1 /*******************************************************************************
3 Intel PRO/100 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * e100.c: Intel(R) PRO/100 ethernet driver
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
55 * II. Driver Operation
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
109 * In order to keep updates to the RFD link field from colliding with
110 * hardware writes to mark packets complete, we use the feature that
111 * hardware will not write to a size 0 descriptor and mark the previous
112 * packet as end-of-list (EL). After updating the link, we remove EL
113 * and only then restore the size such that hardware may use the
114 * previous-to-end RFD.
116 * Under typical operation, the receive unit (RU) is start once,
117 * and the controller happily fills RFDs as frames arrive. If
118 * replacement RFDs cannot be allocated, or the RU goes non-active,
119 * the RU must be restarted. Frame arrival generates an interrupt,
120 * and Rx indication and re-allocation happen in the same context,
121 * therefore no locking is required. A software-generated interrupt
122 * is generated from the watchdog to recover from a failed allocation
123 * scenario where all Rx resources have been indicated and none re-
128 * VLAN offloading of tagging, stripping and filtering is not
129 * supported, but driver will accommodate the extra 4-byte VLAN tag
130 * for processing by upper layers. Tx/Rx Checksum offloading is not
131 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
132 * not supported (hardware limitation).
134 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
137 * testing/troubleshooting the development driver.
140 * o several entry points race with dev->close
141 * o check for tx-no-resources/stop Q races with tx clean/wake Q
144 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
145 * - Stratus87247: protect MDI control register manipulations
148 #include <linux/module.h>
149 #include <linux/moduleparam.h>
150 #include <linux/kernel.h>
151 #include <linux/types.h>
152 #include <linux/slab.h>
153 #include <linux/delay.h>
154 #include <linux/init.h>
155 #include <linux/pci.h>
156 #include <linux/dma-mapping.h>
157 #include <linux/netdevice.h>
158 #include <linux/etherdevice.h>
159 #include <linux/mii.h>
160 #include <linux/if_vlan.h>
161 #include <linux/skbuff.h>
162 #include <linux/ethtool.h>
163 #include <linux/string.h>
164 #include <linux/firmware.h>
165 #include <asm/unaligned.h>
168 #define DRV_NAME "e100"
169 #define DRV_EXT "-NAPI"
170 #define DRV_VERSION "3.5.24-k2"DRV_EXT
171 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
172 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
173 #define PFX DRV_NAME ": "
175 #define E100_WATCHDOG_PERIOD (2 * HZ)
176 #define E100_NAPI_WEIGHT 16
178 #define FIRMWARE_D101M "e100/d101m_ucode.bin"
179 #define FIRMWARE_D101S "e100/d101s_ucode.bin"
180 #define FIRMWARE_D102E "e100/d102e_ucode.bin"
182 MODULE_DESCRIPTION(DRV_DESCRIPTION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
185 MODULE_VERSION(DRV_VERSION);
186 MODULE_FIRMWARE(FIRMWARE_D101M);
187 MODULE_FIRMWARE(FIRMWARE_D101S);
188 MODULE_FIRMWARE(FIRMWARE_D102E);
190 static int debug = 3;
191 static int eeprom_bad_csum_allow = 0;
192 static int use_io = 0;
193 module_param(debug, int, 0);
194 module_param(eeprom_bad_csum_allow, int, 0);
195 module_param(use_io, int, 0);
196 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
197 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
198 MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
199 #define DPRINTK(nlevel, klevel, fmt, args...) \
200 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
201 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
204 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
205 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
206 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
207 static struct pci_device_id e100_id_table[] = {
208 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
209 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
210 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
211 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
212 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
213 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
214 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
215 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
216 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
217 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
218 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
219 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
220 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
221 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
222 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
223 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
224 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
225 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
226 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
227 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
228 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
229 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
230 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
231 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
232 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
233 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
234 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
235 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
236 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
237 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
238 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
239 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
240 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
241 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
242 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
243 INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
244 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
245 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
246 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
247 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
248 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
249 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
252 MODULE_DEVICE_TABLE(pci, e100_id_table);
255 mac_82557_D100_A = 0,
256 mac_82557_D100_B = 1,
257 mac_82557_D100_C = 2,
258 mac_82558_D101_A4 = 4,
259 mac_82558_D101_B0 = 5,
263 mac_82550_D102_C = 13,
271 phy_100a = 0x000003E0,
272 phy_100c = 0x035002A8,
273 phy_82555_tx = 0x015002A8,
274 phy_nsc_tx = 0x5C002000,
275 phy_82562_et = 0x033002A8,
276 phy_82562_em = 0x032002A8,
277 phy_82562_ek = 0x031002A8,
278 phy_82562_eh = 0x017002A8,
279 phy_82552_v = 0xd061004d,
280 phy_unknown = 0xFFFFFFFF,
283 /* CSR (Control/Status Registers) */
309 RU_UNINITIALIZED = -1,
313 stat_ack_not_ours = 0x00,
314 stat_ack_sw_gen = 0x04,
316 stat_ack_cu_idle = 0x20,
317 stat_ack_frame_rx = 0x40,
318 stat_ack_cu_cmd_done = 0x80,
319 stat_ack_not_present = 0xFF,
320 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
321 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
325 irq_mask_none = 0x00,
333 ruc_load_base = 0x06,
336 cuc_dump_addr = 0x40,
337 cuc_dump_stats = 0x50,
338 cuc_load_base = 0x60,
339 cuc_dump_reset = 0x70,
343 cuc_dump_complete = 0x0000A005,
344 cuc_dump_reset_complete = 0x0000A007,
348 software_reset = 0x0000,
350 selective_reset = 0x0002,
353 enum eeprom_ctrl_lo {
361 mdi_write = 0x04000000,
362 mdi_read = 0x08000000,
363 mdi_ready = 0x10000000,
373 enum eeprom_offsets {
374 eeprom_cnfg_mdix = 0x03,
376 eeprom_config_asf = 0x0D,
377 eeprom_smbus_addr = 0x90,
380 enum eeprom_cnfg_mdix {
381 eeprom_mdix_enabled = 0x0080,
385 eeprom_id_wol = 0x0020,
388 enum eeprom_config_asf {
394 cb_complete = 0x8000,
423 struct rx *next, *prev;
428 #if defined(__BIG_ENDIAN_BITFIELD)
434 /*0*/ u8 X(byte_count:6, pad0:2);
435 /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
436 /*2*/ u8 adaptive_ifs;
437 /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
438 term_write_cache_line:1), pad3:4);
439 /*4*/ u8 X(rx_dma_max_count:7, pad4:1);
440 /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
441 /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
442 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
443 rx_discard_overruns:1), rx_save_bad_frames:1);
444 /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
445 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
447 /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
448 /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
449 link_status_wake:1), arp_wake:1), mcmatch_wake:1);
450 /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
452 /*11*/ u8 X(linear_priority:3, pad11:5);
453 /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
454 /*13*/ u8 ip_addr_lo;
455 /*14*/ u8 ip_addr_hi;
456 /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
457 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
458 pad15_2:1), crs_or_cdt:1);
459 /*16*/ u8 fc_delay_lo;
460 /*17*/ u8 fc_delay_hi;
461 /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
462 rx_long_ok:1), fc_priority_threshold:3), pad18:1);
463 /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
464 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
465 full_duplex_force:1), full_duplex_pin:1);
466 /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
467 /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
468 /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
472 #define E100_MAX_MULTICAST_ADDRS 64
475 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
478 /* Important: keep total struct u32-aligned */
479 #define UCODE_SIZE 134
486 __le32 ucode[UCODE_SIZE];
487 struct config config;
500 __le32 dump_buffer_addr;
502 struct cb *next, *prev;
508 lb_none = 0, lb_mac = 1, lb_phy = 3,
512 __le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
513 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
