]> Git Repo - linux.git/blob - drivers/media/cec/cec-adap.c
Merge tag 'powerpc-5.4-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux.git] / drivers / media / cec / cec-adap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter
4  *
5  * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6  */
7
8 #include <linux/errno.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/kmod.h>
13 #include <linux/ktime.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/string.h>
17 #include <linux/types.h>
18
19 #include <drm/drm_connector.h>
20 #include <drm/drm_device.h>
21 #include <drm/drm_edid.h>
22 #include <drm/drm_file.h>
23
24 #include "cec-priv.h"
25
26 static void cec_fill_msg_report_features(struct cec_adapter *adap,
27                                          struct cec_msg *msg,
28                                          unsigned int la_idx);
29
30 /*
31  * 400 ms is the time it takes for one 16 byte message to be
32  * transferred and 5 is the maximum number of retries. Add
33  * another 100 ms as a margin. So if the transmit doesn't
34  * finish before that time something is really wrong and we
35  * have to time out.
36  *
37  * This is a sign that something it really wrong and a warning
38  * will be issued.
39  */
40 #define CEC_XFER_TIMEOUT_MS (5 * 400 + 100)
41
42 #define call_op(adap, op, arg...) \
43         (adap->ops->op ? adap->ops->op(adap, ## arg) : 0)
44
45 #define call_void_op(adap, op, arg...)                  \
46         do {                                            \
47                 if (adap->ops->op)                      \
48                         adap->ops->op(adap, ## arg);    \
49         } while (0)
50
51 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr)
52 {
53         int i;
54
55         for (i = 0; i < adap->log_addrs.num_log_addrs; i++)
56                 if (adap->log_addrs.log_addr[i] == log_addr)
57                         return i;
58         return -1;
59 }
60
61 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr)
62 {
63         int i = cec_log_addr2idx(adap, log_addr);
64
65         return adap->log_addrs.primary_device_type[i < 0 ? 0 : i];
66 }
67
68 u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size,
69                            unsigned int *offset)
70 {
71         unsigned int loc = cec_get_edid_spa_location(edid, size);
72
73         if (offset)
74                 *offset = loc;
75         if (loc == 0)
76                 return CEC_PHYS_ADDR_INVALID;
77         return (edid[loc] << 8) | edid[loc + 1];
78 }
79 EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr);
80
81 void cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info,
82                                  const struct drm_connector *connector)
83 {
84         memset(conn_info, 0, sizeof(*conn_info));
85         conn_info->type = CEC_CONNECTOR_TYPE_DRM;
86         conn_info->drm.card_no = connector->dev->primary->index;
87         conn_info->drm.connector_id = connector->base.id;
88 }
89 EXPORT_SYMBOL_GPL(cec_fill_conn_info_from_drm);
90
91 /*
92  * Queue a new event for this filehandle. If ts == 0, then set it
93  * to the current time.
94  *
95  * We keep a queue of at most max_event events where max_event differs
96  * per event. If the queue becomes full, then drop the oldest event and
97  * keep track of how many events we've dropped.
98  */
99 void cec_queue_event_fh(struct cec_fh *fh,
100                         const struct cec_event *new_ev, u64 ts)
101 {
102         static const u16 max_events[CEC_NUM_EVENTS] = {
103                 1, 1, 800, 800, 8, 8, 8, 8
104         };
105         struct cec_event_entry *entry;
106         unsigned int ev_idx = new_ev->event - 1;
107
108         if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events)))
109                 return;
110
111         if (ts == 0)
112                 ts = ktime_get_ns();
113
114         mutex_lock(&fh->lock);
115         if (ev_idx < CEC_NUM_CORE_EVENTS)
116                 entry = &fh->core_events[ev_idx];
117         else
118                 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
119         if (entry) {
120                 if (new_ev->event == CEC_EVENT_LOST_MSGS &&
121                     fh->queued_events[ev_idx]) {
122                         entry->ev.lost_msgs.lost_msgs +=
123                                 new_ev->lost_msgs.lost_msgs;
124                         goto unlock;
125                 }
126                 entry->ev = *new_ev;
127                 entry->ev.ts = ts;
128
129                 if (fh->queued_events[ev_idx] < max_events[ev_idx]) {
130                         /* Add new msg at the end of the queue */
131                         list_add_tail(&entry->list, &fh->events[ev_idx]);
132                         fh->queued_events[ev_idx]++;
133                         fh->total_queued_events++;
134                         goto unlock;
135                 }
136
137                 if (ev_idx >= CEC_NUM_CORE_EVENTS) {
138                         list_add_tail(&entry->list, &fh->events[ev_idx]);
139                         /* drop the oldest event */
140                         entry = list_first_entry(&fh->events[ev_idx],
141                                                  struct cec_event_entry, list);
142                         list_del(&entry->list);
143                         kfree(entry);
144                 }
145         }
146         /* Mark that events were lost */
147         entry = list_first_entry_or_null(&fh->events[ev_idx],
148                                          struct cec_event_entry, list);
149         if (entry)
150                 entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS;
151
152 unlock:
153         mutex_unlock(&fh->lock);
154         wake_up_interruptible(&fh->wait);
155 }
156
157 /* Queue a new event for all open filehandles. */
158 static void cec_queue_event(struct cec_adapter *adap,
159                             const struct cec_event *ev)
160 {
161         u64 ts = ktime_get_ns();
162         struct cec_fh *fh;
163
164         mutex_lock(&adap->devnode.lock);
165         list_for_each_entry(fh, &adap->devnode.fhs, list)
166                 cec_queue_event_fh(fh, ev, ts);
167         mutex_unlock(&adap->devnode.lock);
168 }
169
170 /* Notify userspace that the CEC pin changed state at the given time. */
171 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high,
172                              bool dropped_events, ktime_t ts)
173 {
174         struct cec_event ev = {
175                 .event = is_high ? CEC_EVENT_PIN_CEC_HIGH :
176                                    CEC_EVENT_PIN_CEC_LOW,
177                 .flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0,
178         };
179         struct cec_fh *fh;
180
181         mutex_lock(&adap->devnode.lock);
182         list_for_each_entry(fh, &adap->devnode.fhs, list)
183                 if (fh->mode_follower == CEC_MODE_MONITOR_PIN)
184                         cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
185         mutex_unlock(&adap->devnode.lock);
186 }
187 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event);
188
189 /* Notify userspace that the HPD pin changed state at the given time. */
190 void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
191 {
192         struct cec_event ev = {
193                 .event = is_high ? CEC_EVENT_PIN_HPD_HIGH :
194                                    CEC_EVENT_PIN_HPD_LOW,
195         };
196         struct cec_fh *fh;
197
198         mutex_lock(&adap->devnode.lock);
199         list_for_each_entry(fh, &adap->devnode.fhs, list)
200                 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
201         mutex_unlock(&adap->devnode.lock);
202 }
203 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event);
204
205 /* Notify userspace that the 5V pin changed state at the given time. */
206 void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
207 {
208         struct cec_event ev = {
209                 .event = is_high ? CEC_EVENT_PIN_5V_HIGH :
210                                    CEC_EVENT_PIN_5V_LOW,
211         };
212         struct cec_fh *fh;
213
214         mutex_lock(&adap->devnode.lock);
215         list_for_each_entry(fh, &adap->devnode.fhs, list)
216                 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
217         mutex_unlock(&adap->devnode.lock);
218 }
219 EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event);
220
221 /*
222  * Queue a new message for this filehandle.
223  *
224  * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the
225  * queue becomes full, then drop the oldest message and keep track
226  * of how many messages we've dropped.
227  */
228 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg)
229 {
230         static const struct cec_event ev_lost_msgs = {
231                 .event = CEC_EVENT_LOST_MSGS,
232                 .flags = 0,
233                 {
234                         .lost_msgs = { 1 },
235                 },
236         };
237         struct cec_msg_entry *entry;
238
239         mutex_lock(&fh->lock);
240         entry = kmalloc(sizeof(*entry), GFP_KERNEL);
241         if (entry) {
242                 entry->msg = *msg;
243                 /* Add new msg at the end of the queue */
244                 list_add_tail(&entry->list, &fh->msgs);
245
246                 if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) {
247                         /* All is fine if there is enough room */
248                         fh->queued_msgs++;
249                         mutex_unlock(&fh->lock);
250                         wake_up_interruptible(&fh->wait);
251                         return;
252                 }
253
254                 /*
255                  * if the message queue is full, then drop the oldest one and
256                  * send a lost message event.
257                  */
258                 entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list);
259                 list_del(&entry->list);
260                 kfree(entry);
261         }
262         mutex_unlock(&fh->lock);
263
264         /*
265          * We lost a message, either because kmalloc failed or the queue
266          * was full.
267          */
268         cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns());
269 }
270
271 /*
272  * Queue the message for those filehandles that are in monitor mode.
273  * If valid_la is true (this message is for us or was sent by us),
274  * then pass it on to any monitoring filehandle. If this message
275  * isn't for us or from us, then only give it to filehandles that
276  * are in MONITOR_ALL mode.
277  *
278  * This can only happen if the CEC_CAP_MONITOR_ALL capability is
279  * set and the CEC adapter was placed in 'monitor all' mode.
280  */
281 static void cec_queue_msg_monitor(struct cec_adapter *adap,
282                                   const struct cec_msg *msg,
283                                   bool valid_la)
284 {
285         struct cec_fh *fh;
286         u32 monitor_mode = valid_la ? CEC_MODE_MONITOR :
287                                       CEC_MODE_MONITOR_ALL;
288
289         mutex_lock(&adap->devnode.lock);
290         list_for_each_entry(fh, &adap->devnode.fhs, list) {
291                 if (fh->mode_follower >= monitor_mode)
292                         cec_queue_msg_fh(fh, msg);
293         }
294         mutex_unlock(&adap->devnode.lock);
295 }
296
297 /*
298  * Queue the message for follower filehandles.
