1 // SPDX-License-Identifier: GPL-2.0
3 * Device Memory Migration functionality.
5 * Originally written by Jérôme Glisse.
7 #include <linux/export.h>
8 #include <linux/memremap.h>
9 #include <linux/migrate.h>
11 #include <linux/mm_inline.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/oom.h>
14 #include <linux/pagewalk.h>
15 #include <linux/rmap.h>
16 #include <linux/swapops.h>
17 #include <asm/tlbflush.h>
20 static int migrate_vma_collect_skip(unsigned long start,
24 struct migrate_vma *migrate = walk->private;
27 for (addr = start; addr < end; addr += PAGE_SIZE) {
28 migrate->dst[migrate->npages] = 0;
29 migrate->src[migrate->npages++] = 0;
35 static int migrate_vma_collect_hole(unsigned long start,
37 __always_unused int depth,
40 struct migrate_vma *migrate = walk->private;
43 /* Only allow populating anonymous memory. */
44 if (!vma_is_anonymous(walk->vma))
45 return migrate_vma_collect_skip(start, end, walk);
47 for (addr = start; addr < end; addr += PAGE_SIZE) {
48 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
49 migrate->dst[migrate->npages] = 0;
57 static int migrate_vma_collect_pmd(pmd_t *pmdp,
62 struct migrate_vma *migrate = walk->private;
63 struct vm_area_struct *vma = walk->vma;
64 struct mm_struct *mm = vma->vm_mm;
65 unsigned long addr = start, unmapped = 0;
71 return migrate_vma_collect_hole(start, end, -1, walk);
73 if (pmd_trans_huge(*pmdp)) {
76 ptl = pmd_lock(mm, pmdp);
77 if (unlikely(!pmd_trans_huge(*pmdp))) {
82 page = pmd_page(*pmdp);
83 if (is_huge_zero_page(page)) {
85 split_huge_pmd(vma, pmdp, addr);
91 if (unlikely(!trylock_page(page)))
92 return migrate_vma_collect_skip(start, end,
94 ret = split_huge_page(page);
98 return migrate_vma_collect_skip(start, end,
103 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
106 arch_enter_lazy_mmu_mode();
108 for (; addr < end; addr += PAGE_SIZE, ptep++) {
109 unsigned long mpfn = 0, pfn;
115 pte = ptep_get(ptep);
118 if (vma_is_anonymous(vma)) {
119 mpfn = MIGRATE_PFN_MIGRATE;
125 if (!pte_present(pte)) {
127 * Only care about unaddressable device page special
128 * page table entry. Other special swap entries are not
129 * migratable, and we ignore regular swapped page.
131 entry = pte_to_swp_entry(pte);
132 if (!is_device_private_entry(entry))
135 page = pfn_swap_entry_to_page(entry);
136 if (!(migrate->flags &
137 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
138 page->pgmap->owner != migrate->pgmap_owner)
141 mpfn = migrate_pfn(page_to_pfn(page)) |
143 if (is_writable_device_private_entry(entry))
144 mpfn |= MIGRATE_PFN_WRITE;
147 if (is_zero_pfn(pfn) &&
148 (migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) {
149 mpfn = MIGRATE_PFN_MIGRATE;
153 page = vm_normal_page(migrate->vma, addr, pte);
154 if (page && !is_zone_device_page(page) &&
155 !(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
157 else if (page && is_device_coherent_page(page) &&
158 (!(migrate->flags & MIGRATE_VMA_SELECT_DEVICE_COHERENT) ||
159 page->pgmap->owner != migrate->pgmap_owner))
161 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
162 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
165 /* FIXME support THP */
166 if (!page || !page->mapping || PageTransCompound(page)) {
172 * By getting a reference on the folio we pin it and that blocks
173 * any kind of migration. Side effect is that it "freezes" the
176 * We drop this reference after isolating the folio from the lru
177 * for non device folio (device folio are not on the lru and thus
178 * can't be dropped from it).
