2 // SPDX-License-Identifier: GPL-2.0-only
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
10 * demand-loading started 01.12.91 - seems it is high on the list of
11 * things wanted, and it should be easy to implement. - Linus
15 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
16 * pages started 02.12.91, seems to work. - Linus.
18 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
19 * would have taken more than the 6M I have free, but it worked well as
22 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
26 * Real VM (paging to/from disk) started 18.12.91. Much more work and
27 * thought has to go into this. Oh, well..
28 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
29 * Found it. Everything seems to work now.
30 * 20.12.91 - Ok, making the swap-device changeable like the root.
34 * 05.04.94 - Multi-page memory management added for v1.1.
37 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
40 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
43 #include <linux/kernel_stat.h>
45 #include <linux/mm_inline.h>
46 #include <linux/sched/mm.h>
47 #include <linux/sched/coredump.h>
48 #include <linux/sched/numa_balancing.h>
49 #include <linux/sched/task.h>
50 #include <linux/hugetlb.h>
51 #include <linux/mman.h>
52 #include <linux/swap.h>
53 #include <linux/highmem.h>
54 #include <linux/pagemap.h>
55 #include <linux/memremap.h>
56 #include <linux/kmsan.h>
57 #include <linux/ksm.h>
58 #include <linux/rmap.h>
59 #include <linux/export.h>
60 #include <linux/delayacct.h>
61 #include <linux/init.h>
62 #include <linux/pfn_t.h>
63 #include <linux/writeback.h>
64 #include <linux/memcontrol.h>
65 #include <linux/mmu_notifier.h>
66 #include <linux/swapops.h>
67 #include <linux/elf.h>
68 #include <linux/gfp.h>
69 #include <linux/migrate.h>
70 #include <linux/string.h>
71 #include <linux/memory-tiers.h>
72 #include <linux/debugfs.h>
73 #include <linux/userfaultfd_k.h>
74 #include <linux/dax.h>
75 #include <linux/oom.h>
76 #include <linux/numa.h>
77 #include <linux/perf_event.h>
78 #include <linux/ptrace.h>
79 #include <linux/vmalloc.h>
80 #include <linux/sched/sysctl.h>
82 #include <trace/events/kmem.h>
85 #include <asm/mmu_context.h>
86 #include <asm/pgalloc.h>
87 #include <linux/uaccess.h>
89 #include <asm/tlbflush.h>
91 #include "pgalloc-track.h"
95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
100 unsigned long max_mapnr;
101 EXPORT_SYMBOL(max_mapnr);
103 struct page *mem_map;
104 EXPORT_SYMBOL(mem_map);
107 static vm_fault_t do_fault(struct vm_fault *vmf);
108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109 static bool vmf_pte_changed(struct vm_fault *vmf);
112 * Return true if the original pte was a uffd-wp pte marker (so the pte was
115 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
117 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
120 return pte_marker_uffd_wp(vmf->orig_pte);
124 * A number of key systems in x86 including ioremap() rely on the assumption
125 * that high_memory defines the upper bound on direct map memory, then end
129 EXPORT_SYMBOL(high_memory);
132 * Randomize the address space (stacks, mmaps, brk, etc.).
134 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
135 * as ancient (libc5 based) binaries can segfault. )
137 int randomize_va_space __read_mostly =
138 #ifdef CONFIG_COMPAT_BRK
144 #ifndef arch_wants_old_prefaulted_pte
145 static inline bool arch_wants_old_prefaulted_pte(void)
148 * Transitioning a PTE from 'old' to 'young' can be expensive on
149 * some architectures, even if it's performed in hardware. By
150 * default, "false" means prefaulted entries will be 'young'.
156 static int __init disable_randmaps(char *s)
158 randomize_va_space = 0;
161 __setup("norandmaps", disable_randmaps);
163 unsigned long zero_pfn __read_mostly;
164 EXPORT_SYMBOL(zero_pfn);
166 unsigned long highest_memmap_pfn __read_mostly;
169 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
171 static int __init init_zero_pfn(void)
173 zero_pfn = page_to_pfn(ZERO_PAGE(0));
176 early_initcall(init_zero_pfn);
178 void mm_trace_rss_stat(struct mm_struct *mm, int member)
180 trace_rss_stat(mm, member);
184 * Note: this doesn't free the actual pages themselves. That
185 * has been handled earlier when unmapping all the memory regions.
187 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190 pgtable_t token = pmd_pgtable(*pmd);
192 pte_free_tlb(tlb, token, addr);
193 mm_dec_nr_ptes(tlb->mm);
196 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
197 unsigned long addr, unsigned long end,
198 unsigned long floor, unsigned long ceiling)
205 pmd = pmd_offset(pud, addr);
207 next = pmd_addr_end(addr, end);
208 if (pmd_none_or_clear_bad(pmd))
210 free_pte_range(tlb, pmd, addr);
211 } while (pmd++, addr = next, addr != end);
221 if (end - 1 > ceiling - 1)
224 pmd = pmd_offset(pud, start);
226 pmd_free_tlb(tlb, pmd, start);
227 mm_dec_nr_pmds(tlb->mm);
230 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
231 unsigned long addr, unsigned long end,
232 unsigned long floor, unsigned long ceiling)
239 pud = pud_offset(p4d, addr);
241 next = pud_addr_end(addr, end);
242 if (pud_none_or_clear_bad(pud))
244 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
245 } while (pud++, addr = next, addr != end);
255 if (end - 1 > ceiling - 1)
258 pud = pud_offset(p4d, start);
260 pud_free_tlb(tlb, pud, start);
261 mm_dec_nr_puds(tlb->mm);
264 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
265 unsigned long addr, unsigned long end,
266 unsigned long floor, unsigned long ceiling)
273 p4d = p4d_offset(pgd, addr);
275 next = p4d_addr_end(addr, end);
276 if (p4d_none_or_clear_bad(p4d))
278 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
279 } while (p4d++, addr = next, addr != end);
285 ceiling &= PGDIR_MASK;
289 if (end - 1 > ceiling - 1)
292 p4d = p4d_offset(pgd, start);
294 p4d_free_tlb(tlb, p4d, start);
298 * This function frees user-level page tables of a process.
300 void free_pgd_range(struct mmu_gather *tlb,
301 unsigned long addr, unsigned long end,
302 unsigned long floor, unsigned long ceiling)
308 * The next few lines have given us lots of grief...
310 * Why are we testing PMD* at this top level? Because often
311 * there will be no work to do at all, and we'd prefer not to
312 * go all the way down to the bottom just to discover that.
314 * Why all these "- 1"s? Because 0 represents both the bottom
315 * of the address space and the top of it (using -1 for the
316 * top wouldn't help much: the masks would do the wrong thing).
317 * The rule is that addr 0 and floor 0 refer to the bottom of
318 * the address space, but end 0 and ceiling 0 refer to the top
319 * Comparisons need to use "end - 1" and "ceiling - 1" (though
320 * that end 0 case should be mythical).
322 * Wherever addr is brought up or ceiling brought down, we must
323 * be careful to reject "the opposite 0" before it confuses the
324 * subsequent tests. But what about where end is brought down
325 * by PMD_SIZE below? no, end can't go down to 0 there.
327 * Whereas we round start (addr) and ceiling down, by different
328 * masks at different levels, in order to test whether a table
329 * now has no other vmas using it, so can be freed, we don't
330 * bother to round floor or end up - the tests don't need that.
344 if (end - 1 > ceiling - 1)
349 * We add page table cache pages with PAGE_SIZE,
350 * (see pte_free_tlb()), flush the tlb if we need
352 tlb_change_page_size(tlb, PAGE_SIZE);
353 pgd = pgd_offset(tlb->mm, addr);
355 next = pgd_addr_end(addr, end);
356 if (pgd_none_or_clear_bad(pgd))
358 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
359 } while (pgd++, addr = next, addr != end);
362 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
363 struct vm_area_struct *vma, unsigned long floor,
364 unsigned long ceiling, bool mm_wr_locked)
367 unsigned long addr = vma->vm_start;
368 struct vm_area_struct *next;
371 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
372 * be 0. This will underflow and is okay.
374 next = mas_find(mas, ceiling - 1);
375 if (unlikely(xa_is_zero(next)))
379 * Hide vma from rmap and truncate_pagecache before freeing
383 vma_start_write(vma);
384 unlink_anon_vmas(vma);
385 unlink_file_vma(vma);
387 if (is_vm_hugetlb_page(vma)) {
388 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
389 floor, next ? next->vm_start : ceiling);
392 * Optimization: gather nearby vmas into one call down
394 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
395 && !is_vm_hugetlb_page(next)) {
397 next = mas_find(mas, ceiling - 1);
398 if (unlikely(xa_is_zero(next)))
401 vma_start_write(vma);
402 unlink_anon_vmas(vma);
403 unlink_file_vma(vma);
405 free_pgd_range(tlb, addr, vma->vm_end,
406 floor, next ? next->vm_start : ceiling);
412 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
414 spinlock_t *ptl = pmd_lock(mm, pmd);
416 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
419 * Ensure all pte setup (eg. pte page lock and page clearing) are
420 * visible before the pte is made visible to other CPUs by being
421 * put into page tables.
423 * The other side of the story is the pointer chasing in the page
424 * table walking code (when walking the page table without locking;
425 * ie. most of the time). Fortunately, these data accesses consist
426 * of a chain of data-dependent loads, meaning most CPUs (alpha
427 * being the notable exception) will already guarantee loads are
428 * seen in-order. See the alpha page table accessors for the
429 * smp_rmb() barriers in page table walking code.
431 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
432 pmd_populate(mm, pmd, *pte);
438 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
440 pgtable_t new = pte_alloc_one(mm);
444 pmd_install(mm, pmd, &new);
450 int __pte_alloc_kernel(pmd_t *pmd)
452 pte_t *new = pte_alloc_one_kernel(&init_mm);
456 spin_lock(&init_mm.page_table_lock);
457 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
458 smp_wmb(); /* See comment in pmd_install() */
459 pmd_populate_kernel(&init_mm, pmd, new);
462 spin_unlock(&init_mm.page_table_lock);
464 pte_free_kernel(&init_mm, new);
468 static inline void init_rss_vec(int *rss)
470 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
473 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
477 for (i = 0; i < NR_MM_COUNTERS; i++)
479 add_mm_counter(mm, i, rss[i]);
483 * This function is called to print an error when a bad pte
484 * is found. For example, we might have a PFN-mapped pte in
485 * a region that doesn't allow it.
487 * The calling function must still handle the error.
489 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
490 pte_t pte, struct page *page)
492 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
493 p4d_t *p4d = p4d_offset(pgd, addr);
494 pud_t *pud = pud_offset(p4d, addr);
495 pmd_t *pmd = pmd_offset(pud, addr);
496 struct address_space *mapping;
498 static unsigned long resume;
499 static unsigned long nr_shown;
500 static unsigned long nr_unshown;
503 * Allow a burst of 60 reports, then keep quiet for that minute;
504 * or allow a steady drip of one report per second.
506 if (nr_shown == 60) {
507 if (time_before(jiffies, resume)) {
512 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
519 resume = jiffies + 60 * HZ;
521 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
522 index = linear_page_index(vma, addr);
524 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
526 (long long)pte_val(pte), (long long)pmd_val(*pmd));
528 dump_page(page, "bad pte");
529 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
530 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
531 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
533 vma->vm_ops ? vma->vm_ops->fault : NULL,
534 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
535 mapping ? mapping->a_ops->read_folio : NULL);
537 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
541 * vm_normal_page -- This function gets the "struct page" associated with a pte.
543 * "Special" mappings do not wish to be associated with a "struct page" (either
544 * it doesn't exist, or it exists but they don't want to touch it). In this
545 * case, NULL is returned here. "Normal" mappings do have a struct page.
547 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
548 * pte bit, in which case this function is trivial. Secondly, an architecture
549 * may not have a spare pte bit, which requires a more complicated scheme,
552 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
553 * special mapping (even if there are underlying and valid "struct pages").
554 * COWed pages of a VM_PFNMAP are always normal.
556 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
557 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
558 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
559 * mapping will always honor the rule
561 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
563 * And for normal mappings this is false.
565 * This restricts such mappings to be a linear translation from virtual address
566 * to pfn. To get around this restriction, we allow arbitrary mappings so long
567 * as the vma is not a COW mapping; in that case, we know that all ptes are
568 * special (because none can have been COWed).
571 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
573 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
574 * page" backing, however the difference is that _all_ pages with a struct
575 * page (that is, those where pfn_valid is true) are refcounted and considered
576 * normal pages by the VM. The disadvantage is that pages are refcounted
577 * (which can be slower and simply not an option for some PFNMAP users). The
578 * advantage is that we don't have to follow the strict linearity rule of
579 * PFNMAP mappings in order to support COWable mappings.
582 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
585 unsigned long pfn = pte_pfn(pte);
587 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
588 if (likely(!pte_special(pte)))
590 if (vma->vm_ops && vma->vm_ops->find_special_page)
591 return vma->vm_ops->find_special_page(vma, addr);
592 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
594 if (is_zero_pfn(pfn))
598 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
599 * and will have refcounts incremented on their struct pages
600 * when they are inserted into PTEs, thus they are safe to
601 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
602 * do not have refcounts. Example of legacy ZONE_DEVICE is
603 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
607 print_bad_pte(vma, addr, pte, NULL);
611 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
613 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
614 if (vma->vm_flags & VM_MIXEDMAP) {
620 off = (addr - vma->vm_start) >> PAGE_SHIFT;
621 if (pfn == vma->vm_pgoff + off)
623 if (!is_cow_mapping(vma->vm_flags))
628 if (is_zero_pfn(pfn))
632 if (unlikely(pfn > highest_memmap_pfn)) {
633 print_bad_pte(vma, addr, pte, NULL);
638 * NOTE! We still have PageReserved() pages in the page tables.
639 * eg. VDSO mappings can cause them to exist.
642 return pfn_to_page(pfn);
645 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
648 struct page *page = vm_normal_page(vma, addr, pte);
651 return page_folio(page);
655 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
656 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
659 unsigned long pfn = pmd_pfn(pmd);
662 * There is no pmd_special() but there may be special pmds, e.g.
663 * in a direct-access (dax) mapping, so let's just replicate the
664 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
666 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
667 if (vma->vm_flags & VM_MIXEDMAP) {
673 off = (addr - vma->vm_start) >> PAGE_SHIFT;
674 if (pfn == vma->vm_pgoff + off)
676 if (!is_cow_mapping(vma->vm_flags))
683 if (is_huge_zero_pmd(pmd))
685 if (unlikely(pfn > highest_memmap_pfn))
689 * NOTE! We still have PageReserved() pages in the page tables.
690 * eg. VDSO mappings can cause them to exist.
693 return pfn_to_page(pfn);
696 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
697 unsigned long addr, pmd_t pmd)
699 struct page *page = vm_normal_page_pmd(vma, addr, pmd);
702 return page_folio(page);
707 static void restore_exclusive_pte(struct vm_area_struct *vma,
708 struct page *page, unsigned long address,
711 struct folio *folio = page_folio(page);
716 orig_pte = ptep_get(ptep);
717 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
718 if (pte_swp_soft_dirty(orig_pte))
719 pte = pte_mksoft_dirty(pte);
721 entry = pte_to_swp_entry(orig_pte);
722 if (pte_swp_uffd_wp(orig_pte))
723 pte = pte_mkuffd_wp(pte);
724 else if (is_writable_device_exclusive_entry(entry))
725 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
727 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
728 PageAnonExclusive(page)), folio);
731 * No need to take a page reference as one was already
732 * created when the swap entry was made.
734 if (folio_test_anon(folio))
735 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
738 * Currently device exclusive access only supports anonymous
739 * memory so the entry shouldn't point to a filebacked page.
743 set_pte_at(vma->vm_mm, address, ptep, pte);
746 * No need to invalidate - it was non-present before. However
747 * secondary CPUs may have mappings that need invalidating.
749 update_mmu_cache(vma, address, ptep);
753 * Tries to restore an exclusive pte if the page lock can be acquired without
757 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
760 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
761 struct page *page = pfn_swap_entry_to_page(entry);
763 if (trylock_page(page)) {
764 restore_exclusive_pte(vma, page, addr, src_pte);
773 * copy one vm_area from one task to the other. Assumes the page tables
774 * already present in the new task to be cleared in the whole range
775 * covered by this vma.
779 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
780 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
781 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
783 unsigned long vm_flags = dst_vma->vm_flags;
784 pte_t orig_pte = ptep_get(src_pte);
785 pte_t pte = orig_pte;
788 swp_entry_t entry = pte_to_swp_entry(orig_pte);
790 if (likely(!non_swap_entry(entry))) {
791 if (swap_duplicate(entry) < 0)
794 /* make sure dst_mm is on swapoff's mmlist. */
795 if (unlikely(list_empty(&dst_mm->mmlist))) {
796 spin_lock(&mmlist_lock);
797 if (list_empty(&dst_mm->mmlist))
798 list_add(&dst_mm->mmlist,
800 spin_unlock(&mmlist_lock);
802 /* Mark the swap entry as shared. */
803 if (pte_swp_exclusive(orig_pte)) {
804 pte = pte_swp_clear_exclusive(orig_pte);
805 set_pte_at(src_mm, addr, src_pte, pte);
808 } else if (is_migration_entry(entry)) {
809 page = pfn_swap_entry_to_page(entry);
811 rss[mm_counter(page)]++;
813 if (!is_readable_migration_entry(entry) &&
814 is_cow_mapping(vm_flags)) {
816 * COW mappings require pages in both parent and child
817 * to be set to read. A previously exclusive entry is
820 entry = make_readable_migration_entry(
822 pte = swp_entry_to_pte(entry);
823 if (pte_swp_soft_dirty(orig_pte))
824 pte = pte_swp_mksoft_dirty(pte);
825 if (pte_swp_uffd_wp(orig_pte))
826 pte = pte_swp_mkuffd_wp(pte);
827 set_pte_at(src_mm, addr, src_pte, pte);
829 } else if (is_device_private_entry(entry)) {
830 page = pfn_swap_entry_to_page(entry);
831 folio = page_folio(page);
834 * Update rss count even for unaddressable pages, as
835 * they should treated just like normal pages in this
838 * We will likely want to have some new rss counters
839 * for unaddressable pages, at some point. But for now
840 * keep things as they are.
