]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
drm/i915: Update DRIVER_DATE to 20140905
[linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <[email protected]>
25  *    Zou Nan hai <[email protected]>
26  *    Xiang Hai hao<[email protected]>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39         struct drm_device *dev = ring->dev;
40
41         if (!dev)
42                 return false;
43
44         if (i915.enable_execlists) {
45                 struct intel_context *dctx = ring->default_context;
46                 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48                 return ringbuf->obj;
49         } else
50                 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55         int space = head - (tail + I915_RING_FREE_SPACE);
56         if (space < 0)
57                 space += size;
58         return space;
59 }
60
61 int intel_ring_space(struct intel_ringbuffer *ringbuf)
62 {
63         return __intel_ring_space(ringbuf->head & HEAD_ADDR,
64                                   ringbuf->tail, ringbuf->size);
65 }
66
67 bool intel_ring_stopped(struct intel_engine_cs *ring)
68 {
69         struct drm_i915_private *dev_priv = ring->dev->dev_private;
70         return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
71 }
72
73 void __intel_ring_advance(struct intel_engine_cs *ring)
74 {
75         struct intel_ringbuffer *ringbuf = ring->buffer;
76         ringbuf->tail &= ringbuf->size - 1;
77         if (intel_ring_stopped(ring))
78                 return;
79         ring->write_tail(ring, ringbuf->tail);
80 }
81
82 static int
83 gen2_render_ring_flush(struct intel_engine_cs *ring,
84                        u32      invalidate_domains,
85                        u32      flush_domains)
86 {
87         u32 cmd;
88         int ret;
89
90         cmd = MI_FLUSH;
91         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
92                 cmd |= MI_NO_WRITE_FLUSH;
93
94         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
95                 cmd |= MI_READ_FLUSH;
96
97         ret = intel_ring_begin(ring, 2);
98         if (ret)
99                 return ret;
100
101         intel_ring_emit(ring, cmd);
102         intel_ring_emit(ring, MI_NOOP);
103         intel_ring_advance(ring);
104
105         return 0;
106 }
107
108 static int
109 gen4_render_ring_flush(struct intel_engine_cs *ring,
110                        u32      invalidate_domains,
111                        u32      flush_domains)
112 {
113         struct drm_device *dev = ring->dev;
114         u32 cmd;
115         int ret;
116
117         /*
118          * read/write caches:
119          *
120          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
121          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
122          * also flushed at 2d versus 3d pipeline switches.
123          *
124          * read-only caches:
125          *
126          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
127          * MI_READ_FLUSH is set, and is always flushed on 965.
128          *
129          * I915_GEM_DOMAIN_COMMAND may not exist?
130          *
131          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
132          * invalidated when MI_EXE_FLUSH is set.
133          *
134          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
135          * invalidated with every MI_FLUSH.
136          *
137          * TLBs:
138          *
139          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
140          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
141          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
142          * are flushed at any MI_FLUSH.
143          */
144
145         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
146         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
147                 cmd &= ~MI_NO_WRITE_FLUSH;
148         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
149                 cmd |= MI_EXE_FLUSH;
150
151         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
152             (IS_G4X(dev) || IS_GEN5(dev)))
153                 cmd |= MI_INVALIDATE_ISP;
154
155         ret = intel_ring_begin(ring, 2);
156         if (ret)
157                 return ret;
158
159         intel_ring_emit(ring, cmd);
160         intel_ring_emit(ring, MI_NOOP);
161         intel_ring_advance(ring);
162
163         return 0;
164 }
165
166 /**
167  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
168  * implementing two workarounds on gen6.  From section 1.4.7.1
169  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
170  *
171  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
172  * produced by non-pipelined state commands), software needs to first
173  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
174  * 0.
175  *
176  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
177  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
178  *
179  * And the workaround for these two requires this workaround first:
180  *
181  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
182  * BEFORE the pipe-control with a post-sync op and no write-cache
183  * flushes.
184  *
185  * And this last workaround is tricky because of the requirements on
186  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
187  * volume 2 part 1:
188  *
189  *     "1 of the following must also be set:
190  *      - Render Target Cache Flush Enable ([12] of DW1)
191  *      - Depth Cache Flush Enable ([0] of DW1)
192  *      - Stall at Pixel Scoreboard ([1] of DW1)
193  *      - Depth Stall ([13] of DW1)
194  *      - Post-Sync Operation ([13] of DW1)
195  *      - Notify Enable ([8] of DW1)"
196  *
197  * The cache flushes require the workaround flush that triggered this
198  * one, so we can't use it.  Depth stall would trigger the same.
199  * Post-sync nonzero is what triggered this second workaround, so we
200  * can't use that one either.  Notify enable is IRQs, which aren't
201  * really our business.  That leaves only stall at scoreboard.
202  */
203 static int
204 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
205 {
206         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
207         int ret;
208
209
210         ret = intel_ring_begin(ring, 6);
211         if (ret)
212                 return ret;
213
214         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
215         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
216                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
217         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
218         intel_ring_emit(ring, 0); /* low dword */
219         intel_ring_emit(ring, 0); /* high dword */
220         intel_ring_emit(ring, MI_NOOP);
221         intel_ring_advance(ring);
222
223         ret = intel_ring_begin(ring, 6);
224         if (ret)
225                 return ret;
226
227         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
229         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
230         intel_ring_emit(ring, 0);
231         intel_ring_emit(ring, 0);
232         intel_ring_emit(ring, MI_NOOP);
233         intel_ring_advance(ring);
234
235         return 0;
236 }
237
238 static int
239 gen6_render_ring_flush(struct intel_engine_cs *ring,
240                          u32 invalidate_domains, u32 flush_domains)
241 {
242         u32 flags = 0;
243         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
244         int ret;
245
246         /* Force SNB workarounds for PIPE_CONTROL flushes */
247         ret = intel_emit_post_sync_nonzero_flush(ring);
248         if (ret)
249                 return ret;
250
251         /* Just flush everything.  Experiments have shown that reducing the
252          * number of bits based on the write domains has little performance
253          * impact.
254          */
255         if (flush_domains) {
256                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
257                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
258                 /*
259                  * Ensure that any following seqno writes only happen
260                  * when the render cache is indeed flushed.
261                  */
262                 flags |= PIPE_CONTROL_CS_STALL;
263         }
264         if (invalidate_domains) {
265                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
266                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
267                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
268                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
269                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
270                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
271                 /*
272                  * TLB invalidate requires a post-sync write.
273                  */
274                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
275         }
276
277         ret = intel_ring_begin(ring, 4);
278         if (ret)
279                 return ret;
280
281         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
282         intel_ring_emit(ring, flags);
283         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
284         intel_ring_emit(ring, 0);
285         intel_ring_advance(ring);
286
287         return 0;
288 }
289
290 static int
291 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
292 {
293         int ret;
294
295         ret = intel_ring_begin(ring, 4);
296         if (ret)
297                 return ret;
298
299         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
300         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
301                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
302         intel_ring_emit(ring, 0);
303         intel_ring_emit(ring, 0);
304         intel_ring_advance(ring);
305
306         return 0;
307 }
308
309 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
310 {
311         int ret;
312
313         if (!ring->fbc_dirty)
314                 return 0;
315
316         ret = intel_ring_begin(ring, 6);
317         if (ret)
318                 return ret;
319         /* WaFbcNukeOn3DBlt:ivb/hsw */
320         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
321         intel_ring_emit(ring, MSG_FBC_REND_STATE);
322         intel_ring_emit(ring, value);
323         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
324         intel_ring_emit(ring, MSG_FBC_REND_STATE);
325         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
326         intel_ring_advance(ring);
327
328         ring->fbc_dirty = false;
329         return 0;
330 }
331
332 static int
333 gen7_render_ring_flush(struct intel_engine_cs *ring,
334                        u32 invalidate_domains, u32 flush_domains)
335 {
336         u32 flags = 0;
337         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
338         int ret;
339
340         /*
341          * Ensure that any following seqno writes only happen when the render
342          * cache is indeed flushed.
343          *
344          * Workaround: 4th PIPE_CONTROL command (except the ones with only
345          * read-cache invalidate bits set) must have the CS_STALL bit set. We
346          * don't try to be clever and just set it unconditionally.
347          */
348         flags |= PIPE_CONTROL_CS_STALL;
349
350         /* Just flush everything.  Experiments have shown that reducing the
351          * number of bits based on the write domains has little performance
352          * impact.
353          */
354         if (flush_domains) {
355                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
356                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
357         }
358         if (invalidate_domains) {
359                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
360                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
361                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
362                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
363                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
364                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
365                 /*
366                  * TLB invalidate requires a post-sync write.