180 folio = page_folio(page);
184 * We rely on folio_trylock() to avoid deadlock between
185 * concurrent migrations where each is waiting on the others
186 * folio lock. If we can't immediately lock the folio we fail this
187 * migration as it is only best effort anyway.
189 * If we can lock the folio it's safe to set up a migration entry
190 * now. In the common case where the folio is mapped once in a
191 * single process setting up the migration entry now is an
192 * optimisation to avoid walking the rmap later with
195 if (folio_trylock(folio)) {
199 flush_cache_page(vma, addr, pte_pfn(pte));
200 anon_exclusive = folio_test_anon(folio) &&
201 PageAnonExclusive(page);
202 if (anon_exclusive) {
203 pte = ptep_clear_flush(vma, addr, ptep);
205 if (folio_try_share_anon_rmap_pte(folio, page)) {
206 set_pte_at(mm, addr, ptep, pte);
213 pte = ptep_get_and_clear(mm, addr, ptep);
218 /* Set the dirty flag on the folio now the pte is gone. */
220 folio_mark_dirty(folio);
222 /* Setup special migration page table entry */
223 if (mpfn & MIGRATE_PFN_WRITE)
224 entry = make_writable_migration_entry(
226 else if (anon_exclusive)
227 entry = make_readable_exclusive_migration_entry(
230 entry = make_readable_migration_entry(
232 if (pte_present(pte)) {
234 entry = make_migration_entry_young(entry);
236 entry = make_migration_entry_dirty(entry);
238 swp_pte = swp_entry_to_pte(entry);
239 if (pte_present(pte)) {
240 if (pte_soft_dirty(pte))
241 swp_pte = pte_swp_mksoft_dirty(swp_pte);
242 if (pte_uffd_wp(pte))
243 swp_pte = pte_swp_mkuffd_wp(swp_pte);
245 if (pte_swp_soft_dirty(pte))
246 swp_pte = pte_swp_mksoft_dirty(swp_pte);
247 if (pte_swp_uffd_wp(pte))
248 swp_pte = pte_swp_mkuffd_wp(swp_pte);
250 set_pte_at(mm, addr, ptep, swp_pte);
253 * This is like regular unmap: we remove the rmap and
254 * drop the folio refcount. The folio won't be freed, as
255 * we took a reference just above.
257 folio_remove_rmap_pte(folio, page, vma);
260 if (pte_present(pte))
268 migrate->dst[migrate->npages] = 0;
269 migrate->src[migrate->npages++] = mpfn;
272 /* Only flush the TLB if we actually modified any entries */
274 flush_tlb_range(walk->vma, start, end);
276 arch_leave_lazy_mmu_mode();
277 pte_unmap_unlock(ptep - 1, ptl);
282 static const struct mm_walk_ops migrate_vma_walk_ops = {
283 .pmd_entry = migrate_vma_collect_pmd,
284 .pte_hole = migrate_vma_collect_hole,
285 .walk_lock = PGWALK_RDLOCK,
289 * migrate_vma_collect() - collect pages over a range of virtual addresses
290 * @migrate: migrate struct containing all migration information
292 * This will walk the CPU page table. For each virtual address backed by a
293 * valid page, it updates the src array and takes a reference on the page, in
294 * order to pin the page until we lock it and unmap it.
296 static void migrate_vma_collect(struct migrate_vma *migrate)
298 struct mmu_notifier_range range;
301 * Note that the pgmap_owner is passed to the mmu notifier callback so
302 * that the registered device driver can skip invalidating device
303 * private page mappings that won't be migrated.
305 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
306 migrate->vma->vm_mm, migrate->start, migrate->end,
307 migrate->pgmap_owner);
308 mmu_notifier_invalidate_range_start(&range);
310 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
311 &migrate_vma_walk_ops, migrate);
313 mmu_notifier_invalidate_range_end(&range);
314 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
318 * migrate_vma_check_page() - check if page is pinned or not
319 * @page: struct page to check
321 * Pinned pages cannot be migrated. This is the same test as in
322 * folio_migrate_mapping(), except that here we allow migration of a
325 static bool migrate_vma_check_page(struct page *page, struct page *fault_page)
328 * One extra ref because caller holds an extra reference, either from
329 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
332 int extra = 1 + (page == fault_page);
335 * FIXME support THP (transparent huge page), it is bit more complex to
336 * check them than regular pages, because they can be mapped with a pmd
337 * or with a pte (split pte mapping).
