2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
24 #include "kvm_cache_regs.h"
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
40 #include <asm/cmpxchg.h>
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
51 bool tdp_enabled = false;
55 AUDIT_POST_PAGE_FAULT,
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
78 module_param(dbg, bool, 0644);
82 #define ASSERT(x) do { } while (0)
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
91 #define PTE_PREFETCH_NUM 8
93 #define PT_FIRST_AVAIL_BITS_SHIFT 9
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
96 #define PT64_LEVEL_BITS 9
98 #define PT64_LEVEL_SHIFT(level) \
99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
101 #define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
105 #define PT32_LEVEL_BITS 10
107 #define PT32_LEVEL_SHIFT(level) \
108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
110 #define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
114 #define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
138 #define ACC_EXEC_MASK 1
139 #define ACC_WRITE_MASK PT_WRITABLE_MASK
140 #define ACC_USER_MASK PT_USER_MASK
141 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
143 #include <trace/events/kvm.h>
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
148 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
150 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152 /* make pte_list_desc fit well in cache line */
153 #define PTE_LIST_EXT 3
155 struct pte_list_desc {
156 u64 *sptes[PTE_LIST_EXT];
157 struct pte_list_desc *more;
160 struct kvm_shadow_walk_iterator {
168 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
169 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
170 shadow_walk_okay(&(_walker)); \
171 shadow_walk_next(&(_walker)))
173 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
174 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
175 shadow_walk_okay(&(_walker)) && \
176 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
177 __shadow_walk_next(&(_walker), spte))
179 static struct kmem_cache *pte_list_desc_cache;
180 static struct kmem_cache *mmu_page_header_cache;
181 static struct percpu_counter kvm_total_used_mmu_pages;
183 static u64 __read_mostly shadow_nx_mask;
184 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
185 static u64 __read_mostly shadow_user_mask;
186 static u64 __read_mostly shadow_accessed_mask;
187 static u64 __read_mostly shadow_dirty_mask;
188 static u64 __read_mostly shadow_mmio_mask;
190 static void mmu_spte_set(u64 *sptep, u64 spte);
192 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
194 shadow_mmio_mask = mmio_mask;
196 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
198 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
200 access &= ACC_WRITE_MASK | ACC_USER_MASK;
202 trace_mark_mmio_spte(sptep, gfn, access);
203 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
206 static bool is_mmio_spte(u64 spte)
208 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
211 static gfn_t get_mmio_spte_gfn(u64 spte)
213 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
216 static unsigned get_mmio_spte_access(u64 spte)
218 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
221 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
223 if (unlikely(is_noslot_pfn(pfn))) {
224 mark_mmio_spte(sptep, gfn, access);
231 static inline u64 rsvd_bits(int s, int e)
233 return ((1ULL << (e - s + 1)) - 1) << s;
236 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
237 u64 dirty_mask, u64 nx_mask, u64 x_mask)
239 shadow_user_mask = user_mask;
240 shadow_accessed_mask = accessed_mask;
241 shadow_dirty_mask = dirty_mask;
242 shadow_nx_mask = nx_mask;
243 shadow_x_mask = x_mask;
245 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
247 static int is_cpuid_PSE36(void)
252 static int is_nx(struct kvm_vcpu *vcpu)
254 return vcpu->arch.efer & EFER_NX;
257 static int is_shadow_present_pte(u64 pte)
259 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
262 static int is_large_pte(u64 pte)
264 return pte & PT_PAGE_SIZE_MASK;
267 static int is_dirty_gpte(unsigned long pte)
269 return pte & PT_DIRTY_MASK;
272 static int is_rmap_spte(u64 pte)
274 return is_shadow_present_pte(pte);
277 static int is_last_spte(u64 pte, int level)
279 if (level == PT_PAGE_TABLE_LEVEL)
281 if (is_large_pte(pte))
286 static pfn_t spte_to_pfn(u64 pte)
288 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
291 static gfn_t pse36_gfn_delta(u32 gpte)
293 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
295 return (gpte & PT32_DIR_PSE36_MASK) << shift;
299 static void __set_spte(u64 *sptep, u64 spte)
304 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
309 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
311 return xchg(sptep, spte);
314 static u64 __get_spte_lockless(u64 *sptep)
316 return ACCESS_ONCE(*sptep);
319 static bool __check_direct_spte_mmio_pf(u64 spte)
321 /* It is valid if the spte is zapped. */
333 static void count_spte_clear(u64 *sptep, u64 spte)
335 struct kvm_mmu_page *sp = page_header(__pa(sptep));
337 if (is_shadow_present_pte(spte))
340 /* Ensure the spte is completely set before we increase the count */
342 sp->clear_spte_count++;
345 static void __set_spte(u64 *sptep, u64 spte)
347 union split_spte *ssptep, sspte;
349 ssptep = (union split_spte *)sptep;
350 sspte = (union split_spte)spte;
352 ssptep->spte_high = sspte.spte_high;
355 * If we map the spte from nonpresent to present, We should store
356 * the high bits firstly, then set present bit, so cpu can not
357 * fetch this spte while we are setting the spte.
361 ssptep->spte_low = sspte.spte_low;
364 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
366 union split_spte *ssptep, sspte;
368 ssptep = (union split_spte *)sptep;
369 sspte = (union split_spte)spte;
371 ssptep->spte_low = sspte.spte_low;
374 * If we map the spte from present to nonpresent, we should clear
375 * present bit firstly to avoid vcpu fetch the old high bits.
379 ssptep->spte_high = sspte.spte_high;
380 count_spte_clear(sptep, spte);
383 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
385 union split_spte *ssptep, sspte, orig;
387 ssptep = (union split_spte *)sptep;
388 sspte = (union split_spte)spte;
390 /* xchg acts as a barrier before the setting of the high bits */
391 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
392 orig.spte_high = ssptep->spte_high;
393 ssptep->spte_high = sspte.spte_high;
394 count_spte_clear(sptep, spte);
400 * The idea using the light way get the spte on x86_32 guest is from
401 * gup_get_pte(arch/x86/mm/gup.c).
402 * The difference is we can not catch the spte tlb flush if we leave
403 * guest mode, so we emulate it by increase clear_spte_count when spte
406 static u64 __get_spte_lockless(u64 *sptep)
408 struct kvm_mmu_page *sp = page_header(__pa(sptep));
409 union split_spte spte, *orig = (union split_spte *)sptep;
413 count = sp->clear_spte_count;
416 spte.spte_low = orig->spte_low;
419 spte.spte_high = orig->spte_high;
422 if (unlikely(spte.spte_low != orig->spte_low ||
423 count != sp->clear_spte_count))
429 static bool __check_direct_spte_mmio_pf(u64 spte)
431 union split_spte sspte = (union split_spte)spte;
432 u32 high_mmio_mask = shadow_mmio_mask >> 32;
434 /* It is valid if the spte is zapped. */
438 /* It is valid if the spte is being zapped. */
439 if (sspte.spte_low == 0ull &&
440 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
447 static bool spte_has_volatile_bits(u64 spte)
449 if (!shadow_accessed_mask)
452 if (!is_shadow_present_pte(spte))
455 if ((spte & shadow_accessed_mask) &&
456 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
462 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
464 return (old_spte & bit_mask) && !(new_spte & bit_mask);
467 /* Rules for using mmu_spte_set:
468 * Set the sptep from nonpresent to present.
469 * Note: the sptep being assigned *must* be either not present
470 * or in a state where the hardware will not attempt to update
473 static void mmu_spte_set(u64 *sptep, u64 new_spte)
475 WARN_ON(is_shadow_present_pte(*sptep));
476 __set_spte(sptep, new_spte);
479 /* Rules for using mmu_spte_update:
480 * Update the state bits, it means the mapped pfn is not changged.
482 static void mmu_spte_update(u64 *sptep, u64 new_spte)
484 u64 mask, old_spte = *sptep;
486 WARN_ON(!is_rmap_spte(new_spte));
488 if (!is_shadow_present_pte(old_spte))
489 return mmu_spte_set(sptep, new_spte);
491 new_spte |= old_spte & shadow_dirty_mask;
493 mask = shadow_accessed_mask;
494 if (is_writable_pte(old_spte))
495 mask |= shadow_dirty_mask;
497 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
498 __update_clear_spte_fast(sptep, new_spte);
500 old_spte = __update_clear_spte_slow(sptep, new_spte);
502 if (!shadow_accessed_mask)
505 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
506 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
507 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
508 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
512 * Rules for using mmu_spte_clear_track_bits:
513 * It sets the sptep from present to nonpresent, and track the
514 * state bits, it is used to clear the last level sptep.
516 static int mmu_spte_clear_track_bits(u64 *sptep)
519 u64 old_spte = *sptep;
521 if (!spte_has_volatile_bits(old_spte))
522 __update_clear_spte_fast(sptep, 0ull);
524 old_spte = __update_clear_spte_slow(sptep, 0ull);
526 if (!is_rmap_spte(old_spte))
529 pfn = spte_to_pfn(old_spte);
530 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
531 kvm_set_pfn_accessed(pfn);
532 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
533 kvm_set_pfn_dirty(pfn);
538 * Rules for using mmu_spte_clear_no_track:
539 * Directly clear spte without caring the state bits of sptep,
540 * it is used to set the upper level spte.
542 static void mmu_spte_clear_no_track(u64 *sptep)
544 __update_clear_spte_fast(sptep, 0ull);
547 static u64 mmu_spte_get_lockless(u64 *sptep)
549 return __get_spte_lockless(sptep);
552 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
555 * Prevent page table teardown by making any free-er wait during
556 * kvm_flush_remote_tlbs() IPI to all active vcpus.
