1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd.
7 #include <linux/bitmap.h>
8 #include <linux/bitops.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmaengine.h>
12 #include <linux/err.h>
13 #include <linux/interrupt.h>
15 #include <linux/log2.h>
16 #include <linux/module.h>
18 #include <linux/of_device.h>
19 #include <linux/of_dma.h>
20 #include <linux/platform_device.h>
21 #include <linux/slab.h>
23 #include <dt-bindings/dma/nbpfaxi.h>
25 #include "dmaengine.h"
27 #define NBPF_REG_CHAN_OFFSET 0
28 #define NBPF_REG_CHAN_SIZE 0x40
30 /* Channel Current Transaction Byte register */
31 #define NBPF_CHAN_CUR_TR_BYTE 0x20
33 /* Channel Status register */
34 #define NBPF_CHAN_STAT 0x24
35 #define NBPF_CHAN_STAT_EN 1
36 #define NBPF_CHAN_STAT_TACT 4
37 #define NBPF_CHAN_STAT_ERR 0x10
38 #define NBPF_CHAN_STAT_END 0x20
39 #define NBPF_CHAN_STAT_TC 0x40
40 #define NBPF_CHAN_STAT_DER 0x400
42 /* Channel Control register */
43 #define NBPF_CHAN_CTRL 0x28
44 #define NBPF_CHAN_CTRL_SETEN 1
45 #define NBPF_CHAN_CTRL_CLREN 2
46 #define NBPF_CHAN_CTRL_STG 4
47 #define NBPF_CHAN_CTRL_SWRST 8
48 #define NBPF_CHAN_CTRL_CLRRQ 0x10
49 #define NBPF_CHAN_CTRL_CLREND 0x20
50 #define NBPF_CHAN_CTRL_CLRTC 0x40
51 #define NBPF_CHAN_CTRL_SETSUS 0x100
52 #define NBPF_CHAN_CTRL_CLRSUS 0x200
54 /* Channel Configuration register */
55 #define NBPF_CHAN_CFG 0x2c
56 #define NBPF_CHAN_CFG_SEL 7 /* terminal SELect: 0..7 */
57 #define NBPF_CHAN_CFG_REQD 8 /* REQuest Direction: DMAREQ is 0: input, 1: output */
58 #define NBPF_CHAN_CFG_LOEN 0x10 /* LOw ENable: low DMA request line is: 0: inactive, 1: active */
59 #define NBPF_CHAN_CFG_HIEN 0x20 /* HIgh ENable: high DMA request line is: 0: inactive, 1: active */
60 #define NBPF_CHAN_CFG_LVL 0x40 /* LeVeL: DMA request line is sensed as 0: edge, 1: level */
61 #define NBPF_CHAN_CFG_AM 0x700 /* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */
62 #define NBPF_CHAN_CFG_SDS 0xf000 /* Source Data Size: 0: 8 bits,... , 7: 1024 bits */
63 #define NBPF_CHAN_CFG_DDS 0xf0000 /* Destination Data Size: as above */
64 #define NBPF_CHAN_CFG_SAD 0x100000 /* Source ADdress counting: 0: increment, 1: fixed */
65 #define NBPF_CHAN_CFG_DAD 0x200000 /* Destination ADdress counting: 0: increment, 1: fixed */
66 #define NBPF_CHAN_CFG_TM 0x400000 /* Transfer Mode: 0: single, 1: block TM */
67 #define NBPF_CHAN_CFG_DEM 0x1000000 /* DMAEND interrupt Mask */
68 #define NBPF_CHAN_CFG_TCM 0x2000000 /* DMATCO interrupt Mask */
69 #define NBPF_CHAN_CFG_SBE 0x8000000 /* Sweep Buffer Enable */
70 #define NBPF_CHAN_CFG_RSEL 0x10000000 /* RM: Register Set sELect */
71 #define NBPF_CHAN_CFG_RSW 0x20000000 /* RM: Register Select sWitch */
72 #define NBPF_CHAN_CFG_REN 0x40000000 /* RM: Register Set Enable */
73 #define NBPF_CHAN_CFG_DMS 0x80000000 /* 0: register mode (RM), 1: link mode (LM) */
75 #define NBPF_CHAN_NXLA 0x38
76 #define NBPF_CHAN_CRLA 0x3c
78 /* Link Header field */
79 #define NBPF_HEADER_LV 1
80 #define NBPF_HEADER_LE 2
81 #define NBPF_HEADER_WBD 4
82 #define NBPF_HEADER_DIM 8
84 #define NBPF_CTRL 0x300
85 #define NBPF_CTRL_PR 1 /* 0: fixed priority, 1: round robin */
86 #define NBPF_CTRL_LVINT 2 /* DMAEND and DMAERR signalling: 0: pulse, 1: level */
88 #define NBPF_DSTAT_ER 0x314
89 #define NBPF_DSTAT_END 0x318
91 #define NBPF_DMA_BUSWIDTHS \
92 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
93 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
94 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
95 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
96 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
104 * We've got 3 types of objects, used to describe DMA transfers:
105 * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object
106 * in it, used to communicate with the user
107 * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer
108 * queuing, these must be DMAable, using either the streaming DMA API or
109 * allocated from coherent memory - one per SG segment
110 * 3. one per SG segment descriptors, used to manage HW link descriptors from
111 * (2). They do not have to be DMAable. They can either be (a) allocated
112 * together with link descriptors as mixed (DMA / CPU) objects, or (b)
113 * separately. Even if allocated separately it would be best to link them
114 * to link descriptors once during channel resource allocation and always
115 * use them as a single object.