299  */
300 static void cec_queue_msg_followers(struct cec_adapter *adap,
301                                     const struct cec_msg *msg)
302 {
303         struct cec_fh *fh;
304
305         mutex_lock(&adap->devnode.lock);
306         list_for_each_entry(fh, &adap->devnode.fhs, list) {
307                 if (fh->mode_follower == CEC_MODE_FOLLOWER)
308                         cec_queue_msg_fh(fh, msg);
309         }
310         mutex_unlock(&adap->devnode.lock);
311 }
312
313 /* Notify userspace of an adapter state change. */
314 static void cec_post_state_event(struct cec_adapter *adap)
315 {
316         struct cec_event ev = {
317                 .event = CEC_EVENT_STATE_CHANGE,
318         };
319
320         ev.state_change.phys_addr = adap->phys_addr;
321         ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask;
322         cec_queue_event(adap, &ev);
323 }
324
325 /*
326  * A CEC transmit (and a possible wait for reply) completed.
327  * If this was in blocking mode, then complete it, otherwise
328  * queue the message for userspace to dequeue later.
329  *
330  * This function is called with adap->lock held.
331  */
332 static void cec_data_completed(struct cec_data *data)
333 {
334         /*
335          * Delete this transmit from the filehandle's xfer_list since
336          * we're done with it.
337          *
338          * Note that if the filehandle is closed before this transmit
339          * finished, then the release() function will set data->fh to NULL.
340          * Without that we would be referring to a closed filehandle.
341          */
342         if (data->fh)
343                 list_del(&data->xfer_list);
344
345         if (data->blocking) {
346                 /*
347                  * Someone is blocking so mark the message as completed
348                  * and call complete.
349                  */
350                 data->completed = true;
351                 complete(&data->c);
352         } else {
353                 /*
354                  * No blocking, so just queue the message if needed and
355                  * free the memory.
356                  */
357                 if (data->fh)
358                         cec_queue_msg_fh(data->fh, &data->msg);
359                 kfree(data);
360         }
361 }
362
363 /*
364  * A pending CEC transmit needs to be cancelled, either because the CEC
365  * adapter is disabled or the transmit takes an impossibly long time to
366  * finish.
367  *
368  * This function is called with adap->lock held.
369  */
370 static void cec_data_cancel(struct cec_data *data, u8 tx_status)
371 {
372         /*
373          * It's either the current transmit, or it is a pending
374          * transmit. Take the appropriate action to clear it.
375          */
376         if (data->adap->transmitting == data) {
377                 data->adap->transmitting = NULL;
378         } else {
379                 list_del_init(&data->list);
380                 if (!(data->msg.tx_status & CEC_TX_STATUS_OK))
381                         data->adap->transmit_queue_sz--;
382         }
383
384         if (data->msg.tx_status & CEC_TX_STATUS_OK) {
385                 data->msg.rx_ts = ktime_get_ns();
386                 data->msg.rx_status = CEC_RX_STATUS_ABORTED;
387         } else {
388                 data->msg.tx_ts = ktime_get_ns();
389                 data->msg.tx_status |= tx_status |
390                                        CEC_TX_STATUS_MAX_RETRIES;
391                 data->msg.tx_error_cnt++;
392                 data->attempts = 0;
393         }
394
395         /* Queue transmitted message for monitoring purposes */
396         cec_queue_msg_monitor(data->adap, &data->msg, 1);
397
398         cec_data_completed(data);
399 }
400
401 /*
402  * Flush all pending transmits and cancel any pending timeout work.
403  *
404  * This function is called with adap->lock held.
405  */
406 static void cec_flush(struct cec_adapter *adap)
407 {
408         struct cec_data *data, *n;
409
410         /*
411          * If the adapter is disabled, or we're asked to stop,
412          * then cancel any pending transmits.
413          */
414         while (!list_empty(&adap->transmit_queue)) {
415                 data = list_first_entry(&adap->transmit_queue,
416                                         struct cec_data, list);
417                 cec_data_cancel(data, CEC_TX_STATUS_ABORTED);
418         }
419         if (adap->transmitting)
420                 cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED);
421
422         /* Cancel the pending timeout work. */
423         list_for_each_entry_safe(data, n, &adap->wait_queue, list) {
424                 if (cancel_delayed_work(&data->work))
425                         cec_data_cancel(data, CEC_TX_STATUS_OK);
426                 /*
427                  * If cancel_delayed_work returned false, then
428                  * the cec_wait_timeout function is running,
429                  * which will call cec_data_completed. So no
430                  * need to do anything special in that case.
431                  */
432         }
433 }
434
435 /*
436  * Main CEC state machine
437  *
438  * Wait until the thread should be stopped, or we are not transmitting and
439  * a new transmit message is queued up, in which case we start transmitting
440  * that message. When the adapter finished transmitting the message it will
441  * call cec_transmit_done().
442  *
443  * If the adapter is disabled, then remove all queued messages instead.
444  *
445  * If the current transmit times out, then cancel that transmit.
446  */
447 int cec_thread_func(void *_adap)
448 {
449         struct cec_adapter *adap = _adap;
450
451         for (;;) {
452                 unsigned int signal_free_time;
453                 struct cec_data *data;
454                 bool timeout = false;
455                 u8 attempts;
456
457                 if (adap->transmitting) {
458                         int err;
459
460                         /*
461                          * We are transmitting a message, so add a timeout
462                          * to prevent the state machine to get stuck waiting
463                          * for this message to finalize and add a check to
464                          * see if the adapter is disabled in which case the
465                          * transmit should be canceled.
466                          */
467                         err = wait_event_interruptible_timeout(adap->kthread_waitq,
468                                 (adap->needs_hpd &&
469                                  (!adap->is_configured && !adap->is_configuring)) ||
470                                 kthread_should_stop() ||
471                                 (!adap->transmit_in_progress &&
472                                  !list_empty(&adap->transmit_queue)),
473                                 msecs_to_jiffies(CEC_XFER_TIMEOUT_MS));
474                         timeout = err == 0;
475                 } else {
476                         /* Otherwise we just wait for something to happen. */
477                         wait_event_interruptible(adap->kthread_waitq,
478                                 kthread_should_stop() ||
479                                 (!adap->transmit_in_progress &&
480                                  !list_empty(&adap->transmit_queue)));
481                 }
482
483                 mutex_lock(&adap->lock);
484
485                 if ((adap->needs_hpd &&
486                      (!adap->is_configured && !adap->is_configuring)) ||
487                     kthread_should_stop()) {
488                         cec_flush(adap);
489                         goto unlock;
490                 }
491
492                 if (adap->transmitting && timeout) {
493                         /*
494                          * If we timeout, then log that. Normally this does
495                          * not happen and it is an indication of a faulty CEC
496                          * adapter driver, or the CEC bus is in some weird
497                          * state. On rare occasions it can happen if there is
498                          * so much traffic on the bus that the adapter was
499                          * unable to transmit for CEC_XFER_TIMEOUT_MS (2.1s).
500                          */
501                         pr_warn("cec-%s: message %*ph timed out\n", adap->name,
502                                 adap->transmitting->msg.len,
503                                 adap->transmitting->msg.msg);
504                         adap->transmit_in_progress = false;
505                         adap->tx_timeouts++;
506                         /* Just give up on this. */
507                         cec_data_cancel(adap->transmitting,
508                                         CEC_TX_STATUS_TIMEOUT);
509                         goto unlock;
510                 }
511
512                 /*
513                  * If we are still transmitting, or there is nothing new to
514                  * transmit, then just continue waiting.
515                  */
516                 if (adap->transmit_in_progress || list_empty(&adap->transmit_queue))
517                         goto unlock;
518
519                 /* Get a new message to transmit */
520                 data = list_first_entry(&adap->transmit_queue,
521                                         struct cec_data, list);
522                 list_del_init(&data->list);
523                 adap->transmit_queue_sz--;
524
525                 /* Make this the current transmitting message */
526                 adap->transmitting = data;
527
528                 /*
529                  * Suggested number of attempts as per the CEC 2.0 spec:
530                  * 4 attempts is the default, except for 'secondary poll
531                  * messages', i.e. poll messages not sent during the adapter
532                  * configuration phase when it allocates logical addresses.
533                  */
534                 if (data->msg.len == 1 && adap->is_configured)
535                         attempts = 2;
536                 else
537                         attempts = 4;
538
539                 /* Set the suggested signal free time */
540                 if (data->attempts) {
541                         /* should be >= 3 data bit periods for a retry */
542                         signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY;
543                 } else if (adap->last_initiator !=
544                            cec_msg_initiator(&data->msg)) {
545                         /* should be >= 5 data bit periods for new initiator */
546                         signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
547                         adap->last_initiator = cec_msg_initiator(&data->msg);
548                 } else {
549                         /*
550                          * should be >= 7 data bit periods for sending another
551                          * frame immediately after another.
552                          */
553                         signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
554                 }
555                 if (data->attempts == 0)
556                         data->attempts = attempts;
557
558                 /* Tell the adapter to transmit, cancel on error */
559                 if (adap->ops->adap_transmit(adap, data->attempts,
560                                              signal_free_time, &data->msg))
561                         cec_data_cancel(data, CEC_TX_STATUS_ABORTED);
562                 else
563                         adap->transmit_in_progress = true;
564
565 unlock:
566                 mutex_unlock(&adap->lock);
567
568                 if (kthread_should_stop())
569                         break;
570         }
571         return 0;
572 }
573
574 /*
575  * Called by the CEC adapter if a transmit finished.
