2 * Port on Texas Instruments TMS320C6x architecture
4 * Copyright (C) 2004, 2006, 2009, 2010, 2011 Texas Instruments Incorporated
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/dma-mapping.h>
12 #include <linux/memblock.h>
13 #include <linux/seq_file.h>
14 #include <linux/bootmem.h>
15 #include <linux/clkdev.h>
16 #include <linux/initrd.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/of_fdt.h>
20 #include <linux/string.h>
21 #include <linux/errno.h>
22 #include <linux/cache.h>
23 #include <linux/delay.h>
24 #include <linux/sched.h>
25 #include <linux/clk.h>
26 #include <linux/cpu.h>
29 #include <linux/console.h>
30 #include <linux/screen_info.h>
32 #include <asm/sections.h>
33 #include <asm/div64.h>
34 #include <asm/setup.h>
36 #include <asm/clock.h>
38 #include <asm/special_insns.h>
40 static const char *c6x_soc_name;
42 struct screen_info screen_info;
45 EXPORT_SYMBOL_GPL(c6x_num_cores);
47 unsigned int c6x_silicon_rev;
48 EXPORT_SYMBOL_GPL(c6x_silicon_rev);
51 * Device status register. This holds information
52 * about device configuration needed by some drivers.
54 unsigned int c6x_devstat;
55 EXPORT_SYMBOL_GPL(c6x_devstat);
58 * Some SoCs have fuse registers holding a unique MAC
59 * address. This is parsed out of the device tree with
60 * the resulting MAC being held here.
62 unsigned char c6x_fuse_mac[6];
64 unsigned long memory_start;
65 unsigned long memory_end;
66 EXPORT_SYMBOL(memory_end);
68 unsigned long ram_start;
69 unsigned long ram_end;
71 /* Uncached memory for DMA consistent use (memdma=) */
72 static unsigned long dma_start __initdata;
73 static unsigned long dma_size __initdata;
77 const char *cpu_voltage;
85 static DEFINE_PER_CPU(struct cpuinfo_c6x, cpu_data);
87 unsigned int ticks_per_ns_scaled;
88 EXPORT_SYMBOL(ticks_per_ns_scaled);
90 unsigned int c6x_core_freq;
92 static void __init get_cpuinfo(void)
94 unsigned cpu_id, rev_id, csr;
95 struct clk *coreclk = clk_get_sys(NULL, "core");
96 unsigned long core_khz;
98 struct cpuinfo_c6x *p;
99 struct device_node *node, *np;
101 p = &per_cpu(cpu_data, smp_processor_id());
103 if (!IS_ERR(coreclk))
104 c6x_core_freq = clk_get_rate(coreclk);
107 "Cannot find core clock frequency. Using 700MHz\n");
108 c6x_core_freq = 700000000;
111 core_khz = c6x_core_freq / 1000;
113 tmp = (uint64_t)core_khz << C6X_NDELAY_SCALE;
114 do_div(tmp, 1000000);
115 ticks_per_ns_scaled = tmp;
119 rev_id = (csr >> 16) & 0xff;
123 p->cpu_voltage = "unknown";
127 p->cpu_name = "C67x";
131 p->cpu_name = "C62x";
134 p->cpu_name = "C64x";
137 p->cpu_name = "C64x";
140 p->cpu_name = "C64x+";
141 p->cpu_voltage = "1.2";
144 p->cpu_name = "C66X";
145 p->cpu_voltage = "1.2";
148 p->cpu_name = "unknown";
156 p->cpu_rev = "DM640/DM641/DM642/DM643";
157 p->cpu_voltage = "1.2 - 1.4";
159 p->cpu_rev = "C6201";
160 p->cpu_voltage = "2.5";
164 p->cpu_rev = "C6201B/C6202/C6211";
165 p->cpu_voltage = "1.8";
168 p->cpu_rev = "C6202B/C6203/C6204/C6205";
169 p->cpu_voltage = "1.5";
172 p->cpu_rev = "C6701 revision 0 (early CPU)";
173 p->cpu_voltage = "1.8";
176 p->cpu_rev = "C6701/C6711/C6712";
177 p->cpu_voltage = "1.8";