116 * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be
117 * treated as a single SG segment descriptor.
120 struct nbpf_link_reg {
124 u32 transaction_size;
135 struct nbpf_link_desc {
136 struct nbpf_link_reg *hwdesc;
137 dma_addr_t hwdesc_dma_addr;
138 struct nbpf_desc *desc;
139 struct list_head node;
143 * struct nbpf_desc - DMA transfer descriptor
144 * @async_tx: dmaengine object
145 * @user_wait: waiting for a user ack
146 * @length: total transfer length
147 * @sg: list of hardware descriptors, represented by struct nbpf_link_desc
148 * @node: member in channel descriptor lists
151 struct dma_async_tx_descriptor async_tx;
154 struct nbpf_channel *chan;
156 struct list_head node;
159 /* Take a wild guess: allocate 4 segments per descriptor */
160 #define NBPF_SEGMENTS_PER_DESC 4
161 #define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) / \
162 (sizeof(struct nbpf_desc) + \
163 NBPF_SEGMENTS_PER_DESC * \
164 (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg))))
165 #define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE)
167 struct nbpf_desc_page {
168 struct list_head node;
169 struct nbpf_desc desc[NBPF_DESCS_PER_PAGE];
170 struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE];
171 struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE];
175 * struct nbpf_channel - one DMAC channel
176 * @dma_chan: standard dmaengine channel object
177 * @base: register address base
181 * @slave_addr: address for slave DMA
182 * @slave_width:slave data size in bytes
183 * @slave_burst:maximum slave burst size in bytes
184 * @terminal: DMA terminal, assigned to this channel
185 * @dmarq_cfg: DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG
186 * @flags: configuration flags from DT
187 * @lock: protect descriptor lists
188 * @free_links: list of free link descriptors
189 * @free: list of free descriptors
190 * @queued: list of queued descriptors
191 * @active: list of descriptors, scheduled for processing
192 * @done: list of completed descriptors, waiting post-processing
193 * @desc_page: list of additionally allocated descriptor pages - if any
195 struct nbpf_channel {
196 struct dma_chan dma_chan;
197 struct tasklet_struct tasklet;
199 struct nbpf_device *nbpf;
202 dma_addr_t slave_src_addr;
203 size_t slave_src_width;
204 size_t slave_src_burst;
205 dma_addr_t slave_dst_addr;
206 size_t slave_dst_width;
207 size_t slave_dst_burst;
208 unsigned int terminal;
212 struct list_head free_links;
213 struct list_head free;
214 struct list_head queued;
215 struct list_head active;
216 struct list_head done;
217 struct list_head desc_page;
218 struct nbpf_desc *running;
223 struct dma_device dma_dev;
225 u32 max_burst_mem_read;
226 u32 max_burst_mem_write;
228 const struct nbpf_config *config;
230 struct nbpf_channel chan[];
245 static struct nbpf_config nbpf_cfg[] = {
284 #define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan)
287 * dmaengine drivers seem to have a lot in common and instead of sharing more
288 * code, they reimplement those common algorithms independently. In this driver
289 * we try to separate the hardware-specific part from the (largely) generic
290 * part. This improves code readability and makes it possible in the future to
291 * reuse the generic code in form of a helper library. That generic code should
292 * be suitable for various DMA controllers, using transfer descriptors in RAM
293 * and pushing one SG list at a time to the DMA controller.
296 /* Hardware-specific part */
298 static inline u32 nbpf_chan_read(struct nbpf_channel *chan,
301 u32 data = ioread32(chan->base + offset);
302 dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
303 __func__, chan->base, offset, data);
307 static inline void nbpf_chan_write(struct nbpf_channel *chan,
308 unsigned int offset, u32 data)
310 iowrite32(data, chan->base + offset);
311 dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
312 __func__, chan->base, offset, data);
315 static inline u32 nbpf_read(struct nbpf_device *nbpf,
318 u32 data = ioread32(nbpf->base + offset);
319 dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
320 __func__, nbpf->base, offset, data);
324 static inline void nbpf_write(struct nbpf_device *nbpf,
325 unsigned int offset, u32 data)
327 iowrite32(data, nbpf->base + offset);
328 dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
329 __func__, nbpf->base, offset, data);
332 static void nbpf_chan_halt(struct nbpf_channel *chan)
334 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
337 static bool nbpf_status_get(struct nbpf_channel *chan)
339 u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END);
341 return status & BIT(chan - chan->nbpf->chan);
344 static void nbpf_status_ack(struct nbpf_channel *chan)
346 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND);
349 static u32 nbpf_error_get(struct nbpf_device *nbpf)
351 return nbpf_read(nbpf, NBPF_DSTAT_ER);
354 static struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error)
356 return nbpf->chan + __ffs(error);
359 static void nbpf_error_clear(struct nbpf_channel *chan)
364 /* Stop the channel, make sure DMA has been aborted */
365 nbpf_chan_halt(chan);
367 for (i = 1000; i; i--) {
368 status = nbpf_chan_read(chan, NBPF_CHAN_STAT);
369 if (!(status & NBPF_CHAN_STAT_TACT))
375 dev_err(chan->dma_chan.device->dev,
376 "%s(): abort timeout, channel status 0x%x\n", __func__, status);
378 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST);
381 static int nbpf_start(struct nbpf_desc *desc)
383 struct nbpf_channel *chan = desc->chan;
384 struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node);
386 nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr);
387 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS);
388 chan->paused = false;
390 /* Software trigger MEMCPY - only MEMCPY uses the block mode */
391 if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM)
392 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG);
394 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__,
395 nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA));
400 static void nbpf_chan_prepare(struct nbpf_channel *chan)
402 chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) |
403 (chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) |
404 (chan->flags & NBPF_SLAVE_RQ_LEVEL ?