576  */
577 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status,
578                           u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt,
579                           u8 error_cnt, ktime_t ts)
580 {
581         struct cec_data *data;
582         struct cec_msg *msg;
583         unsigned int attempts_made = arb_lost_cnt + nack_cnt +
584                                      low_drive_cnt + error_cnt;
585
586         dprintk(2, "%s: status 0x%02x\n", __func__, status);
587         if (attempts_made < 1)
588                 attempts_made = 1;
589
590         mutex_lock(&adap->lock);
591         data = adap->transmitting;
592         if (!data) {
593                 /*
594                  * This might happen if a transmit was issued and the cable is
595                  * unplugged while the transmit is ongoing. Ignore this
596                  * transmit in that case.
597                  */
598                 if (!adap->transmit_in_progress)
599                         dprintk(1, "%s was called without an ongoing transmit!\n",
600                                 __func__);
601                 adap->transmit_in_progress = false;
602                 goto wake_thread;
603         }
604         adap->transmit_in_progress = false;
605
606         msg = &data->msg;
607
608         /* Drivers must fill in the status! */
609         WARN_ON(status == 0);
610         msg->tx_ts = ktime_to_ns(ts);
611         msg->tx_status |= status;
612         msg->tx_arb_lost_cnt += arb_lost_cnt;
613         msg->tx_nack_cnt += nack_cnt;
614         msg->tx_low_drive_cnt += low_drive_cnt;
615         msg->tx_error_cnt += error_cnt;
616
617         /* Mark that we're done with this transmit */
618         adap->transmitting = NULL;
619
620         /*
621          * If there are still retry attempts left and there was an error and
622          * the hardware didn't signal that it retried itself (by setting
623          * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves.
624          */
625         if (data->attempts > attempts_made &&
626             !(status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK))) {
627                 /* Retry this message */
628                 data->attempts -= attempts_made;
629                 if (msg->timeout)
630                         dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n",
631                                 msg->len, msg->msg, data->attempts, msg->reply);
632                 else
633                         dprintk(2, "retransmit: %*ph (attempts: %d)\n",
634                                 msg->len, msg->msg, data->attempts);
635                 /* Add the message in front of the transmit queue */
636                 list_add(&data->list, &adap->transmit_queue);
637                 adap->transmit_queue_sz++;
638                 goto wake_thread;
639         }
640
641         data->attempts = 0;
642
643         /* Always set CEC_TX_STATUS_MAX_RETRIES on error */
644         if (!(status & CEC_TX_STATUS_OK))
645                 msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES;
646
647         /* Queue transmitted message for monitoring purposes */
648         cec_queue_msg_monitor(adap, msg, 1);
649
650         if ((status & CEC_TX_STATUS_OK) && adap->is_configured &&
651             msg->timeout) {
652                 /*
653                  * Queue the message into the wait queue if we want to wait
654                  * for a reply.
655                  */
656                 list_add_tail(&data->list, &adap->wait_queue);
657                 schedule_delayed_work(&data->work,
658                                       msecs_to_jiffies(msg->timeout));
659         } else {
660                 /* Otherwise we're done */
661                 cec_data_completed(data);
662         }
663
664 wake_thread:
665         /*
666          * Wake up the main thread to see if another message is ready
667          * for transmitting or to retry the current message.
668          */
669         wake_up_interruptible(&adap->kthread_waitq);
670         mutex_unlock(&adap->lock);
671 }
672 EXPORT_SYMBOL_GPL(cec_transmit_done_ts);
673
674 void cec_transmit_attempt_done_ts(struct cec_adapter *adap,
675                                   u8 status, ktime_t ts)
676 {
677         switch (status & ~CEC_TX_STATUS_MAX_RETRIES) {
678         case CEC_TX_STATUS_OK:
679                 cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts);
680                 return;
681         case CEC_TX_STATUS_ARB_LOST:
682                 cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts);
683                 return;
684         case CEC_TX_STATUS_NACK:
685                 cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts);
686                 return;
687         case CEC_TX_STATUS_LOW_DRIVE:
688                 cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts);
689                 return;
690         case CEC_TX_STATUS_ERROR:
691                 cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts);
692                 return;
693         default:
694                 /* Should never happen */
695                 WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status);
696                 return;
697         }
698 }
699 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts);
700
701 /*
702  * Called when waiting for a reply times out.
703  */
704 static void cec_wait_timeout(struct work_struct *work)
705 {
706         struct cec_data *data = container_of(work, struct cec_data, work.work);
707         struct cec_adapter *adap = data->adap;
708
709         mutex_lock(&adap->lock);
710         /*
711          * Sanity check in case the timeout and the arrival of the message
712          * happened at the same time.
713          */
714         if (list_empty(&data->list))
715                 goto unlock;
716
717         /* Mark the message as timed out */
718         list_del_init(&data->list);
719         data->msg.rx_ts = ktime_get_ns();
720         data->msg.rx_status = CEC_RX_STATUS_TIMEOUT;
721         cec_data_completed(data);
722 unlock:
723         mutex_unlock(&adap->lock);
724 }
725
726 /*
727  * Transmit a message. The fh argument may be NULL if the transmit is not
728  * associated with a specific filehandle.
729  *
730  * This function is called with adap->lock held.
731  */
732 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg,
733                         struct cec_fh *fh, bool block)
734 {
735         struct cec_data *data;
736         bool is_raw = msg_is_raw(msg);
737
738         msg->rx_ts = 0;
739         msg->tx_ts = 0;
740         msg->rx_status = 0;
741         msg->tx_status = 0;
742         msg->tx_arb_lost_cnt = 0;
743         msg->tx_nack_cnt = 0;
744         msg->tx_low_drive_cnt = 0;
745         msg->tx_error_cnt = 0;
746         msg->sequence = 0;
747
748         if (msg->reply && msg->timeout == 0) {
749                 /* Make sure the timeout isn't 0. */
750                 msg->timeout = 1000;
751         }
752         msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS | CEC_MSG_FL_RAW;
753
754         if (!msg->timeout)
755                 msg->flags &= ~CEC_MSG_FL_REPLY_TO_FOLLOWERS;
756
757         /* Sanity checks */
758         if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) {
759                 dprintk(1, "%s: invalid length %d\n", __func__, msg->len);
760                 return -EINVAL;
761         }
762
763         memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
764
765         if (msg->timeout)
766                 dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n",
767                         __func__, msg->len, msg->msg, msg->reply,
768                         !block ? ", nb" : "");
769         else
770                 dprintk(2, "%s: %*ph%s\n",
771                         __func__, msg->len, msg->msg, !block ? " (nb)" : "");
772
773         if (msg->timeout && msg->len == 1) {
774                 dprintk(1, "%s: can't reply to poll msg\n", __func__);
775                 return -EINVAL;
776         }
777
778         if (is_raw) {
779                 if (!capable(CAP_SYS_RAWIO))
780                         return -EPERM;
781         } else {
782                 /* A CDC-Only device can only send CDC messages */
783                 if ((adap->log_addrs.flags & CEC_LOG_ADDRS_FL_CDC_ONLY) &&
784                     (msg->len == 1 || msg->msg[1] != CEC_MSG_CDC_MESSAGE)) {
785                         dprintk(1, "%s: not a CDC message\n", __func__);
786                         return -EINVAL;
787                 }
788
789                 if (msg->len >= 4 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) {
790                         msg->msg[2] = adap->phys_addr >> 8;
791                         msg->msg[3] = adap->phys_addr & 0xff;
792                 }
793
794                 if (msg->len == 1) {
795                         if (cec_msg_destination(msg) == 0xf) {
796                                 dprintk(1, "%s: invalid poll message\n",
797                                         __func__);
798                                 return -EINVAL;
799                         }
800                         if (cec_has_log_addr(adap, cec_msg_destination(msg))) {
801                                 /*
802                                  * If the destination is a logical address our
803                                  * adapter has already claimed, then just NACK
804                                  * this. It depends on the hardware what it will
805                                  * do with a POLL to itself (some OK this), so
806                                  * it is just as easy to handle it here so the
807                                  * behavior will be consistent.
808                                  */
809                                 msg->tx_ts = ktime_get_ns();
810                                 msg->tx_status = CEC_TX_STATUS_NACK |
811                                         CEC_TX_STATUS_MAX_RETRIES;
812                                 msg->tx_nack_cnt = 1;
813                                 msg->sequence = ++adap->sequence;
814                                 if (!msg->sequence)
815                                         msg->sequence = ++adap->sequence;
816                                 return 0;
817                         }
818                 }
819                 if (msg->len > 1 && !cec_msg_is_broadcast(msg) &&
820                     cec_has_log_addr(adap, cec_msg_destination(msg))) {
821                         dprintk(1, "%s: destination is the adapter itself\n",
822                                 __func__);
823                         return -EINVAL;
824                 }
825                 if (msg->len > 1 && adap->is_configured &&
826                     !cec_has_log_addr(adap, cec_msg_initiator(msg))) {
827                         dprintk(1, "%s: initiator has unknown logical address %d\n",
828                                 __func__, cec_msg_initiator(msg));
829                         return -EINVAL;
830                 }
831                 /*
832                  * Special case: allow Ping and IMAGE/TEXT_VIEW_ON to be
833                  * transmitted to a TV, even if the adapter is unconfigured.
834                  * This makes it possible to detect or wake up displays that
835                  * pull down the HPD when in standby.
