2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/sched/mm.h>
106 #include <linux/timer.h>
107 #include <linux/string.h>
108 #include <linux/sockios.h>
109 #include <linux/net.h>
110 #include <linux/mm.h>
111 #include <linux/slab.h>
112 #include <linux/interrupt.h>
113 #include <linux/poll.h>
114 #include <linux/tcp.h>
115 #include <linux/init.h>
116 #include <linux/highmem.h>
117 #include <linux/user_namespace.h>
118 #include <linux/static_key.h>
119 #include <linux/memcontrol.h>
120 #include <linux/prefetch.h>
122 #include <linux/uaccess.h>
124 #include <linux/netdevice.h>
125 #include <net/protocol.h>
126 #include <linux/skbuff.h>
127 #include <net/net_namespace.h>
128 #include <net/request_sock.h>
129 #include <net/sock.h>
130 #include <linux/net_tstamp.h>
131 #include <net/xfrm.h>
132 #include <linux/ipsec.h>
133 #include <net/cls_cgroup.h>
134 #include <net/netprio_cgroup.h>
135 #include <linux/sock_diag.h>
137 #include <linux/filter.h>
138 #include <net/sock_reuseport.h>
140 #include <trace/events/sock.h>
143 #include <net/busy_poll.h>
145 static DEFINE_MUTEX(proto_list_mutex);
146 static LIST_HEAD(proto_list);
148 static void sock_inuse_add(struct net *net, int val);
151 * sk_ns_capable - General socket capability test
152 * @sk: Socket to use a capability on or through
153 * @user_ns: The user namespace of the capability to use
154 * @cap: The capability to use
156 * Test to see if the opener of the socket had when the socket was
157 * created and the current process has the capability @cap in the user
158 * namespace @user_ns.
160 bool sk_ns_capable(const struct sock *sk,
161 struct user_namespace *user_ns, int cap)
163 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
164 ns_capable(user_ns, cap);
166 EXPORT_SYMBOL(sk_ns_capable);
169 * sk_capable - Socket global capability test
170 * @sk: Socket to use a capability on or through
171 * @cap: The global capability to use
173 * Test to see if the opener of the socket had when the socket was
174 * created and the current process has the capability @cap in all user
177 bool sk_capable(const struct sock *sk, int cap)
179 return sk_ns_capable(sk, &init_user_ns, cap);
181 EXPORT_SYMBOL(sk_capable);
184 * sk_net_capable - Network namespace socket capability test
185 * @sk: Socket to use a capability on or through
186 * @cap: The capability to use
188 * Test to see if the opener of the socket had when the socket was created
189 * and the current process has the capability @cap over the network namespace
190 * the socket is a member of.
192 bool sk_net_capable(const struct sock *sk, int cap)
194 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
196 EXPORT_SYMBOL(sk_net_capable);
199 * Each address family might have different locking rules, so we have
200 * one slock key per address family and separate keys for internal and
203 static struct lock_class_key af_family_keys[AF_MAX];
204 static struct lock_class_key af_family_kern_keys[AF_MAX];
205 static struct lock_class_key af_family_slock_keys[AF_MAX];
206 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
209 * Make lock validator output more readable. (we pre-construct these
210 * strings build-time, so that runtime initialization of socket
214 #define _sock_locks(x) \
215 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
216 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
217 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
218 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
219 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
220 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
221 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
222 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
223 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
224 x "27" , x "28" , x "AF_CAN" , \
225 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
226 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
227 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
228 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
229 x "AF_QIPCRTR", x "AF_SMC" , x "AF_MAX"
231 static const char *const af_family_key_strings[AF_MAX+1] = {
232 _sock_locks("sk_lock-")
234 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
235 _sock_locks("slock-")
237 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
238 _sock_locks("clock-")
241 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
242 _sock_locks("k-sk_lock-")
244 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
245 _sock_locks("k-slock-")
247 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
248 _sock_locks("k-clock-")
250 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
251 "rlock-AF_UNSPEC", "rlock-AF_UNIX" , "rlock-AF_INET" ,
252 "rlock-AF_AX25" , "rlock-AF_IPX" , "rlock-AF_APPLETALK",
253 "rlock-AF_NETROM", "rlock-AF_BRIDGE" , "rlock-AF_ATMPVC" ,
254 "rlock-AF_X25" , "rlock-AF_INET6" , "rlock-AF_ROSE" ,
255 "rlock-AF_DECnet", "rlock-AF_NETBEUI" , "rlock-AF_SECURITY" ,
256 "rlock-AF_KEY" , "rlock-AF_NETLINK" , "rlock-AF_PACKET" ,
257 "rlock-AF_ASH" , "rlock-AF_ECONET" , "rlock-AF_ATMSVC" ,
258 "rlock-AF_RDS" , "rlock-AF_SNA" , "rlock-AF_IRDA" ,
259 "rlock-AF_PPPOX" , "rlock-AF_WANPIPE" , "rlock-AF_LLC" ,
260 "rlock-27" , "rlock-28" , "rlock-AF_CAN" ,
261 "rlock-AF_TIPC" , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV" ,
262 "rlock-AF_RXRPC" , "rlock-AF_ISDN" , "rlock-AF_PHONET" ,
263 "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG" ,
264 "rlock-AF_NFC" , "rlock-AF_VSOCK" , "rlock-AF_KCM" ,
265 "rlock-AF_QIPCRTR", "rlock-AF_SMC" , "rlock-AF_MAX"
267 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
268 "wlock-AF_UNSPEC", "wlock-AF_UNIX" , "wlock-AF_INET" ,
269 "wlock-AF_AX25" , "wlock-AF_IPX" , "wlock-AF_APPLETALK",
270 "wlock-AF_NETROM", "wlock-AF_BRIDGE" , "wlock-AF_ATMPVC" ,
271 "wlock-AF_X25" , "wlock-AF_INET6" , "wlock-AF_ROSE" ,
272 "wlock-AF_DECnet", "wlock-AF_NETBEUI" , "wlock-AF_SECURITY" ,
273 "wlock-AF_KEY" , "wlock-AF_NETLINK" , "wlock-AF_PACKET" ,
274 "wlock-AF_ASH" , "wlock-AF_ECONET" , "wlock-AF_ATMSVC" ,
275 "wlock-AF_RDS" , "wlock-AF_SNA" , "wlock-AF_IRDA" ,
276 "wlock-AF_PPPOX" , "wlock-AF_WANPIPE" , "wlock-AF_LLC" ,
277 "wlock-27" , "wlock-28" , "wlock-AF_CAN" ,
278 "wlock-AF_TIPC" , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV" ,
279 "wlock-AF_RXRPC" , "wlock-AF_ISDN" , "wlock-AF_PHONET" ,
280 "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG" ,
281 "wlock-AF_NFC" , "wlock-AF_VSOCK" , "wlock-AF_KCM" ,
282 "wlock-AF_QIPCRTR", "wlock-AF_SMC" , "wlock-AF_MAX"
284 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
285 "elock-AF_UNSPEC", "elock-AF_UNIX" , "elock-AF_INET" ,
286 "elock-AF_AX25" , "elock-AF_IPX" , "elock-AF_APPLETALK",
287 "elock-AF_NETROM", "elock-AF_BRIDGE" , "elock-AF_ATMPVC" ,
288 "elock-AF_X25" , "elock-AF_INET6" , "elock-AF_ROSE" ,
289 "elock-AF_DECnet", "elock-AF_NETBEUI" , "elock-AF_SECURITY" ,
290 "elock-AF_KEY" , "elock-AF_NETLINK" , "elock-AF_PACKET" ,
291 "elock-AF_ASH" , "elock-AF_ECONET" , "elock-AF_ATMSVC" ,
292 "elock-AF_RDS" , "elock-AF_SNA" , "elock-AF_IRDA" ,
293 "elock-AF_PPPOX" , "elock-AF_WANPIPE" , "elock-AF_LLC" ,
294 "elock-27" , "elock-28" , "elock-AF_CAN" ,
295 "elock-AF_TIPC" , "elock-AF_BLUETOOTH", "elock-AF_IUCV" ,
296 "elock-AF_RXRPC" , "elock-AF_ISDN" , "elock-AF_PHONET" ,
297 "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG" ,
298 "elock-AF_NFC" , "elock-AF_VSOCK" , "elock-AF_KCM" ,
299 "elock-AF_QIPCRTR", "elock-AF_SMC" , "elock-AF_MAX"
303 * sk_callback_lock and sk queues locking rules are per-address-family,
304 * so split the lock classes by using a per-AF key:
306 static struct lock_class_key af_callback_keys[AF_MAX];
307 static struct lock_class_key af_rlock_keys[AF_MAX];
308 static struct lock_class_key af_wlock_keys[AF_MAX];
309 static struct lock_class_key af_elock_keys[AF_MAX];
310 static struct lock_class_key af_kern_callback_keys[AF_MAX];
312 /* Run time adjustable parameters. */
313 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
314 EXPORT_SYMBOL(sysctl_wmem_max);
315 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
316 EXPORT_SYMBOL(sysctl_rmem_max);
317 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
318 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
320 /* Maximal space eaten by iovec or ancillary data plus some space */
321 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
322 EXPORT_SYMBOL(sysctl_optmem_max);
324 int sysctl_tstamp_allow_data __read_mostly = 1;
326 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
327 EXPORT_SYMBOL_GPL(memalloc_socks);
330 * sk_set_memalloc - sets %SOCK_MEMALLOC
331 * @sk: socket to set it on
333 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
334 * It's the responsibility of the admin to adjust min_free_kbytes
335 * to meet the requirements
337 void sk_set_memalloc(struct sock *sk)
339 sock_set_flag(sk, SOCK_MEMALLOC);
340 sk->sk_allocation |= __GFP_MEMALLOC;
341 static_key_slow_inc(&memalloc_socks);
343 EXPORT_SYMBOL_GPL(sk_set_memalloc);
345 void sk_clear_memalloc(struct sock *sk)
347 sock_reset_flag(sk, SOCK_MEMALLOC);
348 sk->sk_allocation &= ~__GFP_MEMALLOC;
349 static_key_slow_dec(&memalloc_socks);
352 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
353 * progress of swapping. SOCK_MEMALLOC may be cleared while
354 * it has rmem allocations due to the last swapfile being deactivated
355 * but there is a risk that the socket is unusable due to exceeding
356 * the rmem limits. Reclaim the reserves and obey rmem limits again.