181 p->cpu_voltage = "1.5";
184 p->cpu_rev = "unknown";
187 p->cpu_rev = p->__cpu_rev;
188 snprintf(p->__cpu_rev, sizeof(p->__cpu_rev), "0x%x", cpu_id);
191 p->core_id = get_coreid();
193 node = of_find_node_by_name(NULL, "cpus");
195 for_each_child_of_node(node, np)
196 if (!strcmp("cpu", np->name))
201 node = of_find_node_by_name(NULL, "soc");
203 if (of_property_read_string(node, "model", &c6x_soc_name))
204 c6x_soc_name = "unknown";
207 c6x_soc_name = "unknown";
209 printk(KERN_INFO "CPU%d: %s rev %s, %s volts, %uMHz\n",
210 p->core_id, p->cpu_name, p->cpu_rev,
211 p->cpu_voltage, c6x_core_freq / 1000000);
215 * Early parsing of the command line
217 static u32 mem_size __initdata;
219 /* "mem=" parsing. */
220 static int __init early_mem(char *p)
225 mem_size = memparse(p, &p);
226 /* don't remove all of memory when handling "mem={invalid}" */
232 early_param("mem", early_mem);
234 /* "memdma=<size>[@<address>]" parsing. */
235 static int __init early_memdma(char *p)
240 dma_size = memparse(p, &p);
242 dma_start = memparse(p, &p);
246 early_param("memdma", early_memdma);
248 int __init c6x_add_memory(phys_addr_t start, unsigned long size)
250 static int ram_found __initdata;
252 /* We only handle one bank (the one with PAGE_OFFSET) for now */
256 if (start > PAGE_OFFSET || PAGE_OFFSET >= (start + size))
260 ram_end = start + size;
267 * Do early machine setup and device tree parsing. This is called very
268 * early on the boot process.
270 notrace void __init machine_init(unsigned long dt_ptr)
272 void *dtb = __va(dt_ptr);
273 void *fdt = _fdt_start;
275 /* interrupts must be masked */
279 * Set the Interrupt Service Table (IST) to the beginning of the
282 set_ist(_vectors_start);
285 * dtb is passed in from bootloader.
286 * fdt is linked in blob.
288 if (dtb && dtb != fdt)
291 /* Do some early initialization based on the flat device tree */
292 early_init_dt_scan(fdt);
297 void __init setup_arch(char **cmdline_p)
300 struct memblock_region *reg;
302 printk(KERN_INFO "Initializing kernel\n");
304 /* Initialize command line */
305 *cmdline_p = boot_command_line;
307 memory_end = ram_end;
308 memory_end &= ~(PAGE_SIZE - 1);
310 if (mem_size && (PAGE_OFFSET + PAGE_ALIGN(mem_size)) < memory_end)
311 memory_end = PAGE_OFFSET + PAGE_ALIGN(mem_size);
313 /* add block that this kernel can use */
314 memblock_add(PAGE_OFFSET, memory_end - PAGE_OFFSET);
316 /* reserve kernel text/data/bss */
317 memblock_reserve(PAGE_OFFSET,
318 PAGE_ALIGN((unsigned long)&_end - PAGE_OFFSET));
321 /* align to cacheability granularity */
322 dma_size = CACHE_REGION_END(dma_size);
325 dma_start = memory_end - dma_size;
327 /* align to cacheability granularity */
328 dma_start = CACHE_REGION_START(dma_start);
330 /* reserve DMA memory taken from kernel memory */
331 if (memblock_is_region_memory(dma_start, dma_size))
332 memblock_reserve(dma_start, dma_size);
335 memory_start = PAGE_ALIGN((unsigned int) &_end);
337 printk(KERN_INFO "Memory Start=%08lx, Memory End=%08lx\n",
338 memory_start, memory_end);
340 #ifdef CONFIG_BLK_DEV_INITRD
342 * Reserve initrd memory if in kernel memory.