836                  */
837                 if (!adap->is_configured && !adap->is_configuring &&
838                     (msg->len > 2 ||
839                      cec_msg_destination(msg) != CEC_LOG_ADDR_TV ||
840                      (msg->len == 2 && msg->msg[1] != CEC_MSG_IMAGE_VIEW_ON &&
841                       msg->msg[1] != CEC_MSG_TEXT_VIEW_ON))) {
842                         dprintk(1, "%s: adapter is unconfigured\n", __func__);
843                         return -ENONET;
844                 }
845         }
846
847         if (!adap->is_configured && !adap->is_configuring) {
848                 if (adap->needs_hpd) {
849                         dprintk(1, "%s: adapter is unconfigured and needs HPD\n",
850                                 __func__);
851                         return -ENONET;
852                 }
853                 if (msg->reply) {
854                         dprintk(1, "%s: invalid msg->reply\n", __func__);
855                         return -EINVAL;
856                 }
857         }
858
859         if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) {
860                 dprintk(2, "%s: transmit queue full\n", __func__);
861                 return -EBUSY;
862         }
863
864         data = kzalloc(sizeof(*data), GFP_KERNEL);
865         if (!data)
866                 return -ENOMEM;
867
868         msg->sequence = ++adap->sequence;
869         if (!msg->sequence)
870                 msg->sequence = ++adap->sequence;
871
872         data->msg = *msg;
873         data->fh = fh;
874         data->adap = adap;
875         data->blocking = block;
876
877         init_completion(&data->c);
878         INIT_DELAYED_WORK(&data->work, cec_wait_timeout);
879
880         if (fh)
881                 list_add_tail(&data->xfer_list, &fh->xfer_list);
882
883         list_add_tail(&data->list, &adap->transmit_queue);
884         adap->transmit_queue_sz++;
885         if (!adap->transmitting)
886                 wake_up_interruptible(&adap->kthread_waitq);
887
888         /* All done if we don't need to block waiting for completion */
889         if (!block)
890                 return 0;
891
892         /*
893          * Release the lock and wait, retake the lock afterwards.
894          */
895         mutex_unlock(&adap->lock);
896         wait_for_completion_killable(&data->c);
897         if (!data->completed)
898                 cancel_delayed_work_sync(&data->work);
899         mutex_lock(&adap->lock);
900
901         /* Cancel the transmit if it was interrupted */
902         if (!data->completed)
903                 cec_data_cancel(data, CEC_TX_STATUS_ABORTED);
904
905         /* The transmit completed (possibly with an error) */
906         *msg = data->msg;
907         kfree(data);
908         return 0;
909 }
910
911 /* Helper function to be used by drivers and this framework. */
912 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
913                      bool block)
914 {
915         int ret;
916
917         mutex_lock(&adap->lock);
918         ret = cec_transmit_msg_fh(adap, msg, NULL, block);
919         mutex_unlock(&adap->lock);
920         return ret;
921 }
922 EXPORT_SYMBOL_GPL(cec_transmit_msg);
923
924 /*
925  * I don't like forward references but without this the low-level
926  * cec_received_msg() function would come after a bunch of high-level
927  * CEC protocol handling functions. That was very confusing.
928  */
929 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
930                               bool is_reply);
931
932 #define DIRECTED        0x80
933 #define BCAST1_4        0x40
934 #define BCAST2_0        0x20    /* broadcast only allowed for >= 2.0 */
935 #define BCAST           (BCAST1_4 | BCAST2_0)
936 #define BOTH            (BCAST | DIRECTED)
937
938 /*
939  * Specify minimum length and whether the message is directed, broadcast
940  * or both. Messages that do not match the criteria are ignored as per
941  * the CEC specification.
942  */
943 static const u8 cec_msg_size[256] = {
944         [CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST,
945         [CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED,
946         [CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED,
947         [CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED,
948         [CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST,
949         [CEC_MSG_ROUTING_CHANGE] = 6 | BCAST,
950         [CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST,
951         [CEC_MSG_SET_STREAM_PATH] = 4 | BCAST,
952         [CEC_MSG_STANDBY] = 2 | BOTH,
953         [CEC_MSG_RECORD_OFF] = 2 | DIRECTED,
954         [CEC_MSG_RECORD_ON] = 3 | DIRECTED,
955         [CEC_MSG_RECORD_STATUS] = 3 | DIRECTED,
956         [CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED,
957         [CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED,
958         [CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED,
959         [CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED,
960         [CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED,
961         [CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED,
962         [CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED,
963         [CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED,
964         [CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED,
965         [CEC_MSG_TIMER_STATUS] = 3 | DIRECTED,
966         [CEC_MSG_CEC_VERSION] = 3 | DIRECTED,
967         [CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED,
968         [CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED,
969         [CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED,
970         [CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST,
971         [CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST,
972         [CEC_MSG_REPORT_FEATURES] = 6 | BCAST,
973         [CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED,
974         [CEC_MSG_DECK_CONTROL] = 3 | DIRECTED,
975         [CEC_MSG_DECK_STATUS] = 3 | DIRECTED,
976         [CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED,
977         [CEC_MSG_PLAY] = 3 | DIRECTED,
978         [CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED,
979         [CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED,
980         [CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED,
981         [CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED,
982         [CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED,
983         [CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED,
984         [CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST,
985         [CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED,
986         [CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED,
987         [CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH,
988         [CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH,
989         [CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH,
990         [CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED,
991         [CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED,
992         [CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED,
993         [CEC_MSG_MENU_REQUEST] = 3 | DIRECTED,
994         [CEC_MSG_MENU_STATUS] = 3 | DIRECTED,
995         [CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED,
996         [CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED,
997         [CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED,
998         [CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0,
999         [CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED,
1000         [CEC_MSG_ABORT] = 2 | DIRECTED,
1001         [CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED,
1002         [CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED,
1003         [CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED,
1004         [CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1005         [CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1006         [CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH,
1007         [CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED,
1008         [CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED,
1009         [CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED,
1010         [CEC_MSG_INITIATE_ARC] = 2 | DIRECTED,
1011         [CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED,
1012         [CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED,
1013         [CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED,
1014         [CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED,
1015         [CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED,
1016         [CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST,
1017         [CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST,
1018         [CEC_MSG_CDC_MESSAGE] = 2 | BCAST,
1019 };
1020
1021 /* Called by the CEC adapter if a message is received */
1022 void cec_received_msg_ts(struct cec_adapter *adap,
1023                          struct cec_msg *msg, ktime_t ts)
1024 {
1025         struct cec_data *data;
1026         u8 msg_init = cec_msg_initiator(msg);
1027         u8 msg_dest = cec_msg_destination(msg);
1028         u8 cmd = msg->msg[1];
1029         bool is_reply = false;
1030         bool valid_la = true;
1031         u8 min_len = 0;
1032
1033         if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE))
1034                 return;
1035
1036         /*
1037          * Some CEC adapters will receive the messages that they transmitted.
1038          * This test filters out those messages by checking if we are the
1039          * initiator, and just returning in that case.
1040          *
1041          * Note that this won't work if this is an Unregistered device.
1042          *
1043          * It is bad practice if the hardware receives the message that it
1044          * transmitted and luckily most CEC adapters behave correctly in this
1045          * respect.
1046          */
1047         if (msg_init != CEC_LOG_ADDR_UNREGISTERED &&
1048             cec_has_log_addr(adap, msg_init))
1049                 return;
1050
1051         msg->rx_ts = ktime_to_ns(ts);
1052         msg->rx_status = CEC_RX_STATUS_OK;
1053         msg->sequence = msg->reply = msg->timeout = 0;
1054         msg->tx_status = 0;
1055         msg->tx_ts = 0;
1056         msg->tx_arb_lost_cnt = 0;
1057         msg->tx_nack_cnt = 0;
1058         msg->tx_low_drive_cnt = 0;
1059         msg->tx_error_cnt = 0;
1060         msg->flags = 0;
1061         memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
1062
1063         mutex_lock(&adap->lock);
1064         dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1065
1066         adap->last_initiator = 0xff;
1067
1068         /* Check if this message was for us (directed or broadcast). */
1069         if (!cec_msg_is_broadcast(msg))
1070                 valid_la = cec_has_log_addr(adap, msg_dest);
1071
1072         /*
1073          * Check if the length is not too short or if the message is a
1074          * broadcast message where a directed message was expected or
1075          * vice versa. If so, then the message has to be ignored (according
1076          * to section CEC 7.3 and CEC 12.2).
1077          */
1078         if (valid_la && msg->len > 1 && cec_msg_size[cmd]) {
1079                 u8 dir_fl = cec_msg_size[cmd] & BOTH;
1080
1081                 min_len = cec_msg_size[cmd] & 0x1f;
1082                 if (msg->len < min_len)
1083                         valid_la = false;
1084                 else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED))
1085                         valid_la = false;
1086                 else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST1_4))
1087                         valid_la = false;
1088                 else if (cec_msg_is_broadcast(msg) &&
1089                          adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0 &&
1090                          !(dir_fl & BCAST2_0))
1091                         valid_la = false;
1092         }
1093         if (valid_la && min_len) {
1094                 /* These messages have special length requirements */
1095                 switch (cmd) {
1096                 case CEC_MSG_TIMER_STATUS:
1097                         if (msg->msg[2] & 0x10) {
1098                                 switch (msg->msg[2] & 0xf) {
1099                                 case CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE:
1100                                 case CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE:
1101                                         if (msg->len < 5)
1102                                                 valid_la = false;
1103                                         break;
1104                                 }
1105                         } else if ((msg->msg[2] & 0xf) == CEC_OP_PROG_ERROR_DUPLICATE) {
1106                                 if (msg->len < 5)
1107                                         valid_la = false;
1108                         }
1109                         break;
1110                 case CEC_MSG_RECORD_ON:
1111                         switch (msg->msg[2]) {
1112                         case CEC_OP_RECORD_SRC_OWN:
1113                                 break;
1114                         case CEC_OP_RECORD_SRC_DIGITAL:
1115                                 if (msg->len < 10)
1116                                         valid_la = false;
1117                                 break;
1118                         case CEC_OP_RECORD_SRC_ANALOG:
1119                                 if (msg->len < 7)
1120                                         valid_la = false;
1121                                 break;
1122                         case CEC_OP_RECORD_SRC_EXT_PLUG:
1123                                 if (msg->len < 4)
1124                                         valid_la = false;
1125                                 break;
1126                         case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR:
1127                                 if (msg->len < 5)
1128                                         valid_la = false;
1129                                 break;
1130                         }
1131                         break;
1132                 }
1133         }
1134
1135         /* It's a valid message and not a poll or CDC message */
1136         if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) {
1137                 bool abort = cmd == CEC_MSG_FEATURE_ABORT;
1138
1139                 /* The aborted command is in msg[2] */
1140                 if (abort)
1141                         cmd = msg->msg[2];
1142
1143                 /*
1144                  * Walk over all transmitted messages that are waiting for a
1145                  * reply.
