453 /* try to insert the key into the destination tree */
454 path->skip_release_on_error = 1;
455 ret = btrfs_insert_empty_item(trans, root, path,
457 path->skip_release_on_error = 0;
459 /* make sure any existing item is the correct size */
460 if (ret == -EEXIST || ret == -EOVERFLOW) {
462 found_size = btrfs_item_size_nr(path->nodes[0],
464 if (found_size > item_size)
465 btrfs_truncate_item(fs_info, path, item_size, 1);
466 else if (found_size < item_size)
467 btrfs_extend_item(fs_info, path,
468 item_size - found_size);
472 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
475 /* don't overwrite an existing inode if the generation number
476 * was logged as zero. This is done when the tree logging code
477 * is just logging an inode to make sure it exists after recovery.
479 * Also, don't overwrite i_size on directories during replay.
480 * log replay inserts and removes directory items based on the
481 * state of the tree found in the subvolume, and i_size is modified
484 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
485 struct btrfs_inode_item *src_item;
486 struct btrfs_inode_item *dst_item;
488 src_item = (struct btrfs_inode_item *)src_ptr;
489 dst_item = (struct btrfs_inode_item *)dst_ptr;
491 if (btrfs_inode_generation(eb, src_item) == 0) {
492 struct extent_buffer *dst_eb = path->nodes[0];
493 const u64 ino_size = btrfs_inode_size(eb, src_item);
496 * For regular files an ino_size == 0 is used only when
497 * logging that an inode exists, as part of a directory
498 * fsync, and the inode wasn't fsynced before. In this
499 * case don't set the size of the inode in the fs/subvol
500 * tree, otherwise we would be throwing valid data away.
502 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
503 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
505 struct btrfs_map_token token;
507 btrfs_init_map_token(&token);
508 btrfs_set_token_inode_size(dst_eb, dst_item,
514 if (overwrite_root &&
515 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
516 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
518 saved_i_size = btrfs_inode_size(path->nodes[0],
523 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
526 if (save_old_i_size) {
527 struct btrfs_inode_item *dst_item;
528 dst_item = (struct btrfs_inode_item *)dst_ptr;
529 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
532 /* make sure the generation is filled in */
533 if (key->type == BTRFS_INODE_ITEM_KEY) {
534 struct btrfs_inode_item *dst_item;
535 dst_item = (struct btrfs_inode_item *)dst_ptr;
536 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
537 btrfs_set_inode_generation(path->nodes[0], dst_item,
542 btrfs_mark_buffer_dirty(path->nodes[0]);
543 btrfs_release_path(path);
548 * simple helper to read an inode off the disk from a given root
549 * This can only be called for subvolume roots and not for the log
551 static noinline struct inode *read_one_inode(struct btrfs_root *root,
554 struct btrfs_key key;
557 key.objectid = objectid;
558 key.type = BTRFS_INODE_ITEM_KEY;
560 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
563 } else if (is_bad_inode(inode)) {
570 /* replays a single extent in 'eb' at 'slot' with 'key' into the
571 * subvolume 'root'. path is released on entry and should be released
574 * extents in the log tree have not been allocated out of the extent
575 * tree yet. So, this completes the allocation, taking a reference
576 * as required if the extent already exists or creating a new extent
577 * if it isn't in the extent allocation tree yet.
579 * The extent is inserted into the file, dropping any existing extents
580 * from the file that overlap the new one.
582 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
583 struct btrfs_root *root,
584 struct btrfs_path *path,
585 struct extent_buffer *eb, int slot,
586 struct btrfs_key *key)
588 struct btrfs_fs_info *fs_info = root->fs_info;
591 u64 start = key->offset;
593 struct btrfs_file_extent_item *item;
594 struct inode *inode = NULL;
598 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
599 found_type = btrfs_file_extent_type(eb, item);
601 if (found_type == BTRFS_FILE_EXTENT_REG ||
602 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
603 nbytes = btrfs_file_extent_num_bytes(eb, item);
604 extent_end = start + nbytes;
607 * We don't add to the inodes nbytes if we are prealloc or a
610 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
612 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
613 size = btrfs_file_extent_inline_len(eb, slot, item);
614 nbytes = btrfs_file_extent_ram_bytes(eb, item);
615 extent_end = ALIGN(start + size,
616 fs_info->sectorsize);
622 inode = read_one_inode(root, key->objectid);
629 * first check to see if we already have this extent in the
630 * file. This must be done before the btrfs_drop_extents run
631 * so we don't try to drop this extent.
633 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
637 (found_type == BTRFS_FILE_EXTENT_REG ||
638 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
639 struct btrfs_file_extent_item cmp1;
640 struct btrfs_file_extent_item cmp2;
641 struct btrfs_file_extent_item *existing;
642 struct extent_buffer *leaf;
644 leaf = path->nodes[0];
645 existing = btrfs_item_ptr(leaf, path->slots[0],
646 struct btrfs_file_extent_item);
648 read_extent_buffer(eb, &cmp1, (unsigned long)item,
650 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
654 * we already have a pointer to this exact extent,
655 * we don't have to do anything
657 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
658 btrfs_release_path(path);
662 btrfs_release_path(path);
664 /* drop any overlapping extents */
665 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
669 if (found_type == BTRFS_FILE_EXTENT_REG ||
670 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
672 unsigned long dest_offset;
673 struct btrfs_key ins;
675 ret = btrfs_insert_empty_item(trans, root, path, key,
679 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
681 copy_extent_buffer(path->nodes[0], eb, dest_offset,
682 (unsigned long)item, sizeof(*item));
684 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
685 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
686 ins.type = BTRFS_EXTENT_ITEM_KEY;
687 offset = key->offset - btrfs_file_extent_offset(eb, item);
690 * Manually record dirty extent, as here we did a shallow
691 * file extent item copy and skip normal backref update,
692 * but modifying extent tree all by ourselves.
693 * So need to manually record dirty extent for qgroup,
694 * as the owner of the file extent changed from log tree
695 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
697 ret = btrfs_qgroup_trace_extent(trans, fs_info,
698 btrfs_file_extent_disk_bytenr(eb, item),
699 btrfs_file_extent_disk_num_bytes(eb, item),
704 if (ins.objectid > 0) {
707 LIST_HEAD(ordered_sums);
709 * is this extent already allocated in the extent
710 * allocation tree? If so, just add a reference
712 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
715 ret = btrfs_inc_extent_ref(trans, fs_info,
716 ins.objectid, ins.offset,
717 0, root->root_key.objectid,
718 key->objectid, offset);
723 * insert the extent pointer in the extent
726 ret = btrfs_alloc_logged_file_extent(trans,
728 root->root_key.objectid,
729 key->objectid, offset, &ins);
733 btrfs_release_path(path);
735 if (btrfs_file_extent_compression(eb, item)) {
736 csum_start = ins.objectid;
737 csum_end = csum_start + ins.offset;
739 csum_start = ins.objectid +
740 btrfs_file_extent_offset(eb, item);
741 csum_end = csum_start +
742 btrfs_file_extent_num_bytes(eb, item);
745 ret = btrfs_lookup_csums_range(root->log_root,
746 csum_start, csum_end - 1,
751 * Now delete all existing cums in the csum root that
752 * cover our range. We do this because we can have an
753 * extent that is completely referenced by one file
754 * extent item and partially referenced by another
755 * file extent item (like after using the clone or
756 * extent_same ioctls). In this case if we end up doing
757 * the replay of the one that partially references the
758 * extent first, and we do not do the csum deletion
759 * below, we can get 2 csum items in the csum tree that
760 * overlap each other. For example, imagine our log has
761 * the two following file extent items:
763 * key (257 EXTENT_DATA 409600)
764 * extent data disk byte 12845056 nr 102400
765 * extent data offset 20480 nr 20480 ram 102400
767 * key (257 EXTENT_DATA 819200)
768 * extent data disk byte 12845056 nr 102400
769 * extent data offset 0 nr 102400 ram 102400
771 * Where the second one fully references the 100K extent
772 * that starts at disk byte 12845056, and the log tree
773 * has a single csum item that covers the entire range
776 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
778 * After the first file extent item is replayed, the
779 * csum tree gets the following csum item:
781 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
783 * Which covers the 20K sub-range starting at offset 20K
784 * of our extent. Now when we replay the second file
785 * extent item, if we do not delete existing csum items
786 * that cover any of its blocks, we end up getting two
787 * csum items in our csum tree that overlap each other:
789 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
790 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
792 * Which is a problem, because after this anyone trying
793 * to lookup up for the checksum of any block of our
794 * extent starting at an offset of 40K or higher, will
795 * end up looking at the second csum item only, which
796 * does not contain the checksum for any block starting
797 * at offset 40K or higher of our extent.
799 while (!list_empty(&ordered_sums)) {
800 struct btrfs_ordered_sum *sums;
801 sums = list_entry(ordered_sums.next,
802 struct btrfs_ordered_sum,
805 ret = btrfs_del_csums(trans, fs_info,
809 ret = btrfs_csum_file_blocks(trans,
810 fs_info->csum_root, sums);
811 list_del(&sums->list);
817 btrfs_release_path(path);
819 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
820 /* inline extents are easy, we just overwrite them */
821 ret = overwrite_item(trans, root, path, eb, slot, key);
826 inode_add_bytes(inode, nbytes);
827 ret = btrfs_update_inode(trans, root, inode);
835 * when cleaning up conflicts between the directory names in the
836 * subvolume, directory names in the log and directory names in the
837 * inode back references, we may have to unlink inodes from directories.
839 * This is a helper function to do the unlink of a specific directory
842 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
843 struct btrfs_root *root,
844 struct btrfs_path *path,
846 struct btrfs_dir_item *di)
848 struct btrfs_fs_info *fs_info = root->fs_info;
852 struct extent_buffer *leaf;
853 struct btrfs_key location;
856 leaf = path->nodes[0];
858 btrfs_dir_item_key_to_cpu(leaf, di, &location);
859 name_len = btrfs_dir_name_len(leaf, di);
860 name = kmalloc(name_len, GFP_NOFS);
864 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
865 btrfs_release_path(path);
867 inode = read_one_inode(root, location.objectid);
873 ret = link_to_fixup_dir(trans, root, path, location.objectid);
877 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
881 ret = btrfs_run_delayed_items(trans, fs_info);
889 * helper function to see if a given name and sequence number found
890 * in an inode back reference are already in a directory and correctly
891 * point to this inode
893 static noinline int inode_in_dir(struct btrfs_root *root,
894 struct btrfs_path *path,
895 u64 dirid, u64 objectid, u64 index,
896 const char *name, int name_len)
898 struct btrfs_dir_item *di;
899 struct btrfs_key location;
902 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
903 index, name, name_len, 0);
904 if (di && !IS_ERR(di)) {
905 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
906 if (location.objectid != objectid)
910 btrfs_release_path(path);
912 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
913 if (di && !IS_ERR(di)) {
914 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
915 if (location.objectid != objectid)
921 btrfs_release_path(path);
926 * helper function to check a log tree for a named back reference in
927 * an inode. This is used to decide if a back reference that is
928 * found in the subvolume conflicts with what we find in the log.
930 * inode backreferences may have multiple refs in a single item,
931 * during replay we process one reference at a time, and we don't
932 * want to delete valid links to a file from the subvolume if that
933 * link is also in the log.
935 static noinline int backref_in_log(struct btrfs_root *log,
936 struct btrfs_key *key,
938 const char *name, int namelen)
940 struct btrfs_path *path;
941 struct btrfs_inode_ref *ref;
943 unsigned long ptr_end;
944 unsigned long name_ptr;
950 path = btrfs_alloc_path();
954 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
958 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
960 if (key->type == BTRFS_INODE_EXTREF_KEY) {
961 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
962 name, namelen, NULL))
968 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
969 ptr_end = ptr + item_size;
970 while (ptr < ptr_end) {
971 ref = (struct btrfs_inode_ref *)ptr;
972 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
973 if (found_name_len == namelen) {
974 name_ptr = (unsigned long)(ref + 1);
975 ret = memcmp_extent_buffer(path->nodes[0], name,
982 ptr = (unsigned long)(ref + 1) + found_name_len;
985 btrfs_free_path(path);
989 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
990 struct btrfs_root *root,
991 struct btrfs_path *path,
992 struct btrfs_root *log_root,
993 struct inode *dir, struct inode *inode,
994 struct extent_buffer *eb,
995 u64 inode_objectid, u64 parent_objectid,
996 u64 ref_index, char *name, int namelen,
999 struct btrfs_fs_info *fs_info = root->fs_info;
1002 int victim_name_len;
1003 struct extent_buffer *leaf;
1004 struct btrfs_dir_item *di;
1005 struct btrfs_key search_key;
1006 struct btrfs_inode_extref *extref;
1009 /* Search old style refs */
1010 search_key.objectid = inode_objectid;
1011 search_key.type = BTRFS_INODE_REF_KEY;
1012 search_key.offset = parent_objectid;
1013 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1015 struct btrfs_inode_ref *victim_ref;
1017 unsigned long ptr_end;
1019 leaf = path->nodes[0];
1021 /* are we trying to overwrite a back ref for the root directory
1022 * if so, just jump out, we're done
1024 if (search_key.objectid == search_key.offset)
1027 /* check all the names in this back reference to see
1028 * if they are in the log. if so, we allow them to stay
1029 * otherwise they must be unlinked as a conflict
1031 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1032 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1033 while (ptr < ptr_end) {
1034 victim_ref = (struct btrfs_inode_ref *)ptr;
1035 victim_name_len = btrfs_inode_ref_name_len(leaf,
1037 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1041 read_extent_buffer(leaf, victim_name,
1042 (unsigned long)(victim_ref + 1),
1045 if (!backref_in_log(log_root, &search_key,
1050 btrfs_release_path(path);
1052 ret = btrfs_unlink_inode(trans, root, dir,
1058 ret = btrfs_run_delayed_items(trans, fs_info);
1066 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1070 * NOTE: we have searched root tree and checked the
1071 * corresponding ref, it does not need to check again.
