2 * Copyright © 2008-2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
37 intel_ring_initialized(struct intel_engine_cs *ring)
39 struct drm_device *dev = ring->dev;
44 if (i915.enable_execlists) {
45 struct intel_context *dctx = ring->default_context;
46 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
50 return ring->buffer && ring->buffer->obj;
53 int __intel_ring_space(int head, int tail, int size)
55 int space = head - (tail + I915_RING_FREE_SPACE);
61 int intel_ring_space(struct intel_ringbuffer *ringbuf)
63 return __intel_ring_space(ringbuf->head & HEAD_ADDR,
64 ringbuf->tail, ringbuf->size);
67 bool intel_ring_stopped(struct intel_engine_cs *ring)
69 struct drm_i915_private *dev_priv = ring->dev->dev_private;
70 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
73 void __intel_ring_advance(struct intel_engine_cs *ring)
75 struct intel_ringbuffer *ringbuf = ring->buffer;
76 ringbuf->tail &= ringbuf->size - 1;
77 if (intel_ring_stopped(ring))
79 ring->write_tail(ring, ringbuf->tail);
83 gen2_render_ring_flush(struct intel_engine_cs *ring,
84 u32 invalidate_domains,
91 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
92 cmd |= MI_NO_WRITE_FLUSH;
94 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
97 ret = intel_ring_begin(ring, 2);
101 intel_ring_emit(ring, cmd);
102 intel_ring_emit(ring, MI_NOOP);
103 intel_ring_advance(ring);
109 gen4_render_ring_flush(struct intel_engine_cs *ring,
110 u32 invalidate_domains,
113 struct drm_device *dev = ring->dev;
120 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
121 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
122 * also flushed at 2d versus 3d pipeline switches.
126 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
127 * MI_READ_FLUSH is set, and is always flushed on 965.
129 * I915_GEM_DOMAIN_COMMAND may not exist?
131 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
132 * invalidated when MI_EXE_FLUSH is set.
134 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
135 * invalidated with every MI_FLUSH.
139 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
140 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
141 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
142 * are flushed at any MI_FLUSH.
145 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
146 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
147 cmd &= ~MI_NO_WRITE_FLUSH;
148 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
151 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
152 (IS_G4X(dev) || IS_GEN5(dev)))
153 cmd |= MI_INVALIDATE_ISP;
155 ret = intel_ring_begin(ring, 2);
159 intel_ring_emit(ring, cmd);
160 intel_ring_emit(ring, MI_NOOP);
161 intel_ring_advance(ring);
167 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
168 * implementing two workarounds on gen6. From section 1.4.7.1
169 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
171 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
172 * produced by non-pipelined state commands), software needs to first
173 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
176 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
177 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
179 * And the workaround for these two requires this workaround first:
181 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
182 * BEFORE the pipe-control with a post-sync op and no write-cache
185 * And this last workaround is tricky because of the requirements on
186 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
189 * "1 of the following must also be set:
190 * - Render Target Cache Flush Enable ([12] of DW1)
191 * - Depth Cache Flush Enable ([0] of DW1)
192 * - Stall at Pixel Scoreboard ([1] of DW1)
193 * - Depth Stall ([13] of DW1)
194 * - Post-Sync Operation ([13] of DW1)
195 * - Notify Enable ([8] of DW1)"
197 * The cache flushes require the workaround flush that triggered this
198 * one, so we can't use it. Depth stall would trigger the same.
199 * Post-sync nonzero is what triggered this second workaround, so we
200 * can't use that one either. Notify enable is IRQs, which aren't
201 * really our business. That leaves only stall at scoreboard.