405 NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) |
409 static void nbpf_chan_prepare_default(struct nbpf_channel *chan)
411 /* Don't output DMAACK */
412 chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400;
417 static void nbpf_chan_configure(struct nbpf_channel *chan)
420 * We assume, that only the link mode and DMA request line configuration
421 * have to be set in the configuration register manually. Dynamic
422 * per-transfer configuration will be loaded from transfer descriptors.
424 nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg);
427 static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size,
428 enum dma_transfer_direction direction)
430 int max_burst = nbpf->config->buffer_size * 8;
432 if (nbpf->max_burst_mem_read || nbpf->max_burst_mem_write) {
435 max_burst = min_not_zero(nbpf->max_burst_mem_read,
436 nbpf->max_burst_mem_write);
439 if (nbpf->max_burst_mem_read)
440 max_burst = nbpf->max_burst_mem_read;
443 if (nbpf->max_burst_mem_write)
444 max_burst = nbpf->max_burst_mem_write;
452 /* Maximum supported bursts depend on the buffer size */
453 return min_t(int, __ffs(size), ilog2(max_burst));
456 static size_t nbpf_xfer_size(struct nbpf_device *nbpf,
457 enum dma_slave_buswidth width, u32 burst)
465 case DMA_SLAVE_BUSWIDTH_8_BYTES:
469 case DMA_SLAVE_BUSWIDTH_4_BYTES:
473 case DMA_SLAVE_BUSWIDTH_2_BYTES:
478 pr_warn("%s(): invalid bus width %u\n", __func__, width);
480 case DMA_SLAVE_BUSWIDTH_1_BYTE:
484 return nbpf_xfer_ds(nbpf, size, DMA_TRANS_NONE);
488 * We need a way to recognise slaves, whose data is sent "raw" over the bus,
489 * i.e. it isn't known in advance how many bytes will be received. Therefore
490 * the slave driver has to provide a "large enough" buffer and either read the
491 * buffer, when it is full, or detect, that some data has arrived, then wait for
492 * a timeout, if no more data arrives - receive what's already there. We want to
493 * handle such slaves in a special way to allow an optimised mode for other
494 * users, for whom the amount of data is known in advance. So far there's no way
495 * to recognise such slaves. We use a data-width check to distinguish between
496 * the SD host and the PL011 UART.
499 static int nbpf_prep_one(struct nbpf_link_desc *ldesc,
500 enum dma_transfer_direction direction,
501 dma_addr_t src, dma_addr_t dst, size_t size, bool last)
503 struct nbpf_link_reg *hwdesc = ldesc->hwdesc;
504 struct nbpf_desc *desc = ldesc->desc;
505 struct nbpf_channel *chan = desc->chan;
506 struct device *dev = chan->dma_chan.device->dev;
507 size_t mem_xfer, slave_xfer;
510 hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV |
511 (last ? NBPF_HEADER_LE : 0);
513 hwdesc->src_addr = src;
514 hwdesc->dst_addr = dst;
515 hwdesc->transaction_size = size;
518 * set config: SAD, DAD, DDS, SDS, etc.
519 * Note on transfer sizes: the DMAC can perform unaligned DMA transfers,
520 * but it is important to have transaction size a multiple of both
521 * receiver and transmitter transfer sizes. It is also possible to use
522 * different RAM and device transfer sizes, and it does work well with
523 * some devices, e.g. with V08R07S01E SD host controllers, which can use
524 * 128 byte transfers. But this doesn't work with other devices,
525 * especially when the transaction size is unknown. This is the case,
526 * e.g. with serial drivers like amba-pl011.c. For reception it sets up
527 * the transaction size of 4K and if fewer bytes are received, it
528 * pauses DMA and reads out data received via DMA as well as those left
529 * in the Rx FIFO. For this to work with the RAM side using burst
530 * transfers we enable the SBE bit and terminate the transfer in our
531 * .device_pause handler.
533 mem_xfer = nbpf_xfer_ds(chan->nbpf, size, direction);
537 can_burst = chan->slave_src_width >= 3;
538 slave_xfer = min(mem_xfer, can_burst ?