1075 btrfs_release_path(path);
1077 /* Same search but for extended refs */
1078 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1079 inode_objectid, parent_objectid, 0,
1081 if (!IS_ERR_OR_NULL(extref)) {
1085 struct inode *victim_parent;
1087 leaf = path->nodes[0];
1089 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1090 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1092 while (cur_offset < item_size) {
1093 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1095 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1097 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1100 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1103 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1106 search_key.objectid = inode_objectid;
1107 search_key.type = BTRFS_INODE_EXTREF_KEY;
1108 search_key.offset = btrfs_extref_hash(parent_objectid,
1112 if (!backref_in_log(log_root, &search_key,
1113 parent_objectid, victim_name,
1116 victim_parent = read_one_inode(root,
1118 if (victim_parent) {
1120 btrfs_release_path(path);
1122 ret = btrfs_unlink_inode(trans, root,
1128 ret = btrfs_run_delayed_items(
1132 iput(victim_parent);
1143 cur_offset += victim_name_len + sizeof(*extref);
1147 btrfs_release_path(path);
1149 /* look for a conflicting sequence number */
1150 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1151 ref_index, name, namelen, 0);
1152 if (di && !IS_ERR(di)) {
1153 ret = drop_one_dir_item(trans, root, path, dir, di);
1157 btrfs_release_path(path);
1159 /* look for a conflicing name */
1160 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1162 if (di && !IS_ERR(di)) {
1163 ret = drop_one_dir_item(trans, root, path, dir, di);
1167 btrfs_release_path(path);
1172 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1173 u32 *namelen, char **name, u64 *index,
1174 u64 *parent_objectid)
1176 struct btrfs_inode_extref *extref;
1178 extref = (struct btrfs_inode_extref *)ref_ptr;
1180 *namelen = btrfs_inode_extref_name_len(eb, extref);
1181 *name = kmalloc(*namelen, GFP_NOFS);
1185 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1188 *index = btrfs_inode_extref_index(eb, extref);
1189 if (parent_objectid)
1190 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1195 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1196 u32 *namelen, char **name, u64 *index)
1198 struct btrfs_inode_ref *ref;
1200 ref = (struct btrfs_inode_ref *)ref_ptr;
1202 *namelen = btrfs_inode_ref_name_len(eb, ref);
1203 *name = kmalloc(*namelen, GFP_NOFS);
1207 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1209 *index = btrfs_inode_ref_index(eb, ref);
1215 * replay one inode back reference item found in the log tree.
1216 * eb, slot and key refer to the buffer and key found in the log tree.
1217 * root is the destination we are replaying into, and path is for temp
1218 * use by this function. (it should be released on return).
1220 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1221 struct btrfs_root *root,
1222 struct btrfs_root *log,
1223 struct btrfs_path *path,
1224 struct extent_buffer *eb, int slot,
1225 struct btrfs_key *key)
1227 struct inode *dir = NULL;
1228 struct inode *inode = NULL;
1229 unsigned long ref_ptr;
1230 unsigned long ref_end;
1234 int search_done = 0;
1235 int log_ref_ver = 0;
1236 u64 parent_objectid;
1239 int ref_struct_size;
1241 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1242 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1244 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1245 struct btrfs_inode_extref *r;
1247 ref_struct_size = sizeof(struct btrfs_inode_extref);
1249 r = (struct btrfs_inode_extref *)ref_ptr;
1250 parent_objectid = btrfs_inode_extref_parent(eb, r);
1252 ref_struct_size = sizeof(struct btrfs_inode_ref);
1253 parent_objectid = key->offset;
1255 inode_objectid = key->objectid;
1258 * it is possible that we didn't log all the parent directories
1259 * for a given inode. If we don't find the dir, just don't
1260 * copy the back ref in. The link count fixup code will take
1263 dir = read_one_inode(root, parent_objectid);
1269 inode = read_one_inode(root, inode_objectid);
1275 while (ref_ptr < ref_end) {
1277 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1278 &ref_index, &parent_objectid);
1280 * parent object can change from one array
1284 dir = read_one_inode(root, parent_objectid);
1290 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1296 /* if we already have a perfect match, we're done */
1297 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1298 ref_index, name, namelen)) {
1300 * look for a conflicting back reference in the
1301 * metadata. if we find one we have to unlink that name
1302 * of the file before we add our new link. Later on, we
1303 * overwrite any existing back reference, and we don't
1304 * want to create dangling pointers in the directory.
1308 ret = __add_inode_ref(trans, root, path, log,
1312 ref_index, name, namelen,
1321 /* insert our name */
1322 ret = btrfs_add_link(trans, dir, inode, name, namelen,
1327 btrfs_update_inode(trans, root, inode);
1330 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1339 /* finally write the back reference in the inode */
1340 ret = overwrite_item(trans, root, path, eb, slot, key);
1342 btrfs_release_path(path);
1349 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1350 struct btrfs_root *root, u64 ino)
1354 ret = btrfs_insert_orphan_item(trans, root, ino);
1361 static int count_inode_extrefs(struct btrfs_root *root,
1362 struct inode *inode, struct btrfs_path *path)
1366 unsigned int nlink = 0;
1369 u64 inode_objectid = btrfs_ino(inode);
1372 struct btrfs_inode_extref *extref;
1373 struct extent_buffer *leaf;
1376 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1381 leaf = path->nodes[0];
1382 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1383 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1386 while (cur_offset < item_size) {
1387 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1388 name_len = btrfs_inode_extref_name_len(leaf, extref);
1392 cur_offset += name_len + sizeof(*extref);
1396 btrfs_release_path(path);
1398 btrfs_release_path(path);
1400 if (ret < 0 && ret != -ENOENT)
1405 static int count_inode_refs(struct btrfs_root *root,
1406 struct inode *inode, struct btrfs_path *path)
1409 struct btrfs_key key;
1410 unsigned int nlink = 0;
1412 unsigned long ptr_end;
1414 u64 ino = btrfs_ino(inode);
1417 key.type = BTRFS_INODE_REF_KEY;
1418 key.offset = (u64)-1;
1421 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1425 if (path->slots[0] == 0)
1430 btrfs_item_key_to_cpu(path->nodes[0], &key,
1432 if (key.objectid != ino ||
1433 key.type != BTRFS_INODE_REF_KEY)
1435 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1436 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1438 while (ptr < ptr_end) {
1439 struct btrfs_inode_ref *ref;
1441 ref = (struct btrfs_inode_ref *)ptr;
1442 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1444 ptr = (unsigned long)(ref + 1) + name_len;
1448 if (key.offset == 0)
1450 if (path->slots[0] > 0) {
1455 btrfs_release_path(path);
1457 btrfs_release_path(path);
1463 * There are a few corners where the link count of the file can't
1464 * be properly maintained during replay. So, instead of adding
1465 * lots of complexity to the log code, we just scan the backrefs
1466 * for any file that has been through replay.
1468 * The scan will update the link count on the inode to reflect the
1469 * number of back refs found. If it goes down to zero, the iput
1470 * will free the inode.
1472 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1473 struct btrfs_root *root,
1474 struct inode *inode)
1476 struct btrfs_path *path;
1479 u64 ino = btrfs_ino(inode);
1481 path = btrfs_alloc_path();
1485 ret = count_inode_refs(root, inode, path);
1491 ret = count_inode_extrefs(root, inode, path);
1499 if (nlink != inode->i_nlink) {
1500 set_nlink(inode, nlink);
1501 btrfs_update_inode(trans, root, inode);
1503 BTRFS_I(inode)->index_cnt = (u64)-1;
1505 if (inode->i_nlink == 0) {
1506 if (S_ISDIR(inode->i_mode)) {
1507 ret = replay_dir_deletes(trans, root, NULL, path,
1512 ret = insert_orphan_item(trans, root, ino);
1516 btrfs_free_path(path);
1520 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1521 struct btrfs_root *root,
1522 struct btrfs_path *path)
1525 struct btrfs_key key;
1526 struct inode *inode;
1528 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1529 key.type = BTRFS_ORPHAN_ITEM_KEY;
1530 key.offset = (u64)-1;
1532 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1537 if (path->slots[0] == 0)
1542 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1543 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1544 key.type != BTRFS_ORPHAN_ITEM_KEY)
1547 ret = btrfs_del_item(trans, root, path);
1551 btrfs_release_path(path);
1552 inode = read_one_inode(root, key.offset);
1556 ret = fixup_inode_link_count(trans, root, inode);
1562 * fixup on a directory may create new entries,
1563 * make sure we always look for the highset possible
1566 key.offset = (u64)-1;
1570 btrfs_release_path(path);
1576 * record a given inode in the fixup dir so we can check its link
1577 * count when replay is done. The link count is incremented here
1578 * so the inode won't go away until we check it
1580 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1581 struct btrfs_root *root,
1582 struct btrfs_path *path,
1585 struct btrfs_key key;
1587 struct inode *inode;
1589 inode = read_one_inode(root, objectid);
1593 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1594 key.type = BTRFS_ORPHAN_ITEM_KEY;
1595 key.offset = objectid;
1597 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1599 btrfs_release_path(path);
1601 if (!inode->i_nlink)
1602 set_nlink(inode, 1);
1605 ret = btrfs_update_inode(trans, root, inode);
1606 } else if (ret == -EEXIST) {
1609 BUG(); /* Logic Error */
1617 * when replaying the log for a directory, we only insert names
1618 * for inodes that actually exist. This means an fsync on a directory
1619 * does not implicitly fsync all the new files in it
1621 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1622 struct btrfs_root *root,
1623 u64 dirid, u64 index,
1624 char *name, int name_len,
1625 struct btrfs_key *location)
1627 struct inode *inode;
1631 inode = read_one_inode(root, location->objectid);
1635 dir = read_one_inode(root, dirid);
1641 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1643 /* FIXME, put inode into FIXUP list */
1651 * Return true if an inode reference exists in the log for the given name,
1652 * inode and parent inode.
1654 static bool name_in_log_ref(struct btrfs_root *log_root,
1655 const char *name, const int name_len,
1656 const u64 dirid, const u64 ino)
1658 struct btrfs_key search_key;
1660 search_key.objectid = ino;
1661 search_key.type = BTRFS_INODE_REF_KEY;
1662 search_key.offset = dirid;
1663 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1666 search_key.type = BTRFS_INODE_EXTREF_KEY;
1667 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1668 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1675 * take a single entry in a log directory item and replay it into
1678 * if a conflicting item exists in the subdirectory already,
1679 * the inode it points to is unlinked and put into the link count
1682 * If a name from the log points to a file or directory that does
1683 * not exist in the FS, it is skipped. fsyncs on directories
1684 * do not force down inodes inside that directory, just changes to the
1685 * names or unlinks in a directory.
1687 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1688 * non-existing inode) and 1 if the name was replayed.
1690 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1691 struct btrfs_root *root,
1692 struct btrfs_path *path,
1693 struct extent_buffer *eb,
1694 struct btrfs_dir_item *di,
1695 struct btrfs_key *key)
1699 struct btrfs_dir_item *dst_di;
1700 struct btrfs_key found_key;
1701 struct btrfs_key log_key;
1706 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1707 bool name_added = false;
1709 dir = read_one_inode(root, key->objectid);
1713 name_len = btrfs_dir_name_len(eb, di);
1714 name = kmalloc(name_len, GFP_NOFS);
1720 log_type = btrfs_dir_type(eb, di);
1721 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1724 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1725 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1730 btrfs_release_path(path);
1732 if (key->type == BTRFS_DIR_ITEM_KEY) {
1733 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1735 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1736 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1745 if (IS_ERR_OR_NULL(dst_di)) {
1746 /* we need a sequence number to insert, so we only
1747 * do inserts for the BTRFS_DIR_INDEX_KEY types
1749 if (key->type != BTRFS_DIR_INDEX_KEY)
1754 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1755 /* the existing item matches the logged item */
1756 if (found_key.objectid == log_key.objectid &&
1757 found_key.type == log_key.type &&
1758 found_key.offset == log_key.offset &&
1759 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1760 update_size = false;
1765 * don't drop the conflicting directory entry if the inode
1766 * for the new entry doesn't exist
1771 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1775 if (key->type == BTRFS_DIR_INDEX_KEY)
1778 btrfs_release_path(path);
1779 if (!ret && update_size) {
1780 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1781 ret = btrfs_update_inode(trans, root, dir);
1785 if (!ret && name_added)
1790 if (name_in_log_ref(root->log_root, name, name_len,
1791 key->objectid, log_key.objectid)) {
1792 /* The dentry will be added later. */
1794 update_size = false;
1797 btrfs_release_path(path);
1798 ret = insert_one_name(trans, root, key->objectid, key->offset,
1799 name, name_len, &log_key);
1800 if (ret && ret != -ENOENT && ret != -EEXIST)
1804 update_size = false;
1810 * find all the names in a directory item and reconcile them into
1811 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1812 * one name in a directory item, but the same code gets used for
1813 * both directory index types
1815 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1816 struct btrfs_root *root,
1817 struct btrfs_path *path,
1818 struct extent_buffer *eb, int slot,
1819 struct btrfs_key *key)
1821 struct btrfs_fs_info *fs_info = root->fs_info;
1823 u32 item_size = btrfs_item_size_nr(eb, slot);
1824 struct btrfs_dir_item *di;
1827 unsigned long ptr_end;
1828 struct btrfs_path *fixup_path = NULL;
1830 ptr = btrfs_item_ptr_offset(eb, slot);
1831 ptr_end = ptr + item_size;
1832 while (ptr < ptr_end) {
1833 di = (struct btrfs_dir_item *)ptr;
1834 if (verify_dir_item(fs_info, eb, di))
1836 name_len = btrfs_dir_name_len(eb, di);
1837 ret = replay_one_name(trans, root, path, eb, di, key);
1840 ptr = (unsigned long)(di + 1);
1844 * If this entry refers to a non-directory (directories can not
1845 * have a link count > 1) and it was added in the transaction
1846 * that was not committed, make sure we fixup the link count of
1847 * the inode it the entry points to. Otherwise something like
1848 * the following would result in a directory pointing to an
1849 * inode with a wrong link that does not account for this dir
1857 * ln testdir/bar testdir/bar_link
1858 * ln testdir/foo testdir/foo_link
1859 * xfs_io -c "fsync" testdir/bar
1863 * mount fs, log replay happens
1865 * File foo would remain with a link count of 1 when it has two
1866 * entries pointing to it in the directory testdir. This would
1867 * make it impossible to ever delete the parent directory has
1868 * it would result in stale dentries that can never be deleted.
1870 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1871 struct btrfs_key di_key;
1874 fixup_path = btrfs_alloc_path();
1881 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1882 ret = link_to_fixup_dir(trans, root, fixup_path,
1889 btrfs_free_path(fixup_path);
1894 * directory replay has two parts. There are the standard directory
1895 * items in the log copied from the subvolume, and range items
1896 * created in the log while the subvolume was logged.
1898 * The range items tell us which parts of the key space the log
1899 * is authoritative for. During replay, if a key in the subvolume
1900 * directory is in a logged range item, but not actually in the log
1901 * that means it was deleted from the directory before the fsync
1902 * and should be removed.
