1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Driver for the Integrant ITD1000 "Zero-IF Tuner IC for Direct Broadcast Satellite"
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/delay.h>
11 #include <linux/dvb/frontend.h>
12 #include <linux/i2c.h>
13 #include <linux/slab.h>
15 #include <media/dvb_frontend.h>
18 #include "itd1000_priv.h"
20 /* Max transfer size done by I2C transfer functions */
21 #define MAX_XFER_SIZE 64
24 module_param(debug, int, 0644);
25 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
27 #define itd_dbg(args...) do { \
29 printk(KERN_DEBUG "ITD1000: " args);\
33 #define itd_warn(args...) do { \
34 printk(KERN_WARNING "ITD1000: " args); \
37 #define itd_info(args...) do { \
38 printk(KERN_INFO "ITD1000: " args); \
41 /* don't write more than one byte with flexcop behind */
42 static int itd1000_write_regs(struct itd1000_state *state, u8 reg, u8 v[], u8 len)
44 u8 buf[MAX_XFER_SIZE];
45 struct i2c_msg msg = {
46 .addr = state->cfg->i2c_address, .flags = 0, .buf = buf, .len = len+1
49 if (1 + len > sizeof(buf)) {
51 "itd1000: i2c wr reg=%04x: len=%d is too big!\n",
57 memcpy(&buf[1], v, len);
59 /* itd_dbg("wr %02x: %02x\n", reg, v[0]); */
61 if (i2c_transfer(state->i2c, &msg, 1) != 1) {
62 printk(KERN_WARNING "itd1000 I2C write failed\n");
68 static int itd1000_read_reg(struct itd1000_state *state, u8 reg)
71 struct i2c_msg msg[2] = {
72 { .addr = state->cfg->i2c_address, .flags = 0, .buf = ®, .len = 1 },
73 { .addr = state->cfg->i2c_address, .flags = I2C_M_RD, .buf = &val, .len = 1 },
76 /* ugly flexcop workaround */
77 itd1000_write_regs(state, (reg - 1) & 0xff, &state->shadow[(reg - 1) & 0xff], 1);
79 if (i2c_transfer(state->i2c, msg, 2) != 2) {
80 itd_warn("itd1000 I2C read failed\n");
86 static inline int itd1000_write_reg(struct itd1000_state *state, u8 r, u8 v)
88 u8 tmp = v; /* see gcc.gnu.org/bugzilla/show_bug.cgi?id=81715 */
89 int ret = itd1000_write_regs(state, r, &tmp, 1);
90 state->shadow[r] = tmp;
97 u8 pgaext : 4; /* PLLFH */
98 u8 bbgvmin : 4; /* BBGVMIN */
99 } itd1000_lpf_pga[] = {
101 { 5200000, 0x8, 0x3 },
102 { 12200000, 0x4, 0x3 },
103 { 15400000, 0x2, 0x3 },
104 { 19800000, 0x2, 0x3 },
105 { 21500000, 0x2, 0x3 },
106 { 24500000, 0x2, 0x3 },
107 { 28400000, 0x2, 0x3 },
108 { 33400000, 0x2, 0x3 },
109 { 34400000, 0x1, 0x4 },
110 { 34400000, 0x1, 0x4 },
111 { 38400000, 0x1, 0x4 },
112 { 38400000, 0x1, 0x4 },
113 { 40400000, 0x1, 0x4 },
114 { 45400000, 0x1, 0x4 },
117 static void itd1000_set_lpf_bw(struct itd1000_state *state, u32 symbol_rate)
120 u8 con1 = itd1000_read_reg(state, CON1) & 0xfd;
121 u8 pllfh = itd1000_read_reg(state, PLLFH) & 0x0f;
122 u8 bbgvmin = itd1000_read_reg(state, BBGVMIN) & 0xf0;
123 u8 bw = itd1000_read_reg(state, BW) & 0xf0;
125 itd_dbg("symbol_rate = %d\n", symbol_rate);
127 /* not sure what is that ? - starting to download the table */
128 itd1000_write_reg(state, CON1, con1 | (1 << 1));
130 for (i = 0; i < ARRAY_SIZE(itd1000_lpf_pga); i++)
131 if (symbol_rate < itd1000_lpf_pga[i].symbol_rate) {
132 itd_dbg("symrate: index: %d pgaext: %x, bbgvmin: %x\n", i, itd1000_lpf_pga[i].pgaext, itd1000_lpf_pga[i].bbgvmin);
133 itd1000_write_reg(state, PLLFH, pllfh | (itd1000_lpf_pga[i].pgaext << 4));
134 itd1000_write_reg(state, BBGVMIN, bbgvmin | (itd1000_lpf_pga[i].bbgvmin));