339 if (PageCompound(page))
342 /* Page from ZONE_DEVICE have one extra reference */
343 if (is_zone_device_page(page))
346 /* For file back page */
347 if (page_mapping(page))
348 extra += 1 + page_has_private(page);
350 if ((page_count(page) - extra) > page_mapcount(page))
357 * Unmaps pages for migration. Returns number of source pfns marked as
360 static unsigned long migrate_device_unmap(unsigned long *src_pfns,
361 unsigned long npages,
362 struct page *fault_page)
364 unsigned long i, restore = 0;
365 bool allow_drain = true;
366 unsigned long unmapped = 0;
370 for (i = 0; i < npages; i++) {
371 struct page *page = migrate_pfn_to_page(src_pfns[i]);
375 if (src_pfns[i] & MIGRATE_PFN_MIGRATE)
380 /* ZONE_DEVICE pages are not on LRU */
381 if (!is_zone_device_page(page)) {
382 if (!PageLRU(page) && allow_drain) {
383 /* Drain CPU's lru cache */
388 if (!isolate_lru_page(page)) {
389 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
394 /* Drop the reference we took in collect */
398 folio = page_folio(page);
399 if (folio_mapped(folio))
400 try_to_migrate(folio, 0);
402 if (page_mapped(page) ||
403 !migrate_vma_check_page(page, fault_page)) {
404 if (!is_zone_device_page(page)) {
406 putback_lru_page(page);
409 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
417 for (i = 0; i < npages && restore; i++) {
418 struct page *page = migrate_pfn_to_page(src_pfns[i]);
421 if (!page || (src_pfns[i] & MIGRATE_PFN_MIGRATE))
424 folio = page_folio(page);
425 remove_migration_ptes(folio, folio, false);
437 * migrate_vma_unmap() - replace page mapping with special migration pte entry
438 * @migrate: migrate struct containing all migration information
440 * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
441 * special migration pte entry and check if it has been pinned. Pinned pages are
442 * restored because we cannot migrate them.
444 * This is the last step before we call the device driver callback to allocate
445 * destination memory and copy contents of original page over to new page.
447 static void migrate_vma_unmap(struct migrate_vma *migrate)
449 migrate->cpages = migrate_device_unmap(migrate->src, migrate->npages,
450 migrate->fault_page);
454 * migrate_vma_setup() - prepare to migrate a range of memory
455 * @args: contains the vma, start, and pfns arrays for the migration
457 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
460 * Prepare to migrate a range of memory virtual address range by collecting all
461 * the pages backing each virtual address in the range, saving them inside the
462 * src array. Then lock those pages and unmap them. Once the pages are locked
463 * and unmapped, check whether each page is pinned or not. Pages that aren't
464 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
465 * corresponding src array entry. Then restores any pages that are pinned, by
466 * remapping and unlocking those pages.
468 * The caller should then allocate destination memory and copy source memory to
469 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
470 * flag set). Once these are allocated and copied, the caller must update each
471 * corresponding entry in the dst array with the pfn value of the destination
472 * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
475 * Note that the caller does not have to migrate all the pages that are marked
476 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
477 * device memory to system memory. If the caller cannot migrate a device page
478 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
479 * consequences for the userspace process, so it must be avoided if at all
482 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
483 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
484 * allowing the caller to allocate device memory for those unbacked virtual
485 * addresses. For this the caller simply has to allocate device memory and
486 * properly set the destination entry like for regular migration. Note that
487 * this can still fail, and thus inside the device driver you must check if the
488 * migration was successful for those entries after calling migrate_vma_pages(),
489 * just like for regular migration.