514 tx_multiple_collisions, tx_total_collisions;
515 __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
516 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
517 rx_short_frame_errors;
518 __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
519 __le16 xmt_tco_frames, rcv_tco_frames;
539 struct param_range rfds;
540 struct param_range cbs;
544 /* Begin: frequently used values: keep adjacent for cache effect */
545 u32 msg_enable ____cacheline_aligned;
546 struct net_device *netdev;
547 struct pci_dev *pdev;
549 struct rx *rxs ____cacheline_aligned;
550 struct rx *rx_to_use;
551 struct rx *rx_to_clean;
552 struct rfd blank_rfd;
553 enum ru_state ru_running;
555 spinlock_t cb_lock ____cacheline_aligned;
557 struct csr __iomem *csr;
558 enum scb_cmd_lo cuc_cmd;
559 unsigned int cbs_avail;
560 struct napi_struct napi;
562 struct cb *cb_to_use;
563 struct cb *cb_to_send;
564 struct cb *cb_to_clean;
566 /* End: frequently used values: keep adjacent for cache effect */
570 promiscuous = (1 << 1),
571 multicast_all = (1 << 2),
572 wol_magic = (1 << 3),
573 ich_10h_workaround = (1 << 4),
574 } flags ____cacheline_aligned;
578 struct params params;
579 struct timer_list watchdog;
580 struct timer_list blink_timer;
581 struct mii_if_info mii;
582 struct work_struct tx_timeout_task;
583 enum loopback loopback;
588 dma_addr_t cbs_dma_addr;
594 u32 tx_single_collisions;
595 u32 tx_multiple_collisions;
600 u32 rx_fc_unsupported;
602 u32 rx_over_length_errors;
607 spinlock_t mdio_lock;
610 static inline void e100_write_flush(struct nic *nic)
612 /* Flush previous PCI writes through intermediate bridges
613 * by doing a benign read */
614 (void)ioread8(&nic->csr->scb.status);
617 static void e100_enable_irq(struct nic *nic)
621 spin_lock_irqsave(&nic->cmd_lock, flags);
622 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
623 e100_write_flush(nic);
624 spin_unlock_irqrestore(&nic->cmd_lock, flags);
627 static void e100_disable_irq(struct nic *nic)
631 spin_lock_irqsave(&nic->cmd_lock, flags);
632 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
633 e100_write_flush(nic);
634 spin_unlock_irqrestore(&nic->cmd_lock, flags);
637 static void e100_hw_reset(struct nic *nic)
639 /* Put CU and RU into idle with a selective reset to get
640 * device off of PCI bus */
641 iowrite32(selective_reset, &nic->csr->port);
642 e100_write_flush(nic); udelay(20);
644 /* Now fully reset device */
645 iowrite32(software_reset, &nic->csr->port);
646 e100_write_flush(nic); udelay(20);
648 /* Mask off our interrupt line - it's unmasked after reset */
649 e100_disable_irq(nic);
652 static int e100_self_test(struct nic *nic)
654 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
656 /* Passing the self-test is a pretty good indication
657 * that the device can DMA to/from host memory */
659 nic->mem->selftest.signature = 0;
660 nic->mem->selftest.result = 0xFFFFFFFF;
662 iowrite32(selftest | dma_addr, &nic->csr->port);
663 e100_write_flush(nic);
664 /* Wait 10 msec for self-test to complete */
667 /* Interrupts are enabled after self-test */
668 e100_disable_irq(nic);
670 /* Check results of self-test */
671 if (nic->mem->selftest.result != 0) {
672 DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n",
673 nic->mem->selftest.result);
676 if (nic->mem->selftest.signature == 0) {
677 DPRINTK(HW, ERR, "Self-test failed: timed out\n");
684 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
686 u32 cmd_addr_data[3];
690 /* Three cmds: write/erase enable, write data, write/erase disable */
691 cmd_addr_data[0] = op_ewen << (addr_len - 2);
692 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
694 cmd_addr_data[2] = op_ewds << (addr_len - 2);
696 /* Bit-bang cmds to write word to eeprom */
697 for (j = 0; j < 3; j++) {
700 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
701 e100_write_flush(nic); udelay(4);
703 for (i = 31; i >= 0; i--) {
704 ctrl = (cmd_addr_data[j] & (1 << i)) ?
706 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
707 e100_write_flush(nic); udelay(4);
709 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
710 e100_write_flush(nic); udelay(4);
712 /* Wait 10 msec for cmd to complete */
716 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
717 e100_write_flush(nic); udelay(4);
721 /* General technique stolen from the eepro100 driver - very clever */
722 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
729 cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
732 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
733 e100_write_flush(nic); udelay(4);
735 /* Bit-bang to read word from eeprom */
736 for (i = 31; i >= 0; i--) {
737 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
738 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
739 e100_write_flush(nic); udelay(4);
741 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
742 e100_write_flush(nic); udelay(4);
744 /* Eeprom drives a dummy zero to EEDO after receiving
745 * complete address. Use this to adjust addr_len. */
746 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
747 if (!(ctrl & eedo) && i > 16) {
748 *addr_len -= (i - 16);
752 data = (data << 1) | (ctrl & eedo ? 1 : 0);
756 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
757 e100_write_flush(nic); udelay(4);
759 return cpu_to_le16(data);
762 /* Load entire EEPROM image into driver cache and validate checksum */
763 static int e100_eeprom_load(struct nic *nic)
765 u16 addr, addr_len = 8, checksum = 0;
767 /* Try reading with an 8-bit addr len to discover actual addr len */
768 e100_eeprom_read(nic, &addr_len, 0);
769 nic->eeprom_wc = 1 << addr_len;
771 for (addr = 0; addr < nic->eeprom_wc; addr++) {
772 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
773 if (addr < nic->eeprom_wc - 1)
774 checksum += le16_to_cpu(nic->eeprom[addr]);
777 /* The checksum, stored in the last word, is calculated such that
778 * the sum of words should be 0xBABA */
779 if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
780 DPRINTK(PROBE, ERR, "EEPROM corrupted\n");
781 if (!eeprom_bad_csum_allow)
788 /* Save (portion of) driver EEPROM cache to device and update checksum */
789 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
791 u16 addr, addr_len = 8, checksum = 0;
793 /* Try reading with an 8-bit addr len to discover actual addr len */
794 e100_eeprom_read(nic, &addr_len, 0);
795 nic->eeprom_wc = 1 << addr_len;
797 if (start + count >= nic->eeprom_wc)
800 for (addr = start; addr < start + count; addr++)
801 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
803 /* The checksum, stored in the last word, is calculated such that
804 * the sum of words should be 0xBABA */
805 for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
806 checksum += le16_to_cpu(nic->eeprom[addr]);
807 nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
808 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
809 nic->eeprom[nic->eeprom_wc - 1]);
814 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
815 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */
816 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
822 spin_lock_irqsave(&nic->cmd_lock, flags);
824 /* Previous command is accepted when SCB clears */
825 for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
826 if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
829 if (unlikely(i > E100_WAIT_SCB_FAST))
832 if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
837 if (unlikely(cmd != cuc_resume))
838 iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
839 iowrite8(cmd, &nic->csr->scb.cmd_lo);
842 spin_unlock_irqrestore(&nic->cmd_lock, flags);
847 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
848 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
854 spin_lock_irqsave(&nic->cb_lock, flags);
856 if (unlikely(!nic->cbs_avail)) {
862 nic->cb_to_use = cb->next;
866 if (unlikely(!nic->cbs_avail))
869 cb_prepare(nic, cb, skb);
871 /* Order is important otherwise we'll be in a race with h/w:
872 * set S-bit in current first, then clear S-bit in previous. */
873 cb->command |= cpu_to_le16(cb_s);
875 cb->prev->command &= cpu_to_le16(~cb_s);
877 while (nic->cb_to_send != nic->cb_to_use) {
878 if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
879 nic->cb_to_send->dma_addr))) {
880 /* Ok, here's where things get sticky. It's
881 * possible that we can't schedule the command
882 * because the controller is too busy, so
883 * let's just queue the command and try again
884 * when another command is scheduled. */
885 if (err == -ENOSPC) {
887 schedule_work(&nic->tx_timeout_task);
891 nic->cuc_cmd = cuc_resume;
892 nic->cb_to_send = nic->cb_to_send->next;
897 spin_unlock_irqrestore(&nic->cb_lock, flags);
902 static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
910 * Stratus87247: we shouldn't be writing the MDI control
911 * register until the Ready bit shows True. Also, since
912 * manipulation of the MDI control registers is a multi-step
913 * procedure it should be done under lock.
915 spin_lock_irqsave(&nic->mdio_lock, flags);
916 for (i = 100; i; --i) {
917 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
922 printk("e100.mdio_ctrl(%s) won't go Ready\n",
924 spin_unlock_irqrestore(&nic->mdio_lock, flags);
925 return 0; /* No way to indicate timeout error */
927 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
929 for (i = 0; i < 100; i++) {
931 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
934 spin_unlock_irqrestore(&nic->mdio_lock, flags);
936 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
937 dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out);
938 return (u16)data_out;
941 static int mdio_read(struct net_device *netdev, int addr, int reg)
943 return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0);
946 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
948 struct nic *nic = netdev_priv(netdev);
950 if ((nic->phy == phy_82552_v) && (reg == MII_BMCR) &&
951 (data & (BMCR_ANRESTART | BMCR_ANENABLE))) {
952 u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
955 * Workaround Si issue where sometimes the part will not
956 * autoneg to 100Mbps even when advertised.