1904 static noinline int find_dir_range(struct btrfs_root *root,
1905 struct btrfs_path *path,
1906 u64 dirid, int key_type,
1907 u64 *start_ret, u64 *end_ret)
1909 struct btrfs_key key;
1911 struct btrfs_dir_log_item *item;
1915 if (*start_ret == (u64)-1)
1918 key.objectid = dirid;
1919 key.type = key_type;
1920 key.offset = *start_ret;
1922 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1926 if (path->slots[0] == 0)
1931 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1933 if (key.type != key_type || key.objectid != dirid) {
1937 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1938 struct btrfs_dir_log_item);
1939 found_end = btrfs_dir_log_end(path->nodes[0], item);
1941 if (*start_ret >= key.offset && *start_ret <= found_end) {
1943 *start_ret = key.offset;
1944 *end_ret = found_end;
1949 /* check the next slot in the tree to see if it is a valid item */
1950 nritems = btrfs_header_nritems(path->nodes[0]);
1952 if (path->slots[0] >= nritems) {
1953 ret = btrfs_next_leaf(root, path);
1958 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1960 if (key.type != key_type || key.objectid != dirid) {
1964 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1965 struct btrfs_dir_log_item);
1966 found_end = btrfs_dir_log_end(path->nodes[0], item);
1967 *start_ret = key.offset;
1968 *end_ret = found_end;
1971 btrfs_release_path(path);
1976 * this looks for a given directory item in the log. If the directory
1977 * item is not in the log, the item is removed and the inode it points
1980 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1981 struct btrfs_root *root,
1982 struct btrfs_root *log,
1983 struct btrfs_path *path,
1984 struct btrfs_path *log_path,
1986 struct btrfs_key *dir_key)
1988 struct btrfs_fs_info *fs_info = root->fs_info;
1990 struct extent_buffer *eb;
1993 struct btrfs_dir_item *di;
1994 struct btrfs_dir_item *log_di;
1997 unsigned long ptr_end;
1999 struct inode *inode;
2000 struct btrfs_key location;
2003 eb = path->nodes[0];
2004 slot = path->slots[0];
2005 item_size = btrfs_item_size_nr(eb, slot);
2006 ptr = btrfs_item_ptr_offset(eb, slot);
2007 ptr_end = ptr + item_size;
2008 while (ptr < ptr_end) {
2009 di = (struct btrfs_dir_item *)ptr;
2010 if (verify_dir_item(fs_info, eb, di)) {
2015 name_len = btrfs_dir_name_len(eb, di);
2016 name = kmalloc(name_len, GFP_NOFS);
2021 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2024 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2025 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2028 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2029 log_di = btrfs_lookup_dir_index_item(trans, log,
2035 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2036 btrfs_dir_item_key_to_cpu(eb, di, &location);
2037 btrfs_release_path(path);
2038 btrfs_release_path(log_path);
2039 inode = read_one_inode(root, location.objectid);
2045 ret = link_to_fixup_dir(trans, root,
2046 path, location.objectid);
2054 ret = btrfs_unlink_inode(trans, root, dir, inode,
2057 ret = btrfs_run_delayed_items(trans, fs_info);
2063 /* there might still be more names under this key
2064 * check and repeat if required
2066 ret = btrfs_search_slot(NULL, root, dir_key, path,
2072 } else if (IS_ERR(log_di)) {
2074 return PTR_ERR(log_di);
2076 btrfs_release_path(log_path);
2079 ptr = (unsigned long)(di + 1);
2084 btrfs_release_path(path);
2085 btrfs_release_path(log_path);
2089 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2090 struct btrfs_root *root,
2091 struct btrfs_root *log,
2092 struct btrfs_path *path,
2095 struct btrfs_key search_key;
2096 struct btrfs_path *log_path;
2101 log_path = btrfs_alloc_path();
2105 search_key.objectid = ino;
2106 search_key.type = BTRFS_XATTR_ITEM_KEY;
2107 search_key.offset = 0;
2109 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2113 nritems = btrfs_header_nritems(path->nodes[0]);
2114 for (i = path->slots[0]; i < nritems; i++) {
2115 struct btrfs_key key;
2116 struct btrfs_dir_item *di;
2117 struct btrfs_dir_item *log_di;
2121 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2122 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2127 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2128 total_size = btrfs_item_size_nr(path->nodes[0], i);
2130 while (cur < total_size) {
2131 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2132 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2133 u32 this_len = sizeof(*di) + name_len + data_len;
2136 name = kmalloc(name_len, GFP_NOFS);
2141 read_extent_buffer(path->nodes[0], name,
2142 (unsigned long)(di + 1), name_len);
2144 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2146 btrfs_release_path(log_path);
2148 /* Doesn't exist in log tree, so delete it. */
2149 btrfs_release_path(path);
2150 di = btrfs_lookup_xattr(trans, root, path, ino,
2151 name, name_len, -1);
2158 ret = btrfs_delete_one_dir_name(trans, root,
2162 btrfs_release_path(path);
2167 if (IS_ERR(log_di)) {
2168 ret = PTR_ERR(log_di);
2172 di = (struct btrfs_dir_item *)((char *)di + this_len);
2175 ret = btrfs_next_leaf(root, path);
2181 btrfs_free_path(log_path);
2182 btrfs_release_path(path);
2188 * deletion replay happens before we copy any new directory items
2189 * out of the log or out of backreferences from inodes. It
2190 * scans the log to find ranges of keys that log is authoritative for,
2191 * and then scans the directory to find items in those ranges that are
2192 * not present in the log.
2194 * Anything we don't find in the log is unlinked and removed from the
2197 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2198 struct btrfs_root *root,
2199 struct btrfs_root *log,
2200 struct btrfs_path *path,
2201 u64 dirid, int del_all)
2205 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2207 struct btrfs_key dir_key;
2208 struct btrfs_key found_key;
2209 struct btrfs_path *log_path;
2212 dir_key.objectid = dirid;
2213 dir_key.type = BTRFS_DIR_ITEM_KEY;
2214 log_path = btrfs_alloc_path();
2218 dir = read_one_inode(root, dirid);
2219 /* it isn't an error if the inode isn't there, that can happen
2220 * because we replay the deletes before we copy in the inode item
2224 btrfs_free_path(log_path);
2232 range_end = (u64)-1;
2234 ret = find_dir_range(log, path, dirid, key_type,
2235 &range_start, &range_end);
2240 dir_key.offset = range_start;
2243 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2248 nritems = btrfs_header_nritems(path->nodes[0]);
2249 if (path->slots[0] >= nritems) {
2250 ret = btrfs_next_leaf(root, path);
2254 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2256 if (found_key.objectid != dirid ||
2257 found_key.type != dir_key.type)
2260 if (found_key.offset > range_end)
2263 ret = check_item_in_log(trans, root, log, path,
2268 if (found_key.offset == (u64)-1)
2270 dir_key.offset = found_key.offset + 1;
2272 btrfs_release_path(path);
2273 if (range_end == (u64)-1)
2275 range_start = range_end + 1;
2280 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2281 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2282 dir_key.type = BTRFS_DIR_INDEX_KEY;
2283 btrfs_release_path(path);
2287 btrfs_release_path(path);
2288 btrfs_free_path(log_path);
2294 * the process_func used to replay items from the log tree. This
2295 * gets called in two different stages. The first stage just looks
2296 * for inodes and makes sure they are all copied into the subvolume.
2298 * The second stage copies all the other item types from the log into
2299 * the subvolume. The two stage approach is slower, but gets rid of
2300 * lots of complexity around inodes referencing other inodes that exist
2301 * only in the log (references come from either directory items or inode
2304 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2305 struct walk_control *wc, u64 gen)
2308 struct btrfs_path *path;
2309 struct btrfs_root *root = wc->replay_dest;
2310 struct btrfs_key key;
2315 ret = btrfs_read_buffer(eb, gen);
2319 level = btrfs_header_level(eb);
2324 path = btrfs_alloc_path();
2328 nritems = btrfs_header_nritems(eb);
2329 for (i = 0; i < nritems; i++) {
2330 btrfs_item_key_to_cpu(eb, &key, i);
2332 /* inode keys are done during the first stage */
2333 if (key.type == BTRFS_INODE_ITEM_KEY &&
2334 wc->stage == LOG_WALK_REPLAY_INODES) {
2335 struct btrfs_inode_item *inode_item;
2338 inode_item = btrfs_item_ptr(eb, i,
2339 struct btrfs_inode_item);
2340 ret = replay_xattr_deletes(wc->trans, root, log,
2341 path, key.objectid);
2344 mode = btrfs_inode_mode(eb, inode_item);
2345 if (S_ISDIR(mode)) {
2346 ret = replay_dir_deletes(wc->trans,
2347 root, log, path, key.objectid, 0);
2351 ret = overwrite_item(wc->trans, root, path,
2356 /* for regular files, make sure corresponding
2357 * orphan item exist. extents past the new EOF
2358 * will be truncated later by orphan cleanup.
2360 if (S_ISREG(mode)) {
2361 ret = insert_orphan_item(wc->trans, root,
2367 ret = link_to_fixup_dir(wc->trans, root,
2368 path, key.objectid);
2373 if (key.type == BTRFS_DIR_INDEX_KEY &&
2374 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2375 ret = replay_one_dir_item(wc->trans, root, path,
2381 if (wc->stage < LOG_WALK_REPLAY_ALL)
2384 /* these keys are simply copied */
2385 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2386 ret = overwrite_item(wc->trans, root, path,
2390 } else if (key.type == BTRFS_INODE_REF_KEY ||
2391 key.type == BTRFS_INODE_EXTREF_KEY) {
2392 ret = add_inode_ref(wc->trans, root, log, path,
2394 if (ret && ret != -ENOENT)
2397 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2398 ret = replay_one_extent(wc->trans, root, path,
2402 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2403 ret = replay_one_dir_item(wc->trans, root, path,
2409 btrfs_free_path(path);
2413 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2414 struct btrfs_root *root,
2415 struct btrfs_path *path, int *level,
2416 struct walk_control *wc)
2418 struct btrfs_fs_info *fs_info = root->fs_info;
2422 struct extent_buffer *next;
2423 struct extent_buffer *cur;
2424 struct extent_buffer *parent;
2428 WARN_ON(*level < 0);
2429 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2431 while (*level > 0) {
2432 WARN_ON(*level < 0);
2433 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2434 cur = path->nodes[*level];
2436 WARN_ON(btrfs_header_level(cur) != *level);
2438 if (path->slots[*level] >=
2439 btrfs_header_nritems(cur))
2442 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2443 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2444 blocksize = fs_info->nodesize;
2446 parent = path->nodes[*level];
2447 root_owner = btrfs_header_owner(parent);
2449 next = btrfs_find_create_tree_block(fs_info, bytenr);
2451 return PTR_ERR(next);
2454 ret = wc->process_func(root, next, wc, ptr_gen);
2456 free_extent_buffer(next);
2460 path->slots[*level]++;
2462 ret = btrfs_read_buffer(next, ptr_gen);
2464 free_extent_buffer(next);
2469 btrfs_tree_lock(next);
2470 btrfs_set_lock_blocking(next);
2471 clean_tree_block(trans, fs_info, next);
2472 btrfs_wait_tree_block_writeback(next);
2473 btrfs_tree_unlock(next);
2476 WARN_ON(root_owner !=
2477 BTRFS_TREE_LOG_OBJECTID);
2478 ret = btrfs_free_and_pin_reserved_extent(
2482 free_extent_buffer(next);
2486 free_extent_buffer(next);
2489 ret = btrfs_read_buffer(next, ptr_gen);
2491 free_extent_buffer(next);
2495 WARN_ON(*level <= 0);
2496 if (path->nodes[*level-1])
2497 free_extent_buffer(path->nodes[*level-1]);
2498 path->nodes[*level-1] = next;
2499 *level = btrfs_header_level(next);
2500 path->slots[*level] = 0;
2503 WARN_ON(*level < 0);
2504 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2506 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2512 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2513 struct btrfs_root *root,
2514 struct btrfs_path *path, int *level,
2515 struct walk_control *wc)
2517 struct btrfs_fs_info *fs_info = root->fs_info;
2523 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2524 slot = path->slots[i];
2525 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2528 WARN_ON(*level == 0);
2531 struct extent_buffer *parent;
2532 if (path->nodes[*level] == root->node)
2533 parent = path->nodes[*level];
2535 parent = path->nodes[*level + 1];
2537 root_owner = btrfs_header_owner(parent);
2538 ret = wc->process_func(root, path->nodes[*level], wc,
2539 btrfs_header_generation(path->nodes[*level]));
2544 struct extent_buffer *next;
2546 next = path->nodes[*level];
2549 btrfs_tree_lock(next);
2550 btrfs_set_lock_blocking(next);
2551 clean_tree_block(trans, fs_info, next);
2552 btrfs_wait_tree_block_writeback(next);
2553 btrfs_tree_unlock(next);
2556 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2557 ret = btrfs_free_and_pin_reserved_extent(
2559 path->nodes[*level]->start,
2560 path->nodes[*level]->len);
2564 free_extent_buffer(path->nodes[*level]);
2565 path->nodes[*level] = NULL;
2573 * drop the reference count on the tree rooted at 'snap'. This traverses
2574 * the tree freeing any blocks that have a ref count of zero after being
2577 static int walk_log_tree(struct btrfs_trans_handle *trans,
2578 struct btrfs_root *log, struct walk_control *wc)
2580 struct btrfs_fs_info *fs_info = log->fs_info;
2584 struct btrfs_path *path;
2587 path = btrfs_alloc_path();
2591 level = btrfs_header_level(log->node);
2593 path->nodes[level] = log->node;
2594 extent_buffer_get(log->node);
2595 path->slots[level] = 0;
2598 wret = walk_down_log_tree(trans, log, path, &level, wc);
2606 wret = walk_up_log_tree(trans, log, path, &level, wc);
2615 /* was the root node processed? if not, catch it here */
2616 if (path->nodes[orig_level]) {
2617 ret = wc->process_func(log, path->nodes[orig_level], wc,
2618 btrfs_header_generation(path->nodes[orig_level]));
2622 struct extent_buffer *next;
2624 next = path->nodes[orig_level];
2627 btrfs_tree_lock(next);
2628 btrfs_set_lock_blocking(next);
2629 clean_tree_block(trans, fs_info, next);
2630 btrfs_wait_tree_block_writeback(next);
2631 btrfs_tree_unlock(next);
2634 WARN_ON(log->root_key.objectid !=
2635 BTRFS_TREE_LOG_OBJECTID);
2636 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2637 next->start, next->len);
2644 btrfs_free_path(path);
2649 * helper function to update the item for a given subvolumes log root
2650 * in the tree of log roots
2652 static int update_log_root(struct btrfs_trans_handle *trans,
2653 struct btrfs_root *log)
2655 struct btrfs_fs_info *fs_info = log->fs_info;
2658 if (log->log_transid == 1) {
2659 /* insert root item on the first sync */
2660 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2661 &log->root_key, &log->root_item);
2663 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2664 &log->root_key, &log->root_item);
2669 static void wait_log_commit(struct btrfs_root *root, int transid)
2672 int index = transid % 2;
2675 * we only allow two pending log transactions at a time,
2676 * so we know that if ours is more than 2 older than the
2677 * current transaction, we're done
2680 prepare_to_wait(&root->log_commit_wait[index],
2681 &wait, TASK_UNINTERRUPTIBLE);
2682 mutex_unlock(&root->log_mutex);
2684 if (root->log_transid_committed < transid &&
2685 atomic_read(&root->log_commit[index]))
2688 finish_wait(&root->log_commit_wait[index], &wait);
2689 mutex_lock(&root->log_mutex);
2690 } while (root->log_transid_committed < transid &&
2691 atomic_read(&root->log_commit[index]));
2694 static void wait_for_writer(struct btrfs_root *root)
2698 while (atomic_read(&root->log_writers)) {
2699 prepare_to_wait(&root->log_writer_wait,
2700 &wait, TASK_UNINTERRUPTIBLE);
2701 mutex_unlock(&root->log_mutex);
2702 if (atomic_read(&root->log_writers))
2704 finish_wait(&root->log_writer_wait, &wait);
2705 mutex_lock(&root->log_mutex);
2709 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2710 struct btrfs_log_ctx *ctx)
2715 mutex_lock(&root->log_mutex);
2716 list_del_init(&ctx->list);
2717 mutex_unlock(&root->log_mutex);
2721 * Invoked in log mutex context, or be sure there is no other task which
2722 * can access the list.