360 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
362 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
365 unsigned int noreclaim_flag;
367 /* these should have been dropped before queueing */
368 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
370 noreclaim_flag = memalloc_noreclaim_save();
371 ret = sk->sk_backlog_rcv(sk, skb);
372 memalloc_noreclaim_restore(noreclaim_flag);
376 EXPORT_SYMBOL(__sk_backlog_rcv);
378 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
382 if (optlen < sizeof(tv))
384 if (copy_from_user(&tv, optval, sizeof(tv)))
386 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
390 static int warned __read_mostly;
393 if (warned < 10 && net_ratelimit()) {
395 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
396 __func__, current->comm, task_pid_nr(current));
400 *timeo_p = MAX_SCHEDULE_TIMEOUT;
401 if (tv.tv_sec == 0 && tv.tv_usec == 0)
403 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
404 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ);
408 static void sock_warn_obsolete_bsdism(const char *name)
411 static char warncomm[TASK_COMM_LEN];
412 if (strcmp(warncomm, current->comm) && warned < 5) {
413 strcpy(warncomm, current->comm);
414 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
420 static bool sock_needs_netstamp(const struct sock *sk)
422 switch (sk->sk_family) {
431 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
433 if (sk->sk_flags & flags) {
434 sk->sk_flags &= ~flags;
435 if (sock_needs_netstamp(sk) &&
436 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
437 net_disable_timestamp();
442 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
445 struct sk_buff_head *list = &sk->sk_receive_queue;
447 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
448 atomic_inc(&sk->sk_drops);
449 trace_sock_rcvqueue_full(sk, skb);
453 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
454 atomic_inc(&sk->sk_drops);
459 skb_set_owner_r(skb, sk);
461 /* we escape from rcu protected region, make sure we dont leak
466 spin_lock_irqsave(&list->lock, flags);
467 sock_skb_set_dropcount(sk, skb);
468 __skb_queue_tail(list, skb);
469 spin_unlock_irqrestore(&list->lock, flags);
471 if (!sock_flag(sk, SOCK_DEAD))
472 sk->sk_data_ready(sk);
475 EXPORT_SYMBOL(__sock_queue_rcv_skb);
477 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
481 err = sk_filter(sk, skb);
485 return __sock_queue_rcv_skb(sk, skb);
487 EXPORT_SYMBOL(sock_queue_rcv_skb);
489 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
490 const int nested, unsigned int trim_cap, bool refcounted)
492 int rc = NET_RX_SUCCESS;
494 if (sk_filter_trim_cap(sk, skb, trim_cap))
495 goto discard_and_relse;
499 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
500 atomic_inc(&sk->sk_drops);
501 goto discard_and_relse;
504 bh_lock_sock_nested(sk);
507 if (!sock_owned_by_user(sk)) {
509 * trylock + unlock semantics:
511 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
513 rc = sk_backlog_rcv(sk, skb);
515 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
516 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
518 atomic_inc(&sk->sk_drops);
519 goto discard_and_relse;
531 EXPORT_SYMBOL(__sk_receive_skb);
533 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
535 struct dst_entry *dst = __sk_dst_get(sk);
537 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
538 sk_tx_queue_clear(sk);
539 sk->sk_dst_pending_confirm = 0;
540 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
547 EXPORT_SYMBOL(__sk_dst_check);
549 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
551 struct dst_entry *dst = sk_dst_get(sk);
553 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
561 EXPORT_SYMBOL(sk_dst_check);
563 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
566 int ret = -ENOPROTOOPT;
567 #ifdef CONFIG_NETDEVICES
568 struct net *net = sock_net(sk);
569 char devname[IFNAMSIZ];
574 if (!ns_capable(net->user_ns, CAP_NET_RAW))
581 /* Bind this socket to a particular device like "eth0",
582 * as specified in the passed interface name. If the
583 * name is "" or the option length is zero the socket
586 if (optlen > IFNAMSIZ - 1)
587 optlen = IFNAMSIZ - 1;
588 memset(devname, 0, sizeof(devname));
591 if (copy_from_user(devname, optval, optlen))
595 if (devname[0] != '\0') {
596 struct net_device *dev;
599 dev = dev_get_by_name_rcu(net, devname);
601 index = dev->ifindex;
609 sk->sk_bound_dev_if = index;
621 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
622 int __user *optlen, int len)
624 int ret = -ENOPROTOOPT;
625 #ifdef CONFIG_NETDEVICES
626 struct net *net = sock_net(sk);
627 char devname[IFNAMSIZ];
629 if (sk->sk_bound_dev_if == 0) {
638 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
642 len = strlen(devname) + 1;
645 if (copy_to_user(optval, devname, len))
650 if (put_user(len, optlen))
661 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
664 sock_set_flag(sk, bit);
666 sock_reset_flag(sk, bit);
669 bool sk_mc_loop(struct sock *sk)
671 if (dev_recursion_level())
675 switch (sk->sk_family) {
677 return inet_sk(sk)->mc_loop;
678 #if IS_ENABLED(CONFIG_IPV6)
680 return inet6_sk(sk)->mc_loop;
686 EXPORT_SYMBOL(sk_mc_loop);
689 * This is meant for all protocols to use and covers goings on
690 * at the socket level. Everything here is generic.
693 int sock_setsockopt(struct socket *sock, int level, int optname,
694 char __user *optval, unsigned int optlen)
696 struct sock *sk = sock->sk;
703 * Options without arguments
706 if (optname == SO_BINDTODEVICE)
707 return sock_setbindtodevice(sk, optval, optlen);
709 if (optlen < sizeof(int))
712 if (get_user(val, (int __user *)optval))
715 valbool = val ? 1 : 0;
721 if (val && !capable(CAP_NET_ADMIN))
724 sock_valbool_flag(sk, SOCK_DBG, valbool);
727 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
730 sk->sk_reuseport = valbool;
739 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
742 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
745 /* Don't error on this BSD doesn't and if you think
746 * about it this is right. Otherwise apps have to
747 * play 'guess the biggest size' games. RCVBUF/SNDBUF
748 * are treated in BSD as hints
750 val = min_t(u32, val, sysctl_wmem_max);
752 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
753 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
754 /* Wake up sending tasks if we upped the value. */
755 sk->sk_write_space(sk);
759 if (!capable(CAP_NET_ADMIN)) {
766 /* Don't error on this BSD doesn't and if you think
767 * about it this is right. Otherwise apps have to
768 * play 'guess the biggest size' games. RCVBUF/SNDBUF
769 * are treated in BSD as hints
771 val = min_t(u32, val, sysctl_rmem_max);
773 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
775 * We double it on the way in to account for
776 * "struct sk_buff" etc. overhead. Applications
777 * assume that the SO_RCVBUF setting they make will
778 * allow that much actual data to be received on that
781 * Applications are unaware that "struct sk_buff" and
782 * other overheads allocate from the receive buffer
783 * during socket buffer allocation.
785 * And after considering the possible alternatives,
786 * returning the value we actually used in getsockopt
787 * is the most desirable behavior.