1146                  */
1147                 list_for_each_entry(data, &adap->wait_queue, list) {
1148                         struct cec_msg *dst = &data->msg;
1149
1150                         /*
1151                          * The *only* CEC message that has two possible replies
1152                          * is CEC_MSG_INITIATE_ARC.
1153                          * In this case allow either of the two replies.
1154                          */
1155                         if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC &&
1156                             (cmd == CEC_MSG_REPORT_ARC_INITIATED ||
1157                              cmd == CEC_MSG_REPORT_ARC_TERMINATED) &&
1158                             (dst->reply == CEC_MSG_REPORT_ARC_INITIATED ||
1159                              dst->reply == CEC_MSG_REPORT_ARC_TERMINATED))
1160                                 dst->reply = cmd;
1161
1162                         /* Does the command match? */
1163                         if ((abort && cmd != dst->msg[1]) ||
1164                             (!abort && cmd != dst->reply))
1165                                 continue;
1166
1167                         /* Does the addressing match? */
1168                         if (msg_init != cec_msg_destination(dst) &&
1169                             !cec_msg_is_broadcast(dst))
1170                                 continue;
1171
1172                         /* We got a reply */
1173                         memcpy(dst->msg, msg->msg, msg->len);
1174                         dst->len = msg->len;
1175                         dst->rx_ts = msg->rx_ts;
1176                         dst->rx_status = msg->rx_status;
1177                         if (abort)
1178                                 dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT;
1179                         msg->flags = dst->flags;
1180                         /* Remove it from the wait_queue */
1181                         list_del_init(&data->list);
1182
1183                         /* Cancel the pending timeout work */
1184                         if (!cancel_delayed_work(&data->work)) {
1185                                 mutex_unlock(&adap->lock);
1186                                 flush_scheduled_work();
1187                                 mutex_lock(&adap->lock);
1188                         }
1189                         /*
1190                          * Mark this as a reply, provided someone is still
1191                          * waiting for the answer.
1192                          */
1193                         if (data->fh)
1194                                 is_reply = true;
1195                         cec_data_completed(data);
1196                         break;
1197                 }
1198         }
1199         mutex_unlock(&adap->lock);
1200
1201         /* Pass the message on to any monitoring filehandles */
1202         cec_queue_msg_monitor(adap, msg, valid_la);
1203
1204         /* We're done if it is not for us or a poll message */
1205         if (!valid_la || msg->len <= 1)
1206                 return;
1207
1208         if (adap->log_addrs.log_addr_mask == 0)
1209                 return;
1210
1211         /*
1212          * Process the message on the protocol level. If is_reply is true,
1213          * then cec_receive_notify() won't pass on the reply to the listener(s)
1214          * since that was already done by cec_data_completed() above.
1215          */
1216         cec_receive_notify(adap, msg, is_reply);
1217 }
1218 EXPORT_SYMBOL_GPL(cec_received_msg_ts);
1219
1220 /* Logical Address Handling */
1221
1222 /*
1223  * Attempt to claim a specific logical address.
1224  *
1225  * This function is called with adap->lock held.
1226  */
1227 static int cec_config_log_addr(struct cec_adapter *adap,
1228                                unsigned int idx,
1229                                unsigned int log_addr)
1230 {
1231         struct cec_log_addrs *las = &adap->log_addrs;
1232         struct cec_msg msg = { };
1233         const unsigned int max_retries = 2;
1234         unsigned int i;
1235         int err;
1236
1237         if (cec_has_log_addr(adap, log_addr))
1238                 return 0;
1239
1240         /* Send poll message */
1241         msg.len = 1;
1242         msg.msg[0] = (log_addr << 4) | log_addr;
1243
1244         for (i = 0; i < max_retries; i++) {
1245                 err = cec_transmit_msg_fh(adap, &msg, NULL, true);
1246
1247                 /*
1248                  * While trying to poll the physical address was reset
1249                  * and the adapter was unconfigured, so bail out.
1250                  */
1251                 if (!adap->is_configuring)
1252                         return -EINTR;
1253
1254                 if (err)
1255                         return err;
1256
1257                 /*
1258                  * The message was aborted due to a disconnect or
1259                  * unconfigure, just bail out.
1260                  */
1261                 if (msg.tx_status & CEC_TX_STATUS_ABORTED)
1262                         return -EINTR;
1263                 if (msg.tx_status & CEC_TX_STATUS_OK)
1264                         return 0;
1265                 if (msg.tx_status & CEC_TX_STATUS_NACK)
1266                         break;
1267                 /*
1268                  * Retry up to max_retries times if the message was neither
1269                  * OKed or NACKed. This can happen due to e.g. a Lost
1270                  * Arbitration condition.
1271                  */
1272         }
1273
1274         /*
1275          * If we are unable to get an OK or a NACK after max_retries attempts
1276          * (and note that each attempt already consists of four polls), then
1277          * then we assume that something is really weird and that it is not a
1278          * good idea to try and claim this logical address.
1279          */
1280         if (i == max_retries)
1281                 return 0;
1282
1283         /*
1284          * Message not acknowledged, so this logical
1285          * address is free to use.
1286          */
1287         err = adap->ops->adap_log_addr(adap, log_addr);
1288         if (err)
1289                 return err;
1290
1291         las->log_addr[idx] = log_addr;
1292         las->log_addr_mask |= 1 << log_addr;
1293         adap->phys_addrs[log_addr] = adap->phys_addr;
1294         return 1;
1295 }
1296
1297 /*
1298  * Unconfigure the adapter: clear all logical addresses and send
1299  * the state changed event.
1300  *
1301  * This function is called with adap->lock held.
1302  */
1303 static void cec_adap_unconfigure(struct cec_adapter *adap)
1304 {
1305         if (!adap->needs_hpd ||
1306             adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1307                 WARN_ON(adap->ops->adap_log_addr(adap, CEC_LOG_ADDR_INVALID));
1308         adap->log_addrs.log_addr_mask = 0;
1309         adap->is_configuring = false;
1310         adap->is_configured = false;
1311         memset(adap->phys_addrs, 0xff, sizeof(adap->phys_addrs));
1312         cec_flush(adap);
1313         wake_up_interruptible(&adap->kthread_waitq);
1314         cec_post_state_event(adap);
1315 }
1316
1317 /*
1318  * Attempt to claim the required logical addresses.
1319  */
1320 static int cec_config_thread_func(void *arg)
1321 {
1322         /* The various LAs for each type of device */
1323         static const u8 tv_log_addrs[] = {
1324                 CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC,
1325                 CEC_LOG_ADDR_INVALID
1326         };
1327         static const u8 record_log_addrs[] = {
1328                 CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2,
1329                 CEC_LOG_ADDR_RECORD_3,
1330                 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1331                 CEC_LOG_ADDR_INVALID
1332         };
1333         static const u8 tuner_log_addrs[] = {
1334                 CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2,
1335                 CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4,
1336                 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1337                 CEC_LOG_ADDR_INVALID
1338         };
1339         static const u8 playback_log_addrs[] = {
1340                 CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2,
1341                 CEC_LOG_ADDR_PLAYBACK_3,
1342                 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1343                 CEC_LOG_ADDR_INVALID
1344         };
1345         static const u8 audiosystem_log_addrs[] = {
1346                 CEC_LOG_ADDR_AUDIOSYSTEM,
1347                 CEC_LOG_ADDR_INVALID
1348         };
1349         static const u8 specific_use_log_addrs[] = {
1350                 CEC_LOG_ADDR_SPECIFIC,
1351                 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1352                 CEC_LOG_ADDR_INVALID
1353         };
1354         static const u8 *type2addrs[6] = {
1355                 [CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs,
1356                 [CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs,
1357                 [CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs,
1358                 [CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs,
1359                 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs,
1360                 [CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs,
1361         };
1362         static const u16 type2mask[] = {
1363                 [CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV,
1364                 [CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD,
1365                 [CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER,
1366                 [CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK,
1367                 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM,
1368                 [CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC,
1369         };
1370         struct cec_adapter *adap = arg;
1371         struct cec_log_addrs *las = &adap->log_addrs;
1372         int err;
1373         int i, j;
1374
1375         mutex_lock(&adap->lock);
1376         dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n",
1377                 cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs);
1378         las->log_addr_mask = 0;
1379
1380         if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED)
1381                 goto configured;
1382
1383         for (i = 0; i < las->num_log_addrs; i++) {
1384                 unsigned int type = las->log_addr_type[i];
1385                 const u8 *la_list;
1386                 u8 last_la;
1387
1388                 /*
1389                  * The TV functionality can only map to physical address 0.
1390                  * For any other address, try the Specific functionality
1391                  * instead as per the spec.