958 if (advert & ADVERTISE_100FULL)
959 data |= BMCR_SPEED100 | BMCR_FULLDPLX;
960 else if (advert & ADVERTISE_100HALF)
961 data |= BMCR_SPEED100;
964 mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data);
967 static void e100_get_defaults(struct nic *nic)
969 struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
970 struct param_range cbs = { .min = 64, .max = 256, .count = 128 };
972 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
973 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
974 if (nic->mac == mac_unknown)
975 nic->mac = mac_82557_D100_A;
977 nic->params.rfds = rfds;
978 nic->params.cbs = cbs;
980 /* Quadwords to DMA into FIFO before starting frame transmit */
981 nic->tx_threshold = 0xE0;
983 /* no interrupt for every tx completion, delay = 256us if not 557 */
984 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
985 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
987 /* Template for a freshly allocated RFD */
988 nic->blank_rfd.command = 0;
989 nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
990 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
993 nic->mii.phy_id_mask = 0x1F;
994 nic->mii.reg_num_mask = 0x1F;
995 nic->mii.dev = nic->netdev;
996 nic->mii.mdio_read = mdio_read;
997 nic->mii.mdio_write = mdio_write;
1000 static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1002 struct config *config = &cb->u.config;
1003 u8 *c = (u8 *)config;
1005 cb->command = cpu_to_le16(cb_config);
1007 memset(config, 0, sizeof(struct config));
1009 config->byte_count = 0x16; /* bytes in this struct */
1010 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
1011 config->direct_rx_dma = 0x1; /* reserved */
1012 config->standard_tcb = 0x1; /* 1=standard, 0=extended */
1013 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
1014 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
1015 config->tx_underrun_retry = 0x3; /* # of underrun retries */
1016 config->mii_mode = 0x1; /* 1=MII mode, 0=503 mode */
1017 config->pad10 = 0x6;
1018 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
1019 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
1020 config->ifs = 0x6; /* x16 = inter frame spacing */
1021 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
1022 config->pad15_1 = 0x1;
1023 config->pad15_2 = 0x1;
1024 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
1025 config->fc_delay_hi = 0x40; /* time delay for fc frame */
1026 config->tx_padding = 0x1; /* 1=pad short frames */
1027 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
1028 config->pad18 = 0x1;
1029 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
1030 config->pad20_1 = 0x1F;
1031 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
1032 config->pad21_1 = 0x5;
1034 config->adaptive_ifs = nic->adaptive_ifs;
1035 config->loopback = nic->loopback;
1037 if (nic->mii.force_media && nic->mii.full_duplex)
1038 config->full_duplex_force = 0x1; /* 1=force, 0=auto */
1040 if (nic->flags & promiscuous || nic->loopback) {
1041 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
1042 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
1043 config->promiscuous_mode = 0x1; /* 1=on, 0=off */
1046 if (nic->flags & multicast_all)
1047 config->multicast_all = 0x1; /* 1=accept, 0=no */
1049 /* disable WoL when up */
1050 if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1051 config->magic_packet_disable = 0x1; /* 1=off, 0=on */
1053 if (nic->mac >= mac_82558_D101_A4) {
1054 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
1055 config->mwi_enable = 0x1; /* 1=enable, 0=disable */
1056 config->standard_tcb = 0x0; /* 1=standard, 0=extended */
1057 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
1058 if (nic->mac >= mac_82559_D101M) {
1059 config->tno_intr = 0x1; /* TCO stats enable */
1060 /* Enable TCO in extended config */
1061 if (nic->mac >= mac_82551_10) {
1062 config->byte_count = 0x20; /* extended bytes */
1063 config->rx_d102_mode = 0x1; /* GMRC for TCO */
1066 config->standard_stat_counter = 0x0;
1070 DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1071 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
1072 DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1073 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
1074 DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1075 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
1078 /*************************************************************************
1079 * CPUSaver parameters
1081 * All CPUSaver parameters are 16-bit literals that are part of a
1082 * "move immediate value" instruction. By changing the value of
1083 * the literal in the instruction before the code is loaded, the
1084 * driver can change the algorithm.
1086 * INTDELAY - This loads the dead-man timer with its initial value.
1087 * When this timer expires the interrupt is asserted, and the
1088 * timer is reset each time a new packet is received. (see
1089 * BUNDLEMAX below to set the limit on number of chained packets)
1090 * The current default is 0x600 or 1536. Experiments show that
1091 * the value should probably stay within the 0x200 - 0x1000.
1094 * This sets the maximum number of frames that will be bundled. In
1095 * some situations, such as the TCP windowing algorithm, it may be
1096 * better to limit the growth of the bundle size than let it go as
1097 * high as it can, because that could cause too much added latency.
1098 * The default is six, because this is the number of packets in the
1099 * default TCP window size. A value of 1 would make CPUSaver indicate
1100 * an interrupt for every frame received. If you do not want to put
1101 * a limit on the bundle size, set this value to xFFFF.
1104 * This contains a bit-mask describing the minimum size frame that
1105 * will be bundled. The default masks the lower 7 bits, which means
1106 * that any frame less than 128 bytes in length will not be bundled,
1107 * but will instead immediately generate an interrupt. This does
1108 * not affect the current bundle in any way. Any frame that is 128
1109 * bytes or large will be bundled normally. This feature is meant
1110 * to provide immediate indication of ACK frames in a TCP environment.
1111 * Customers were seeing poor performance when a machine with CPUSaver
1112 * enabled was sending but not receiving. The delay introduced when
1113 * the ACKs were received was enough to reduce total throughput, because
1114 * the sender would sit idle until the ACK was finally seen.
1116 * The current default is 0xFF80, which masks out the lower 7 bits.
1117 * This means that any frame which is x7F (127) bytes or smaller
1118 * will cause an immediate interrupt. Because this value must be a
1119 * bit mask, there are only a few valid values that can be used. To
1120 * turn this feature off, the driver can write the value xFFFF to the
1121 * lower word of this instruction (in the same way that the other
1122 * parameters are used). Likewise, a value of 0xF800 (2047) would
1123 * cause an interrupt to be generated for every frame, because all
1124 * standard Ethernet frames are <= 2047 bytes in length.
1125 *************************************************************************/
1127 /* if you wish to disable the ucode functionality, while maintaining the
1128 * workarounds it provides, set the following defines to:
1133 #define BUNDLESMALL 1
1134 #define BUNDLEMAX (u16)6
1135 #define INTDELAY (u16)1536 /* 0x600 */
1137 /* Initialize firmware */
1138 static const struct firmware *e100_request_firmware(struct nic *nic)
1140 const char *fw_name;
1141 const struct firmware *fw;
1142 u8 timer, bundle, min_size;
1145 /* do not load u-code for ICH devices */
1146 if (nic->flags & ich)
1149 /* Search for ucode match against h/w revision */
1150 if (nic->mac == mac_82559_D101M)
1151 fw_name = FIRMWARE_D101M;
1152 else if (nic->mac == mac_82559_D101S)
1153 fw_name = FIRMWARE_D101S;
1154 else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10)
1155 fw_name = FIRMWARE_D102E;
1156 else /* No ucode on other devices */
1159 err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1161 DPRINTK(PROBE, ERR, "Failed to load firmware \"%s\": %d\n",
1163 return ERR_PTR(err);
1165 /* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1166 indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1167 if (fw->size != UCODE_SIZE * 4 + 3) {
1168 DPRINTK(PROBE, ERR, "Firmware \"%s\" has wrong size %zu\n",
1170 release_firmware(fw);
1171 return ERR_PTR(-EINVAL);
1174 /* Read timer, bundle and min_size from end of firmware blob */
1175 timer = fw->data[UCODE_SIZE * 4];
1176 bundle = fw->data[UCODE_SIZE * 4 + 1];
1177 min_size = fw->data[UCODE_SIZE * 4 + 2];
1179 if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1180 min_size >= UCODE_SIZE) {
1182 "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1183 fw_name, timer, bundle, min_size);
1184 release_firmware(fw);
1185 return ERR_PTR(-EINVAL);
1187 /* OK, firmware is validated and ready to use... */
1191 static void e100_setup_ucode(struct nic *nic, struct cb *cb,
1192 struct sk_buff *skb)
1194 const struct firmware *fw = (void *)skb;
1195 u8 timer, bundle, min_size;
1197 /* It's not a real skb; we just abused the fact that e100_exec_cb
1198 will pass it through to here... */
1201 /* firmware is stored as little endian already */
1202 memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1204 /* Read timer, bundle and min_size from end of firmware blob */
1205 timer = fw->data[UCODE_SIZE * 4];
1206 bundle = fw->data[UCODE_SIZE * 4 + 1];
1207 min_size = fw->data[UCODE_SIZE * 4 + 2];