789 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
793 if (!capable(CAP_NET_ADMIN)) {
800 if (sk->sk_prot->keepalive)
801 sk->sk_prot->keepalive(sk, valbool);
802 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
806 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
810 sk->sk_no_check_tx = valbool;
814 if ((val >= 0 && val <= 6) ||
815 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
816 sk->sk_priority = val;
822 if (optlen < sizeof(ling)) {
823 ret = -EINVAL; /* 1003.1g */
826 if (copy_from_user(&ling, optval, sizeof(ling))) {
831 sock_reset_flag(sk, SOCK_LINGER);
833 #if (BITS_PER_LONG == 32)
834 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
835 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
838 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
839 sock_set_flag(sk, SOCK_LINGER);
844 sock_warn_obsolete_bsdism("setsockopt");
849 set_bit(SOCK_PASSCRED, &sock->flags);
851 clear_bit(SOCK_PASSCRED, &sock->flags);
857 if (optname == SO_TIMESTAMP)
858 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
860 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
861 sock_set_flag(sk, SOCK_RCVTSTAMP);
862 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
864 sock_reset_flag(sk, SOCK_RCVTSTAMP);
865 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
869 case SO_TIMESTAMPING:
870 if (val & ~SOF_TIMESTAMPING_MASK) {
875 if (val & SOF_TIMESTAMPING_OPT_ID &&
876 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
877 if (sk->sk_protocol == IPPROTO_TCP &&
878 sk->sk_type == SOCK_STREAM) {
879 if ((1 << sk->sk_state) &
880 (TCPF_CLOSE | TCPF_LISTEN)) {
884 sk->sk_tskey = tcp_sk(sk)->snd_una;
890 if (val & SOF_TIMESTAMPING_OPT_STATS &&
891 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
896 sk->sk_tsflags = val;
897 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
898 sock_enable_timestamp(sk,
899 SOCK_TIMESTAMPING_RX_SOFTWARE);
901 sock_disable_timestamp(sk,
902 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
908 if (sock->ops->set_rcvlowat)
909 ret = sock->ops->set_rcvlowat(sk, val);
911 sk->sk_rcvlowat = val ? : 1;
915 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
919 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
922 case SO_ATTACH_FILTER:
924 if (optlen == sizeof(struct sock_fprog)) {
925 struct sock_fprog fprog;
928 if (copy_from_user(&fprog, optval, sizeof(fprog)))
931 ret = sk_attach_filter(&fprog, sk);
937 if (optlen == sizeof(u32)) {
941 if (copy_from_user(&ufd, optval, sizeof(ufd)))
944 ret = sk_attach_bpf(ufd, sk);
948 case SO_ATTACH_REUSEPORT_CBPF:
950 if (optlen == sizeof(struct sock_fprog)) {
951 struct sock_fprog fprog;
954 if (copy_from_user(&fprog, optval, sizeof(fprog)))
957 ret = sk_reuseport_attach_filter(&fprog, sk);
961 case SO_ATTACH_REUSEPORT_EBPF:
963 if (optlen == sizeof(u32)) {
967 if (copy_from_user(&ufd, optval, sizeof(ufd)))
970 ret = sk_reuseport_attach_bpf(ufd, sk);
974 case SO_DETACH_FILTER:
975 ret = sk_detach_filter(sk);
979 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
982 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
987 set_bit(SOCK_PASSSEC, &sock->flags);
989 clear_bit(SOCK_PASSSEC, &sock->flags);
992 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
999 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1002 case SO_WIFI_STATUS:
1003 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1007 if (sock->ops->set_peek_off)
1008 ret = sock->ops->set_peek_off(sk, val);
1014 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1017 case SO_SELECT_ERR_QUEUE:
1018 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1021 #ifdef CONFIG_NET_RX_BUSY_POLL
1023 /* allow unprivileged users to decrease the value */
1024 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1030 sk->sk_ll_usec = val;
1035 case SO_MAX_PACING_RATE:
1037 cmpxchg(&sk->sk_pacing_status,
1040 sk->sk_max_pacing_rate = val;
1041 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
1042 sk->sk_max_pacing_rate);
1045 case SO_INCOMING_CPU:
1046 sk->sk_incoming_cpu = val;
1051 dst_negative_advice(sk);
1055 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1056 if (sk->sk_protocol != IPPROTO_TCP)
1058 } else if (sk->sk_family != PF_RDS) {
1062 if (val < 0 || val > 1)
1065 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1076 EXPORT_SYMBOL(sock_setsockopt);
1079 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1080 struct ucred *ucred)
1082 ucred->pid = pid_vnr(pid);
1083 ucred->uid = ucred->gid = -1;
1085 struct user_namespace *current_ns = current_user_ns();
1087 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1088 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1092 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1094 struct user_namespace *user_ns = current_user_ns();
1097 for (i = 0; i < src->ngroups; i++)
1098 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1104 int sock_getsockopt(struct socket *sock, int level, int optname,
1105 char __user *optval, int __user *optlen)
1107 struct sock *sk = sock->sk;
1116 int lv = sizeof(int);
1119 if (get_user(len, optlen))
1124 memset(&v, 0, sizeof(v));
1128 v.val = sock_flag(sk, SOCK_DBG);
1132 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1136 v.val = sock_flag(sk, SOCK_BROADCAST);
1140 v.val = sk->sk_sndbuf;
1144 v.val = sk->sk_rcvbuf;
1148 v.val = sk->sk_reuse;
1152 v.val = sk->sk_reuseport;
1156 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1160 v.val = sk->sk_type;
1164 v.val = sk->sk_protocol;
1168 v.val = sk->sk_family;
1172 v.val = -sock_error(sk);
1174 v.val = xchg(&sk->sk_err_soft, 0);
1178 v.val = sock_flag(sk, SOCK_URGINLINE);
1182 v.val = sk->sk_no_check_tx;
1186 v.val = sk->sk_priority;
1190 lv = sizeof(v.ling);
1191 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1192 v.ling.l_linger = sk->sk_lingertime / HZ;
1196 sock_warn_obsolete_bsdism("getsockopt");
1200 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1201 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1204 case SO_TIMESTAMPNS:
1205 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1208 case SO_TIMESTAMPING:
1209 v.val = sk->sk_tsflags;
1213 lv = sizeof(struct timeval);
1214 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1218 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1219 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ;
1224 lv = sizeof(struct timeval);
1225 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1229 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1230 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ;
1235 v.val = sk->sk_rcvlowat;
1243 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1248 struct ucred peercred;
1249 if (len > sizeof(peercred))
1250 len = sizeof(peercred);
1251 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1252 if (copy_to_user(optval, &peercred, len))
1261 if (!sk->sk_peer_cred)
1264 n = sk->sk_peer_cred->group_info->ngroups;
1265 if (len < n * sizeof(gid_t)) {
1266 len = n * sizeof(gid_t);
1267 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1269 len = n * sizeof(gid_t);
1271 ret = groups_to_user((gid_t __user *)optval,
1272 sk->sk_peer_cred->group_info);
1282 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1287 if (copy_to_user(optval, address, len))
1292 /* Dubious BSD thing... Probably nobody even uses it, but
1293 * the UNIX standard wants it for whatever reason... -DaveM
1296 v.val = sk->sk_state == TCP_LISTEN;
1300 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1304 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1307 v.val = sk->sk_mark;
1311 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1314 case SO_WIFI_STATUS:
1315 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1319 if (!sock->ops->set_peek_off)
1322 v.val = sk->sk_peek_off;
1325 v.val = sock_flag(sk, SOCK_NOFCS);
1328 case SO_BINDTODEVICE:
1329 return sock_getbindtodevice(sk, optval, optlen, len);
1332 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1338 case SO_LOCK_FILTER:
1339 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1342 case SO_BPF_EXTENSIONS:
1343 v.val = bpf_tell_extensions();
1346 case SO_SELECT_ERR_QUEUE:
1347 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1350 #ifdef CONFIG_NET_RX_BUSY_POLL
1352 v.val = sk->sk_ll_usec;
1356 case SO_MAX_PACING_RATE:
1357 v.val = sk->sk_max_pacing_rate;
1360 case SO_INCOMING_CPU:
1361 v.val = sk->sk_incoming_cpu;
1366 u32 meminfo[SK_MEMINFO_VARS];
1368 if (get_user(len, optlen))
1371 sk_get_meminfo(sk, meminfo);
1373 len = min_t(unsigned int, len, sizeof(meminfo));
1374 if (copy_to_user(optval, &meminfo, len))
1380 #ifdef CONFIG_NET_RX_BUSY_POLL
1381 case SO_INCOMING_NAPI_ID:
1382 v.val = READ_ONCE(sk->sk_napi_id);
1384 /* aggregate non-NAPI IDs down to 0 */
1385 if (v.val < MIN_NAPI_ID)
1395 v.val64 = sock_gen_cookie(sk);
1399 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1403 /* We implement the SO_SNDLOWAT etc to not be settable
1406 return -ENOPROTOOPT;
1411 if (copy_to_user(optval, &v, len))
1414 if (put_user(len, optlen))
1420 * Initialize an sk_lock.
1422 * (We also register the sk_lock with the lock validator.)