1392                  */
1393                 if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV)
1394                         type = CEC_LOG_ADDR_TYPE_SPECIFIC;
1395
1396                 la_list = type2addrs[type];
1397                 last_la = las->log_addr[i];
1398                 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1399                 if (last_la == CEC_LOG_ADDR_INVALID ||
1400                     last_la == CEC_LOG_ADDR_UNREGISTERED ||
1401                     !((1 << last_la) & type2mask[type]))
1402                         last_la = la_list[0];
1403
1404                 err = cec_config_log_addr(adap, i, last_la);
1405                 if (err > 0) /* Reused last LA */
1406                         continue;
1407
1408                 if (err < 0)
1409                         goto unconfigure;
1410
1411                 for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) {
1412                         /* Tried this one already, skip it */
1413                         if (la_list[j] == last_la)
1414                                 continue;
1415                         /* The backup addresses are CEC 2.0 specific */
1416                         if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 ||
1417                              la_list[j] == CEC_LOG_ADDR_BACKUP_2) &&
1418                             las->cec_version < CEC_OP_CEC_VERSION_2_0)
1419                                 continue;
1420
1421                         err = cec_config_log_addr(adap, i, la_list[j]);
1422                         if (err == 0) /* LA is in use */
1423                                 continue;
1424                         if (err < 0)
1425                                 goto unconfigure;
1426                         /* Done, claimed an LA */
1427                         break;
1428                 }
1429
1430                 if (la_list[j] == CEC_LOG_ADDR_INVALID)
1431                         dprintk(1, "could not claim LA %d\n", i);
1432         }
1433
1434         if (adap->log_addrs.log_addr_mask == 0 &&
1435             !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK))
1436                 goto unconfigure;
1437
1438 configured:
1439         if (adap->log_addrs.log_addr_mask == 0) {
1440                 /* Fall back to unregistered */
1441                 las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED;
1442                 las->log_addr_mask = 1 << las->log_addr[0];
1443                 for (i = 1; i < las->num_log_addrs; i++)
1444                         las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1445         }
1446         for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++)
1447                 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1448         adap->is_configured = true;
1449         adap->is_configuring = false;
1450         cec_post_state_event(adap);
1451
1452         /*
1453          * Now post the Report Features and Report Physical Address broadcast
1454          * messages. Note that these are non-blocking transmits, meaning that
1455          * they are just queued up and once adap->lock is unlocked the main
1456          * thread will kick in and start transmitting these.
1457          *
1458          * If after this function is done (but before one or more of these
1459          * messages are actually transmitted) the CEC adapter is unconfigured,
1460          * then any remaining messages will be dropped by the main thread.
1461          */
1462         for (i = 0; i < las->num_log_addrs; i++) {
1463                 struct cec_msg msg = {};
1464
1465                 if (las->log_addr[i] == CEC_LOG_ADDR_INVALID ||
1466                     (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY))
1467                         continue;
1468
1469                 msg.msg[0] = (las->log_addr[i] << 4) | 0x0f;
1470
1471                 /* Report Features must come first according to CEC 2.0 */
1472                 if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED &&
1473                     adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) {
1474                         cec_fill_msg_report_features(adap, &msg, i);
1475                         cec_transmit_msg_fh(adap, &msg, NULL, false);
1476                 }
1477
1478                 /* Report Physical Address */
1479                 cec_msg_report_physical_addr(&msg, adap->phys_addr,
1480                                              las->primary_device_type[i]);
1481                 dprintk(1, "config: la %d pa %x.%x.%x.%x\n",
1482                         las->log_addr[i],
1483                         cec_phys_addr_exp(adap->phys_addr));
1484                 cec_transmit_msg_fh(adap, &msg, NULL, false);
1485
1486                 /* Report Vendor ID */
1487                 if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) {
1488                         cec_msg_device_vendor_id(&msg,
1489                                                  adap->log_addrs.vendor_id);
1490                         cec_transmit_msg_fh(adap, &msg, NULL, false);
1491                 }
1492         }
1493         adap->kthread_config = NULL;
1494         complete(&adap->config_completion);
1495         mutex_unlock(&adap->lock);
1496         return 0;
1497
1498 unconfigure:
1499         for (i = 0; i < las->num_log_addrs; i++)
1500                 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1501         cec_adap_unconfigure(adap);
1502         adap->kthread_config = NULL;
1503         mutex_unlock(&adap->lock);
1504         complete(&adap->config_completion);
1505         return 0;
1506 }
1507
1508 /*
1509  * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the
1510  * logical addresses.
1511  *
1512  * This function is called with adap->lock held.
1513  */
1514 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block)
1515 {
1516         if (WARN_ON(adap->is_configuring || adap->is_configured))
1517                 return;
1518
1519         init_completion(&adap->config_completion);
1520
1521         /* Ready to kick off the thread */
1522         adap->is_configuring = true;
1523         adap->kthread_config = kthread_run(cec_config_thread_func, adap,
1524                                            "ceccfg-%s", adap->name);
1525         if (IS_ERR(adap->kthread_config)) {
1526                 adap->kthread_config = NULL;
1527         } else if (block) {
1528                 mutex_unlock(&adap->lock);
1529                 wait_for_completion(&adap->config_completion);
1530                 mutex_lock(&adap->lock);
1531         }
1532 }
1533
1534 /* Set a new physical address and send an event notifying userspace of this.
1535  *
1536  * This function is called with adap->lock held.
1537  */
1538 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1539 {
1540         if (phys_addr == adap->phys_addr)
1541                 return;
1542         if (phys_addr != CEC_PHYS_ADDR_INVALID && adap->devnode.unregistered)
1543                 return;
1544
1545         dprintk(1, "new physical address %x.%x.%x.%x\n",
1546                 cec_phys_addr_exp(phys_addr));
1547         if (phys_addr == CEC_PHYS_ADDR_INVALID ||
1548             adap->phys_addr != CEC_PHYS_ADDR_INVALID) {
1549                 adap->phys_addr = CEC_PHYS_ADDR_INVALID;
1550                 cec_post_state_event(adap);
1551                 cec_adap_unconfigure(adap);
1552                 /* Disabling monitor all mode should always succeed */
1553                 if (adap->monitor_all_cnt)
1554                         WARN_ON(call_op(adap, adap_monitor_all_enable, false));
1555                 mutex_lock(&adap->devnode.lock);
1556                 if (adap->needs_hpd || list_empty(&adap->devnode.fhs)) {
1557                         WARN_ON(adap->ops->adap_enable(adap, false));
1558                         adap->transmit_in_progress = false;
1559                         wake_up_interruptible(&adap->kthread_waitq);
1560                 }
1561                 mutex_unlock(&adap->devnode.lock);
1562                 if (phys_addr == CEC_PHYS_ADDR_INVALID)
1563                         return;
1564         }
1565
1566         mutex_lock(&adap->devnode.lock);
1567         adap->last_initiator = 0xff;
1568         adap->transmit_in_progress = false;
1569
1570         if ((adap->needs_hpd || list_empty(&adap->devnode.fhs)) &&
1571             adap->ops->adap_enable(adap, true)) {
1572                 mutex_unlock(&adap->devnode.lock);
1573                 return;
1574         }
1575
1576         if (adap->monitor_all_cnt &&
1577             call_op(adap, adap_monitor_all_enable, true)) {
1578                 if (adap->needs_hpd || list_empty(&adap->devnode.fhs))
1579                         WARN_ON(adap->ops->adap_enable(adap, false));
1580                 mutex_unlock(&adap->devnode.lock);
1581                 return;
1582         }
1583         mutex_unlock(&adap->devnode.lock);
1584
1585         adap->phys_addr = phys_addr;
1586         cec_post_state_event(adap);
1587         if (adap->log_addrs.num_log_addrs)
1588                 cec_claim_log_addrs(adap, block);
1589 }
1590
1591 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1592 {
1593         if (IS_ERR_OR_NULL(adap))
1594                 return;
1595
1596         mutex_lock(&adap->lock);
1597         __cec_s_phys_addr(adap, phys_addr, block);
1598         mutex_unlock(&adap->lock);
1599 }
1600 EXPORT_SYMBOL_GPL(cec_s_phys_addr);
1601
1602 void cec_s_phys_addr_from_edid(struct cec_adapter *adap,
1603                                const struct edid *edid)
1604 {
1605         u16 pa = CEC_PHYS_ADDR_INVALID;
1606
1607         if (edid && edid->extensions)
1608                 pa = cec_get_edid_phys_addr((const u8 *)edid,
1609                                 EDID_LENGTH * (edid->extensions + 1), NULL);
1610         cec_s_phys_addr(adap, pa, false);
1611 }
1612 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid);
1613
1614 void cec_s_conn_info(struct cec_adapter *adap,
1615                      const struct cec_connector_info *conn_info)
1616 {
1617         if (IS_ERR_OR_NULL(adap))
1618                 return;
1619
1620         if (!(adap->capabilities & CEC_CAP_CONNECTOR_INFO))
1621                 return;
1622
1623         mutex_lock(&adap->lock);
1624         if (conn_info)
1625                 adap->conn_info = *conn_info;
1626         else
1627                 memset(&adap->conn_info, 0, sizeof(adap->conn_info));
1628         cec_post_state_event(adap);
1629         mutex_unlock(&adap->lock);
1630 }
1631 EXPORT_SYMBOL_GPL(cec_s_conn_info);
1632
1633 /*
1634  * Called from either the ioctl or a driver to set the logical addresses.
1635  *
1636  * This function is called with adap->lock held.
1637  */
1638 int __cec_s_log_addrs(struct cec_adapter *adap,
1639                       struct cec_log_addrs *log_addrs, bool block)
1640 {
1641         u16 type_mask = 0;
1642         int i;
1643
1644         if (adap->devnode.unregistered)
1645                 return -ENODEV;
1646
1647         if (!log_addrs || log_addrs->num_log_addrs == 0) {
1648                 cec_adap_unconfigure(adap);
1649                 adap->log_addrs.num_log_addrs = 0;
1650                 for (i = 0; i < CEC_MAX_LOG_ADDRS; i++)
1651                         adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID;
1652                 adap->log_addrs.osd_name[0] = '\0';
1653                 adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE;
1654                 adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0;
1655                 return 0;
1656         }
1657
1658         if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) {
1659                 /*
1660                  * Sanitize log_addrs fields if a CDC-Only device is
1661                  * requested.