367                  */
368                 flags |= PIPE_CONTROL_QW_WRITE;
369                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
370
371                 /* Workaround: we must issue a pipe_control with CS-stall bit
372                  * set before a pipe_control command that has the state cache
373                  * invalidate bit set. */
374                 gen7_render_ring_cs_stall_wa(ring);
375         }
376
377         ret = intel_ring_begin(ring, 4);
378         if (ret)
379                 return ret;
380
381         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
382         intel_ring_emit(ring, flags);
383         intel_ring_emit(ring, scratch_addr);
384         intel_ring_emit(ring, 0);
385         intel_ring_advance(ring);
386
387         if (!invalidate_domains && flush_domains)
388                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
389
390         return 0;
391 }
392
393 static int
394 gen8_emit_pipe_control(struct intel_engine_cs *ring,
395                        u32 flags, u32 scratch_addr)
396 {
397         int ret;
398
399         ret = intel_ring_begin(ring, 6);
400         if (ret)
401                 return ret;
402
403         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
404         intel_ring_emit(ring, flags);
405         intel_ring_emit(ring, scratch_addr);
406         intel_ring_emit(ring, 0);
407         intel_ring_emit(ring, 0);
408         intel_ring_emit(ring, 0);
409         intel_ring_advance(ring);
410
411         return 0;
412 }
413
414 static int
415 gen8_render_ring_flush(struct intel_engine_cs *ring,
416                        u32 invalidate_domains, u32 flush_domains)
417 {
418         u32 flags = 0;
419         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
420         int ret;
421
422         flags |= PIPE_CONTROL_CS_STALL;
423
424         if (flush_domains) {
425                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
426                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
427         }
428         if (invalidate_domains) {
429                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
430                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
431                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
432                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
433                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
434                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
435                 flags |= PIPE_CONTROL_QW_WRITE;
436                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
437
438                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
439                 ret = gen8_emit_pipe_control(ring,
440                                              PIPE_CONTROL_CS_STALL |
441                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
442                                              0);
443                 if (ret)
444                         return ret;
445         }
446
447         ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
448         if (ret)
449                 return ret;
450
451         if (!invalidate_domains && flush_domains)
452                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
453
454         return 0;
455 }
456
457 static void ring_write_tail(struct intel_engine_cs *ring,
458                             u32 value)
459 {
460         struct drm_i915_private *dev_priv = ring->dev->dev_private;
461         I915_WRITE_TAIL(ring, value);
462 }
463
464 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
465 {
466         struct drm_i915_private *dev_priv = ring->dev->dev_private;
467         u64 acthd;
468
469         if (INTEL_INFO(ring->dev)->gen >= 8)
470                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
471                                          RING_ACTHD_UDW(ring->mmio_base));
472         else if (INTEL_INFO(ring->dev)->gen >= 4)
473                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
474         else
475                 acthd = I915_READ(ACTHD);
476
477         return acthd;
478 }
479
480 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
481 {
482         struct drm_i915_private *dev_priv = ring->dev->dev_private;
483         u32 addr;
484
485         addr = dev_priv->status_page_dmah->busaddr;
486         if (INTEL_INFO(ring->dev)->gen >= 4)
487                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
488         I915_WRITE(HWS_PGA, addr);
489 }
490
491 static bool stop_ring(struct intel_engine_cs *ring)
492 {
493         struct drm_i915_private *dev_priv = to_i915(ring->dev);
494
495         if (!IS_GEN2(ring->dev)) {
496                 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
497                 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
498                         DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
499                         /* Sometimes we observe that the idle flag is not
500                          * set even though the ring is empty. So double
501                          * check before giving up.
502                          */
503                         if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
504                                 return false;
505                 }
506         }
507
508         I915_WRITE_CTL(ring, 0);
509         I915_WRITE_HEAD(ring, 0);
510         ring->write_tail(ring, 0);
511
512         if (!IS_GEN2(ring->dev)) {
513                 (void)I915_READ_CTL(ring);
514                 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
515         }
516
517         return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
518 }
519
520 static int init_ring_common(struct intel_engine_cs *ring)
521 {
522         struct drm_device *dev = ring->dev;
523         struct drm_i915_private *dev_priv = dev->dev_private;
524         struct intel_ringbuffer *ringbuf = ring->buffer;
525         struct drm_i915_gem_object *obj = ringbuf->obj;
526         int ret = 0;
527
528         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
529
530         if (!stop_ring(ring)) {
531                 /* G45 ring initialization often fails to reset head to zero */
532                 DRM_DEBUG_KMS("%s head not reset to zero "
533                               "ctl %08x head %08x tail %08x start %08x\n",
534                               ring->name,
535                               I915_READ_CTL(ring),
536                               I915_READ_HEAD(ring),
537                               I915_READ_TAIL(ring),
538                               I915_READ_START(ring));
539
540                 if (!stop_ring(ring)) {
541                         DRM_ERROR("failed to set %s head to zero "
542                                   "ctl %08x head %08x tail %08x start %08x\n",
543                                   ring->name,
544                                   I915_READ_CTL(ring),
545                                   I915_READ_HEAD(ring),
546                                   I915_READ_TAIL(ring),
547                                   I915_READ_START(ring));
548                         ret = -EIO;
549                         goto out;
550                 }
551         }
552
553         if (I915_NEED_GFX_HWS(dev))
554                 intel_ring_setup_status_page(ring);
555         else
556                 ring_setup_phys_status_page(ring);
557
558         /* Enforce ordering by reading HEAD register back */
559         I915_READ_HEAD(ring);
560
561         /* Initialize the ring. This must happen _after_ we've cleared the ring
562          * registers with the above sequence (the readback of the HEAD registers
563          * also enforces ordering), otherwise the hw might lose the new ring
564          * register values. */
565         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
566
567         /* WaClearRingBufHeadRegAtInit:ctg,elk */
568         if (I915_READ_HEAD(ring))
569                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
570                           ring->name, I915_READ_HEAD(ring));
571         I915_WRITE_HEAD(ring, 0);
572         (void)I915_READ_HEAD(ring);
573
574         I915_WRITE_CTL(ring,
575                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
576                         | RING_VALID);
577
578         /* If the head is still not zero, the ring is dead */
579         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
580                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
581                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
582                 DRM_ERROR("%s initialization failed "
583                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
584                           ring->name,
585                           I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
586                           I915_READ_HEAD(ring), I915_READ_TAIL(ring),
587                           I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
588                 ret = -EIO;
589                 goto out;
590         }
591
592         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
593                 i915_kernel_lost_context(ring->dev);
594         else {
595                 ringbuf->head = I915_READ_HEAD(ring);
596                 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
597                 ringbuf->space = intel_ring_space(ringbuf);
598                 ringbuf->last_retired_head = -1;
599         }
600
601         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
602
603 out:
604         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
605
606         return ret;
607 }
608
609 void
610 intel_fini_pipe_control(struct intel_engine_cs *ring)
611 {
612         struct drm_device *dev = ring->dev;
613
614         if (ring->scratch.obj == NULL)
615                 return;
616
617         if (INTEL_INFO(dev)->gen >= 5) {
618                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
619                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
620         }
621
622         drm_gem_object_unreference(&ring->scratch.obj->base);
623         ring->scratch.obj = NULL;
624 }
625
626 int
627 intel_init_pipe_control(struct intel_engine_cs *ring)
628 {
629         int ret;
630
631         if (ring->scratch.obj)
632                 return 0;
633
634         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
635         if (ring->scratch.obj == NULL) {
636                 DRM_ERROR("Failed to allocate seqno page\n");
637                 ret = -ENOMEM;
638                 goto err;
639         }
640
641         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
642         if (ret)
643                 goto err_unref;
644
645         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
646         if (ret)
647                 goto err_unref;
648
649         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
650         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
651         if (ring->scratch.cpu_page == NULL) {
652                 ret = -ENOMEM;
653                 goto err_unpin;
654         }
655
656         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
657                          ring->name, ring->scratch.gtt_offset);
658         return 0;
659
660 err_unpin:
661         i915_gem_object_ggtt_unpin(ring->scratch.obj);
662 err_unref:
663         drm_gem_object_unreference(&ring->scratch.obj->base);
664 err:
665         return ret;
666 }
667
668 static inline void intel_ring_emit_wa(struct intel_engine_cs *ring,
669                                        u32 addr, u32 value)
670 {
671         struct drm_device *dev = ring->dev;
672         struct drm_i915_private *dev_priv = dev->dev_private;
673
674         if (WARN_ON(dev_priv->num_wa_regs >= I915_MAX_WA_REGS))
675                 return;
676
677         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
678         intel_ring_emit(ring, addr);
679         intel_ring_emit(ring, value);
680
681         dev_priv->intel_wa_regs[dev_priv->num_wa_regs].addr = addr;
682         dev_priv->intel_wa_regs[dev_priv->num_wa_regs].mask = value & 0xFFFF;
683         /* value is updated with the status of remaining bits of this
684          * register when it is read from debugfs file
685          */
686         dev_priv->intel_wa_regs[dev_priv->num_wa_regs].value = value;
687         dev_priv->num_wa_regs++;
688
689         return;
690 }
691
692 static int bdw_init_workarounds(struct intel_engine_cs *ring)
693 {
694         int ret;
695         struct drm_device *dev = ring->dev;
696         struct drm_i915_private *dev_priv = dev->dev_private;
697
698         /*
699          * workarounds applied in this fn are part of register state context,
700          * they need to be re-initialized followed by gpu reset, suspend/resume,
701          * module reload.
702          */
703         dev_priv->num_wa_regs = 0;
704         memset(dev_priv->intel_wa_regs, 0, sizeof(dev_priv->intel_wa_regs));
705
706         /*
707          * update the number of dwords required based on the
708          * actual number of workarounds applied
709          */
710         ret = intel_ring_begin(ring, 24);
711         if (ret)
712                 return ret;
713
714         /* WaDisablePartialInstShootdown:bdw */
715         /* WaDisableThreadStallDopClockGating:bdw */
716         /* FIXME: Unclear whether we really need this on production bdw. */
717         intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
718                            _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE
719                                              | STALL_DOP_GATING_DISABLE));
720
721         /* WaDisableDopClockGating:bdw May not be needed for production */
722         intel_ring_emit_wa(ring, GEN7_ROW_CHICKEN2,
723                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
724
725         /*
726          * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
727          * pre-production hardware
728          */
729         intel_ring_emit_wa(ring, HALF_SLICE_CHICKEN3,
730                            _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS
731                                               | GEN8_SAMPLER_POWER_BYPASS_DIS));
732
733         intel_ring_emit_wa(ring, GEN7_HALF_SLICE_CHICKEN1,
734                            _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
735
736         intel_ring_emit_wa(ring, COMMON_SLICE_CHICKEN2,
737                            _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
738
739         /* Use Force Non-Coherent whenever executing a 3D context. This is a
740          * workaround for for a possible hang in the unlikely event a TLB
741          * invalidation occurs during a PSD flush.
742          */
743         intel_ring_emit_wa(ring, HDC_CHICKEN0,
744                            _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
745
746         /* Wa4x4STCOptimizationDisable:bdw */
747         intel_ring_emit_wa(ring, CACHE_MODE_1,
748                            _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
749
750         /*
751          * BSpec recommends 8x4 when MSAA is used,
752          * however in practice 16x4 seems fastest.