1424 static inline void sock_lock_init(struct sock *sk)
1426 if (sk->sk_kern_sock)
1427 sock_lock_init_class_and_name(
1429 af_family_kern_slock_key_strings[sk->sk_family],
1430 af_family_kern_slock_keys + sk->sk_family,
1431 af_family_kern_key_strings[sk->sk_family],
1432 af_family_kern_keys + sk->sk_family);
1434 sock_lock_init_class_and_name(
1436 af_family_slock_key_strings[sk->sk_family],
1437 af_family_slock_keys + sk->sk_family,
1438 af_family_key_strings[sk->sk_family],
1439 af_family_keys + sk->sk_family);
1443 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1444 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1445 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1447 static void sock_copy(struct sock *nsk, const struct sock *osk)
1449 #ifdef CONFIG_SECURITY_NETWORK
1450 void *sptr = nsk->sk_security;
1452 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1454 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1455 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1457 #ifdef CONFIG_SECURITY_NETWORK
1458 nsk->sk_security = sptr;
1459 security_sk_clone(osk, nsk);
1463 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1467 struct kmem_cache *slab;
1471 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1474 if (priority & __GFP_ZERO)
1475 sk_prot_clear_nulls(sk, prot->obj_size);
1477 sk = kmalloc(prot->obj_size, priority);
1480 if (security_sk_alloc(sk, family, priority))
1483 if (!try_module_get(prot->owner))
1485 sk_tx_queue_clear(sk);
1491 security_sk_free(sk);
1494 kmem_cache_free(slab, sk);
1500 static void sk_prot_free(struct proto *prot, struct sock *sk)
1502 struct kmem_cache *slab;
1503 struct module *owner;
1505 owner = prot->owner;
1508 cgroup_sk_free(&sk->sk_cgrp_data);
1509 mem_cgroup_sk_free(sk);
1510 security_sk_free(sk);
1512 kmem_cache_free(slab, sk);
1519 * sk_alloc - All socket objects are allocated here
1520 * @net: the applicable net namespace
1521 * @family: protocol family
1522 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1523 * @prot: struct proto associated with this new sock instance
1524 * @kern: is this to be a kernel socket?
1526 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1527 struct proto *prot, int kern)
1531 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1533 sk->sk_family = family;
1535 * See comment in struct sock definition to understand
1536 * why we need sk_prot_creator -acme
1538 sk->sk_prot = sk->sk_prot_creator = prot;
1539 sk->sk_kern_sock = kern;
1541 sk->sk_net_refcnt = kern ? 0 : 1;
1542 if (likely(sk->sk_net_refcnt)) {
1544 sock_inuse_add(net, 1);
1547 sock_net_set(sk, net);
1548 refcount_set(&sk->sk_wmem_alloc, 1);
1550 mem_cgroup_sk_alloc(sk);
1551 cgroup_sk_alloc(&sk->sk_cgrp_data);
1552 sock_update_classid(&sk->sk_cgrp_data);
1553 sock_update_netprioidx(&sk->sk_cgrp_data);
1558 EXPORT_SYMBOL(sk_alloc);
1560 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1561 * grace period. This is the case for UDP sockets and TCP listeners.
1563 static void __sk_destruct(struct rcu_head *head)
1565 struct sock *sk = container_of(head, struct sock, sk_rcu);
1566 struct sk_filter *filter;
1568 if (sk->sk_destruct)
1569 sk->sk_destruct(sk);
1571 filter = rcu_dereference_check(sk->sk_filter,
1572 refcount_read(&sk->sk_wmem_alloc) == 0);
1574 sk_filter_uncharge(sk, filter);
1575 RCU_INIT_POINTER(sk->sk_filter, NULL);
1577 if (rcu_access_pointer(sk->sk_reuseport_cb))
1578 reuseport_detach_sock(sk);
1580 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1582 if (atomic_read(&sk->sk_omem_alloc))
1583 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1584 __func__, atomic_read(&sk->sk_omem_alloc));
1586 if (sk->sk_frag.page) {
1587 put_page(sk->sk_frag.page);
1588 sk->sk_frag.page = NULL;
1591 if (sk->sk_peer_cred)
1592 put_cred(sk->sk_peer_cred);
1593 put_pid(sk->sk_peer_pid);
1594 if (likely(sk->sk_net_refcnt))
1595 put_net(sock_net(sk));
1596 sk_prot_free(sk->sk_prot_creator, sk);
1599 void sk_destruct(struct sock *sk)
1601 if (sock_flag(sk, SOCK_RCU_FREE))
1602 call_rcu(&sk->sk_rcu, __sk_destruct);
1604 __sk_destruct(&sk->sk_rcu);
1607 static void __sk_free(struct sock *sk)
1609 if (likely(sk->sk_net_refcnt))
1610 sock_inuse_add(sock_net(sk), -1);
1612 if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
1613 sock_diag_broadcast_destroy(sk);
1618 void sk_free(struct sock *sk)
1621 * We subtract one from sk_wmem_alloc and can know if
1622 * some packets are still in some tx queue.
1623 * If not null, sock_wfree() will call __sk_free(sk) later
1625 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1628 EXPORT_SYMBOL(sk_free);
1630 static void sk_init_common(struct sock *sk)
1632 skb_queue_head_init(&sk->sk_receive_queue);
1633 skb_queue_head_init(&sk->sk_write_queue);
1634 skb_queue_head_init(&sk->sk_error_queue);
1636 rwlock_init(&sk->sk_callback_lock);
1637 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1638 af_rlock_keys + sk->sk_family,
1639 af_family_rlock_key_strings[sk->sk_family]);
1640 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1641 af_wlock_keys + sk->sk_family,
1642 af_family_wlock_key_strings[sk->sk_family]);
1643 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1644 af_elock_keys + sk->sk_family,
1645 af_family_elock_key_strings[sk->sk_family]);
1646 lockdep_set_class_and_name(&sk->sk_callback_lock,
1647 af_callback_keys + sk->sk_family,
1648 af_family_clock_key_strings[sk->sk_family]);
1652 * sk_clone_lock - clone a socket, and lock its clone
1653 * @sk: the socket to clone
1654 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1656 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1658 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1661 bool is_charged = true;
1663 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1664 if (newsk != NULL) {
1665 struct sk_filter *filter;
1667 sock_copy(newsk, sk);
1669 newsk->sk_prot_creator = sk->sk_prot;
1672 if (likely(newsk->sk_net_refcnt))
1673 get_net(sock_net(newsk));
1674 sk_node_init(&newsk->sk_node);
1675 sock_lock_init(newsk);
1676 bh_lock_sock(newsk);
1677 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1678 newsk->sk_backlog.len = 0;
1680 atomic_set(&newsk->sk_rmem_alloc, 0);
1682 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1684 refcount_set(&newsk->sk_wmem_alloc, 1);
1685 atomic_set(&newsk->sk_omem_alloc, 0);
1686 sk_init_common(newsk);
1688 newsk->sk_dst_cache = NULL;
1689 newsk->sk_dst_pending_confirm = 0;
1690 newsk->sk_wmem_queued = 0;
1691 newsk->sk_forward_alloc = 0;
1692 atomic_set(&newsk->sk_drops, 0);
1693 newsk->sk_send_head = NULL;
1694 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1695 atomic_set(&newsk->sk_zckey, 0);
1697 sock_reset_flag(newsk, SOCK_DONE);
1698 mem_cgroup_sk_alloc(newsk);
1699 cgroup_sk_alloc(&newsk->sk_cgrp_data);
1702 filter = rcu_dereference(sk->sk_filter);
1704 /* though it's an empty new sock, the charging may fail
1705 * if sysctl_optmem_max was changed between creation of
1706 * original socket and cloning
1708 is_charged = sk_filter_charge(newsk, filter);
1709 RCU_INIT_POINTER(newsk->sk_filter, filter);
1712 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1713 /* We need to make sure that we don't uncharge the new
1714 * socket if we couldn't charge it in the first place
1715 * as otherwise we uncharge the parent's filter.
1718 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1719 sk_free_unlock_clone(newsk);
1723 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1726 newsk->sk_err_soft = 0;
1727 newsk->sk_priority = 0;
1728 newsk->sk_incoming_cpu = raw_smp_processor_id();
1729 atomic64_set(&newsk->sk_cookie, 0);
1730 if (likely(newsk->sk_net_refcnt))
1731 sock_inuse_add(sock_net(newsk), 1);
1734 * Before updating sk_refcnt, we must commit prior changes to memory
1735 * (Documentation/RCU/rculist_nulls.txt for details)
1738 refcount_set(&newsk->sk_refcnt, 2);
1741 * Increment the counter in the same struct proto as the master
1742 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1743 * is the same as sk->sk_prot->socks, as this field was copied
1746 * This _changes_ the previous behaviour, where
1747 * tcp_create_openreq_child always was incrementing the
1748 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1749 * to be taken into account in all callers. -acme
1751 sk_refcnt_debug_inc(newsk);
1752 sk_set_socket(newsk, NULL);
1753 newsk->sk_wq = NULL;
1755 if (newsk->sk_prot->sockets_allocated)
1756 sk_sockets_allocated_inc(newsk);
1758 if (sock_needs_netstamp(sk) &&
1759 newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1760 net_enable_timestamp();
1765 EXPORT_SYMBOL_GPL(sk_clone_lock);
1767 void sk_free_unlock_clone(struct sock *sk)
1769 /* It is still raw copy of parent, so invalidate
1770 * destructor and make plain sk_free() */
1771 sk->sk_destruct = NULL;
1775 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1777 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1781 sk_dst_set(sk, dst);
1782 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
1783 if (sk->sk_route_caps & NETIF_F_GSO)
1784 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1785 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1786 if (sk_can_gso(sk)) {
1787 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1788 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1790 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1791 sk->sk_gso_max_size = dst->dev->gso_max_size;
1792 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1795 sk->sk_gso_max_segs = max_segs;
1797 EXPORT_SYMBOL_GPL(sk_setup_caps);
1800 * Simple resource managers for sockets.
1805 * Write buffer destructor automatically called from kfree_skb.