843 rss[mm_counter(page)]++;
844 /* Cannot fail as these pages cannot get pinned. */
845 folio_try_dup_anon_rmap_pte(folio, page, src_vma);
848 * We do not preserve soft-dirty information, because so
849 * far, checkpoint/restore is the only feature that
850 * requires that. And checkpoint/restore does not work
851 * when a device driver is involved (you cannot easily
852 * save and restore device driver state).
854 if (is_writable_device_private_entry(entry) &&
855 is_cow_mapping(vm_flags)) {
856 entry = make_readable_device_private_entry(
858 pte = swp_entry_to_pte(entry);
859 if (pte_swp_uffd_wp(orig_pte))
860 pte = pte_swp_mkuffd_wp(pte);
861 set_pte_at(src_mm, addr, src_pte, pte);
863 } else if (is_device_exclusive_entry(entry)) {
865 * Make device exclusive entries present by restoring the
866 * original entry then copying as for a present pte. Device
867 * exclusive entries currently only support private writable
868 * (ie. COW) mappings.
870 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
871 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
874 } else if (is_pte_marker_entry(entry)) {
875 pte_marker marker = copy_pte_marker(entry, dst_vma);
878 set_pte_at(dst_mm, addr, dst_pte,
879 make_pte_marker(marker));
882 if (!userfaultfd_wp(dst_vma))
883 pte = pte_swp_clear_uffd_wp(pte);
884 set_pte_at(dst_mm, addr, dst_pte, pte);
889 * Copy a present and normal page.
891 * NOTE! The usual case is that this isn't required;
892 * instead, the caller can just increase the page refcount
893 * and re-use the pte the traditional way.
895 * And if we need a pre-allocated page but don't yet have
896 * one, return a negative error to let the preallocation
897 * code know so that it can do so outside the page table
901 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
902 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
903 struct folio **prealloc, struct page *page)
905 struct folio *new_folio;
908 new_folio = *prealloc;
913 * We have a prealloc page, all good! Take it
914 * over and copy the page & arm it.
917 copy_user_highpage(&new_folio->page, page, addr, src_vma);
918 __folio_mark_uptodate(new_folio);
919 folio_add_new_anon_rmap(new_folio, dst_vma, addr);
920 folio_add_lru_vma(new_folio, dst_vma);
923 /* All done, just insert the new page copy in the child */
924 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
925 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
926 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
927 /* Uffd-wp needs to be delivered to dest pte as well */
928 pte = pte_mkuffd_wp(pte);
929 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
934 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
935 * is required to copy this pte.
938 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
939 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
940 struct folio **prealloc)
942 struct mm_struct *src_mm = src_vma->vm_mm;
943 unsigned long vm_flags = src_vma->vm_flags;
944 pte_t pte = ptep_get(src_pte);
948 page = vm_normal_page(src_vma, addr, pte);
950 folio = page_folio(page);
951 if (page && folio_test_anon(folio)) {
953 * If this page may have been pinned by the parent process,
954 * copy the page immediately for the child so that we'll always
955 * guarantee the pinned page won't be randomly replaced in the
959 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
960 /* Page may be pinned, we have to copy. */
962 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
963 addr, rss, prealloc, page);
968 folio_dup_file_rmap_pte(folio, page);
969 rss[mm_counter_file(page)]++;
973 * If it's a COW mapping, write protect it both
974 * in the parent and the child
976 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
977 ptep_set_wrprotect(src_mm, addr, src_pte);
978 pte = pte_wrprotect(pte);
980 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
983 * If it's a shared mapping, mark it clean in
986 if (vm_flags & VM_SHARED)
987 pte = pte_mkclean(pte);
988 pte = pte_mkold(pte);
990 if (!userfaultfd_wp(dst_vma))
991 pte = pte_clear_uffd_wp(pte);
993 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
997 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
998 struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1000 struct folio *new_folio;
1003 new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1005 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
1011 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1012 folio_put(new_folio);
1015 folio_throttle_swaprate(new_folio, GFP_KERNEL);
1021 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1022 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1025 struct mm_struct *dst_mm = dst_vma->vm_mm;
1026 struct mm_struct *src_mm = src_vma->vm_mm;
1027 pte_t *orig_src_pte, *orig_dst_pte;
1028 pte_t *src_pte, *dst_pte;
1030 spinlock_t *src_ptl, *dst_ptl;
1031 int progress, ret = 0;
1032 int rss[NR_MM_COUNTERS];
1033 swp_entry_t entry = (swp_entry_t){0};
1034 struct folio *prealloc = NULL;
1041 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1042 * error handling here, assume that exclusive mmap_lock on dst and src
1043 * protects anon from unexpected THP transitions; with shmem and file
1044 * protected by mmap_lock-less collapse skipping areas with anon_vma
1045 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1046 * can remove such assumptions later, but this is good enough for now.
1048 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1053 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1055 pte_unmap_unlock(dst_pte, dst_ptl);
1059 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1060 orig_src_pte = src_pte;
1061 orig_dst_pte = dst_pte;
1062 arch_enter_lazy_mmu_mode();
1066 * We are holding two locks at this point - either of them
1067 * could generate latencies in another task on another CPU.
1069 if (progress >= 32) {
1071 if (need_resched() ||
1072 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1075 ptent = ptep_get(src_pte);
1076 if (pte_none(ptent)) {
1080 if (unlikely(!pte_present(ptent))) {
1081 ret = copy_nonpresent_pte(dst_mm, src_mm,
1086 entry = pte_to_swp_entry(ptep_get(src_pte));
1088 } else if (ret == -EBUSY) {
1096 * Device exclusive entry restored, continue by copying
1097 * the now present pte.
1099 WARN_ON_ONCE(ret != -ENOENT);
1101 /* copy_present_pte() will clear `*prealloc' if consumed */
1102 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1103 addr, rss, &prealloc);
1105 * If we need a pre-allocated page for this pte, drop the
1106 * locks, allocate, and try again.
1108 if (unlikely(ret == -EAGAIN))
1110 if (unlikely(prealloc)) {
1112 * pre-alloc page cannot be reused by next time so as
1113 * to strictly follow mempolicy (e.g., alloc_page_vma()
1114 * will allocate page according to address). This
1115 * could only happen if one pinned pte changed.
1117 folio_put(prealloc);
1121 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1123 arch_leave_lazy_mmu_mode();
1124 pte_unmap_unlock(orig_src_pte, src_ptl);
1125 add_mm_rss_vec(dst_mm, rss);
1126 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1130 VM_WARN_ON_ONCE(!entry.val);
1131 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1136 } else if (ret == -EBUSY) {
1138 } else if (ret == -EAGAIN) {
1139 prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1146 /* We've captured and resolved the error. Reset, try again. */
1152 if (unlikely(prealloc))
1153 folio_put(prealloc);
1158 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1159 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1162 struct mm_struct *dst_mm = dst_vma->vm_mm;
1163 struct mm_struct *src_mm = src_vma->vm_mm;
1164 pmd_t *src_pmd, *dst_pmd;
1167 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1170 src_pmd = pmd_offset(src_pud, addr);
1172 next = pmd_addr_end(addr, end);
1173 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1174 || pmd_devmap(*src_pmd)) {
1176 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1177 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1178 addr, dst_vma, src_vma);
1185 if (pmd_none_or_clear_bad(src_pmd))
1187 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1190 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1195 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1196 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1199 struct mm_struct *dst_mm = dst_vma->vm_mm;
1200 struct mm_struct *src_mm = src_vma->vm_mm;
1201 pud_t *src_pud, *dst_pud;
1204 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1207 src_pud = pud_offset(src_p4d, addr);
1209 next = pud_addr_end(addr, end);
1210 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1213 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1214 err = copy_huge_pud(dst_mm, src_mm,
1215 dst_pud, src_pud, addr, src_vma);
1222 if (pud_none_or_clear_bad(src_pud))
1224 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1227 } while (dst_pud++, src_pud++, addr = next, addr != end);
1232 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1233 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1236 struct mm_struct *dst_mm = dst_vma->vm_mm;
1237 p4d_t *src_p4d, *dst_p4d;
1240 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1243 src_p4d = p4d_offset(src_pgd, addr);
1245 next = p4d_addr_end(addr, end);
1246 if (p4d_none_or_clear_bad(src_p4d))
1248 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1251 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1256 * Return true if the vma needs to copy the pgtable during this fork(). Return
1257 * false when we can speed up fork() by allowing lazy page faults later until
1258 * when the child accesses the memory range.
1261 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1264 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1265 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1266 * contains uffd-wp protection information, that's something we can't
1267 * retrieve from page cache, and skip copying will lose those info.
1269 if (userfaultfd_wp(dst_vma))
1272 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1275 if (src_vma->anon_vma)
1279 * Don't copy ptes where a page fault will fill them correctly. Fork
1280 * becomes much lighter when there are big shared or private readonly
1281 * mappings. The tradeoff is that copy_page_range is more efficient
1288 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1290 pgd_t *src_pgd, *dst_pgd;
1292 unsigned long addr = src_vma->vm_start;
1293 unsigned long end = src_vma->vm_end;
1294 struct mm_struct *dst_mm = dst_vma->vm_mm;
1295 struct mm_struct *src_mm = src_vma->vm_mm;
1296 struct mmu_notifier_range range;
1300 if (!vma_needs_copy(dst_vma, src_vma))
1303 if (is_vm_hugetlb_page(src_vma))
1304 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1306 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1308 * We do not free on error cases below as remove_vma
1309 * gets called on error from higher level routine
1311 ret = track_pfn_copy(src_vma);
1317 * We need to invalidate the secondary MMU mappings only when
1318 * there could be a permission downgrade on the ptes of the
1319 * parent mm. And a permission downgrade will only happen if
1320 * is_cow_mapping() returns true.
1322 is_cow = is_cow_mapping(src_vma->vm_flags);
1325 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1326 0, src_mm, addr, end);
1327 mmu_notifier_invalidate_range_start(&range);
1329 * Disabling preemption is not needed for the write side, as
1330 * the read side doesn't spin, but goes to the mmap_lock.
1332 * Use the raw variant of the seqcount_t write API to avoid
1333 * lockdep complaining about preemptibility.
1335 vma_assert_write_locked(src_vma);
1336 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1340 dst_pgd = pgd_offset(dst_mm, addr);
1341 src_pgd = pgd_offset(src_mm, addr);
1343 next = pgd_addr_end(addr, end);
1344 if (pgd_none_or_clear_bad(src_pgd))
1346 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1348 untrack_pfn_clear(dst_vma);
1352 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1355 raw_write_seqcount_end(&src_mm->write_protect_seq);
1356 mmu_notifier_invalidate_range_end(&range);
1361 /* Whether we should zap all COWed (private) pages too */
1362 static inline bool should_zap_cows(struct zap_details *details)
1364 /* By default, zap all pages */
1368 /* Or, we zap COWed pages only if the caller wants to */
1369 return details->even_cows;
1372 /* Decides whether we should zap this page with the page pointer specified */
1373 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1375 /* If we can make a decision without *page.. */
1376 if (should_zap_cows(details))
1379 /* E.g. the caller passes NULL for the case of a zero page */
1383 /* Otherwise we should only zap non-anon pages */
1384 return !PageAnon(page);
1387 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1392 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1396 * This function makes sure that we'll replace the none pte with an uffd-wp
1397 * swap special pte marker when necessary. Must be with the pgtable lock held.
1400 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1401 unsigned long addr, pte_t *pte,
1402 struct zap_details *details, pte_t pteval)
1404 /* Zap on anonymous always means dropping everything */
1405 if (vma_is_anonymous(vma))
1408 if (zap_drop_file_uffd_wp(details))
1411 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1414 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1415 struct vm_area_struct *vma, pmd_t *pmd,
1416 unsigned long addr, unsigned long end,
1417 struct zap_details *details)
1419 struct mm_struct *mm = tlb->mm;
1420 int force_flush = 0;
1421 int rss[NR_MM_COUNTERS];
1427 tlb_change_page_size(tlb, PAGE_SIZE);
1429 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1433 flush_tlb_batched_pending(mm);
1434 arch_enter_lazy_mmu_mode();
1436 pte_t ptent = ptep_get(pte);
1437 struct folio *folio;
1440 if (pte_none(ptent))
1446 if (pte_present(ptent)) {
1447 unsigned int delay_rmap;
1449 page = vm_normal_page(vma, addr, ptent);
1450 if (unlikely(!should_zap_page(details, page)))
1452 ptent = ptep_get_and_clear_full(mm, addr, pte,
1454 arch_check_zapped_pte(vma, ptent);
1455 tlb_remove_tlb_entry(tlb, pte, addr);
1456 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1458 if (unlikely(!page)) {
1459 ksm_might_unmap_zero_page(mm, ptent);
1463 folio = page_folio(page);
1465 if (!folio_test_anon(folio)) {
1466 if (pte_dirty(ptent)) {
1467 folio_set_dirty(folio);
1468 if (tlb_delay_rmap(tlb)) {
1473 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1474 folio_mark_accessed(folio);
1476 rss[mm_counter(page)]--;
1478 folio_remove_rmap_pte(folio, page, vma);
1479 if (unlikely(page_mapcount(page) < 0))
1480 print_bad_pte(vma, addr, ptent, page);
1482 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1490 entry = pte_to_swp_entry(ptent);
1491 if (is_device_private_entry(entry) ||
1492 is_device_exclusive_entry(entry)) {
1493 page = pfn_swap_entry_to_page(entry);
1494 folio = page_folio(page);
1495 if (unlikely(!should_zap_page(details, page)))
1498 * Both device private/exclusive mappings should only
1499 * work with anonymous page so far, so we don't need to
1500 * consider uffd-wp bit when zap. For more information,
1501 * see zap_install_uffd_wp_if_needed().
1503 WARN_ON_ONCE(!vma_is_anonymous(vma));
1504 rss[mm_counter(page)]--;
1505 if (is_device_private_entry(entry))
1506 folio_remove_rmap_pte(folio, page, vma);
1508 } else if (!non_swap_entry(entry)) {
1509 /* Genuine swap entry, hence a private anon page */
1510 if (!should_zap_cows(details))
1513 if (unlikely(!free_swap_and_cache(entry)))
1514 print_bad_pte(vma, addr, ptent, NULL);
1515 } else if (is_migration_entry(entry)) {
1516 page = pfn_swap_entry_to_page(entry);
1517 if (!should_zap_page(details, page))
1519 rss[mm_counter(page)]--;
1520 } else if (pte_marker_entry_uffd_wp(entry)) {
1522 * For anon: always drop the marker; for file: only
1523 * drop the marker if explicitly requested.
1525 if (!vma_is_anonymous(vma) &&
1526 !zap_drop_file_uffd_wp(details))
1528 } else if (is_hwpoison_entry(entry) ||
1529 is_poisoned_swp_entry(entry)) {
1530 if (!should_zap_cows(details))
1533 /* We should have covered all the swap entry types */
1534 pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1537 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1538 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1539 } while (pte++, addr += PAGE_SIZE, addr != end);
1541 add_mm_rss_vec(mm, rss);
1542 arch_leave_lazy_mmu_mode();
1544 /* Do the actual TLB flush before dropping ptl */
1546 tlb_flush_mmu_tlbonly(tlb);
1547 tlb_flush_rmaps(tlb, vma);
1549 pte_unmap_unlock(start_pte, ptl);
1552 * If we forced a TLB flush (either due to running out of
1553 * batch buffers or because we needed to flush dirty TLB
1554 * entries before releasing the ptl), free the batched
1555 * memory too. Come back again if we didn't do everything.
1563 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1564 struct vm_area_struct *vma, pud_t *pud,
1565 unsigned long addr, unsigned long end,
1566 struct zap_details *details)
1571 pmd = pmd_offset(pud, addr);
1573 next = pmd_addr_end(addr, end);
1574 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1575 if (next - addr != HPAGE_PMD_SIZE)
1576 __split_huge_pmd(vma, pmd, addr, false, NULL);
1577 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1582 } else if (details && details->single_folio &&
1583 folio_test_pmd_mappable(details->single_folio) &&
1584 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1585 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1587 * Take and drop THP pmd lock so that we cannot return
1588 * prematurely, while zap_huge_pmd() has cleared *pmd,
1589 * but not yet decremented compound_mapcount().