2724 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2725 int index, int error)
2727 struct btrfs_log_ctx *ctx;
2728 struct btrfs_log_ctx *safe;
2730 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2731 list_del_init(&ctx->list);
2732 ctx->log_ret = error;
2735 INIT_LIST_HEAD(&root->log_ctxs[index]);
2739 * btrfs_sync_log does sends a given tree log down to the disk and
2740 * updates the super blocks to record it. When this call is done,
2741 * you know that any inodes previously logged are safely on disk only
2744 * Any other return value means you need to call btrfs_commit_transaction.
2745 * Some of the edge cases for fsyncing directories that have had unlinks
2746 * or renames done in the past mean that sometimes the only safe
2747 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2748 * that has happened.
2750 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2751 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2757 struct btrfs_fs_info *fs_info = root->fs_info;
2758 struct btrfs_root *log = root->log_root;
2759 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2760 int log_transid = 0;
2761 struct btrfs_log_ctx root_log_ctx;
2762 struct blk_plug plug;
2764 mutex_lock(&root->log_mutex);
2765 log_transid = ctx->log_transid;
2766 if (root->log_transid_committed >= log_transid) {
2767 mutex_unlock(&root->log_mutex);
2768 return ctx->log_ret;
2771 index1 = log_transid % 2;
2772 if (atomic_read(&root->log_commit[index1])) {
2773 wait_log_commit(root, log_transid);
2774 mutex_unlock(&root->log_mutex);
2775 return ctx->log_ret;
2777 ASSERT(log_transid == root->log_transid);
2778 atomic_set(&root->log_commit[index1], 1);
2780 /* wait for previous tree log sync to complete */
2781 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2782 wait_log_commit(root, log_transid - 1);
2785 int batch = atomic_read(&root->log_batch);
2786 /* when we're on an ssd, just kick the log commit out */
2787 if (!btrfs_test_opt(fs_info, SSD) &&
2788 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2789 mutex_unlock(&root->log_mutex);
2790 schedule_timeout_uninterruptible(1);
2791 mutex_lock(&root->log_mutex);
2793 wait_for_writer(root);
2794 if (batch == atomic_read(&root->log_batch))
2798 /* bail out if we need to do a full commit */
2799 if (btrfs_need_log_full_commit(fs_info, trans)) {
2801 btrfs_free_logged_extents(log, log_transid);
2802 mutex_unlock(&root->log_mutex);
2806 if (log_transid % 2 == 0)
2807 mark = EXTENT_DIRTY;
2811 /* we start IO on all the marked extents here, but we don't actually
2812 * wait for them until later.
2814 blk_start_plug(&plug);
2815 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2817 blk_finish_plug(&plug);
2818 btrfs_abort_transaction(trans, ret);
2819 btrfs_free_logged_extents(log, log_transid);
2820 btrfs_set_log_full_commit(fs_info, trans);
2821 mutex_unlock(&root->log_mutex);
2825 btrfs_set_root_node(&log->root_item, log->node);
2827 root->log_transid++;
2828 log->log_transid = root->log_transid;
2829 root->log_start_pid = 0;
2831 * IO has been started, blocks of the log tree have WRITTEN flag set
2832 * in their headers. new modifications of the log will be written to
2833 * new positions. so it's safe to allow log writers to go in.
2835 mutex_unlock(&root->log_mutex);
2837 btrfs_init_log_ctx(&root_log_ctx, NULL);
2839 mutex_lock(&log_root_tree->log_mutex);
2840 atomic_inc(&log_root_tree->log_batch);
2841 atomic_inc(&log_root_tree->log_writers);
2843 index2 = log_root_tree->log_transid % 2;
2844 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2845 root_log_ctx.log_transid = log_root_tree->log_transid;
2847 mutex_unlock(&log_root_tree->log_mutex);
2849 ret = update_log_root(trans, log);
2851 mutex_lock(&log_root_tree->log_mutex);
2852 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2854 * Implicit memory barrier after atomic_dec_and_test
2856 if (waitqueue_active(&log_root_tree->log_writer_wait))
2857 wake_up(&log_root_tree->log_writer_wait);
2861 if (!list_empty(&root_log_ctx.list))
2862 list_del_init(&root_log_ctx.list);
2864 blk_finish_plug(&plug);
2865 btrfs_set_log_full_commit(fs_info, trans);
2867 if (ret != -ENOSPC) {
2868 btrfs_abort_transaction(trans, ret);
2869 mutex_unlock(&log_root_tree->log_mutex);
2872 btrfs_wait_tree_log_extents(log, mark);
2873 btrfs_free_logged_extents(log, log_transid);
2874 mutex_unlock(&log_root_tree->log_mutex);
2879 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2880 blk_finish_plug(&plug);
2881 list_del_init(&root_log_ctx.list);
2882 mutex_unlock(&log_root_tree->log_mutex);
2883 ret = root_log_ctx.log_ret;
2887 index2 = root_log_ctx.log_transid % 2;
2888 if (atomic_read(&log_root_tree->log_commit[index2])) {
2889 blk_finish_plug(&plug);
2890 ret = btrfs_wait_tree_log_extents(log, mark);
2891 btrfs_wait_logged_extents(trans, log, log_transid);
2892 wait_log_commit(log_root_tree,
2893 root_log_ctx.log_transid);
2894 mutex_unlock(&log_root_tree->log_mutex);
2896 ret = root_log_ctx.log_ret;
2899 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2900 atomic_set(&log_root_tree->log_commit[index2], 1);
2902 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2903 wait_log_commit(log_root_tree,
2904 root_log_ctx.log_transid - 1);
2907 wait_for_writer(log_root_tree);
2910 * now that we've moved on to the tree of log tree roots,
2911 * check the full commit flag again
2913 if (btrfs_need_log_full_commit(fs_info, trans)) {
2914 blk_finish_plug(&plug);
2915 btrfs_wait_tree_log_extents(log, mark);
2916 btrfs_free_logged_extents(log, log_transid);
2917 mutex_unlock(&log_root_tree->log_mutex);
2919 goto out_wake_log_root;
2922 ret = btrfs_write_marked_extents(fs_info,
2923 &log_root_tree->dirty_log_pages,
2924 EXTENT_DIRTY | EXTENT_NEW);
2925 blk_finish_plug(&plug);
2927 btrfs_set_log_full_commit(fs_info, trans);
2928 btrfs_abort_transaction(trans, ret);
2929 btrfs_free_logged_extents(log, log_transid);
2930 mutex_unlock(&log_root_tree->log_mutex);
2931 goto out_wake_log_root;
2933 ret = btrfs_wait_tree_log_extents(log, mark);
2935 ret = btrfs_wait_tree_log_extents(log_root_tree,
2936 EXTENT_NEW | EXTENT_DIRTY);
2938 btrfs_set_log_full_commit(fs_info, trans);
2939 btrfs_free_logged_extents(log, log_transid);
2940 mutex_unlock(&log_root_tree->log_mutex);
2941 goto out_wake_log_root;
2943 btrfs_wait_logged_extents(trans, log, log_transid);
2945 btrfs_set_super_log_root(fs_info->super_for_commit,
2946 log_root_tree->node->start);
2947 btrfs_set_super_log_root_level(fs_info->super_for_commit,
2948 btrfs_header_level(log_root_tree->node));
2950 log_root_tree->log_transid++;
2951 mutex_unlock(&log_root_tree->log_mutex);
2954 * nobody else is going to jump in and write the the ctree
2955 * super here because the log_commit atomic below is protecting
2956 * us. We must be called with a transaction handle pinning
2957 * the running transaction open, so a full commit can't hop
2958 * in and cause problems either.
2960 ret = write_ctree_super(trans, fs_info, 1);
2962 btrfs_set_log_full_commit(fs_info, trans);
2963 btrfs_abort_transaction(trans, ret);
2964 goto out_wake_log_root;
2967 mutex_lock(&root->log_mutex);
2968 if (root->last_log_commit < log_transid)
2969 root->last_log_commit = log_transid;
2970 mutex_unlock(&root->log_mutex);
2973 mutex_lock(&log_root_tree->log_mutex);
2974 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2976 log_root_tree->log_transid_committed++;
2977 atomic_set(&log_root_tree->log_commit[index2], 0);
2978 mutex_unlock(&log_root_tree->log_mutex);
2981 * The barrier before waitqueue_active is implied by mutex_unlock
2983 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2984 wake_up(&log_root_tree->log_commit_wait[index2]);
2986 mutex_lock(&root->log_mutex);
2987 btrfs_remove_all_log_ctxs(root, index1, ret);
2988 root->log_transid_committed++;
2989 atomic_set(&root->log_commit[index1], 0);
2990 mutex_unlock(&root->log_mutex);
2993 * The barrier before waitqueue_active is implied by mutex_unlock
2995 if (waitqueue_active(&root->log_commit_wait[index1]))
2996 wake_up(&root->log_commit_wait[index1]);
3000 static void free_log_tree(struct btrfs_trans_handle *trans,
3001 struct btrfs_root *log)
3006 struct walk_control wc = {
3008 .process_func = process_one_buffer
3011 ret = walk_log_tree(trans, log, &wc);
3012 /* I don't think this can happen but just in case */
3014 btrfs_abort_transaction(trans, ret);
3017 ret = find_first_extent_bit(&log->dirty_log_pages,
3018 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
3023 clear_extent_bits(&log->dirty_log_pages, start, end,
3024 EXTENT_DIRTY | EXTENT_NEW);
3028 * We may have short-circuited the log tree with the full commit logic
3029 * and left ordered extents on our list, so clear these out to keep us
3030 * from leaking inodes and memory.
3032 btrfs_free_logged_extents(log, 0);
3033 btrfs_free_logged_extents(log, 1);
3035 free_extent_buffer(log->node);
3040 * free all the extents used by the tree log. This should be called
3041 * at commit time of the full transaction
3043 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3045 if (root->log_root) {
3046 free_log_tree(trans, root->log_root);
3047 root->log_root = NULL;
3052 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3053 struct btrfs_fs_info *fs_info)
3055 if (fs_info->log_root_tree) {
3056 free_log_tree(trans, fs_info->log_root_tree);
3057 fs_info->log_root_tree = NULL;
3063 * If both a file and directory are logged, and unlinks or renames are
3064 * mixed in, we have a few interesting corners:
3066 * create file X in dir Y
3067 * link file X to X.link in dir Y
3069 * unlink file X but leave X.link
3072 * After a crash we would expect only X.link to exist. But file X
3073 * didn't get fsync'd again so the log has back refs for X and X.link.
3075 * We solve this by removing directory entries and inode backrefs from the
3076 * log when a file that was logged in the current transaction is
3077 * unlinked. Any later fsync will include the updated log entries, and
3078 * we'll be able to reconstruct the proper directory items from backrefs.
3080 * This optimizations allows us to avoid relogging the entire inode
3081 * or the entire directory.
3083 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3084 struct btrfs_root *root,
3085 const char *name, int name_len,
3086 struct inode *dir, u64 index)
3088 struct btrfs_root *log;
3089 struct btrfs_dir_item *di;
3090 struct btrfs_path *path;
3094 u64 dir_ino = btrfs_ino(dir);
3096 if (BTRFS_I(dir)->logged_trans < trans->transid)
3099 ret = join_running_log_trans(root);
3103 mutex_lock(&BTRFS_I(dir)->log_mutex);
3105 log = root->log_root;
3106 path = btrfs_alloc_path();
3112 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3113 name, name_len, -1);
3119 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3120 bytes_del += name_len;
3126 btrfs_release_path(path);
3127 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3128 index, name, name_len, -1);
3134 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3135 bytes_del += name_len;
3142 /* update the directory size in the log to reflect the names
3146 struct btrfs_key key;
3148 key.objectid = dir_ino;
3150 key.type = BTRFS_INODE_ITEM_KEY;
3151 btrfs_release_path(path);
3153 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3159 struct btrfs_inode_item *item;
3162 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3163 struct btrfs_inode_item);
3164 i_size = btrfs_inode_size(path->nodes[0], item);
3165 if (i_size > bytes_del)
3166 i_size -= bytes_del;
3169 btrfs_set_inode_size(path->nodes[0], item, i_size);
3170 btrfs_mark_buffer_dirty(path->nodes[0]);
3173 btrfs_release_path(path);
3176 btrfs_free_path(path);
3178 mutex_unlock(&BTRFS_I(dir)->log_mutex);
3179 if (ret == -ENOSPC) {
3180 btrfs_set_log_full_commit(root->fs_info, trans);
3183 btrfs_abort_transaction(trans, ret);
3185 btrfs_end_log_trans(root);
3190 /* see comments for btrfs_del_dir_entries_in_log */
3191 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3192 struct btrfs_root *root,
3193 const char *name, int name_len,
3194 struct inode *inode, u64 dirid)
3196 struct btrfs_fs_info *fs_info = root->fs_info;
3197 struct btrfs_root *log;
3201 if (BTRFS_I(inode)->logged_trans < trans->transid)
3204 ret = join_running_log_trans(root);
3207 log = root->log_root;
3208 mutex_lock(&BTRFS_I(inode)->log_mutex);
3210 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3212 mutex_unlock(&BTRFS_I(inode)->log_mutex);
3213 if (ret == -ENOSPC) {
3214 btrfs_set_log_full_commit(fs_info, trans);
3216 } else if (ret < 0 && ret != -ENOENT)
3217 btrfs_abort_transaction(trans, ret);
3218 btrfs_end_log_trans(root);
3224 * creates a range item in the log for 'dirid'. first_offset and
3225 * last_offset tell us which parts of the key space the log should
3226 * be considered authoritative for.