1807 void sock_wfree(struct sk_buff *skb)
1809 struct sock *sk = skb->sk;
1810 unsigned int len = skb->truesize;
1812 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1814 * Keep a reference on sk_wmem_alloc, this will be released
1815 * after sk_write_space() call
1817 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1818 sk->sk_write_space(sk);
1822 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1823 * could not do because of in-flight packets
1825 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1828 EXPORT_SYMBOL(sock_wfree);
1830 /* This variant of sock_wfree() is used by TCP,
1831 * since it sets SOCK_USE_WRITE_QUEUE.
1833 void __sock_wfree(struct sk_buff *skb)
1835 struct sock *sk = skb->sk;
1837 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1841 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1846 if (unlikely(!sk_fullsock(sk))) {
1847 skb->destructor = sock_edemux;
1852 skb->destructor = sock_wfree;
1853 skb_set_hash_from_sk(skb, sk);
1855 * We used to take a refcount on sk, but following operation
1856 * is enough to guarantee sk_free() wont free this sock until
1857 * all in-flight packets are completed
1859 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1861 EXPORT_SYMBOL(skb_set_owner_w);
1863 /* This helper is used by netem, as it can hold packets in its
1864 * delay queue. We want to allow the owner socket to send more
1865 * packets, as if they were already TX completed by a typical driver.
1866 * But we also want to keep skb->sk set because some packet schedulers
1867 * rely on it (sch_fq for example).
1869 void skb_orphan_partial(struct sk_buff *skb)
1871 if (skb_is_tcp_pure_ack(skb))
1874 if (skb->destructor == sock_wfree
1876 || skb->destructor == tcp_wfree
1879 struct sock *sk = skb->sk;
1881 if (refcount_inc_not_zero(&sk->sk_refcnt)) {
1882 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
1883 skb->destructor = sock_efree;
1889 EXPORT_SYMBOL(skb_orphan_partial);
1892 * Read buffer destructor automatically called from kfree_skb.
1894 void sock_rfree(struct sk_buff *skb)
1896 struct sock *sk = skb->sk;
1897 unsigned int len = skb->truesize;
1899 atomic_sub(len, &sk->sk_rmem_alloc);
1900 sk_mem_uncharge(sk, len);
1902 EXPORT_SYMBOL(sock_rfree);
1905 * Buffer destructor for skbs that are not used directly in read or write
1906 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1908 void sock_efree(struct sk_buff *skb)
1912 EXPORT_SYMBOL(sock_efree);
1914 kuid_t sock_i_uid(struct sock *sk)
1918 read_lock_bh(&sk->sk_callback_lock);
1919 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1920 read_unlock_bh(&sk->sk_callback_lock);
1923 EXPORT_SYMBOL(sock_i_uid);
1925 unsigned long sock_i_ino(struct sock *sk)
1929 read_lock_bh(&sk->sk_callback_lock);
1930 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1931 read_unlock_bh(&sk->sk_callback_lock);
1934 EXPORT_SYMBOL(sock_i_ino);
1937 * Allocate a skb from the socket's send buffer.
1939 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1942 if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1943 struct sk_buff *skb = alloc_skb(size, priority);
1945 skb_set_owner_w(skb, sk);
1951 EXPORT_SYMBOL(sock_wmalloc);
1953 static void sock_ofree(struct sk_buff *skb)
1955 struct sock *sk = skb->sk;
1957 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
1960 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1963 struct sk_buff *skb;
1965 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
1966 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
1970 skb = alloc_skb(size, priority);
1974 atomic_add(skb->truesize, &sk->sk_omem_alloc);
1976 skb->destructor = sock_ofree;
1981 * Allocate a memory block from the socket's option memory buffer.
1983 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1985 if ((unsigned int)size <= sysctl_optmem_max &&
1986 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1988 /* First do the add, to avoid the race if kmalloc
1991 atomic_add(size, &sk->sk_omem_alloc);
1992 mem = kmalloc(size, priority);
1995 atomic_sub(size, &sk->sk_omem_alloc);
1999 EXPORT_SYMBOL(sock_kmalloc);
2001 /* Free an option memory block. Note, we actually want the inline
2002 * here as this allows gcc to detect the nullify and fold away the
2003 * condition entirely.
2005 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2008 if (WARN_ON_ONCE(!mem))
2014 atomic_sub(size, &sk->sk_omem_alloc);
2017 void sock_kfree_s(struct sock *sk, void *mem, int size)
2019 __sock_kfree_s(sk, mem, size, false);
2021 EXPORT_SYMBOL(sock_kfree_s);
2023 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2025 __sock_kfree_s(sk, mem, size, true);
2027 EXPORT_SYMBOL(sock_kzfree_s);
2029 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2030 I think, these locks should be removed for datagram sockets.
2032 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2036 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2040 if (signal_pending(current))
2042 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2043 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2044 if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
2046 if (sk->sk_shutdown & SEND_SHUTDOWN)
2050 timeo = schedule_timeout(timeo);
2052 finish_wait(sk_sleep(sk), &wait);
2058 * Generic send/receive buffer handlers
2061 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2062 unsigned long data_len, int noblock,
2063 int *errcode, int max_page_order)
2065 struct sk_buff *skb;
2069 timeo = sock_sndtimeo(sk, noblock);
2071 err = sock_error(sk);
2076 if (sk->sk_shutdown & SEND_SHUTDOWN)
2079 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
2082 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2083 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2087 if (signal_pending(current))
2089 timeo = sock_wait_for_wmem(sk, timeo);
2091 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2092 errcode, sk->sk_allocation);
2094 skb_set_owner_w(skb, sk);
2098 err = sock_intr_errno(timeo);
2103 EXPORT_SYMBOL(sock_alloc_send_pskb);
2105 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2106 int noblock, int *errcode)
2108 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2110 EXPORT_SYMBOL(sock_alloc_send_skb);
2112 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2113 struct sockcm_cookie *sockc)
2117 switch (cmsg->cmsg_type) {
2119 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2121 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2123 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2125 case SO_TIMESTAMPING:
2126 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2129 tsflags = *(u32 *)CMSG_DATA(cmsg);
2130 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2133 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2134 sockc->tsflags |= tsflags;
2136 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2138 case SCM_CREDENTIALS:
2145 EXPORT_SYMBOL(__sock_cmsg_send);
2147 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2148 struct sockcm_cookie *sockc)
2150 struct cmsghdr *cmsg;
2153 for_each_cmsghdr(cmsg, msg) {
2154 if (!CMSG_OK(msg, cmsg))
2156 if (cmsg->cmsg_level != SOL_SOCKET)
2158 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2164 EXPORT_SYMBOL(sock_cmsg_send);
2166 static void sk_enter_memory_pressure(struct sock *sk)
2168 if (!sk->sk_prot->enter_memory_pressure)
2171 sk->sk_prot->enter_memory_pressure(sk);
2174 static void sk_leave_memory_pressure(struct sock *sk)
2176 if (sk->sk_prot->leave_memory_pressure) {
2177 sk->sk_prot->leave_memory_pressure(sk);
2179 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2181 if (memory_pressure && *memory_pressure)
2182 *memory_pressure = 0;
2186 /* On 32bit arches, an skb frag is limited to 2^15 */
2187 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2190 * skb_page_frag_refill - check that a page_frag contains enough room
2191 * @sz: minimum size of the fragment we want to get
2192 * @pfrag: pointer to page_frag
2193 * @gfp: priority for memory allocation
2195 * Note: While this allocator tries to use high order pages, there is
2196 * no guarantee that allocations succeed. Therefore, @sz MUST be
2197 * less or equal than PAGE_SIZE.