491 * After that, the callers must call migrate_vma_pages() to go over each entry
492 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
493 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
494 * then migrate_vma_pages() to migrate struct page information from the source
495 * struct page to the destination struct page. If it fails to migrate the
496 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
499 * At this point all successfully migrated pages have an entry in the src
500 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
501 * array entry with MIGRATE_PFN_VALID flag set.
503 * Once migrate_vma_pages() returns the caller may inspect which pages were
504 * successfully migrated, and which were not. Successfully migrated pages will
505 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
507 * It is safe to update device page table after migrate_vma_pages() because
508 * both destination and source page are still locked, and the mmap_lock is held
509 * in read mode (hence no one can unmap the range being migrated).
511 * Once the caller is done cleaning up things and updating its page table (if it
512 * chose to do so, this is not an obligation) it finally calls
513 * migrate_vma_finalize() to update the CPU page table to point to new pages
514 * for successfully migrated pages or otherwise restore the CPU page table to
515 * point to the original source pages.
517 int migrate_vma_setup(struct migrate_vma *args)
519 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
521 args->start &= PAGE_MASK;
522 args->end &= PAGE_MASK;
523 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
524 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
528 if (args->start < args->vma->vm_start ||
529 args->start >= args->vma->vm_end)
531 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
533 if (!args->src || !args->dst)
535 if (args->fault_page && !is_device_private_page(args->fault_page))
538 memset(args->src, 0, sizeof(*args->src) * nr_pages);
542 migrate_vma_collect(args);
545 migrate_vma_unmap(args);
548 * At this point pages are locked and unmapped, and thus they have
549 * stable content and can safely be copied to destination memory that
550 * is allocated by the drivers.
555 EXPORT_SYMBOL(migrate_vma_setup);
558 * This code closely matches the code in:
559 * __handle_mm_fault()
561 * do_anonymous_page()
562 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
563 * private or coherent page.
565 static void migrate_vma_insert_page(struct migrate_vma *migrate,
570 struct folio *folio = page_folio(page);
571 struct vm_area_struct *vma = migrate->vma;
572 struct mm_struct *mm = vma->vm_mm;
583 /* Only allow populating anonymous memory */
584 if (!vma_is_anonymous(vma))
587 pgdp = pgd_offset(mm, addr);
588 p4dp = p4d_alloc(mm, pgdp, addr);
591 pudp = pud_alloc(mm, p4dp, addr);
594 pmdp = pmd_alloc(mm, pudp, addr);
597 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
599 if (pte_alloc(mm, pmdp))
601 if (unlikely(anon_vma_prepare(vma)))
603 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
607 * The memory barrier inside __folio_mark_uptodate makes sure that
608 * preceding stores to the folio contents become visible before
609 * the set_pte_at() write.
611 __folio_mark_uptodate(folio);
613 if (folio_is_device_private(folio)) {
614 swp_entry_t swp_entry;
616 if (vma->vm_flags & VM_WRITE)
617 swp_entry = make_writable_device_private_entry(
620 swp_entry = make_readable_device_private_entry(
622 entry = swp_entry_to_pte(swp_entry);
624 if (folio_is_zone_device(folio) &&
625 !folio_is_device_coherent(folio)) {
626 pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
629 entry = mk_pte(page, vma->vm_page_prot);
630 if (vma->vm_flags & VM_WRITE)
631 entry = pte_mkwrite(pte_mkdirty(entry), vma);
634 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
637 orig_pte = ptep_get(ptep);
639 if (check_stable_address_space(mm))
642 if (pte_present(orig_pte)) {
643 unsigned long pfn = pte_pfn(orig_pte);
645 if (!is_zero_pfn(pfn))
648 } else if (!pte_none(orig_pte))
652 * Check for userfaultfd but do not deliver the fault. Instead,
655 if (userfaultfd_missing(vma))
658 inc_mm_counter(mm, MM_ANONPAGES);
659 folio_add_new_anon_rmap(folio, vma, addr);
660 if (!folio_is_zone_device(folio))
661 folio_add_lru_vma(folio, vma);
665 flush_cache_page(vma, addr, pte_pfn(orig_pte));
666 ptep_clear_flush(vma, addr, ptep);
667 set_pte_at_notify(mm, addr, ptep, entry);
668 update_mmu_cache(vma, addr, ptep);
670 /* No need to invalidate - it was non-present before */
671 set_pte_at(mm, addr, ptep, entry);
672 update_mmu_cache(vma, addr, ptep);
675 pte_unmap_unlock(ptep, ptl);
676 *src = MIGRATE_PFN_MIGRATE;
680 pte_unmap_unlock(ptep, ptl);
682 *src &= ~MIGRATE_PFN_MIGRATE;
685 static void __migrate_device_pages(unsigned long *src_pfns,
686 unsigned long *dst_pfns, unsigned long npages,
687 struct migrate_vma *migrate)
689 struct mmu_notifier_range range;
691 bool notified = false;
693 for (i = 0; i < npages; i++) {
694 struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
695 struct page *page = migrate_pfn_to_page(src_pfns[i]);
696 struct address_space *mapping;
700 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
707 if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE))
711 * The only time there is no vma is when called from
712 * migrate_device_coherent_page(). However this isn't
713 * called if the page could not be unmapped.