1209 /* Insert user-tunable settings in cb->u.ucode */
1210 cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1211 cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1212 cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1213 cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1214 cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1215 cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1217 cb->command = cpu_to_le16(cb_ucode | cb_el);
1220 static inline int e100_load_ucode_wait(struct nic *nic)
1222 const struct firmware *fw;
1223 int err = 0, counter = 50;
1224 struct cb *cb = nic->cb_to_clean;
1226 fw = e100_request_firmware(nic);
1227 /* If it's NULL, then no ucode is required */
1228 if (!fw || IS_ERR(fw))
1231 if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1232 DPRINTK(PROBE,ERR, "ucode cmd failed with error %d\n", err);
1234 /* must restart cuc */
1235 nic->cuc_cmd = cuc_start;
1237 /* wait for completion */
1238 e100_write_flush(nic);
1241 /* wait for possibly (ouch) 500ms */
1242 while (!(cb->status & cpu_to_le16(cb_complete))) {
1244 if (!--counter) break;
1247 /* ack any interrupts, something could have been set */
1248 iowrite8(~0, &nic->csr->scb.stat_ack);
1250 /* if the command failed, or is not OK, notify and return */
1251 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1252 DPRINTK(PROBE,ERR, "ucode load failed\n");
1259 static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1260 struct sk_buff *skb)
1262 cb->command = cpu_to_le16(cb_iaaddr);
1263 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1266 static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1268 cb->command = cpu_to_le16(cb_dump);
1269 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1270 offsetof(struct mem, dump_buf));
1273 #define NCONFIG_AUTO_SWITCH 0x0080
1274 #define MII_NSC_CONG MII_RESV1
1275 #define NSC_CONG_ENABLE 0x0100
1276 #define NSC_CONG_TXREADY 0x0400
1277 #define ADVERTISE_FC_SUPPORTED 0x0400
1278 static int e100_phy_init(struct nic *nic)
1280 struct net_device *netdev = nic->netdev;
1282 u16 bmcr, stat, id_lo, id_hi, cong;
1284 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1285 for (addr = 0; addr < 32; addr++) {
1286 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1287 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1288 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1289 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1290 if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1293 DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id);
1297 /* Isolate all the PHY ids */
1298 for (addr = 0; addr < 32; addr++)
1299 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1300 /* Select the discovered PHY */
1301 bmcr &= ~BMCR_ISOLATE;
1302 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1305 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1306 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1307 nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1308 DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy);
1310 /* Handle National tx phys */
1311 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1312 if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1313 /* Disable congestion control */
1314 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1315 cong |= NSC_CONG_TXREADY;
1316 cong &= ~NSC_CONG_ENABLE;
1317 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1320 if (nic->phy == phy_82552_v) {
1321 u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1323 /* Workaround Si not advertising flow-control during autoneg */
1324 advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1325 mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1327 /* Reset for the above changes to take effect */
1328 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1330 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1331 } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1332 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1333 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1334 /* enable/disable MDI/MDI-X auto-switching. */
1335 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1336 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1342 static int e100_hw_init(struct nic *nic)
1348 DPRINTK(HW, ERR, "e100_hw_init\n");
1349 if (!in_interrupt() && (err = e100_self_test(nic)))
1352 if ((err = e100_phy_init(nic)))
1354 if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1356 if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1358 if ((err = e100_load_ucode_wait(nic)))
1360 if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1362 if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1364 if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1365 nic->dma_addr + offsetof(struct mem, stats))))
1367 if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1370 e100_disable_irq(nic);
1375 static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1377 struct net_device *netdev = nic->netdev;
1378 struct dev_mc_list *list = netdev->mc_list;
1379 u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS);
1381 cb->command = cpu_to_le16(cb_multi);
1382 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1383 for (i = 0; list && i < count; i++, list = list->next)
1384 memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr,
1388 static void e100_set_multicast_list(struct net_device *netdev)
1390 struct nic *nic = netdev_priv(netdev);
1392 DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n",
1393 netdev->mc_count, netdev->flags);
1395 if (netdev->flags & IFF_PROMISC)
1396 nic->flags |= promiscuous;
1398 nic->flags &= ~promiscuous;
1400 if (netdev->flags & IFF_ALLMULTI ||
1401 netdev->mc_count > E100_MAX_MULTICAST_ADDRS)
1402 nic->flags |= multicast_all;
1404 nic->flags &= ~multicast_all;
1406 e100_exec_cb(nic, NULL, e100_configure);
1407 e100_exec_cb(nic, NULL, e100_multi);
1410 static void e100_update_stats(struct nic *nic)
1412 struct net_device *dev = nic->netdev;
1413 struct net_device_stats *ns = &dev->stats;
1414 struct stats *s = &nic->mem->stats;
1415 __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1416 (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1419 /* Device's stats reporting may take several microseconds to
1420 * complete, so we're always waiting for results of the
1421 * previous command. */
1423 if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1425 nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1426 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1427 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1428 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1429 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1430 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1431 ns->collisions += nic->tx_collisions;
1432 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1433 le32_to_cpu(s->tx_lost_crs);
1434 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
1435 nic->rx_over_length_errors;
1436 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1437 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1438 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1439 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1440 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1441 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1442 le32_to_cpu(s->rx_alignment_errors) +
1443 le32_to_cpu(s->rx_short_frame_errors) +
1444 le32_to_cpu(s->rx_cdt_errors);
1445 nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1446 nic->tx_single_collisions +=
1447 le32_to_cpu(s->tx_single_collisions);
1448 nic->tx_multiple_collisions +=
1449 le32_to_cpu(s->tx_multiple_collisions);
1450 if (nic->mac >= mac_82558_D101_A4) {
1451 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1452 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1453 nic->rx_fc_unsupported +=
1454 le32_to_cpu(s->fc_rcv_unsupported);
1455 if (nic->mac >= mac_82559_D101M) {
1456 nic->tx_tco_frames +=
1457 le16_to_cpu(s->xmt_tco_frames);
1458 nic->rx_tco_frames +=
1459 le16_to_cpu(s->rcv_tco_frames);
1465 if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1466 DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n");
1469 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1471 /* Adjust inter-frame-spacing (IFS) between two transmits if
1472 * we're getting collisions on a half-duplex connection. */
1474 if (duplex == DUPLEX_HALF) {
1475 u32 prev = nic->adaptive_ifs;
1476 u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1478 if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1479 (nic->tx_frames > min_frames)) {
1480 if (nic->adaptive_ifs < 60)
1481 nic->adaptive_ifs += 5;
1482 } else if (nic->tx_frames < min_frames) {
1483 if (nic->adaptive_ifs >= 5)
1484 nic->adaptive_ifs -= 5;
1486 if (nic->adaptive_ifs != prev)
1487 e100_exec_cb(nic, NULL, e100_configure);
1491 static void e100_watchdog(unsigned long data)
1493 struct nic *nic = (struct nic *)data;
1494 struct ethtool_cmd cmd;
1496 DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies);
1498 /* mii library handles link maintenance tasks */
1500 mii_ethtool_gset(&nic->mii, &cmd);
1502 if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1503 printk(KERN_INFO "e100: %s NIC Link is Up %s Mbps %s Duplex\n",
1505 cmd.speed == SPEED_100 ? "100" : "10",
1506 cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1507 } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1508 printk(KERN_INFO "e100: %s NIC Link is Down\n",
1512 mii_check_link(&nic->mii);
1514 /* Software generated interrupt to recover from (rare) Rx
1515 * allocation failure.