753          *
754          * Note that PS/WM thread counts depend on the WIZ hashing
755          * disable bit, which we don't touch here, but it's good
756          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
757          */
758         intel_ring_emit_wa(ring, GEN7_GT_MODE,
759                            GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
760
761         intel_ring_advance(ring);
762
763         DRM_DEBUG_DRIVER("Number of Workarounds applied: %d\n",
764                          dev_priv->num_wa_regs);
765
766         return 0;
767 }
768
769 static int chv_init_workarounds(struct intel_engine_cs *ring)
770 {
771         int ret;
772         struct drm_device *dev = ring->dev;
773         struct drm_i915_private *dev_priv = dev->dev_private;
774
775         /*
776          * workarounds applied in this fn are part of register state context,
777          * they need to be re-initialized followed by gpu reset, suspend/resume,
778          * module reload.
779          */
780         dev_priv->num_wa_regs = 0;
781         memset(dev_priv->intel_wa_regs, 0, sizeof(dev_priv->intel_wa_regs));
782
783         ret = intel_ring_begin(ring, 12);
784         if (ret)
785                 return ret;
786
787         /* WaDisablePartialInstShootdown:chv */
788         intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
789                            _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
790
791         /* WaDisableThreadStallDopClockGating:chv */
792         intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
793                            _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
794
795         /* WaDisableDopClockGating:chv (pre-production hw) */
796         intel_ring_emit_wa(ring, GEN7_ROW_CHICKEN2,
797                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
798
799         /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
800         intel_ring_emit_wa(ring, HALF_SLICE_CHICKEN3,
801                            _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
802
803         intel_ring_advance(ring);
804
805         return 0;
806 }
807
808 static int init_render_ring(struct intel_engine_cs *ring)
809 {
810         struct drm_device *dev = ring->dev;
811         struct drm_i915_private *dev_priv = dev->dev_private;
812         int ret = init_ring_common(ring);
813         if (ret)
814                 return ret;
815
816         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
817         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
818                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
819
820         /* We need to disable the AsyncFlip performance optimisations in order
821          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
822          * programmed to '1' on all products.
823          *
824          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
825          */
826         if (INTEL_INFO(dev)->gen >= 6)
827                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
828
829         /* Required for the hardware to program scanline values for waiting */
830         /* WaEnableFlushTlbInvalidationMode:snb */
831         if (INTEL_INFO(dev)->gen == 6)
832                 I915_WRITE(GFX_MODE,
833                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
834
835         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
836         if (IS_GEN7(dev))
837                 I915_WRITE(GFX_MODE_GEN7,
838                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
839                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
840
841         if (INTEL_INFO(dev)->gen >= 5) {
842                 ret = intel_init_pipe_control(ring);
843                 if (ret)
844                         return ret;
845         }
846
847         if (IS_GEN6(dev)) {
848                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
849                  * "If this bit is set, STCunit will have LRA as replacement
850                  *  policy. [...] This bit must be reset.  LRA replacement
851                  *  policy is not supported."
852                  */
853                 I915_WRITE(CACHE_MODE_0,
854                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
855         }
856
857         if (INTEL_INFO(dev)->gen >= 6)
858                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
859
860         if (HAS_L3_DPF(dev))
861                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
862
863         return ret;
864 }
865
866 static void render_ring_cleanup(struct intel_engine_cs *ring)
867 {
868         struct drm_device *dev = ring->dev;
869         struct drm_i915_private *dev_priv = dev->dev_private;
870
871         if (dev_priv->semaphore_obj) {
872                 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
873                 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
874                 dev_priv->semaphore_obj = NULL;
875         }
876
877         intel_fini_pipe_control(ring);
878 }
879
880 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
881                            unsigned int num_dwords)
882 {
883 #define MBOX_UPDATE_DWORDS 8
884         struct drm_device *dev = signaller->dev;
885         struct drm_i915_private *dev_priv = dev->dev_private;
886         struct intel_engine_cs *waiter;
887         int i, ret, num_rings;
888
889         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
890         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
891 #undef MBOX_UPDATE_DWORDS
892
893         ret = intel_ring_begin(signaller, num_dwords);
894         if (ret)
895                 return ret;
896
897         for_each_ring(waiter, dev_priv, i) {
898                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
899                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
900                         continue;
901
902                 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
903                 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
904                                            PIPE_CONTROL_QW_WRITE |
905                                            PIPE_CONTROL_FLUSH_ENABLE);
906                 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
907                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
908                 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
909                 intel_ring_emit(signaller, 0);
910                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
911                                            MI_SEMAPHORE_TARGET(waiter->id));
912                 intel_ring_emit(signaller, 0);
913         }
914
915         return 0;
916 }
917
918 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
919                            unsigned int num_dwords)
920 {
921 #define MBOX_UPDATE_DWORDS 6
922         struct drm_device *dev = signaller->dev;
923         struct drm_i915_private *dev_priv = dev->dev_private;
924         struct intel_engine_cs *waiter;
925         int i, ret, num_rings;
926
927         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
928         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
929 #undef MBOX_UPDATE_DWORDS
930
931         ret = intel_ring_begin(signaller, num_dwords);
932         if (ret)
933                 return ret;
934
935         for_each_ring(waiter, dev_priv, i) {
936                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
937                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
938                         continue;
939
940                 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
941                                            MI_FLUSH_DW_OP_STOREDW);
942                 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
943                                            MI_FLUSH_DW_USE_GTT);
944                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
945                 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
946                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
947                                            MI_SEMAPHORE_TARGET(waiter->id));
948                 intel_ring_emit(signaller, 0);
949         }
950
951         return 0;
952 }
953
954 static int gen6_signal(struct intel_engine_cs *signaller,
955                        unsigned int num_dwords)
956 {
957         struct drm_device *dev = signaller->dev;
958         struct drm_i915_private *dev_priv = dev->dev_private;
959         struct intel_engine_cs *useless;
960         int i, ret, num_rings;
961
962 #define MBOX_UPDATE_DWORDS 3
963         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
964         num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
965 #undef MBOX_UPDATE_DWORDS
966
967         ret = intel_ring_begin(signaller, num_dwords);
968         if (ret)
969                 return ret;
970
971         for_each_ring(useless, dev_priv, i) {
972                 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
973                 if (mbox_reg != GEN6_NOSYNC) {
974                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
975                         intel_ring_emit(signaller, mbox_reg);
976                         intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
977                 }
978         }
979
980         /* If num_dwords was rounded, make sure the tail pointer is correct */
981         if (num_rings % 2 == 0)
982                 intel_ring_emit(signaller, MI_NOOP);
983
984         return 0;
985 }
986
987 /**
988  * gen6_add_request - Update the semaphore mailbox registers
989  * 
990  * @ring - ring that is adding a request
991  * @seqno - return seqno stuck into the ring
992  *
993  * Update the mailbox registers in the *other* rings with the current seqno.
994  * This acts like a signal in the canonical semaphore.
995  */
996 static int
997 gen6_add_request(struct intel_engine_cs *ring)
998 {
999         int ret;
1000
1001         if (ring->semaphore.signal)
1002                 ret = ring->semaphore.signal(ring, 4);
1003         else
1004                 ret = intel_ring_begin(ring, 4);
1005
1006         if (ret)
1007                 return ret;
1008
1009         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1010         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1011         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1012         intel_ring_emit(ring, MI_USER_INTERRUPT);
1013         __intel_ring_advance(ring);
1014
1015         return 0;
1016 }
1017
1018 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1019                                               u32 seqno)
1020 {
1021         struct drm_i915_private *dev_priv = dev->dev_private;
1022         return dev_priv->last_seqno < seqno;
1023 }
1024
1025 /**
1026  * intel_ring_sync - sync the waiter to the signaller on seqno
1027  *
1028  * @waiter - ring that is waiting
1029  * @signaller - ring which has, or will signal
1030  * @seqno - seqno which the waiter will block on
1031  */
1032
1033 static int
1034 gen8_ring_sync(struct intel_engine_cs *waiter,
1035                struct intel_engine_cs *signaller,
1036                u32 seqno)
1037 {
1038         struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1039         int ret;
1040
1041         ret = intel_ring_begin(waiter, 4);
1042         if (ret)
1043                 return ret;
1044
1045         intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1046                                 MI_SEMAPHORE_GLOBAL_GTT |
1047                                 MI_SEMAPHORE_POLL |
1048                                 MI_SEMAPHORE_SAD_GTE_SDD);
1049         intel_ring_emit(waiter, seqno);
1050         intel_ring_emit(waiter,
1051                         lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1052         intel_ring_emit(waiter,
1053                         upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1054         intel_ring_advance(waiter);
1055         return 0;
1056 }
1057
1058 static int
1059 gen6_ring_sync(struct intel_engine_cs *waiter,
1060                struct intel_engine_cs *signaller,
1061                u32 seqno)
1062 {
1063         u32 dw1 = MI_SEMAPHORE_MBOX |
1064                   MI_SEMAPHORE_COMPARE |
1065                   MI_SEMAPHORE_REGISTER;
1066         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1067         int ret;
1068
1069         /* Throughout all of the GEM code, seqno passed implies our current
1070          * seqno is >= the last seqno executed. However for hardware the
1071          * comparison is strictly greater than.
1072          */
1073         seqno -= 1;
1074
1075         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1076
1077         ret = intel_ring_begin(waiter, 4);
1078         if (ret)
1079                 return ret;
1080
1081         /* If seqno wrap happened, omit the wait with no-ops */
1082         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1083                 intel_ring_emit(waiter, dw1 | wait_mbox);
1084                 intel_ring_emit(waiter, seqno);
1085                 intel_ring_emit(waiter, 0);
1086                 intel_ring_emit(waiter, MI_NOOP);
1087         } else {
1088                 intel_ring_emit(waiter, MI_NOOP);
1089                 intel_ring_emit(waiter, MI_NOOP);
1090                 intel_ring_emit(waiter, MI_NOOP);
1091                 intel_ring_emit(waiter, MI_NOOP);
1092         }
1093         intel_ring_advance(waiter);
1094
1095         return 0;
1096 }
1097
1098 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
1099 do {                                                                    \
1100         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
1101                  PIPE_CONTROL_DEPTH_STALL);                             \
1102         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
1103         intel_ring_emit(ring__, 0);                                                     \
1104         intel_ring_emit(ring__, 0);                                                     \
1105 } while (0)
1106
1107 static int
1108 pc_render_add_request(struct intel_engine_cs *ring)
1109 {
1110         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1111         int ret;
1112
1113         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1114          * incoherent with writes to memory, i.e. completely fubar,
1115          * so we need to use PIPE_NOTIFY instead.