559 vcpu->mode = READING_SHADOW_PAGE_TABLES;
561 * Make sure a following spte read is not reordered ahead of the write
567 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
570 * Make sure the write to vcpu->mode is not reordered in front of
571 * reads to sptes. If it does, kvm_commit_zap_page() can see us
572 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
575 vcpu->mode = OUTSIDE_GUEST_MODE;
579 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
580 struct kmem_cache *base_cache, int min)
584 if (cache->nobjs >= min)
586 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
587 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
590 cache->objects[cache->nobjs++] = obj;
595 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
600 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
601 struct kmem_cache *cache)
604 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
607 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
612 if (cache->nobjs >= min)
614 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
615 page = (void *)__get_free_page(GFP_KERNEL);
618 cache->objects[cache->nobjs++] = page;
623 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
626 free_page((unsigned long)mc->objects[--mc->nobjs]);
629 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
633 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
634 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
637 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
640 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
641 mmu_page_header_cache, 4);
646 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
648 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
649 pte_list_desc_cache);
650 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
651 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
652 mmu_page_header_cache);
655 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
661 p = mc->objects[--mc->nobjs];
665 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
667 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
668 sizeof(struct pte_list_desc));
671 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
673 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
676 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
678 if (!sp->role.direct)
679 return sp->gfns[index];
681 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
684 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
687 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
689 sp->gfns[index] = gfn;
693 * Return the pointer to the large page information for a given gfn,
694 * handling slots that are not large page aligned.
696 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
697 struct kvm_memory_slot *slot,
702 idx = gfn_to_index(gfn, slot->base_gfn, level);
703 return &slot->arch.lpage_info[level - 2][idx];
706 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
708 struct kvm_memory_slot *slot;
709 struct kvm_lpage_info *linfo;
712 slot = gfn_to_memslot(kvm, gfn);
713 for (i = PT_DIRECTORY_LEVEL;
714 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
715 linfo = lpage_info_slot(gfn, slot, i);
716 linfo->write_count += 1;
718 kvm->arch.indirect_shadow_pages++;
721 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
723 struct kvm_memory_slot *slot;
724 struct kvm_lpage_info *linfo;
727 slot = gfn_to_memslot(kvm, gfn);
728 for (i = PT_DIRECTORY_LEVEL;
729 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
730 linfo = lpage_info_slot(gfn, slot, i);
731 linfo->write_count -= 1;
732 WARN_ON(linfo->write_count < 0);
734 kvm->arch.indirect_shadow_pages--;
737 static int has_wrprotected_page(struct kvm *kvm,
741 struct kvm_memory_slot *slot;
742 struct kvm_lpage_info *linfo;
744 slot = gfn_to_memslot(kvm, gfn);
746 linfo = lpage_info_slot(gfn, slot, level);
747 return linfo->write_count;
753 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
755 unsigned long page_size;
758 page_size = kvm_host_page_size(kvm, gfn);
760 for (i = PT_PAGE_TABLE_LEVEL;
761 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
762 if (page_size >= KVM_HPAGE_SIZE(i))
771 static struct kvm_memory_slot *
772 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
775 struct kvm_memory_slot *slot;
777 slot = gfn_to_memslot(vcpu->kvm, gfn);
778 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
779 (no_dirty_log && slot->dirty_bitmap))
785 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
787 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
790 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
792 int host_level, level, max_level;
794 host_level = host_mapping_level(vcpu->kvm, large_gfn);
796 if (host_level == PT_PAGE_TABLE_LEVEL)
799 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
800 kvm_x86_ops->get_lpage_level() : host_level;
802 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
803 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
810 * Pte mapping structures:
812 * If pte_list bit zero is zero, then pte_list point to the spte.
814 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
815 * pte_list_desc containing more mappings.
817 * Returns the number of pte entries before the spte was added or zero if
818 * the spte was not added.
821 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
822 unsigned long *pte_list)
824 struct pte_list_desc *desc;
828 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
829 *pte_list = (unsigned long)spte;
830 } else if (!(*pte_list & 1)) {
831 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
832 desc = mmu_alloc_pte_list_desc(vcpu);
833 desc->sptes[0] = (u64 *)*pte_list;
834 desc->sptes[1] = spte;
835 *pte_list = (unsigned long)desc | 1;
838 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
839 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
840 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
842 count += PTE_LIST_EXT;
844 if (desc->sptes[PTE_LIST_EXT-1]) {
845 desc->more = mmu_alloc_pte_list_desc(vcpu);
848 for (i = 0; desc->sptes[i]; ++i)
850 desc->sptes[i] = spte;
856 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
857 int i, struct pte_list_desc *prev_desc)
861 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
863 desc->sptes[i] = desc->sptes[j];
864 desc->sptes[j] = NULL;
867 if (!prev_desc && !desc->more)
868 *pte_list = (unsigned long)desc->sptes[0];
871 prev_desc->more = desc->more;
873 *pte_list = (unsigned long)desc->more | 1;
874 mmu_free_pte_list_desc(desc);
877 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
879 struct pte_list_desc *desc;
880 struct pte_list_desc *prev_desc;
884 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
886 } else if (!(*pte_list & 1)) {
887 rmap_printk("pte_list_remove: %p 1->0\n", spte);
888 if ((u64 *)*pte_list != spte) {
889 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
894 rmap_printk("pte_list_remove: %p many->many\n", spte);
895 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
898 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
899 if (desc->sptes[i] == spte) {
900 pte_list_desc_remove_entry(pte_list,
908 pr_err("pte_list_remove: %p many->many\n", spte);
913 typedef void (*pte_list_walk_fn) (u64 *spte);
914 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
916 struct pte_list_desc *desc;
922 if (!(*pte_list & 1))
923 return fn((u64 *)*pte_list);
925 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
927 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
933 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
934 struct kvm_memory_slot *slot)
936 struct kvm_lpage_info *linfo;
938 if (likely(level == PT_PAGE_TABLE_LEVEL))
939 return &slot->rmap[gfn - slot->base_gfn];
941 linfo = lpage_info_slot(gfn, slot, level);
942 return &linfo->rmap_pde;
946 * Take gfn and return the reverse mapping to it.
948 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
950 struct kvm_memory_slot *slot;
952 slot = gfn_to_memslot(kvm, gfn);
953 return __gfn_to_rmap(gfn, level, slot);
956 static bool rmap_can_add(struct kvm_vcpu *vcpu)
958 struct kvm_mmu_memory_cache *cache;
960 cache = &vcpu->arch.mmu_pte_list_desc_cache;
961 return mmu_memory_cache_free_objects(cache);
964 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
966 struct kvm_mmu_page *sp;
967 unsigned long *rmapp;
969 sp = page_header(__pa(spte));
970 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
971 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
972 return pte_list_add(vcpu, spte, rmapp);
975 static void rmap_remove(struct kvm *kvm, u64 *spte)
977 struct kvm_mmu_page *sp;
979 unsigned long *rmapp;
981 sp = page_header(__pa(spte));
982 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
983 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
984 pte_list_remove(spte, rmapp);
988 * Used by the following functions to iterate through the sptes linked by a
989 * rmap. All fields are private and not assumed to be used outside.
991 struct rmap_iterator {
993 struct pte_list_desc *desc; /* holds the sptep if not NULL */
994 int pos; /* index of the sptep */
998 * Iteration must be started by this function. This should also be used after
999 * removing/dropping sptes from the rmap link because in such cases the
1000 * information in the itererator may not be valid.
1002 * Returns sptep if found, NULL otherwise.
1004 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1014 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1016 return iter->desc->sptes[iter->pos];
1020 * Must be used with a valid iterator: e.g. after rmap_get_first().
1022 * Returns sptep if found, NULL otherwise.
1024 static u64 *rmap_get_next(struct rmap_iterator *iter)
1027 if (iter->pos < PTE_LIST_EXT - 1) {
1031 sptep = iter->desc->sptes[iter->pos];
1036 iter->desc = iter->desc->more;
1040 /* desc->sptes[0] cannot be NULL */
1041 return iter->desc->sptes[iter->pos];
1048 static void drop_spte(struct kvm *kvm, u64 *sptep)
1050 if (mmu_spte_clear_track_bits(sptep))
1051 rmap_remove(kvm, sptep);
1054 static int __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp, int level)
1057 struct rmap_iterator iter;
1058 int write_protected = 0;
1060 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1061 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1062 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1064 if (!is_writable_pte(*sptep)) {
1065 sptep = rmap_get_next(&iter);
1069 if (level == PT_PAGE_TABLE_LEVEL) {
1070 mmu_spte_update(sptep, *sptep & ~PT_WRITABLE_MASK);
1071 sptep = rmap_get_next(&iter);
1073 BUG_ON(!is_large_pte(*sptep));
1074 drop_spte(kvm, sptep);
1076 sptep = rmap_get_first(*rmapp, &iter);
1079 write_protected = 1;
1082 return write_protected;
1086 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1087 * @kvm: kvm instance
1088 * @slot: slot to protect
1089 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1090 * @mask: indicates which pages we should protect
1092 * Used when we do not need to care about huge page mappings: e.g. during dirty
1093 * logging we do not have any such mappings.