204 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
206 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
210 ret = intel_ring_begin(ring, 6);
214 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
215 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
216 PIPE_CONTROL_STALL_AT_SCOREBOARD);
217 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
218 intel_ring_emit(ring, 0); /* low dword */
219 intel_ring_emit(ring, 0); /* high dword */
220 intel_ring_emit(ring, MI_NOOP);
221 intel_ring_advance(ring);
223 ret = intel_ring_begin(ring, 6);
227 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
229 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
230 intel_ring_emit(ring, 0);
231 intel_ring_emit(ring, 0);
232 intel_ring_emit(ring, MI_NOOP);
233 intel_ring_advance(ring);
239 gen6_render_ring_flush(struct intel_engine_cs *ring,
240 u32 invalidate_domains, u32 flush_domains)
243 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
246 /* Force SNB workarounds for PIPE_CONTROL flushes */
247 ret = intel_emit_post_sync_nonzero_flush(ring);
251 /* Just flush everything. Experiments have shown that reducing the
252 * number of bits based on the write domains has little performance
256 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
257 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
259 * Ensure that any following seqno writes only happen
260 * when the render cache is indeed flushed.
262 flags |= PIPE_CONTROL_CS_STALL;
264 if (invalidate_domains) {
265 flags |= PIPE_CONTROL_TLB_INVALIDATE;
266 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
267 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
268 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
269 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
270 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
272 * TLB invalidate requires a post-sync write.
274 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
277 ret = intel_ring_begin(ring, 4);
281 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
282 intel_ring_emit(ring, flags);
283 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
284 intel_ring_emit(ring, 0);
285 intel_ring_advance(ring);
291 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
295 ret = intel_ring_begin(ring, 4);
299 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
300 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
301 PIPE_CONTROL_STALL_AT_SCOREBOARD);
302 intel_ring_emit(ring, 0);
303 intel_ring_emit(ring, 0);
304 intel_ring_advance(ring);
309 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
313 if (!ring->fbc_dirty)
316 ret = intel_ring_begin(ring, 6);
319 /* WaFbcNukeOn3DBlt:ivb/hsw */
320 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
321 intel_ring_emit(ring, MSG_FBC_REND_STATE);
322 intel_ring_emit(ring, value);
323 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
324 intel_ring_emit(ring, MSG_FBC_REND_STATE);
325 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
326 intel_ring_advance(ring);
328 ring->fbc_dirty = false;
333 gen7_render_ring_flush(struct intel_engine_cs *ring,
334 u32 invalidate_domains, u32 flush_domains)
337 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
341 * Ensure that any following seqno writes only happen when the render
342 * cache is indeed flushed.
344 * Workaround: 4th PIPE_CONTROL command (except the ones with only
345 * read-cache invalidate bits set) must have the CS_STALL bit set. We
346 * don't try to be clever and just set it unconditionally.
348 flags |= PIPE_CONTROL_CS_STALL;
350 /* Just flush everything. Experiments have shown that reducing the
351 * number of bits based on the write domains has little performance
355 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
356 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
358 if (invalidate_domains) {
359 flags |= PIPE_CONTROL_TLB_INVALIDATE;
360 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
361 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
362 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
363 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
364 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
366 * TLB invalidate requires a post-sync write.
368 flags |= PIPE_CONTROL_QW_WRITE;
369 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
371 /* Workaround: we must issue a pipe_control with CS-stall bit
372 * set before a pipe_control command that has the state cache
373 * invalidate bit set. */
374 gen7_render_ring_cs_stall_wa(ring);
377 ret = intel_ring_begin(ring, 4);
381 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
382 intel_ring_emit(ring, flags);
383 intel_ring_emit(ring, scratch_addr);
384 intel_ring_emit(ring, 0);
385 intel_ring_advance(ring);