1516 * Unfortunately have to use a spinlock to not re-enable interrupts
1517 * accidentally, due to hardware that shares a register between the
1518 * interrupt mask bit and the SW Interrupt generation bit */
1519 spin_lock_irq(&nic->cmd_lock);
1520 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1521 e100_write_flush(nic);
1522 spin_unlock_irq(&nic->cmd_lock);
1524 e100_update_stats(nic);
1525 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
1527 if (nic->mac <= mac_82557_D100_C)
1528 /* Issue a multicast command to workaround a 557 lock up */
1529 e100_set_multicast_list(nic->netdev);
1531 if (nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
1532 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1533 nic->flags |= ich_10h_workaround;
1535 nic->flags &= ~ich_10h_workaround;
1537 mod_timer(&nic->watchdog,
1538 round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1541 static void e100_xmit_prepare(struct nic *nic, struct cb *cb,
1542 struct sk_buff *skb)
1544 cb->command = nic->tx_command;
1545 /* interrupt every 16 packets regardless of delay */
1546 if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1547 cb->command |= cpu_to_le16(cb_i);
1548 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1549 cb->u.tcb.tcb_byte_count = 0;
1550 cb->u.tcb.threshold = nic->tx_threshold;
1551 cb->u.tcb.tbd_count = 1;
1552 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
1553 skb->data, skb->len, PCI_DMA_TODEVICE));
1554 /* check for mapping failure? */
1555 cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1558 static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1560 struct nic *nic = netdev_priv(netdev);
1563 if (nic->flags & ich_10h_workaround) {
1564 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1565 Issue a NOP command followed by a 1us delay before
1566 issuing the Tx command. */
1567 if (e100_exec_cmd(nic, cuc_nop, 0))
1568 DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n");
1572 err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1576 /* We queued the skb, but now we're out of space. */
1577 DPRINTK(TX_ERR, DEBUG, "No space for CB\n");
1578 netif_stop_queue(netdev);
1581 /* This is a hard error - log it. */
1582 DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n");
1583 netif_stop_queue(netdev);
1587 netdev->trans_start = jiffies;
1591 static int e100_tx_clean(struct nic *nic)
1593 struct net_device *dev = nic->netdev;
1597 spin_lock(&nic->cb_lock);
1599 /* Clean CBs marked complete */
1600 for (cb = nic->cb_to_clean;
1601 cb->status & cpu_to_le16(cb_complete);
1602 cb = nic->cb_to_clean = cb->next) {
1603 DPRINTK(TX_DONE, DEBUG, "cb[%d]->status = 0x%04X\n",
1604 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1607 if (likely(cb->skb != NULL)) {
1608 dev->stats.tx_packets++;
1609 dev->stats.tx_bytes += cb->skb->len;
1611 pci_unmap_single(nic->pdev,
1612 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1613 le16_to_cpu(cb->u.tcb.tbd.size),
1615 dev_kfree_skb_any(cb->skb);
1623 spin_unlock(&nic->cb_lock);
1625 /* Recover from running out of Tx resources in xmit_frame */
1626 if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1627 netif_wake_queue(nic->netdev);
1632 static void e100_clean_cbs(struct nic *nic)
1635 while (nic->cbs_avail != nic->params.cbs.count) {
1636 struct cb *cb = nic->cb_to_clean;
1638 pci_unmap_single(nic->pdev,
1639 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1640 le16_to_cpu(cb->u.tcb.tbd.size),
1642 dev_kfree_skb(cb->skb);
1644 nic->cb_to_clean = nic->cb_to_clean->next;
1647 pci_free_consistent(nic->pdev,
1648 sizeof(struct cb) * nic->params.cbs.count,
1649 nic->cbs, nic->cbs_dma_addr);
1653 nic->cuc_cmd = cuc_start;
1654 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1658 static int e100_alloc_cbs(struct nic *nic)
1661 unsigned int i, count = nic->params.cbs.count;
1663 nic->cuc_cmd = cuc_start;
1664 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1667 nic->cbs = pci_alloc_consistent(nic->pdev,
1668 sizeof(struct cb) * count, &nic->cbs_dma_addr);
1672 for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1673 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1674 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1676 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1677 cb->link = cpu_to_le32(nic->cbs_dma_addr +
1678 ((i+1) % count) * sizeof(struct cb));
1682 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1683 nic->cbs_avail = count;
1688 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1690 if (!nic->rxs) return;
1691 if (RU_SUSPENDED != nic->ru_running) return;
1693 /* handle init time starts */
1694 if (!rx) rx = nic->rxs;
1696 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1698 e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1699 nic->ru_running = RU_RUNNING;
1703 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
1704 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1706 if (!(rx->skb = netdev_alloc_skb(nic->netdev, RFD_BUF_LEN + NET_IP_ALIGN)))
1709 /* Align, init, and map the RFD. */
1710 skb_reserve(rx->skb, NET_IP_ALIGN);
1711 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1712 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1713 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1715 if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
1716 dev_kfree_skb_any(rx->skb);
1722 /* Link the RFD to end of RFA by linking previous RFD to
1723 * this one. We are safe to touch the previous RFD because
1724 * it is protected by the before last buffer's el bit being set */
1725 if (rx->prev->skb) {
1726 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1727 put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1728 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1729 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1735 static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1736 unsigned int *work_done, unsigned int work_to_do)
1738 struct net_device *dev = nic->netdev;
1739 struct sk_buff *skb = rx->skb;
1740 struct rfd *rfd = (struct rfd *)skb->data;
1741 u16 rfd_status, actual_size;
1743 if (unlikely(work_done && *work_done >= work_to_do))
1746 /* Need to sync before taking a peek at cb_complete bit */
1747 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1748 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1749 rfd_status = le16_to_cpu(rfd->status);
1751 DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status);
1753 /* If data isn't ready, nothing to indicate */
1754 if (unlikely(!(rfd_status & cb_complete))) {
1755 /* If the next buffer has the el bit, but we think the receiver
1756 * is still running, check to see if it really stopped while
1757 * we had interrupts off.
1758 * This allows for a fast restart without re-enabling
1760 if ((le16_to_cpu(rfd->command) & cb_el) &&
1761 (RU_RUNNING == nic->ru_running))
1763 if (ioread8(&nic->csr->scb.status) & rus_no_res)
1764 nic->ru_running = RU_SUSPENDED;
1768 /* Get actual data size */
1769 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1770 if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1771 actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1774 pci_unmap_single(nic->pdev, rx->dma_addr,
1775 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1777 /* If this buffer has the el bit, but we think the receiver
1778 * is still running, check to see if it really stopped while
1779 * we had interrupts off.
1780 * This allows for a fast restart without re-enabling interrupts.
1781 * This can happen when the RU sees the size change but also sees
1782 * the el bit set. */
1783 if ((le16_to_cpu(rfd->command) & cb_el) &&
1784 (RU_RUNNING == nic->ru_running)) {
1786 if (ioread8(&nic->csr->scb.status) & rus_no_res)
1787 nic->ru_running = RU_SUSPENDED;
1790 /* Pull off the RFD and put the actual data (minus eth hdr) */
1791 skb_reserve(skb, sizeof(struct rfd));
1792 skb_put(skb, actual_size);
1793 skb->protocol = eth_type_trans(skb, nic->netdev);
1795 if (unlikely(!(rfd_status & cb_ok))) {
1796 /* Don't indicate if hardware indicates errors */
1797 dev_kfree_skb_any(skb);
1798 } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) {
1799 /* Don't indicate oversized frames */
1800 nic->rx_over_length_errors++;
1801 dev_kfree_skb_any(skb);
1803 dev->stats.rx_packets++;
1804 dev->stats.rx_bytes += actual_size;
1805 netif_receive_skb(skb);
1815 static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
1816 unsigned int work_to_do)
1819 int restart_required = 0, err = 0;
1820 struct rx *old_before_last_rx, *new_before_last_rx;
1821 struct rfd *old_before_last_rfd, *new_before_last_rfd;
1823 /* Indicate newly arrived packets */
1824 for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
1825 err = e100_rx_indicate(nic, rx, work_done, work_to_do);
1826 /* Hit quota or no more to clean */
1827 if (-EAGAIN == err || -ENODATA == err)
1832 /* On EAGAIN, hit quota so have more work to do, restart once
1833 * cleanup is complete.
1834 * Else, are we already rnr? then pay attention!!! this ensures that
1835 * the state machine progression never allows a start with a
1836 * partially cleaned list, avoiding a race between hardware
1837 * and rx_to_clean when in NAPI mode */
1838 if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
1839 restart_required = 1;
1841 old_before_last_rx = nic->rx_to_use->prev->prev;
1842 old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
1844 /* Alloc new skbs to refill list */
1845 for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
1846 if (unlikely(e100_rx_alloc_skb(nic, rx)))
1847 break; /* Better luck next time (see watchdog) */
1850 new_before_last_rx = nic->rx_to_use->prev->prev;
1851 if (new_before_last_rx != old_before_last_rx) {
1852 /* Set the el-bit on the buffer that is before the last buffer.
1853 * This lets us update the next pointer on the last buffer
1854 * without worrying about hardware touching it.
1855 * We set the size to 0 to prevent hardware from touching this
1857 * When the hardware hits the before last buffer with el-bit
1858 * and size of 0, it will RNR interrupt, the RUS will go into
1859 * the No Resources state. It will not complete nor write to
1861 new_before_last_rfd =
1862 (struct rfd *)new_before_last_rx->skb->data;
1863 new_before_last_rfd->size = 0;
1864 new_before_last_rfd->command |= cpu_to_le16(cb_el);
1865 pci_dma_sync_single_for_device(nic->pdev,
1866 new_before_last_rx->dma_addr, sizeof(struct rfd),
1867 PCI_DMA_BIDIRECTIONAL);
1869 /* Now that we have a new stopping point, we can clear the old
1870 * stopping point. We must sync twice to get the proper
1871 * ordering on the hardware side of things. */
1872 old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
1873 pci_dma_sync_single_for_device(nic->pdev,
1874 old_before_last_rx->dma_addr, sizeof(struct rfd),
1875 PCI_DMA_BIDIRECTIONAL);
1876 old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
1877 pci_dma_sync_single_for_device(nic->pdev,
1878 old_before_last_rx->dma_addr, sizeof(struct rfd),
1879 PCI_DMA_BIDIRECTIONAL);
1882 if (restart_required) {
1884 iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
1885 e100_start_receiver(nic, nic->rx_to_clean);
1891 static void e100_rx_clean_list(struct nic *nic)
1894 unsigned int i, count = nic->params.rfds.count;
1896 nic->ru_running = RU_UNINITIALIZED;
1899 for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
1901 pci_unmap_single(nic->pdev, rx->dma_addr,
1902 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1903 dev_kfree_skb(rx->skb);
1910 nic->rx_to_use = nic->rx_to_clean = NULL;
1913 static int e100_rx_alloc_list(struct nic *nic)
1916 unsigned int i, count = nic->params.rfds.count;
1917 struct rfd *before_last;
1919 nic->rx_to_use = nic->rx_to_clean = NULL;
1920 nic->ru_running = RU_UNINITIALIZED;
1922 if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
1925 for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
1926 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
1927 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
1928 if (e100_rx_alloc_skb(nic, rx)) {
1929 e100_rx_clean_list(nic);
1933 /* Set the el-bit on the buffer that is before the last buffer.