1662                  */
1663                 log_addrs->num_log_addrs = 1;
1664                 log_addrs->osd_name[0] = '\0';
1665                 log_addrs->vendor_id = CEC_VENDOR_ID_NONE;
1666                 log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED;
1667                 /*
1668                  * This is just an internal convention since a CDC-Only device
1669                  * doesn't have to be a switch. But switches already use
1670                  * unregistered, so it makes some kind of sense to pick this
1671                  * as the primary device. Since a CDC-Only device never sends
1672                  * any 'normal' CEC messages this primary device type is never
1673                  * sent over the CEC bus.
1674                  */
1675                 log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH;
1676                 log_addrs->all_device_types[0] = 0;
1677                 log_addrs->features[0][0] = 0;
1678                 log_addrs->features[0][1] = 0;
1679         }
1680
1681         /* Ensure the osd name is 0-terminated */
1682         log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0';
1683
1684         /* Sanity checks */
1685         if (log_addrs->num_log_addrs > adap->available_log_addrs) {
1686                 dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs);
1687                 return -EINVAL;
1688         }
1689
1690         /*
1691          * Vendor ID is a 24 bit number, so check if the value is
1692          * within the correct range.
1693          */
1694         if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE &&
1695             (log_addrs->vendor_id & 0xff000000) != 0) {
1696                 dprintk(1, "invalid vendor ID\n");
1697                 return -EINVAL;
1698         }
1699
1700         if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 &&
1701             log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) {
1702                 dprintk(1, "invalid CEC version\n");
1703                 return -EINVAL;
1704         }
1705
1706         if (log_addrs->num_log_addrs > 1)
1707                 for (i = 0; i < log_addrs->num_log_addrs; i++)
1708                         if (log_addrs->log_addr_type[i] ==
1709                                         CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1710                                 dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n");
1711                                 return -EINVAL;
1712                         }
1713
1714         for (i = 0; i < log_addrs->num_log_addrs; i++) {
1715                 const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]);
1716                 u8 *features = log_addrs->features[i];
1717                 bool op_is_dev_features = false;
1718                 unsigned j;
1719
1720                 log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID;
1721                 if (type_mask & (1 << log_addrs->log_addr_type[i])) {
1722                         dprintk(1, "duplicate logical address type\n");
1723                         return -EINVAL;
1724                 }
1725                 type_mask |= 1 << log_addrs->log_addr_type[i];
1726                 if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) &&
1727                     (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) {
1728                         /* Record already contains the playback functionality */
1729                         dprintk(1, "invalid record + playback combination\n");
1730                         return -EINVAL;
1731                 }
1732                 if (log_addrs->primary_device_type[i] >
1733                                         CEC_OP_PRIM_DEVTYPE_PROCESSOR) {
1734                         dprintk(1, "unknown primary device type\n");
1735                         return -EINVAL;
1736                 }
1737                 if (log_addrs->primary_device_type[i] == 2) {
1738                         dprintk(1, "invalid primary device type\n");
1739                         return -EINVAL;
1740                 }
1741                 if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1742                         dprintk(1, "unknown logical address type\n");
1743                         return -EINVAL;
1744                 }
1745                 for (j = 0; j < feature_sz; j++) {
1746                         if ((features[j] & 0x80) == 0) {
1747                                 if (op_is_dev_features)
1748                                         break;
1749                                 op_is_dev_features = true;
1750                         }
1751                 }
1752                 if (!op_is_dev_features || j == feature_sz) {
1753                         dprintk(1, "malformed features\n");
1754                         return -EINVAL;
1755                 }
1756                 /* Zero unused part of the feature array */
1757                 memset(features + j + 1, 0, feature_sz - j - 1);
1758         }
1759
1760         if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) {
1761                 if (log_addrs->num_log_addrs > 2) {
1762                         dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n");
1763                         return -EINVAL;
1764                 }
1765                 if (log_addrs->num_log_addrs == 2) {
1766                         if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) |
1767                                            (1 << CEC_LOG_ADDR_TYPE_TV)))) {
1768                                 dprintk(1, "two LAs is only allowed for audiosystem and TV\n");
1769                                 return -EINVAL;
1770                         }
1771                         if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) |
1772                                            (1 << CEC_LOG_ADDR_TYPE_RECORD)))) {
1773                                 dprintk(1, "an audiosystem/TV can only be combined with record or playback\n");
1774                                 return -EINVAL;
1775                         }
1776                 }
1777         }
1778
1779         /* Zero unused LAs */
1780         for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) {
1781                 log_addrs->primary_device_type[i] = 0;
1782                 log_addrs->log_addr_type[i] = 0;
1783                 log_addrs->all_device_types[i] = 0;
1784                 memset(log_addrs->features[i], 0,
1785                        sizeof(log_addrs->features[i]));
1786         }
1787
1788         log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask;
1789         adap->log_addrs = *log_addrs;
1790         if (adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1791                 cec_claim_log_addrs(adap, block);
1792         return 0;
1793 }
1794
1795 int cec_s_log_addrs(struct cec_adapter *adap,
1796                     struct cec_log_addrs *log_addrs, bool block)
1797 {
1798         int err;
1799
1800         mutex_lock(&adap->lock);
1801         err = __cec_s_log_addrs(adap, log_addrs, block);
1802         mutex_unlock(&adap->lock);
1803         return err;
1804 }
1805 EXPORT_SYMBOL_GPL(cec_s_log_addrs);
1806
1807 /* High-level core CEC message handling */
1808
1809 /* Fill in the Report Features message */
1810 static void cec_fill_msg_report_features(struct cec_adapter *adap,
1811                                          struct cec_msg *msg,
1812                                          unsigned int la_idx)
1813 {
1814         const struct cec_log_addrs *las = &adap->log_addrs;
1815         const u8 *features = las->features[la_idx];
1816         bool op_is_dev_features = false;
1817         unsigned int idx;
1818
1819         /* Report Features */
1820         msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f;
1821         msg->len = 4;
1822         msg->msg[1] = CEC_MSG_REPORT_FEATURES;
1823         msg->msg[2] = adap->log_addrs.cec_version;
1824         msg->msg[3] = las->all_device_types[la_idx];
1825
1826         /* Write RC Profiles first, then Device Features */
1827         for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) {
1828                 msg->msg[msg->len++] = features[idx];
1829                 if ((features[idx] & CEC_OP_FEAT_EXT) == 0) {
1830                         if (op_is_dev_features)
1831                                 break;
1832                         op_is_dev_features = true;
1833                 }
1834         }
1835 }
1836
1837 /* Transmit the Feature Abort message */
1838 static int cec_feature_abort_reason(struct cec_adapter *adap,
1839                                     struct cec_msg *msg, u8 reason)
1840 {
1841         struct cec_msg tx_msg = { };
1842
1843         /*
1844          * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT
1845          * message!
1846          */
1847         if (msg->msg[1] == CEC_MSG_FEATURE_ABORT)
1848                 return 0;
1849         /* Don't Feature Abort messages from 'Unregistered' */
1850         if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED)
1851                 return 0;
1852         cec_msg_set_reply_to(&tx_msg, msg);
1853         cec_msg_feature_abort(&tx_msg, msg->msg[1], reason);
1854         return cec_transmit_msg(adap, &tx_msg, false);
1855 }
1856
1857 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg)
1858 {
1859         return cec_feature_abort_reason(adap, msg,
1860                                         CEC_OP_ABORT_UNRECOGNIZED_OP);
1861 }
1862
1863 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg)
1864 {
1865         return cec_feature_abort_reason(adap, msg,
1866                                         CEC_OP_ABORT_REFUSED);
1867 }
1868
1869 /*
1870  * Called when a CEC message is received. This function will do any
1871  * necessary core processing. The is_reply bool is true if this message
1872  * is a reply to an earlier transmit.
1873  *
1874  * The message is either a broadcast message or a valid directed message.
1875  */
1876 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
1877                               bool is_reply)
1878 {
1879         bool is_broadcast = cec_msg_is_broadcast(msg);
1880         u8 dest_laddr = cec_msg_destination(msg);
1881         u8 init_laddr = cec_msg_initiator(msg);
1882         u8 devtype = cec_log_addr2dev(adap, dest_laddr);
1883         int la_idx = cec_log_addr2idx(adap, dest_laddr);
1884         bool from_unregistered = init_laddr == 0xf;
1885         struct cec_msg tx_cec_msg = { };
1886
1887         dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1888
1889         /* If this is a CDC-Only device, then ignore any non-CDC messages */
1890         if (cec_is_cdc_only(&adap->log_addrs) &&
1891             msg->msg[1] != CEC_MSG_CDC_MESSAGE)
1892                 return 0;
1893
1894         if (adap->ops->received) {
1895                 /* Allow drivers to process the message first */
1896                 if (adap->ops->received(adap, msg) != -ENOMSG)
1897                         return 0;
1898         }
1899
1900         /*
1901          * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and
1902          * CEC_MSG_USER_CONTROL_RELEASED messages always have to be
1903          * handled by the CEC core, even if the passthrough mode is on.
1904          * The others are just ignored if passthrough mode is on.
1905          */
1906         switch (msg->msg[1]) {
1907         case CEC_MSG_GET_CEC_VERSION:
1908         case CEC_MSG_ABORT:
1909         case CEC_MSG_GIVE_DEVICE_POWER_STATUS:
1910         case CEC_MSG_GIVE_OSD_NAME:
1911                 /*
1912                  * These messages reply with a directed message, so ignore if
1913                  * the initiator is Unregistered.