387 if (!invalidate_domains && flush_domains)
388 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
394 gen8_emit_pipe_control(struct intel_engine_cs *ring,
395 u32 flags, u32 scratch_addr)
399 ret = intel_ring_begin(ring, 6);
403 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
404 intel_ring_emit(ring, flags);
405 intel_ring_emit(ring, scratch_addr);
406 intel_ring_emit(ring, 0);
407 intel_ring_emit(ring, 0);
408 intel_ring_emit(ring, 0);
409 intel_ring_advance(ring);
415 gen8_render_ring_flush(struct intel_engine_cs *ring,
416 u32 invalidate_domains, u32 flush_domains)
419 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
422 flags |= PIPE_CONTROL_CS_STALL;
425 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
426 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
428 if (invalidate_domains) {
429 flags |= PIPE_CONTROL_TLB_INVALIDATE;
430 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
431 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
432 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
433 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
434 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
435 flags |= PIPE_CONTROL_QW_WRITE;
436 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
438 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
439 ret = gen8_emit_pipe_control(ring,
440 PIPE_CONTROL_CS_STALL |
441 PIPE_CONTROL_STALL_AT_SCOREBOARD,
447 ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
451 if (!invalidate_domains && flush_domains)
452 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
457 static void ring_write_tail(struct intel_engine_cs *ring,
460 struct drm_i915_private *dev_priv = ring->dev->dev_private;
461 I915_WRITE_TAIL(ring, value);
464 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
466 struct drm_i915_private *dev_priv = ring->dev->dev_private;
469 if (INTEL_INFO(ring->dev)->gen >= 8)
470 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
471 RING_ACTHD_UDW(ring->mmio_base));
472 else if (INTEL_INFO(ring->dev)->gen >= 4)
473 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
475 acthd = I915_READ(ACTHD);
480 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
482 struct drm_i915_private *dev_priv = ring->dev->dev_private;
485 addr = dev_priv->status_page_dmah->busaddr;
486 if (INTEL_INFO(ring->dev)->gen >= 4)
487 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
488 I915_WRITE(HWS_PGA, addr);
491 static bool stop_ring(struct intel_engine_cs *ring)
493 struct drm_i915_private *dev_priv = to_i915(ring->dev);
495 if (!IS_GEN2(ring->dev)) {
496 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
497 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
498 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
499 /* Sometimes we observe that the idle flag is not
500 * set even though the ring is empty. So double
501 * check before giving up.
503 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
508 I915_WRITE_CTL(ring, 0);
509 I915_WRITE_HEAD(ring, 0);
510 ring->write_tail(ring, 0);
512 if (!IS_GEN2(ring->dev)) {
513 (void)I915_READ_CTL(ring);
514 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
517 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
520 static int init_ring_common(struct intel_engine_cs *ring)
522 struct drm_device *dev = ring->dev;
523 struct drm_i915_private *dev_priv = dev->dev_private;
524 struct intel_ringbuffer *ringbuf = ring->buffer;
525 struct drm_i915_gem_object *obj = ringbuf->obj;
528 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
530 if (!stop_ring(ring)) {
531 /* G45 ring initialization often fails to reset head to zero */
532 DRM_DEBUG_KMS("%s head not reset to zero "
533 "ctl %08x head %08x tail %08x start %08x\n",
536 I915_READ_HEAD(ring),
537 I915_READ_TAIL(ring),
538 I915_READ_START(ring));
540 if (!stop_ring(ring)) {
541 DRM_ERROR("failed to set %s head to zero "
542 "ctl %08x head %08x tail %08x start %08x\n",
545 I915_READ_HEAD(ring),
546 I915_READ_TAIL(ring),
547 I915_READ_START(ring));
553 if (I915_NEED_GFX_HWS(dev))
554 intel_ring_setup_status_page(ring);
556 ring_setup_phys_status_page(ring);
558 /* Enforce ordering by reading HEAD register back */
559 I915_READ_HEAD(ring);
561 /* Initialize the ring. This must happen _after_ we've cleared the ring
562 * registers with the above sequence (the readback of the HEAD registers
563 * also enforces ordering), otherwise the hw might lose the new ring
564 * register values. */
565 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
567 /* WaClearRingBufHeadRegAtInit:ctg,elk */
568 if (I915_READ_HEAD(ring))
569 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
570 ring->name, I915_READ_HEAD(ring));
571 I915_WRITE_HEAD(ring, 0);
572 (void)I915_READ_HEAD(ring);