1934 * This lets us update the next pointer on the last buffer without
1935 * worrying about hardware touching it.
1936 * We set the size to 0 to prevent hardware from touching this buffer.
1937 * When the hardware hits the before last buffer with el-bit and size
1938 * of 0, it will RNR interrupt, the RU will go into the No Resources
1939 * state. It will not complete nor write to this buffer. */
1940 rx = nic->rxs->prev->prev;
1941 before_last = (struct rfd *)rx->skb->data;
1942 before_last->command |= cpu_to_le16(cb_el);
1943 before_last->size = 0;
1944 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
1945 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1947 nic->rx_to_use = nic->rx_to_clean = nic->rxs;
1948 nic->ru_running = RU_SUSPENDED;
1953 static irqreturn_t e100_intr(int irq, void *dev_id)
1955 struct net_device *netdev = dev_id;
1956 struct nic *nic = netdev_priv(netdev);
1957 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
1959 DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack);
1961 if (stat_ack == stat_ack_not_ours || /* Not our interrupt */
1962 stat_ack == stat_ack_not_present) /* Hardware is ejected */
1965 /* Ack interrupt(s) */
1966 iowrite8(stat_ack, &nic->csr->scb.stat_ack);
1968 /* We hit Receive No Resource (RNR); restart RU after cleaning */
1969 if (stat_ack & stat_ack_rnr)
1970 nic->ru_running = RU_SUSPENDED;
1972 if (likely(napi_schedule_prep(&nic->napi))) {
1973 e100_disable_irq(nic);
1974 __napi_schedule(&nic->napi);
1980 static int e100_poll(struct napi_struct *napi, int budget)
1982 struct nic *nic = container_of(napi, struct nic, napi);
1983 unsigned int work_done = 0;
1985 e100_rx_clean(nic, &work_done, budget);
1988 /* If budget not fully consumed, exit the polling mode */
1989 if (work_done < budget) {
1990 napi_complete(napi);
1991 e100_enable_irq(nic);
1997 #ifdef CONFIG_NET_POLL_CONTROLLER
1998 static void e100_netpoll(struct net_device *netdev)
2000 struct nic *nic = netdev_priv(netdev);
2002 e100_disable_irq(nic);
2003 e100_intr(nic->pdev->irq, netdev);
2005 e100_enable_irq(nic);
2009 static int e100_set_mac_address(struct net_device *netdev, void *p)
2011 struct nic *nic = netdev_priv(netdev);
2012 struct sockaddr *addr = p;
2014 if (!is_valid_ether_addr(addr->sa_data))
2015 return -EADDRNOTAVAIL;
2017 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2018 e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2023 static int e100_change_mtu(struct net_device *netdev, int new_mtu)
2025 if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
2027 netdev->mtu = new_mtu;
2031 static int e100_asf(struct nic *nic)
2033 /* ASF can be enabled from eeprom */
2034 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2035 (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2036 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2037 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE));
2040 static int e100_up(struct nic *nic)
2044 if ((err = e100_rx_alloc_list(nic)))
2046 if ((err = e100_alloc_cbs(nic)))
2047 goto err_rx_clean_list;
2048 if ((err = e100_hw_init(nic)))
2050 e100_set_multicast_list(nic->netdev);
2051 e100_start_receiver(nic, NULL);
2052 mod_timer(&nic->watchdog, jiffies);
2053 if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2054 nic->netdev->name, nic->netdev)))
2056 netif_wake_queue(nic->netdev);
2057 napi_enable(&nic->napi);
2058 /* enable ints _after_ enabling poll, preventing a race between
2059 * disable ints+schedule */
2060 e100_enable_irq(nic);
2064 del_timer_sync(&nic->watchdog);
2066 e100_clean_cbs(nic);
2068 e100_rx_clean_list(nic);
2072 static void e100_down(struct nic *nic)
2074 /* wait here for poll to complete */
2075 napi_disable(&nic->napi);
2076 netif_stop_queue(nic->netdev);
2078 free_irq(nic->pdev->irq, nic->netdev);
2079 del_timer_sync(&nic->watchdog);
2080 netif_carrier_off(nic->netdev);
2081 e100_clean_cbs(nic);
2082 e100_rx_clean_list(nic);
2085 static void e100_tx_timeout(struct net_device *netdev)
2087 struct nic *nic = netdev_priv(netdev);
2089 /* Reset outside of interrupt context, to avoid request_irq
2090 * in interrupt context */
2091 schedule_work(&nic->tx_timeout_task);
2094 static void e100_tx_timeout_task(struct work_struct *work)
2096 struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2097 struct net_device *netdev = nic->netdev;
2099 DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n",
2100 ioread8(&nic->csr->scb.status));
2101 e100_down(netdev_priv(netdev));
2102 e100_up(netdev_priv(netdev));
2105 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2108 struct sk_buff *skb;
2110 /* Use driver resources to perform internal MAC or PHY
2111 * loopback test. A single packet is prepared and transmitted
2112 * in loopback mode, and the test passes if the received
2113 * packet compares byte-for-byte to the transmitted packet. */
2115 if ((err = e100_rx_alloc_list(nic)))
2117 if ((err = e100_alloc_cbs(nic)))
2120 /* ICH PHY loopback is broken so do MAC loopback instead */
2121 if (nic->flags & ich && loopback_mode == lb_phy)
2122 loopback_mode = lb_mac;
2124 nic->loopback = loopback_mode;
2125 if ((err = e100_hw_init(nic)))
2126 goto err_loopback_none;
2128 if (loopback_mode == lb_phy)
2129 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2132 e100_start_receiver(nic, NULL);
2134 if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2136 goto err_loopback_none;
2138 skb_put(skb, ETH_DATA_LEN);
2139 memset(skb->data, 0xFF, ETH_DATA_LEN);
2140 e100_xmit_frame(skb, nic->netdev);
2144 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2145 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2147 if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2148 skb->data, ETH_DATA_LEN))
2152 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2153 nic->loopback = lb_none;
2154 e100_clean_cbs(nic);
2157 e100_rx_clean_list(nic);
2161 #define MII_LED_CONTROL 0x1B
2162 #define E100_82552_LED_OVERRIDE 0x19
2163 #define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */
2164 #define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */
2165 static void e100_blink_led(unsigned long data)
2167 struct nic *nic = (struct nic *)data;
2174 u16 led_reg = MII_LED_CONTROL;
2176 if (nic->phy == phy_82552_v) {
2177 led_reg = E100_82552_LED_OVERRIDE;
2179 nic->leds = (nic->leds == E100_82552_LED_ON) ?