2199 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2202 if (page_ref_count(pfrag->page) == 1) {
2206 if (pfrag->offset + sz <= pfrag->size)
2208 put_page(pfrag->page);
2212 if (SKB_FRAG_PAGE_ORDER) {
2213 /* Avoid direct reclaim but allow kswapd to wake */
2214 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2215 __GFP_COMP | __GFP_NOWARN |
2217 SKB_FRAG_PAGE_ORDER);
2218 if (likely(pfrag->page)) {
2219 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2223 pfrag->page = alloc_page(gfp);
2224 if (likely(pfrag->page)) {
2225 pfrag->size = PAGE_SIZE;
2230 EXPORT_SYMBOL(skb_page_frag_refill);
2232 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2234 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2237 sk_enter_memory_pressure(sk);
2238 sk_stream_moderate_sndbuf(sk);
2241 EXPORT_SYMBOL(sk_page_frag_refill);
2243 int sk_alloc_sg(struct sock *sk, int len, struct scatterlist *sg,
2244 int sg_start, int *sg_curr_index, unsigned int *sg_curr_size,
2247 int sg_curr = *sg_curr_index, use = 0, rc = 0;
2248 unsigned int size = *sg_curr_size;
2249 struct page_frag *pfrag;
2250 struct scatterlist *sge;
2253 pfrag = sk_page_frag(sk);
2256 unsigned int orig_offset;
2258 if (!sk_page_frag_refill(sk, pfrag)) {
2263 use = min_t(int, len, pfrag->size - pfrag->offset);
2265 if (!sk_wmem_schedule(sk, use)) {
2270 sk_mem_charge(sk, use);
2272 orig_offset = pfrag->offset;
2273 pfrag->offset += use;
2275 sge = sg + sg_curr - 1;
2276 if (sg_curr > first_coalesce && sg_page(sg) == pfrag->page &&
2277 sg->offset + sg->length == orig_offset) {
2282 sg_set_page(sge, pfrag->page, use, orig_offset);
2283 get_page(pfrag->page);
2286 if (sg_curr == MAX_SKB_FRAGS)
2289 if (sg_curr == sg_start) {
2298 *sg_curr_size = size;
2299 *sg_curr_index = sg_curr;
2302 EXPORT_SYMBOL(sk_alloc_sg);
2304 static void __lock_sock(struct sock *sk)
2305 __releases(&sk->sk_lock.slock)
2306 __acquires(&sk->sk_lock.slock)
2311 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2312 TASK_UNINTERRUPTIBLE);
2313 spin_unlock_bh(&sk->sk_lock.slock);
2315 spin_lock_bh(&sk->sk_lock.slock);
2316 if (!sock_owned_by_user(sk))
2319 finish_wait(&sk->sk_lock.wq, &wait);
2322 static void __release_sock(struct sock *sk)
2323 __releases(&sk->sk_lock.slock)
2324 __acquires(&sk->sk_lock.slock)
2326 struct sk_buff *skb, *next;
2328 while ((skb = sk->sk_backlog.head) != NULL) {
2329 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2331 spin_unlock_bh(&sk->sk_lock.slock);
2336 WARN_ON_ONCE(skb_dst_is_noref(skb));
2338 sk_backlog_rcv(sk, skb);
2343 } while (skb != NULL);
2345 spin_lock_bh(&sk->sk_lock.slock);
2349 * Doing the zeroing here guarantee we can not loop forever
2350 * while a wild producer attempts to flood us.
2352 sk->sk_backlog.len = 0;
2355 void __sk_flush_backlog(struct sock *sk)
2357 spin_lock_bh(&sk->sk_lock.slock);
2359 spin_unlock_bh(&sk->sk_lock.slock);
2363 * sk_wait_data - wait for data to arrive at sk_receive_queue
2364 * @sk: sock to wait on
2365 * @timeo: for how long
2366 * @skb: last skb seen on sk_receive_queue
2368 * Now socket state including sk->sk_err is changed only under lock,
2369 * hence we may omit checks after joining wait queue.
2370 * We check receive queue before schedule() only as optimization;
2371 * it is very likely that release_sock() added new data.
2373 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2375 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2378 add_wait_queue(sk_sleep(sk), &wait);
2379 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2380 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2381 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2382 remove_wait_queue(sk_sleep(sk), &wait);
2385 EXPORT_SYMBOL(sk_wait_data);
2388 * __sk_mem_raise_allocated - increase memory_allocated
2390 * @size: memory size to allocate
2391 * @amt: pages to allocate
2392 * @kind: allocation type
2394 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2396 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2398 struct proto *prot = sk->sk_prot;
2399 long allocated = sk_memory_allocated_add(sk, amt);
2401 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2402 !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2403 goto suppress_allocation;
2406 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2407 sk_leave_memory_pressure(sk);
2411 /* Under pressure. */
2412 if (allocated > sk_prot_mem_limits(sk, 1))
2413 sk_enter_memory_pressure(sk);
2415 /* Over hard limit. */
2416 if (allocated > sk_prot_mem_limits(sk, 2))
2417 goto suppress_allocation;
2419 /* guarantee minimum buffer size under pressure */
2420 if (kind == SK_MEM_RECV) {
2421 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2424 } else { /* SK_MEM_SEND */
2425 int wmem0 = sk_get_wmem0(sk, prot);
2427 if (sk->sk_type == SOCK_STREAM) {
2428 if (sk->sk_wmem_queued < wmem0)
2430 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2435 if (sk_has_memory_pressure(sk)) {
2438 if (!sk_under_memory_pressure(sk))
2440 alloc = sk_sockets_allocated_read_positive(sk);
2441 if (sk_prot_mem_limits(sk, 2) > alloc *
2442 sk_mem_pages(sk->sk_wmem_queued +
2443 atomic_read(&sk->sk_rmem_alloc) +
2444 sk->sk_forward_alloc))
2448 suppress_allocation:
2450 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2451 sk_stream_moderate_sndbuf(sk);
2453 /* Fail only if socket is _under_ its sndbuf.
2454 * In this case we cannot block, so that we have to fail.
2456 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2460 trace_sock_exceed_buf_limit(sk, prot, allocated);
2462 sk_memory_allocated_sub(sk, amt);
2464 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2465 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2469 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2472 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2474 * @size: memory size to allocate
2475 * @kind: allocation type
2477 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2478 * rmem allocation. This function assumes that protocols which have
2479 * memory_pressure use sk_wmem_queued as write buffer accounting.
2481 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2483 int ret, amt = sk_mem_pages(size);
2485 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2486 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2488 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2491 EXPORT_SYMBOL(__sk_mem_schedule);
2494 * __sk_mem_reduce_allocated - reclaim memory_allocated
2496 * @amount: number of quanta
2498 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2500 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2502 sk_memory_allocated_sub(sk, amount);
2504 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2505 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2507 if (sk_under_memory_pressure(sk) &&
2508 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2509 sk_leave_memory_pressure(sk);
2511 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2514 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2516 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2518 void __sk_mem_reclaim(struct sock *sk, int amount)
2520 amount >>= SK_MEM_QUANTUM_SHIFT;
2521 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2522 __sk_mem_reduce_allocated(sk, amount);
2524 EXPORT_SYMBOL(__sk_mem_reclaim);
2526 int sk_set_peek_off(struct sock *sk, int val)
2528 sk->sk_peek_off = val;
2531 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2534 * Set of default routines for initialising struct proto_ops when
2535 * the protocol does not support a particular function. In certain
2536 * cases where it makes no sense for a protocol to have a "do nothing"
2537 * function, some default processing is provided.
2540 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2544 EXPORT_SYMBOL(sock_no_bind);
2546 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2551 EXPORT_SYMBOL(sock_no_connect);
2553 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2557 EXPORT_SYMBOL(sock_no_socketpair);
2559 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2564 EXPORT_SYMBOL(sock_no_accept);
2566 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2571 EXPORT_SYMBOL(sock_no_getname);
2573 __poll_t sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2577 EXPORT_SYMBOL(sock_no_poll);
2579 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2583 EXPORT_SYMBOL(sock_no_ioctl);
2585 int sock_no_listen(struct socket *sock, int backlog)
2589 EXPORT_SYMBOL(sock_no_listen);
2591 int sock_no_shutdown(struct socket *sock, int how)
2595 EXPORT_SYMBOL(sock_no_shutdown);
2597 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2598 char __user *optval, unsigned int optlen)
2602 EXPORT_SYMBOL(sock_no_setsockopt);
2604 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2605 char __user *optval, int __user *optlen)
2609 EXPORT_SYMBOL(sock_no_getsockopt);
2611 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2615 EXPORT_SYMBOL(sock_no_sendmsg);
2617 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2621 EXPORT_SYMBOL(sock_no_sendmsg_locked);
2623 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2628 EXPORT_SYMBOL(sock_no_recvmsg);
2630 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2632 /* Mirror missing mmap method error code */
2635 EXPORT_SYMBOL(sock_no_mmap);
2637 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2640 struct msghdr msg = {.msg_flags = flags};
2642 char *kaddr = kmap(page);
2643 iov.iov_base = kaddr + offset;
2645 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2649 EXPORT_SYMBOL(sock_no_sendpage);
2651 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2652 int offset, size_t size, int flags)
2655 struct msghdr msg = {.msg_flags = flags};