539 chan->slave_src_burst : chan->slave_src_width);
541 * Is the slave narrower than 64 bits, i.e. isn't using the full
542 * bus width and cannot use bursts?
544 if (mem_xfer > chan->slave_src_burst && !can_burst)
545 mem_xfer = chan->slave_src_burst;
546 /* Device-to-RAM DMA is unreliable without REQD set */
547 hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) |
548 (NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD |
553 slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ?
554 chan->slave_dst_burst : chan->slave_dst_width);
555 hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
556 (NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD;
560 hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM |
561 (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
562 (NBPF_CHAN_CFG_DDS & (mem_xfer << 16));
569 hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) |
572 dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n",
573 __func__, &ldesc->hwdesc_dma_addr, hwdesc->header,
574 hwdesc->config, size, &src, &dst);
576 dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc),
582 static size_t nbpf_bytes_left(struct nbpf_channel *chan)
584 return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE);
587 static void nbpf_configure(struct nbpf_device *nbpf)
589 nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT);
594 /* DMA ENGINE functions */
595 static void nbpf_issue_pending(struct dma_chan *dchan)
597 struct nbpf_channel *chan = nbpf_to_chan(dchan);
600 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
602 spin_lock_irqsave(&chan->lock, flags);
603 if (list_empty(&chan->queued))
606 list_splice_tail_init(&chan->queued, &chan->active);
608 if (!chan->running) {
609 struct nbpf_desc *desc = list_first_entry(&chan->active,
610 struct nbpf_desc, node);
611 if (!nbpf_start(desc))
612 chan->running = desc;
616 spin_unlock_irqrestore(&chan->lock, flags);
619 static enum dma_status nbpf_tx_status(struct dma_chan *dchan,
620 dma_cookie_t cookie, struct dma_tx_state *state)
622 struct nbpf_channel *chan = nbpf_to_chan(dchan);
623 enum dma_status status = dma_cookie_status(dchan, cookie, state);
626 dma_cookie_t running;
629 spin_lock_irqsave(&chan->lock, flags);
630 running = chan->running ? chan->running->async_tx.cookie : -EINVAL;
632 if (cookie == running) {
633 state->residue = nbpf_bytes_left(chan);
634 dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__,
636 } else if (status == DMA_IN_PROGRESS) {
637 struct nbpf_desc *desc;
640 list_for_each_entry(desc, &chan->active, node)
641 if (desc->async_tx.cookie == cookie) {
647 list_for_each_entry(desc, &chan->queued, node)
648 if (desc->async_tx.cookie == cookie) {
654 state->residue = found ? desc->length : 0;
657 spin_unlock_irqrestore(&chan->lock, flags);
666 static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx)
668 struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx);
669 struct nbpf_channel *chan = desc->chan;
673 spin_lock_irqsave(&chan->lock, flags);
674 cookie = dma_cookie_assign(tx);
675 list_add_tail(&desc->node, &chan->queued);
676 spin_unlock_irqrestore(&chan->lock, flags);
678 dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie);
683 static int nbpf_desc_page_alloc(struct nbpf_channel *chan)
685 struct dma_chan *dchan = &chan->dma_chan;
686 struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
687 struct nbpf_link_desc *ldesc;
688 struct nbpf_link_reg *hwdesc;
689 struct nbpf_desc *desc;
693 struct device *dev = dchan->device->dev;
698 dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n",
699 __func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage));
701 for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc;
702 i < ARRAY_SIZE(dpage->ldesc);
703 i++, ldesc++, hwdesc++) {
704 ldesc->hwdesc = hwdesc;
705 list_add_tail(&ldesc->node, &lhead);
706 ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev,
707 hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE);
709 dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__,
710 hwdesc, &ldesc->hwdesc_dma_addr);
713 for (i = 0, desc = dpage->desc;
714 i < ARRAY_SIZE(dpage->desc);
716 dma_async_tx_descriptor_init(&desc->async_tx, dchan);
717 desc->async_tx.tx_submit = nbpf_tx_submit;
719 INIT_LIST_HEAD(&desc->sg);
720 list_add_tail(&desc->node, &head);
724 * This function cannot be called from interrupt context, so, no need to
727 spin_lock_irq(&chan->lock);