3228 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3229 struct btrfs_root *log,
3230 struct btrfs_path *path,
3231 int key_type, u64 dirid,
3232 u64 first_offset, u64 last_offset)
3235 struct btrfs_key key;
3236 struct btrfs_dir_log_item *item;
3238 key.objectid = dirid;
3239 key.offset = first_offset;
3240 if (key_type == BTRFS_DIR_ITEM_KEY)
3241 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3243 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3244 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3248 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3249 struct btrfs_dir_log_item);
3250 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3251 btrfs_mark_buffer_dirty(path->nodes[0]);
3252 btrfs_release_path(path);
3257 * log all the items included in the current transaction for a given
3258 * directory. This also creates the range items in the log tree required
3259 * to replay anything deleted before the fsync
3261 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3262 struct btrfs_root *root, struct inode *inode,
3263 struct btrfs_path *path,
3264 struct btrfs_path *dst_path, int key_type,
3265 struct btrfs_log_ctx *ctx,
3266 u64 min_offset, u64 *last_offset_ret)
3268 struct btrfs_key min_key;
3269 struct btrfs_root *log = root->log_root;
3270 struct extent_buffer *src;
3275 u64 first_offset = min_offset;
3276 u64 last_offset = (u64)-1;
3277 u64 ino = btrfs_ino(inode);
3279 log = root->log_root;
3281 min_key.objectid = ino;
3282 min_key.type = key_type;
3283 min_key.offset = min_offset;
3285 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3288 * we didn't find anything from this transaction, see if there
3289 * is anything at all
3291 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3292 min_key.objectid = ino;
3293 min_key.type = key_type;
3294 min_key.offset = (u64)-1;
3295 btrfs_release_path(path);
3296 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3298 btrfs_release_path(path);
3301 ret = btrfs_previous_item(root, path, ino, key_type);
3303 /* if ret == 0 there are items for this type,
3304 * create a range to tell us the last key of this type.
3305 * otherwise, there are no items in this directory after
3306 * *min_offset, and we create a range to indicate that.
3309 struct btrfs_key tmp;
3310 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3312 if (key_type == tmp.type)
3313 first_offset = max(min_offset, tmp.offset) + 1;
3318 /* go backward to find any previous key */
3319 ret = btrfs_previous_item(root, path, ino, key_type);
3321 struct btrfs_key tmp;
3322 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3323 if (key_type == tmp.type) {
3324 first_offset = tmp.offset;
3325 ret = overwrite_item(trans, log, dst_path,
3326 path->nodes[0], path->slots[0],
3334 btrfs_release_path(path);
3336 /* find the first key from this transaction again */
3337 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3338 if (WARN_ON(ret != 0))
3342 * we have a block from this transaction, log every item in it
3343 * from our directory
3346 struct btrfs_key tmp;
3347 src = path->nodes[0];
3348 nritems = btrfs_header_nritems(src);
3349 for (i = path->slots[0]; i < nritems; i++) {
3350 struct btrfs_dir_item *di;
3352 btrfs_item_key_to_cpu(src, &min_key, i);
3354 if (min_key.objectid != ino || min_key.type != key_type)
3356 ret = overwrite_item(trans, log, dst_path, src, i,
3364 * We must make sure that when we log a directory entry,
3365 * the corresponding inode, after log replay, has a
3366 * matching link count. For example:
3372 * xfs_io -c "fsync" mydir
3374 * <mount fs and log replay>
3376 * Would result in a fsync log that when replayed, our
3377 * file inode would have a link count of 1, but we get
3378 * two directory entries pointing to the same inode.
3379 * After removing one of the names, it would not be
3380 * possible to remove the other name, which resulted
3381 * always in stale file handle errors, and would not
3382 * be possible to rmdir the parent directory, since
3383 * its i_size could never decrement to the value
3384 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3386 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3387 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3389 (btrfs_dir_transid(src, di) == trans->transid ||
3390 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3391 tmp.type != BTRFS_ROOT_ITEM_KEY)
3392 ctx->log_new_dentries = true;
3394 path->slots[0] = nritems;
3397 * look ahead to the next item and see if it is also
3398 * from this directory and from this transaction
3400 ret = btrfs_next_leaf(root, path);
3402 last_offset = (u64)-1;
3405 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3406 if (tmp.objectid != ino || tmp.type != key_type) {
3407 last_offset = (u64)-1;
3410 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3411 ret = overwrite_item(trans, log, dst_path,
3412 path->nodes[0], path->slots[0],
3417 last_offset = tmp.offset;
3422 btrfs_release_path(path);
3423 btrfs_release_path(dst_path);
3426 *last_offset_ret = last_offset;
3428 * insert the log range keys to indicate where the log
3431 ret = insert_dir_log_key(trans, log, path, key_type,
3432 ino, first_offset, last_offset);
3440 * logging directories is very similar to logging inodes, We find all the items
3441 * from the current transaction and write them to the log.
3443 * The recovery code scans the directory in the subvolume, and if it finds a
3444 * key in the range logged that is not present in the log tree, then it means
3445 * that dir entry was unlinked during the transaction.
3447 * In order for that scan to work, we must include one key smaller than
3448 * the smallest logged by this transaction and one key larger than the largest
3449 * key logged by this transaction.
3451 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3452 struct btrfs_root *root, struct inode *inode,
3453 struct btrfs_path *path,
3454 struct btrfs_path *dst_path,
3455 struct btrfs_log_ctx *ctx)
3460 int key_type = BTRFS_DIR_ITEM_KEY;
3466 ret = log_dir_items(trans, root, inode, path,
3467 dst_path, key_type, ctx, min_key,
3471 if (max_key == (u64)-1)
3473 min_key = max_key + 1;
3476 if (key_type == BTRFS_DIR_ITEM_KEY) {
3477 key_type = BTRFS_DIR_INDEX_KEY;
3484 * a helper function to drop items from the log before we relog an
3485 * inode. max_key_type indicates the highest item type to remove.
3486 * This cannot be run for file data extents because it does not
3487 * free the extents they point to.
3489 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3490 struct btrfs_root *log,
3491 struct btrfs_path *path,
3492 u64 objectid, int max_key_type)
3495 struct btrfs_key key;
3496 struct btrfs_key found_key;
3499 key.objectid = objectid;
3500 key.type = max_key_type;
3501 key.offset = (u64)-1;
3504 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3505 BUG_ON(ret == 0); /* Logic error */
3509 if (path->slots[0] == 0)
3513 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3516 if (found_key.objectid != objectid)
3519 found_key.offset = 0;
3521 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3524 ret = btrfs_del_items(trans, log, path, start_slot,
3525 path->slots[0] - start_slot + 1);
3527 * If start slot isn't 0 then we don't need to re-search, we've
3528 * found the last guy with the objectid in this tree.
3530 if (ret || start_slot != 0)
3532 btrfs_release_path(path);
3534 btrfs_release_path(path);
3540 static void fill_inode_item(struct btrfs_trans_handle *trans,
3541 struct extent_buffer *leaf,
3542 struct btrfs_inode_item *item,
3543 struct inode *inode, int log_inode_only,
3546 struct btrfs_map_token token;
3548 btrfs_init_map_token(&token);
3550 if (log_inode_only) {
3551 /* set the generation to zero so the recover code
3552 * can tell the difference between an logging
3553 * just to say 'this inode exists' and a logging
3554 * to say 'update this inode with these values'
3556 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3557 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3559 btrfs_set_token_inode_generation(leaf, item,
3560 BTRFS_I(inode)->generation,
3562 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3565 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3566 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3567 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3568 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3570 btrfs_set_token_timespec_sec(leaf, &item->atime,
3571 inode->i_atime.tv_sec, &token);
3572 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3573 inode->i_atime.tv_nsec, &token);
3575 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3576 inode->i_mtime.tv_sec, &token);
3577 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3578 inode->i_mtime.tv_nsec, &token);
3580 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3581 inode->i_ctime.tv_sec, &token);
3582 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3583 inode->i_ctime.tv_nsec, &token);
3585 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3588 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3589 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3590 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3591 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3592 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3595 static int log_inode_item(struct btrfs_trans_handle *trans,
3596 struct btrfs_root *log, struct btrfs_path *path,
3597 struct inode *inode)
3599 struct btrfs_inode_item *inode_item;
3602 ret = btrfs_insert_empty_item(trans, log, path,
3603 &BTRFS_I(inode)->location,
3604 sizeof(*inode_item));
3605 if (ret && ret != -EEXIST)
3607 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3608 struct btrfs_inode_item);
3609 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
3610 btrfs_release_path(path);
3614 static noinline int copy_items(struct btrfs_trans_handle *trans,
3615 struct inode *inode,
3616 struct btrfs_path *dst_path,
3617 struct btrfs_path *src_path, u64 *last_extent,
3618 int start_slot, int nr, int inode_only,
3621 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3622 unsigned long src_offset;
3623 unsigned long dst_offset;
3624 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3625 struct btrfs_file_extent_item *extent;
3626 struct btrfs_inode_item *inode_item;
3627 struct extent_buffer *src = src_path->nodes[0];
3628 struct btrfs_key first_key, last_key, key;
3630 struct btrfs_key *ins_keys;
3634 struct list_head ordered_sums;
3635 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3636 bool has_extents = false;
3637 bool need_find_last_extent = true;
3640 INIT_LIST_HEAD(&ordered_sums);
3642 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3643 nr * sizeof(u32), GFP_NOFS);
3647 first_key.objectid = (u64)-1;
3649 ins_sizes = (u32 *)ins_data;
3650 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3652 for (i = 0; i < nr; i++) {
3653 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3654 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3656 ret = btrfs_insert_empty_items(trans, log, dst_path,
3657 ins_keys, ins_sizes, nr);
3663 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3664 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3665 dst_path->slots[0]);
3667 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3669 if ((i == (nr - 1)))
3670 last_key = ins_keys[i];
3672 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3673 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3675 struct btrfs_inode_item);
3676 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3677 inode, inode_only == LOG_INODE_EXISTS,
3680 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3681 src_offset, ins_sizes[i]);
3685 * We set need_find_last_extent here in case we know we were
3686 * processing other items and then walk into the first extent in
3687 * the inode. If we don't hit an extent then nothing changes,
3688 * we'll do the last search the next time around.
3690 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3692 if (first_key.objectid == (u64)-1)
3693 first_key = ins_keys[i];
3695 need_find_last_extent = false;
3698 /* take a reference on file data extents so that truncates
3699 * or deletes of this inode don't have to relog the inode
3702 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3705 extent = btrfs_item_ptr(src, start_slot + i,
3706 struct btrfs_file_extent_item);
3708 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3711 found_type = btrfs_file_extent_type(src, extent);
3712 if (found_type == BTRFS_FILE_EXTENT_REG) {
3714 ds = btrfs_file_extent_disk_bytenr(src,
3716 /* ds == 0 is a hole */
3720 dl = btrfs_file_extent_disk_num_bytes(src,
3722 cs = btrfs_file_extent_offset(src, extent);
3723 cl = btrfs_file_extent_num_bytes(src,
3725 if (btrfs_file_extent_compression(src,
3731 ret = btrfs_lookup_csums_range(
3733 ds + cs, ds + cs + cl - 1,
3736 btrfs_release_path(dst_path);
3744 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3745 btrfs_release_path(dst_path);
3749 * we have to do this after the loop above to avoid changing the
3750 * log tree while trying to change the log tree.
3753 while (!list_empty(&ordered_sums)) {
3754 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3755 struct btrfs_ordered_sum,
3758 ret = btrfs_csum_file_blocks(trans, log, sums);
3759 list_del(&sums->list);
3766 if (need_find_last_extent && *last_extent == first_key.offset) {
3768 * We don't have any leafs between our current one and the one
3769 * we processed before that can have file extent items for our
3770 * inode (and have a generation number smaller than our current
3773 need_find_last_extent = false;
3777 * Because we use btrfs_search_forward we could skip leaves that were
3778 * not modified and then assume *last_extent is valid when it really
3779 * isn't. So back up to the previous leaf and read the end of the last
3780 * extent before we go and fill in holes.
3782 if (need_find_last_extent) {
3785 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3790 if (src_path->slots[0])
3791 src_path->slots[0]--;
3792 src = src_path->nodes[0];
3793 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3794 if (key.objectid != btrfs_ino(inode) ||
3795 key.type != BTRFS_EXTENT_DATA_KEY)
3797 extent = btrfs_item_ptr(src, src_path->slots[0],
3798 struct btrfs_file_extent_item);
3799 if (btrfs_file_extent_type(src, extent) ==
3800 BTRFS_FILE_EXTENT_INLINE) {
3801 len = btrfs_file_extent_inline_len(src,
3804 *last_extent = ALIGN(key.offset + len,
3805 fs_info->sectorsize);
3807 len = btrfs_file_extent_num_bytes(src, extent);
3808 *last_extent = key.offset + len;
3812 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3813 * things could have happened
3815 * 1) A merge could have happened, so we could currently be on a leaf
3816 * that holds what we were copying in the first place.
3817 * 2) A split could have happened, and now not all of the items we want
3818 * are on the same leaf.
3820 * So we need to adjust how we search for holes, we need to drop the
3821 * path and re-search for the first extent key we found, and then walk
3822 * forward until we hit the last one we copied.
3824 if (need_find_last_extent) {
3825 /* btrfs_prev_leaf could return 1 without releasing the path */
3826 btrfs_release_path(src_path);
3827 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3832 src = src_path->nodes[0];
3833 i = src_path->slots[0];
3839 * Ok so here we need to go through and fill in any holes we may have
3840 * to make sure that holes are punched for those areas in case they had
3841 * extents previously.