1116          *
1117          * However, we also need to workaround the qword write
1118          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1119          * memory before requesting an interrupt.
1120          */
1121         ret = intel_ring_begin(ring, 32);
1122         if (ret)
1123                 return ret;
1124
1125         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1126                         PIPE_CONTROL_WRITE_FLUSH |
1127                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1128         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1129         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1130         intel_ring_emit(ring, 0);
1131         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1132         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1133         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1134         scratch_addr += 2 * CACHELINE_BYTES;
1135         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1136         scratch_addr += 2 * CACHELINE_BYTES;
1137         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1138         scratch_addr += 2 * CACHELINE_BYTES;
1139         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1140         scratch_addr += 2 * CACHELINE_BYTES;
1141         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1142
1143         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1144                         PIPE_CONTROL_WRITE_FLUSH |
1145                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1146                         PIPE_CONTROL_NOTIFY);
1147         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1148         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1149         intel_ring_emit(ring, 0);
1150         __intel_ring_advance(ring);
1151
1152         return 0;
1153 }
1154
1155 static u32
1156 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1157 {
1158         /* Workaround to force correct ordering between irq and seqno writes on
1159          * ivb (and maybe also on snb) by reading from a CS register (like
1160          * ACTHD) before reading the status page. */
1161         if (!lazy_coherency) {
1162                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1163                 POSTING_READ(RING_ACTHD(ring->mmio_base));
1164         }
1165
1166         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1167 }
1168
1169 static u32
1170 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1171 {
1172         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1173 }
1174
1175 static void
1176 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1177 {
1178         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1179 }
1180
1181 static u32
1182 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1183 {
1184         return ring->scratch.cpu_page[0];
1185 }
1186
1187 static void
1188 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1189 {
1190         ring->scratch.cpu_page[0] = seqno;
1191 }
1192
1193 static bool
1194 gen5_ring_get_irq(struct intel_engine_cs *ring)
1195 {
1196         struct drm_device *dev = ring->dev;
1197         struct drm_i915_private *dev_priv = dev->dev_private;
1198         unsigned long flags;
1199
1200         if (!dev->irq_enabled)
1201                 return false;
1202
1203         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1204         if (ring->irq_refcount++ == 0)
1205                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1206         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1207
1208         return true;
1209 }
1210
1211 static void
1212 gen5_ring_put_irq(struct intel_engine_cs *ring)
1213 {
1214         struct drm_device *dev = ring->dev;
1215         struct drm_i915_private *dev_priv = dev->dev_private;
1216         unsigned long flags;
1217
1218         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1219         if (--ring->irq_refcount == 0)
1220                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1221         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1222 }
1223
1224 static bool
1225 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1226 {
1227         struct drm_device *dev = ring->dev;
1228         struct drm_i915_private *dev_priv = dev->dev_private;
1229         unsigned long flags;
1230
1231         if (!dev->irq_enabled)
1232                 return false;
1233
1234         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1235         if (ring->irq_refcount++ == 0) {
1236                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1237                 I915_WRITE(IMR, dev_priv->irq_mask);
1238                 POSTING_READ(IMR);
1239         }
1240         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1241
1242         return true;
1243 }
1244
1245 static void
1246 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1247 {
1248         struct drm_device *dev = ring->dev;
1249         struct drm_i915_private *dev_priv = dev->dev_private;
1250         unsigned long flags;
1251
1252         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1253         if (--ring->irq_refcount == 0) {
1254                 dev_priv->irq_mask |= ring->irq_enable_mask;
1255                 I915_WRITE(IMR, dev_priv->irq_mask);
1256                 POSTING_READ(IMR);
1257         }
1258         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1259 }
1260
1261 static bool
1262 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1263 {
1264         struct drm_device *dev = ring->dev;
1265         struct drm_i915_private *dev_priv = dev->dev_private;
1266         unsigned long flags;
1267
1268         if (!dev->irq_enabled)
1269                 return false;
1270
1271         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1272         if (ring->irq_refcount++ == 0) {
1273                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1274                 I915_WRITE16(IMR, dev_priv->irq_mask);
1275                 POSTING_READ16(IMR);
1276         }
1277         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1278
1279         return true;
1280 }
1281
1282 static void
1283 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1284 {
1285         struct drm_device *dev = ring->dev;
1286         struct drm_i915_private *dev_priv = dev->dev_private;
1287         unsigned long flags;
1288
1289         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1290         if (--ring->irq_refcount == 0) {
1291                 dev_priv->irq_mask |= ring->irq_enable_mask;
1292                 I915_WRITE16(IMR, dev_priv->irq_mask);
1293                 POSTING_READ16(IMR);
1294         }
1295         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1296 }
1297
1298 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
1299 {
1300         struct drm_device *dev = ring->dev;
1301         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1302         u32 mmio = 0;
1303
1304         /* The ring status page addresses are no longer next to the rest of
1305          * the ring registers as of gen7.
1306          */
1307         if (IS_GEN7(dev)) {
1308                 switch (ring->id) {
1309                 case RCS:
1310                         mmio = RENDER_HWS_PGA_GEN7;
1311                         break;
1312                 case BCS:
1313                         mmio = BLT_HWS_PGA_GEN7;
1314                         break;
1315                 /*
1316                  * VCS2 actually doesn't exist on Gen7. Only shut up
1317                  * gcc switch check warning
1318                  */
1319                 case VCS2:
1320                 case VCS:
1321                         mmio = BSD_HWS_PGA_GEN7;
1322                         break;
1323                 case VECS:
1324                         mmio = VEBOX_HWS_PGA_GEN7;
1325                         break;
1326                 }
1327         } else if (IS_GEN6(ring->dev)) {
1328                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1329         } else {
1330                 /* XXX: gen8 returns to sanity */
1331                 mmio = RING_HWS_PGA(ring->mmio_base);
1332         }
1333
1334         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1335         POSTING_READ(mmio);
1336
1337         /*
1338          * Flush the TLB for this page
1339          *
1340          * FIXME: These two bits have disappeared on gen8, so a question
1341          * arises: do we still need this and if so how should we go about
1342          * invalidating the TLB?
1343          */
1344         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1345                 u32 reg = RING_INSTPM(ring->mmio_base);
1346
1347                 /* ring should be idle before issuing a sync flush*/
1348                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1349
1350                 I915_WRITE(reg,
1351                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1352                                               INSTPM_SYNC_FLUSH));
1353                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1354                              1000))
1355                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1356                                   ring->name);
1357         }
1358 }
1359
1360 static int
1361 bsd_ring_flush(struct intel_engine_cs *ring,
1362                u32     invalidate_domains,
1363                u32     flush_domains)
1364 {
1365         int ret;
1366
1367         ret = intel_ring_begin(ring, 2);
1368         if (ret)
1369                 return ret;
1370
1371         intel_ring_emit(ring, MI_FLUSH);
1372         intel_ring_emit(ring, MI_NOOP);
1373         intel_ring_advance(ring);
1374         return 0;
1375 }
1376
1377 static int
1378 i9xx_add_request(struct intel_engine_cs *ring)
1379 {
1380         int ret;
1381
1382         ret = intel_ring_begin(ring, 4);
1383         if (ret)
1384                 return ret;
1385
1386         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1387         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1388         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1389         intel_ring_emit(ring, MI_USER_INTERRUPT);
1390         __intel_ring_advance(ring);
1391
1392         return 0;
1393 }
1394
1395 static bool
1396 gen6_ring_get_irq(struct intel_engine_cs *ring)
1397 {
1398         struct drm_device *dev = ring->dev;
1399         struct drm_i915_private *dev_priv = dev->dev_private;
1400         unsigned long flags;
1401
1402         if (!dev->irq_enabled)
1403                return false;
1404
1405         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1406         if (ring->irq_refcount++ == 0) {
1407                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1408                         I915_WRITE_IMR(ring,
1409                                        ~(ring->irq_enable_mask |
1410                                          GT_PARITY_ERROR(dev)));
1411                 else
1412                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1413                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1414         }
1415         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1416
1417         return true;
1418 }
1419
1420 static void
1421 gen6_ring_put_irq(struct intel_engine_cs *ring)
1422 {
1423         struct drm_device *dev = ring->dev;
1424         struct drm_i915_private *dev_priv = dev->dev_private;
1425         unsigned long flags;
1426
1427         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1428         if (--ring->irq_refcount == 0) {
1429                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1430                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1431                 else
1432                         I915_WRITE_IMR(ring, ~0);
1433                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1434         }
1435         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1436 }
1437
1438 static bool
1439 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1440 {
1441         struct drm_device *dev = ring->dev;
1442         struct drm_i915_private *dev_priv = dev->dev_private;
1443         unsigned long flags;
1444
1445         if (!dev->irq_enabled)
1446                 return false;
1447
1448         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1449         if (ring->irq_refcount++ == 0) {
1450                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1451                 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1452         }
1453         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1454
1455         return true;
1456 }
1457