728 list_splice_tail(&lhead, &chan->free_links);
729 list_splice_tail(&head, &chan->free);
730 list_add(&dpage->node, &chan->desc_page);
731 spin_unlock_irq(&chan->lock);
733 return ARRAY_SIZE(dpage->desc);
736 static void nbpf_desc_put(struct nbpf_desc *desc)
738 struct nbpf_channel *chan = desc->chan;
739 struct nbpf_link_desc *ldesc, *tmp;
742 spin_lock_irqsave(&chan->lock, flags);
743 list_for_each_entry_safe(ldesc, tmp, &desc->sg, node)
744 list_move(&ldesc->node, &chan->free_links);
746 list_add(&desc->node, &chan->free);
747 spin_unlock_irqrestore(&chan->lock, flags);
750 static void nbpf_scan_acked(struct nbpf_channel *chan)
752 struct nbpf_desc *desc, *tmp;
756 spin_lock_irqsave(&chan->lock, flags);
757 list_for_each_entry_safe(desc, tmp, &chan->done, node)
758 if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) {
759 list_move(&desc->node, &head);
760 desc->user_wait = false;
762 spin_unlock_irqrestore(&chan->lock, flags);
764 list_for_each_entry_safe(desc, tmp, &head, node) {
765 list_del(&desc->node);
771 * We have to allocate descriptors with the channel lock dropped. This means,
772 * before we re-acquire the lock buffers can be taken already, so we have to
773 * re-check after re-acquiring the lock and possibly retry, if buffers are gone
776 static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len)
778 struct nbpf_desc *desc = NULL;
779 struct nbpf_link_desc *ldesc, *prev = NULL;
781 nbpf_scan_acked(chan);
783 spin_lock_irq(&chan->lock);
788 if (list_empty(&chan->free)) {
789 /* No more free descriptors */
790 spin_unlock_irq(&chan->lock);
791 ret = nbpf_desc_page_alloc(chan);
794 spin_lock_irq(&chan->lock);
797 desc = list_first_entry(&chan->free, struct nbpf_desc, node);
798 list_del(&desc->node);
801 if (list_empty(&chan->free_links)) {
802 /* No more free link descriptors */
803 spin_unlock_irq(&chan->lock);
804 ret = nbpf_desc_page_alloc(chan);
809 spin_lock_irq(&chan->lock);
813 ldesc = list_first_entry(&chan->free_links,
814 struct nbpf_link_desc, node);
817 prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr;
820 list_move_tail(&ldesc->node, &desc->sg);
826 prev->hwdesc->next = 0;
828 spin_unlock_irq(&chan->lock);
833 static void nbpf_chan_idle(struct nbpf_channel *chan)
835 struct nbpf_desc *desc, *tmp;
839 spin_lock_irqsave(&chan->lock, flags);
841 list_splice_init(&chan->done, &head);
842 list_splice_init(&chan->active, &head);
843 list_splice_init(&chan->queued, &head);
845 chan->running = NULL;
847 spin_unlock_irqrestore(&chan->lock, flags);
849 list_for_each_entry_safe(desc, tmp, &head, node) {
850 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n",
851 __func__, desc, desc->async_tx.cookie);
852 list_del(&desc->node);
857 static int nbpf_pause(struct dma_chan *dchan)
859 struct nbpf_channel *chan = nbpf_to_chan(dchan);
861 dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
864 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS);
865 /* See comment in nbpf_prep_one() */
866 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
871 static int nbpf_terminate_all(struct dma_chan *dchan)
873 struct nbpf_channel *chan = nbpf_to_chan(dchan);
875 dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
876 dev_dbg(dchan->device->dev, "Terminating\n");
878 nbpf_chan_halt(chan);
879 nbpf_chan_idle(chan);
884 static int nbpf_config(struct dma_chan *dchan,
885 struct dma_slave_config *config)
887 struct nbpf_channel *chan = nbpf_to_chan(dchan);
889 dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
892 * We could check config->slave_id to match chan->terminal here,
893 * but with DT they would be coming from the same source, so
894 * such a check would be superflous
897 chan->slave_dst_addr = config->dst_addr;
898 chan->slave_dst_width = nbpf_xfer_size(chan->nbpf,
899 config->dst_addr_width, 1);
900 chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf,
901 config->dst_addr_width,
902 config->dst_maxburst);
903 chan->slave_src_addr = config->src_addr;
904 chan->slave_src_width = nbpf_xfer_size(chan->nbpf,
905 config->src_addr_width, 1);
906 chan->slave_src_burst = nbpf_xfer_size(chan->nbpf,
907 config->src_addr_width,
908 config->src_maxburst);
913 static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan,
914 struct scatterlist *src_sg, struct scatterlist *dst_sg,
915 size_t len, enum dma_transfer_direction direction,
918 struct nbpf_link_desc *ldesc;