575 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
578 /* If the head is still not zero, the ring is dead */
579 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
580 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
581 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
582 DRM_ERROR("%s initialization failed "
583 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
585 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
586 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
587 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
592 if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
593 i915_kernel_lost_context(ring->dev);
595 ringbuf->head = I915_READ_HEAD(ring);
596 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
597 ringbuf->space = intel_ring_space(ringbuf);
598 ringbuf->last_retired_head = -1;
601 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
604 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
610 intel_fini_pipe_control(struct intel_engine_cs *ring)
612 struct drm_device *dev = ring->dev;
614 if (ring->scratch.obj == NULL)
617 if (INTEL_INFO(dev)->gen >= 5) {
618 kunmap(sg_page(ring->scratch.obj->pages->sgl));
619 i915_gem_object_ggtt_unpin(ring->scratch.obj);
622 drm_gem_object_unreference(&ring->scratch.obj->base);
623 ring->scratch.obj = NULL;
627 intel_init_pipe_control(struct intel_engine_cs *ring)
631 if (ring->scratch.obj)
634 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
635 if (ring->scratch.obj == NULL) {
636 DRM_ERROR("Failed to allocate seqno page\n");
641 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
645 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
649 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
650 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
651 if (ring->scratch.cpu_page == NULL) {
656 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
657 ring->name, ring->scratch.gtt_offset);
661 i915_gem_object_ggtt_unpin(ring->scratch.obj);
663 drm_gem_object_unreference(&ring->scratch.obj->base);
668 static inline void intel_ring_emit_wa(struct intel_engine_cs *ring,
671 struct drm_device *dev = ring->dev;
672 struct drm_i915_private *dev_priv = dev->dev_private;
674 if (WARN_ON(dev_priv->num_wa_regs >= I915_MAX_WA_REGS))
677 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
678 intel_ring_emit(ring, addr);
679 intel_ring_emit(ring, value);
681 dev_priv->intel_wa_regs[dev_priv->num_wa_regs].addr = addr;
682 dev_priv->intel_wa_regs[dev_priv->num_wa_regs].mask = value & 0xFFFF;
683 /* value is updated with the status of remaining bits of this
684 * register when it is read from debugfs file
686 dev_priv->intel_wa_regs[dev_priv->num_wa_regs].value = value;
687 dev_priv->num_wa_regs++;
692 static int bdw_init_workarounds(struct intel_engine_cs *ring)
695 struct drm_device *dev = ring->dev;
696 struct drm_i915_private *dev_priv = dev->dev_private;
699 * workarounds applied in this fn are part of register state context,
700 * they need to be re-initialized followed by gpu reset, suspend/resume,
703 dev_priv->num_wa_regs = 0;
704 memset(dev_priv->intel_wa_regs, 0, sizeof(dev_priv->intel_wa_regs));
707 * update the number of dwords required based on the
708 * actual number of workarounds applied
710 ret = intel_ring_begin(ring, 24);
714 /* WaDisablePartialInstShootdown:bdw */
715 /* WaDisableThreadStallDopClockGating:bdw */
716 /* FIXME: Unclear whether we really need this on production bdw. */
717 intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
718 _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE
719 | STALL_DOP_GATING_DISABLE));
721 /* WaDisableDopClockGating:bdw May not be needed for production */
722 intel_ring_emit_wa(ring, GEN7_ROW_CHICKEN2,
723 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
726 * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
727 * pre-production hardware
729 intel_ring_emit_wa(ring, HALF_SLICE_CHICKEN3,
730 _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS
731 | GEN8_SAMPLER_POWER_BYPASS_DIS));
733 intel_ring_emit_wa(ring, GEN7_HALF_SLICE_CHICKEN1,
734 _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
736 intel_ring_emit_wa(ring, COMMON_SLICE_CHICKEN2,
737 _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
739 /* Use Force Non-Coherent whenever executing a 3D context. This is a
740 * workaround for for a possible hang in the unlikely event a TLB
741 * invalidation occurs during a PSD flush.
743 intel_ring_emit_wa(ring, HDC_CHICKEN0,
744 _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
746 /* Wa4x4STCOptimizationDisable:bdw */
747 intel_ring_emit_wa(ring, CACHE_MODE_1,
748 _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
751 * BSpec recommends 8x4 when MSAA is used,
752 * however in practice 16x4 seems fastest.