2657 char *kaddr = kmap(page);
2659 iov.iov_base = kaddr + offset;
2661 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2665 EXPORT_SYMBOL(sock_no_sendpage_locked);
2668 * Default Socket Callbacks
2671 static void sock_def_wakeup(struct sock *sk)
2673 struct socket_wq *wq;
2676 wq = rcu_dereference(sk->sk_wq);
2677 if (skwq_has_sleeper(wq))
2678 wake_up_interruptible_all(&wq->wait);
2682 static void sock_def_error_report(struct sock *sk)
2684 struct socket_wq *wq;
2687 wq = rcu_dereference(sk->sk_wq);
2688 if (skwq_has_sleeper(wq))
2689 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2690 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2694 static void sock_def_readable(struct sock *sk)
2696 struct socket_wq *wq;
2699 wq = rcu_dereference(sk->sk_wq);
2700 if (skwq_has_sleeper(wq))
2701 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2702 EPOLLRDNORM | EPOLLRDBAND);
2703 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2707 static void sock_def_write_space(struct sock *sk)
2709 struct socket_wq *wq;
2713 /* Do not wake up a writer until he can make "significant"
2716 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2717 wq = rcu_dereference(sk->sk_wq);
2718 if (skwq_has_sleeper(wq))
2719 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2720 EPOLLWRNORM | EPOLLWRBAND);
2722 /* Should agree with poll, otherwise some programs break */
2723 if (sock_writeable(sk))
2724 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2730 static void sock_def_destruct(struct sock *sk)
2734 void sk_send_sigurg(struct sock *sk)
2736 if (sk->sk_socket && sk->sk_socket->file)
2737 if (send_sigurg(&sk->sk_socket->file->f_owner))
2738 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2740 EXPORT_SYMBOL(sk_send_sigurg);
2742 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2743 unsigned long expires)
2745 if (!mod_timer(timer, expires))
2748 EXPORT_SYMBOL(sk_reset_timer);
2750 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2752 if (del_timer(timer))
2755 EXPORT_SYMBOL(sk_stop_timer);
2757 void sock_init_data(struct socket *sock, struct sock *sk)
2760 sk->sk_send_head = NULL;
2762 timer_setup(&sk->sk_timer, NULL, 0);
2764 sk->sk_allocation = GFP_KERNEL;
2765 sk->sk_rcvbuf = sysctl_rmem_default;
2766 sk->sk_sndbuf = sysctl_wmem_default;
2767 sk->sk_state = TCP_CLOSE;
2768 sk_set_socket(sk, sock);
2770 sock_set_flag(sk, SOCK_ZAPPED);
2773 sk->sk_type = sock->type;
2774 sk->sk_wq = sock->wq;
2776 sk->sk_uid = SOCK_INODE(sock)->i_uid;
2779 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
2782 rwlock_init(&sk->sk_callback_lock);
2783 if (sk->sk_kern_sock)
2784 lockdep_set_class_and_name(
2785 &sk->sk_callback_lock,
2786 af_kern_callback_keys + sk->sk_family,
2787 af_family_kern_clock_key_strings[sk->sk_family]);
2789 lockdep_set_class_and_name(
2790 &sk->sk_callback_lock,
2791 af_callback_keys + sk->sk_family,
2792 af_family_clock_key_strings[sk->sk_family]);
2794 sk->sk_state_change = sock_def_wakeup;
2795 sk->sk_data_ready = sock_def_readable;
2796 sk->sk_write_space = sock_def_write_space;
2797 sk->sk_error_report = sock_def_error_report;
2798 sk->sk_destruct = sock_def_destruct;
2800 sk->sk_frag.page = NULL;
2801 sk->sk_frag.offset = 0;
2802 sk->sk_peek_off = -1;
2804 sk->sk_peer_pid = NULL;
2805 sk->sk_peer_cred = NULL;
2806 sk->sk_write_pending = 0;
2807 sk->sk_rcvlowat = 1;
2808 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2809 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2811 sk->sk_stamp = SK_DEFAULT_STAMP;
2812 atomic_set(&sk->sk_zckey, 0);
2814 #ifdef CONFIG_NET_RX_BUSY_POLL
2816 sk->sk_ll_usec = sysctl_net_busy_read;
2819 sk->sk_max_pacing_rate = ~0U;
2820 sk->sk_pacing_rate = ~0U;
2821 sk->sk_pacing_shift = 10;
2822 sk->sk_incoming_cpu = -1;
2824 * Before updating sk_refcnt, we must commit prior changes to memory
2825 * (Documentation/RCU/rculist_nulls.txt for details)
2828 refcount_set(&sk->sk_refcnt, 1);
2829 atomic_set(&sk->sk_drops, 0);
2831 EXPORT_SYMBOL(sock_init_data);
2833 void lock_sock_nested(struct sock *sk, int subclass)
2836 spin_lock_bh(&sk->sk_lock.slock);
2837 if (sk->sk_lock.owned)
2839 sk->sk_lock.owned = 1;
2840 spin_unlock(&sk->sk_lock.slock);
2842 * The sk_lock has mutex_lock() semantics here:
2844 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2847 EXPORT_SYMBOL(lock_sock_nested);
2849 void release_sock(struct sock *sk)
2851 spin_lock_bh(&sk->sk_lock.slock);
2852 if (sk->sk_backlog.tail)
2855 /* Warning : release_cb() might need to release sk ownership,
2856 * ie call sock_release_ownership(sk) before us.
2858 if (sk->sk_prot->release_cb)
2859 sk->sk_prot->release_cb(sk);
2861 sock_release_ownership(sk);
2862 if (waitqueue_active(&sk->sk_lock.wq))
2863 wake_up(&sk->sk_lock.wq);
2864 spin_unlock_bh(&sk->sk_lock.slock);
2866 EXPORT_SYMBOL(release_sock);
2869 * lock_sock_fast - fast version of lock_sock
2872 * This version should be used for very small section, where process wont block
2873 * return false if fast path is taken:
2875 * sk_lock.slock locked, owned = 0, BH disabled
2877 * return true if slow path is taken:
2879 * sk_lock.slock unlocked, owned = 1, BH enabled
2881 bool lock_sock_fast(struct sock *sk)
2884 spin_lock_bh(&sk->sk_lock.slock);
2886 if (!sk->sk_lock.owned)
2888 * Note : We must disable BH
2893 sk->sk_lock.owned = 1;
2894 spin_unlock(&sk->sk_lock.slock);
2896 * The sk_lock has mutex_lock() semantics here:
2898 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2902 EXPORT_SYMBOL(lock_sock_fast);
2904 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2907 if (!sock_flag(sk, SOCK_TIMESTAMP))
2908 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2909 tv = ktime_to_timeval(sk->sk_stamp);
2910 if (tv.tv_sec == -1)
2912 if (tv.tv_sec == 0) {
2913 sk->sk_stamp = ktime_get_real();
2914 tv = ktime_to_timeval(sk->sk_stamp);
2916 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2918 EXPORT_SYMBOL(sock_get_timestamp);
2920 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2923 if (!sock_flag(sk, SOCK_TIMESTAMP))
2924 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2925 ts = ktime_to_timespec(sk->sk_stamp);
2926 if (ts.tv_sec == -1)
2928 if (ts.tv_sec == 0) {
2929 sk->sk_stamp = ktime_get_real();
2930 ts = ktime_to_timespec(sk->sk_stamp);
2932 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2934 EXPORT_SYMBOL(sock_get_timestampns);
2936 void sock_enable_timestamp(struct sock *sk, int flag)
2938 if (!sock_flag(sk, flag)) {
2939 unsigned long previous_flags = sk->sk_flags;
2941 sock_set_flag(sk, flag);
2943 * we just set one of the two flags which require net
2944 * time stamping, but time stamping might have been on
2945 * already because of the other one
2947 if (sock_needs_netstamp(sk) &&
2948 !(previous_flags & SK_FLAGS_TIMESTAMP))
2949 net_enable_timestamp();
2953 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2954 int level, int type)
2956 struct sock_exterr_skb *serr;
2957 struct sk_buff *skb;
2961 skb = sock_dequeue_err_skb(sk);
2967 msg->msg_flags |= MSG_TRUNC;
2970 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2974 sock_recv_timestamp(msg, sk, skb);
2976 serr = SKB_EXT_ERR(skb);
2977 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2979 msg->msg_flags |= MSG_ERRQUEUE;
2987 EXPORT_SYMBOL(sock_recv_errqueue);
2990 * Get a socket option on an socket.
2992 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2993 * asynchronous errors should be reported by getsockopt. We assume
2994 * this means if you specify SO_ERROR (otherwise whats the point of it).
2996 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2997 char __user *optval, int __user *optlen)
2999 struct sock *sk = sock->sk;
3001 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3003 EXPORT_SYMBOL(sock_common_getsockopt);
3005 #ifdef CONFIG_COMPAT
3006 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
3007 char __user *optval, int __user *optlen)
3009 struct sock *sk = sock->sk;
3011 if (sk->sk_prot->compat_getsockopt != NULL)
3012 return sk->sk_prot->compat_getsockopt(sk, level, optname,
3014 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3016 EXPORT_SYMBOL(compat_sock_common_getsockopt);
3019 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3022 struct sock *sk = sock->sk;
3026 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3027 flags & ~MSG_DONTWAIT, &addr_len);
3029 msg->msg_namelen = addr_len;
3032 EXPORT_SYMBOL(sock_common_recvmsg);
3035 * Set socket options on an inet socket.
3037 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3038 char __user *optval, unsigned int optlen)
3040 struct sock *sk = sock->sk;
3042 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3044 EXPORT_SYMBOL(sock_common_setsockopt);
3046 #ifdef CONFIG_COMPAT
3047 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
3048 char __user *optval, unsigned int optlen)
3050 struct sock *sk = sock->sk;
3052 if (sk->sk_prot->compat_setsockopt != NULL)
3053 return sk->sk_prot->compat_setsockopt(sk, level, optname,
3055 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3057 EXPORT_SYMBOL(compat_sock_common_setsockopt);
3060 void sk_common_release(struct sock *sk)
3062 if (sk->sk_prot->destroy)
3063 sk->sk_prot->destroy(sk);
3066 * Observation: when sock_common_release is called, processes have
3067 * no access to socket. But net still has.
3068 * Step one, detach it from networking:
3070 * A. Remove from hash tables.
3073 sk->sk_prot->unhash(sk);
3076 * In this point socket cannot receive new packets, but it is possible
3077 * that some packets are in flight because some CPU runs receiver and
3078 * did hash table lookup before we unhashed socket. They will achieve
3079 * receive queue and will be purged by socket destructor.