1095 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1096 struct kvm_memory_slot *slot,
1097 gfn_t gfn_offset, unsigned long mask)
1099 unsigned long *rmapp;
1102 rmapp = &slot->rmap[gfn_offset + __ffs(mask)];
1103 __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL);
1105 /* clear the first set bit */
1110 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
1112 struct kvm_memory_slot *slot;
1113 unsigned long *rmapp;
1115 int write_protected = 0;
1117 slot = gfn_to_memslot(kvm, gfn);
1119 for (i = PT_PAGE_TABLE_LEVEL;
1120 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1121 rmapp = __gfn_to_rmap(gfn, i, slot);
1122 write_protected |= __rmap_write_protect(kvm, rmapp, i);
1125 return write_protected;
1128 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1132 struct rmap_iterator iter;
1133 int need_tlb_flush = 0;
1135 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1136 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1137 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1139 drop_spte(kvm, sptep);
1143 return need_tlb_flush;
1146 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1150 struct rmap_iterator iter;
1153 pte_t *ptep = (pte_t *)data;
1156 WARN_ON(pte_huge(*ptep));
1157 new_pfn = pte_pfn(*ptep);
1159 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1160 BUG_ON(!is_shadow_present_pte(*sptep));
1161 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1165 if (pte_write(*ptep)) {
1166 drop_spte(kvm, sptep);
1167 sptep = rmap_get_first(*rmapp, &iter);
1169 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1170 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1172 new_spte &= ~PT_WRITABLE_MASK;
1173 new_spte &= ~SPTE_HOST_WRITEABLE;
1174 new_spte &= ~shadow_accessed_mask;
1176 mmu_spte_clear_track_bits(sptep);
1177 mmu_spte_set(sptep, new_spte);
1178 sptep = rmap_get_next(&iter);
1183 kvm_flush_remote_tlbs(kvm);
1188 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1190 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1191 unsigned long data))
1196 struct kvm_memslots *slots;
1197 struct kvm_memory_slot *memslot;
1199 slots = kvm_memslots(kvm);
1201 kvm_for_each_memslot(memslot, slots) {
1202 unsigned long start = memslot->userspace_addr;
1205 end = start + (memslot->npages << PAGE_SHIFT);
1206 if (hva >= start && hva < end) {
1207 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
1208 gfn_t gfn = memslot->base_gfn + gfn_offset;
1210 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
1212 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
1213 struct kvm_lpage_info *linfo;
1215 linfo = lpage_info_slot(gfn, memslot,
1216 PT_DIRECTORY_LEVEL + j);
1217 ret |= handler(kvm, &linfo->rmap_pde, data);
1219 trace_kvm_age_page(hva, memslot, ret);
1227 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1229 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1232 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1234 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1237 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1241 struct rmap_iterator iter;
1245 * Emulate the accessed bit for EPT, by checking if this page has
1246 * an EPT mapping, and clearing it if it does. On the next access,
1247 * a new EPT mapping will be established.
1248 * This has some overhead, but not as much as the cost of swapping
1249 * out actively used pages or breaking up actively used hugepages.
1251 if (!shadow_accessed_mask)
1252 return kvm_unmap_rmapp(kvm, rmapp, data);
1254 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1255 sptep = rmap_get_next(&iter)) {
1256 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1258 if (*sptep & PT_ACCESSED_MASK) {
1260 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)sptep);
1267 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1271 struct rmap_iterator iter;
1275 * If there's no access bit in the secondary pte set by the
1276 * hardware it's up to gup-fast/gup to set the access bit in
1277 * the primary pte or in the page structure.
1279 if (!shadow_accessed_mask)
1282 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1283 sptep = rmap_get_next(&iter)) {
1284 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1286 if (*sptep & PT_ACCESSED_MASK) {
1295 #define RMAP_RECYCLE_THRESHOLD 1000
1297 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1299 unsigned long *rmapp;
1300 struct kvm_mmu_page *sp;
1302 sp = page_header(__pa(spte));
1304 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1306 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
1307 kvm_flush_remote_tlbs(vcpu->kvm);
1310 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1312 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
1315 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1317 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1321 static int is_empty_shadow_page(u64 *spt)
1326 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1327 if (is_shadow_present_pte(*pos)) {
1328 printk(KERN_ERR "%s: %p %llx\n", __func__,
1337 * This value is the sum of all of the kvm instances's
1338 * kvm->arch.n_used_mmu_pages values. We need a global,
1339 * aggregate version in order to make the slab shrinker
1342 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1344 kvm->arch.n_used_mmu_pages += nr;
1345 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1349 * Remove the sp from shadow page cache, after call it,
1350 * we can not find this sp from the cache, and the shadow
1351 * page table is still valid.
1352 * It should be under the protection of mmu lock.
1354 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1356 ASSERT(is_empty_shadow_page(sp->spt));
1357 hlist_del(&sp->hash_link);
1358 if (!sp->role.direct)
1359 free_page((unsigned long)sp->gfns);
1363 * Free the shadow page table and the sp, we can do it
1364 * out of the protection of mmu lock.
1366 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1368 list_del(&sp->link);
1369 free_page((unsigned long)sp->spt);
1370 kmem_cache_free(mmu_page_header_cache, sp);
1373 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1375 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1378 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1379 struct kvm_mmu_page *sp, u64 *parent_pte)
1384 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1387 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1390 pte_list_remove(parent_pte, &sp->parent_ptes);
1393 static void drop_parent_pte(struct kvm_mmu_page *sp,
1396 mmu_page_remove_parent_pte(sp, parent_pte);
1397 mmu_spte_clear_no_track(parent_pte);
1400 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1401 u64 *parent_pte, int direct)
1403 struct kvm_mmu_page *sp;
1404 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1406 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1408 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1410 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1411 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1412 bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
1413 sp->parent_ptes = 0;
1414 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1415 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1419 static void mark_unsync(u64 *spte);
1420 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1422 pte_list_walk(&sp->parent_ptes, mark_unsync);
1425 static void mark_unsync(u64 *spte)
1427 struct kvm_mmu_page *sp;
1430 sp = page_header(__pa(spte));
1431 index = spte - sp->spt;
1432 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1434 if (sp->unsync_children++)
1436 kvm_mmu_mark_parents_unsync(sp);
1439 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1440 struct kvm_mmu_page *sp)
1445 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1449 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1450 struct kvm_mmu_page *sp, u64 *spte,
1456 #define KVM_PAGE_ARRAY_NR 16
1458 struct kvm_mmu_pages {
1459 struct mmu_page_and_offset {
1460 struct kvm_mmu_page *sp;
1462 } page[KVM_PAGE_ARRAY_NR];
1466 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1472 for (i=0; i < pvec->nr; i++)
1473 if (pvec->page[i].sp == sp)
1476 pvec->page[pvec->nr].sp = sp;
1477 pvec->page[pvec->nr].idx = idx;
1479 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1482 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1483 struct kvm_mmu_pages *pvec)
1485 int i, ret, nr_unsync_leaf = 0;
1487 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1488 struct kvm_mmu_page *child;
1489 u64 ent = sp->spt[i];
1491 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1492 goto clear_child_bitmap;
1494 child = page_header(ent & PT64_BASE_ADDR_MASK);
1496 if (child->unsync_children) {
1497 if (mmu_pages_add(pvec, child, i))
1500 ret = __mmu_unsync_walk(child, pvec);
1502 goto clear_child_bitmap;
1504 nr_unsync_leaf += ret;
1507 } else if (child->unsync) {
1509 if (mmu_pages_add(pvec, child, i))
1512 goto clear_child_bitmap;
1517 __clear_bit(i, sp->unsync_child_bitmap);
1518 sp->unsync_children--;
1519 WARN_ON((int)sp->unsync_children < 0);
1523 return nr_unsync_leaf;
1526 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1527 struct kvm_mmu_pages *pvec)
1529 if (!sp->unsync_children)
1532 mmu_pages_add(pvec, sp, 0);
1533 return __mmu_unsync_walk(sp, pvec);
1536 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1538 WARN_ON(!sp->unsync);
1539 trace_kvm_mmu_sync_page(sp);
1541 --kvm->stat.mmu_unsync;
1544 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1545 struct list_head *invalid_list);
1546 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1547 struct list_head *invalid_list);
1549 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1550 hlist_for_each_entry(sp, pos, \
1551 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1552 if ((sp)->gfn != (gfn)) {} else
1554 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1555 hlist_for_each_entry(sp, pos, \
1556 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1557 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1558 (sp)->role.invalid) {} else
1560 /* @sp->gfn should be write-protected at the call site */
1561 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1562 struct list_head *invalid_list, bool clear_unsync)
1564 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1565 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1570 kvm_unlink_unsync_page(vcpu->kvm, sp);
1572 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1573 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1577 kvm_mmu_flush_tlb(vcpu);
1581 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1582 struct kvm_mmu_page *sp)
1584 LIST_HEAD(invalid_list);
1587 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1589 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1594 #ifdef CONFIG_KVM_MMU_AUDIT
1595 #include "mmu_audit.c"
1597 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1598 static void mmu_audit_disable(void) { }
1601 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1602 struct list_head *invalid_list)
1604 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1607 /* @gfn should be write-protected at the call site */
1608 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1610 struct kvm_mmu_page *s;
1611 struct hlist_node *node;
1612 LIST_HEAD(invalid_list);
1615 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1619 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1620 kvm_unlink_unsync_page(vcpu->kvm, s);
1621 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1622 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1623 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1629 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1631 kvm_mmu_flush_tlb(vcpu);
1634 struct mmu_page_path {
1635 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1636 unsigned int idx[PT64_ROOT_LEVEL-1];
1639 #define for_each_sp(pvec, sp, parents, i) \
1640 for (i = mmu_pages_next(&pvec, &parents, -1), \
1641 sp = pvec.page[i].sp; \
1642 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1643 i = mmu_pages_next(&pvec, &parents, i))
1645 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1646 struct mmu_page_path *parents,
1651 for (n = i+1; n < pvec->nr; n++) {
1652 struct kvm_mmu_page *sp = pvec->page[n].sp;
1654 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1655 parents->idx[0] = pvec->page[n].idx;
1659 parents->parent[sp->role.level-2] = sp;
1660 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1666 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1668 struct kvm_mmu_page *sp;
1669 unsigned int level = 0;
1672 unsigned int idx = parents->idx[level];
1674 sp = parents->parent[level];
1678 --sp->unsync_children;
1679 WARN_ON((int)sp->unsync_children < 0);
1680 __clear_bit(idx, sp->unsync_child_bitmap);
1682 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1685 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1686 struct mmu_page_path *parents,
1687 struct kvm_mmu_pages *pvec)
1689 parents->parent[parent->role.level-1] = NULL;
1693 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1694 struct kvm_mmu_page *parent)
1697 struct kvm_mmu_page *sp;
1698 struct mmu_page_path parents;
1699 struct kvm_mmu_pages pages;
1700 LIST_HEAD(invalid_list);
1702 kvm_mmu_pages_init(parent, &parents, &pages);
1703 while (mmu_unsync_walk(parent, &pages)) {
1706 for_each_sp(pages, sp, parents, i)