1458 static void
1459 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1460 {
1461         struct drm_device *dev = ring->dev;
1462         struct drm_i915_private *dev_priv = dev->dev_private;
1463         unsigned long flags;
1464
1465         if (!dev->irq_enabled)
1466                 return;
1467
1468         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1469         if (--ring->irq_refcount == 0) {
1470                 I915_WRITE_IMR(ring, ~0);
1471                 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1472         }
1473         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1474 }
1475
1476 static bool
1477 gen8_ring_get_irq(struct intel_engine_cs *ring)
1478 {
1479         struct drm_device *dev = ring->dev;
1480         struct drm_i915_private *dev_priv = dev->dev_private;
1481         unsigned long flags;
1482
1483         if (!dev->irq_enabled)
1484                 return false;
1485
1486         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1487         if (ring->irq_refcount++ == 0) {
1488                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1489                         I915_WRITE_IMR(ring,
1490                                        ~(ring->irq_enable_mask |
1491                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1492                 } else {
1493                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1494                 }
1495                 POSTING_READ(RING_IMR(ring->mmio_base));
1496         }
1497         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1498
1499         return true;
1500 }
1501
1502 static void
1503 gen8_ring_put_irq(struct intel_engine_cs *ring)
1504 {
1505         struct drm_device *dev = ring->dev;
1506         struct drm_i915_private *dev_priv = dev->dev_private;
1507         unsigned long flags;
1508
1509         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1510         if (--ring->irq_refcount == 0) {
1511                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1512                         I915_WRITE_IMR(ring,
1513                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1514                 } else {
1515                         I915_WRITE_IMR(ring, ~0);
1516                 }
1517                 POSTING_READ(RING_IMR(ring->mmio_base));
1518         }
1519         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1520 }
1521
1522 static int
1523 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1524                          u64 offset, u32 length,
1525                          unsigned flags)
1526 {
1527         int ret;
1528
1529         ret = intel_ring_begin(ring, 2);
1530         if (ret)
1531                 return ret;
1532
1533         intel_ring_emit(ring,
1534                         MI_BATCH_BUFFER_START |
1535                         MI_BATCH_GTT |
1536                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1537         intel_ring_emit(ring, offset);
1538         intel_ring_advance(ring);
1539
1540         return 0;
1541 }
1542
1543 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1544 #define I830_BATCH_LIMIT (256*1024)
1545 static int
1546 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1547                                 u64 offset, u32 len,
1548                                 unsigned flags)
1549 {
1550         int ret;
1551
1552         if (flags & I915_DISPATCH_PINNED) {
1553                 ret = intel_ring_begin(ring, 4);
1554                 if (ret)
1555                         return ret;
1556
1557                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1558                 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1559                 intel_ring_emit(ring, offset + len - 8);
1560                 intel_ring_emit(ring, MI_NOOP);
1561                 intel_ring_advance(ring);
1562         } else {
1563                 u32 cs_offset = ring->scratch.gtt_offset;
1564
1565                 if (len > I830_BATCH_LIMIT)
1566                         return -ENOSPC;
1567
1568                 ret = intel_ring_begin(ring, 9+3);
1569                 if (ret)
1570                         return ret;
1571                 /* Blit the batch (which has now all relocs applied) to the stable batch
1572                  * scratch bo area (so that the CS never stumbles over its tlb
1573                  * invalidation bug) ... */
1574                 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1575                                 XY_SRC_COPY_BLT_WRITE_ALPHA |
1576                                 XY_SRC_COPY_BLT_WRITE_RGB);
1577                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1578                 intel_ring_emit(ring, 0);
1579                 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1580                 intel_ring_emit(ring, cs_offset);
1581                 intel_ring_emit(ring, 0);
1582                 intel_ring_emit(ring, 4096);
1583                 intel_ring_emit(ring, offset);
1584                 intel_ring_emit(ring, MI_FLUSH);
1585
1586                 /* ... and execute it. */
1587                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1588                 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1589                 intel_ring_emit(ring, cs_offset + len - 8);
1590                 intel_ring_advance(ring);
1591         }
1592
1593         return 0;
1594 }
1595
1596 static int
1597 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1598                          u64 offset, u32 len,
1599                          unsigned flags)
1600 {
1601         int ret;
1602
1603         ret = intel_ring_begin(ring, 2);
1604         if (ret)
1605                 return ret;
1606
1607         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1608         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1609         intel_ring_advance(ring);
1610
1611         return 0;
1612 }
1613
1614 static void cleanup_status_page(struct intel_engine_cs *ring)
1615 {
1616         struct drm_i915_gem_object *obj;
1617
1618         obj = ring->status_page.obj;
1619         if (obj == NULL)
1620                 return;
1621
1622         kunmap(sg_page(obj->pages->sgl));
1623         i915_gem_object_ggtt_unpin(obj);
1624         drm_gem_object_unreference(&obj->base);
1625         ring->status_page.obj = NULL;
1626 }
1627
1628 static int init_status_page(struct intel_engine_cs *ring)
1629 {
1630         struct drm_i915_gem_object *obj;
1631
1632         if ((obj = ring->status_page.obj) == NULL) {
1633                 unsigned flags;
1634                 int ret;
1635
1636                 obj = i915_gem_alloc_object(ring->dev, 4096);
1637                 if (obj == NULL) {
1638                         DRM_ERROR("Failed to allocate status page\n");
1639                         return -ENOMEM;
1640                 }
1641
1642                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1643                 if (ret)
1644                         goto err_unref;
1645
1646                 flags = 0;
1647                 if (!HAS_LLC(ring->dev))
1648                         /* On g33, we cannot place HWS above 256MiB, so
1649                          * restrict its pinning to the low mappable arena.
1650                          * Though this restriction is not documented for
1651                          * gen4, gen5, or byt, they also behave similarly
1652                          * and hang if the HWS is placed at the top of the
1653                          * GTT. To generalise, it appears that all !llc
1654                          * platforms have issues with us placing the HWS
1655                          * above the mappable region (even though we never
1656                          * actualy map it).
1657                          */
1658                         flags |= PIN_MAPPABLE;
1659                 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1660                 if (ret) {
1661 err_unref:
1662                         drm_gem_object_unreference(&obj->base);
1663                         return ret;
1664                 }
1665
1666                 ring->status_page.obj = obj;
1667         }
1668
1669         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1670         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1671         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1672
1673         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1674                         ring->name, ring->status_page.gfx_addr);
1675
1676         return 0;
1677 }
1678
1679 static int init_phys_status_page(struct intel_engine_cs *ring)
1680 {
1681         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1682
1683         if (!dev_priv->status_page_dmah) {
1684                 dev_priv->status_page_dmah =
1685                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1686                 if (!dev_priv->status_page_dmah)
1687                         return -ENOMEM;
1688         }
1689
1690         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1691         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1692
1693         return 0;
1694 }
1695
1696 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1697 {
1698         if (!ringbuf->obj)
1699                 return;
1700
1701         iounmap(ringbuf->virtual_start);
1702         i915_gem_object_ggtt_unpin(ringbuf->obj);
1703         drm_gem_object_unreference(&ringbuf->obj->base);
1704         ringbuf->obj = NULL;
1705 }
1706
1707 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1708                                struct intel_ringbuffer *ringbuf)
1709 {
1710         struct drm_i915_private *dev_priv = to_i915(dev);
1711         struct drm_i915_gem_object *obj;
1712         int ret;
1713
1714         if (ringbuf->obj)
1715                 return 0;
1716
1717         obj = NULL;
1718         if (!HAS_LLC(dev))
1719                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1720         if (obj == NULL)
1721                 obj = i915_gem_alloc_object(dev, ringbuf->size);
1722         if (obj == NULL)
1723                 return -ENOMEM;
1724
1725         /* mark ring buffers as read-only from GPU side by default */
1726         obj->gt_ro = 1;
1727
1728         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1729         if (ret)
1730                 goto err_unref;
1731
1732         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1733         if (ret)
1734                 goto err_unpin;
1735
1736         ringbuf->virtual_start =
1737                 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1738                                 ringbuf->size);
1739         if (ringbuf->virtual_start == NULL) {
1740                 ret = -EINVAL;
1741                 goto err_unpin;
1742         }
1743
1744         ringbuf->obj = obj;
1745         return 0;
1746
1747 err_unpin:
1748         i915_gem_object_ggtt_unpin(obj);
1749 err_unref:
1750         drm_gem_object_unreference(&obj->base);
1751         return ret;
1752 }
1753
1754 static int intel_init_ring_buffer(struct drm_device *dev,
1755                                   struct intel_engine_cs *ring)
1756 {
1757         struct intel_ringbuffer *ringbuf = ring->buffer;
1758         int ret;
1759
1760         if (ringbuf == NULL) {
1761                 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1762                 if (!ringbuf)
1763                         return -ENOMEM;
1764                 ring->buffer = ringbuf;
1765         }
1766
1767         ring->dev = dev;
1768         INIT_LIST_HEAD(&ring->active_list);
1769         INIT_LIST_HEAD(&ring->request_list);
1770         INIT_LIST_HEAD(&ring->execlist_queue);
1771         ringbuf->size = 32 * PAGE_SIZE;
1772         ringbuf->ring = ring;
1773         memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1774
1775         init_waitqueue_head(&ring->irq_queue);
1776
1777         if (I915_NEED_GFX_HWS(dev)) {
1778                 ret = init_status_page(ring);
1779                 if (ret)
1780                         goto error;
1781         } else {
1782                 BUG_ON(ring->id != RCS);
1783                 ret = init_phys_status_page(ring);
1784                 if (ret)
1785                         goto error;
1786         }
1787
1788         ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1789         if (ret) {
1790                 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1791                 goto error;
1792         }
1793
1794         /* Workaround an erratum on the i830 which causes a hang if
1795          * the TAIL pointer points to within the last 2 cachelines
1796          * of the buffer.