754 * Note that PS/WM thread counts depend on the WIZ hashing
755 * disable bit, which we don't touch here, but it's good
756 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
758 intel_ring_emit_wa(ring, GEN7_GT_MODE,
759 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
761 intel_ring_advance(ring);
763 DRM_DEBUG_DRIVER("Number of Workarounds applied: %d\n",
764 dev_priv->num_wa_regs);
769 static int chv_init_workarounds(struct intel_engine_cs *ring)
772 struct drm_device *dev = ring->dev;
773 struct drm_i915_private *dev_priv = dev->dev_private;
776 * workarounds applied in this fn are part of register state context,
777 * they need to be re-initialized followed by gpu reset, suspend/resume,
780 dev_priv->num_wa_regs = 0;
781 memset(dev_priv->intel_wa_regs, 0, sizeof(dev_priv->intel_wa_regs));
783 ret = intel_ring_begin(ring, 12);
787 /* WaDisablePartialInstShootdown:chv */
788 intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
789 _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
791 /* WaDisableThreadStallDopClockGating:chv */
792 intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
793 _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
795 /* WaDisableDopClockGating:chv (pre-production hw) */
796 intel_ring_emit_wa(ring, GEN7_ROW_CHICKEN2,
797 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
799 /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
800 intel_ring_emit_wa(ring, HALF_SLICE_CHICKEN3,
801 _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
803 intel_ring_advance(ring);
808 static int init_render_ring(struct intel_engine_cs *ring)
810 struct drm_device *dev = ring->dev;
811 struct drm_i915_private *dev_priv = dev->dev_private;
812 int ret = init_ring_common(ring);
816 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
817 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
818 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
820 /* We need to disable the AsyncFlip performance optimisations in order
821 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
822 * programmed to '1' on all products.
824 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
826 if (INTEL_INFO(dev)->gen >= 6)
827 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
829 /* Required for the hardware to program scanline values for waiting */
830 /* WaEnableFlushTlbInvalidationMode:snb */
831 if (INTEL_INFO(dev)->gen == 6)
833 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
835 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
837 I915_WRITE(GFX_MODE_GEN7,
838 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
839 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
841 if (INTEL_INFO(dev)->gen >= 5) {
842 ret = intel_init_pipe_control(ring);
848 /* From the Sandybridge PRM, volume 1 part 3, page 24:
849 * "If this bit is set, STCunit will have LRA as replacement
850 * policy. [...] This bit must be reset. LRA replacement
851 * policy is not supported."
853 I915_WRITE(CACHE_MODE_0,
854 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
857 if (INTEL_INFO(dev)->gen >= 6)
858 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
861 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
866 static void render_ring_cleanup(struct intel_engine_cs *ring)
868 struct drm_device *dev = ring->dev;
869 struct drm_i915_private *dev_priv = dev->dev_private;
871 if (dev_priv->semaphore_obj) {
872 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
873 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
874 dev_priv->semaphore_obj = NULL;
877 intel_fini_pipe_control(ring);
880 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
881 unsigned int num_dwords)
883 #define MBOX_UPDATE_DWORDS 8
884 struct drm_device *dev = signaller->dev;
885 struct drm_i915_private *dev_priv = dev->dev_private;
886 struct intel_engine_cs *waiter;
887 int i, ret, num_rings;
889 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
890 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
891 #undef MBOX_UPDATE_DWORDS
893 ret = intel_ring_begin(signaller, num_dwords);
897 for_each_ring(waiter, dev_priv, i) {
898 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
899 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
902 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
903 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
904 PIPE_CONTROL_QW_WRITE |
905 PIPE_CONTROL_FLUSH_ENABLE);
906 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
907 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
908 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
909 intel_ring_emit(signaller, 0);
910 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
911 MI_SEMAPHORE_TARGET(waiter->id));
912 intel_ring_emit(signaller, 0);
918 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
919 unsigned int num_dwords)
921 #define MBOX_UPDATE_DWORDS 6
922 struct drm_device *dev = signaller->dev;
923 struct drm_i915_private *dev_priv = dev->dev_private;
924 struct intel_engine_cs *waiter;
925 int i, ret, num_rings;
927 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
928 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
929 #undef MBOX_UPDATE_DWORDS
931 ret = intel_ring_begin(signaller, num_dwords);
935 for_each_ring(waiter, dev_priv, i) {
936 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
937 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
940 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
941 MI_FLUSH_DW_OP_STOREDW);
942 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
943 MI_FLUSH_DW_USE_GTT);
944 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
945 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
946 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
947 MI_SEMAPHORE_TARGET(waiter->id));
948 intel_ring_emit(signaller, 0);
954 static int gen6_signal(struct intel_engine_cs *signaller,
955 unsigned int num_dwords)
957 struct drm_device *dev = signaller->dev;
958 struct drm_i915_private *dev_priv = dev->dev_private;
959 struct intel_engine_cs *useless;
960 int i, ret, num_rings;
962 #define MBOX_UPDATE_DWORDS 3
963 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
964 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
965 #undef MBOX_UPDATE_DWORDS
967 ret = intel_ring_begin(signaller, num_dwords);
971 for_each_ring(useless, dev_priv, i) {
972 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
973 if (mbox_reg != GEN6_NOSYNC) {
974 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
975 intel_ring_emit(signaller, mbox_reg);
976 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
980 /* If num_dwords was rounded, make sure the tail pointer is correct */
981 if (num_rings % 2 == 0)
982 intel_ring_emit(signaller, MI_NOOP);
988 * gen6_add_request - Update the semaphore mailbox registers
990 * @ring - ring that is adding a request
991 * @seqno - return seqno stuck into the ring
993 * Update the mailbox registers in the *other* rings with the current seqno.