2180 E100_82552_LED_OFF : E100_82552_LED_ON;
2182 nic->leds = (nic->leds & led_on) ? led_off :
2183 (nic->mac < mac_82559_D101M) ? led_on_557 :
2186 mdio_write(nic->netdev, nic->mii.phy_id, led_reg, nic->leds);
2187 mod_timer(&nic->blink_timer, jiffies + HZ / 4);
2190 static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2192 struct nic *nic = netdev_priv(netdev);
2193 return mii_ethtool_gset(&nic->mii, cmd);
2196 static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2198 struct nic *nic = netdev_priv(netdev);
2201 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2202 err = mii_ethtool_sset(&nic->mii, cmd);
2203 e100_exec_cb(nic, NULL, e100_configure);
2208 static void e100_get_drvinfo(struct net_device *netdev,
2209 struct ethtool_drvinfo *info)
2211 struct nic *nic = netdev_priv(netdev);
2212 strcpy(info->driver, DRV_NAME);
2213 strcpy(info->version, DRV_VERSION);
2214 strcpy(info->fw_version, "N/A");
2215 strcpy(info->bus_info, pci_name(nic->pdev));
2218 #define E100_PHY_REGS 0x1C
2219 static int e100_get_regs_len(struct net_device *netdev)
2221 struct nic *nic = netdev_priv(netdev);
2222 return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
2225 static void e100_get_regs(struct net_device *netdev,
2226 struct ethtool_regs *regs, void *p)
2228 struct nic *nic = netdev_priv(netdev);
2232 regs->version = (1 << 24) | nic->pdev->revision;
2233 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2234 ioread8(&nic->csr->scb.cmd_lo) << 16 |
2235 ioread16(&nic->csr->scb.status);
2236 for (i = E100_PHY_REGS; i >= 0; i--)
2237 buff[1 + E100_PHY_REGS - i] =
2238 mdio_read(netdev, nic->mii.phy_id, i);
2239 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2240 e100_exec_cb(nic, NULL, e100_dump);
2242 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2243 sizeof(nic->mem->dump_buf));
2246 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2248 struct nic *nic = netdev_priv(netdev);
2249 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
2250 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2253 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2255 struct nic *nic = netdev_priv(netdev);
2257 if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2258 !device_can_wakeup(&nic->pdev->dev))
2262 nic->flags |= wol_magic;
2264 nic->flags &= ~wol_magic;
2266 device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2268 e100_exec_cb(nic, NULL, e100_configure);
2273 static u32 e100_get_msglevel(struct net_device *netdev)
2275 struct nic *nic = netdev_priv(netdev);
2276 return nic->msg_enable;
2279 static void e100_set_msglevel(struct net_device *netdev, u32 value)
2281 struct nic *nic = netdev_priv(netdev);
2282 nic->msg_enable = value;
2285 static int e100_nway_reset(struct net_device *netdev)
2287 struct nic *nic = netdev_priv(netdev);
2288 return mii_nway_restart(&nic->mii);
2291 static u32 e100_get_link(struct net_device *netdev)
2293 struct nic *nic = netdev_priv(netdev);
2294 return mii_link_ok(&nic->mii);
2297 static int e100_get_eeprom_len(struct net_device *netdev)
2299 struct nic *nic = netdev_priv(netdev);
2300 return nic->eeprom_wc << 1;
2303 #define E100_EEPROM_MAGIC 0x1234
2304 static int e100_get_eeprom(struct net_device *netdev,
2305 struct ethtool_eeprom *eeprom, u8 *bytes)
2307 struct nic *nic = netdev_priv(netdev);
2309 eeprom->magic = E100_EEPROM_MAGIC;
2310 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2315 static int e100_set_eeprom(struct net_device *netdev,
2316 struct ethtool_eeprom *eeprom, u8 *bytes)
2318 struct nic *nic = netdev_priv(netdev);
2320 if (eeprom->magic != E100_EEPROM_MAGIC)
2323 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2325 return e100_eeprom_save(nic, eeprom->offset >> 1,
2326 (eeprom->len >> 1) + 1);
2329 static void e100_get_ringparam(struct net_device *netdev,
2330 struct ethtool_ringparam *ring)
2332 struct nic *nic = netdev_priv(netdev);
2333 struct param_range *rfds = &nic->params.rfds;
2334 struct param_range *cbs = &nic->params.cbs;
2336 ring->rx_max_pending = rfds->max;
2337 ring->tx_max_pending = cbs->max;
2338 ring->rx_mini_max_pending = 0;
2339 ring->rx_jumbo_max_pending = 0;
2340 ring->rx_pending = rfds->count;
2341 ring->tx_pending = cbs->count;
2342 ring->rx_mini_pending = 0;
2343 ring->rx_jumbo_pending = 0;
2346 static int e100_set_ringparam(struct net_device *netdev,
2347 struct ethtool_ringparam *ring)
2349 struct nic *nic = netdev_priv(netdev);
2350 struct param_range *rfds = &nic->params.rfds;
2351 struct param_range *cbs = &nic->params.cbs;
2353 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2356 if (netif_running(netdev))
2358 rfds->count = max(ring->rx_pending, rfds->min);
2359 rfds->count = min(rfds->count, rfds->max);
2360 cbs->count = max(ring->tx_pending, cbs->min);
2361 cbs->count = min(cbs->count, cbs->max);
2362 DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n",
2363 rfds->count, cbs->count);
2364 if (netif_running(netdev))
2370 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2371 "Link test (on/offline)",
2372 "Eeprom test (on/offline)",
2373 "Self test (offline)",
2374 "Mac loopback (offline)",
2375 "Phy loopback (offline)",
2377 #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test)
2379 static void e100_diag_test(struct net_device *netdev,
2380 struct ethtool_test *test, u64 *data)
2382 struct ethtool_cmd cmd;
2383 struct nic *nic = netdev_priv(netdev);
2386 memset(data, 0, E100_TEST_LEN * sizeof(u64));
2387 data[0] = !mii_link_ok(&nic->mii);
2388 data[1] = e100_eeprom_load(nic);
2389 if (test->flags & ETH_TEST_FL_OFFLINE) {
2391 /* save speed, duplex & autoneg settings */
2392 err = mii_ethtool_gset(&nic->mii, &cmd);
2394 if (netif_running(netdev))
2396 data[2] = e100_self_test(nic);
2397 data[3] = e100_loopback_test(nic, lb_mac);
2398 data[4] = e100_loopback_test(nic, lb_phy);
2400 /* restore speed, duplex & autoneg settings */
2401 err = mii_ethtool_sset(&nic->mii, &cmd);
2403 if (netif_running(netdev))
2406 for (i = 0; i < E100_TEST_LEN; i++)
2407 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2409 msleep_interruptible(4 * 1000);
2412 static int e100_phys_id(struct net_device *netdev, u32 data)
2414 struct nic *nic = netdev_priv(netdev);
2415 u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2418 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
2419 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
2420 mod_timer(&nic->blink_timer, jiffies);
2421 msleep_interruptible(data * 1000);
2422 del_timer_sync(&nic->blink_timer);
2423 mdio_write(netdev, nic->mii.phy_id, led_reg, 0);
2428 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2429 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2430 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2431 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2432 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2433 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2434 "tx_heartbeat_errors", "tx_window_errors",
2435 /* device-specific stats */
2436 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2437 "tx_flow_control_pause", "rx_flow_control_pause",
2438 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2440 #define E100_NET_STATS_LEN 21
2441 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats)
2443 static int e100_get_sset_count(struct net_device *netdev, int sset)
2447 return E100_TEST_LEN;
2449 return E100_STATS_LEN;
2455 static void e100_get_ethtool_stats(struct net_device *netdev,
2456 struct ethtool_stats *stats, u64 *data)
2458 struct nic *nic = netdev_priv(netdev);
2461 for (i = 0; i < E100_NET_STATS_LEN; i++)
2462 data[i] = ((unsigned long *)&netdev->stats)[i];
2464 data[i++] = nic->tx_deferred;
2465 data[i++] = nic->tx_single_collisions;
2466 data[i++] = nic->tx_multiple_collisions;
2467 data[i++] = nic->tx_fc_pause;
2468 data[i++] = nic->rx_fc_pause;
2469 data[i++] = nic->rx_fc_unsupported;
2470 data[i++] = nic->tx_tco_frames;
2471 data[i++] = nic->rx_tco_frames;
2474 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2476 switch (stringset) {
2478 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2481 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2486 static const struct ethtool_ops e100_ethtool_ops = {
2487 .get_settings = e100_get_settings,
2488 .set_settings = e100_set_settings,
2489 .get_drvinfo = e100_get_drvinfo,
2490 .get_regs_len = e100_get_regs_len,
2491 .get_regs = e100_get_regs,
2492 .get_wol = e100_get_wol,
2493 .set_wol = e100_set_wol,
2494 .get_msglevel = e100_get_msglevel,
2495 .set_msglevel = e100_set_msglevel,
2496 .nway_reset = e100_nway_reset,
2497 .get_link = e100_get_link,
2498 .get_eeprom_len = e100_get_eeprom_len,
2499 .get_eeprom = e100_get_eeprom,
2500 .set_eeprom = e100_set_eeprom,
2501 .get_ringparam = e100_get_ringparam,
2502 .set_ringparam = e100_set_ringparam,
2503 .self_test = e100_diag_test,
2504 .get_strings = e100_get_strings,
2505 .phys_id = e100_phys_id,
2506 .get_ethtool_stats = e100_get_ethtool_stats,
2507 .get_sset_count = e100_get_sset_count,
2510 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2512 struct nic *nic = netdev_priv(netdev);
2514 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2517 static int e100_alloc(struct nic *nic)
2519 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2521 return nic->mem ? 0 : -ENOMEM;
2524 static void e100_free(struct nic *nic)
2527 pci_free_consistent(nic->pdev, sizeof(struct mem),
2528 nic->mem, nic->dma_addr);