1593 if (pmd_none(*pmd)) {
1597 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1600 } while (pmd++, cond_resched(), addr != end);
1605 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1606 struct vm_area_struct *vma, p4d_t *p4d,
1607 unsigned long addr, unsigned long end,
1608 struct zap_details *details)
1613 pud = pud_offset(p4d, addr);
1615 next = pud_addr_end(addr, end);
1616 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1617 if (next - addr != HPAGE_PUD_SIZE) {
1618 mmap_assert_locked(tlb->mm);
1619 split_huge_pud(vma, pud, addr);
1620 } else if (zap_huge_pud(tlb, vma, pud, addr))
1624 if (pud_none_or_clear_bad(pud))
1626 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1629 } while (pud++, addr = next, addr != end);
1634 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1635 struct vm_area_struct *vma, pgd_t *pgd,
1636 unsigned long addr, unsigned long end,
1637 struct zap_details *details)
1642 p4d = p4d_offset(pgd, addr);
1644 next = p4d_addr_end(addr, end);
1645 if (p4d_none_or_clear_bad(p4d))
1647 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1648 } while (p4d++, addr = next, addr != end);
1653 void unmap_page_range(struct mmu_gather *tlb,
1654 struct vm_area_struct *vma,
1655 unsigned long addr, unsigned long end,
1656 struct zap_details *details)
1661 BUG_ON(addr >= end);
1662 tlb_start_vma(tlb, vma);
1663 pgd = pgd_offset(vma->vm_mm, addr);
1665 next = pgd_addr_end(addr, end);
1666 if (pgd_none_or_clear_bad(pgd))
1668 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1669 } while (pgd++, addr = next, addr != end);
1670 tlb_end_vma(tlb, vma);
1674 static void unmap_single_vma(struct mmu_gather *tlb,
1675 struct vm_area_struct *vma, unsigned long start_addr,
1676 unsigned long end_addr,
1677 struct zap_details *details, bool mm_wr_locked)
1679 unsigned long start = max(vma->vm_start, start_addr);
1682 if (start >= vma->vm_end)
1684 end = min(vma->vm_end, end_addr);
1685 if (end <= vma->vm_start)
1689 uprobe_munmap(vma, start, end);
1691 if (unlikely(vma->vm_flags & VM_PFNMAP))
1692 untrack_pfn(vma, 0, 0, mm_wr_locked);
1695 if (unlikely(is_vm_hugetlb_page(vma))) {
1697 * It is undesirable to test vma->vm_file as it
1698 * should be non-null for valid hugetlb area.
1699 * However, vm_file will be NULL in the error
1700 * cleanup path of mmap_region. When
1701 * hugetlbfs ->mmap method fails,
1702 * mmap_region() nullifies vma->vm_file
1703 * before calling this function to clean up.
1704 * Since no pte has actually been setup, it is
1705 * safe to do nothing in this case.
1708 zap_flags_t zap_flags = details ?
1709 details->zap_flags : 0;
1710 __unmap_hugepage_range(tlb, vma, start, end,
1714 unmap_page_range(tlb, vma, start, end, details);
1719 * unmap_vmas - unmap a range of memory covered by a list of vma's
1720 * @tlb: address of the caller's struct mmu_gather
1721 * @mas: the maple state
1722 * @vma: the starting vma
1723 * @start_addr: virtual address at which to start unmapping
1724 * @end_addr: virtual address at which to end unmapping
1725 * @tree_end: The maximum index to check
1726 * @mm_wr_locked: lock flag
1728 * Unmap all pages in the vma list.
1730 * Only addresses between `start' and `end' will be unmapped.
1732 * The VMA list must be sorted in ascending virtual address order.
1734 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1735 * range after unmap_vmas() returns. So the only responsibility here is to
1736 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1737 * drops the lock and schedules.
1739 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1740 struct vm_area_struct *vma, unsigned long start_addr,
1741 unsigned long end_addr, unsigned long tree_end,
1744 struct mmu_notifier_range range;
1745 struct zap_details details = {
1746 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1747 /* Careful - we need to zap private pages too! */
1751 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1752 start_addr, end_addr);
1753 mmu_notifier_invalidate_range_start(&range);
1755 unsigned long start = start_addr;
1756 unsigned long end = end_addr;
1757 hugetlb_zap_begin(vma, &start, &end);
1758 unmap_single_vma(tlb, vma, start, end, &details,
1760 hugetlb_zap_end(vma, &details);
1761 vma = mas_find(mas, tree_end - 1);
1762 } while (vma && likely(!xa_is_zero(vma)));
1763 mmu_notifier_invalidate_range_end(&range);
1767 * zap_page_range_single - remove user pages in a given range
1768 * @vma: vm_area_struct holding the applicable pages
1769 * @address: starting address of pages to zap
1770 * @size: number of bytes to zap
1771 * @details: details of shared cache invalidation
1773 * The range must fit into one VMA.
1775 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1776 unsigned long size, struct zap_details *details)
1778 const unsigned long end = address + size;
1779 struct mmu_notifier_range range;
1780 struct mmu_gather tlb;
1783 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1785 hugetlb_zap_begin(vma, &range.start, &range.end);
1786 tlb_gather_mmu(&tlb, vma->vm_mm);
1787 update_hiwater_rss(vma->vm_mm);
1788 mmu_notifier_invalidate_range_start(&range);
1790 * unmap 'address-end' not 'range.start-range.end' as range
1791 * could have been expanded for hugetlb pmd sharing.
1793 unmap_single_vma(&tlb, vma, address, end, details, false);
1794 mmu_notifier_invalidate_range_end(&range);
1795 tlb_finish_mmu(&tlb);
1796 hugetlb_zap_end(vma, details);
1800 * zap_vma_ptes - remove ptes mapping the vma
1801 * @vma: vm_area_struct holding ptes to be zapped
1802 * @address: starting address of pages to zap
1803 * @size: number of bytes to zap
1805 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1807 * The entire address range must be fully contained within the vma.
1810 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1813 if (!range_in_vma(vma, address, address + size) ||
1814 !(vma->vm_flags & VM_PFNMAP))
1817 zap_page_range_single(vma, address, size, NULL);
1819 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1821 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1828 pgd = pgd_offset(mm, addr);
1829 p4d = p4d_alloc(mm, pgd, addr);
1832 pud = pud_alloc(mm, p4d, addr);
1835 pmd = pmd_alloc(mm, pud, addr);
1839 VM_BUG_ON(pmd_trans_huge(*pmd));
1843 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1846 pmd_t *pmd = walk_to_pmd(mm, addr);
1850 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1853 static int validate_page_before_insert(struct page *page)
1855 struct folio *folio = page_folio(page);
1857 if (folio_test_anon(folio) || folio_test_slab(folio) ||
1858 page_has_type(page))
1860 flush_dcache_folio(folio);
1864 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1865 unsigned long addr, struct page *page, pgprot_t prot)
1867 struct folio *folio = page_folio(page);
1869 if (!pte_none(ptep_get(pte)))
1871 /* Ok, finally just insert the thing.. */
1873 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1874 folio_add_file_rmap_pte(folio, page, vma);
1875 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1880 * This is the old fallback for page remapping.
1882 * For historical reasons, it only allows reserved pages. Only
1883 * old drivers should use this, and they needed to mark their
1884 * pages reserved for the old functions anyway.
1886 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1887 struct page *page, pgprot_t prot)
1893 retval = validate_page_before_insert(page);
1897 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1900 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1901 pte_unmap_unlock(pte, ptl);
1906 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1907 unsigned long addr, struct page *page, pgprot_t prot)
1911 if (!page_count(page))
1913 err = validate_page_before_insert(page);
1916 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1919 /* insert_pages() amortizes the cost of spinlock operations
1920 * when inserting pages in a loop.
1922 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1923 struct page **pages, unsigned long *num, pgprot_t prot)
1926 pte_t *start_pte, *pte;
1927 spinlock_t *pte_lock;
1928 struct mm_struct *const mm = vma->vm_mm;
1929 unsigned long curr_page_idx = 0;
1930 unsigned long remaining_pages_total = *num;
1931 unsigned long pages_to_write_in_pmd;
1935 pmd = walk_to_pmd(mm, addr);
1939 pages_to_write_in_pmd = min_t(unsigned long,
1940 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1942 /* Allocate the PTE if necessary; takes PMD lock once only. */
1944 if (pte_alloc(mm, pmd))
1947 while (pages_to_write_in_pmd) {
1949 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1951 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1956 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1957 int err = insert_page_in_batch_locked(vma, pte,
1958 addr, pages[curr_page_idx], prot);
1959 if (unlikely(err)) {
1960 pte_unmap_unlock(start_pte, pte_lock);
1962 remaining_pages_total -= pte_idx;
1968 pte_unmap_unlock(start_pte, pte_lock);
1969 pages_to_write_in_pmd -= batch_size;
1970 remaining_pages_total -= batch_size;
1972 if (remaining_pages_total)
1976 *num = remaining_pages_total;
1981 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1982 * @vma: user vma to map to
1983 * @addr: target start user address of these pages
1984 * @pages: source kernel pages
1985 * @num: in: number of pages to map. out: number of pages that were *not*
1986 * mapped. (0 means all pages were successfully mapped).
1988 * Preferred over vm_insert_page() when inserting multiple pages.
1990 * In case of error, we may have mapped a subset of the provided
1991 * pages. It is the caller's responsibility to account for this case.
1993 * The same restrictions apply as in vm_insert_page().
1995 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1996 struct page **pages, unsigned long *num)
1998 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2000 if (addr < vma->vm_start || end_addr >= vma->vm_end)
2002 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2003 BUG_ON(mmap_read_trylock(vma->vm_mm));
2004 BUG_ON(vma->vm_flags & VM_PFNMAP);
2005 vm_flags_set(vma, VM_MIXEDMAP);
2007 /* Defer page refcount checking till we're about to map that page. */
2008 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2010 EXPORT_SYMBOL(vm_insert_pages);
2013 * vm_insert_page - insert single page into user vma
2014 * @vma: user vma to map to
2015 * @addr: target user address of this page
2016 * @page: source kernel page
2018 * This allows drivers to insert individual pages they've allocated
2021 * The page has to be a nice clean _individual_ kernel allocation.
2022 * If you allocate a compound page, you need to have marked it as
2023 * such (__GFP_COMP), or manually just split the page up yourself
2024 * (see split_page()).
2026 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2027 * took an arbitrary page protection parameter. This doesn't allow
2028 * that. Your vma protection will have to be set up correctly, which
2029 * means that if you want a shared writable mapping, you'd better
2030 * ask for a shared writable mapping!
2032 * The page does not need to be reserved.
2034 * Usually this function is called from f_op->mmap() handler
2035 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2036 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2037 * function from other places, for example from page-fault handler.
2039 * Return: %0 on success, negative error code otherwise.
2041 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2044 if (addr < vma->vm_start || addr >= vma->vm_end)
2046 if (!page_count(page))
2048 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2049 BUG_ON(mmap_read_trylock(vma->vm_mm));
2050 BUG_ON(vma->vm_flags & VM_PFNMAP);
2051 vm_flags_set(vma, VM_MIXEDMAP);
2053 return insert_page(vma, addr, page, vma->vm_page_prot);
2055 EXPORT_SYMBOL(vm_insert_page);
2058 * __vm_map_pages - maps range of kernel pages into user vma
2059 * @vma: user vma to map to
2060 * @pages: pointer to array of source kernel pages
2061 * @num: number of pages in page array
2062 * @offset: user's requested vm_pgoff
2064 * This allows drivers to map range of kernel pages into a user vma.
2066 * Return: 0 on success and error code otherwise.
2068 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2069 unsigned long num, unsigned long offset)
2071 unsigned long count = vma_pages(vma);
2072 unsigned long uaddr = vma->vm_start;
2075 /* Fail if the user requested offset is beyond the end of the object */
2079 /* Fail if the user requested size exceeds available object size */
2080 if (count > num - offset)
2083 for (i = 0; i < count; i++) {
2084 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2094 * vm_map_pages - maps range of kernel pages starts with non zero offset
2095 * @vma: user vma to map to
2096 * @pages: pointer to array of source kernel pages
2097 * @num: number of pages in page array
2099 * Maps an object consisting of @num pages, catering for the user's
2100 * requested vm_pgoff
2102 * If we fail to insert any page into the vma, the function will return
2103 * immediately leaving any previously inserted pages present. Callers
2104 * from the mmap handler may immediately return the error as their caller
2105 * will destroy the vma, removing any successfully inserted pages. Other
2106 * callers should make their own arrangements for calling unmap_region().
2108 * Context: Process context. Called by mmap handlers.
2109 * Return: 0 on success and error code otherwise.
2111 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2114 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2116 EXPORT_SYMBOL(vm_map_pages);
2119 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2120 * @vma: user vma to map to
2121 * @pages: pointer to array of source kernel pages
2122 * @num: number of pages in page array
2124 * Similar to vm_map_pages(), except that it explicitly sets the offset
2125 * to 0. This function is intended for the drivers that did not consider
2128 * Context: Process context. Called by mmap handlers.
2129 * Return: 0 on success and error code otherwise.
2131 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2134 return __vm_map_pages(vma, pages, num, 0);
2136 EXPORT_SYMBOL(vm_map_pages_zero);
2138 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2139 pfn_t pfn, pgprot_t prot, bool mkwrite)
2141 struct mm_struct *mm = vma->vm_mm;
2145 pte = get_locked_pte(mm, addr, &ptl);
2147 return VM_FAULT_OOM;
2148 entry = ptep_get(pte);
2149 if (!pte_none(entry)) {
2152 * For read faults on private mappings the PFN passed
2153 * in may not match the PFN we have mapped if the
2154 * mapped PFN is a writeable COW page. In the mkwrite
2155 * case we are creating a writable PTE for a shared
2156 * mapping and we expect the PFNs to match. If they
2157 * don't match, we are likely racing with block
2158 * allocation and mapping invalidation so just skip the
2161 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2162 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2165 entry = pte_mkyoung(entry);
2166 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2167 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2168 update_mmu_cache(vma, addr, pte);
2173 /* Ok, finally just insert the thing.. */
2174 if (pfn_t_devmap(pfn))
2175 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2177 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2180 entry = pte_mkyoung(entry);
2181 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2184 set_pte_at(mm, addr, pte, entry);
2185 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2188 pte_unmap_unlock(pte, ptl);
2189 return VM_FAULT_NOPAGE;
2193 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2194 * @vma: user vma to map to
2195 * @addr: target user address of this page
2196 * @pfn: source kernel pfn
2197 * @pgprot: pgprot flags for the inserted page
2199 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2200 * to override pgprot on a per-page basis.
2202 * This only makes sense for IO mappings, and it makes no sense for
2203 * COW mappings. In general, using multiple vmas is preferable;
2204 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2207 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2208 * caching- and encryption bits different than those of @vma->vm_page_prot,
2209 * because the caching- or encryption mode may not be known at mmap() time.
2211 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2212 * to set caching and encryption bits for those vmas (except for COW pages).
2213 * This is ensured by core vm only modifying these page table entries using
2214 * functions that don't touch caching- or encryption bits, using pte_modify()
2215 * if needed. (See for example mprotect()).
2217 * Also when new page-table entries are created, this is only done using the
2218 * fault() callback, and never using the value of vma->vm_page_prot,
2219 * except for page-table entries that point to anonymous pages as the result
2222 * Context: Process context. May allocate using %GFP_KERNEL.
2223 * Return: vm_fault_t value.
2225 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2226 unsigned long pfn, pgprot_t pgprot)
2229 * Technically, architectures with pte_special can avoid all these
2230 * restrictions (same for remap_pfn_range). However we would like
2231 * consistency in testing and feature parity among all, so we should
2232 * try to keep these invariants in place for everybody.
2234 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2235 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2236 (VM_PFNMAP|VM_MIXEDMAP));
2237 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2238 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2240 if (addr < vma->vm_start || addr >= vma->vm_end)
2241 return VM_FAULT_SIGBUS;
2243 if (!pfn_modify_allowed(pfn, pgprot))
2244 return VM_FAULT_SIGBUS;
2246 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2248 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2251 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2254 * vmf_insert_pfn - insert single pfn into user vma
2255 * @vma: user vma to map to
2256 * @addr: target user address of this page
2257 * @pfn: source kernel pfn
2259 * Similar to vm_insert_page, this allows drivers to insert individual pages
2260 * they've allocated into a user vma. Same comments apply.
2262 * This function should only be called from a vm_ops->fault handler, and
2263 * in that case the handler should return the result of this function.
2265 * vma cannot be a COW mapping.
2267 * As this is called only for pages that do not currently exist, we
2268 * do not need to flush old virtual caches or the TLB.
2270 * Context: Process context. May allocate using %GFP_KERNEL.
2271 * Return: vm_fault_t value.
2273 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2276 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2278 EXPORT_SYMBOL(vmf_insert_pfn);
2280 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2282 /* these checks mirror the abort conditions in vm_normal_page */
2283 if (vma->vm_flags & VM_MIXEDMAP)
2285 if (pfn_t_devmap(pfn))
2287 if (pfn_t_special(pfn))
2289 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2294 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2295 unsigned long addr, pfn_t pfn, bool mkwrite)
2297 pgprot_t pgprot = vma->vm_page_prot;
2300 BUG_ON(!vm_mixed_ok(vma, pfn));
2302 if (addr < vma->vm_start || addr >= vma->vm_end)
2303 return VM_FAULT_SIGBUS;
2305 track_pfn_insert(vma, &pgprot, pfn);
2307 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2308 return VM_FAULT_SIGBUS;
2311 * If we don't have pte special, then we have to use the pfn_valid()
2312 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2313 * refcount the page if pfn_valid is true (hence insert_page rather
2314 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2315 * without pte special, it would there be refcounted as a normal page.
2317 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2318 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2322 * At this point we are committed to insert_page()
2323 * regardless of whether the caller specified flags that
2324 * result in pfn_t_has_page() == false.
2326 page = pfn_to_page(pfn_t_to_pfn(pfn));
2327 err = insert_page(vma, addr, page, pgprot);
2329 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2333 return VM_FAULT_OOM;
2334 if (err < 0 && err != -EBUSY)
2335 return VM_FAULT_SIGBUS;
2337 return VM_FAULT_NOPAGE;
2340 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2343 return __vm_insert_mixed(vma, addr, pfn, false);
2345 EXPORT_SYMBOL(vmf_insert_mixed);
2348 * If the insertion of PTE failed because someone else already added a
2349 * different entry in the mean time, we treat that as success as we assume
2350 * the same entry was actually inserted.