919 struct scatterlist *mem_sg;
920 struct nbpf_desc *desc;
921 bool inc_src, inc_dst;
945 desc = nbpf_desc_get(chan, len);
949 desc->async_tx.flags = flags;
950 desc->async_tx.cookie = -EBUSY;
951 desc->user_wait = false;
954 * This is a private descriptor list, and we own the descriptor. No need
957 list_for_each_entry(ldesc, &desc->sg, node) {
958 int ret = nbpf_prep_one(ldesc, direction,
959 sg_dma_address(src_sg),
960 sg_dma_address(dst_sg),
967 data_len += sg_dma_len(mem_sg);
969 src_sg = sg_next(src_sg);
971 dst_sg = sg_next(dst_sg);
972 mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg;
976 desc->length = data_len;
978 /* The user has to return the descriptor to us ASAP via .tx_submit() */
979 return &desc->async_tx;
982 static struct dma_async_tx_descriptor *nbpf_prep_memcpy(
983 struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
984 size_t len, unsigned long flags)
986 struct nbpf_channel *chan = nbpf_to_chan(dchan);
987 struct scatterlist dst_sg;
988 struct scatterlist src_sg;
990 sg_init_table(&dst_sg, 1);
991 sg_init_table(&src_sg, 1);
993 sg_dma_address(&dst_sg) = dst;
994 sg_dma_address(&src_sg) = src;
996 sg_dma_len(&dst_sg) = len;
997 sg_dma_len(&src_sg) = len;
999 dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n",
1000 __func__, len, &src, &dst);
1002 return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1,
1003 DMA_MEM_TO_MEM, flags);
1006 static struct dma_async_tx_descriptor *nbpf_prep_slave_sg(
1007 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
1008 enum dma_transfer_direction direction, unsigned long flags, void *context)
1010 struct nbpf_channel *chan = nbpf_to_chan(dchan);
1011 struct scatterlist slave_sg;
1013 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1015 sg_init_table(&slave_sg, 1);
1017 switch (direction) {
1018 case DMA_MEM_TO_DEV:
1019 sg_dma_address(&slave_sg) = chan->slave_dst_addr;
1020 return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len,
1023 case DMA_DEV_TO_MEM:
1024 sg_dma_address(&slave_sg) = chan->slave_src_addr;
1025 return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len,
1033 static int nbpf_alloc_chan_resources(struct dma_chan *dchan)
1035 struct nbpf_channel *chan = nbpf_to_chan(dchan);
1038 INIT_LIST_HEAD(&chan->free);
1039 INIT_LIST_HEAD(&chan->free_links);
1040 INIT_LIST_HEAD(&chan->queued);
1041 INIT_LIST_HEAD(&chan->active);
1042 INIT_LIST_HEAD(&chan->done);
1044 ret = nbpf_desc_page_alloc(chan);
1048 dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__,
1051 nbpf_chan_configure(chan);
1056 static void nbpf_free_chan_resources(struct dma_chan *dchan)
1058 struct nbpf_channel *chan = nbpf_to_chan(dchan);
1059 struct nbpf_desc_page *dpage, *tmp;
1061 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1063 nbpf_chan_halt(chan);
1064 nbpf_chan_idle(chan);
1065 /* Clean up for if a channel is re-used for MEMCPY after slave DMA */
1066 nbpf_chan_prepare_default(chan);
1068 list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) {
1069 struct nbpf_link_desc *ldesc;
1071 list_del(&dpage->node);
1072 for (i = 0, ldesc = dpage->ldesc;
1073 i < ARRAY_SIZE(dpage->ldesc);
1075 dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr,
1076 sizeof(*ldesc->hwdesc), DMA_TO_DEVICE);
1077 free_page((unsigned long)dpage);
1081 static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec,
1082 struct of_dma *ofdma)
1084 struct nbpf_device *nbpf = ofdma->of_dma_data;
1085 struct dma_chan *dchan;
1086 struct nbpf_channel *chan;
1088 if (dma_spec->args_count != 2)
1091 dchan = dma_get_any_slave_channel(&nbpf->dma_dev);
1095 dev_dbg(dchan->device->dev, "Entry %s(%pOFn)\n", __func__,
1098 chan = nbpf_to_chan(dchan);
1100 chan->terminal = dma_spec->args[0];
1101 chan->flags = dma_spec->args[1];
1103 nbpf_chan_prepare(chan);
1104 nbpf_chan_configure(chan);
1109 static void nbpf_chan_tasklet(unsigned long data)
1111 struct nbpf_channel *chan = (struct nbpf_channel *)data;
1112 struct nbpf_desc *desc, *tmp;
1113 struct dmaengine_desc_callback cb;
1115 while (!list_empty(&chan->done)) {
1116 bool found = false, must_put, recycling = false;
1118 spin_lock_irq(&chan->lock);
1120 list_for_each_entry_safe(desc, tmp, &chan->done, node) {
1121 if (!desc->user_wait) {
1122 /* Newly completed descriptor, have to process */
1125 } else if (async_tx_test_ack(&desc->async_tx)) {
1127 * This descriptor was waiting for a user ACK,
1128 * it can be recycled now.