135 itd1000_write_reg(state, BW, bw | (i & 0x0f));
139 itd1000_write_reg(state, CON1, con1 | (0 << 1));
145 } itd1000_vcorg[] = {
153 { 8, 500000 }, /* this is intentional. */
163 static void itd1000_set_vco(struct itd1000_state *state, u32 freq_khz)
166 u8 gvbb_i2c = itd1000_read_reg(state, GVBB_I2C) & 0xbf;
167 u8 vco_chp1_i2c = itd1000_read_reg(state, VCO_CHP1_I2C) & 0x0f;
170 /* reserved bit again (reset ?) */
171 itd1000_write_reg(state, GVBB_I2C, gvbb_i2c | (1 << 6));
173 for (i = 0; i < ARRAY_SIZE(itd1000_vcorg); i++) {
174 if (freq_khz < itd1000_vcorg[i].fmax_rg) {
175 itd1000_write_reg(state, VCO_CHP1_I2C, vco_chp1_i2c | (itd1000_vcorg[i].vcorg << 4));
178 adcout = itd1000_read_reg(state, PLLLOCK) & 0x0f;
180 itd_dbg("VCO: %dkHz: %d -> ADCOUT: %d %02x\n", freq_khz, itd1000_vcorg[i].vcorg, adcout, vco_chp1_i2c);
183 if (!(itd1000_vcorg[i].vcorg == 7 || itd1000_vcorg[i].vcorg == 15))
184 itd1000_write_reg(state, VCO_CHP1_I2C, vco_chp1_i2c | ((itd1000_vcorg[i].vcorg + 1) << 4));
185 } else if (adcout < 2) {
186 if (!(itd1000_vcorg[i].vcorg == 1 || itd1000_vcorg[i].vcorg == 9))
187 itd1000_write_reg(state, VCO_CHP1_I2C, vco_chp1_i2c | ((itd1000_vcorg[i].vcorg - 1) << 4));
194 static const struct {
196 u8 values[10]; /* RFTR, RFST1 - RFST9 */
197 } itd1000_fre_values[] = {
198 { 1075000, { 0x59, 0x1d, 0x1c, 0x17, 0x16, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
199 { 1250000, { 0x89, 0x1e, 0x1d, 0x17, 0x15, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
200 { 1450000, { 0x89, 0x1e, 0x1d, 0x17, 0x15, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
201 { 1650000, { 0x69, 0x1e, 0x1d, 0x17, 0x15, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
202 { 1750000, { 0x69, 0x1e, 0x17, 0x15, 0x14, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
203 { 1850000, { 0x69, 0x1d, 0x17, 0x16, 0x14, 0x0f, 0x0e, 0x0d, 0x0b, 0x0a } },
204 { 1900000, { 0x69, 0x1d, 0x17, 0x15, 0x14, 0x0f, 0x0e, 0x0d, 0x0b, 0x0a } },
205 { 1950000, { 0x69, 0x1d, 0x17, 0x16, 0x14, 0x13, 0x0e, 0x0d, 0x0b, 0x0a } },
206 { 2050000, { 0x69, 0x1e, 0x1d, 0x17, 0x16, 0x14, 0x13, 0x0e, 0x0b, 0x0a } },
207 { 2150000, { 0x69, 0x1d, 0x1c, 0x17, 0x15, 0x14, 0x13, 0x0f, 0x0e, 0x0b } }
213 static void itd1000_set_lo(struct itd1000_state *state, u32 freq_khz)
219 plln = (freq_khz * 1000) / 2 / FREF;
221 /* Compute the factional part times 1000 */
222 tmp = plln % 1000000;
226 do_div(tmp, 1000000);
229 state->frequency = ((plln * 1000) + (pllf * 1000)/1048576) * 2*FREF;
230 itd_dbg("frequency: %dkHz (wanted) %dkHz (set), PLLF = %d, PLLN = %d\n", freq_khz, state->frequency, pllf, plln);
232 itd1000_write_reg(state, PLLNH, 0x80); /* PLLNH */
233 itd1000_write_reg(state, PLLNL, plln & 0xff);
234 itd1000_write_reg(state, PLLFH, (itd1000_read_reg(state, PLLFH) & 0xf0) | ((pllf >> 16) & 0x0f));
235 itd1000_write_reg(state, PLLFM, (pllf >> 8) & 0xff);
236 itd1000_write_reg(state, PLLFL, (pllf >> 0) & 0xff);
238 for (i = 0; i < ARRAY_SIZE(itd1000_fre_values); i++) {
239 if (freq_khz <= itd1000_fre_values[i].freq) {
240 itd_dbg("fre_values: %d\n", i);
241 itd1000_write_reg(state, RFTR, itd1000_fre_values[i].values[0]);
242 for (j = 0; j < 9; j++)
243 itd1000_write_reg(state, RFST1+j, itd1000_fre_values[i].values[j+1]);