2352 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2353 unsigned long addr, pfn_t pfn)
2355 return __vm_insert_mixed(vma, addr, pfn, true);
2357 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2360 * maps a range of physical memory into the requested pages. the old
2361 * mappings are removed. any references to nonexistent pages results
2362 * in null mappings (currently treated as "copy-on-access")
2364 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2365 unsigned long addr, unsigned long end,
2366 unsigned long pfn, pgprot_t prot)
2368 pte_t *pte, *mapped_pte;
2372 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2375 arch_enter_lazy_mmu_mode();
2377 BUG_ON(!pte_none(ptep_get(pte)));
2378 if (!pfn_modify_allowed(pfn, prot)) {
2382 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2384 } while (pte++, addr += PAGE_SIZE, addr != end);
2385 arch_leave_lazy_mmu_mode();
2386 pte_unmap_unlock(mapped_pte, ptl);
2390 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2391 unsigned long addr, unsigned long end,
2392 unsigned long pfn, pgprot_t prot)
2398 pfn -= addr >> PAGE_SHIFT;
2399 pmd = pmd_alloc(mm, pud, addr);
2402 VM_BUG_ON(pmd_trans_huge(*pmd));
2404 next = pmd_addr_end(addr, end);
2405 err = remap_pte_range(mm, pmd, addr, next,
2406 pfn + (addr >> PAGE_SHIFT), prot);
2409 } while (pmd++, addr = next, addr != end);
2413 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2414 unsigned long addr, unsigned long end,
2415 unsigned long pfn, pgprot_t prot)
2421 pfn -= addr >> PAGE_SHIFT;
2422 pud = pud_alloc(mm, p4d, addr);
2426 next = pud_addr_end(addr, end);
2427 err = remap_pmd_range(mm, pud, addr, next,
2428 pfn + (addr >> PAGE_SHIFT), prot);
2431 } while (pud++, addr = next, addr != end);
2435 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2436 unsigned long addr, unsigned long end,
2437 unsigned long pfn, pgprot_t prot)
2443 pfn -= addr >> PAGE_SHIFT;
2444 p4d = p4d_alloc(mm, pgd, addr);
2448 next = p4d_addr_end(addr, end);
2449 err = remap_pud_range(mm, p4d, addr, next,
2450 pfn + (addr >> PAGE_SHIFT), prot);
2453 } while (p4d++, addr = next, addr != end);
2458 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2459 * must have pre-validated the caching bits of the pgprot_t.
2461 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2462 unsigned long pfn, unsigned long size, pgprot_t prot)
2466 unsigned long end = addr + PAGE_ALIGN(size);
2467 struct mm_struct *mm = vma->vm_mm;
2470 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2474 * Physically remapped pages are special. Tell the
2475 * rest of the world about it:
2476 * VM_IO tells people not to look at these pages
2477 * (accesses can have side effects).
2478 * VM_PFNMAP tells the core MM that the base pages are just
2479 * raw PFN mappings, and do not have a "struct page" associated
2482 * Disable vma merging and expanding with mremap().
2484 * Omit vma from core dump, even when VM_IO turned off.
2486 * There's a horrible special case to handle copy-on-write
2487 * behaviour that some programs depend on. We mark the "original"
2488 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2489 * See vm_normal_page() for details.
2491 if (is_cow_mapping(vma->vm_flags)) {
2492 if (addr != vma->vm_start || end != vma->vm_end)
2494 vma->vm_pgoff = pfn;
2497 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2499 BUG_ON(addr >= end);
2500 pfn -= addr >> PAGE_SHIFT;
2501 pgd = pgd_offset(mm, addr);
2502 flush_cache_range(vma, addr, end);
2504 next = pgd_addr_end(addr, end);
2505 err = remap_p4d_range(mm, pgd, addr, next,
2506 pfn + (addr >> PAGE_SHIFT), prot);
2509 } while (pgd++, addr = next, addr != end);
2515 * remap_pfn_range - remap kernel memory to userspace
2516 * @vma: user vma to map to
2517 * @addr: target page aligned user address to start at
2518 * @pfn: page frame number of kernel physical memory address
2519 * @size: size of mapping area
2520 * @prot: page protection flags for this mapping
2522 * Note: this is only safe if the mm semaphore is held when called.
2524 * Return: %0 on success, negative error code otherwise.
2526 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2527 unsigned long pfn, unsigned long size, pgprot_t prot)
2531 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2535 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2537 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2540 EXPORT_SYMBOL(remap_pfn_range);
2543 * vm_iomap_memory - remap memory to userspace
2544 * @vma: user vma to map to
2545 * @start: start of the physical memory to be mapped
2546 * @len: size of area
2548 * This is a simplified io_remap_pfn_range() for common driver use. The
2549 * driver just needs to give us the physical memory range to be mapped,
2550 * we'll figure out the rest from the vma information.
2552 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2553 * whatever write-combining details or similar.
2555 * Return: %0 on success, negative error code otherwise.
2557 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2559 unsigned long vm_len, pfn, pages;
2561 /* Check that the physical memory area passed in looks valid */
2562 if (start + len < start)
2565 * You *really* shouldn't map things that aren't page-aligned,
2566 * but we've historically allowed it because IO memory might
2567 * just have smaller alignment.
2569 len += start & ~PAGE_MASK;
2570 pfn = start >> PAGE_SHIFT;
2571 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2572 if (pfn + pages < pfn)
2575 /* We start the mapping 'vm_pgoff' pages into the area */
2576 if (vma->vm_pgoff > pages)
2578 pfn += vma->vm_pgoff;
2579 pages -= vma->vm_pgoff;
2581 /* Can we fit all of the mapping? */
2582 vm_len = vma->vm_end - vma->vm_start;
2583 if (vm_len >> PAGE_SHIFT > pages)
2586 /* Ok, let it rip */
2587 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2589 EXPORT_SYMBOL(vm_iomap_memory);
2591 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2592 unsigned long addr, unsigned long end,
2593 pte_fn_t fn, void *data, bool create,
2594 pgtbl_mod_mask *mask)
2596 pte_t *pte, *mapped_pte;
2601 mapped_pte = pte = (mm == &init_mm) ?
2602 pte_alloc_kernel_track(pmd, addr, mask) :
2603 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2607 mapped_pte = pte = (mm == &init_mm) ?
2608 pte_offset_kernel(pmd, addr) :
2609 pte_offset_map_lock(mm, pmd, addr, &ptl);
2614 arch_enter_lazy_mmu_mode();
2618 if (create || !pte_none(ptep_get(pte))) {
2619 err = fn(pte++, addr, data);
2623 } while (addr += PAGE_SIZE, addr != end);
2625 *mask |= PGTBL_PTE_MODIFIED;
2627 arch_leave_lazy_mmu_mode();
2630 pte_unmap_unlock(mapped_pte, ptl);
2634 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2635 unsigned long addr, unsigned long end,
2636 pte_fn_t fn, void *data, bool create,
2637 pgtbl_mod_mask *mask)
2643 BUG_ON(pud_huge(*pud));
2646 pmd = pmd_alloc_track(mm, pud, addr, mask);
2650 pmd = pmd_offset(pud, addr);
2653 next = pmd_addr_end(addr, end);
2654 if (pmd_none(*pmd) && !create)
2656 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2658 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2663 err = apply_to_pte_range(mm, pmd, addr, next,
2664 fn, data, create, mask);
2667 } while (pmd++, addr = next, addr != end);
2672 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2673 unsigned long addr, unsigned long end,
2674 pte_fn_t fn, void *data, bool create,
2675 pgtbl_mod_mask *mask)
2682 pud = pud_alloc_track(mm, p4d, addr, mask);
2686 pud = pud_offset(p4d, addr);
2689 next = pud_addr_end(addr, end);
2690 if (pud_none(*pud) && !create)
2692 if (WARN_ON_ONCE(pud_leaf(*pud)))
2694 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2699 err = apply_to_pmd_range(mm, pud, addr, next,
2700 fn, data, create, mask);
2703 } while (pud++, addr = next, addr != end);
2708 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2709 unsigned long addr, unsigned long end,
2710 pte_fn_t fn, void *data, bool create,
2711 pgtbl_mod_mask *mask)
2718 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2722 p4d = p4d_offset(pgd, addr);
2725 next = p4d_addr_end(addr, end);
2726 if (p4d_none(*p4d) && !create)
2728 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2730 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2735 err = apply_to_pud_range(mm, p4d, addr, next,
2736 fn, data, create, mask);
2739 } while (p4d++, addr = next, addr != end);
2744 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2745 unsigned long size, pte_fn_t fn,
2746 void *data, bool create)
2749 unsigned long start = addr, next;
2750 unsigned long end = addr + size;
2751 pgtbl_mod_mask mask = 0;
2754 if (WARN_ON(addr >= end))
2757 pgd = pgd_offset(mm, addr);
2759 next = pgd_addr_end(addr, end);
2760 if (pgd_none(*pgd) && !create)
2762 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2764 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2769 err = apply_to_p4d_range(mm, pgd, addr, next,
2770 fn, data, create, &mask);
2773 } while (pgd++, addr = next, addr != end);
2775 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2776 arch_sync_kernel_mappings(start, start + size);
2782 * Scan a region of virtual memory, filling in page tables as necessary
2783 * and calling a provided function on each leaf page table.
2785 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2786 unsigned long size, pte_fn_t fn, void *data)
2788 return __apply_to_page_range(mm, addr, size, fn, data, true);
2790 EXPORT_SYMBOL_GPL(apply_to_page_range);
2793 * Scan a region of virtual memory, calling a provided function on
2794 * each leaf page table where it exists.
2796 * Unlike apply_to_page_range, this does _not_ fill in page tables
2797 * where they are absent.
2799 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2800 unsigned long size, pte_fn_t fn, void *data)
2802 return __apply_to_page_range(mm, addr, size, fn, data, false);
2804 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2807 * handle_pte_fault chooses page fault handler according to an entry which was
2808 * read non-atomically. Before making any commitment, on those architectures
2809 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2810 * parts, do_swap_page must check under lock before unmapping the pte and
2811 * proceeding (but do_wp_page is only called after already making such a check;
2812 * and do_anonymous_page can safely check later on).
2814 static inline int pte_unmap_same(struct vm_fault *vmf)
2817 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2818 if (sizeof(pte_t) > sizeof(unsigned long)) {
2819 spin_lock(vmf->ptl);
2820 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2821 spin_unlock(vmf->ptl);
2824 pte_unmap(vmf->pte);
2831 * 0: copied succeeded
2832 * -EHWPOISON: copy failed due to hwpoison in source page
2833 * -EAGAIN: copied failed (some other reason)
2835 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2836 struct vm_fault *vmf)
2841 struct vm_area_struct *vma = vmf->vma;
2842 struct mm_struct *mm = vma->vm_mm;
2843 unsigned long addr = vmf->address;
2846 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2847 memory_failure_queue(page_to_pfn(src), 0);
2854 * If the source page was a PFN mapping, we don't have
2855 * a "struct page" for it. We do a best-effort copy by
2856 * just copying from the original user address. If that
2857 * fails, we just zero-fill it. Live with it.
2859 kaddr = kmap_local_page(dst);
2860 pagefault_disable();
2861 uaddr = (void __user *)(addr & PAGE_MASK);
2864 * On architectures with software "accessed" bits, we would
2865 * take a double page fault, so mark it accessed here.
2868 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2871 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2872 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2874 * Other thread has already handled the fault
2875 * and update local tlb only
2878 update_mmu_tlb(vma, addr, vmf->pte);
2883 entry = pte_mkyoung(vmf->orig_pte);
2884 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2885 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
2889 * This really shouldn't fail, because the page is there
2890 * in the page tables. But it might just be unreadable,
2891 * in which case we just give up and fill the result with
2894 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2898 /* Re-validate under PTL if the page is still mapped */
2899 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2900 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2901 /* The PTE changed under us, update local tlb */
2903 update_mmu_tlb(vma, addr, vmf->pte);
2909 * The same page can be mapped back since last copy attempt.
2910 * Try to copy again under PTL.
2912 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2914 * Give a warn in case there can be some obscure
2927 pte_unmap_unlock(vmf->pte, vmf->ptl);
2929 kunmap_local(kaddr);
2930 flush_dcache_page(dst);
2935 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2937 struct file *vm_file = vma->vm_file;
2940 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2943 * Special mappings (e.g. VDSO) do not have any file so fake
2944 * a default GFP_KERNEL for them.
2950 * Notify the address space that the page is about to become writable so that
2951 * it can prohibit this or wait for the page to get into an appropriate state.
2953 * We do this without the lock held, so that it can sleep if it needs to.
2955 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
2958 unsigned int old_flags = vmf->flags;
2960 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2962 if (vmf->vma->vm_file &&
2963 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2964 return VM_FAULT_SIGBUS;
2966 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2967 /* Restore original flags so that caller is not surprised */
2968 vmf->flags = old_flags;
2969 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2971 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2973 if (!folio->mapping) {
2974 folio_unlock(folio);
2975 return 0; /* retry */
2977 ret |= VM_FAULT_LOCKED;
2979 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2984 * Handle dirtying of a page in shared file mapping on a write fault.
2986 * The function expects the page to be locked and unlocks it.
2988 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2990 struct vm_area_struct *vma = vmf->vma;
2991 struct address_space *mapping;
2992 struct folio *folio = page_folio(vmf->page);
2994 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2996 dirtied = folio_mark_dirty(folio);
2997 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
2999 * Take a local copy of the address_space - folio.mapping may be zeroed
3000 * by truncate after folio_unlock(). The address_space itself remains
3001 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
3002 * release semantics to prevent the compiler from undoing this copying.
3004 mapping = folio_raw_mapping(folio);
3005 folio_unlock(folio);
3008 file_update_time(vma->vm_file);
3011 * Throttle page dirtying rate down to writeback speed.
3013 * mapping may be NULL here because some device drivers do not
3014 * set page.mapping but still dirty their pages
3016 * Drop the mmap_lock before waiting on IO, if we can. The file
3017 * is pinning the mapping, as per above.
3019 if ((dirtied || page_mkwrite) && mapping) {
3022 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3023 balance_dirty_pages_ratelimited(mapping);
3026 return VM_FAULT_COMPLETED;
3034 * Handle write page faults for pages that can be reused in the current vma
3036 * This can happen either due to the mapping being with the VM_SHARED flag,
3037 * or due to us being the last reference standing to the page. In either
3038 * case, all we need to do here is to mark the page as writable and update
3039 * any related book-keeping.
3041 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3042 __releases(vmf->ptl)
3044 struct vm_area_struct *vma = vmf->vma;
3047 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3050 VM_BUG_ON(folio_test_anon(folio) &&
3051 !PageAnonExclusive(vmf->page));
3053 * Clear the folio's cpupid information as the existing
3054 * information potentially belongs to a now completely
3055 * unrelated process.
3057 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3060 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3061 entry = pte_mkyoung(vmf->orig_pte);
3062 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3063 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3064 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3065 pte_unmap_unlock(vmf->pte, vmf->ptl);
3066 count_vm_event(PGREUSE);
3070 * We could add a bitflag somewhere, but for now, we know that all
3071 * vm_ops that have a ->map_pages have been audited and don't need
3072 * the mmap_lock to be held.
3074 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3076 struct vm_area_struct *vma = vmf->vma;
3078 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3081 return VM_FAULT_RETRY;
3084 static vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
3086 struct vm_area_struct *vma = vmf->vma;
3088 if (likely(vma->anon_vma))
3090 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3092 return VM_FAULT_RETRY;
3094 if (__anon_vma_prepare(vma))
3095 return VM_FAULT_OOM;
3100 * Handle the case of a page which we actually need to copy to a new page,
3101 * either due to COW or unsharing.
3103 * Called with mmap_lock locked and the old page referenced, but
3104 * without the ptl held.
3106 * High level logic flow:
3108 * - Allocate a page, copy the content of the old page to the new one.
3109 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3110 * - Take the PTL. If the pte changed, bail out and release the allocated page
3111 * - If the pte is still the way we remember it, update the page table and all
3112 * relevant references. This includes dropping the reference the page-table
3113 * held to the old page, as well as updating the rmap.
3114 * - In any case, unlock the PTL and drop the reference we took to the old page.
3116 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3118 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3119 struct vm_area_struct *vma = vmf->vma;
3120 struct mm_struct *mm = vma->vm_mm;
3121 struct folio *old_folio = NULL;
3122 struct folio *new_folio = NULL;
3124 int page_copied = 0;
3125 struct mmu_notifier_range range;
3129 delayacct_wpcopy_start();
3132 old_folio = page_folio(vmf->page);
3133 ret = vmf_anon_prepare(vmf);
3137 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3138 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3145 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3148 * COW failed, if the fault was solved by other,
3149 * it's fine. If not, userspace would re-fault on
3150 * the same address and we will handle the fault
3151 * from the second attempt.
3152 * The -EHWPOISON case will not be retried.
3154 folio_put(new_folio);
3156 folio_put(old_folio);
3158 delayacct_wpcopy_end();
3159 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3161 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3164 __folio_mark_uptodate(new_folio);
3166 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3167 vmf->address & PAGE_MASK,
3168 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3169 mmu_notifier_invalidate_range_start(&range);
3172 * Re-check the pte - we dropped the lock
3174 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3175 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3177 if (!folio_test_anon(old_folio)) {
3178 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3179 inc_mm_counter(mm, MM_ANONPAGES);
3182 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3183 inc_mm_counter(mm, MM_ANONPAGES);
3185 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3186 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3187 entry = pte_sw_mkyoung(entry);
3188 if (unlikely(unshare)) {
3189 if (pte_soft_dirty(vmf->orig_pte))
3190 entry = pte_mksoft_dirty(entry);
3191 if (pte_uffd_wp(vmf->orig_pte))
3192 entry = pte_mkuffd_wp(entry);
3194 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3198 * Clear the pte entry and flush it first, before updating the
3199 * pte with the new entry, to keep TLBs on different CPUs in
3200 * sync. This code used to set the new PTE then flush TLBs, but
3201 * that left a window where the new PTE could be loaded into
3202 * some TLBs while the old PTE remains in others.
3204 ptep_clear_flush(vma, vmf->address, vmf->pte);
3205 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3206 folio_add_lru_vma(new_folio, vma);
3208 * We call the notify macro here because, when using secondary
3209 * mmu page tables (such as kvm shadow page tables), we want the
3210 * new page to be mapped directly into the secondary page table.