994 * This acts like a signal in the canonical semaphore.
997 gen6_add_request(struct intel_engine_cs *ring)
1001 if (ring->semaphore.signal)
1002 ret = ring->semaphore.signal(ring, 4);
1004 ret = intel_ring_begin(ring, 4);
1009 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1010 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1011 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1012 intel_ring_emit(ring, MI_USER_INTERRUPT);
1013 __intel_ring_advance(ring);
1018 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1021 struct drm_i915_private *dev_priv = dev->dev_private;
1022 return dev_priv->last_seqno < seqno;
1026 * intel_ring_sync - sync the waiter to the signaller on seqno
1028 * @waiter - ring that is waiting
1029 * @signaller - ring which has, or will signal
1030 * @seqno - seqno which the waiter will block on
1034 gen8_ring_sync(struct intel_engine_cs *waiter,
1035 struct intel_engine_cs *signaller,
1038 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1041 ret = intel_ring_begin(waiter, 4);
1045 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1046 MI_SEMAPHORE_GLOBAL_GTT |
1048 MI_SEMAPHORE_SAD_GTE_SDD);
1049 intel_ring_emit(waiter, seqno);
1050 intel_ring_emit(waiter,
1051 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1052 intel_ring_emit(waiter,
1053 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1054 intel_ring_advance(waiter);
1059 gen6_ring_sync(struct intel_engine_cs *waiter,
1060 struct intel_engine_cs *signaller,
1063 u32 dw1 = MI_SEMAPHORE_MBOX |
1064 MI_SEMAPHORE_COMPARE |
1065 MI_SEMAPHORE_REGISTER;
1066 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1069 /* Throughout all of the GEM code, seqno passed implies our current
1070 * seqno is >= the last seqno executed. However for hardware the
1071 * comparison is strictly greater than.
1075 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1077 ret = intel_ring_begin(waiter, 4);
1081 /* If seqno wrap happened, omit the wait with no-ops */
1082 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1083 intel_ring_emit(waiter, dw1 | wait_mbox);
1084 intel_ring_emit(waiter, seqno);
1085 intel_ring_emit(waiter, 0);
1086 intel_ring_emit(waiter, MI_NOOP);
1088 intel_ring_emit(waiter, MI_NOOP);
1089 intel_ring_emit(waiter, MI_NOOP);
1090 intel_ring_emit(waiter, MI_NOOP);
1091 intel_ring_emit(waiter, MI_NOOP);
1093 intel_ring_advance(waiter);
1098 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1100 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1101 PIPE_CONTROL_DEPTH_STALL); \
1102 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1103 intel_ring_emit(ring__, 0); \
1104 intel_ring_emit(ring__, 0); \
1108 pc_render_add_request(struct intel_engine_cs *ring)
1110 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1113 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1114 * incoherent with writes to memory, i.e. completely fubar,
1115 * so we need to use PIPE_NOTIFY instead.
1117 * However, we also need to workaround the qword write
1118 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1119 * memory before requesting an interrupt.