1797          */
1798         ringbuf->effective_size = ringbuf->size;
1799         if (IS_I830(dev) || IS_845G(dev))
1800                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1801
1802         ret = i915_cmd_parser_init_ring(ring);
1803         if (ret)
1804                 goto error;
1805
1806         ret = ring->init(ring);
1807         if (ret)
1808                 goto error;
1809
1810         return 0;
1811
1812 error:
1813         kfree(ringbuf);
1814         ring->buffer = NULL;
1815         return ret;
1816 }
1817
1818 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1819 {
1820         struct drm_i915_private *dev_priv = to_i915(ring->dev);
1821         struct intel_ringbuffer *ringbuf = ring->buffer;
1822
1823         if (!intel_ring_initialized(ring))
1824                 return;
1825
1826         intel_stop_ring_buffer(ring);
1827         WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1828
1829         intel_destroy_ringbuffer_obj(ringbuf);
1830         ring->preallocated_lazy_request = NULL;
1831         ring->outstanding_lazy_seqno = 0;
1832
1833         if (ring->cleanup)
1834                 ring->cleanup(ring);
1835
1836         cleanup_status_page(ring);
1837
1838         i915_cmd_parser_fini_ring(ring);
1839
1840         kfree(ringbuf);
1841         ring->buffer = NULL;
1842 }
1843
1844 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1845 {
1846         struct intel_ringbuffer *ringbuf = ring->buffer;
1847         struct drm_i915_gem_request *request;
1848         u32 seqno = 0;
1849         int ret;
1850
1851         if (ringbuf->last_retired_head != -1) {
1852                 ringbuf->head = ringbuf->last_retired_head;
1853                 ringbuf->last_retired_head = -1;
1854
1855                 ringbuf->space = intel_ring_space(ringbuf);
1856                 if (ringbuf->space >= n)
1857                         return 0;
1858         }
1859
1860         list_for_each_entry(request, &ring->request_list, list) {
1861                 if (__intel_ring_space(request->tail, ringbuf->tail,
1862                                        ringbuf->size) >= n) {
1863                         seqno = request->seqno;
1864                         break;
1865                 }
1866         }
1867
1868         if (seqno == 0)
1869                 return -ENOSPC;
1870
1871         ret = i915_wait_seqno(ring, seqno);
1872         if (ret)
1873                 return ret;
1874
1875         i915_gem_retire_requests_ring(ring);
1876         ringbuf->head = ringbuf->last_retired_head;
1877         ringbuf->last_retired_head = -1;
1878
1879         ringbuf->space = intel_ring_space(ringbuf);
1880         return 0;
1881 }
1882
1883 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1884 {
1885         struct drm_device *dev = ring->dev;
1886         struct drm_i915_private *dev_priv = dev->dev_private;
1887         struct intel_ringbuffer *ringbuf = ring->buffer;
1888         unsigned long end;
1889         int ret;
1890
1891         ret = intel_ring_wait_request(ring, n);
1892         if (ret != -ENOSPC)
1893                 return ret;
1894
1895         /* force the tail write in case we have been skipping them */
1896         __intel_ring_advance(ring);
1897
1898         /* With GEM the hangcheck timer should kick us out of the loop,
1899          * leaving it early runs the risk of corrupting GEM state (due
1900          * to running on almost untested codepaths). But on resume
1901          * timers don't work yet, so prevent a complete hang in that
1902          * case by choosing an insanely large timeout. */
1903         end = jiffies + 60 * HZ;
1904
1905         trace_i915_ring_wait_begin(ring);
1906         do {
1907                 ringbuf->head = I915_READ_HEAD(ring);
1908                 ringbuf->space = intel_ring_space(ringbuf);
1909                 if (ringbuf->space >= n) {
1910                         ret = 0;
1911                         break;
1912                 }
1913
1914                 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1915                     dev->primary->master) {
1916                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1917                         if (master_priv->sarea_priv)
1918                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1919                 }
1920
1921                 msleep(1);
1922
1923                 if (dev_priv->mm.interruptible && signal_pending(current)) {
1924                         ret = -ERESTARTSYS;
1925                         break;
1926                 }
1927
1928                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1929                                            dev_priv->mm.interruptible);
1930                 if (ret)
1931                         break;
1932
1933                 if (time_after(jiffies, end)) {
1934                         ret = -EBUSY;
1935                         break;
1936                 }
1937         } while (1);
1938         trace_i915_ring_wait_end(ring);
1939         return ret;
1940 }
1941
1942 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1943 {
1944         uint32_t __iomem *virt;
1945         struct intel_ringbuffer *ringbuf = ring->buffer;
1946         int rem = ringbuf->size - ringbuf->tail;
1947
1948         if (ringbuf->space < rem) {
1949                 int ret = ring_wait_for_space(ring, rem);
1950                 if (ret)
1951                         return ret;
1952         }
1953
1954         virt = ringbuf->virtual_start + ringbuf->tail;
1955         rem /= 4;
1956         while (rem--)
1957                 iowrite32(MI_NOOP, virt++);
1958
1959         ringbuf->tail = 0;
1960         ringbuf->space = intel_ring_space(ringbuf);
1961
1962         return 0;
1963 }
1964
1965 int intel_ring_idle(struct intel_engine_cs *ring)
1966 {
1967         u32 seqno;
1968         int ret;
1969
1970         /* We need to add any requests required to flush the objects and ring */
1971         if (ring->outstanding_lazy_seqno) {
1972                 ret = i915_add_request(ring, NULL);
1973                 if (ret)
1974                         return ret;
1975         }
1976
1977         /* Wait upon the last request to be completed */
1978         if (list_empty(&ring->request_list))
1979                 return 0;
1980
1981         seqno = list_entry(ring->request_list.prev,
1982                            struct drm_i915_gem_request,
1983                            list)->seqno;
1984
1985         return i915_wait_seqno(ring, seqno);
1986 }
1987
1988 static int
1989 intel_ring_alloc_seqno(struct intel_engine_cs *ring)
1990 {
1991         if (ring->outstanding_lazy_seqno)
1992                 return 0;
1993
1994         if (ring->preallocated_lazy_request == NULL) {
1995                 struct drm_i915_gem_request *request;
1996
1997                 request = kmalloc(sizeof(*request), GFP_KERNEL);
1998                 if (request == NULL)
1999                         return -ENOMEM;
2000
2001                 ring->preallocated_lazy_request = request;
2002         }
2003
2004         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
2005 }
2006
2007 static int __intel_ring_prepare(struct intel_engine_cs *ring,
2008                                 int bytes)
2009 {
2010         struct intel_ringbuffer *ringbuf = ring->buffer;
2011         int ret;
2012
2013         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2014                 ret = intel_wrap_ring_buffer(ring);
2015                 if (unlikely(ret))
2016                         return ret;
2017         }
2018
2019         if (unlikely(ringbuf->space < bytes)) {
2020                 ret = ring_wait_for_space(ring, bytes);
2021                 if (unlikely(ret))
2022                         return ret;
2023         }
2024
2025         return 0;
2026 }
2027
2028 int intel_ring_begin(struct intel_engine_cs *ring,
2029                      int num_dwords)
2030 {
2031         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2032         int ret;
2033
2034         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2035                                    dev_priv->mm.interruptible);
2036         if (ret)
2037                 return ret;
2038
2039         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2040         if (ret)
2041                 return ret;
2042
2043         /* Preallocate the olr before touching the ring */
2044         ret = intel_ring_alloc_seqno(ring);
2045         if (ret)
2046                 return ret;
2047
2048         ring->buffer->space -= num_dwords * sizeof(uint32_t);
2049         return 0;
2050 }
2051
2052 /* Align the ring tail to a cacheline boundary */
2053 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2054 {
2055         int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2056         int ret;
2057
2058         if (num_dwords == 0)
2059                 return 0;
2060
2061         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2062         ret = intel_ring_begin(ring, num_dwords);
2063         if (ret)
2064                 return ret;
2065
2066         while (num_dwords--)
2067                 intel_ring_emit(ring, MI_NOOP);
2068
2069         intel_ring_advance(ring);
2070
2071         return 0;
2072 }
2073
2074 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2075 {
2076         struct drm_device *dev = ring->dev;
2077         struct drm_i915_private *dev_priv = dev->dev_private;
2078
2079         BUG_ON(ring->outstanding_lazy_seqno);
2080
2081         if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2082                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2083                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2084                 if (HAS_VEBOX(dev))
2085                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2086         }
2087
2088         ring->set_seqno(ring, seqno);
2089         ring->hangcheck.seqno = seqno;
2090 }
2091
2092 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2093                                      u32 value)
2094 {
2095         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2096
2097        /* Every tail move must follow the sequence below */
2098
2099         /* Disable notification that the ring is IDLE. The GT
2100          * will then assume that it is busy and bring it out of rc6.
2101          */
2102         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2103                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2104
2105         /* Clear the context id. Here be magic! */
2106         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2107
2108         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2109         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2110                       GEN6_BSD_SLEEP_INDICATOR) == 0,
2111                      50))
2112                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2113
2114         /* Now that the ring is fully powered up, update the tail */
2115         I915_WRITE_TAIL(ring, value);
2116         POSTING_READ(RING_TAIL(ring->mmio_base));
2117
2118         /* Let the ring send IDLE messages to the GT again,
2119          * and so let it sleep to conserve power when idle.
2120          */
2121         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2122                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2123 }
2124
2125 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2126                                u32 invalidate, u32 flush)
2127 {
2128         uint32_t cmd;
2129         int ret;
2130
2131         ret = intel_ring_begin(ring, 4);
2132         if (ret)
2133                 return ret;
2134
2135         cmd = MI_FLUSH_DW;
2136         if (INTEL_INFO(ring->dev)->gen >= 8)
2137                 cmd += 1;
2138         /*
2139          * Bspec vol 1c.5 - video engine command streamer:
2140          * "If ENABLED, all TLBs will be invalidated once the flush
2141          * operation is complete. This bit is only valid when the
2142          * Post-Sync Operation field is a value of 1h or 3h."