3212 BUG_ON(unshare && pte_write(entry));
3213 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3214 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3217 * Only after switching the pte to the new page may
3218 * we remove the mapcount here. Otherwise another
3219 * process may come and find the rmap count decremented
3220 * before the pte is switched to the new page, and
3221 * "reuse" the old page writing into it while our pte
3222 * here still points into it and can be read by other
3225 * The critical issue is to order this
3226 * folio_remove_rmap_pte() with the ptp_clear_flush
3227 * above. Those stores are ordered by (if nothing else,)
3228 * the barrier present in the atomic_add_negative
3229 * in folio_remove_rmap_pte();
3231 * Then the TLB flush in ptep_clear_flush ensures that
3232 * no process can access the old page before the
3233 * decremented mapcount is visible. And the old page
3234 * cannot be reused until after the decremented
3235 * mapcount is visible. So transitively, TLBs to
3236 * old page will be flushed before it can be reused.
3238 folio_remove_rmap_pte(old_folio, vmf->page, vma);
3241 /* Free the old page.. */
3242 new_folio = old_folio;
3244 pte_unmap_unlock(vmf->pte, vmf->ptl);
3245 } else if (vmf->pte) {
3246 update_mmu_tlb(vma, vmf->address, vmf->pte);
3247 pte_unmap_unlock(vmf->pte, vmf->ptl);
3250 mmu_notifier_invalidate_range_end(&range);
3253 folio_put(new_folio);
3256 free_swap_cache(&old_folio->page);
3257 folio_put(old_folio);
3260 delayacct_wpcopy_end();
3266 folio_put(old_folio);
3268 delayacct_wpcopy_end();
3273 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3274 * writeable once the page is prepared
3276 * @vmf: structure describing the fault
3277 * @folio: the folio of vmf->page
3279 * This function handles all that is needed to finish a write page fault in a
3280 * shared mapping due to PTE being read-only once the mapped page is prepared.
3281 * It handles locking of PTE and modifying it.
3283 * The function expects the page to be locked or other protection against
3284 * concurrent faults / writeback (such as DAX radix tree locks).
3286 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3287 * we acquired PTE lock.
3289 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3291 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3292 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3295 return VM_FAULT_NOPAGE;
3297 * We might have raced with another page fault while we released the
3298 * pte_offset_map_lock.
3300 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3301 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3302 pte_unmap_unlock(vmf->pte, vmf->ptl);
3303 return VM_FAULT_NOPAGE;
3305 wp_page_reuse(vmf, folio);
3310 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3313 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3315 struct vm_area_struct *vma = vmf->vma;
3317 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3320 pte_unmap_unlock(vmf->pte, vmf->ptl);
3321 ret = vmf_can_call_fault(vmf);
3325 vmf->flags |= FAULT_FLAG_MKWRITE;
3326 ret = vma->vm_ops->pfn_mkwrite(vmf);
3327 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3329 return finish_mkwrite_fault(vmf, NULL);
3331 wp_page_reuse(vmf, NULL);
3335 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3336 __releases(vmf->ptl)
3338 struct vm_area_struct *vma = vmf->vma;
3343 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3346 pte_unmap_unlock(vmf->pte, vmf->ptl);
3347 tmp = vmf_can_call_fault(vmf);
3353 tmp = do_page_mkwrite(vmf, folio);
3354 if (unlikely(!tmp || (tmp &
3355 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3359 tmp = finish_mkwrite_fault(vmf, folio);
3360 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3361 folio_unlock(folio);
3366 wp_page_reuse(vmf, folio);
3369 ret |= fault_dirty_shared_page(vmf);
3375 static bool wp_can_reuse_anon_folio(struct folio *folio,
3376 struct vm_area_struct *vma)
3379 * We have to verify under folio lock: these early checks are
3380 * just an optimization to avoid locking the folio and freeing
3381 * the swapcache if there is little hope that we can reuse.
3383 * KSM doesn't necessarily raise the folio refcount.
3385 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3387 if (!folio_test_lru(folio))
3389 * We cannot easily detect+handle references from
3390 * remote LRU caches or references to LRU folios.
3393 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3395 if (!folio_trylock(folio))
3397 if (folio_test_swapcache(folio))
3398 folio_free_swap(folio);
3399 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3400 folio_unlock(folio);
3404 * Ok, we've got the only folio reference from our mapping
3405 * and the folio is locked, it's dark out, and we're wearing
3406 * sunglasses. Hit it.
3408 folio_move_anon_rmap(folio, vma);
3409 folio_unlock(folio);
3414 * This routine handles present pages, when
3415 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3416 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3417 * (FAULT_FLAG_UNSHARE)
3419 * It is done by copying the page to a new address and decrementing the
3420 * shared-page counter for the old page.
3422 * Note that this routine assumes that the protection checks have been
3423 * done by the caller (the low-level page fault routine in most cases).
3424 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3425 * done any necessary COW.
3427 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3428 * though the page will change only once the write actually happens. This
3429 * avoids a few races, and potentially makes it more efficient.
3431 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3432 * but allow concurrent faults), with pte both mapped and locked.
3433 * We return with mmap_lock still held, but pte unmapped and unlocked.
3435 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3436 __releases(vmf->ptl)
3438 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3439 struct vm_area_struct *vma = vmf->vma;
3440 struct folio *folio = NULL;
3443 if (likely(!unshare)) {
3444 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3445 if (!userfaultfd_wp_async(vma)) {
3446 pte_unmap_unlock(vmf->pte, vmf->ptl);
3447 return handle_userfault(vmf, VM_UFFD_WP);
3451 * Nothing needed (cache flush, TLB invalidations,
3452 * etc.) because we're only removing the uffd-wp bit,
3453 * which is completely invisible to the user.
3455 pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3457 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3459 * Update this to be prepared for following up CoW
3462 vmf->orig_pte = pte;
3466 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3467 * is flushed in this case before copying.
3469 if (unlikely(userfaultfd_wp(vmf->vma) &&
3470 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3471 flush_tlb_page(vmf->vma, vmf->address);
3474 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3477 folio = page_folio(vmf->page);
3480 * Shared mapping: we are guaranteed to have VM_WRITE and
3481 * FAULT_FLAG_WRITE set at this point.
3483 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3485 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3488 * We should not cow pages in a shared writeable mapping.
3489 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3492 return wp_pfn_shared(vmf);
3493 return wp_page_shared(vmf, folio);
3497 * Private mapping: create an exclusive anonymous page copy if reuse
3498 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3500 * If we encounter a page that is marked exclusive, we must reuse
3501 * the page without further checks.
3503 if (folio && folio_test_anon(folio) &&
3504 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3505 if (!PageAnonExclusive(vmf->page))
3506 SetPageAnonExclusive(vmf->page);
3507 if (unlikely(unshare)) {
3508 pte_unmap_unlock(vmf->pte, vmf->ptl);
3511 wp_page_reuse(vmf, folio);
3515 * Ok, we need to copy. Oh, well..
3520 pte_unmap_unlock(vmf->pte, vmf->ptl);
3522 if (folio && folio_test_ksm(folio))
3523 count_vm_event(COW_KSM);
3525 return wp_page_copy(vmf);
3528 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3529 unsigned long start_addr, unsigned long end_addr,
3530 struct zap_details *details)
3532 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3535 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3536 pgoff_t first_index,
3538 struct zap_details *details)
3540 struct vm_area_struct *vma;
3541 pgoff_t vba, vea, zba, zea;
3543 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3544 vba = vma->vm_pgoff;
3545 vea = vba + vma_pages(vma) - 1;
3546 zba = max(first_index, vba);
3547 zea = min(last_index, vea);
3549 unmap_mapping_range_vma(vma,
3550 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3551 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3557 * unmap_mapping_folio() - Unmap single folio from processes.
3558 * @folio: The locked folio to be unmapped.
3560 * Unmap this folio from any userspace process which still has it mmaped.
3561 * Typically, for efficiency, the range of nearby pages has already been
3562 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3563 * truncation or invalidation holds the lock on a folio, it may find that
3564 * the page has been remapped again: and then uses unmap_mapping_folio()
3565 * to unmap it finally.
3567 void unmap_mapping_folio(struct folio *folio)
3569 struct address_space *mapping = folio->mapping;
3570 struct zap_details details = { };
3571 pgoff_t first_index;
3574 VM_BUG_ON(!folio_test_locked(folio));
3576 first_index = folio->index;
3577 last_index = folio_next_index(folio) - 1;
3579 details.even_cows = false;
3580 details.single_folio = folio;
3581 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3583 i_mmap_lock_read(mapping);
3584 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3585 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3586 last_index, &details);
3587 i_mmap_unlock_read(mapping);
3591 * unmap_mapping_pages() - Unmap pages from processes.
3592 * @mapping: The address space containing pages to be unmapped.
3593 * @start: Index of first page to be unmapped.
3594 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3595 * @even_cows: Whether to unmap even private COWed pages.
3597 * Unmap the pages in this address space from any userspace process which
3598 * has them mmaped. Generally, you want to remove COWed pages as well when
3599 * a file is being truncated, but not when invalidating pages from the page
3602 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3603 pgoff_t nr, bool even_cows)
3605 struct zap_details details = { };
3606 pgoff_t first_index = start;
3607 pgoff_t last_index = start + nr - 1;
3609 details.even_cows = even_cows;
3610 if (last_index < first_index)
3611 last_index = ULONG_MAX;
3613 i_mmap_lock_read(mapping);
3614 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3615 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3616 last_index, &details);
3617 i_mmap_unlock_read(mapping);
3619 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3622 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3623 * address_space corresponding to the specified byte range in the underlying
3626 * @mapping: the address space containing mmaps to be unmapped.
3627 * @holebegin: byte in first page to unmap, relative to the start of
3628 * the underlying file. This will be rounded down to a PAGE_SIZE
3629 * boundary. Note that this is different from truncate_pagecache(), which
3630 * must keep the partial page. In contrast, we must get rid of
3632 * @holelen: size of prospective hole in bytes. This will be rounded
3633 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3635 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3636 * but 0 when invalidating pagecache, don't throw away private data.
3638 void unmap_mapping_range(struct address_space *mapping,
3639 loff_t const holebegin, loff_t const holelen, int even_cows)
3641 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3642 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3644 /* Check for overflow. */
3645 if (sizeof(holelen) > sizeof(hlen)) {
3647 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3648 if (holeend & ~(long long)ULONG_MAX)
3649 hlen = ULONG_MAX - hba + 1;
3652 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3654 EXPORT_SYMBOL(unmap_mapping_range);
3657 * Restore a potential device exclusive pte to a working pte entry
3659 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3661 struct folio *folio = page_folio(vmf->page);
3662 struct vm_area_struct *vma = vmf->vma;
3663 struct mmu_notifier_range range;
3667 * We need a reference to lock the folio because we don't hold
3668 * the PTL so a racing thread can remove the device-exclusive
3669 * entry and unmap it. If the folio is free the entry must
3670 * have been removed already. If it happens to have already
3671 * been re-allocated after being freed all we do is lock and
3674 if (!folio_try_get(folio))
3677 ret = folio_lock_or_retry(folio, vmf);
3682 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3683 vma->vm_mm, vmf->address & PAGE_MASK,
3684 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3685 mmu_notifier_invalidate_range_start(&range);
3687 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3689 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3690 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3693 pte_unmap_unlock(vmf->pte, vmf->ptl);
3694 folio_unlock(folio);
3697 mmu_notifier_invalidate_range_end(&range);
3701 static inline bool should_try_to_free_swap(struct folio *folio,
3702 struct vm_area_struct *vma,
3703 unsigned int fault_flags)
3705 if (!folio_test_swapcache(folio))
3707 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3708 folio_test_mlocked(folio))
3711 * If we want to map a page that's in the swapcache writable, we
3712 * have to detect via the refcount if we're really the exclusive
3713 * user. Try freeing the swapcache to get rid of the swapcache
3714 * reference only in case it's likely that we'll be the exlusive user.
3716 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3717 folio_ref_count(folio) == 2;
3720 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3722 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3723 vmf->address, &vmf->ptl);
3727 * Be careful so that we will only recover a special uffd-wp pte into a
3728 * none pte. Otherwise it means the pte could have changed, so retry.
3730 * This should also cover the case where e.g. the pte changed
3731 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3732 * So is_pte_marker() check is not enough to safely drop the pte.
3734 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3735 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3736 pte_unmap_unlock(vmf->pte, vmf->ptl);
3740 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3742 if (vma_is_anonymous(vmf->vma))
3743 return do_anonymous_page(vmf);
3745 return do_fault(vmf);
3749 * This is actually a page-missing access, but with uffd-wp special pte
3750 * installed. It means this pte was wr-protected before being unmapped.
3752 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3755 * Just in case there're leftover special ptes even after the region
3756 * got unregistered - we can simply clear them.
3758 if (unlikely(!userfaultfd_wp(vmf->vma)))
3759 return pte_marker_clear(vmf);
3761 return do_pte_missing(vmf);
3764 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3766 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3767 unsigned long marker = pte_marker_get(entry);
3770 * PTE markers should never be empty. If anything weird happened,
3771 * the best thing to do is to kill the process along with its mm.
3773 if (WARN_ON_ONCE(!marker))
3774 return VM_FAULT_SIGBUS;
3776 /* Higher priority than uffd-wp when data corrupted */
3777 if (marker & PTE_MARKER_POISONED)
3778 return VM_FAULT_HWPOISON;
3780 if (pte_marker_entry_uffd_wp(entry))
3781 return pte_marker_handle_uffd_wp(vmf);
3783 /* This is an unknown pte marker */
3784 return VM_FAULT_SIGBUS;
3788 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3789 * but allow concurrent faults), and pte mapped but not yet locked.
3790 * We return with pte unmapped and unlocked.
3792 * We return with the mmap_lock locked or unlocked in the same cases
3793 * as does filemap_fault().
3795 vm_fault_t do_swap_page(struct vm_fault *vmf)
3797 struct vm_area_struct *vma = vmf->vma;
3798 struct folio *swapcache, *folio = NULL;
3800 struct swap_info_struct *si = NULL;
3801 rmap_t rmap_flags = RMAP_NONE;
3802 bool exclusive = false;
3806 void *shadow = NULL;
3808 if (!pte_unmap_same(vmf))
3811 entry = pte_to_swp_entry(vmf->orig_pte);
3812 if (unlikely(non_swap_entry(entry))) {
3813 if (is_migration_entry(entry)) {
3814 migration_entry_wait(vma->vm_mm, vmf->pmd,
3816 } else if (is_device_exclusive_entry(entry)) {
3817 vmf->page = pfn_swap_entry_to_page(entry);
3818 ret = remove_device_exclusive_entry(vmf);
3819 } else if (is_device_private_entry(entry)) {
3820 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3822 * migrate_to_ram is not yet ready to operate
3826 ret = VM_FAULT_RETRY;
3830 vmf->page = pfn_swap_entry_to_page(entry);
3831 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3832 vmf->address, &vmf->ptl);
3833 if (unlikely(!vmf->pte ||
3834 !pte_same(ptep_get(vmf->pte),
3839 * Get a page reference while we know the page can't be
3842 get_page(vmf->page);
3843 pte_unmap_unlock(vmf->pte, vmf->ptl);
3844 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3845 put_page(vmf->page);
3846 } else if (is_hwpoison_entry(entry)) {
3847 ret = VM_FAULT_HWPOISON;
3848 } else if (is_pte_marker_entry(entry)) {
3849 ret = handle_pte_marker(vmf);
3851 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3852 ret = VM_FAULT_SIGBUS;
3857 /* Prevent swapoff from happening to us. */
3858 si = get_swap_device(entry);
3862 folio = swap_cache_get_folio(entry, vma, vmf->address);
3864 page = folio_file_page(folio, swp_offset(entry));
3868 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3869 __swap_count(entry) == 1) {
3870 /* skip swapcache */
3871 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3872 vma, vmf->address, false);
3873 page = &folio->page;
3875 __folio_set_locked(folio);
3876 __folio_set_swapbacked(folio);
3878 if (mem_cgroup_swapin_charge_folio(folio,
3879 vma->vm_mm, GFP_KERNEL,
3884 mem_cgroup_swapin_uncharge_swap(entry);
3886 shadow = get_shadow_from_swap_cache(entry);
3888 workingset_refault(folio, shadow);
3890 folio_add_lru(folio);
3892 /* To provide entry to swap_read_folio() */
3893 folio->swap = entry;
3894 swap_read_folio(folio, true, NULL);
3895 folio->private = NULL;
3898 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3901 folio = page_folio(page);
3907 * Back out if somebody else faulted in this pte
3908 * while we released the pte lock.
3910 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3911 vmf->address, &vmf->ptl);
3912 if (likely(vmf->pte &&
3913 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3918 /* Had to read the page from swap area: Major fault */
3919 ret = VM_FAULT_MAJOR;
3920 count_vm_event(PGMAJFAULT);
3921 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3922 } else if (PageHWPoison(page)) {
3924 * hwpoisoned dirty swapcache pages are kept for killing
3925 * owner processes (which may be unknown at hwpoison time)
3927 ret = VM_FAULT_HWPOISON;
3931 ret |= folio_lock_or_retry(folio, vmf);
3932 if (ret & VM_FAULT_RETRY)
3937 * Make sure folio_free_swap() or swapoff did not release the
3938 * swapcache from under us. The page pin, and pte_same test
3939 * below, are not enough to exclude that. Even if it is still
3940 * swapcache, we need to check that the page's swap has not
3943 if (unlikely(!folio_test_swapcache(folio) ||
3944 page_swap_entry(page).val != entry.val))
3948 * KSM sometimes has to copy on read faults, for example, if
3949 * page->index of !PageKSM() pages would be nonlinear inside the
3950 * anon VMA -- PageKSM() is lost on actual swapout.