1121 ret = intel_ring_begin(ring, 32);
1125 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1126 PIPE_CONTROL_WRITE_FLUSH |
1127 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1128 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1129 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1130 intel_ring_emit(ring, 0);
1131 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1132 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1133 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1134 scratch_addr += 2 * CACHELINE_BYTES;
1135 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1136 scratch_addr += 2 * CACHELINE_BYTES;
1137 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1138 scratch_addr += 2 * CACHELINE_BYTES;
1139 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1140 scratch_addr += 2 * CACHELINE_BYTES;
1141 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1143 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1144 PIPE_CONTROL_WRITE_FLUSH |
1145 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1146 PIPE_CONTROL_NOTIFY);
1147 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1148 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1149 intel_ring_emit(ring, 0);
1150 __intel_ring_advance(ring);
1156 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1158 /* Workaround to force correct ordering between irq and seqno writes on
1159 * ivb (and maybe also on snb) by reading from a CS register (like
1160 * ACTHD) before reading the status page. */
1161 if (!lazy_coherency) {
1162 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1163 POSTING_READ(RING_ACTHD(ring->mmio_base));
1166 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1170 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1172 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1176 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1178 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1182 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1184 return ring->scratch.cpu_page[0];
1188 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1190 ring->scratch.cpu_page[0] = seqno;
1194 gen5_ring_get_irq(struct intel_engine_cs *ring)
1196 struct drm_device *dev = ring->dev;
1197 struct drm_i915_private *dev_priv = dev->dev_private;
1198 unsigned long flags;
1200 if (!dev->irq_enabled)
1203 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1204 if (ring->irq_refcount++ == 0)
1205 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1206 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1212 gen5_ring_put_irq(struct intel_engine_cs *ring)
1214 struct drm_device *dev = ring->dev;
1215 struct drm_i915_private *dev_priv = dev->dev_private;
1216 unsigned long flags;
1218 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1219 if (--ring->irq_refcount == 0)
1220 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1221 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1225 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1227 struct drm_device *dev = ring->dev;
1228 struct drm_i915_private *dev_priv = dev->dev_private;
1229 unsigned long flags;
1231 if (!dev->irq_enabled)
1234 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1235 if (ring->irq_refcount++ == 0) {
1236 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1237 I915_WRITE(IMR, dev_priv->irq_mask);
1240 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1246 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1248 struct drm_device *dev = ring->dev;
1249 struct drm_i915_private *dev_priv = dev->dev_private;
1250 unsigned long flags;
1252 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1253 if (--ring->irq_refcount == 0) {
1254 dev_priv->irq_mask |= ring->irq_enable_mask;
1255 I915_WRITE(IMR, dev_priv->irq_mask);
1258 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1262 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1264 struct drm_device *dev = ring->dev;
1265 struct drm_i915_private *dev_priv = dev->dev_private;
1266 unsigned long flags;
1268 if (!dev->irq_enabled)
1271 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1272 if (ring->irq_refcount++ == 0) {
1273 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1274 I915_WRITE16(IMR, dev_priv->irq_mask);
1275 POSTING_READ16(IMR);
1277 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1283 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1285 struct drm_device *dev = ring->dev;
1286 struct drm_i915_private *dev_priv = dev->dev_private;
1287 unsigned long flags;
1289 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1290 if (--ring->irq_refcount == 0) {
1291 dev_priv->irq_mask |= ring->irq_enable_mask;
1292 I915_WRITE16(IMR, dev_priv->irq_mask);
1293 POSTING_READ16(IMR);
1295 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1298 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
1300 struct drm_device *dev = ring->dev;
1301 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1304 /* The ring status page addresses are no longer next to the rest of
1305 * the ring registers as of gen7.
1310 mmio = RENDER_HWS_PGA_GEN7;
1313 mmio = BLT_HWS_PGA_GEN7;
1316 * VCS2 actually doesn't exist on Gen7. Only shut up
1317 * gcc switch check warning
1321 mmio = BSD_HWS_PGA_GEN7;
1324 mmio = VEBOX_HWS_PGA_GEN7;
1327 } else if (IS_GEN6(ring->dev)) {
1328 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1330 /* XXX: gen8 returns to sanity */
1331 mmio = RING_HWS_PGA(ring->mmio_base);
1334 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1338 * Flush the TLB for this page
1340 * FIXME: These two bits have disappeared on gen8, so a question
1341 * arises: do we still need this and if so how should we go about
1342 * invalidating the TLB?