1130 list_del(&desc->node);
1131 spin_unlock_irq(&chan->lock);
1132 nbpf_desc_put(desc);
1142 /* This can happen if TERMINATE_ALL has been called */
1143 spin_unlock_irq(&chan->lock);
1147 dma_cookie_complete(&desc->async_tx);
1150 * With released lock we cannot dereference desc, maybe it's
1151 * still on the "done" list
1153 if (async_tx_test_ack(&desc->async_tx)) {
1154 list_del(&desc->node);
1157 desc->user_wait = true;
1161 dmaengine_desc_get_callback(&desc->async_tx, &cb);
1163 /* ack and callback completed descriptor */
1164 spin_unlock_irq(&chan->lock);
1166 dmaengine_desc_callback_invoke(&cb, NULL);
1169 nbpf_desc_put(desc);
1173 static irqreturn_t nbpf_chan_irq(int irq, void *dev)
1175 struct nbpf_channel *chan = dev;
1176 bool done = nbpf_status_get(chan);
1177 struct nbpf_desc *desc;
1184 nbpf_status_ack(chan);
1186 dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__);
1188 spin_lock(&chan->lock);
1189 desc = chan->running;
1190 if (WARN_ON(!desc)) {
1198 list_move_tail(&desc->node, &chan->done);
1199 chan->running = NULL;
1201 if (!list_empty(&chan->active)) {
1202 desc = list_first_entry(&chan->active,
1203 struct nbpf_desc, node);
1204 if (!nbpf_start(desc))
1205 chan->running = desc;
1209 spin_unlock(&chan->lock);
1212 tasklet_schedule(&chan->tasklet);
1217 static irqreturn_t nbpf_err_irq(int irq, void *dev)
1219 struct nbpf_device *nbpf = dev;
1220 u32 error = nbpf_error_get(nbpf);
1222 dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq);
1228 struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error);
1229 /* On error: abort all queued transfers, no callback */
1230 nbpf_error_clear(chan);
1231 nbpf_chan_idle(chan);
1232 error = nbpf_error_get(nbpf);
1238 static int nbpf_chan_probe(struct nbpf_device *nbpf, int n)
1240 struct dma_device *dma_dev = &nbpf->dma_dev;
1241 struct nbpf_channel *chan = nbpf->chan + n;
1245 chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n;
1246 INIT_LIST_HEAD(&chan->desc_page);
1247 spin_lock_init(&chan->lock);
1248 chan->dma_chan.device = dma_dev;
1249 dma_cookie_init(&chan->dma_chan);
1250 nbpf_chan_prepare_default(chan);
1252 dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base);
1254 snprintf(chan->name, sizeof(chan->name), "nbpf %d", n);
1256 tasklet_init(&chan->tasklet, nbpf_chan_tasklet, (unsigned long)chan);
1257 ret = devm_request_irq(dma_dev->dev, chan->irq,
1258 nbpf_chan_irq, IRQF_SHARED,
1263 /* Add the channel to DMA device channel list */
1264 list_add_tail(&chan->dma_chan.device_node,
1265 &dma_dev->channels);
1270 static const struct of_device_id nbpf_match[] = {
1271 {.compatible = "renesas,nbpfaxi64dmac1b4", .data = &nbpf_cfg[NBPF1B4]},
1272 {.compatible = "renesas,nbpfaxi64dmac1b8", .data = &nbpf_cfg[NBPF1B8]},
1273 {.compatible = "renesas,nbpfaxi64dmac1b16", .data = &nbpf_cfg[NBPF1B16]},
1274 {.compatible = "renesas,nbpfaxi64dmac4b4", .data = &nbpf_cfg[NBPF4B4]},
1275 {.compatible = "renesas,nbpfaxi64dmac4b8", .data = &nbpf_cfg[NBPF4B8]},
1276 {.compatible = "renesas,nbpfaxi64dmac4b16", .data = &nbpf_cfg[NBPF4B16]},
1277 {.compatible = "renesas,nbpfaxi64dmac8b4", .data = &nbpf_cfg[NBPF8B4]},
1278 {.compatible = "renesas,nbpfaxi64dmac8b8", .data = &nbpf_cfg[NBPF8B8]},
1279 {.compatible = "renesas,nbpfaxi64dmac8b16", .data = &nbpf_cfg[NBPF8B16]},
1282 MODULE_DEVICE_TABLE(of, nbpf_match);
1284 static int nbpf_probe(struct platform_device *pdev)
1286 struct device *dev = &pdev->dev;
1287 struct device_node *np = dev->of_node;
1288 struct nbpf_device *nbpf;
1289 struct dma_device *dma_dev;
1290 struct resource *iomem, *irq_res;
1291 const struct nbpf_config *cfg;
1293 int ret, irq, eirq, i;
1294 int irqbuf[9] /* maximum 8 channels + error IRQ */;
1295 unsigned int irqs = 0;
1297 BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE);
1303 cfg = of_device_get_match_data(dev);
1304 num_channels = cfg->num_channels;
1306 nbpf = devm_kzalloc(dev, struct_size(nbpf, chan, num_channels),
1311 dma_dev = &nbpf->dma_dev;
1314 iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1315 nbpf->base = devm_ioremap_resource(dev, iomem);
1316 if (IS_ERR(nbpf->base))
1317 return PTR_ERR(nbpf->base);
1319 nbpf->clk = devm_clk_get(dev, NULL);
1320 if (IS_ERR(nbpf->clk))
1321 return PTR_ERR(nbpf->clk);
1323 of_property_read_u32(np, "max-burst-mem-read",
1324 &nbpf->max_burst_mem_read);
1325 of_property_read_u32(np, "max-burst-mem-write",
1326 &nbpf->max_burst_mem_write);
1330 for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) {