3952 folio = ksm_might_need_to_copy(folio, vma, vmf->address);
3953 if (unlikely(!folio)) {
3957 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
3958 ret = VM_FAULT_HWPOISON;
3962 if (folio != swapcache)
3963 page = folio_page(folio, 0);
3966 * If we want to map a page that's in the swapcache writable, we
3967 * have to detect via the refcount if we're really the exclusive
3968 * owner. Try removing the extra reference from the local LRU
3969 * caches if required.
3971 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3972 !folio_test_ksm(folio) && !folio_test_lru(folio))
3976 folio_throttle_swaprate(folio, GFP_KERNEL);
3979 * Back out if somebody else already faulted in this pte.
3981 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3983 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3986 if (unlikely(!folio_test_uptodate(folio))) {
3987 ret = VM_FAULT_SIGBUS;
3992 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3993 * must never point at an anonymous page in the swapcache that is
3994 * PG_anon_exclusive. Sanity check that this holds and especially, that
3995 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3996 * check after taking the PT lock and making sure that nobody
3997 * concurrently faulted in this page and set PG_anon_exclusive.
3999 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4000 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4003 * Check under PT lock (to protect against concurrent fork() sharing
4004 * the swap entry concurrently) for certainly exclusive pages.
4006 if (!folio_test_ksm(folio)) {
4007 exclusive = pte_swp_exclusive(vmf->orig_pte);
4008 if (folio != swapcache) {
4010 * We have a fresh page that is not exposed to the
4011 * swapcache -> certainly exclusive.
4014 } else if (exclusive && folio_test_writeback(folio) &&
4015 data_race(si->flags & SWP_STABLE_WRITES)) {
4017 * This is tricky: not all swap backends support
4018 * concurrent page modifications while under writeback.
4020 * So if we stumble over such a page in the swapcache
4021 * we must not set the page exclusive, otherwise we can
4022 * map it writable without further checks and modify it
4023 * while still under writeback.
4025 * For these problematic swap backends, simply drop the
4026 * exclusive marker: this is perfectly fine as we start
4027 * writeback only if we fully unmapped the page and
4028 * there are no unexpected references on the page after
4029 * unmapping succeeded. After fully unmapped, no
4030 * further GUP references (FOLL_GET and FOLL_PIN) can
4031 * appear, so dropping the exclusive marker and mapping
4032 * it only R/O is fine.
4039 * Some architectures may have to restore extra metadata to the page
4040 * when reading from swap. This metadata may be indexed by swap entry
4041 * so this must be called before swap_free().
4043 arch_swap_restore(entry, folio);
4046 * Remove the swap entry and conditionally try to free up the swapcache.
4047 * We're already holding a reference on the page but haven't mapped it
4051 if (should_try_to_free_swap(folio, vma, vmf->flags))
4052 folio_free_swap(folio);
4054 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4055 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
4056 pte = mk_pte(page, vma->vm_page_prot);
4059 * Same logic as in do_wp_page(); however, optimize for pages that are
4060 * certainly not shared either because we just allocated them without
4061 * exposing them to the swapcache or because the swap entry indicates
4064 if (!folio_test_ksm(folio) &&
4065 (exclusive || folio_ref_count(folio) == 1)) {
4066 if (vmf->flags & FAULT_FLAG_WRITE) {
4067 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4068 vmf->flags &= ~FAULT_FLAG_WRITE;
4070 rmap_flags |= RMAP_EXCLUSIVE;
4072 flush_icache_page(vma, page);
4073 if (pte_swp_soft_dirty(vmf->orig_pte))
4074 pte = pte_mksoft_dirty(pte);
4075 if (pte_swp_uffd_wp(vmf->orig_pte))
4076 pte = pte_mkuffd_wp(pte);
4077 vmf->orig_pte = pte;
4079 /* ksm created a completely new copy */
4080 if (unlikely(folio != swapcache && swapcache)) {
4081 folio_add_new_anon_rmap(folio, vma, vmf->address);
4082 folio_add_lru_vma(folio, vma);
4084 folio_add_anon_rmap_pte(folio, page, vma, vmf->address,
4088 VM_BUG_ON(!folio_test_anon(folio) ||
4089 (pte_write(pte) && !PageAnonExclusive(page)));
4090 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4091 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4093 folio_unlock(folio);
4094 if (folio != swapcache && swapcache) {
4096 * Hold the lock to avoid the swap entry to be reused
4097 * until we take the PT lock for the pte_same() check
4098 * (to avoid false positives from pte_same). For
4099 * further safety release the lock after the swap_free
4100 * so that the swap count won't change under a
4101 * parallel locked swapcache.
4103 folio_unlock(swapcache);
4104 folio_put(swapcache);
4107 if (vmf->flags & FAULT_FLAG_WRITE) {
4108 ret |= do_wp_page(vmf);
4109 if (ret & VM_FAULT_ERROR)
4110 ret &= VM_FAULT_ERROR;
4114 /* No need to invalidate - it was non-present before */
4115 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4118 pte_unmap_unlock(vmf->pte, vmf->ptl);
4121 put_swap_device(si);
4125 pte_unmap_unlock(vmf->pte, vmf->ptl);
4127 folio_unlock(folio);
4130 if (folio != swapcache && swapcache) {
4131 folio_unlock(swapcache);
4132 folio_put(swapcache);
4135 put_swap_device(si);
4139 static bool pte_range_none(pte_t *pte, int nr_pages)
4143 for (i = 0; i < nr_pages; i++) {
4144 if (!pte_none(ptep_get_lockless(pte + i)))
4151 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4153 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4154 struct vm_area_struct *vma = vmf->vma;
4155 unsigned long orders;
4156 struct folio *folio;
4163 * If uffd is active for the vma we need per-page fault fidelity to
4164 * maintain the uffd semantics.
4166 if (unlikely(userfaultfd_armed(vma)))
4170 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4171 * for this vma. Then filter out the orders that can't be allocated over
4172 * the faulting address and still be fully contained in the vma.
4174 orders = thp_vma_allowable_orders(vma, vma->vm_flags, false, true, true,
4175 BIT(PMD_ORDER) - 1);
4176 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4181 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4183 return ERR_PTR(-EAGAIN);
4186 * Find the highest order where the aligned range is completely
4187 * pte_none(). Note that all remaining orders will be completely
4190 order = highest_order(orders);
4192 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4193 if (pte_range_none(pte + pte_index(addr), 1 << order))
4195 order = next_order(&orders, order);
4200 /* Try allocating the highest of the remaining orders. */
4201 gfp = vma_thp_gfp_mask(vma);
4203 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4204 folio = vma_alloc_folio(gfp, order, vma, addr, true);
4206 clear_huge_page(&folio->page, vmf->address, 1 << order);
4209 order = next_order(&orders, order);
4214 return vma_alloc_zeroed_movable_folio(vmf->vma, vmf->address);
4218 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4219 * but allow concurrent faults), and pte mapped but not yet locked.
4220 * We return with mmap_lock still held, but pte unmapped and unlocked.
4222 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4224 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4225 struct vm_area_struct *vma = vmf->vma;
4226 unsigned long addr = vmf->address;
4227 struct folio *folio;
4233 /* File mapping without ->vm_ops ? */
4234 if (vma->vm_flags & VM_SHARED)
4235 return VM_FAULT_SIGBUS;
4238 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4239 * be distinguished from a transient failure of pte_offset_map().
4241 if (pte_alloc(vma->vm_mm, vmf->pmd))
4242 return VM_FAULT_OOM;
4244 /* Use the zero-page for reads */
4245 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4246 !mm_forbids_zeropage(vma->vm_mm)) {
4247 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4248 vma->vm_page_prot));
4249 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4250 vmf->address, &vmf->ptl);
4253 if (vmf_pte_changed(vmf)) {
4254 update_mmu_tlb(vma, vmf->address, vmf->pte);
4257 ret = check_stable_address_space(vma->vm_mm);
4260 /* Deliver the page fault to userland, check inside PT lock */
4261 if (userfaultfd_missing(vma)) {
4262 pte_unmap_unlock(vmf->pte, vmf->ptl);
4263 return handle_userfault(vmf, VM_UFFD_MISSING);
4268 /* Allocate our own private page. */
4269 if (unlikely(anon_vma_prepare(vma)))
4271 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4272 folio = alloc_anon_folio(vmf);
4278 nr_pages = folio_nr_pages(folio);
4279 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4281 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4283 folio_throttle_swaprate(folio, GFP_KERNEL);
4286 * The memory barrier inside __folio_mark_uptodate makes sure that
4287 * preceding stores to the page contents become visible before
4288 * the set_pte_at() write.
4290 __folio_mark_uptodate(folio);
4292 entry = mk_pte(&folio->page, vma->vm_page_prot);
4293 entry = pte_sw_mkyoung(entry);
4294 if (vma->vm_flags & VM_WRITE)
4295 entry = pte_mkwrite(pte_mkdirty(entry), vma);
4297 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4300 if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4301 update_mmu_tlb(vma, addr, vmf->pte);
4303 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4304 for (i = 0; i < nr_pages; i++)
4305 update_mmu_tlb(vma, addr + PAGE_SIZE * i, vmf->pte + i);
4309 ret = check_stable_address_space(vma->vm_mm);
4313 /* Deliver the page fault to userland, check inside PT lock */
4314 if (userfaultfd_missing(vma)) {
4315 pte_unmap_unlock(vmf->pte, vmf->ptl);
4317 return handle_userfault(vmf, VM_UFFD_MISSING);
4320 folio_ref_add(folio, nr_pages - 1);
4321 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4322 folio_add_new_anon_rmap(folio, vma, addr);
4323 folio_add_lru_vma(folio, vma);
4326 entry = pte_mkuffd_wp(entry);
4327 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4329 /* No need to invalidate - it was non-present before */
4330 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4333 pte_unmap_unlock(vmf->pte, vmf->ptl);
4341 return VM_FAULT_OOM;
4345 * The mmap_lock must have been held on entry, and may have been
4346 * released depending on flags and vma->vm_ops->fault() return value.
4347 * See filemap_fault() and __lock_page_retry().
4349 static vm_fault_t __do_fault(struct vm_fault *vmf)
4351 struct vm_area_struct *vma = vmf->vma;
4352 struct folio *folio;
4356 * Preallocate pte before we take page_lock because this might lead to
4357 * deadlocks for memcg reclaim which waits for pages under writeback:
4359 * SetPageWriteback(A)
4365 * wait_on_page_writeback(A)
4366 * SetPageWriteback(B)
4368 * # flush A, B to clear the writeback
4370 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4371 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4372 if (!vmf->prealloc_pte)
4373 return VM_FAULT_OOM;
4376 ret = vma->vm_ops->fault(vmf);
4377 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4378 VM_FAULT_DONE_COW)))
4381 folio = page_folio(vmf->page);
4382 if (unlikely(PageHWPoison(vmf->page))) {
4383 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4384 if (ret & VM_FAULT_LOCKED) {
4385 if (page_mapped(vmf->page))
4386 unmap_mapping_folio(folio);
4387 /* Retry if a clean folio was removed from the cache. */
4388 if (mapping_evict_folio(folio->mapping, folio))
4389 poisonret = VM_FAULT_NOPAGE;
4390 folio_unlock(folio);
4397 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4400 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
4405 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4406 static void deposit_prealloc_pte(struct vm_fault *vmf)
4408 struct vm_area_struct *vma = vmf->vma;
4410 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4412 * We are going to consume the prealloc table,
4413 * count that as nr_ptes.
4415 mm_inc_nr_ptes(vma->vm_mm);
4416 vmf->prealloc_pte = NULL;
4419 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4421 struct folio *folio = page_folio(page);
4422 struct vm_area_struct *vma = vmf->vma;
4423 bool write = vmf->flags & FAULT_FLAG_WRITE;
4424 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4426 vm_fault_t ret = VM_FAULT_FALLBACK;
4428 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
4431 if (page != &folio->page || folio_order(folio) != HPAGE_PMD_ORDER)
4435 * Just backoff if any subpage of a THP is corrupted otherwise
4436 * the corrupted page may mapped by PMD silently to escape the
4437 * check. This kind of THP just can be PTE mapped. Access to
4438 * the corrupted subpage should trigger SIGBUS as expected.
4440 if (unlikely(folio_test_has_hwpoisoned(folio)))
4444 * Archs like ppc64 need additional space to store information
4445 * related to pte entry. Use the preallocated table for that.
4447 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4448 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4449 if (!vmf->prealloc_pte)
4450 return VM_FAULT_OOM;
4453 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4454 if (unlikely(!pmd_none(*vmf->pmd)))
4457 flush_icache_pages(vma, page, HPAGE_PMD_NR);
4459 entry = mk_huge_pmd(page, vma->vm_page_prot);
4461 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4463 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4464 folio_add_file_rmap_pmd(folio, page, vma);
4467 * deposit and withdraw with pmd lock held
4469 if (arch_needs_pgtable_deposit())
4470 deposit_prealloc_pte(vmf);
4472 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4474 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4476 /* fault is handled */
4478 count_vm_event(THP_FILE_MAPPED);
4480 spin_unlock(vmf->ptl);
4484 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4486 return VM_FAULT_FALLBACK;
4491 * set_pte_range - Set a range of PTEs to point to pages in a folio.
4492 * @vmf: Fault decription.
4493 * @folio: The folio that contains @page.
4494 * @page: The first page to create a PTE for.
4495 * @nr: The number of PTEs to create.
4496 * @addr: The first address to create a PTE for.
4498 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4499 struct page *page, unsigned int nr, unsigned long addr)
4501 struct vm_area_struct *vma = vmf->vma;
4502 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4503 bool write = vmf->flags & FAULT_FLAG_WRITE;
4504 bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
4507 flush_icache_pages(vma, page, nr);
4508 entry = mk_pte(page, vma->vm_page_prot);
4510 if (prefault && arch_wants_old_prefaulted_pte())
4511 entry = pte_mkold(entry);
4513 entry = pte_sw_mkyoung(entry);
4516 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4517 if (unlikely(uffd_wp))
4518 entry = pte_mkuffd_wp(entry);
4519 /* copy-on-write page */
4520 if (write && !(vma->vm_flags & VM_SHARED)) {
4521 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4522 VM_BUG_ON_FOLIO(nr != 1, folio);
4523 folio_add_new_anon_rmap(folio, vma, addr);
4524 folio_add_lru_vma(folio, vma);
4526 add_mm_counter(vma->vm_mm, mm_counter_file(page), nr);
4527 folio_add_file_rmap_ptes(folio, page, nr, vma);
4529 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4531 /* no need to invalidate: a not-present page won't be cached */
4532 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4535 static bool vmf_pte_changed(struct vm_fault *vmf)
4537 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4538 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4540 return !pte_none(ptep_get(vmf->pte));
4544 * finish_fault - finish page fault once we have prepared the page to fault
4546 * @vmf: structure describing the fault
4548 * This function handles all that is needed to finish a page fault once the
4549 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4550 * given page, adds reverse page mapping, handles memcg charges and LRU
4553 * The function expects the page to be locked and on success it consumes a
4554 * reference of a page being mapped (for the PTE which maps it).
4556 * Return: %0 on success, %VM_FAULT_ code in case of error.
4558 vm_fault_t finish_fault(struct vm_fault *vmf)
4560 struct vm_area_struct *vma = vmf->vma;
4564 /* Did we COW the page? */
4565 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4566 page = vmf->cow_page;
4571 * check even for read faults because we might have lost our CoWed
4574 if (!(vma->vm_flags & VM_SHARED)) {
4575 ret = check_stable_address_space(vma->vm_mm);
4580 if (pmd_none(*vmf->pmd)) {
4581 if (PageTransCompound(page)) {
4582 ret = do_set_pmd(vmf, page);
4583 if (ret != VM_FAULT_FALLBACK)
4587 if (vmf->prealloc_pte)
4588 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4589 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4590 return VM_FAULT_OOM;
4593 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4594 vmf->address, &vmf->ptl);
4596 return VM_FAULT_NOPAGE;
4598 /* Re-check under ptl */
4599 if (likely(!vmf_pte_changed(vmf))) {
4600 struct folio *folio = page_folio(page);
4602 set_pte_range(vmf, folio, page, 1, vmf->address);
4605 update_mmu_tlb(vma, vmf->address, vmf->pte);
4606 ret = VM_FAULT_NOPAGE;
4609 pte_unmap_unlock(vmf->pte, vmf->ptl);
4613 static unsigned long fault_around_pages __read_mostly =
4614 65536 >> PAGE_SHIFT;
4616 #ifdef CONFIG_DEBUG_FS
4617 static int fault_around_bytes_get(void *data, u64 *val)
4619 *val = fault_around_pages << PAGE_SHIFT;
4624 * fault_around_bytes must be rounded down to the nearest page order as it's
4625 * what do_fault_around() expects to see.
4627 static int fault_around_bytes_set(void *data, u64 val)
4629 if (val / PAGE_SIZE > PTRS_PER_PTE)
4633 * The minimum value is 1 page, however this results in no fault-around
4634 * at all. See should_fault_around().
4636 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4640 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4641 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4643 static int __init fault_around_debugfs(void)
4645 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4646 &fault_around_bytes_fops);
4649 late_initcall(fault_around_debugfs);
4653 * do_fault_around() tries to map few pages around the fault address. The hope
4654 * is that the pages will be needed soon and this will lower the number of
4657 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4658 * not ready to be mapped: not up-to-date, locked, etc.
4660 * This function doesn't cross VMA or page table boundaries, in order to call
4661 * map_pages() and acquire a PTE lock only once.
4663 * fault_around_pages defines how many pages we'll try to map.
4664 * do_fault_around() expects it to be set to a power of two less than or equal
4667 * The virtual address of the area that we map is naturally aligned to
4668 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4669 * (and therefore to page order). This way it's easier to guarantee
4670 * that we don't cross page table boundaries.