2143          */
2144         if (invalidate & I915_GEM_GPU_DOMAINS)
2145                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
2146                         MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2147         intel_ring_emit(ring, cmd);
2148         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2149         if (INTEL_INFO(ring->dev)->gen >= 8) {
2150                 intel_ring_emit(ring, 0); /* upper addr */
2151                 intel_ring_emit(ring, 0); /* value */
2152         } else  {
2153                 intel_ring_emit(ring, 0);
2154                 intel_ring_emit(ring, MI_NOOP);
2155         }
2156         intel_ring_advance(ring);
2157         return 0;
2158 }
2159
2160 static int
2161 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2162                               u64 offset, u32 len,
2163                               unsigned flags)
2164 {
2165         bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
2166         int ret;
2167
2168         ret = intel_ring_begin(ring, 4);
2169         if (ret)
2170                 return ret;
2171
2172         /* FIXME(BDW): Address space and security selectors. */
2173         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2174         intel_ring_emit(ring, lower_32_bits(offset));
2175         intel_ring_emit(ring, upper_32_bits(offset));
2176         intel_ring_emit(ring, MI_NOOP);
2177         intel_ring_advance(ring);
2178
2179         return 0;
2180 }
2181
2182 static int
2183 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2184                               u64 offset, u32 len,
2185                               unsigned flags)
2186 {
2187         int ret;
2188
2189         ret = intel_ring_begin(ring, 2);
2190         if (ret)
2191                 return ret;
2192
2193         intel_ring_emit(ring,
2194                         MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
2195                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
2196         /* bit0-7 is the length on GEN6+ */
2197         intel_ring_emit(ring, offset);
2198         intel_ring_advance(ring);
2199
2200         return 0;
2201 }
2202
2203 static int
2204 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2205                               u64 offset, u32 len,
2206                               unsigned flags)
2207 {
2208         int ret;
2209
2210         ret = intel_ring_begin(ring, 2);
2211         if (ret)
2212                 return ret;
2213
2214         intel_ring_emit(ring,
2215                         MI_BATCH_BUFFER_START |
2216                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2217         /* bit0-7 is the length on GEN6+ */
2218         intel_ring_emit(ring, offset);
2219         intel_ring_advance(ring);
2220
2221         return 0;
2222 }
2223
2224 /* Blitter support (SandyBridge+) */
2225
2226 static int gen6_ring_flush(struct intel_engine_cs *ring,
2227                            u32 invalidate, u32 flush)
2228 {
2229         struct drm_device *dev = ring->dev;
2230         uint32_t cmd;
2231         int ret;
2232
2233         ret = intel_ring_begin(ring, 4);
2234         if (ret)
2235                 return ret;
2236
2237         cmd = MI_FLUSH_DW;
2238         if (INTEL_INFO(ring->dev)->gen >= 8)
2239                 cmd += 1;
2240         /*
2241          * Bspec vol 1c.3 - blitter engine command streamer:
2242          * "If ENABLED, all TLBs will be invalidated once the flush
2243          * operation is complete. This bit is only valid when the
2244          * Post-Sync Operation field is a value of 1h or 3h."
2245          */
2246         if (invalidate & I915_GEM_DOMAIN_RENDER)
2247                 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
2248                         MI_FLUSH_DW_OP_STOREDW;
2249         intel_ring_emit(ring, cmd);
2250         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2251         if (INTEL_INFO(ring->dev)->gen >= 8) {
2252                 intel_ring_emit(ring, 0); /* upper addr */
2253                 intel_ring_emit(ring, 0); /* value */
2254         } else  {
2255                 intel_ring_emit(ring, 0);
2256                 intel_ring_emit(ring, MI_NOOP);
2257         }
2258         intel_ring_advance(ring);
2259
2260         if (IS_GEN7(dev) && !invalidate && flush)
2261                 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2262
2263         return 0;
2264 }
2265
2266 int intel_init_render_ring_buffer(struct drm_device *dev)
2267 {
2268         struct drm_i915_private *dev_priv = dev->dev_private;
2269         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2270         struct drm_i915_gem_object *obj;
2271         int ret;
2272
2273         ring->name = "render ring";
2274         ring->id = RCS;
2275         ring->mmio_base = RENDER_RING_BASE;
2276
2277         if (INTEL_INFO(dev)->gen >= 8) {
2278                 if (i915_semaphore_is_enabled(dev)) {
2279                         obj = i915_gem_alloc_object(dev, 4096);
2280                         if (obj == NULL) {
2281                                 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2282                                 i915.semaphores = 0;
2283                         } else {
2284                                 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2285                                 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2286                                 if (ret != 0) {
2287                                         drm_gem_object_unreference(&obj->base);
2288                                         DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2289                                         i915.semaphores = 0;
2290                                 } else
2291                                         dev_priv->semaphore_obj = obj;
2292                         }
2293                 }
2294                 if (IS_CHERRYVIEW(dev))
2295                         ring->init_context = chv_init_workarounds;
2296                 else
2297                         ring->init_context = bdw_init_workarounds;
2298                 ring->add_request = gen6_add_request;
2299                 ring->flush = gen8_render_ring_flush;
2300                 ring->irq_get = gen8_ring_get_irq;
2301                 ring->irq_put = gen8_ring_put_irq;
2302                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2303                 ring->get_seqno = gen6_ring_get_seqno;
2304                 ring->set_seqno = ring_set_seqno;
2305                 if (i915_semaphore_is_enabled(dev)) {
2306                         WARN_ON(!dev_priv->semaphore_obj);
2307                         ring->semaphore.sync_to = gen8_ring_sync;
2308                         ring->semaphore.signal = gen8_rcs_signal;
2309                         GEN8_RING_SEMAPHORE_INIT;
2310                 }
2311         } else if (INTEL_INFO(dev)->gen >= 6) {
2312                 ring->add_request = gen6_add_request;
2313                 ring->flush = gen7_render_ring_flush;
2314                 if (INTEL_INFO(dev)->gen == 6)
2315                         ring->flush = gen6_render_ring_flush;
2316                 ring->irq_get = gen6_ring_get_irq;
2317                 ring->irq_put = gen6_ring_put_irq;
2318                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2319                 ring->get_seqno = gen6_ring_get_seqno;
2320                 ring->set_seqno = ring_set_seqno;
2321                 if (i915_semaphore_is_enabled(dev)) {
2322                         ring->semaphore.sync_to = gen6_ring_sync;
2323                         ring->semaphore.signal = gen6_signal;
2324                         /*
2325                          * The current semaphore is only applied on pre-gen8
2326                          * platform.  And there is no VCS2 ring on the pre-gen8
2327                          * platform. So the semaphore between RCS and VCS2 is
2328                          * initialized as INVALID.  Gen8 will initialize the
2329                          * sema between VCS2 and RCS later.
2330                          */
2331                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2332                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2333                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2334                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2335                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2336                         ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2337                         ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2338                         ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2339                         ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2340                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2341                 }
2342         } else if (IS_GEN5(dev)) {
2343                 ring->add_request = pc_render_add_request;
2344                 ring->flush = gen4_render_ring_flush;
2345                 ring->get_seqno = pc_render_get_seqno;
2346                 ring->set_seqno = pc_render_set_seqno;
2347                 ring->irq_get = gen5_ring_get_irq;
2348                 ring->irq_put = gen5_ring_put_irq;
2349                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2350                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2351         } else {
2352                 ring->add_request = i9xx_add_request;
2353                 if (INTEL_INFO(dev)->gen < 4)
2354                         ring->flush = gen2_render_ring_flush;
2355                 else
2356                         ring->flush = gen4_render_ring_flush;
2357                 ring->get_seqno = ring_get_seqno;
2358                 ring->set_seqno = ring_set_seqno;
2359                 if (IS_GEN2(dev)) {
2360                         ring->irq_get = i8xx_ring_get_irq;
2361                         ring->irq_put = i8xx_ring_put_irq;
2362                 } else {
2363                         ring->irq_get = i9xx_ring_get_irq;
2364                         ring->irq_put = i9xx_ring_put_irq;
2365                 }
2366                 ring->irq_enable_mask = I915_USER_INTERRUPT;
2367         }
2368         ring->write_tail = ring_write_tail;
2369
2370         if (IS_HASWELL(dev))
2371                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2372         else if (IS_GEN8(dev))
2373                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2374         else if (INTEL_INFO(dev)->gen >= 6)
2375                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2376         else if (INTEL_INFO(dev)->gen >= 4)
2377                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2378         else if (IS_I830(dev) || IS_845G(dev))
2379                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2380         else
2381                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2382         ring->init = init_render_ring;
2383         ring->cleanup = render_ring_cleanup;
2384
2385         /* Workaround batchbuffer to combat CS tlb bug. */
2386         if (HAS_BROKEN_CS_TLB(dev)) {
2387                 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
2388                 if (obj == NULL) {
2389                         DRM_ERROR("Failed to allocate batch bo\n");
2390                         return -ENOMEM;
2391                 }
2392
2393                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2394                 if (ret != 0) {
2395                         drm_gem_object_unreference(&obj->base);
2396                         DRM_ERROR("Failed to ping batch bo\n");
2397                         return ret;
2398                 }
2399
2400                 ring->scratch.obj = obj;
2401                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2402         }
2403
2404         return intel_init_ring_buffer(dev, ring);
2405 }
2406
2407 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2408 {
2409         struct drm_i915_private *dev_priv = dev->dev_private;
2410         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2411         struct intel_ringbuffer *ringbuf = ring->buffer;
2412         int ret;
2413
2414         if (ringbuf == NULL) {
2415                 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2416                 if (!ringbuf)
2417                         return -ENOMEM;
2418                 ring->buffer = ringbuf;
2419         }
2420
2421         ring->name = "render ring";
2422         ring->id = RCS;
2423         ring->mmio_base = RENDER_RING_BASE;
2424
2425         if (INTEL_INFO(dev)->gen >= 6) {
2426                 /* non-kms not supported on gen6+ */
2427                 ret = -ENODEV;
2428                 goto err_ringbuf;
2429         }
2430
2431         /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2432          * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2433          * the special gen5 functions. */
2434         ring->add_request = i9xx_add_request;
2435         if (INTEL_INFO(dev)->gen < 4)
2436                 ring->flush = gen2_render_ring_flush;
2437         else
2438                 ring->flush = gen4_render_ring_flush;
2439         ring->get_seqno = ring_get_seqno;
2440         ring->set_seqno = ring_set_seqno;
2441         if (IS_GEN2(dev)) {
2442                 ring->irq_get = i8xx_ring_get_irq;
2443                 ring->irq_put = i8xx_ring_put_irq;
2444         } else {
2445                 ring->irq_get = i9xx_ring_get_irq;
2446                 ring->irq_put = i9xx_ring_put_irq;
2447         }
2448         ring->irq_enable_mask = I915_USER_INTERRUPT;
2449         ring->write_tail = ring_write_tail;
2450         if (INTEL_INFO(dev)->gen >= 4)
2451                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2452         else if (IS_I830(dev) || IS_845G(dev))
2453                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2454         else