1331 irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1335 for (irq = irq_res->start; irq <= irq_res->end;
1341 * 3 IRQ resource schemes are supported:
1342 * 1. 1 shared IRQ for error and all channels
1343 * 2. 2 IRQs: one for error and one shared for all channels
1344 * 3. 1 IRQ for error and an own IRQ for each channel
1346 if (irqs != 1 && irqs != 2 && irqs != num_channels + 1)
1352 for (i = 0; i <= num_channels; i++)
1353 nbpf->chan[i].irq = irqbuf[0];
1355 eirq = platform_get_irq_byname(pdev, "error");
1359 if (irqs == num_channels + 1) {
1360 struct nbpf_channel *chan;
1362 for (i = 0, chan = nbpf->chan; i <= num_channels;
1364 /* Skip the error IRQ */
1365 if (irqbuf[i] == eirq)
1367 chan->irq = irqbuf[i];
1370 if (chan != nbpf->chan + num_channels)
1373 /* 2 IRQs and more than one channel */
1374 if (irqbuf[0] == eirq)
1379 for (i = 0; i <= num_channels; i++)
1380 nbpf->chan[i].irq = irq;
1384 ret = devm_request_irq(dev, eirq, nbpf_err_irq,
1385 IRQF_SHARED, "dma error", nbpf);
1390 INIT_LIST_HEAD(&dma_dev->channels);
1392 /* Create DMA Channel */
1393 for (i = 0; i < num_channels; i++) {
1394 ret = nbpf_chan_probe(nbpf, i);
1399 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1400 dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1401 dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1403 /* Common and MEMCPY operations */
1404 dma_dev->device_alloc_chan_resources
1405 = nbpf_alloc_chan_resources;
1406 dma_dev->device_free_chan_resources = nbpf_free_chan_resources;
1407 dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy;
1408 dma_dev->device_tx_status = nbpf_tx_status;
1409 dma_dev->device_issue_pending = nbpf_issue_pending;
1412 * If we drop support for unaligned MEMCPY buffer addresses and / or
1413 * lengths by setting
1414 * dma_dev->copy_align = 4;
1415 * then we can set transfer length to 4 bytes in nbpf_prep_one() for
1419 /* Compulsory for DMA_SLAVE fields */
1420 dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg;
1421 dma_dev->device_config = nbpf_config;
1422 dma_dev->device_pause = nbpf_pause;
1423 dma_dev->device_terminate_all = nbpf_terminate_all;
1425 dma_dev->src_addr_widths = NBPF_DMA_BUSWIDTHS;
1426 dma_dev->dst_addr_widths = NBPF_DMA_BUSWIDTHS;
1427 dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1429 platform_set_drvdata(pdev, nbpf);
1431 ret = clk_prepare_enable(nbpf->clk);
1435 nbpf_configure(nbpf);
1437 ret = dma_async_device_register(dma_dev);
1441 ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf);
1443 goto e_dma_dev_unreg;
1448 dma_async_device_unregister(dma_dev);
1450 clk_disable_unprepare(nbpf->clk);
1455 static int nbpf_remove(struct platform_device *pdev)
1457 struct nbpf_device *nbpf = platform_get_drvdata(pdev);
1460 devm_free_irq(&pdev->dev, nbpf->eirq, nbpf);
1462 for (i = 0; i < nbpf->config->num_channels; i++) {
1463 struct nbpf_channel *chan = nbpf->chan + i;
1465 devm_free_irq(&pdev->dev, chan->irq, chan);
1467 tasklet_kill(&chan->tasklet);
1470 of_dma_controller_free(pdev->dev.of_node);
1471 dma_async_device_unregister(&nbpf->dma_dev);
1472 clk_disable_unprepare(nbpf->clk);
1477 static const struct platform_device_id nbpf_ids[] = {
1478 {"nbpfaxi64dmac1b4", (kernel_ulong_t)&nbpf_cfg[NBPF1B4]},
1479 {"nbpfaxi64dmac1b8", (kernel_ulong_t)&nbpf_cfg[NBPF1B8]},
1480 {"nbpfaxi64dmac1b16", (kernel_ulong_t)&nbpf_cfg[NBPF1B16]},
1481 {"nbpfaxi64dmac4b4", (kernel_ulong_t)&nbpf_cfg[NBPF4B4]},
1482 {"nbpfaxi64dmac4b8", (kernel_ulong_t)&nbpf_cfg[NBPF4B8]},
1483 {"nbpfaxi64dmac4b16", (kernel_ulong_t)&nbpf_cfg[NBPF4B16]},
1484 {"nbpfaxi64dmac8b4", (kernel_ulong_t)&nbpf_cfg[NBPF8B4]},
1485 {"nbpfaxi64dmac8b8", (kernel_ulong_t)&nbpf_cfg[NBPF8B8]},
1486 {"nbpfaxi64dmac8b16", (kernel_ulong_t)&nbpf_cfg[NBPF8B16]},
1489 MODULE_DEVICE_TABLE(platform, nbpf_ids);
1492 static int nbpf_runtime_suspend(struct device *dev)
1494 struct nbpf_device *nbpf = dev_get_drvdata(dev);
1495 clk_disable_unprepare(nbpf->clk);
1499 static int nbpf_runtime_resume(struct device *dev)
1501 struct nbpf_device *nbpf = dev_get_drvdata(dev);
1502 return clk_prepare_enable(nbpf->clk);
1506 static const struct dev_pm_ops nbpf_pm_ops = {
1507 SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL)
1510 static struct platform_driver nbpf_driver = {
1513 .of_match_table = nbpf_match,
1516 .id_table = nbpf_ids,
1517 .probe = nbpf_probe,
1518 .remove = nbpf_remove,
1521 module_platform_driver(nbpf_driver);
1524 MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs");
1525 MODULE_LICENSE("GPL v2");