344 if (initrd_start < initrd_end)
345 if (memblock_is_region_memory(initrd_start,
346 initrd_end - initrd_start))
347 memblock_reserve(initrd_start,
348 initrd_end - initrd_start);
351 init_mm.start_code = (unsigned long) &_stext;
352 init_mm.end_code = (unsigned long) &_etext;
353 init_mm.end_data = memory_start;
354 init_mm.brk = memory_start;
357 * Give all the memory to the bootmap allocator, tell it to put the
358 * boot mem_map at the start of memory
360 bootmap_size = init_bootmem_node(NODE_DATA(0),
361 memory_start >> PAGE_SHIFT,
362 PAGE_OFFSET >> PAGE_SHIFT,
363 memory_end >> PAGE_SHIFT);
364 memblock_reserve(memory_start, bootmap_size);
366 unflatten_device_tree();
370 /* Set the whole external memory as non-cacheable */
371 disable_caching(ram_start, ram_end - 1);
373 /* Set caching of external RAM used by Linux */
374 for_each_memblock(memory, reg)
375 enable_caching(CACHE_REGION_START(reg->base),
376 CACHE_REGION_START(reg->base + reg->size - 1));
378 #ifdef CONFIG_BLK_DEV_INITRD
380 * Enable caching for initrd which falls outside kernel memory.
382 if (initrd_start < initrd_end) {
383 if (!memblock_is_region_memory(initrd_start,
384 initrd_end - initrd_start))
385 enable_caching(CACHE_REGION_START(initrd_start),
386 CACHE_REGION_START(initrd_end - 1));
391 * Disable caching for dma coherent memory taken from kernel memory.
393 if (dma_size && memblock_is_region_memory(dma_start, dma_size))
394 disable_caching(dma_start,
395 CACHE_REGION_START(dma_start + dma_size - 1));
397 /* Initialize the coherent memory allocator */
398 coherent_mem_init(dma_start, dma_size);
401 * Free all memory as a starting point.
403 free_bootmem(PAGE_OFFSET, memory_end - PAGE_OFFSET);
406 * Then reserve memory which is already being used.
408 for_each_memblock(reserved, reg) {
409 pr_debug("reserved - 0x%08x-0x%08x\n",
410 (u32) reg->base, (u32) reg->size);
411 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
414 max_low_pfn = PFN_DOWN(memory_end);
415 min_low_pfn = PFN_UP(memory_start);
416 max_mapnr = max_low_pfn - min_low_pfn;
418 /* Get kmalloc into gear */
422 * Probe for Device State Configuration Registers.
423 * We have to do this early in case timer needs to be enabled
428 /* We do this early for timer and core clock frequency */
434 #if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
435 conswitchp = &dummy_con;
439 #define cpu_to_ptr(n) ((void *)((long)(n)+1))
440 #define ptr_to_cpu(p) ((long)(p) - 1)
442 static int show_cpuinfo(struct seq_file *m, void *v)
444 int n = ptr_to_cpu(v);
445 struct cpuinfo_c6x *p = &per_cpu(cpu_data, n);
450 "soc revision\t: 0x%x\n"
452 c6x_soc_name, c6x_silicon_rev, c6x_num_cores);
459 "core revision\t: %s\n"
460 "core voltage\t: %s\n"
465 "bogomips\t: %lu.%02lu\n\n",
467 p->cpu_name, p->cpu_rev, p->cpu_voltage,
468 p->core_id, p->mmu, p->fpu,
469 (c6x_core_freq + 500000) / 1000000,
470 (loops_per_jiffy/(500000/HZ)),
471 (loops_per_jiffy/(5000/HZ))%100);
476 static void *c_start(struct seq_file *m, loff_t *pos)
478 return *pos < nr_cpu_ids ? cpu_to_ptr(*pos) : NULL;
480 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
485 static void c_stop(struct seq_file *m, void *v)
489 const struct seq_operations cpuinfo_op = {
496 static struct cpu cpu_devices[NR_CPUS];
498 static int __init topology_init(void)
502 for_each_present_cpu(i)
503 register_cpu(&cpu_devices[i], i);
508 subsys_initcall(topology_init);