4672 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4674 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4675 pgoff_t pte_off = pte_index(vmf->address);
4676 /* The page offset of vmf->address within the VMA. */
4677 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4678 pgoff_t from_pte, to_pte;
4681 /* The PTE offset of the start address, clamped to the VMA. */
4682 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4683 pte_off - min(pte_off, vma_off));
4685 /* The PTE offset of the end address, clamped to the VMA and PTE. */
4686 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4687 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4689 if (pmd_none(*vmf->pmd)) {
4690 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4691 if (!vmf->prealloc_pte)
4692 return VM_FAULT_OOM;
4696 ret = vmf->vma->vm_ops->map_pages(vmf,
4697 vmf->pgoff + from_pte - pte_off,
4698 vmf->pgoff + to_pte - pte_off);
4704 /* Return true if we should do read fault-around, false otherwise */
4705 static inline bool should_fault_around(struct vm_fault *vmf)
4707 /* No ->map_pages? No way to fault around... */
4708 if (!vmf->vma->vm_ops->map_pages)
4711 if (uffd_disable_fault_around(vmf->vma))
4714 /* A single page implies no faulting 'around' at all. */
4715 return fault_around_pages > 1;
4718 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4721 struct folio *folio;
4724 * Let's call ->map_pages() first and use ->fault() as fallback
4725 * if page by the offset is not ready to be mapped (cold cache or
4728 if (should_fault_around(vmf)) {
4729 ret = do_fault_around(vmf);
4734 ret = vmf_can_call_fault(vmf);
4738 ret = __do_fault(vmf);
4739 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4742 ret |= finish_fault(vmf);
4743 folio = page_folio(vmf->page);
4744 folio_unlock(folio);
4745 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4750 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4752 struct vm_area_struct *vma = vmf->vma;
4753 struct folio *folio;
4756 ret = vmf_can_call_fault(vmf);
4758 ret = vmf_anon_prepare(vmf);
4762 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
4764 return VM_FAULT_OOM;
4766 vmf->cow_page = &folio->page;
4768 ret = __do_fault(vmf);
4769 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4771 if (ret & VM_FAULT_DONE_COW)
4774 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4775 __folio_mark_uptodate(folio);
4777 ret |= finish_fault(vmf);
4778 unlock_page(vmf->page);
4779 put_page(vmf->page);
4780 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4788 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4790 struct vm_area_struct *vma = vmf->vma;
4791 vm_fault_t ret, tmp;
4792 struct folio *folio;
4794 ret = vmf_can_call_fault(vmf);
4798 ret = __do_fault(vmf);
4799 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4802 folio = page_folio(vmf->page);
4805 * Check if the backing address space wants to know that the page is
4806 * about to become writable
4808 if (vma->vm_ops->page_mkwrite) {
4809 folio_unlock(folio);
4810 tmp = do_page_mkwrite(vmf, folio);
4811 if (unlikely(!tmp ||
4812 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4818 ret |= finish_fault(vmf);
4819 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4821 folio_unlock(folio);
4826 ret |= fault_dirty_shared_page(vmf);
4831 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4832 * but allow concurrent faults).
4833 * The mmap_lock may have been released depending on flags and our
4834 * return value. See filemap_fault() and __folio_lock_or_retry().
4835 * If mmap_lock is released, vma may become invalid (for example
4836 * by other thread calling munmap()).
4838 static vm_fault_t do_fault(struct vm_fault *vmf)
4840 struct vm_area_struct *vma = vmf->vma;
4841 struct mm_struct *vm_mm = vma->vm_mm;
4845 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4847 if (!vma->vm_ops->fault) {
4848 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4849 vmf->address, &vmf->ptl);
4850 if (unlikely(!vmf->pte))
4851 ret = VM_FAULT_SIGBUS;
4854 * Make sure this is not a temporary clearing of pte
4855 * by holding ptl and checking again. A R/M/W update
4856 * of pte involves: take ptl, clearing the pte so that
4857 * we don't have concurrent modification by hardware
4858 * followed by an update.
4860 if (unlikely(pte_none(ptep_get(vmf->pte))))
4861 ret = VM_FAULT_SIGBUS;
4863 ret = VM_FAULT_NOPAGE;
4865 pte_unmap_unlock(vmf->pte, vmf->ptl);
4867 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4868 ret = do_read_fault(vmf);
4869 else if (!(vma->vm_flags & VM_SHARED))
4870 ret = do_cow_fault(vmf);
4872 ret = do_shared_fault(vmf);
4874 /* preallocated pagetable is unused: free it */
4875 if (vmf->prealloc_pte) {
4876 pte_free(vm_mm, vmf->prealloc_pte);
4877 vmf->prealloc_pte = NULL;
4882 int numa_migrate_prep(struct folio *folio, struct vm_area_struct *vma,
4883 unsigned long addr, int page_nid, int *flags)
4887 /* Record the current PID acceesing VMA */
4888 vma_set_access_pid_bit(vma);
4890 count_vm_numa_event(NUMA_HINT_FAULTS);
4891 if (page_nid == numa_node_id()) {
4892 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4893 *flags |= TNF_FAULT_LOCAL;
4896 return mpol_misplaced(folio, vma, addr);
4899 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4901 struct vm_area_struct *vma = vmf->vma;
4902 struct folio *folio = NULL;
4903 int nid = NUMA_NO_NODE;
4904 bool writable = false;
4911 * The "pte" at this point cannot be used safely without
4912 * validation through pte_unmap_same(). It's of NUMA type but
4913 * the pfn may be screwed if the read is non atomic.
4915 spin_lock(vmf->ptl);
4916 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4917 pte_unmap_unlock(vmf->pte, vmf->ptl);
4921 /* Get the normal PTE */
4922 old_pte = ptep_get(vmf->pte);
4923 pte = pte_modify(old_pte, vma->vm_page_prot);
4926 * Detect now whether the PTE could be writable; this information
4927 * is only valid while holding the PT lock.
4929 writable = pte_write(pte);
4930 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4931 can_change_pte_writable(vma, vmf->address, pte))
4934 folio = vm_normal_folio(vma, vmf->address, pte);
4935 if (!folio || folio_is_zone_device(folio))
4938 /* TODO: handle PTE-mapped THP */
4939 if (folio_test_large(folio))
4943 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4944 * much anyway since they can be in shared cache state. This misses
4945 * the case where a mapping is writable but the process never writes
4946 * to it but pte_write gets cleared during protection updates and
4947 * pte_dirty has unpredictable behaviour between PTE scan updates,
4948 * background writeback, dirty balancing and application behaviour.
4951 flags |= TNF_NO_GROUP;
4954 * Flag if the folio is shared between multiple address spaces. This
4955 * is later used when determining whether to group tasks together
4957 if (folio_estimated_sharers(folio) > 1 && (vma->vm_flags & VM_SHARED))
4958 flags |= TNF_SHARED;
4960 nid = folio_nid(folio);
4962 * For memory tiering mode, cpupid of slow memory page is used
4963 * to record page access time. So use default value.
4965 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4966 !node_is_toptier(nid))
4967 last_cpupid = (-1 & LAST_CPUPID_MASK);
4969 last_cpupid = folio_last_cpupid(folio);
4970 target_nid = numa_migrate_prep(folio, vma, vmf->address, nid, &flags);
4971 if (target_nid == NUMA_NO_NODE) {
4975 pte_unmap_unlock(vmf->pte, vmf->ptl);
4978 /* Migrate to the requested node */
4979 if (migrate_misplaced_folio(folio, vma, target_nid)) {
4981 flags |= TNF_MIGRATED;
4983 flags |= TNF_MIGRATE_FAIL;
4984 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4985 vmf->address, &vmf->ptl);
4986 if (unlikely(!vmf->pte))
4988 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4989 pte_unmap_unlock(vmf->pte, vmf->ptl);
4996 if (nid != NUMA_NO_NODE)
4997 task_numa_fault(last_cpupid, nid, 1, flags);
5001 * Make it present again, depending on how arch implements
5002 * non-accessible ptes, some can allow access by kernel mode.
5004 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
5005 pte = pte_modify(old_pte, vma->vm_page_prot);
5006 pte = pte_mkyoung(pte);
5008 pte = pte_mkwrite(pte, vma);
5009 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
5010 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
5011 pte_unmap_unlock(vmf->pte, vmf->ptl);
5015 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5017 struct vm_area_struct *vma = vmf->vma;
5018 if (vma_is_anonymous(vma))
5019 return do_huge_pmd_anonymous_page(vmf);
5020 if (vma->vm_ops->huge_fault)
5021 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5022 return VM_FAULT_FALLBACK;
5025 /* `inline' is required to avoid gcc 4.1.2 build error */
5026 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5028 struct vm_area_struct *vma = vmf->vma;
5029 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5032 if (vma_is_anonymous(vma)) {
5033 if (likely(!unshare) &&
5034 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5035 if (userfaultfd_wp_async(vmf->vma))
5037 return handle_userfault(vmf, VM_UFFD_WP);
5039 return do_huge_pmd_wp_page(vmf);
5042 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5043 if (vma->vm_ops->huge_fault) {
5044 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5045 if (!(ret & VM_FAULT_FALLBACK))
5051 /* COW or write-notify handled on pte level: split pmd. */
5052 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5054 return VM_FAULT_FALLBACK;
5057 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5059 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5060 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5061 struct vm_area_struct *vma = vmf->vma;
5062 /* No support for anonymous transparent PUD pages yet */
5063 if (vma_is_anonymous(vma))
5064 return VM_FAULT_FALLBACK;
5065 if (vma->vm_ops->huge_fault)
5066 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5067 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5068 return VM_FAULT_FALLBACK;
5071 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5073 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5074 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5075 struct vm_area_struct *vma = vmf->vma;
5078 /* No support for anonymous transparent PUD pages yet */
5079 if (vma_is_anonymous(vma))
5081 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5082 if (vma->vm_ops->huge_fault) {
5083 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5084 if (!(ret & VM_FAULT_FALLBACK))
5089 /* COW or write-notify not handled on PUD level: split pud.*/
5090 __split_huge_pud(vma, vmf->pud, vmf->address);
5091 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5092 return VM_FAULT_FALLBACK;
5096 * These routines also need to handle stuff like marking pages dirty
5097 * and/or accessed for architectures that don't do it in hardware (most
5098 * RISC architectures). The early dirtying is also good on the i386.
5100 * There is also a hook called "update_mmu_cache()" that architectures
5101 * with external mmu caches can use to update those (ie the Sparc or
5102 * PowerPC hashed page tables that act as extended TLBs).
5104 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5105 * concurrent faults).
5107 * The mmap_lock may have been released depending on flags and our return value.
5108 * See filemap_fault() and __folio_lock_or_retry().
5110 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5114 if (unlikely(pmd_none(*vmf->pmd))) {
5116 * Leave __pte_alloc() until later: because vm_ops->fault may
5117 * want to allocate huge page, and if we expose page table
5118 * for an instant, it will be difficult to retract from
5119 * concurrent faults and from rmap lookups.
5122 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5125 * A regular pmd is established and it can't morph into a huge
5126 * pmd by anon khugepaged, since that takes mmap_lock in write
5127 * mode; but shmem or file collapse to THP could still morph
5128 * it into a huge pmd: just retry later if so.
5130 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5131 vmf->address, &vmf->ptl);
5132 if (unlikely(!vmf->pte))
5134 vmf->orig_pte = ptep_get_lockless(vmf->pte);
5135 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5137 if (pte_none(vmf->orig_pte)) {
5138 pte_unmap(vmf->pte);
5144 return do_pte_missing(vmf);
5146 if (!pte_present(vmf->orig_pte))
5147 return do_swap_page(vmf);
5149 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5150 return do_numa_page(vmf);
5152 spin_lock(vmf->ptl);
5153 entry = vmf->orig_pte;
5154 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5155 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5158 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5159 if (!pte_write(entry))
5160 return do_wp_page(vmf);
5161 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5162 entry = pte_mkdirty(entry);
5164 entry = pte_mkyoung(entry);
5165 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5166 vmf->flags & FAULT_FLAG_WRITE)) {
5167 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5170 /* Skip spurious TLB flush for retried page fault */
5171 if (vmf->flags & FAULT_FLAG_TRIED)
5174 * This is needed only for protection faults but the arch code
5175 * is not yet telling us if this is a protection fault or not.
5176 * This still avoids useless tlb flushes for .text page faults
5179 if (vmf->flags & FAULT_FLAG_WRITE)
5180 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5184 pte_unmap_unlock(vmf->pte, vmf->ptl);
5189 * On entry, we hold either the VMA lock or the mmap_lock
5190 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5191 * the result, the mmap_lock is not held on exit. See filemap_fault()
5192 * and __folio_lock_or_retry().
5194 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5195 unsigned long address, unsigned int flags)
5197 struct vm_fault vmf = {
5199 .address = address & PAGE_MASK,
5200 .real_address = address,
5202 .pgoff = linear_page_index(vma, address),
5203 .gfp_mask = __get_fault_gfp_mask(vma),
5205 struct mm_struct *mm = vma->vm_mm;
5206 unsigned long vm_flags = vma->vm_flags;
5211 pgd = pgd_offset(mm, address);
5212 p4d = p4d_alloc(mm, pgd, address);
5214 return VM_FAULT_OOM;
5216 vmf.pud = pud_alloc(mm, p4d, address);
5218 return VM_FAULT_OOM;
5220 if (pud_none(*vmf.pud) &&
5221 thp_vma_allowable_order(vma, vm_flags, false, true, true, PUD_ORDER)) {
5222 ret = create_huge_pud(&vmf);
5223 if (!(ret & VM_FAULT_FALLBACK))
5226 pud_t orig_pud = *vmf.pud;
5229 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5232 * TODO once we support anonymous PUDs: NUMA case and
5233 * FAULT_FLAG_UNSHARE handling.
5235 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5236 ret = wp_huge_pud(&vmf, orig_pud);
5237 if (!(ret & VM_FAULT_FALLBACK))
5240 huge_pud_set_accessed(&vmf, orig_pud);
5246 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5248 return VM_FAULT_OOM;
5250 /* Huge pud page fault raced with pmd_alloc? */
5251 if (pud_trans_unstable(vmf.pud))
5254 if (pmd_none(*vmf.pmd) &&
5255 thp_vma_allowable_order(vma, vm_flags, false, true, true, PMD_ORDER)) {
5256 ret = create_huge_pmd(&vmf);
5257 if (!(ret & VM_FAULT_FALLBACK))
5260 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5262 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5263 VM_BUG_ON(thp_migration_supported() &&
5264 !is_pmd_migration_entry(vmf.orig_pmd));
5265 if (is_pmd_migration_entry(vmf.orig_pmd))
5266 pmd_migration_entry_wait(mm, vmf.pmd);
5269 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5270 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5271 return do_huge_pmd_numa_page(&vmf);
5273 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5274 !pmd_write(vmf.orig_pmd)) {
5275 ret = wp_huge_pmd(&vmf);
5276 if (!(ret & VM_FAULT_FALLBACK))
5279 huge_pmd_set_accessed(&vmf);
5285 return handle_pte_fault(&vmf);
5289 * mm_account_fault - Do page fault accounting
5290 * @mm: mm from which memcg should be extracted. It can be NULL.
5291 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5292 * of perf event counters, but we'll still do the per-task accounting to
5293 * the task who triggered this page fault.
5294 * @address: the faulted address.
5295 * @flags: the fault flags.
5296 * @ret: the fault retcode.
5298 * This will take care of most of the page fault accounting. Meanwhile, it
5299 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5300 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5301 * still be in per-arch page fault handlers at the entry of page fault.
5303 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5304 unsigned long address, unsigned int flags,
5309 /* Incomplete faults will be accounted upon completion. */
5310 if (ret & VM_FAULT_RETRY)
5314 * To preserve the behavior of older kernels, PGFAULT counters record
5315 * both successful and failed faults, as opposed to perf counters,
5316 * which ignore failed cases.
5318 count_vm_event(PGFAULT);
5319 count_memcg_event_mm(mm, PGFAULT);
5322 * Do not account for unsuccessful faults (e.g. when the address wasn't
5323 * valid). That includes arch_vma_access_permitted() failing before
5324 * reaching here. So this is not a "this many hardware page faults"
5325 * counter. We should use the hw profiling for that.
5327 if (ret & VM_FAULT_ERROR)
5331 * We define the fault as a major fault when the final successful fault
5332 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5333 * handle it immediately previously).
5335 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5343 * If the fault is done for GUP, regs will be NULL. We only do the
5344 * accounting for the per thread fault counters who triggered the
5345 * fault, and we skip the perf event updates.
5351 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5353 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5356 #ifdef CONFIG_LRU_GEN
5357 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5359 /* the LRU algorithm only applies to accesses with recency */
5360 current->in_lru_fault = vma_has_recency(vma);
5363 static void lru_gen_exit_fault(void)
5365 current->in_lru_fault = false;
5368 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5372 static void lru_gen_exit_fault(void)
5375 #endif /* CONFIG_LRU_GEN */
5377 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5378 unsigned int *flags)
5380 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5381 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5382 return VM_FAULT_SIGSEGV;
5384 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5385 * just treat it like an ordinary read-fault otherwise.
5387 if (!is_cow_mapping(vma->vm_flags))
5388 *flags &= ~FAULT_FLAG_UNSHARE;
5389 } else if (*flags & FAULT_FLAG_WRITE) {
5390 /* Write faults on read-only mappings are impossible ... */
5391 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5392 return VM_FAULT_SIGSEGV;
5393 /* ... and FOLL_FORCE only applies to COW mappings. */
5394 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5395 !is_cow_mapping(vma->vm_flags)))
5396 return VM_FAULT_SIGSEGV;
5398 #ifdef CONFIG_PER_VMA_LOCK
5400 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5401 * the assumption that lock is dropped on VM_FAULT_RETRY.
5403 if (WARN_ON_ONCE((*flags &
5404 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5405 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5406 return VM_FAULT_SIGSEGV;
5413 * By the time we get here, we already hold the mm semaphore
5415 * The mmap_lock may have been released depending on flags and our
5416 * return value. See filemap_fault() and __folio_lock_or_retry().