3847 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3848 ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3852 src = src_path->nodes[0];
3856 btrfs_item_key_to_cpu(src, &key, i);
3857 if (!btrfs_comp_cpu_keys(&key, &last_key))
3859 if (key.objectid != btrfs_ino(inode) ||
3860 key.type != BTRFS_EXTENT_DATA_KEY) {
3864 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3865 if (btrfs_file_extent_type(src, extent) ==
3866 BTRFS_FILE_EXTENT_INLINE) {
3867 len = btrfs_file_extent_inline_len(src, i, extent);
3868 extent_end = ALIGN(key.offset + len,
3869 fs_info->sectorsize);
3871 len = btrfs_file_extent_num_bytes(src, extent);
3872 extent_end = key.offset + len;
3876 if (*last_extent == key.offset) {
3877 *last_extent = extent_end;
3880 offset = *last_extent;
3881 len = key.offset - *last_extent;
3882 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3883 offset, 0, 0, len, 0, len, 0,
3887 *last_extent = extent_end;
3890 * Need to let the callers know we dropped the path so they should
3893 if (!ret && need_find_last_extent)
3898 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3900 struct extent_map *em1, *em2;
3902 em1 = list_entry(a, struct extent_map, list);
3903 em2 = list_entry(b, struct extent_map, list);
3905 if (em1->start < em2->start)
3907 else if (em1->start > em2->start)
3912 static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3913 struct inode *inode,
3914 struct btrfs_root *root,
3915 const struct extent_map *em,
3916 const struct list_head *logged_list,
3917 bool *ordered_io_error)
3919 struct btrfs_fs_info *fs_info = root->fs_info;
3920 struct btrfs_ordered_extent *ordered;
3921 struct btrfs_root *log = root->log_root;
3922 u64 mod_start = em->mod_start;
3923 u64 mod_len = em->mod_len;
3924 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3927 LIST_HEAD(ordered_sums);
3930 *ordered_io_error = false;
3932 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3933 em->block_start == EXTENT_MAP_HOLE)
3937 * Wait far any ordered extent that covers our extent map. If it
3938 * finishes without an error, first check and see if our csums are on
3939 * our outstanding ordered extents.
3941 list_for_each_entry(ordered, logged_list, log_list) {
3942 struct btrfs_ordered_sum *sum;
3947 if (ordered->file_offset + ordered->len <= mod_start ||
3948 mod_start + mod_len <= ordered->file_offset)
3951 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3952 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3953 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3954 const u64 start = ordered->file_offset;
3955 const u64 end = ordered->file_offset + ordered->len - 1;
3957 WARN_ON(ordered->inode != inode);
3958 filemap_fdatawrite_range(inode->i_mapping, start, end);
3961 wait_event(ordered->wait,
3962 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3963 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3965 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3967 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3968 * i_mapping flags, so that the next fsync won't get
3969 * an outdated io error too.
3971 filemap_check_errors(inode->i_mapping);
3972 *ordered_io_error = true;
3976 * We are going to copy all the csums on this ordered extent, so
3977 * go ahead and adjust mod_start and mod_len in case this
3978 * ordered extent has already been logged.
3980 if (ordered->file_offset > mod_start) {
3981 if (ordered->file_offset + ordered->len >=
3982 mod_start + mod_len)
3983 mod_len = ordered->file_offset - mod_start;
3985 * If we have this case
3987 * |--------- logged extent ---------|
3988 * |----- ordered extent ----|
3990 * Just don't mess with mod_start and mod_len, we'll
3991 * just end up logging more csums than we need and it
3995 if (ordered->file_offset + ordered->len <
3996 mod_start + mod_len) {
3997 mod_len = (mod_start + mod_len) -
3998 (ordered->file_offset + ordered->len);
3999 mod_start = ordered->file_offset +
4010 * To keep us from looping for the above case of an ordered
4011 * extent that falls inside of the logged extent.
4013 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4017 list_for_each_entry(sum, &ordered->list, list) {
4018 ret = btrfs_csum_file_blocks(trans, log, sum);
4024 if (*ordered_io_error || !mod_len || ret || skip_csum)
4027 if (em->compress_type) {
4029 csum_len = max(em->block_len, em->orig_block_len);
4031 csum_offset = mod_start - em->start;
4035 /* block start is already adjusted for the file extent offset. */
4036 ret = btrfs_lookup_csums_range(fs_info->csum_root,
4037 em->block_start + csum_offset,
4038 em->block_start + csum_offset +
4039 csum_len - 1, &ordered_sums, 0);
4043 while (!list_empty(&ordered_sums)) {
4044 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4045 struct btrfs_ordered_sum,
4048 ret = btrfs_csum_file_blocks(trans, log, sums);
4049 list_del(&sums->list);
4056 static int log_one_extent(struct btrfs_trans_handle *trans,
4057 struct inode *inode, struct btrfs_root *root,
4058 const struct extent_map *em,
4059 struct btrfs_path *path,
4060 const struct list_head *logged_list,
4061 struct btrfs_log_ctx *ctx)
4063 struct btrfs_root *log = root->log_root;
4064 struct btrfs_file_extent_item *fi;
4065 struct extent_buffer *leaf;
4066 struct btrfs_map_token token;
4067 struct btrfs_key key;
4068 u64 extent_offset = em->start - em->orig_start;
4071 int extent_inserted = 0;
4072 bool ordered_io_err = false;
4074 ret = wait_ordered_extents(trans, inode, root, em, logged_list,
4079 if (ordered_io_err) {
4084 btrfs_init_map_token(&token);
4086 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4087 em->start + em->len, NULL, 0, 1,
4088 sizeof(*fi), &extent_inserted);
4092 if (!extent_inserted) {
4093 key.objectid = btrfs_ino(inode);
4094 key.type = BTRFS_EXTENT_DATA_KEY;
4095 key.offset = em->start;
4097 ret = btrfs_insert_empty_item(trans, log, path, &key,
4102 leaf = path->nodes[0];
4103 fi = btrfs_item_ptr(leaf, path->slots[0],
4104 struct btrfs_file_extent_item);
4106 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4108 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4109 btrfs_set_token_file_extent_type(leaf, fi,
4110 BTRFS_FILE_EXTENT_PREALLOC,
4113 btrfs_set_token_file_extent_type(leaf, fi,
4114 BTRFS_FILE_EXTENT_REG,
4117 block_len = max(em->block_len, em->orig_block_len);
4118 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4119 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4122 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4124 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4125 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4127 extent_offset, &token);
4128 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4131 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4132 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4136 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4137 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4138 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4139 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4141 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4142 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4143 btrfs_mark_buffer_dirty(leaf);
4145 btrfs_release_path(path);
4150 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4151 struct btrfs_root *root,
4152 struct inode *inode,
4153 struct btrfs_path *path,
4154 struct list_head *logged_list,
4155 struct btrfs_log_ctx *ctx,
4159 struct extent_map *em, *n;
4160 struct list_head extents;
4161 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4166 INIT_LIST_HEAD(&extents);
4168 down_write(&BTRFS_I(inode)->dio_sem);
4169 write_lock(&tree->lock);
4170 test_gen = root->fs_info->last_trans_committed;
4172 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4173 list_del_init(&em->list);
4176 * Just an arbitrary number, this can be really CPU intensive
4177 * once we start getting a lot of extents, and really once we
4178 * have a bunch of extents we just want to commit since it will
4181 if (++num > 32768) {
4182 list_del_init(&tree->modified_extents);
4187 if (em->generation <= test_gen)
4189 /* Need a ref to keep it from getting evicted from cache */
4190 atomic_inc(&em->refs);
4191 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4192 list_add_tail(&em->list, &extents);
4196 list_sort(NULL, &extents, extent_cmp);
4197 btrfs_get_logged_extents(inode, logged_list, start, end);
4199 * Some ordered extents started by fsync might have completed
4200 * before we could collect them into the list logged_list, which
4201 * means they're gone, not in our logged_list nor in the inode's
4202 * ordered tree. We want the application/user space to know an
4203 * error happened while attempting to persist file data so that
4204 * it can take proper action. If such error happened, we leave
4205 * without writing to the log tree and the fsync must report the
4206 * file data write error and not commit the current transaction.
4208 ret = filemap_check_errors(inode->i_mapping);
4212 while (!list_empty(&extents)) {
4213 em = list_entry(extents.next, struct extent_map, list);
4215 list_del_init(&em->list);
4218 * If we had an error we just need to delete everybody from our
4222 clear_em_logging(tree, em);
4223 free_extent_map(em);
4227 write_unlock(&tree->lock);
4229 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4231 write_lock(&tree->lock);
4232 clear_em_logging(tree, em);
4233 free_extent_map(em);
4235 WARN_ON(!list_empty(&extents));
4236 write_unlock(&tree->lock);
4237 up_write(&BTRFS_I(inode)->dio_sem);
4239 btrfs_release_path(path);
4243 static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
4244 struct btrfs_path *path, u64 *size_ret)
4246 struct btrfs_key key;
4249 key.objectid = btrfs_ino(inode);
4250 key.type = BTRFS_INODE_ITEM_KEY;
4253 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4256 } else if (ret > 0) {
4259 struct btrfs_inode_item *item;
4261 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4262 struct btrfs_inode_item);
4263 *size_ret = btrfs_inode_size(path->nodes[0], item);
4266 btrfs_release_path(path);
4271 * At the moment we always log all xattrs. This is to figure out at log replay
4272 * time which xattrs must have their deletion replayed. If a xattr is missing
4273 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4274 * because if a xattr is deleted, the inode is fsynced and a power failure
4275 * happens, causing the log to be replayed the next time the fs is mounted,
4276 * we want the xattr to not exist anymore (same behaviour as other filesystems
4277 * with a journal, ext3/4, xfs, f2fs, etc).
4279 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4280 struct btrfs_root *root,
4281 struct inode *inode,
4282 struct btrfs_path *path,
4283 struct btrfs_path *dst_path)
4286 struct btrfs_key key;
4287 const u64 ino = btrfs_ino(inode);
4292 key.type = BTRFS_XATTR_ITEM_KEY;
4295 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4300 int slot = path->slots[0];
4301 struct extent_buffer *leaf = path->nodes[0];
4302 int nritems = btrfs_header_nritems(leaf);
4304 if (slot >= nritems) {
4306 u64 last_extent = 0;
4308 ret = copy_items(trans, inode, dst_path, path,
4309 &last_extent, start_slot,
4311 /* can't be 1, extent items aren't processed */
4317 ret = btrfs_next_leaf(root, path);
4325 btrfs_item_key_to_cpu(leaf, &key, slot);
4326 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4336 u64 last_extent = 0;
4338 ret = copy_items(trans, inode, dst_path, path,
4339 &last_extent, start_slot,
4341 /* can't be 1, extent items aren't processed */
4351 * If the no holes feature is enabled we need to make sure any hole between the
4352 * last extent and the i_size of our inode is explicitly marked in the log. This
4353 * is to make sure that doing something like:
4355 * 1) create file with 128Kb of data
4356 * 2) truncate file to 64Kb
4357 * 3) truncate file to 256Kb
4359 * 5) <crash/power failure>
4360 * 6) mount fs and trigger log replay
4362 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4363 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4364 * file correspond to a hole. The presence of explicit holes in a log tree is
4365 * what guarantees that log replay will remove/adjust file extent items in the
4368 * Here we do not need to care about holes between extents, that is already done
4369 * by copy_items(). We also only need to do this in the full sync path, where we
4370 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4371 * lookup the list of modified extent maps and if any represents a hole, we
4372 * insert a corresponding extent representing a hole in the log tree.
4374 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4375 struct btrfs_root *root,
4376 struct inode *inode,
4377 struct btrfs_path *path)
4379 struct btrfs_fs_info *fs_info = root->fs_info;
4381 struct btrfs_key key;
4384 struct extent_buffer *leaf;
4385 struct btrfs_root *log = root->log_root;
4386 const u64 ino = btrfs_ino(inode);
4387 const u64 i_size = i_size_read(inode);
4389 if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4393 key.type = BTRFS_EXTENT_DATA_KEY;
4394 key.offset = (u64)-1;
4396 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4401 ASSERT(path->slots[0] > 0);
4403 leaf = path->nodes[0];
4404 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4406 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4407 /* inode does not have any extents */
4411 struct btrfs_file_extent_item *extent;
4415 * If there's an extent beyond i_size, an explicit hole was
4416 * already inserted by copy_items().
4418 if (key.offset >= i_size)
4421 extent = btrfs_item_ptr(leaf, path->slots[0],
4422 struct btrfs_file_extent_item);
4424 if (btrfs_file_extent_type(leaf, extent) ==
4425 BTRFS_FILE_EXTENT_INLINE) {
4426 len = btrfs_file_extent_inline_len(leaf,
4429 ASSERT(len == i_size);
4433 len = btrfs_file_extent_num_bytes(leaf, extent);
4434 /* Last extent goes beyond i_size, no need to log a hole. */
4435 if (key.offset + len > i_size)
4437 hole_start = key.offset + len;
4438 hole_size = i_size - hole_start;
4440 btrfs_release_path(path);
4442 /* Last extent ends at i_size. */
4446 hole_size = ALIGN(hole_size, fs_info->sectorsize);
4447 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4448 hole_size, 0, hole_size, 0, 0, 0);
4453 * When we are logging a new inode X, check if it doesn't have a reference that
4454 * matches the reference from some other inode Y created in a past transaction
4455 * and that was renamed in the current transaction. If we don't do this, then at
4456 * log replay time we can lose inode Y (and all its files if it's a directory):
4459 * echo "hello world" > /mnt/x/foobar
4462 * mkdir /mnt/x # or touch /mnt/x
4463 * xfs_io -c fsync /mnt/x
4465 * mount fs, trigger log replay
4467 * After the log replay procedure, we would lose the first directory and all its
4468 * files (file foobar).
4469 * For the case where inode Y is not a directory we simply end up losing it:
4471 * echo "123" > /mnt/foo
4473 * mv /mnt/foo /mnt/bar
4474 * echo "abc" > /mnt/foo
4475 * xfs_io -c fsync /mnt/foo
4478 * We also need this for cases where a snapshot entry is replaced by some other
4479 * entry (file or directory) otherwise we end up with an unreplayable log due to
4480 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4481 * if it were a regular entry:
4484 * btrfs subvolume snapshot /mnt /mnt/x/snap
4485 * btrfs subvolume delete /mnt/x/snap
4488 * fsync /mnt/x or fsync some new file inside it
4491 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4492 * the same transaction.
4494 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4496 const struct btrfs_key *key,
4497 struct inode *inode,
4501 struct btrfs_path *search_path;
4504 u32 item_size = btrfs_item_size_nr(eb, slot);
4506 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4508 search_path = btrfs_alloc_path();
4511 search_path->search_commit_root = 1;
4512 search_path->skip_locking = 1;
4514 while (cur_offset < item_size) {
4518 unsigned long name_ptr;
4519 struct btrfs_dir_item *di;
4521 if (key->type == BTRFS_INODE_REF_KEY) {
4522 struct btrfs_inode_ref *iref;
4524 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4525 parent = key->offset;
4526 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4527 name_ptr = (unsigned long)(iref + 1);
4528 this_len = sizeof(*iref) + this_name_len;
4530 struct btrfs_inode_extref *extref;
4532 extref = (struct btrfs_inode_extref *)(ptr +
4534 parent = btrfs_inode_extref_parent(eb, extref);
4535 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4536 name_ptr = (unsigned long)&extref->name;
4537 this_len = sizeof(*extref) + this_name_len;
4540 if (this_name_len > name_len) {
4543 new_name = krealloc(name, this_name_len, GFP_NOFS);
4548 name_len = this_name_len;
4552 read_extent_buffer(eb, name, name_ptr, this_name_len);
4553 di = btrfs_lookup_dir_item(NULL, BTRFS_I(inode)->root,
4554 search_path, parent,
4555 name, this_name_len, 0);
4556 if (di && !IS_ERR(di)) {
4557 struct btrfs_key di_key;
4559 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4561 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4563 *other_ino = di_key.objectid;
4568 } else if (IS_ERR(di)) {
4572 btrfs_release_path(search_path);
4574 cur_offset += this_len;
4578 btrfs_free_path(search_path);
4583 /* log a single inode in the tree log.