3081 * Also we still have packets pending on receive queue and probably,
3082 * our own packets waiting in device queues. sock_destroy will drain
3083 * receive queue, but transmitted packets will delay socket destruction
3084 * until the last reference will be released.
3089 xfrm_sk_free_policy(sk);
3091 sk_refcnt_debug_release(sk);
3095 EXPORT_SYMBOL(sk_common_release);
3097 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3099 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3101 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3102 mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf;
3103 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3104 mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf;
3105 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3106 mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued;
3107 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3108 mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len;
3109 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3112 #ifdef CONFIG_PROC_FS
3113 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
3115 int val[PROTO_INUSE_NR];
3118 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3120 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3122 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3124 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3126 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3128 int cpu, idx = prot->inuse_idx;
3131 for_each_possible_cpu(cpu)
3132 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3134 return res >= 0 ? res : 0;
3136 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3138 static void sock_inuse_add(struct net *net, int val)
3140 this_cpu_add(*net->core.sock_inuse, val);
3143 int sock_inuse_get(struct net *net)
3147 for_each_possible_cpu(cpu)
3148 res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3153 EXPORT_SYMBOL_GPL(sock_inuse_get);
3155 static int __net_init sock_inuse_init_net(struct net *net)
3157 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3158 if (net->core.prot_inuse == NULL)
3161 net->core.sock_inuse = alloc_percpu(int);
3162 if (net->core.sock_inuse == NULL)
3168 free_percpu(net->core.prot_inuse);
3172 static void __net_exit sock_inuse_exit_net(struct net *net)
3174 free_percpu(net->core.prot_inuse);
3175 free_percpu(net->core.sock_inuse);
3178 static struct pernet_operations net_inuse_ops = {
3179 .init = sock_inuse_init_net,
3180 .exit = sock_inuse_exit_net,
3183 static __init int net_inuse_init(void)
3185 if (register_pernet_subsys(&net_inuse_ops))
3186 panic("Cannot initialize net inuse counters");
3191 core_initcall(net_inuse_init);
3193 static void assign_proto_idx(struct proto *prot)
3195 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3197 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3198 pr_err("PROTO_INUSE_NR exhausted\n");
3202 set_bit(prot->inuse_idx, proto_inuse_idx);
3205 static void release_proto_idx(struct proto *prot)
3207 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3208 clear_bit(prot->inuse_idx, proto_inuse_idx);
3211 static inline void assign_proto_idx(struct proto *prot)
3215 static inline void release_proto_idx(struct proto *prot)
3219 static void sock_inuse_add(struct net *net, int val)
3224 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3228 kfree(rsk_prot->slab_name);
3229 rsk_prot->slab_name = NULL;
3230 kmem_cache_destroy(rsk_prot->slab);
3231 rsk_prot->slab = NULL;
3234 static int req_prot_init(const struct proto *prot)
3236 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3241 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3243 if (!rsk_prot->slab_name)
3246 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3247 rsk_prot->obj_size, 0,
3248 prot->slab_flags, NULL);
3250 if (!rsk_prot->slab) {
3251 pr_crit("%s: Can't create request sock SLAB cache!\n",
3258 int proto_register(struct proto *prot, int alloc_slab)
3261 prot->slab = kmem_cache_create_usercopy(prot->name,
3263 SLAB_HWCACHE_ALIGN | prot->slab_flags,
3264 prot->useroffset, prot->usersize,
3267 if (prot->slab == NULL) {
3268 pr_crit("%s: Can't create sock SLAB cache!\n",
3273 if (req_prot_init(prot))
3274 goto out_free_request_sock_slab;
3276 if (prot->twsk_prot != NULL) {
3277 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3279 if (prot->twsk_prot->twsk_slab_name == NULL)
3280 goto out_free_request_sock_slab;
3282 prot->twsk_prot->twsk_slab =
3283 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3284 prot->twsk_prot->twsk_obj_size,
3288 if (prot->twsk_prot->twsk_slab == NULL)
3289 goto out_free_timewait_sock_slab_name;
3293 mutex_lock(&proto_list_mutex);
3294 list_add(&prot->node, &proto_list);
3295 assign_proto_idx(prot);
3296 mutex_unlock(&proto_list_mutex);
3299 out_free_timewait_sock_slab_name:
3300 kfree(prot->twsk_prot->twsk_slab_name);
3301 out_free_request_sock_slab:
3302 req_prot_cleanup(prot->rsk_prot);
3304 kmem_cache_destroy(prot->slab);
3309 EXPORT_SYMBOL(proto_register);
3311 void proto_unregister(struct proto *prot)
3313 mutex_lock(&proto_list_mutex);
3314 release_proto_idx(prot);
3315 list_del(&prot->node);
3316 mutex_unlock(&proto_list_mutex);
3318 kmem_cache_destroy(prot->slab);
3321 req_prot_cleanup(prot->rsk_prot);
3323 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3324 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3325 kfree(prot->twsk_prot->twsk_slab_name);
3326 prot->twsk_prot->twsk_slab = NULL;
3329 EXPORT_SYMBOL(proto_unregister);
3331 int sock_load_diag_module(int family, int protocol)
3334 if (!sock_is_registered(family))
3337 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3338 NETLINK_SOCK_DIAG, family);
3342 if (family == AF_INET &&
3343 !rcu_access_pointer(inet_protos[protocol]))
3347 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3348 NETLINK_SOCK_DIAG, family, protocol);
3350 EXPORT_SYMBOL(sock_load_diag_module);
3352 #ifdef CONFIG_PROC_FS
3353 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3354 __acquires(proto_list_mutex)
3356 mutex_lock(&proto_list_mutex);
3357 return seq_list_start_head(&proto_list, *pos);
3360 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3362 return seq_list_next(v, &proto_list, pos);
3365 static void proto_seq_stop(struct seq_file *seq, void *v)
3366 __releases(proto_list_mutex)
3368 mutex_unlock(&proto_list_mutex);
3371 static char proto_method_implemented(const void *method)
3373 return method == NULL ? 'n' : 'y';
3375 static long sock_prot_memory_allocated(struct proto *proto)
3377 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3380 static char *sock_prot_memory_pressure(struct proto *proto)
3382 return proto->memory_pressure != NULL ?
3383 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3386 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3389 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3390 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3393 sock_prot_inuse_get(seq_file_net(seq), proto),
3394 sock_prot_memory_allocated(proto),
3395 sock_prot_memory_pressure(proto),
3397 proto->slab == NULL ? "no" : "yes",
3398 module_name(proto->owner),
3399 proto_method_implemented(proto->close),
3400 proto_method_implemented(proto->connect),
3401 proto_method_implemented(proto->disconnect),
3402 proto_method_implemented(proto->accept),
3403 proto_method_implemented(proto->ioctl),
3404 proto_method_implemented(proto->init),
3405 proto_method_implemented(proto->destroy),
3406 proto_method_implemented(proto->shutdown),
3407 proto_method_implemented(proto->setsockopt),
3408 proto_method_implemented(proto->getsockopt),
3409 proto_method_implemented(proto->sendmsg),
3410 proto_method_implemented(proto->recvmsg),
3411 proto_method_implemented(proto->sendpage),
3412 proto_method_implemented(proto->bind),
3413 proto_method_implemented(proto->backlog_rcv),
3414 proto_method_implemented(proto->hash),
3415 proto_method_implemented(proto->unhash),
3416 proto_method_implemented(proto->get_port),
3417 proto_method_implemented(proto->enter_memory_pressure));
3420 static int proto_seq_show(struct seq_file *seq, void *v)
3422 if (v == &proto_list)
3423 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3432 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3434 proto_seq_printf(seq, list_entry(v, struct proto, node));
3438 static const struct seq_operations proto_seq_ops = {
3439 .start = proto_seq_start,
3440 .next = proto_seq_next,
3441 .stop = proto_seq_stop,
3442 .show = proto_seq_show,
3445 static int proto_seq_open(struct inode *inode, struct file *file)
3447 return seq_open_net(inode, file, &proto_seq_ops,
3448 sizeof(struct seq_net_private));
3451 static const struct file_operations proto_seq_fops = {
3452 .open = proto_seq_open,
3454 .llseek = seq_lseek,
3455 .release = seq_release_net,
3458 static __net_init int proto_init_net(struct net *net)
3460 if (!proc_create("protocols", 0444, net->proc_net, &proto_seq_fops))
3466 static __net_exit void proto_exit_net(struct net *net)
3468 remove_proc_entry("protocols", net->proc_net);
3472 static __net_initdata struct pernet_operations proto_net_ops = {
3473 .init = proto_init_net,
3474 .exit = proto_exit_net,
3477 static int __init proto_init(void)
3479 return register_pernet_subsys(&proto_net_ops);
3482 subsys_initcall(proto_init);
3484 #endif /* PROC_FS */
3486 #ifdef CONFIG_NET_RX_BUSY_POLL
3487 bool sk_busy_loop_end(void *p, unsigned long start_time)
3489 struct sock *sk = p;
3491 return !skb_queue_empty(&sk->sk_receive_queue) ||
3492 sk_busy_loop_timeout(sk, start_time);
3494 EXPORT_SYMBOL(sk_busy_loop_end);
3495 #endif /* CONFIG_NET_RX_BUSY_POLL */