716 addr = migrate->start + i*PAGE_SIZE;
720 mmu_notifier_range_init_owner(&range,
721 MMU_NOTIFY_MIGRATE, 0,
722 migrate->vma->vm_mm, addr, migrate->end,
723 migrate->pgmap_owner);
724 mmu_notifier_invalidate_range_start(&range);
726 migrate_vma_insert_page(migrate, addr, newpage,
731 mapping = page_mapping(page);
733 if (is_device_private_page(newpage) ||
734 is_device_coherent_page(newpage)) {
738 folio = page_folio(page);
741 * For now only support anonymous memory migrating to
742 * device private or coherent memory.
744 * Try to get rid of swap cache if possible.
746 if (!folio_test_anon(folio) ||
747 !folio_free_swap(folio)) {
748 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
752 } else if (is_zone_device_page(newpage)) {
754 * Other types of ZONE_DEVICE page are not supported.
756 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
760 if (migrate && migrate->fault_page == page)
761 r = migrate_folio_extra(mapping, page_folio(newpage),
763 MIGRATE_SYNC_NO_COPY, 1);
765 r = migrate_folio(mapping, page_folio(newpage),
766 page_folio(page), MIGRATE_SYNC_NO_COPY);
767 if (r != MIGRATEPAGE_SUCCESS)
768 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
772 mmu_notifier_invalidate_range_end(&range);
776 * migrate_device_pages() - migrate meta-data from src page to dst page
777 * @src_pfns: src_pfns returned from migrate_device_range()
778 * @dst_pfns: array of pfns allocated by the driver to migrate memory to
779 * @npages: number of pages in the range
781 * Equivalent to migrate_vma_pages(). This is called to migrate struct page
782 * meta-data from source struct page to destination.
784 void migrate_device_pages(unsigned long *src_pfns, unsigned long *dst_pfns,
785 unsigned long npages)
787 __migrate_device_pages(src_pfns, dst_pfns, npages, NULL);
789 EXPORT_SYMBOL(migrate_device_pages);
792 * migrate_vma_pages() - migrate meta-data from src page to dst page
793 * @migrate: migrate struct containing all migration information
795 * This migrates struct page meta-data from source struct page to destination
796 * struct page. This effectively finishes the migration from source page to the
799 void migrate_vma_pages(struct migrate_vma *migrate)
801 __migrate_device_pages(migrate->src, migrate->dst, migrate->npages, migrate);
803 EXPORT_SYMBOL(migrate_vma_pages);
806 * migrate_device_finalize() - complete page migration
807 * @src_pfns: src_pfns returned from migrate_device_range()
808 * @dst_pfns: array of pfns allocated by the driver to migrate memory to
809 * @npages: number of pages in the range
811 * Completes migration of the page by removing special migration entries.
812 * Drivers must ensure copying of page data is complete and visible to the CPU
813 * before calling this.