4584 * At least one parent directory for this inode must exist in the tree
4585 * or be logged already.
4587 * Any items from this inode changed by the current transaction are copied
4588 * to the log tree. An extra reference is taken on any extents in this
4589 * file, allowing us to avoid a whole pile of corner cases around logging
4590 * blocks that have been removed from the tree.
4592 * See LOG_INODE_ALL and related defines for a description of what inode_only
4595 * This handles both files and directories.
4597 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4598 struct btrfs_root *root, struct inode *inode,
4602 struct btrfs_log_ctx *ctx)
4604 struct btrfs_fs_info *fs_info = root->fs_info;
4605 struct btrfs_path *path;
4606 struct btrfs_path *dst_path;
4607 struct btrfs_key min_key;
4608 struct btrfs_key max_key;
4609 struct btrfs_root *log = root->log_root;
4610 struct extent_buffer *src = NULL;
4611 LIST_HEAD(logged_list);
4612 u64 last_extent = 0;
4616 int ins_start_slot = 0;
4618 bool fast_search = false;
4619 u64 ino = btrfs_ino(inode);
4620 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4621 u64 logged_isize = 0;
4622 bool need_log_inode_item = true;
4624 path = btrfs_alloc_path();
4627 dst_path = btrfs_alloc_path();
4629 btrfs_free_path(path);
4633 min_key.objectid = ino;
4634 min_key.type = BTRFS_INODE_ITEM_KEY;
4637 max_key.objectid = ino;
4640 /* today the code can only do partial logging of directories */
4641 if (S_ISDIR(inode->i_mode) ||
4642 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4643 &BTRFS_I(inode)->runtime_flags) &&
4644 inode_only == LOG_INODE_EXISTS))
4645 max_key.type = BTRFS_XATTR_ITEM_KEY;
4647 max_key.type = (u8)-1;
4648 max_key.offset = (u64)-1;
4651 * Only run delayed items if we are a dir or a new file.
4652 * Otherwise commit the delayed inode only, which is needed in
4653 * order for the log replay code to mark inodes for link count
4654 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4656 if (S_ISDIR(inode->i_mode) ||
4657 BTRFS_I(inode)->generation > fs_info->last_trans_committed)
4658 ret = btrfs_commit_inode_delayed_items(trans, inode);
4660 ret = btrfs_commit_inode_delayed_inode(inode);
4663 btrfs_free_path(path);
4664 btrfs_free_path(dst_path);
4668 mutex_lock(&BTRFS_I(inode)->log_mutex);
4671 * a brute force approach to making sure we get the most uptodate
4672 * copies of everything.
4674 if (S_ISDIR(inode->i_mode)) {
4675 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4677 if (inode_only == LOG_INODE_EXISTS)
4678 max_key_type = BTRFS_XATTR_ITEM_KEY;
4679 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4681 if (inode_only == LOG_INODE_EXISTS) {
4683 * Make sure the new inode item we write to the log has
4684 * the same isize as the current one (if it exists).
4685 * This is necessary to prevent data loss after log
4686 * replay, and also to prevent doing a wrong expanding
4687 * truncate - for e.g. create file, write 4K into offset
4688 * 0, fsync, write 4K into offset 4096, add hard link,
4689 * fsync some other file (to sync log), power fail - if
4690 * we use the inode's current i_size, after log replay
4691 * we get a 8Kb file, with the last 4Kb extent as a hole
4692 * (zeroes), as if an expanding truncate happened,
4693 * instead of getting a file of 4Kb only.
4695 err = logged_inode_size(log, inode, path,
4700 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4701 &BTRFS_I(inode)->runtime_flags)) {
4702 if (inode_only == LOG_INODE_EXISTS) {
4703 max_key.type = BTRFS_XATTR_ITEM_KEY;
4704 ret = drop_objectid_items(trans, log, path, ino,
4707 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4708 &BTRFS_I(inode)->runtime_flags);
4709 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4710 &BTRFS_I(inode)->runtime_flags);
4712 ret = btrfs_truncate_inode_items(trans,
4718 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4719 &BTRFS_I(inode)->runtime_flags) ||
4720 inode_only == LOG_INODE_EXISTS) {
4721 if (inode_only == LOG_INODE_ALL)
4723 max_key.type = BTRFS_XATTR_ITEM_KEY;
4724 ret = drop_objectid_items(trans, log, path, ino,
4727 if (inode_only == LOG_INODE_ALL)
4740 ret = btrfs_search_forward(root, &min_key,
4741 path, trans->transid);
4749 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4750 if (min_key.objectid != ino)
4752 if (min_key.type > max_key.type)
4755 if (min_key.type == BTRFS_INODE_ITEM_KEY)
4756 need_log_inode_item = false;
4758 if ((min_key.type == BTRFS_INODE_REF_KEY ||
4759 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4760 BTRFS_I(inode)->generation == trans->transid) {
4763 ret = btrfs_check_ref_name_override(path->nodes[0],
4770 } else if (ret > 0 && ctx &&
4771 other_ino != btrfs_ino(ctx->inode)) {
4772 struct btrfs_key inode_key;
4773 struct inode *other_inode;
4779 ins_start_slot = path->slots[0];
4781 ret = copy_items(trans, inode, dst_path, path,
4782 &last_extent, ins_start_slot,
4790 btrfs_release_path(path);
4791 inode_key.objectid = other_ino;
4792 inode_key.type = BTRFS_INODE_ITEM_KEY;
4793 inode_key.offset = 0;
4794 other_inode = btrfs_iget(fs_info->sb,
4798 * If the other inode that had a conflicting dir
4799 * entry was deleted in the current transaction,
4800 * we don't need to do more work nor fallback to
4801 * a transaction commit.
4803 if (IS_ERR(other_inode) &&
4804 PTR_ERR(other_inode) == -ENOENT) {
4806 } else if (IS_ERR(other_inode)) {
4807 err = PTR_ERR(other_inode);
4811 * We are safe logging the other inode without
4812 * acquiring its i_mutex as long as we log with
4813 * the LOG_INODE_EXISTS mode. We're safe against
4814 * concurrent renames of the other inode as well
4815 * because during a rename we pin the log and
4816 * update the log with the new name before we
4819 err = btrfs_log_inode(trans, root, other_inode,
4830 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4831 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4834 ret = copy_items(trans, inode, dst_path, path,
4835 &last_extent, ins_start_slot,
4836 ins_nr, inode_only, logged_isize);
4843 btrfs_release_path(path);
4849 src = path->nodes[0];
4850 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4853 } else if (!ins_nr) {
4854 ins_start_slot = path->slots[0];
4859 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4860 ins_start_slot, ins_nr, inode_only,
4868 btrfs_release_path(path);
4872 ins_start_slot = path->slots[0];
4875 nritems = btrfs_header_nritems(path->nodes[0]);
4877 if (path->slots[0] < nritems) {
4878 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4883 ret = copy_items(trans, inode, dst_path, path,
4884 &last_extent, ins_start_slot,
4885 ins_nr, inode_only, logged_isize);
4893 btrfs_release_path(path);
4895 if (min_key.offset < (u64)-1) {
4897 } else if (min_key.type < max_key.type) {
4905 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4906 ins_start_slot, ins_nr, inode_only,
4916 btrfs_release_path(path);
4917 btrfs_release_path(dst_path);
4918 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4921 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4922 btrfs_release_path(path);
4923 btrfs_release_path(dst_path);
4924 err = btrfs_log_trailing_hole(trans, root, inode, path);
4929 btrfs_release_path(path);
4930 btrfs_release_path(dst_path);
4931 if (need_log_inode_item) {
4932 err = log_inode_item(trans, log, dst_path, inode);
4937 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4938 &logged_list, ctx, start, end);
4943 } else if (inode_only == LOG_INODE_ALL) {
4944 struct extent_map *em, *n;
4946 write_lock(&em_tree->lock);
4948 * We can't just remove every em if we're called for a ranged
4949 * fsync - that is, one that doesn't cover the whole possible
4950 * file range (0 to LLONG_MAX). This is because we can have
4951 * em's that fall outside the range we're logging and therefore
4952 * their ordered operations haven't completed yet
4953 * (btrfs_finish_ordered_io() not invoked yet). This means we
4954 * didn't get their respective file extent item in the fs/subvol
4955 * tree yet, and need to let the next fast fsync (one which
4956 * consults the list of modified extent maps) find the em so
4957 * that it logs a matching file extent item and waits for the
4958 * respective ordered operation to complete (if it's still
4961 * Removing every em outside the range we're logging would make
4962 * the next fast fsync not log their matching file extent items,
4963 * therefore making us lose data after a log replay.
4965 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4967 const u64 mod_end = em->mod_start + em->mod_len - 1;
4969 if (em->mod_start >= start && mod_end <= end)
4970 list_del_init(&em->list);
4972 write_unlock(&em_tree->lock);
4975 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4976 ret = log_directory_changes(trans, root, inode, path, dst_path,
4984 spin_lock(&BTRFS_I(inode)->lock);
4985 BTRFS_I(inode)->logged_trans = trans->transid;
4986 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4987 spin_unlock(&BTRFS_I(inode)->lock);
4990 btrfs_put_logged_extents(&logged_list);
4992 btrfs_submit_logged_extents(&logged_list, log);
4993 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4995 btrfs_free_path(path);
4996 btrfs_free_path(dst_path);
5001 * Check if we must fallback to a transaction commit when logging an inode.
5002 * This must be called after logging the inode and is used only in the context
5003 * when fsyncing an inode requires the need to log some other inode - in which
5004 * case we can't lock the i_mutex of each other inode we need to log as that
5005 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5006 * log inodes up or down in the hierarchy) or rename operations for example. So
5007 * we take the log_mutex of the inode after we have logged it and then check for
5008 * its last_unlink_trans value - this is safe because any task setting
5009 * last_unlink_trans must take the log_mutex and it must do this before it does
5010 * the actual unlink operation, so if we do this check before a concurrent task
5011 * sets last_unlink_trans it means we've logged a consistent version/state of
5012 * all the inode items, otherwise we are not sure and must do a transaction
5013 * commit (the concurrent task might have only updated last_unlink_trans before
5014 * we logged the inode or it might have also done the unlink).
5016 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5017 struct inode *inode)
5019 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
5022 mutex_lock(&BTRFS_I(inode)->log_mutex);
5023 if (BTRFS_I(inode)->last_unlink_trans > fs_info->last_trans_committed) {
5025 * Make sure any commits to the log are forced to be full
5028 btrfs_set_log_full_commit(fs_info, trans);
5031 mutex_unlock(&BTRFS_I(inode)->log_mutex);
5037 * follow the dentry parent pointers up the chain and see if any
5038 * of the directories in it require a full commit before they can
5039 * be logged. Returns zero if nothing special needs to be done or 1 if
5040 * a full commit is required.
5042 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5043 struct inode *inode,
5044 struct dentry *parent,
5045 struct super_block *sb,
5049 struct dentry *old_parent = NULL;
5050 struct inode *orig_inode = inode;
5053 * for regular files, if its inode is already on disk, we don't
5054 * have to worry about the parents at all. This is because
5055 * we can use the last_unlink_trans field to record renames
5056 * and other fun in this file.
5058 if (S_ISREG(inode->i_mode) &&
5059 BTRFS_I(inode)->generation <= last_committed &&
5060 BTRFS_I(inode)->last_unlink_trans <= last_committed)
5063 if (!S_ISDIR(inode->i_mode)) {
5064 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5066 inode = d_inode(parent);
5071 * If we are logging a directory then we start with our inode,
5072 * not our parent's inode, so we need to skip setting the
5073 * logged_trans so that further down in the log code we don't
5074 * think this inode has already been logged.
5076 if (inode != orig_inode)
5077 BTRFS_I(inode)->logged_trans = trans->transid;
5080 if (btrfs_must_commit_transaction(trans, inode)) {
5085 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5088 if (IS_ROOT(parent)) {
5089 inode = d_inode(parent);
5090 if (btrfs_must_commit_transaction(trans, inode))
5095 parent = dget_parent(parent);
5097 old_parent = parent;
5098 inode = d_inode(parent);
5106 struct btrfs_dir_list {
5108 struct list_head list;
5112 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5113 * details about the why it is needed.
5114 * This is a recursive operation - if an existing dentry corresponds to a
5115 * directory, that directory's new entries are logged too (same behaviour as
5116 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5117 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5118 * complains about the following circular lock dependency / possible deadlock:
5122 * lock(&type->i_mutex_dir_key#3/2);
5123 * lock(sb_internal#2);
5124 * lock(&type->i_mutex_dir_key#3/2);
5125 * lock(&sb->s_type->i_mutex_key#14);
5127 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5128 * sb_start_intwrite() in btrfs_start_transaction().
5129 * Not locking i_mutex of the inodes is still safe because:
5131 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5132 * that while logging the inode new references (names) are added or removed
5133 * from the inode, leaving the logged inode item with a link count that does
5134 * not match the number of logged inode reference items. This is fine because
5135 * at log replay time we compute the real number of links and correct the
5136 * link count in the inode item (see replay_one_buffer() and
5137 * link_to_fixup_dir());
5139 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5140 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5141 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5142 * has a size that doesn't match the sum of the lengths of all the logged
5143 * names. This does not result in a problem because if a dir_item key is
5144 * logged but its matching dir_index key is not logged, at log replay time we
5145 * don't use it to replay the respective name (see replay_one_name()). On the
5146 * other hand if only the dir_index key ends up being logged, the respective
5147 * name is added to the fs/subvol tree with both the dir_item and dir_index
5148 * keys created (see replay_one_name()).
5149 * The directory's inode item with a wrong i_size is not a problem as well,
5150 * since we don't use it at log replay time to set the i_size in the inode
5151 * item of the fs/subvol tree (see overwrite_item()).