2455                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2456         ring->init = init_render_ring;
2457         ring->cleanup = render_ring_cleanup;
2458
2459         ring->dev = dev;
2460         INIT_LIST_HEAD(&ring->active_list);
2461         INIT_LIST_HEAD(&ring->request_list);
2462
2463         ringbuf->size = size;
2464         ringbuf->effective_size = ringbuf->size;
2465         if (IS_I830(ring->dev) || IS_845G(ring->dev))
2466                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2467
2468         ringbuf->virtual_start = ioremap_wc(start, size);
2469         if (ringbuf->virtual_start == NULL) {
2470                 DRM_ERROR("can not ioremap virtual address for"
2471                           " ring buffer\n");
2472                 ret = -ENOMEM;
2473                 goto err_ringbuf;
2474         }
2475
2476         if (!I915_NEED_GFX_HWS(dev)) {
2477                 ret = init_phys_status_page(ring);
2478                 if (ret)
2479                         goto err_vstart;
2480         }
2481
2482         return 0;
2483
2484 err_vstart:
2485         iounmap(ringbuf->virtual_start);
2486 err_ringbuf:
2487         kfree(ringbuf);
2488         ring->buffer = NULL;
2489         return ret;
2490 }
2491
2492 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2493 {
2494         struct drm_i915_private *dev_priv = dev->dev_private;
2495         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2496
2497         ring->name = "bsd ring";
2498         ring->id = VCS;
2499
2500         ring->write_tail = ring_write_tail;
2501         if (INTEL_INFO(dev)->gen >= 6) {
2502                 ring->mmio_base = GEN6_BSD_RING_BASE;
2503                 /* gen6 bsd needs a special wa for tail updates */
2504                 if (IS_GEN6(dev))
2505                         ring->write_tail = gen6_bsd_ring_write_tail;
2506                 ring->flush = gen6_bsd_ring_flush;
2507                 ring->add_request = gen6_add_request;
2508                 ring->get_seqno = gen6_ring_get_seqno;
2509                 ring->set_seqno = ring_set_seqno;
2510                 if (INTEL_INFO(dev)->gen >= 8) {
2511                         ring->irq_enable_mask =
2512                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2513                         ring->irq_get = gen8_ring_get_irq;
2514                         ring->irq_put = gen8_ring_put_irq;
2515                         ring->dispatch_execbuffer =
2516                                 gen8_ring_dispatch_execbuffer;
2517                         if (i915_semaphore_is_enabled(dev)) {
2518                                 ring->semaphore.sync_to = gen8_ring_sync;
2519                                 ring->semaphore.signal = gen8_xcs_signal;
2520                                 GEN8_RING_SEMAPHORE_INIT;
2521                         }
2522                 } else {
2523                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2524                         ring->irq_get = gen6_ring_get_irq;
2525                         ring->irq_put = gen6_ring_put_irq;
2526                         ring->dispatch_execbuffer =
2527                                 gen6_ring_dispatch_execbuffer;
2528                         if (i915_semaphore_is_enabled(dev)) {
2529                                 ring->semaphore.sync_to = gen6_ring_sync;
2530                                 ring->semaphore.signal = gen6_signal;
2531                                 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2532                                 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2533                                 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2534                                 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2535                                 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2536                                 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2537                                 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2538                                 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2539                                 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2540                                 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2541                         }
2542                 }
2543         } else {
2544                 ring->mmio_base = BSD_RING_BASE;
2545                 ring->flush = bsd_ring_flush;
2546                 ring->add_request = i9xx_add_request;
2547                 ring->get_seqno = ring_get_seqno;
2548                 ring->set_seqno = ring_set_seqno;
2549                 if (IS_GEN5(dev)) {
2550                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2551                         ring->irq_get = gen5_ring_get_irq;
2552                         ring->irq_put = gen5_ring_put_irq;
2553                 } else {
2554                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2555                         ring->irq_get = i9xx_ring_get_irq;
2556                         ring->irq_put = i9xx_ring_put_irq;
2557                 }
2558                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2559         }
2560         ring->init = init_ring_common;
2561
2562         return intel_init_ring_buffer(dev, ring);
2563 }
2564
2565 /**
2566  * Initialize the second BSD ring for Broadwell GT3.
2567  * It is noted that this only exists on Broadwell GT3.
2568  */
2569 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2570 {
2571         struct drm_i915_private *dev_priv = dev->dev_private;
2572         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2573
2574         if ((INTEL_INFO(dev)->gen != 8)) {
2575                 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2576                 return -EINVAL;
2577         }
2578
2579         ring->name = "bsd2 ring";
2580         ring->id = VCS2;
2581
2582         ring->write_tail = ring_write_tail;
2583         ring->mmio_base = GEN8_BSD2_RING_BASE;
2584         ring->flush = gen6_bsd_ring_flush;
2585         ring->add_request = gen6_add_request;
2586         ring->get_seqno = gen6_ring_get_seqno;
2587         ring->set_seqno = ring_set_seqno;
2588         ring->irq_enable_mask =
2589                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2590         ring->irq_get = gen8_ring_get_irq;
2591         ring->irq_put = gen8_ring_put_irq;
2592         ring->dispatch_execbuffer =
2593                         gen8_ring_dispatch_execbuffer;
2594         if (i915_semaphore_is_enabled(dev)) {
2595                 ring->semaphore.sync_to = gen8_ring_sync;
2596                 ring->semaphore.signal = gen8_xcs_signal;
2597                 GEN8_RING_SEMAPHORE_INIT;
2598         }
2599         ring->init = init_ring_common;
2600
2601         return intel_init_ring_buffer(dev, ring);
2602 }
2603
2604 int intel_init_blt_ring_buffer(struct drm_device *dev)
2605 {
2606         struct drm_i915_private *dev_priv = dev->dev_private;
2607         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2608
2609         ring->name = "blitter ring";
2610         ring->id = BCS;
2611
2612         ring->mmio_base = BLT_RING_BASE;
2613         ring->write_tail = ring_write_tail;
2614         ring->flush = gen6_ring_flush;
2615         ring->add_request = gen6_add_request;
2616         ring->get_seqno = gen6_ring_get_seqno;
2617         ring->set_seqno = ring_set_seqno;
2618         if (INTEL_INFO(dev)->gen >= 8) {
2619                 ring->irq_enable_mask =
2620                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2621                 ring->irq_get = gen8_ring_get_irq;
2622                 ring->irq_put = gen8_ring_put_irq;
2623                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2624                 if (i915_semaphore_is_enabled(dev)) {
2625                         ring->semaphore.sync_to = gen8_ring_sync;
2626                         ring->semaphore.signal = gen8_xcs_signal;
2627                         GEN8_RING_SEMAPHORE_INIT;
2628                 }
2629         } else {
2630                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2631                 ring->irq_get = gen6_ring_get_irq;
2632                 ring->irq_put = gen6_ring_put_irq;
2633                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2634                 if (i915_semaphore_is_enabled(dev)) {
2635                         ring->semaphore.signal = gen6_signal;
2636                         ring->semaphore.sync_to = gen6_ring_sync;
2637                         /*
2638                          * The current semaphore is only applied on pre-gen8
2639                          * platform.  And there is no VCS2 ring on the pre-gen8
2640                          * platform. So the semaphore between BCS and VCS2 is
2641                          * initialized as INVALID.  Gen8 will initialize the
2642                          * sema between BCS and VCS2 later.
2643                          */
2644                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2645                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2646                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2647                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2648                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2649                         ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2650                         ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2651                         ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2652                         ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2653                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2654                 }
2655         }
2656         ring->init = init_ring_common;
2657
2658         return intel_init_ring_buffer(dev, ring);
2659 }
2660
2661 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2662 {
2663         struct drm_i915_private *dev_priv = dev->dev_private;
2664         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2665
2666         ring->name = "video enhancement ring";
2667         ring->id = VECS;
2668
2669         ring->mmio_base = VEBOX_RING_BASE;
2670         ring->write_tail = ring_write_tail;
2671         ring->flush = gen6_ring_flush;
2672         ring->add_request = gen6_add_request;
2673         ring->get_seqno = gen6_ring_get_seqno;
2674         ring->set_seqno = ring_set_seqno;
2675
2676         if (INTEL_INFO(dev)->gen >= 8) {
2677                 ring->irq_enable_mask =
2678                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2679                 ring->irq_get = gen8_ring_get_irq;
2680                 ring->irq_put = gen8_ring_put_irq;
2681                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2682                 if (i915_semaphore_is_enabled(dev)) {
2683                         ring->semaphore.sync_to = gen8_ring_sync;
2684                         ring->semaphore.signal = gen8_xcs_signal;
2685                         GEN8_RING_SEMAPHORE_INIT;
2686                 }
2687         } else {
2688                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2689                 ring->irq_get = hsw_vebox_get_irq;
2690                 ring->irq_put = hsw_vebox_put_irq;
2691                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2692                 if (i915_semaphore_is_enabled(dev)) {
2693                         ring->semaphore.sync_to = gen6_ring_sync;
2694                         ring->semaphore.signal = gen6_signal;
2695                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2696                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2697                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2698                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2699                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2700                         ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2701                         ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2702                         ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2703                         ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2704                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2705                 }
2706         }
2707         ring->init = init_ring_common;
2708
2709         return intel_init_ring_buffer(dev, ring);
2710 }
2711
2712 int
2713 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2714 {
2715         int ret;
2716
2717         if (!ring->gpu_caches_dirty)
2718                 return 0;
2719
2720         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2721         if (ret)
2722                 return ret;
2723
2724         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2725
2726         ring->gpu_caches_dirty = false;
2727         return 0;
2728 }
2729
2730 int
2731 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2732 {
2733         uint32_t flush_domains;
2734         int ret;
2735
2736         flush_domains = 0;
2737         if (ring->gpu_caches_dirty)
2738                 flush_domains = I915_GEM_GPU_DOMAINS;
2739
2740         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2741         if (ret)
2742                 return ret;
2743
2744         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2745
2746         ring->gpu_caches_dirty = false;
2747         return 0;
2748 }
2749
2750 void
2751 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2752 {
2753         int ret;
2754
2755         if (!intel_ring_initialized(ring))
2756                 return;
2757
2758         ret = intel_ring_idle(ring);
2759         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2760                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2761                           ring->name, ret);
2762
2763         stop_ring(ring);
2764 }
This page took 0.201963 seconds and 4 git commands to generate.