1707 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1710 kvm_flush_remote_tlbs(vcpu->kvm);
1712 for_each_sp(pages, sp, parents, i) {
1713 kvm_sync_page(vcpu, sp, &invalid_list);
1714 mmu_pages_clear_parents(&parents);
1716 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1717 cond_resched_lock(&vcpu->kvm->mmu_lock);
1718 kvm_mmu_pages_init(parent, &parents, &pages);
1722 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1726 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1730 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1732 sp->write_flooding_count = 0;
1735 static void clear_sp_write_flooding_count(u64 *spte)
1737 struct kvm_mmu_page *sp = page_header(__pa(spte));
1739 __clear_sp_write_flooding_count(sp);
1742 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1750 union kvm_mmu_page_role role;
1752 struct kvm_mmu_page *sp;
1753 struct hlist_node *node;
1754 bool need_sync = false;
1756 role = vcpu->arch.mmu.base_role;
1758 role.direct = direct;
1761 role.access = access;
1762 if (!vcpu->arch.mmu.direct_map
1763 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1764 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1765 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1766 role.quadrant = quadrant;
1768 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1769 if (!need_sync && sp->unsync)
1772 if (sp->role.word != role.word)
1775 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1778 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1779 if (sp->unsync_children) {
1780 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1781 kvm_mmu_mark_parents_unsync(sp);
1782 } else if (sp->unsync)
1783 kvm_mmu_mark_parents_unsync(sp);
1785 __clear_sp_write_flooding_count(sp);
1786 trace_kvm_mmu_get_page(sp, false);
1789 ++vcpu->kvm->stat.mmu_cache_miss;
1790 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1795 hlist_add_head(&sp->hash_link,
1796 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1798 if (rmap_write_protect(vcpu->kvm, gfn))
1799 kvm_flush_remote_tlbs(vcpu->kvm);
1800 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1801 kvm_sync_pages(vcpu, gfn);
1803 account_shadowed(vcpu->kvm, gfn);
1805 init_shadow_page_table(sp);
1806 trace_kvm_mmu_get_page(sp, true);
1810 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1811 struct kvm_vcpu *vcpu, u64 addr)
1813 iterator->addr = addr;
1814 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1815 iterator->level = vcpu->arch.mmu.shadow_root_level;
1817 if (iterator->level == PT64_ROOT_LEVEL &&
1818 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1819 !vcpu->arch.mmu.direct_map)
1822 if (iterator->level == PT32E_ROOT_LEVEL) {
1823 iterator->shadow_addr
1824 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1825 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1827 if (!iterator->shadow_addr)
1828 iterator->level = 0;
1832 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1834 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1837 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1838 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1842 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1845 if (is_last_spte(spte, iterator->level)) {
1846 iterator->level = 0;
1850 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1854 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1856 return __shadow_walk_next(iterator, *iterator->sptep);
1859 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1863 spte = __pa(sp->spt)
1864 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1865 | PT_WRITABLE_MASK | PT_USER_MASK;
1866 mmu_spte_set(sptep, spte);
1869 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1871 if (is_large_pte(*sptep)) {
1872 drop_spte(vcpu->kvm, sptep);
1873 --vcpu->kvm->stat.lpages;
1874 kvm_flush_remote_tlbs(vcpu->kvm);
1878 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1879 unsigned direct_access)
1881 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1882 struct kvm_mmu_page *child;
1885 * For the direct sp, if the guest pte's dirty bit
1886 * changed form clean to dirty, it will corrupt the
1887 * sp's access: allow writable in the read-only sp,
1888 * so we should update the spte at this point to get
1889 * a new sp with the correct access.
1891 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1892 if (child->role.access == direct_access)
1895 drop_parent_pte(child, sptep);
1896 kvm_flush_remote_tlbs(vcpu->kvm);
1900 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1904 struct kvm_mmu_page *child;
1907 if (is_shadow_present_pte(pte)) {
1908 if (is_last_spte(pte, sp->role.level)) {
1909 drop_spte(kvm, spte);
1910 if (is_large_pte(pte))
1913 child = page_header(pte & PT64_BASE_ADDR_MASK);
1914 drop_parent_pte(child, spte);
1919 if (is_mmio_spte(pte))
1920 mmu_spte_clear_no_track(spte);
1925 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1926 struct kvm_mmu_page *sp)
1930 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1931 mmu_page_zap_pte(kvm, sp, sp->spt + i);
1934 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1936 mmu_page_remove_parent_pte(sp, parent_pte);
1939 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1942 struct rmap_iterator iter;
1944 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
1945 drop_parent_pte(sp, sptep);
1948 static int mmu_zap_unsync_children(struct kvm *kvm,
1949 struct kvm_mmu_page *parent,
1950 struct list_head *invalid_list)
1953 struct mmu_page_path parents;
1954 struct kvm_mmu_pages pages;
1956 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1959 kvm_mmu_pages_init(parent, &parents, &pages);
1960 while (mmu_unsync_walk(parent, &pages)) {
1961 struct kvm_mmu_page *sp;
1963 for_each_sp(pages, sp, parents, i) {
1964 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1965 mmu_pages_clear_parents(&parents);
1968 kvm_mmu_pages_init(parent, &parents, &pages);
1974 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1975 struct list_head *invalid_list)
1979 trace_kvm_mmu_prepare_zap_page(sp);
1980 ++kvm->stat.mmu_shadow_zapped;
1981 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1982 kvm_mmu_page_unlink_children(kvm, sp);
1983 kvm_mmu_unlink_parents(kvm, sp);
1984 if (!sp->role.invalid && !sp->role.direct)
1985 unaccount_shadowed(kvm, sp->gfn);
1987 kvm_unlink_unsync_page(kvm, sp);
1988 if (!sp->root_count) {
1991 list_move(&sp->link, invalid_list);
1992 kvm_mod_used_mmu_pages(kvm, -1);
1994 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1995 kvm_reload_remote_mmus(kvm);
1998 sp->role.invalid = 1;
2002 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2003 struct list_head *invalid_list)
2005 struct kvm_mmu_page *sp;
2007 if (list_empty(invalid_list))
2011 * wmb: make sure everyone sees our modifications to the page tables
2012 * rmb: make sure we see changes to vcpu->mode
2017 * Wait for all vcpus to exit guest mode and/or lockless shadow
2020 kvm_flush_remote_tlbs(kvm);
2023 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2024 WARN_ON(!sp->role.invalid || sp->root_count);
2025 kvm_mmu_isolate_page(sp);
2026 kvm_mmu_free_page(sp);
2027 } while (!list_empty(invalid_list));
2031 * Changing the number of mmu pages allocated to the vm
2032 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2034 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2036 LIST_HEAD(invalid_list);
2038 * If we set the number of mmu pages to be smaller be than the
2039 * number of actived pages , we must to free some mmu pages before we
2043 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2044 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
2045 !list_empty(&kvm->arch.active_mmu_pages)) {
2046 struct kvm_mmu_page *page;
2048 page = container_of(kvm->arch.active_mmu_pages.prev,
2049 struct kvm_mmu_page, link);
2050 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2052 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2053 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2056 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2059 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2061 struct kvm_mmu_page *sp;
2062 struct hlist_node *node;
2063 LIST_HEAD(invalid_list);
2066 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2068 spin_lock(&kvm->mmu_lock);
2069 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2070 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2073 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2075 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2076 spin_unlock(&kvm->mmu_lock);
2080 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2082 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
2084 int slot = memslot_id(kvm, gfn);
2085 struct kvm_mmu_page *sp = page_header(__pa(pte));
2087 __set_bit(slot, sp->slot_bitmap);
2091 * The function is based on mtrr_type_lookup() in
2092 * arch/x86/kernel/cpu/mtrr/generic.c
2094 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2099 u8 prev_match, curr_match;
2100 int num_var_ranges = KVM_NR_VAR_MTRR;
2102 if (!mtrr_state->enabled)
2105 /* Make end inclusive end, instead of exclusive */
2108 /* Look in fixed ranges. Just return the type as per start */
2109 if (mtrr_state->have_fixed && (start < 0x100000)) {
2112 if (start < 0x80000) {
2114 idx += (start >> 16);
2115 return mtrr_state->fixed_ranges[idx];
2116 } else if (start < 0xC0000) {
2118 idx += ((start - 0x80000) >> 14);
2119 return mtrr_state->fixed_ranges[idx];
2120 } else if (start < 0x1000000) {
2122 idx += ((start - 0xC0000) >> 12);
2123 return mtrr_state->fixed_ranges[idx];
2128 * Look in variable ranges
2129 * Look of multiple ranges matching this address and pick type
2130 * as per MTRR precedence
2132 if (!(mtrr_state->enabled & 2))
2133 return mtrr_state->def_type;
2136 for (i = 0; i < num_var_ranges; ++i) {
2137 unsigned short start_state, end_state;
2139 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2142 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2143 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2144 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2145 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2147 start_state = ((start & mask) == (base & mask));
2148 end_state = ((end & mask) == (base & mask));
2149 if (start_state != end_state)
2152 if ((start & mask) != (base & mask))
2155 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2156 if (prev_match == 0xFF) {
2157 prev_match = curr_match;
2161 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2162 curr_match == MTRR_TYPE_UNCACHABLE)
2163 return MTRR_TYPE_UNCACHABLE;
2165 if ((prev_match == MTRR_TYPE_WRBACK &&
2166 curr_match == MTRR_TYPE_WRTHROUGH) ||
2167 (prev_match == MTRR_TYPE_WRTHROUGH &&
2168 curr_match == MTRR_TYPE_WRBACK)) {
2169 prev_match = MTRR_TYPE_WRTHROUGH;
2170 curr_match = MTRR_TYPE_WRTHROUGH;
2173 if (prev_match != curr_match)
2174 return MTRR_TYPE_UNCACHABLE;
2177 if (prev_match != 0xFF)
2180 return mtrr_state->def_type;
2183 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2187 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2188 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2189 if (mtrr == 0xfe || mtrr == 0xff)
2190 mtrr = MTRR_TYPE_WRBACK;
2193 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2195 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2197 trace_kvm_mmu_unsync_page(sp);
2198 ++vcpu->kvm->stat.mmu_unsync;
2201 kvm_mmu_mark_parents_unsync(sp);
2204 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2206 struct kvm_mmu_page *s;
2207 struct hlist_node *node;
2209 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2212 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2213 __kvm_unsync_page(vcpu, s);
2217 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2220 struct kvm_mmu_page *s;
2221 struct hlist_node *node;
2222 bool need_unsync = false;
2224 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2228 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2231 if (!need_unsync && !s->unsync) {
2236 kvm_unsync_pages(vcpu, gfn);
2240 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2241 unsigned pte_access, int user_fault,
2242 int write_fault, int level,
2243 gfn_t gfn, pfn_t pfn, bool speculative,
2244 bool can_unsync, bool host_writable)
2246 u64 spte, entry = *sptep;
2249 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2252 spte = PT_PRESENT_MASK;
2254 spte |= shadow_accessed_mask;
2256 if (pte_access & ACC_EXEC_MASK)
2257 spte |= shadow_x_mask;
2259 spte |= shadow_nx_mask;
2260 if (pte_access & ACC_USER_MASK)
2261 spte |= shadow_user_mask;
2262 if (level > PT_PAGE_TABLE_LEVEL)
2263 spte |= PT_PAGE_SIZE_MASK;
2265 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2266 kvm_is_mmio_pfn(pfn));
2269 spte |= SPTE_HOST_WRITEABLE;
2271 pte_access &= ~ACC_WRITE_MASK;
2273 spte |= (u64)pfn << PAGE_SHIFT;
2275 if ((pte_access & ACC_WRITE_MASK)
2276 || (!vcpu->arch.mmu.direct_map && write_fault
2277 && !is_write_protection(vcpu) && !user_fault)) {
2279 if (level > PT_PAGE_TABLE_LEVEL &&
2280 has_wrprotected_page(vcpu->kvm, gfn, level)) {
2282 drop_spte(vcpu->kvm, sptep);
2286 spte |= PT_WRITABLE_MASK;
2288 if (!vcpu->arch.mmu.direct_map
2289 && !(pte_access & ACC_WRITE_MASK)) {
2290 spte &= ~PT_USER_MASK;
2292 * If we converted a user page to a kernel page,
2293 * so that the kernel can write to it when cr0.wp=0,
2294 * then we should prevent the kernel from executing it
2295 * if SMEP is enabled.