815 void migrate_device_finalize(unsigned long *src_pfns,
816 unsigned long *dst_pfns, unsigned long npages)
820 for (i = 0; i < npages; i++) {
821 struct folio *dst, *src;
822 struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
823 struct page *page = migrate_pfn_to_page(src_pfns[i]);
827 unlock_page(newpage);
833 if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
835 unlock_page(newpage);
841 src = page_folio(page);
842 dst = page_folio(newpage);
843 remove_migration_ptes(src, dst, false);
846 if (is_zone_device_page(page))
849 putback_lru_page(page);
851 if (newpage != page) {
852 unlock_page(newpage);
853 if (is_zone_device_page(newpage))
856 putback_lru_page(newpage);
860 EXPORT_SYMBOL(migrate_device_finalize);
863 * migrate_vma_finalize() - restore CPU page table entry
864 * @migrate: migrate struct containing all migration information
866 * This replaces the special migration pte entry with either a mapping to the
867 * new page if migration was successful for that page, or to the original page
870 * This also unlocks the pages and puts them back on the lru, or drops the extra
871 * refcount, for device pages.
873 void migrate_vma_finalize(struct migrate_vma *migrate)
875 migrate_device_finalize(migrate->src, migrate->dst, migrate->npages);
877 EXPORT_SYMBOL(migrate_vma_finalize);
880 * migrate_device_range() - migrate device private pfns to normal memory.
881 * @src_pfns: array large enough to hold migrating source device private pfns.
882 * @start: starting pfn in the range to migrate.
883 * @npages: number of pages to migrate.
885 * migrate_vma_setup() is similar in concept to migrate_vma_setup() except that
886 * instead of looking up pages based on virtual address mappings a range of
887 * device pfns that should be migrated to system memory is used instead.
889 * This is useful when a driver needs to free device memory but doesn't know the
890 * virtual mappings of every page that may be in device memory. For example this
891 * is often the case when a driver is being unloaded or unbound from a device.
893 * Like migrate_vma_setup() this function will take a reference and lock any
894 * migrating pages that aren't free before unmapping them. Drivers may then
895 * allocate destination pages and start copying data from the device to CPU
896 * memory before calling migrate_device_pages().
898 int migrate_device_range(unsigned long *src_pfns, unsigned long start,
899 unsigned long npages)
901 unsigned long i, pfn;
903 for (pfn = start, i = 0; i < npages; pfn++, i++) {
904 struct page *page = pfn_to_page(pfn);
906 if (!get_page_unless_zero(page)) {
911 if (!trylock_page(page)) {
917 src_pfns[i] = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
920 migrate_device_unmap(src_pfns, npages, NULL);
924 EXPORT_SYMBOL(migrate_device_range);
927 * Migrate a device coherent page back to normal memory. The caller should have
928 * a reference on page which will be copied to the new page if migration is
929 * successful or dropped on failure.
931 int migrate_device_coherent_page(struct page *page)
933 unsigned long src_pfn, dst_pfn = 0;
936 WARN_ON_ONCE(PageCompound(page));
939 src_pfn = migrate_pfn(page_to_pfn(page)) | MIGRATE_PFN_MIGRATE;
942 * We don't have a VMA and don't need to walk the page tables to find
943 * the source page. So call migrate_vma_unmap() directly to unmap the
944 * page as migrate_vma_setup() will fail if args.vma == NULL.
946 migrate_device_unmap(&src_pfn, 1, NULL);
947 if (!(src_pfn & MIGRATE_PFN_MIGRATE))
950 dpage = alloc_page(GFP_USER | __GFP_NOWARN);
953 dst_pfn = migrate_pfn(page_to_pfn(dpage));
956 migrate_device_pages(&src_pfn, &dst_pfn, 1);
957 if (src_pfn & MIGRATE_PFN_MIGRATE)
958 copy_highpage(dpage, page);
959 migrate_device_finalize(&src_pfn, &dst_pfn, 1);
961 if (src_pfn & MIGRATE_PFN_MIGRATE)