1914                  */
1915                 if (!adap->passthrough && from_unregistered)
1916                         return 0;
1917                 /* Fall through */
1918         case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
1919         case CEC_MSG_GIVE_FEATURES:
1920         case CEC_MSG_GIVE_PHYSICAL_ADDR:
1921                 /*
1922                  * Skip processing these messages if the passthrough mode
1923                  * is on.
1924                  */
1925                 if (adap->passthrough)
1926                         goto skip_processing;
1927                 /* Ignore if addressing is wrong */
1928                 if (is_broadcast)
1929                         return 0;
1930                 break;
1931
1932         case CEC_MSG_USER_CONTROL_PRESSED:
1933         case CEC_MSG_USER_CONTROL_RELEASED:
1934                 /* Wrong addressing mode: don't process */
1935                 if (is_broadcast || from_unregistered)
1936                         goto skip_processing;
1937                 break;
1938
1939         case CEC_MSG_REPORT_PHYSICAL_ADDR:
1940                 /*
1941                  * This message is always processed, regardless of the
1942                  * passthrough setting.
1943                  *
1944                  * Exception: don't process if wrong addressing mode.
1945                  */
1946                 if (!is_broadcast)
1947                         goto skip_processing;
1948                 break;
1949
1950         default:
1951                 break;
1952         }
1953
1954         cec_msg_set_reply_to(&tx_cec_msg, msg);
1955
1956         switch (msg->msg[1]) {
1957         /* The following messages are processed but still passed through */
1958         case CEC_MSG_REPORT_PHYSICAL_ADDR: {
1959                 u16 pa = (msg->msg[2] << 8) | msg->msg[3];
1960
1961                 if (!from_unregistered)
1962                         adap->phys_addrs[init_laddr] = pa;
1963                 dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n",
1964                         cec_phys_addr_exp(pa), init_laddr);
1965                 break;
1966         }
1967
1968         case CEC_MSG_USER_CONTROL_PRESSED:
1969                 if (!(adap->capabilities & CEC_CAP_RC) ||
1970                     !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
1971                         break;
1972
1973 #ifdef CONFIG_MEDIA_CEC_RC
1974                 switch (msg->msg[2]) {
1975                 /*
1976                  * Play function, this message can have variable length
1977                  * depending on the specific play function that is used.
1978                  */
1979                 case 0x60:
1980                         if (msg->len == 2)
1981                                 rc_keydown(adap->rc, RC_PROTO_CEC,
1982                                            msg->msg[2], 0);
1983                         else
1984                                 rc_keydown(adap->rc, RC_PROTO_CEC,
1985                                            msg->msg[2] << 8 | msg->msg[3], 0);
1986                         break;
1987                 /*
1988                  * Other function messages that are not handled.
1989                  * Currently the RC framework does not allow to supply an
1990                  * additional parameter to a keypress. These "keys" contain
1991                  * other information such as channel number, an input number
1992                  * etc.
1993                  * For the time being these messages are not processed by the
1994                  * framework and are simply forwarded to the user space.
1995                  */
1996                 case 0x56: case 0x57:
1997                 case 0x67: case 0x68: case 0x69: case 0x6a:
1998                         break;
1999                 default:
2000                         rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0);
2001                         break;
2002                 }
2003 #endif
2004                 break;
2005
2006         case CEC_MSG_USER_CONTROL_RELEASED:
2007                 if (!(adap->capabilities & CEC_CAP_RC) ||
2008                     !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
2009                         break;
2010 #ifdef CONFIG_MEDIA_CEC_RC
2011                 rc_keyup(adap->rc);
2012 #endif
2013                 break;
2014
2015         /*
2016          * The remaining messages are only processed if the passthrough mode
2017          * is off.
2018          */
2019         case CEC_MSG_GET_CEC_VERSION:
2020                 cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version);
2021                 return cec_transmit_msg(adap, &tx_cec_msg, false);
2022
2023         case CEC_MSG_GIVE_PHYSICAL_ADDR:
2024                 /* Do nothing for CEC switches using addr 15 */
2025                 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15)
2026                         return 0;
2027                 cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype);
2028                 return cec_transmit_msg(adap, &tx_cec_msg, false);
2029
2030         case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
2031                 if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE)
2032                         return cec_feature_abort(adap, msg);
2033                 cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id);
2034                 return cec_transmit_msg(adap, &tx_cec_msg, false);
2035
2036         case CEC_MSG_ABORT:
2037                 /* Do nothing for CEC switches */
2038                 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH)
2039                         return 0;
2040                 return cec_feature_refused(adap, msg);
2041
2042         case CEC_MSG_GIVE_OSD_NAME: {
2043                 if (adap->log_addrs.osd_name[0] == 0)
2044                         return cec_feature_abort(adap, msg);
2045                 cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name);
2046                 return cec_transmit_msg(adap, &tx_cec_msg, false);
2047         }
2048
2049         case CEC_MSG_GIVE_FEATURES:
2050                 if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0)
2051                         return cec_feature_abort(adap, msg);
2052                 cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx);
2053                 return cec_transmit_msg(adap, &tx_cec_msg, false);
2054
2055         default:
2056                 /*
2057                  * Unprocessed messages are aborted if userspace isn't doing
2058                  * any processing either.
2059                  */
2060                 if (!is_broadcast && !is_reply && !adap->follower_cnt &&
2061                     !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT)
2062                         return cec_feature_abort(adap, msg);
2063                 break;
2064         }
2065
2066 skip_processing:
2067         /* If this was a reply, then we're done, unless otherwise specified */
2068         if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS))
2069                 return 0;
2070
2071         /*
2072          * Send to the exclusive follower if there is one, otherwise send
2073          * to all followers.
2074          */
2075         if (adap->cec_follower)
2076                 cec_queue_msg_fh(adap->cec_follower, msg);
2077         else
2078                 cec_queue_msg_followers(adap, msg);
2079         return 0;
2080 }
2081
2082 /*
2083  * Helper functions to keep track of the 'monitor all' use count.
2084  *
2085  * These functions are called with adap->lock held.
2086  */
2087 int cec_monitor_all_cnt_inc(struct cec_adapter *adap)
2088 {
2089         int ret = 0;
2090
2091         if (adap->monitor_all_cnt == 0)
2092                 ret = call_op(adap, adap_monitor_all_enable, 1);
2093         if (ret == 0)
2094                 adap->monitor_all_cnt++;
2095         return ret;
2096 }
2097
2098 void cec_monitor_all_cnt_dec(struct cec_adapter *adap)
2099 {
2100         adap->monitor_all_cnt--;
2101         if (adap->monitor_all_cnt == 0)
2102                 WARN_ON(call_op(adap, adap_monitor_all_enable, 0));
2103 }
2104
2105 /*
2106  * Helper functions to keep track of the 'monitor pin' use count.
2107  *
2108  * These functions are called with adap->lock held.
2109  */
2110 int cec_monitor_pin_cnt_inc(struct cec_adapter *adap)
2111 {
2112         int ret = 0;
2113
2114         if (adap->monitor_pin_cnt == 0)
2115                 ret = call_op(adap, adap_monitor_pin_enable, 1);
2116         if (ret == 0)
2117                 adap->monitor_pin_cnt++;
2118         return ret;
2119 }
2120
2121 void cec_monitor_pin_cnt_dec(struct cec_adapter *adap)
2122 {
2123         adap->monitor_pin_cnt--;
2124         if (adap->monitor_pin_cnt == 0)
2125                 WARN_ON(call_op(adap, adap_monitor_pin_enable, 0));
2126 }
2127
2128 #ifdef CONFIG_DEBUG_FS
2129 /*
2130  * Log the current state of the CEC adapter.
2131  * Very useful for debugging.
2132  */
2133 int cec_adap_status(struct seq_file *file, void *priv)
2134 {
2135         struct cec_adapter *adap = dev_get_drvdata(file->private);
2136         struct cec_data *data;
2137
2138         mutex_lock(&adap->lock);
2139         seq_printf(file, "configured: %d\n", adap->is_configured);
2140         seq_printf(file, "configuring: %d\n", adap->is_configuring);
2141         seq_printf(file, "phys_addr: %x.%x.%x.%x\n",
2142                    cec_phys_addr_exp(adap->phys_addr));
2143         seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs);
2144         seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask);
2145         if (adap->cec_follower)
2146                 seq_printf(file, "has CEC follower%s\n",
2147                            adap->passthrough ? " (in passthrough mode)" : "");
2148         if (adap->cec_initiator)
2149                 seq_puts(file, "has CEC initiator\n");
2150         if (adap->monitor_all_cnt)
2151                 seq_printf(file, "file handles in Monitor All mode: %u\n",
2152                            adap->monitor_all_cnt);
2153         if (adap->tx_timeouts) {
2154                 seq_printf(file, "transmit timeouts: %u\n",
2155                            adap->tx_timeouts);
2156                 adap->tx_timeouts = 0;
2157         }
2158         data = adap->transmitting;
2159         if (data)
2160                 seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n",
2161                            data->msg.len, data->msg.msg, data->msg.reply,
2162                            data->msg.timeout);
2163         seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz);
2164         list_for_each_entry(data, &adap->transmit_queue, list) {
2165                 seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n",
2166                            data->msg.len, data->msg.msg, data->msg.reply,
2167                            data->msg.timeout);
2168         }
2169         list_for_each_entry(data, &adap->wait_queue, list) {
2170                 seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n",
2171                            data->msg.len, data->msg.msg, data->msg.reply,
2172                            data->msg.timeout);
2173         }
2174
2175         call_void_op(adap, adap_status, file);
2176         mutex_unlock(&adap->lock);
2177         return 0;
2178 }
2179 #endif
This page took 0.164604 seconds and 4 git commands to generate.