2297 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2298 spte |= PT64_NX_MASK;
2302 * Optimization: for pte sync, if spte was writable the hash
2303 * lookup is unnecessary (and expensive). Write protection
2304 * is responsibility of mmu_get_page / kvm_sync_page.
2305 * Same reasoning can be applied to dirty page accounting.
2307 if (!can_unsync && is_writable_pte(*sptep))
2310 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2311 pgprintk("%s: found shadow page for %llx, marking ro\n",
2314 pte_access &= ~ACC_WRITE_MASK;
2315 if (is_writable_pte(spte))
2316 spte &= ~PT_WRITABLE_MASK;
2320 if (pte_access & ACC_WRITE_MASK)
2321 mark_page_dirty(vcpu->kvm, gfn);
2324 mmu_spte_update(sptep, spte);
2326 * If we overwrite a writable spte with a read-only one we
2327 * should flush remote TLBs. Otherwise rmap_write_protect
2328 * will find a read-only spte, even though the writable spte
2329 * might be cached on a CPU's TLB.
2331 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2332 kvm_flush_remote_tlbs(vcpu->kvm);
2337 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2338 unsigned pt_access, unsigned pte_access,
2339 int user_fault, int write_fault,
2340 int *emulate, int level, gfn_t gfn,
2341 pfn_t pfn, bool speculative,
2344 int was_rmapped = 0;
2347 pgprintk("%s: spte %llx access %x write_fault %d"
2348 " user_fault %d gfn %llx\n",
2349 __func__, *sptep, pt_access,
2350 write_fault, user_fault, gfn);
2352 if (is_rmap_spte(*sptep)) {
2354 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2355 * the parent of the now unreachable PTE.
2357 if (level > PT_PAGE_TABLE_LEVEL &&
2358 !is_large_pte(*sptep)) {
2359 struct kvm_mmu_page *child;
2362 child = page_header(pte & PT64_BASE_ADDR_MASK);
2363 drop_parent_pte(child, sptep);
2364 kvm_flush_remote_tlbs(vcpu->kvm);
2365 } else if (pfn != spte_to_pfn(*sptep)) {
2366 pgprintk("hfn old %llx new %llx\n",
2367 spte_to_pfn(*sptep), pfn);
2368 drop_spte(vcpu->kvm, sptep);
2369 kvm_flush_remote_tlbs(vcpu->kvm);
2374 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2375 level, gfn, pfn, speculative, true,
2379 kvm_mmu_flush_tlb(vcpu);
2382 if (unlikely(is_mmio_spte(*sptep) && emulate))
2385 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2386 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2387 is_large_pte(*sptep)? "2MB" : "4kB",
2388 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2390 if (!was_rmapped && is_large_pte(*sptep))
2391 ++vcpu->kvm->stat.lpages;
2393 if (is_shadow_present_pte(*sptep)) {
2394 page_header_update_slot(vcpu->kvm, sptep, gfn);
2396 rmap_count = rmap_add(vcpu, sptep, gfn);
2397 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2398 rmap_recycle(vcpu, sptep, gfn);
2401 kvm_release_pfn_clean(pfn);
2404 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2408 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2411 struct kvm_memory_slot *slot;
2414 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2416 get_page(fault_page);
2417 return page_to_pfn(fault_page);
2420 hva = gfn_to_hva_memslot(slot, gfn);
2422 return hva_to_pfn_atomic(vcpu->kvm, hva);
2425 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2426 struct kvm_mmu_page *sp,
2427 u64 *start, u64 *end)
2429 struct page *pages[PTE_PREFETCH_NUM];
2430 unsigned access = sp->role.access;
2434 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2435 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2438 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2442 for (i = 0; i < ret; i++, gfn++, start++)
2443 mmu_set_spte(vcpu, start, ACC_ALL,
2445 sp->role.level, gfn,
2446 page_to_pfn(pages[i]), true, true);
2451 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2452 struct kvm_mmu_page *sp, u64 *sptep)
2454 u64 *spte, *start = NULL;
2457 WARN_ON(!sp->role.direct);
2459 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2462 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2463 if (is_shadow_present_pte(*spte) || spte == sptep) {
2466 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2474 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2476 struct kvm_mmu_page *sp;
2479 * Since it's no accessed bit on EPT, it's no way to
2480 * distinguish between actually accessed translations
2481 * and prefetched, so disable pte prefetch if EPT is
2484 if (!shadow_accessed_mask)
2487 sp = page_header(__pa(sptep));
2488 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2491 __direct_pte_prefetch(vcpu, sp, sptep);
2494 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2495 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2498 struct kvm_shadow_walk_iterator iterator;
2499 struct kvm_mmu_page *sp;
2503 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2504 if (iterator.level == level) {
2505 unsigned pte_access = ACC_ALL;
2507 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2509 level, gfn, pfn, prefault, map_writable);
2510 direct_pte_prefetch(vcpu, iterator.sptep);
2511 ++vcpu->stat.pf_fixed;
2515 if (!is_shadow_present_pte(*iterator.sptep)) {
2516 u64 base_addr = iterator.addr;
2518 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2519 pseudo_gfn = base_addr >> PAGE_SHIFT;
2520 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2522 1, ACC_ALL, iterator.sptep);
2524 pgprintk("nonpaging_map: ENOMEM\n");
2525 kvm_release_pfn_clean(pfn);
2529 mmu_spte_set(iterator.sptep,
2531 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2532 | shadow_user_mask | shadow_x_mask
2533 | shadow_accessed_mask);
2539 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2543 info.si_signo = SIGBUS;
2545 info.si_code = BUS_MCEERR_AR;
2546 info.si_addr = (void __user *)address;
2547 info.si_addr_lsb = PAGE_SHIFT;
2549 send_sig_info(SIGBUS, &info, tsk);
2552 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2554 kvm_release_pfn_clean(pfn);
2555 if (is_hwpoison_pfn(pfn)) {
2556 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2563 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2564 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2568 int level = *levelp;
2571 * Check if it's a transparent hugepage. If this would be an
2572 * hugetlbfs page, level wouldn't be set to
2573 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2576 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2577 level == PT_PAGE_TABLE_LEVEL &&
2578 PageTransCompound(pfn_to_page(pfn)) &&
2579 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2582 * mmu_notifier_retry was successful and we hold the
2583 * mmu_lock here, so the pmd can't become splitting
2584 * from under us, and in turn
2585 * __split_huge_page_refcount() can't run from under
2586 * us and we can safely transfer the refcount from
2587 * PG_tail to PG_head as we switch the pfn to tail to
2590 *levelp = level = PT_DIRECTORY_LEVEL;
2591 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2592 VM_BUG_ON((gfn & mask) != (pfn & mask));
2596 kvm_release_pfn_clean(pfn);
2598 if (!get_page_unless_zero(pfn_to_page(pfn)))
2605 static bool mmu_invalid_pfn(pfn_t pfn)
2607 return unlikely(is_invalid_pfn(pfn));
2610 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2611 pfn_t pfn, unsigned access, int *ret_val)
2615 /* The pfn is invalid, report the error! */
2616 if (unlikely(is_invalid_pfn(pfn))) {
2617 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2621 if (unlikely(is_noslot_pfn(pfn)))
2622 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2629 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2630 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2632 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2639 unsigned long mmu_seq;
2642 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2643 if (likely(!force_pt_level)) {
2644 level = mapping_level(vcpu, gfn);
2646 * This path builds a PAE pagetable - so we can map
2647 * 2mb pages at maximum. Therefore check if the level
2648 * is larger than that.