5418 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5419 unsigned int flags, struct pt_regs *regs)
5421 /* If the fault handler drops the mmap_lock, vma may be freed */
5422 struct mm_struct *mm = vma->vm_mm;
5425 __set_current_state(TASK_RUNNING);
5427 ret = sanitize_fault_flags(vma, &flags);
5431 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5432 flags & FAULT_FLAG_INSTRUCTION,
5433 flags & FAULT_FLAG_REMOTE)) {
5434 ret = VM_FAULT_SIGSEGV;
5439 * Enable the memcg OOM handling for faults triggered in user
5440 * space. Kernel faults are handled more gracefully.
5442 if (flags & FAULT_FLAG_USER)
5443 mem_cgroup_enter_user_fault();
5445 lru_gen_enter_fault(vma);
5447 if (unlikely(is_vm_hugetlb_page(vma)))
5448 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5450 ret = __handle_mm_fault(vma, address, flags);
5452 lru_gen_exit_fault();
5454 if (flags & FAULT_FLAG_USER) {
5455 mem_cgroup_exit_user_fault();
5457 * The task may have entered a memcg OOM situation but
5458 * if the allocation error was handled gracefully (no
5459 * VM_FAULT_OOM), there is no need to kill anything.
5460 * Just clean up the OOM state peacefully.
5462 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5463 mem_cgroup_oom_synchronize(false);
5466 mm_account_fault(mm, regs, address, flags, ret);
5470 EXPORT_SYMBOL_GPL(handle_mm_fault);
5472 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5473 #include <linux/extable.h>
5475 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5477 if (likely(mmap_read_trylock(mm)))
5480 if (regs && !user_mode(regs)) {
5481 unsigned long ip = instruction_pointer(regs);
5482 if (!search_exception_tables(ip))
5486 return !mmap_read_lock_killable(mm);
5489 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5492 * We don't have this operation yet.
5494 * It should be easy enough to do: it's basically a
5495 * atomic_long_try_cmpxchg_acquire()
5496 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5497 * it also needs the proper lockdep magic etc.
5502 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5504 mmap_read_unlock(mm);
5505 if (regs && !user_mode(regs)) {
5506 unsigned long ip = instruction_pointer(regs);
5507 if (!search_exception_tables(ip))
5510 return !mmap_write_lock_killable(mm);
5514 * Helper for page fault handling.
5516 * This is kind of equivalend to "mmap_read_lock()" followed
5517 * by "find_extend_vma()", except it's a lot more careful about
5518 * the locking (and will drop the lock on failure).
5520 * For example, if we have a kernel bug that causes a page
5521 * fault, we don't want to just use mmap_read_lock() to get
5522 * the mm lock, because that would deadlock if the bug were
5523 * to happen while we're holding the mm lock for writing.
5525 * So this checks the exception tables on kernel faults in
5526 * order to only do this all for instructions that are actually
5527 * expected to fault.
5529 * We can also actually take the mm lock for writing if we
5530 * need to extend the vma, which helps the VM layer a lot.
5532 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5533 unsigned long addr, struct pt_regs *regs)
5535 struct vm_area_struct *vma;
5537 if (!get_mmap_lock_carefully(mm, regs))
5540 vma = find_vma(mm, addr);
5541 if (likely(vma && (vma->vm_start <= addr)))
5545 * Well, dang. We might still be successful, but only
5546 * if we can extend a vma to do so.
5548 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5549 mmap_read_unlock(mm);
5554 * We can try to upgrade the mmap lock atomically,
5555 * in which case we can continue to use the vma
5556 * we already looked up.
5558 * Otherwise we'll have to drop the mmap lock and
5559 * re-take it, and also look up the vma again,
5562 if (!mmap_upgrade_trylock(mm)) {
5563 if (!upgrade_mmap_lock_carefully(mm, regs))
5566 vma = find_vma(mm, addr);
5569 if (vma->vm_start <= addr)
5571 if (!(vma->vm_flags & VM_GROWSDOWN))
5575 if (expand_stack_locked(vma, addr))
5579 mmap_write_downgrade(mm);
5583 mmap_write_unlock(mm);
5588 #ifdef CONFIG_PER_VMA_LOCK
5590 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5591 * stable and not isolated. If the VMA is not found or is being modified the
5592 * function returns NULL.
5594 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5595 unsigned long address)
5597 MA_STATE(mas, &mm->mm_mt, address, address);
5598 struct vm_area_struct *vma;
5602 vma = mas_walk(&mas);
5606 if (!vma_start_read(vma))
5610 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5611 * This check must happen after vma_start_read(); otherwise, a
5612 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5613 * from its anon_vma.
5615 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
5616 goto inval_end_read;
5618 /* Check since vm_start/vm_end might change before we lock the VMA */
5619 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5620 goto inval_end_read;
5622 /* Check if the VMA got isolated after we found it */
5623 if (vma->detached) {
5625 count_vm_vma_lock_event(VMA_LOCK_MISS);
5626 /* The area was replaced with another one */
5637 count_vm_vma_lock_event(VMA_LOCK_ABORT);
5640 #endif /* CONFIG_PER_VMA_LOCK */
5642 #ifndef __PAGETABLE_P4D_FOLDED
5644 * Allocate p4d page table.
5645 * We've already handled the fast-path in-line.
5647 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5649 p4d_t *new = p4d_alloc_one(mm, address);
5653 spin_lock(&mm->page_table_lock);
5654 if (pgd_present(*pgd)) { /* Another has populated it */
5657 smp_wmb(); /* See comment in pmd_install() */
5658 pgd_populate(mm, pgd, new);
5660 spin_unlock(&mm->page_table_lock);
5663 #endif /* __PAGETABLE_P4D_FOLDED */
5665 #ifndef __PAGETABLE_PUD_FOLDED
5667 * Allocate page upper directory.
5668 * We've already handled the fast-path in-line.
5670 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5672 pud_t *new = pud_alloc_one(mm, address);
5676 spin_lock(&mm->page_table_lock);
5677 if (!p4d_present(*p4d)) {
5679 smp_wmb(); /* See comment in pmd_install() */
5680 p4d_populate(mm, p4d, new);
5681 } else /* Another has populated it */
5683 spin_unlock(&mm->page_table_lock);
5686 #endif /* __PAGETABLE_PUD_FOLDED */
5688 #ifndef __PAGETABLE_PMD_FOLDED
5690 * Allocate page middle directory.
5691 * We've already handled the fast-path in-line.
5693 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5696 pmd_t *new = pmd_alloc_one(mm, address);
5700 ptl = pud_lock(mm, pud);
5701 if (!pud_present(*pud)) {
5703 smp_wmb(); /* See comment in pmd_install() */
5704 pud_populate(mm, pud, new);
5705 } else { /* Another has populated it */
5711 #endif /* __PAGETABLE_PMD_FOLDED */
5714 * follow_pte - look up PTE at a user virtual address
5715 * @mm: the mm_struct of the target address space
5716 * @address: user virtual address
5717 * @ptepp: location to store found PTE
5718 * @ptlp: location to store the lock for the PTE
5720 * On a successful return, the pointer to the PTE is stored in @ptepp;
5721 * the corresponding lock is taken and its location is stored in @ptlp.
5722 * The contents of the PTE are only stable until @ptlp is released;
5723 * any further use, if any, must be protected against invalidation
5724 * with MMU notifiers.
5726 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5727 * should be taken for read.
5729 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5730 * it is not a good general-purpose API.
5732 * Return: zero on success, -ve otherwise.
5734 int follow_pte(struct mm_struct *mm, unsigned long address,
5735 pte_t **ptepp, spinlock_t **ptlp)
5743 pgd = pgd_offset(mm, address);
5744 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5747 p4d = p4d_offset(pgd, address);
5748 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5751 pud = pud_offset(p4d, address);
5752 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5755 pmd = pmd_offset(pud, address);
5756 VM_BUG_ON(pmd_trans_huge(*pmd));
5758 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5761 if (!pte_present(ptep_get(ptep)))
5766 pte_unmap_unlock(ptep, *ptlp);
5770 EXPORT_SYMBOL_GPL(follow_pte);
5773 * follow_pfn - look up PFN at a user virtual address
5774 * @vma: memory mapping
5775 * @address: user virtual address
5776 * @pfn: location to store found PFN
5778 * Only IO mappings and raw PFN mappings are allowed.
5780 * This function does not allow the caller to read the permissions
5781 * of the PTE. Do not use it.
5783 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5785 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5792 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5795 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5798 *pfn = pte_pfn(ptep_get(ptep));
5799 pte_unmap_unlock(ptep, ptl);
5802 EXPORT_SYMBOL(follow_pfn);
5804 #ifdef CONFIG_HAVE_IOREMAP_PROT
5805 int follow_phys(struct vm_area_struct *vma,
5806 unsigned long address, unsigned int flags,
5807 unsigned long *prot, resource_size_t *phys)
5813 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5816 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5818 pte = ptep_get(ptep);
5820 if ((flags & FOLL_WRITE) && !pte_write(pte))
5823 *prot = pgprot_val(pte_pgprot(pte));
5824 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5828 pte_unmap_unlock(ptep, ptl);
5834 * generic_access_phys - generic implementation for iomem mmap access
5835 * @vma: the vma to access
5836 * @addr: userspace address, not relative offset within @vma
5837 * @buf: buffer to read/write
5838 * @len: length of transfer
5839 * @write: set to FOLL_WRITE when writing, otherwise reading
5841 * This is a generic implementation for &vm_operations_struct.access for an
5842 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5845 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5846 void *buf, int len, int write)
5848 resource_size_t phys_addr;
5849 unsigned long prot = 0;
5850 void __iomem *maddr;
5853 int offset = offset_in_page(addr);
5856 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5860 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5862 pte = ptep_get(ptep);
5863 pte_unmap_unlock(ptep, ptl);
5865 prot = pgprot_val(pte_pgprot(pte));
5866 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5868 if ((write & FOLL_WRITE) && !pte_write(pte))
5871 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5875 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5878 if (!pte_same(pte, ptep_get(ptep))) {
5879 pte_unmap_unlock(ptep, ptl);
5886 memcpy_toio(maddr + offset, buf, len);
5888 memcpy_fromio(buf, maddr + offset, len);
5890 pte_unmap_unlock(ptep, ptl);
5896 EXPORT_SYMBOL_GPL(generic_access_phys);
5900 * Access another process' address space as given in mm.
5902 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
5903 void *buf, int len, unsigned int gup_flags)
5905 void *old_buf = buf;
5906 int write = gup_flags & FOLL_WRITE;
5908 if (mmap_read_lock_killable(mm))
5911 /* Untag the address before looking up the VMA */
5912 addr = untagged_addr_remote(mm, addr);
5914 /* Avoid triggering the temporary warning in __get_user_pages */
5915 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5918 /* ignore errors, just check how much was successfully transferred */
5922 struct vm_area_struct *vma = NULL;
5923 struct page *page = get_user_page_vma_remote(mm, addr,
5927 /* We might need to expand the stack to access it */
5928 vma = vma_lookup(mm, addr);
5930 vma = expand_stack(mm, addr);
5932 /* mmap_lock was dropped on failure */
5934 return buf - old_buf;
5936 /* Try again if stack expansion worked */
5941 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5942 * we can access using slightly different code.
5945 #ifdef CONFIG_HAVE_IOREMAP_PROT
5946 if (vma->vm_ops && vma->vm_ops->access)
5947 bytes = vma->vm_ops->access(vma, addr, buf,
5954 offset = addr & (PAGE_SIZE-1);
5955 if (bytes > PAGE_SIZE-offset)
5956 bytes = PAGE_SIZE-offset;
5958 maddr = kmap_local_page(page);
5960 copy_to_user_page(vma, page, addr,
5961 maddr + offset, buf, bytes);
5962 set_page_dirty_lock(page);
5964 copy_from_user_page(vma, page, addr,
5965 buf, maddr + offset, bytes);
5967 unmap_and_put_page(page, maddr);
5973 mmap_read_unlock(mm);
5975 return buf - old_buf;
5979 * access_remote_vm - access another process' address space
5980 * @mm: the mm_struct of the target address space
5981 * @addr: start address to access
5982 * @buf: source or destination buffer
5983 * @len: number of bytes to transfer
5984 * @gup_flags: flags modifying lookup behaviour
5986 * The caller must hold a reference on @mm.
5988 * Return: number of bytes copied from source to destination.
5990 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5991 void *buf, int len, unsigned int gup_flags)
5993 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5997 * Access another process' address space.
5998 * Source/target buffer must be kernel space,
5999 * Do not walk the page table directly, use get_user_pages
6001 int access_process_vm(struct task_struct *tsk, unsigned long addr,
6002 void *buf, int len, unsigned int gup_flags)
6004 struct mm_struct *mm;
6007 mm = get_task_mm(tsk);
6011 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6017 EXPORT_SYMBOL_GPL(access_process_vm);
6020 * Print the name of a VMA.
6022 void print_vma_addr(char *prefix, unsigned long ip)
6024 struct mm_struct *mm = current->mm;
6025 struct vm_area_struct *vma;
6028 * we might be running from an atomic context so we cannot sleep
6030 if (!mmap_read_trylock(mm))
6033 vma = find_vma(mm, ip);
6034 if (vma && vma->vm_file) {
6035 struct file *f = vma->vm_file;
6036 char *buf = (char *)__get_free_page(GFP_NOWAIT);
6040 p = file_path(f, buf, PAGE_SIZE);
6043 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
6045 vma->vm_end - vma->vm_start);
6046 free_page((unsigned long)buf);
6049 mmap_read_unlock(mm);
6052 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6053 void __might_fault(const char *file, int line)
6055 if (pagefault_disabled())
6057 __might_sleep(file, line);
6058 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6060 might_lock_read(¤t->mm->mmap_lock);
6063 EXPORT_SYMBOL(__might_fault);
6066 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6068 * Process all subpages of the specified huge page with the specified
6069 * operation. The target subpage will be processed last to keep its
6072 static inline int process_huge_page(
6073 unsigned long addr_hint, unsigned int pages_per_huge_page,
6074 int (*process_subpage)(unsigned long addr, int idx, void *arg),
6077 int i, n, base, l, ret;
6078 unsigned long addr = addr_hint &
6079 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6081 /* Process target subpage last to keep its cache lines hot */
6083 n = (addr_hint - addr) / PAGE_SIZE;
6084 if (2 * n <= pages_per_huge_page) {
6085 /* If target subpage in first half of huge page */
6088 /* Process subpages at the end of huge page */
6089 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
6091 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6096 /* If target subpage in second half of huge page */
6097 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
6098 l = pages_per_huge_page - n;
6099 /* Process subpages at the begin of huge page */
6100 for (i = 0; i < base; i++) {
6102 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6108 * Process remaining subpages in left-right-left-right pattern
6109 * towards the target subpage
6111 for (i = 0; i < l; i++) {
6112 int left_idx = base + i;
6113 int right_idx = base + 2 * l - 1 - i;
6116 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6120 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6127 static void clear_gigantic_page(struct page *page,
6129 unsigned int pages_per_huge_page)
6135 for (i = 0; i < pages_per_huge_page; i++) {
6136 p = nth_page(page, i);
6138 clear_user_highpage(p, addr + i * PAGE_SIZE);
6142 static int clear_subpage(unsigned long addr, int idx, void *arg)
6144 struct page *page = arg;
6146 clear_user_highpage(page + idx, addr);
6150 void clear_huge_page(struct page *page,
6151 unsigned long addr_hint, unsigned int pages_per_huge_page)
6153 unsigned long addr = addr_hint &
6154 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6156 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6157 clear_gigantic_page(page, addr, pages_per_huge_page);
6161 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6164 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6166 struct vm_area_struct *vma,
6167 unsigned int pages_per_huge_page)
6170 struct page *dst_page;
6171 struct page *src_page;
6173 for (i = 0; i < pages_per_huge_page; i++) {
6174 dst_page = folio_page(dst, i);
6175 src_page = folio_page(src, i);
6178 if (copy_mc_user_highpage(dst_page, src_page,
6179 addr + i*PAGE_SIZE, vma)) {
6180 memory_failure_queue(page_to_pfn(src_page), 0);
6187 struct copy_subpage_arg {
6190 struct vm_area_struct *vma;
6193 static int copy_subpage(unsigned long addr, int idx, void *arg)
6195 struct copy_subpage_arg *copy_arg = arg;
6197 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6198 addr, copy_arg->vma)) {
6199 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6205 int copy_user_large_folio(struct folio *dst, struct folio *src,
6206 unsigned long addr_hint, struct vm_area_struct *vma)
6208 unsigned int pages_per_huge_page = folio_nr_pages(dst);
6209 unsigned long addr = addr_hint &
6210 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6211 struct copy_subpage_arg arg = {
6217 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6218 return copy_user_gigantic_page(dst, src, addr, vma,
6219 pages_per_huge_page);
6221 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6224 long copy_folio_from_user(struct folio *dst_folio,
6225 const void __user *usr_src,
6226 bool allow_pagefault)
6229 unsigned long i, rc = 0;
6230 unsigned int nr_pages = folio_nr_pages(dst_folio);
6231 unsigned long ret_val = nr_pages * PAGE_SIZE;
6232 struct page *subpage;
6234 for (i = 0; i < nr_pages; i++) {
6235 subpage = folio_page(dst_folio, i);
6236 kaddr = kmap_local_page(subpage);
6237 if (!allow_pagefault)
6238 pagefault_disable();
6239 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6240 if (!allow_pagefault)
6242 kunmap_local(kaddr);
6244 ret_val -= (PAGE_SIZE - rc);
6248 flush_dcache_page(subpage);
6254 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6256 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6258 static struct kmem_cache *page_ptl_cachep;
6260 void __init ptlock_cache_init(void)
6262 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6266 bool ptlock_alloc(struct ptdesc *ptdesc)
6270 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6277 void ptlock_free(struct ptdesc *ptdesc)
6279 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);