2533 static int e100_open(struct net_device *netdev)
2535 struct nic *nic = netdev_priv(netdev);
2538 netif_carrier_off(netdev);
2539 if ((err = e100_up(nic)))
2540 DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n");
2544 static int e100_close(struct net_device *netdev)
2546 e100_down(netdev_priv(netdev));
2550 static const struct net_device_ops e100_netdev_ops = {
2551 .ndo_open = e100_open,
2552 .ndo_stop = e100_close,
2553 .ndo_start_xmit = e100_xmit_frame,
2554 .ndo_validate_addr = eth_validate_addr,
2555 .ndo_set_multicast_list = e100_set_multicast_list,
2556 .ndo_set_mac_address = e100_set_mac_address,
2557 .ndo_change_mtu = e100_change_mtu,
2558 .ndo_do_ioctl = e100_do_ioctl,
2559 .ndo_tx_timeout = e100_tx_timeout,
2560 #ifdef CONFIG_NET_POLL_CONTROLLER
2561 .ndo_poll_controller = e100_netpoll,
2565 static int __devinit e100_probe(struct pci_dev *pdev,
2566 const struct pci_device_id *ent)
2568 struct net_device *netdev;
2572 if (!(netdev = alloc_etherdev(sizeof(struct nic)))) {
2573 if (((1 << debug) - 1) & NETIF_MSG_PROBE)
2574 printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n");
2578 netdev->netdev_ops = &e100_netdev_ops;
2579 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2580 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2581 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2583 nic = netdev_priv(netdev);
2584 netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2585 nic->netdev = netdev;
2587 nic->msg_enable = (1 << debug) - 1;
2588 pci_set_drvdata(pdev, netdev);
2590 if ((err = pci_enable_device(pdev))) {
2591 DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n");
2592 goto err_out_free_dev;
2595 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2596 DPRINTK(PROBE, ERR, "Cannot find proper PCI device "
2597 "base address, aborting.\n");
2599 goto err_out_disable_pdev;
2602 if ((err = pci_request_regions(pdev, DRV_NAME))) {
2603 DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n");
2604 goto err_out_disable_pdev;
2607 if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
2608 DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n");
2609 goto err_out_free_res;
2612 SET_NETDEV_DEV(netdev, &pdev->dev);
2615 DPRINTK(PROBE, INFO, "using i/o access mode\n");
2617 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2619 DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n");
2621 goto err_out_free_res;
2624 if (ent->driver_data)
2629 e100_get_defaults(nic);
2631 /* locks must be initialized before calling hw_reset */
2632 spin_lock_init(&nic->cb_lock);
2633 spin_lock_init(&nic->cmd_lock);
2634 spin_lock_init(&nic->mdio_lock);
2636 /* Reset the device before pci_set_master() in case device is in some
2637 * funky state and has an interrupt pending - hint: we don't have the
2638 * interrupt handler registered yet. */
2641 pci_set_master(pdev);
2643 init_timer(&nic->watchdog);
2644 nic->watchdog.function = e100_watchdog;
2645 nic->watchdog.data = (unsigned long)nic;
2646 init_timer(&nic->blink_timer);
2647 nic->blink_timer.function = e100_blink_led;
2648 nic->blink_timer.data = (unsigned long)nic;
2650 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2652 if ((err = e100_alloc(nic))) {
2653 DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n");
2654 goto err_out_iounmap;
2657 if ((err = e100_eeprom_load(nic)))
2662 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2663 memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN);
2664 if (!is_valid_ether_addr(netdev->perm_addr)) {
2665 if (!eeprom_bad_csum_allow) {
2666 DPRINTK(PROBE, ERR, "Invalid MAC address from "
2667 "EEPROM, aborting.\n");
2671 DPRINTK(PROBE, ERR, "Invalid MAC address from EEPROM, "
2672 "you MUST configure one.\n");
2676 /* Wol magic packet can be enabled from eeprom */
2677 if ((nic->mac >= mac_82558_D101_A4) &&
2678 (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
2679 nic->flags |= wol_magic;
2680 device_set_wakeup_enable(&pdev->dev, true);
2683 /* ack any pending wake events, disable PME */
2684 pci_pme_active(pdev, false);
2686 strcpy(netdev->name, "eth%d");
2687 if ((err = register_netdev(netdev))) {
2688 DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n");
2692 DPRINTK(PROBE, INFO, "addr 0x%llx, irq %d, MAC addr %pM\n",
2693 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2694 pdev->irq, netdev->dev_addr);
2701 pci_iounmap(pdev, nic->csr);
2703 pci_release_regions(pdev);
2704 err_out_disable_pdev:
2705 pci_disable_device(pdev);
2707 pci_set_drvdata(pdev, NULL);
2708 free_netdev(netdev);
2712 static void __devexit e100_remove(struct pci_dev *pdev)
2714 struct net_device *netdev = pci_get_drvdata(pdev);
2717 struct nic *nic = netdev_priv(netdev);
2718 unregister_netdev(netdev);
2720 pci_iounmap(pdev, nic->csr);
2721 free_netdev(netdev);
2722 pci_release_regions(pdev);
2723 pci_disable_device(pdev);
2724 pci_set_drvdata(pdev, NULL);
2728 #define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */
2729 #define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */
2730 #define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */
2731 static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
2733 struct net_device *netdev = pci_get_drvdata(pdev);
2734 struct nic *nic = netdev_priv(netdev);
2736 if (netif_running(netdev))
2738 netif_device_detach(netdev);
2740 pci_save_state(pdev);
2742 if ((nic->flags & wol_magic) | e100_asf(nic)) {
2743 /* enable reverse auto-negotiation */
2744 if (nic->phy == phy_82552_v) {
2745 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
2746 E100_82552_SMARTSPEED);
2748 mdio_write(netdev, nic->mii.phy_id,
2749 E100_82552_SMARTSPEED, smartspeed |
2750 E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
2752 if (pci_enable_wake(pdev, PCI_D3cold, true))
2753 pci_enable_wake(pdev, PCI_D3hot, true);
2755 pci_enable_wake(pdev, PCI_D3hot, false);
2758 pci_disable_device(pdev);
2759 pci_set_power_state(pdev, PCI_D3hot);
2765 static int e100_resume(struct pci_dev *pdev)
2767 struct net_device *netdev = pci_get_drvdata(pdev);
2768 struct nic *nic = netdev_priv(netdev);
2770 pci_set_power_state(pdev, PCI_D0);
2771 pci_restore_state(pdev);
2772 /* ack any pending wake events, disable PME */
2773 pci_enable_wake(pdev, 0, 0);
2775 /* disbale reverse auto-negotiation */
2776 if (nic->phy == phy_82552_v) {
2777 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
2778 E100_82552_SMARTSPEED);
2780 mdio_write(netdev, nic->mii.phy_id,
2781 E100_82552_SMARTSPEED,
2782 smartspeed & ~(E100_82552_REV_ANEG));
2785 netif_device_attach(netdev);
2786 if (netif_running(netdev))
2791 #endif /* CONFIG_PM */
2793 static void e100_shutdown(struct pci_dev *pdev)
2795 e100_suspend(pdev, PMSG_SUSPEND);
2798 /* ------------------ PCI Error Recovery infrastructure -------------- */
2800 * e100_io_error_detected - called when PCI error is detected.
2801 * @pdev: Pointer to PCI device
2802 * @state: The current pci connection state
2804 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2806 struct net_device *netdev = pci_get_drvdata(pdev);
2807 struct nic *nic = netdev_priv(netdev);
2809 /* Similar to calling e100_down(), but avoids adapter I/O. */
2812 /* Detach; put netif into a state similar to hotplug unplug. */
2813 napi_enable(&nic->napi);
2814 netif_device_detach(netdev);
2815 pci_disable_device(pdev);
2817 /* Request a slot reset. */
2818 return PCI_ERS_RESULT_NEED_RESET;
2822 * e100_io_slot_reset - called after the pci bus has been reset.
2823 * @pdev: Pointer to PCI device
2825 * Restart the card from scratch.
2827 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
2829 struct net_device *netdev = pci_get_drvdata(pdev);
2830 struct nic *nic = netdev_priv(netdev);
2832 if (pci_enable_device(pdev)) {
2833 printk(KERN_ERR "e100: Cannot re-enable PCI device after reset.\n");
2834 return PCI_ERS_RESULT_DISCONNECT;
2836 pci_set_master(pdev);
2838 /* Only one device per card can do a reset */
2839 if (0 != PCI_FUNC(pdev->devfn))
2840 return PCI_ERS_RESULT_RECOVERED;
2844 return PCI_ERS_RESULT_RECOVERED;
2848 * e100_io_resume - resume normal operations
2849 * @pdev: Pointer to PCI device
2851 * Resume normal operations after an error recovery
2852 * sequence has been completed.
2854 static void e100_io_resume(struct pci_dev *pdev)
2856 struct net_device *netdev = pci_get_drvdata(pdev);
2857 struct nic *nic = netdev_priv(netdev);
2859 /* ack any pending wake events, disable PME */
2860 pci_enable_wake(pdev, 0, 0);
2862 netif_device_attach(netdev);
2863 if (netif_running(netdev)) {
2865 mod_timer(&nic->watchdog, jiffies);
2869 static struct pci_error_handlers e100_err_handler = {
2870 .error_detected = e100_io_error_detected,
2871 .slot_reset = e100_io_slot_reset,
2872 .resume = e100_io_resume,
2875 static struct pci_driver e100_driver = {
2877 .id_table = e100_id_table,
2878 .probe = e100_probe,
2879 .remove = __devexit_p(e100_remove),
2881 /* Power Management hooks */
2882 .suspend = e100_suspend,
2883 .resume = e100_resume,
2885 .shutdown = e100_shutdown,
2886 .err_handler = &e100_err_handler,
2889 static int __init e100_init_module(void)
2891 if (((1 << debug) - 1) & NETIF_MSG_DRV) {
2892 printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
2893 printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT);
2895 return pci_register_driver(&e100_driver);
2898 static void __exit e100_cleanup_module(void)
2900 pci_unregister_driver(&e100_driver);
2903 module_init(e100_init_module);
2904 module_exit(e100_cleanup_module);