2650 if (level > PT_DIRECTORY_LEVEL)
2651 level = PT_DIRECTORY_LEVEL;
2653 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2655 level = PT_PAGE_TABLE_LEVEL;
2657 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2660 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2663 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2666 spin_lock(&vcpu->kvm->mmu_lock);
2667 if (mmu_notifier_retry(vcpu, mmu_seq))
2669 kvm_mmu_free_some_pages(vcpu);
2670 if (likely(!force_pt_level))
2671 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2672 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2674 spin_unlock(&vcpu->kvm->mmu_lock);
2680 spin_unlock(&vcpu->kvm->mmu_lock);
2681 kvm_release_pfn_clean(pfn);
2686 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2689 struct kvm_mmu_page *sp;
2690 LIST_HEAD(invalid_list);
2692 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2694 spin_lock(&vcpu->kvm->mmu_lock);
2695 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2696 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2697 vcpu->arch.mmu.direct_map)) {
2698 hpa_t root = vcpu->arch.mmu.root_hpa;
2700 sp = page_header(root);
2702 if (!sp->root_count && sp->role.invalid) {
2703 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2704 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2706 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2707 spin_unlock(&vcpu->kvm->mmu_lock);
2710 for (i = 0; i < 4; ++i) {
2711 hpa_t root = vcpu->arch.mmu.pae_root[i];
2714 root &= PT64_BASE_ADDR_MASK;
2715 sp = page_header(root);
2717 if (!sp->root_count && sp->role.invalid)
2718 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2721 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2723 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2724 spin_unlock(&vcpu->kvm->mmu_lock);
2725 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2728 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2732 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2733 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2740 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2742 struct kvm_mmu_page *sp;
2745 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2746 spin_lock(&vcpu->kvm->mmu_lock);
2747 kvm_mmu_free_some_pages(vcpu);
2748 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2751 spin_unlock(&vcpu->kvm->mmu_lock);
2752 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2753 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2754 for (i = 0; i < 4; ++i) {
2755 hpa_t root = vcpu->arch.mmu.pae_root[i];
2757 ASSERT(!VALID_PAGE(root));
2758 spin_lock(&vcpu->kvm->mmu_lock);
2759 kvm_mmu_free_some_pages(vcpu);
2760 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2762 PT32_ROOT_LEVEL, 1, ACC_ALL,
2764 root = __pa(sp->spt);
2766 spin_unlock(&vcpu->kvm->mmu_lock);
2767 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2769 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2776 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2778 struct kvm_mmu_page *sp;
2783 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2785 if (mmu_check_root(vcpu, root_gfn))
2789 * Do we shadow a long mode page table? If so we need to
2790 * write-protect the guests page table root.
2792 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2793 hpa_t root = vcpu->arch.mmu.root_hpa;
2795 ASSERT(!VALID_PAGE(root));
2797 spin_lock(&vcpu->kvm->mmu_lock);
2798 kvm_mmu_free_some_pages(vcpu);
2799 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2801 root = __pa(sp->spt);
2803 spin_unlock(&vcpu->kvm->mmu_lock);
2804 vcpu->arch.mmu.root_hpa = root;
2809 * We shadow a 32 bit page table. This may be a legacy 2-level
2810 * or a PAE 3-level page table. In either case we need to be aware that
2811 * the shadow page table may be a PAE or a long mode page table.
2813 pm_mask = PT_PRESENT_MASK;
2814 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2815 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2817 for (i = 0; i < 4; ++i) {
2818 hpa_t root = vcpu->arch.mmu.pae_root[i];
2820 ASSERT(!VALID_PAGE(root));
2821 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2822 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
2823 if (!is_present_gpte(pdptr)) {
2824 vcpu->arch.mmu.pae_root[i] = 0;
2827 root_gfn = pdptr >> PAGE_SHIFT;
2828 if (mmu_check_root(vcpu, root_gfn))
2831 spin_lock(&vcpu->kvm->mmu_lock);
2832 kvm_mmu_free_some_pages(vcpu);
2833 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2836 root = __pa(sp->spt);
2838 spin_unlock(&vcpu->kvm->mmu_lock);
2840 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2842 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2845 * If we shadow a 32 bit page table with a long mode page
2846 * table we enter this path.
2848 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2849 if (vcpu->arch.mmu.lm_root == NULL) {
2851 * The additional page necessary for this is only
2852 * allocated on demand.
2857 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2858 if (lm_root == NULL)
2861 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2863 vcpu->arch.mmu.lm_root = lm_root;
2866 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2872 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2874 if (vcpu->arch.mmu.direct_map)
2875 return mmu_alloc_direct_roots(vcpu);
2877 return mmu_alloc_shadow_roots(vcpu);
2880 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2883 struct kvm_mmu_page *sp;
2885 if (vcpu->arch.mmu.direct_map)
2888 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2891 vcpu_clear_mmio_info(vcpu, ~0ul);
2892 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2893 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2894 hpa_t root = vcpu->arch.mmu.root_hpa;
2895 sp = page_header(root);
2896 mmu_sync_children(vcpu, sp);
2897 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2900 for (i = 0; i < 4; ++i) {
2901 hpa_t root = vcpu->arch.mmu.pae_root[i];
2903 if (root && VALID_PAGE(root)) {
2904 root &= PT64_BASE_ADDR_MASK;
2905 sp = page_header(root);
2906 mmu_sync_children(vcpu, sp);
2909 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2912 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2914 spin_lock(&vcpu->kvm->mmu_lock);
2915 mmu_sync_roots(vcpu);
2916 spin_unlock(&vcpu->kvm->mmu_lock);
2919 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2920 u32 access, struct x86_exception *exception)
2923 exception->error_code = 0;
2927 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2929 struct x86_exception *exception)
2932 exception->error_code = 0;
2933 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2936 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2939 return vcpu_match_mmio_gpa(vcpu, addr);
2941 return vcpu_match_mmio_gva(vcpu, addr);
2946 * On direct hosts, the last spte is only allows two states
2947 * for mmio page fault:
2948 * - It is the mmio spte
2949 * - It is zapped or it is being zapped.
2951 * This function completely checks the spte when the last spte
2952 * is not the mmio spte.
2954 static bool check_direct_spte_mmio_pf(u64 spte)
2956 return __check_direct_spte_mmio_pf(spte);
2959 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2961 struct kvm_shadow_walk_iterator iterator;
2964 walk_shadow_page_lockless_begin(vcpu);
2965 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2966 if (!is_shadow_present_pte(spte))
2968 walk_shadow_page_lockless_end(vcpu);
2974 * If it is a real mmio page fault, return 1 and emulat the instruction
2975 * directly, return 0 to let CPU fault again on the address, -1 is
2976 * returned if bug is detected.
2978 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2982 if (quickly_check_mmio_pf(vcpu, addr, direct))
2985 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
2987 if (is_mmio_spte(spte)) {
2988 gfn_t gfn = get_mmio_spte_gfn(spte);
2989 unsigned access = get_mmio_spte_access(spte);
2994 trace_handle_mmio_page_fault(addr, gfn, access);
2995 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3000 * It's ok if the gva is remapped by other cpus on shadow guest,
3001 * it's a BUG if the gfn is not a mmio page.