248 itd1000_set_vco(state, freq_khz);
251 static int itd1000_set_parameters(struct dvb_frontend *fe)
253 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
254 struct itd1000_state *state = fe->tuner_priv;
257 itd1000_set_lo(state, c->frequency);
258 itd1000_set_lpf_bw(state, c->symbol_rate);
260 pllcon1 = itd1000_read_reg(state, PLLCON1) & 0x7f;
261 itd1000_write_reg(state, PLLCON1, pllcon1 | (1 << 7));
262 itd1000_write_reg(state, PLLCON1, pllcon1);
267 static int itd1000_get_frequency(struct dvb_frontend *fe, u32 *frequency)
269 struct itd1000_state *state = fe->tuner_priv;
270 *frequency = state->frequency;
274 static int itd1000_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
279 static u8 itd1000_init_tab[][2] = {
280 { PLLCON1, 0x65 }, /* Register does not change */
281 { PLLNH, 0x80 }, /* Bits [7:6] do not change */
282 { RESERVED_0X6D, 0x3b },
283 { VCO_CHP2_I2C, 0x12 },
284 { 0x72, 0xf9 }, /* No such regsister defined */
285 { RESERVED_0X73, 0xff },
286 { RESERVED_0X74, 0xb2 },
287 { RESERVED_0X75, 0xc7 },
291 { RESERVED_0X7E, 0x4f },
292 { 0x82, 0x88 }, /* No such regsister defined */
293 { 0x83, 0x80 }, /* No such regsister defined */
294 { 0x84, 0x80 }, /* No such regsister defined */
295 { RESERVED_0X85, 0x74 },
296 { RESERVED_0X86, 0xff },
297 { RESERVED_0X88, 0x02 },
298 { RESERVED_0X89, 0x16 },
300 { RESERVED_0X94, 0x66 },
301 { RESERVED_0X95, 0x66 },
302 { RESERVED_0X96, 0x77 },
303 { RESERVED_0X97, 0x99 },
304 { RESERVED_0X98, 0xff },
305 { RESERVED_0X99, 0xfc },
306 { RESERVED_0X9A, 0xba },
307 { RESERVED_0X9B, 0xaa },
310 static u8 itd1000_reinit_tab[][2] = {
311 { VCO_CHP1_I2C, 0x8a },
319 static int itd1000_init(struct dvb_frontend *fe)
321 struct itd1000_state *state = fe->tuner_priv;
324 for (i = 0; i < ARRAY_SIZE(itd1000_init_tab); i++)
325 itd1000_write_reg(state, itd1000_init_tab[i][0], itd1000_init_tab[i][1]);
327 for (i = 0; i < ARRAY_SIZE(itd1000_reinit_tab); i++)
328 itd1000_write_reg(state, itd1000_reinit_tab[i][0], itd1000_reinit_tab[i][1]);
333 static int itd1000_sleep(struct dvb_frontend *fe)
338 static void itd1000_release(struct dvb_frontend *fe)
340 kfree(fe->tuner_priv);
341 fe->tuner_priv = NULL;
344 static const struct dvb_tuner_ops itd1000_tuner_ops = {
346 .name = "Integrant ITD1000",
347 .frequency_min_hz = 950 * MHz,
348 .frequency_max_hz = 2150 * MHz,
349 .frequency_step_hz = 125 * kHz,
352 .release = itd1000_release,
354 .init = itd1000_init,
355 .sleep = itd1000_sleep,
357 .set_params = itd1000_set_parameters,
358 .get_frequency = itd1000_get_frequency,
359 .get_bandwidth = itd1000_get_bandwidth
363 struct dvb_frontend *itd1000_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct itd1000_config *cfg)
365 struct itd1000_state *state = NULL;
368 state = kzalloc(sizeof(struct itd1000_state), GFP_KERNEL);
375 i = itd1000_read_reg(state, 0);
380 itd_info("successfully identified (ID: %d)\n", i);
382 memset(state->shadow, 0xff, sizeof(state->shadow));
383 for (i = 0x65; i < 0x9c; i++)
384 state->shadow[i] = itd1000_read_reg(state, i);
386 memcpy(&fe->ops.tuner_ops, &itd1000_tuner_ops, sizeof(struct dvb_tuner_ops));
388 fe->tuner_priv = state;
392 EXPORT_SYMBOL(itd1000_attach);
395 MODULE_DESCRIPTION("Integrant ITD1000 driver");
396 MODULE_LICENSE("GPL");