5153 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5154 struct btrfs_root *root,
5155 struct inode *start_inode,
5156 struct btrfs_log_ctx *ctx)
5158 struct btrfs_fs_info *fs_info = root->fs_info;
5159 struct btrfs_root *log = root->log_root;
5160 struct btrfs_path *path;
5161 LIST_HEAD(dir_list);
5162 struct btrfs_dir_list *dir_elem;
5165 path = btrfs_alloc_path();
5169 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5171 btrfs_free_path(path);
5174 dir_elem->ino = btrfs_ino(start_inode);
5175 list_add_tail(&dir_elem->list, &dir_list);
5177 while (!list_empty(&dir_list)) {
5178 struct extent_buffer *leaf;
5179 struct btrfs_key min_key;
5183 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5186 goto next_dir_inode;
5188 min_key.objectid = dir_elem->ino;
5189 min_key.type = BTRFS_DIR_ITEM_KEY;
5192 btrfs_release_path(path);
5193 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5195 goto next_dir_inode;
5196 } else if (ret > 0) {
5198 goto next_dir_inode;
5202 leaf = path->nodes[0];
5203 nritems = btrfs_header_nritems(leaf);
5204 for (i = path->slots[0]; i < nritems; i++) {
5205 struct btrfs_dir_item *di;
5206 struct btrfs_key di_key;
5207 struct inode *di_inode;
5208 struct btrfs_dir_list *new_dir_elem;
5209 int log_mode = LOG_INODE_EXISTS;
5212 btrfs_item_key_to_cpu(leaf, &min_key, i);
5213 if (min_key.objectid != dir_elem->ino ||
5214 min_key.type != BTRFS_DIR_ITEM_KEY)
5215 goto next_dir_inode;
5217 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5218 type = btrfs_dir_type(leaf, di);
5219 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5220 type != BTRFS_FT_DIR)
5222 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5223 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5226 btrfs_release_path(path);
5227 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5228 if (IS_ERR(di_inode)) {
5229 ret = PTR_ERR(di_inode);
5230 goto next_dir_inode;
5233 if (btrfs_inode_in_log(di_inode, trans->transid)) {
5238 ctx->log_new_dentries = false;
5239 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5240 log_mode = LOG_INODE_ALL;
5241 ret = btrfs_log_inode(trans, root, di_inode,
5242 log_mode, 0, LLONG_MAX, ctx);
5244 btrfs_must_commit_transaction(trans, di_inode))
5248 goto next_dir_inode;
5249 if (ctx->log_new_dentries) {
5250 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5252 if (!new_dir_elem) {
5254 goto next_dir_inode;
5256 new_dir_elem->ino = di_key.objectid;
5257 list_add_tail(&new_dir_elem->list, &dir_list);
5262 ret = btrfs_next_leaf(log, path);
5264 goto next_dir_inode;
5265 } else if (ret > 0) {
5267 goto next_dir_inode;
5271 if (min_key.offset < (u64)-1) {
5276 list_del(&dir_elem->list);
5280 btrfs_free_path(path);
5284 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5285 struct inode *inode,
5286 struct btrfs_log_ctx *ctx)
5288 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5290 struct btrfs_path *path;
5291 struct btrfs_key key;
5292 struct btrfs_root *root = BTRFS_I(inode)->root;
5293 const u64 ino = btrfs_ino(inode);
5295 path = btrfs_alloc_path();
5298 path->skip_locking = 1;
5299 path->search_commit_root = 1;
5302 key.type = BTRFS_INODE_REF_KEY;
5304 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5309 struct extent_buffer *leaf = path->nodes[0];
5310 int slot = path->slots[0];
5315 if (slot >= btrfs_header_nritems(leaf)) {
5316 ret = btrfs_next_leaf(root, path);
5324 btrfs_item_key_to_cpu(leaf, &key, slot);
5325 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5326 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5329 item_size = btrfs_item_size_nr(leaf, slot);
5330 ptr = btrfs_item_ptr_offset(leaf, slot);
5331 while (cur_offset < item_size) {
5332 struct btrfs_key inode_key;
5333 struct inode *dir_inode;
5335 inode_key.type = BTRFS_INODE_ITEM_KEY;
5336 inode_key.offset = 0;
5338 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5339 struct btrfs_inode_extref *extref;
5341 extref = (struct btrfs_inode_extref *)
5343 inode_key.objectid = btrfs_inode_extref_parent(
5345 cur_offset += sizeof(*extref);
5346 cur_offset += btrfs_inode_extref_name_len(leaf,
5349 inode_key.objectid = key.offset;
5350 cur_offset = item_size;
5353 dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5355 /* If parent inode was deleted, skip it. */
5356 if (IS_ERR(dir_inode))
5360 ctx->log_new_dentries = false;
5361 ret = btrfs_log_inode(trans, root, dir_inode,
5362 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5364 btrfs_must_commit_transaction(trans, dir_inode))
5366 if (!ret && ctx && ctx->log_new_dentries)
5367 ret = log_new_dir_dentries(trans, root,
5377 btrfs_free_path(path);
5382 * helper function around btrfs_log_inode to make sure newly created
5383 * parent directories also end up in the log. A minimal inode and backref
5384 * only logging is done of any parent directories that are older than
5385 * the last committed transaction
5387 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5388 struct btrfs_root *root, struct inode *inode,
5389 struct dentry *parent,
5393 struct btrfs_log_ctx *ctx)
5395 struct btrfs_fs_info *fs_info = root->fs_info;
5396 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
5397 struct super_block *sb;
5398 struct dentry *old_parent = NULL;
5400 u64 last_committed = fs_info->last_trans_committed;
5401 bool log_dentries = false;
5402 struct inode *orig_inode = inode;
5406 if (btrfs_test_opt(fs_info, NOTREELOG)) {
5412 * The prev transaction commit doesn't complete, we need do
5413 * full commit by ourselves.
5415 if (fs_info->last_trans_log_full_commit >
5416 fs_info->last_trans_committed) {
5421 if (root != BTRFS_I(inode)->root ||
5422 btrfs_root_refs(&root->root_item) == 0) {
5427 ret = check_parent_dirs_for_sync(trans, inode, parent,
5428 sb, last_committed);
5432 if (btrfs_inode_in_log(inode, trans->transid)) {
5433 ret = BTRFS_NO_LOG_SYNC;
5437 ret = start_log_trans(trans, root, ctx);
5441 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5446 * for regular files, if its inode is already on disk, we don't
5447 * have to worry about the parents at all. This is because
5448 * we can use the last_unlink_trans field to record renames
5449 * and other fun in this file.
5451 if (S_ISREG(inode->i_mode) &&
5452 BTRFS_I(inode)->generation <= last_committed &&
5453 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
5458 if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries)
5459 log_dentries = true;
5462 * On unlink we must make sure all our current and old parent directory
5463 * inodes are fully logged. This is to prevent leaving dangling
5464 * directory index entries in directories that were our parents but are
5465 * not anymore. Not doing this results in old parent directory being
5466 * impossible to delete after log replay (rmdir will always fail with
5467 * error -ENOTEMPTY).
5473 * ln testdir/foo testdir/bar
5475 * unlink testdir/bar
5476 * xfs_io -c fsync testdir/foo
5478 * mount fs, triggers log replay
5480 * If we don't log the parent directory (testdir), after log replay the
5481 * directory still has an entry pointing to the file inode using the bar
5482 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5483 * the file inode has a link count of 1.
5489 * ln foo testdir/foo2
5490 * ln foo testdir/foo3
5492 * unlink testdir/foo3
5493 * xfs_io -c fsync foo
5495 * mount fs, triggers log replay
5497 * Similar as the first example, after log replay the parent directory
5498 * testdir still has an entry pointing to the inode file with name foo3
5499 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5500 * and has a link count of 2.
5502 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
5503 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5509 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5512 inode = d_inode(parent);
5513 if (root != BTRFS_I(inode)->root)
5516 if (BTRFS_I(inode)->generation > last_committed) {
5517 ret = btrfs_log_inode(trans, root, inode,
5523 if (IS_ROOT(parent))
5526 parent = dget_parent(parent);
5528 old_parent = parent;
5531 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5537 btrfs_set_log_full_commit(fs_info, trans);
5542 btrfs_remove_log_ctx(root, ctx);
5543 btrfs_end_log_trans(root);
5549 * it is not safe to log dentry if the chunk root has added new
5550 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5551 * If this returns 1, you must commit the transaction to safely get your
5554 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5555 struct btrfs_root *root, struct dentry *dentry,
5558 struct btrfs_log_ctx *ctx)
5560 struct dentry *parent = dget_parent(dentry);
5563 ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent,
5564 start, end, 0, ctx);
5571 * should be called during mount to recover any replay any log trees
5574 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5577 struct btrfs_path *path;
5578 struct btrfs_trans_handle *trans;
5579 struct btrfs_key key;
5580 struct btrfs_key found_key;
5581 struct btrfs_key tmp_key;
5582 struct btrfs_root *log;
5583 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5584 struct walk_control wc = {
5585 .process_func = process_one_buffer,
5589 path = btrfs_alloc_path();
5593 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5595 trans = btrfs_start_transaction(fs_info->tree_root, 0);
5596 if (IS_ERR(trans)) {
5597 ret = PTR_ERR(trans);
5604 ret = walk_log_tree(trans, log_root_tree, &wc);
5606 btrfs_handle_fs_error(fs_info, ret,
5607 "Failed to pin buffers while recovering log root tree.");
5612 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5613 key.offset = (u64)-1;
5614 key.type = BTRFS_ROOT_ITEM_KEY;
5617 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5620 btrfs_handle_fs_error(fs_info, ret,
5621 "Couldn't find tree log root.");
5625 if (path->slots[0] == 0)
5629 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5631 btrfs_release_path(path);
5632 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5635 log = btrfs_read_fs_root(log_root_tree, &found_key);
5638 btrfs_handle_fs_error(fs_info, ret,
5639 "Couldn't read tree log root.");
5643 tmp_key.objectid = found_key.offset;
5644 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5645 tmp_key.offset = (u64)-1;
5647 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5648 if (IS_ERR(wc.replay_dest)) {
5649 ret = PTR_ERR(wc.replay_dest);
5650 free_extent_buffer(log->node);
5651 free_extent_buffer(log->commit_root);
5653 btrfs_handle_fs_error(fs_info, ret,
5654 "Couldn't read target root for tree log recovery.");
5658 wc.replay_dest->log_root = log;
5659 btrfs_record_root_in_trans(trans, wc.replay_dest);
5660 ret = walk_log_tree(trans, log, &wc);
5662 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5663 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5667 key.offset = found_key.offset - 1;
5668 wc.replay_dest->log_root = NULL;
5669 free_extent_buffer(log->node);
5670 free_extent_buffer(log->commit_root);
5676 if (found_key.offset == 0)
5679 btrfs_release_path(path);
5681 /* step one is to pin it all, step two is to replay just inodes */
5684 wc.process_func = replay_one_buffer;
5685 wc.stage = LOG_WALK_REPLAY_INODES;
5688 /* step three is to replay everything */
5689 if (wc.stage < LOG_WALK_REPLAY_ALL) {
5694 btrfs_free_path(path);
5696 /* step 4: commit the transaction, which also unpins the blocks */
5697 ret = btrfs_commit_transaction(trans);
5701 free_extent_buffer(log_root_tree->node);
5702 log_root_tree->log_root = NULL;
5703 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5704 kfree(log_root_tree);
5709 btrfs_end_transaction(wc.trans);
5710 btrfs_free_path(path);
5715 * there are some corner cases where we want to force a full
5716 * commit instead of allowing a directory to be logged.
5718 * They revolve around files there were unlinked from the directory, and
5719 * this function updates the parent directory so that a full commit is
5720 * properly done if it is fsync'd later after the unlinks are done.
5722 * Must be called before the unlink operations (updates to the subvolume tree,
5723 * inodes, etc) are done.
5725 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5726 struct inode *dir, struct inode *inode,
5730 * when we're logging a file, if it hasn't been renamed
5731 * or unlinked, and its inode is fully committed on disk,
5732 * we don't have to worry about walking up the directory chain
5733 * to log its parents.
5735 * So, we use the last_unlink_trans field to put this transid
5736 * into the file. When the file is logged we check it and
5737 * don't log the parents if the file is fully on disk.
5739 mutex_lock(&BTRFS_I(inode)->log_mutex);
5740 BTRFS_I(inode)->last_unlink_trans = trans->transid;
5741 mutex_unlock(&BTRFS_I(inode)->log_mutex);
5744 * if this directory was already logged any new
5745 * names for this file/dir will get recorded
5748 if (BTRFS_I(dir)->logged_trans == trans->transid)
5752 * if the inode we're about to unlink was logged,
5753 * the log will be properly updated for any new names
5755 if (BTRFS_I(inode)->logged_trans == trans->transid)
5759 * when renaming files across directories, if the directory
5760 * there we're unlinking from gets fsync'd later on, there's
5761 * no way to find the destination directory later and fsync it
5762 * properly. So, we have to be conservative and force commits
5763 * so the new name gets discovered.
5768 /* we can safely do the unlink without any special recording */
5772 mutex_lock(&BTRFS_I(dir)->log_mutex);
5773 BTRFS_I(dir)->last_unlink_trans = trans->transid;
5774 mutex_unlock(&BTRFS_I(dir)->log_mutex);
5778 * Make sure that if someone attempts to fsync the parent directory of a deleted
5779 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5780 * that after replaying the log tree of the parent directory's root we will not
5781 * see the snapshot anymore and at log replay time we will not see any log tree
5782 * corresponding to the deleted snapshot's root, which could lead to replaying
5783 * it after replaying the log tree of the parent directory (which would replay
5784 * the snapshot delete operation).
5786 * Must be called before the actual snapshot destroy operation (updates to the
5787 * parent root and tree of tree roots trees, etc) are done.
5789 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
5792 mutex_lock(&BTRFS_I(dir)->log_mutex);
5793 BTRFS_I(dir)->last_unlink_trans = trans->transid;
5794 mutex_unlock(&BTRFS_I(dir)->log_mutex);
5798 * Call this after adding a new name for a file and it will properly
5799 * update the log to reflect the new name.
5801 * It will return zero if all goes well, and it will return 1 if a
5802 * full transaction commit is required.
5804 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5805 struct inode *inode, struct inode *old_dir,
5806 struct dentry *parent)
5808 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5809 struct btrfs_root * root = BTRFS_I(inode)->root;
5812 * this will force the logging code to walk the dentry chain
5815 if (S_ISREG(inode->i_mode))
5816 BTRFS_I(inode)->last_unlink_trans = trans->transid;
5819 * if this inode hasn't been logged and directory we're renaming it
5820 * from hasn't been logged, we don't need to log it
5822 if (BTRFS_I(inode)->logged_trans <=
5823 fs_info->last_trans_committed &&
5824 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
5825 fs_info->last_trans_committed))
5828 return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5829 LLONG_MAX, 1, NULL);