3003 if (direct && !check_direct_spte_mmio_pf(spte))
3007 * If the page table is zapped by other cpus, let CPU fault again on
3012 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3014 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3015 u32 error_code, bool direct)
3019 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3024 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3025 u32 error_code, bool prefault)
3030 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3032 if (unlikely(error_code & PFERR_RSVD_MASK))
3033 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3035 r = mmu_topup_memory_caches(vcpu);
3040 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3042 gfn = gva >> PAGE_SHIFT;
3044 return nonpaging_map(vcpu, gva & PAGE_MASK,
3045 error_code & PFERR_WRITE_MASK, gfn, prefault);
3048 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3050 struct kvm_arch_async_pf arch;
3052 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3054 arch.direct_map = vcpu->arch.mmu.direct_map;
3055 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3057 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3060 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3062 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3063 kvm_event_needs_reinjection(vcpu)))
3066 return kvm_x86_ops->interrupt_allowed(vcpu);
3069 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3070 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3074 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3077 return false; /* *pfn has correct page already */
3079 put_page(pfn_to_page(*pfn));
3081 if (!prefault && can_do_async_pf(vcpu)) {
3082 trace_kvm_try_async_get_page(gva, gfn);
3083 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3084 trace_kvm_async_pf_doublefault(gva, gfn);
3085 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3087 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3091 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3096 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3103 gfn_t gfn = gpa >> PAGE_SHIFT;
3104 unsigned long mmu_seq;
3105 int write = error_code & PFERR_WRITE_MASK;
3109 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3111 if (unlikely(error_code & PFERR_RSVD_MASK))
3112 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3114 r = mmu_topup_memory_caches(vcpu);
3118 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3119 if (likely(!force_pt_level)) {
3120 level = mapping_level(vcpu, gfn);
3121 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3123 level = PT_PAGE_TABLE_LEVEL;
3125 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3128 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3131 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3134 spin_lock(&vcpu->kvm->mmu_lock);
3135 if (mmu_notifier_retry(vcpu, mmu_seq))
3137 kvm_mmu_free_some_pages(vcpu);
3138 if (likely(!force_pt_level))
3139 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3140 r = __direct_map(vcpu, gpa, write, map_writable,
3141 level, gfn, pfn, prefault);
3142 spin_unlock(&vcpu->kvm->mmu_lock);
3147 spin_unlock(&vcpu->kvm->mmu_lock);
3148 kvm_release_pfn_clean(pfn);
3152 static void nonpaging_free(struct kvm_vcpu *vcpu)
3154 mmu_free_roots(vcpu);
3157 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3158 struct kvm_mmu *context)
3160 context->new_cr3 = nonpaging_new_cr3;
3161 context->page_fault = nonpaging_page_fault;
3162 context->gva_to_gpa = nonpaging_gva_to_gpa;
3163 context->free = nonpaging_free;
3164 context->sync_page = nonpaging_sync_page;
3165 context->invlpg = nonpaging_invlpg;
3166 context->update_pte = nonpaging_update_pte;
3167 context->root_level = 0;
3168 context->shadow_root_level = PT32E_ROOT_LEVEL;
3169 context->root_hpa = INVALID_PAGE;
3170 context->direct_map = true;
3171 context->nx = false;
3175 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3177 ++vcpu->stat.tlb_flush;
3178 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3181 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3183 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3184 mmu_free_roots(vcpu);
3187 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3189 return kvm_read_cr3(vcpu);
3192 static void inject_page_fault(struct kvm_vcpu *vcpu,
3193 struct x86_exception *fault)
3195 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3198 static void paging_free(struct kvm_vcpu *vcpu)
3200 nonpaging_free(vcpu);
3203 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3207 bit7 = (gpte >> 7) & 1;
3208 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
3211 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3214 if (unlikely(is_mmio_spte(*sptep))) {
3215 if (gfn != get_mmio_spte_gfn(*sptep)) {
3216 mmu_spte_clear_no_track(sptep);
3221 mark_mmio_spte(sptep, gfn, access);
3229 #include "paging_tmpl.h"
3233 #include "paging_tmpl.h"
3236 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3237 struct kvm_mmu *context)
3239 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3240 u64 exb_bit_rsvd = 0;
3243 exb_bit_rsvd = rsvd_bits(63, 63);
3244 switch (context->root_level) {
3245 case PT32_ROOT_LEVEL:
3246 /* no rsvd bits for 2 level 4K page table entries */
3247 context->rsvd_bits_mask[0][1] = 0;
3248 context->rsvd_bits_mask[0][0] = 0;
3249 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3251 if (!is_pse(vcpu)) {
3252 context->rsvd_bits_mask[1][1] = 0;
3256 if (is_cpuid_PSE36())
3257 /* 36bits PSE 4MB page */
3258 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3260 /* 32 bits PSE 4MB page */
3261 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3263 case PT32E_ROOT_LEVEL:
3264 context->rsvd_bits_mask[0][2] =
3265 rsvd_bits(maxphyaddr, 63) |
3266 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
3267 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3268 rsvd_bits(maxphyaddr, 62); /* PDE */
3269 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3270 rsvd_bits(maxphyaddr, 62); /* PTE */
3271 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3272 rsvd_bits(maxphyaddr, 62) |
3273 rsvd_bits(13, 20); /* large page */
3274 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3276 case PT64_ROOT_LEVEL:
3277 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3278 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3279 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3280 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3281 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3282 rsvd_bits(maxphyaddr, 51);
3283 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3284 rsvd_bits(maxphyaddr, 51);
3285 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3286 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3287 rsvd_bits(maxphyaddr, 51) |
3289 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3290 rsvd_bits(maxphyaddr, 51) |
3291 rsvd_bits(13, 20); /* large page */
3292 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3297 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3298 struct kvm_mmu *context,
3301 context->nx = is_nx(vcpu);
3302 context->root_level = level;
3304 reset_rsvds_bits_mask(vcpu, context);
3306 ASSERT(is_pae(vcpu));
3307 context->new_cr3 = paging_new_cr3;
3308 context->page_fault = paging64_page_fault;
3309 context->gva_to_gpa = paging64_gva_to_gpa;
3310 context->sync_page = paging64_sync_page;
3311 context->invlpg = paging64_invlpg;
3312 context->update_pte = paging64_update_pte;
3313 context->free = paging_free;
3314 context->shadow_root_level = level;
3315 context->root_hpa = INVALID_PAGE;
3316 context->direct_map = false;
3320 static int paging64_init_context(struct kvm_vcpu *vcpu,
3321 struct kvm_mmu *context)
3323 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3326 static int paging32_init_context(struct kvm_vcpu *vcpu,
3327 struct kvm_mmu *context)
3329 context->nx = false;
3330 context->root_level = PT32_ROOT_LEVEL;
3332 reset_rsvds_bits_mask(vcpu, context);
3334 context->new_cr3 = paging_new_cr3;
3335 context->page_fault = paging32_page_fault;
3336 context->gva_to_gpa = paging32_gva_to_gpa;
3337 context->free = paging_free;
3338 context->sync_page = paging32_sync_page;
3339 context->invlpg = paging32_invlpg;
3340 context->update_pte = paging32_update_pte;
3341 context->shadow_root_level = PT32E_ROOT_LEVEL;
3342 context->root_hpa = INVALID_PAGE;
3343 context->direct_map = false;
3347 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3348 struct kvm_mmu *context)
3350 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3353 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3355 struct kvm_mmu *context = vcpu->arch.walk_mmu;
3357 context->base_role.word = 0;
3358 context->new_cr3 = nonpaging_new_cr3;
3359 context->page_fault = tdp_page_fault;
3360 context->free = nonpaging_free;
3361 context->sync_page = nonpaging_sync_page;
3362 context->invlpg = nonpaging_invlpg;
3363 context->update_pte = nonpaging_update_pte;
3364 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3365 context->root_hpa = INVALID_PAGE;
3366 context->direct_map = true;
3367 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3368 context->get_cr3 = get_cr3;
3369 context->get_pdptr = kvm_pdptr_read;
3370 context->inject_page_fault = kvm_inject_page_fault;
3372 if (!is_paging(vcpu)) {
3373 context->nx = false;
3374 context->gva_to_gpa = nonpaging_gva_to_gpa;
3375 context->root_level = 0;
3376 } else if (is_long_mode(vcpu)) {
3377 context->nx = is_nx(vcpu);
3378 context->root_level = PT64_ROOT_LEVEL;
3379 reset_rsvds_bits_mask(vcpu, context);
3380 context->gva_to_gpa = paging64_gva_to_gpa;
3381 } else if (is_pae(vcpu)) {
3382 context->nx = is_nx(vcpu);
3383 context->root_level = PT32E_ROOT_LEVEL;
3384 reset_rsvds_bits_mask(vcpu, context);
3385 context->gva_to_gpa = paging64_gva_to_gpa;
3387 context->nx = false;
3388 context->root_level = PT32_ROOT_LEVEL;
3389 reset_rsvds_bits_mask(vcpu, context);
3390 context->gva_to_gpa = paging32_gva_to_gpa;
3396 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3399 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3401 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3403 if (!is_paging(vcpu))
3404 r = nonpaging_init_context(vcpu, context);
3405 else if (is_long_mode(vcpu))
3406 r = paging64_init_context(vcpu, context);
3407 else if (is_pae(vcpu))
3408 r = paging32E_init_context(vcpu, context);
3410 r = paging32_init_context(vcpu, context);
3412 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3413 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3414 vcpu->arch.mmu.base_role.smep_andnot_wp
3415 = smep && !is_write_protection(vcpu);
3419 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3421 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3423 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3425 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3426 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3427 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
3428 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3433 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3435 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3437 g_context->get_cr3 = get_cr3;
3438 g_context->get_pdptr = kvm_pdptr_read;
3439 g_context->inject_page_fault = kvm_inject_page_fault;
3442 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3443 * translation of l2_gpa to l1_gpa addresses is done using the
3444 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3445 * functions between mmu and nested_mmu are swapped.
3447 if (!is_paging(vcpu)) {
3448 g_context->nx = false;
3449 g_context->root_level = 0;
3450 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3451 } else if (is_long_mode(vcpu)) {
3452 g_context->nx = is_nx(vcpu);
3453 g_context->root_level = PT64_ROOT_LEVEL;
3454 reset_rsvds_bits_mask(vcpu, g_context);
3455 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3456 } else if (is_pae(vcpu)) {
3457 g_context->nx = is_nx(vcpu);
3458 g_context->root_level = PT32E_ROOT_LEVEL;
3459 reset_rsvds_bits_mask(vcpu, g_context);
3460 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3462 g_context->nx = false;
3463 g_context->root_level = PT32_ROOT_LEVEL;
3464 reset_rsvds_bits_mask(vcpu, g_context);
3465 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3471 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3473 if (mmu_is_nested(vcpu))
3474 return init_kvm_nested_mmu(vcpu);
3475 else if (tdp_enabled)
3476 return init_kvm_tdp_mmu(vcpu);
3478 return init_kvm_softmmu(vcpu);
3481 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3484 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3485 /* mmu.free() should set root_hpa = INVALID_PAGE */
3486 vcpu->arch.mmu.free(vcpu);
3489 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3491 destroy_kvm_mmu(vcpu);
3492 return init_kvm_mmu(vcpu);
3494 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3496 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3500 r = mmu_topup_memory_caches(vcpu);
3503 r = mmu_alloc_roots(vcpu);
3504 spin_lock(&vcpu->kvm->mmu_lock);
3505 mmu_sync_roots(vcpu);
3506 spin_unlock(&vcpu->kvm->mmu_lock);
3509 /* set_cr3() should ensure TLB has been flushed */
3510 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3514 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3516 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3518 mmu_free_roots(vcpu);
3520 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3522 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3523 struct kvm_mmu_page *sp, u64 *spte,
3526 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3527 ++vcpu->kvm->stat.mmu_pde_zapped;
3531 ++vcpu->kvm->stat.mmu_pte_updated;
3532 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3535 static bool need_remote_flush(u64 old, u64 new)
3537 if (!is_shadow_present_pte(old))
3539 if (!is_shadow_present_pte(new))
3541 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3543 old ^= PT64_NX_MASK;
3544 new ^= PT64_NX_MASK;
3545 return (old & ~new & PT64_PERM_MASK) != 0;
3548 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3549 bool remote_flush, bool local_flush)
3555 kvm_flush_remote_tlbs(vcpu->kvm);
3556 else if (local_flush)
3557 kvm_mmu_flush_tlb(vcpu);
3560 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3561 const u8 *new, int *bytes)
3567 * Assume that the pte write on a page table of the same type
3568 * as the current vcpu paging mode since we update the sptes only
3569 * when they have the same mode.
3571 if (is_pae(vcpu) && *bytes == 4) {
3572 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3575 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
3578 new = (const u8 *)&gentry;
3583 gentry = *(const u32 *)new;
3586 gentry = *(const u64 *)new;
3597 * If we're seeing too many writes to a page, it may no longer be a page table,
3598 * or we may be forking, in which case it is better to unmap the page.
3600 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3603 * Skip write-flooding detected for the sp whose level is 1, because
3604 * it can become unsync, then the guest page is not write-protected.
3606 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3609 return ++sp->write_flooding_count >= 3;
3613 * Misaligned accesses are too much trouble to fix up; also, they usually
3614 * indicate a page is not used as a page table.
3616 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3619 unsigned offset, pte_size, misaligned;
3621 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3622 gpa, bytes, sp->role.word);
3624 offset = offset_in_page(gpa);
3625 pte_size = sp->role.cr4_pae ? 8 : 4;
3628 * Sometimes, the OS only writes the last one bytes to update status
3629 * bits, for example, in linux, andb instruction is used in clear_bit().
3631 if (!(offset & (pte_size - 1)) && bytes == 1)
3634 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3635 misaligned |= bytes < 4;
3640 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3642 unsigned page_offset, quadrant;
3646 page_offset = offset_in_page(gpa);
3647 level = sp->role.level;
3649 if (!sp->role.cr4_pae) {
3650 page_offset <<= 1; /* 32->64 */
3652 * A 32-bit pde maps 4MB while the shadow pdes map
3653 * only 2MB. So we need to double the offset again
3654 * and zap two pdes instead of one.
3656 if (level == PT32_ROOT_LEVEL) {
3657 page_offset &= ~7; /* kill rounding error */
3661 quadrant = page_offset >> PAGE_SHIFT;
3662 page_offset &= ~PAGE_MASK;
3663 if (quadrant != sp->role.quadrant)
3667 spte = &sp->spt[page_offset / sizeof(*spte)];
3671 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3672 const u8 *new, int bytes)
3674 gfn_t gfn = gpa >> PAGE_SHIFT;
3675 union kvm_mmu_page_role mask = { .word = 0 };
3676 struct kvm_mmu_page *sp;
3677 struct hlist_node *node;
3678 LIST_HEAD(invalid_list);
3679 u64 entry, gentry, *spte;
3681 bool remote_flush, local_flush, zap_page;
3684 * If we don't have indirect shadow pages, it means no page is
3685 * write-protected, so we can exit simply.
3687 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3690 zap_page = remote_flush = local_flush = false;
3692 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3694 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3697 * No need to care whether allocation memory is successful
3698 * or not since pte prefetch is skiped if it does not have
3699 * enough objects in the cache.
3701 mmu_topup_memory_caches(vcpu);
3703 spin_lock(&vcpu->kvm->mmu_lock);
3704 ++vcpu->kvm->stat.mmu_pte_write;
3705 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3707 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3708 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3709 if (detect_write_misaligned(sp, gpa, bytes) ||
3710 detect_write_flooding(sp)) {
3711 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3713 ++vcpu->kvm->stat.mmu_flooded;
3717 spte = get_written_sptes(sp, gpa, &npte);
3724 mmu_page_zap_pte(vcpu->kvm, sp, spte);
3726 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3727 & mask.word) && rmap_can_add(vcpu))
3728 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3729 if (!remote_flush && need_remote_flush(entry, *spte))
3730 remote_flush = true;
3734 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3735 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3736 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3737 spin_unlock(&vcpu->kvm->mmu_lock);
3740 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3745 if (vcpu->arch.mmu.direct_map)
3748 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3750 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3754 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3756 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3758 LIST_HEAD(invalid_list);
3760 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3761 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3762 struct kvm_mmu_page *sp;
3764 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3765 struct kvm_mmu_page, link);
3766 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3767 ++vcpu->kvm->stat.mmu_recycled;
3769 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3772 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3774 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3775 return vcpu_match_mmio_gpa(vcpu, addr);
3777 return vcpu_match_mmio_gva(vcpu, addr);
3780 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3781 void *insn, int insn_len)
3783 int r, emulation_type = EMULTYPE_RETRY;
3784 enum emulation_result er;
3786 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3795 if (is_mmio_page_fault(vcpu, cr2))
3798 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3803 case EMULATE_DO_MMIO:
3804 ++vcpu->stat.mmio_exits;
3814 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3816 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3818 vcpu->arch.mmu.invlpg(vcpu, gva);
3819 kvm_mmu_flush_tlb(vcpu);
3820 ++vcpu->stat.invlpg;
3822 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3824 void kvm_enable_tdp(void)
3828 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3830 void kvm_disable_tdp(void)
3832 tdp_enabled = false;
3834 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3836 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3838 free_page((unsigned long)vcpu->arch.mmu.pae_root);
3839 if (vcpu->arch.mmu.lm_root != NULL)
3840 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3843 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3851 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3852 * Therefore we need to allocate shadow page tables in the first
3853 * 4GB of memory, which happens to fit the DMA32 zone.
3855 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3859 vcpu->arch.mmu.pae_root = page_address(page);
3860 for (i = 0; i < 4; ++i)
3861 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3866 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3870 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
3871 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3872 vcpu->arch.mmu.translate_gpa = translate_gpa;
3873 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
3875 return alloc_mmu_pages(vcpu);
3878 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3881 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3883 return init_kvm_mmu(vcpu);
3886 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3888 struct kvm_mmu_page *sp;
3890 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3894 if (!test_bit(slot, sp->slot_bitmap))
3898 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3899 if (!is_shadow_present_pte(pt[i]) ||
3900 !is_last_spte(pt[i], sp->role.level))
3903 if (is_large_pte(pt[i])) {
3904 drop_spte(kvm, &pt[i]);
3910 if (is_writable_pte(pt[i]))
3911 mmu_spte_update(&pt[i],
3912 pt[i] & ~PT_WRITABLE_MASK);
3915 kvm_flush_remote_tlbs(kvm);
3918 void kvm_mmu_zap_all(struct kvm *kvm)
3920 struct kvm_mmu_page *sp, *node;
3921 LIST_HEAD(invalid_list);
3923 spin_lock(&kvm->mmu_lock);
3925 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3926 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3929 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3930 spin_unlock(&kvm->mmu_lock);
3933 static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3934 struct list_head *invalid_list)
3936 struct kvm_mmu_page *page;
3938 page = container_of(kvm->arch.active_mmu_pages.prev,
3939 struct kvm_mmu_page, link);
3940 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3943 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3946 struct kvm *kvm_freed = NULL;
3947 int nr_to_scan = sc->nr_to_scan;
3949 if (nr_to_scan == 0)
3952 raw_spin_lock(&kvm_lock);
3954 list_for_each_entry(kvm, &vm_list, vm_list) {
3956 LIST_HEAD(invalid_list);
3958 idx = srcu_read_lock(&kvm->srcu);
3959 spin_lock(&kvm->mmu_lock);
3960 if (!kvm_freed && nr_to_scan > 0 &&
3961 kvm->arch.n_used_mmu_pages > 0) {
3962 kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3968 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3969 spin_unlock(&kvm->mmu_lock);
3970 srcu_read_unlock(&kvm->srcu, idx);
3973 list_move_tail(&kvm_freed->vm_list, &vm_list);
3975 raw_spin_unlock(&kvm_lock);
3978 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3981 static struct shrinker mmu_shrinker = {
3982 .shrink = mmu_shrink,
3983 .seeks = DEFAULT_SEEKS * 10,
3986 static void mmu_destroy_caches(void)
3988 if (pte_list_desc_cache)
3989 kmem_cache_destroy(pte_list_desc_cache);
3990 if (mmu_page_header_cache)
3991 kmem_cache_destroy(mmu_page_header_cache);
3994 int kvm_mmu_module_init(void)
3996 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
3997 sizeof(struct pte_list_desc),
3999 if (!pte_list_desc_cache)
4002 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4003 sizeof(struct kvm_mmu_page),
4005 if (!mmu_page_header_cache)
4008 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4011 register_shrinker(&mmu_shrinker);
4016 mmu_destroy_caches();
4021 * Caculate mmu pages needed for kvm.
4023 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4025 unsigned int nr_mmu_pages;
4026 unsigned int nr_pages = 0;
4027 struct kvm_memslots *slots;
4028 struct kvm_memory_slot *memslot;
4030 slots = kvm_memslots(kvm);
4032 kvm_for_each_memslot(memslot, slots)
4033 nr_pages += memslot->npages;
4035 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4036 nr_mmu_pages = max(nr_mmu_pages,
4037 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4039 return nr_mmu_pages;
4042 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4044 struct kvm_shadow_walk_iterator iterator;
4048 walk_shadow_page_lockless_begin(vcpu);
4049 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4050 sptes[iterator.level-1] = spte;
4052 if (!is_shadow_present_pte(spte))
4055 walk_shadow_page_lockless_end(vcpu);
4059 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4061 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4065 destroy_kvm_mmu(vcpu);
4066 free_mmu_pages(vcpu);
4067 mmu_free_memory_caches(vcpu);
4070 void kvm_mmu_module_exit(void)
4072 mmu_destroy_caches();
4073 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4074 unregister_shrinker(&mmu_shrinker);
4075 mmu_audit_disable();