1344 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1345 u32 reg = RING_INSTPM(ring->mmio_base);
1347 /* ring should be idle before issuing a sync flush*/
1348 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1351 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1352 INSTPM_SYNC_FLUSH));
1353 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1355 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1361 bsd_ring_flush(struct intel_engine_cs *ring,
1362 u32 invalidate_domains,
1367 ret = intel_ring_begin(ring, 2);
1371 intel_ring_emit(ring, MI_FLUSH);
1372 intel_ring_emit(ring, MI_NOOP);
1373 intel_ring_advance(ring);
1378 i9xx_add_request(struct intel_engine_cs *ring)
1382 ret = intel_ring_begin(ring, 4);
1386 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1387 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1388 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1389 intel_ring_emit(ring, MI_USER_INTERRUPT);
1390 __intel_ring_advance(ring);
1396 gen6_ring_get_irq(struct intel_engine_cs *ring)
1398 struct drm_device *dev = ring->dev;
1399 struct drm_i915_private *dev_priv = dev->dev_private;
1400 unsigned long flags;
1402 if (!dev->irq_enabled)
1405 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1406 if (ring->irq_refcount++ == 0) {
1407 if (HAS_L3_DPF(dev) && ring->id == RCS)
1408 I915_WRITE_IMR(ring,
1409 ~(ring->irq_enable_mask |
1410 GT_PARITY_ERROR(dev)));
1412 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1413 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1415 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1421 gen6_ring_put_irq(struct intel_engine_cs *ring)
1423 struct drm_device *dev = ring->dev;
1424 struct drm_i915_private *dev_priv = dev->dev_private;
1425 unsigned long flags;
1427 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1428 if (--ring->irq_refcount == 0) {
1429 if (HAS_L3_DPF(dev) && ring->id == RCS)
1430 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1432 I915_WRITE_IMR(ring, ~0);
1433 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1435 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1439 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1441 struct drm_device *dev = ring->dev;
1442 struct drm_i915_private *dev_priv = dev->dev_private;
1443 unsigned long flags;
1445 if (!dev->irq_enabled)
1448 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1449 if (ring->irq_refcount++ == 0) {
1450 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1451 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1453 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1459 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1461 struct drm_device *dev = ring->dev;
1462 struct drm_i915_private *dev_priv = dev->dev_private;
1463 unsigned long flags;
1465 if (!dev->irq_enabled)
1468 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1469 if (--ring->irq_refcount == 0) {
1470 I915_WRITE_IMR(ring, ~0);
1471 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1473 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1477 gen8_ring_get_irq(struct intel_engine_cs *ring)
1479 struct drm_device *dev = ring->dev;
1480 struct drm_i915_private *dev_priv = dev->dev_private;
1481 unsigned long flags;
1483 if (!dev->irq_enabled)
1486 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1487 if (ring->irq_refcount++ == 0) {
1488 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1489 I915_WRITE_IMR(ring,
1490 ~(ring->irq_enable_mask |
1491 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1493 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1495 POSTING_READ(RING_IMR(ring->mmio_base));
1497 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1503 gen8_ring_put_irq(struct intel_engine_cs *ring)
1505 struct drm_device *dev = ring->dev;
1506 struct drm_i915_private *dev_priv = dev->dev_private;
1507 unsigned long flags;
1509 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1510 if (--ring->irq_refcount == 0) {
1511 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1512 I915_WRITE_IMR(ring,
1513 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1515 I915_WRITE_IMR(ring, ~0);
1517 POSTING_READ(RING_IMR(ring->mmio_base));
1519 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1523 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1524 u64 offset, u32 length,
1529 ret = intel_ring_begin(ring, 2);
1533 intel_ring_emit(ring,
1534 MI_BATCH_BUFFER_START |
1536 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1537 intel_ring_emit(ring, offset);
1538 intel_ring_advance(ring);
1543 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1544 #define I830_BATCH_LIMIT (256*1024)
1546 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1547 u64 offset, u32 len,
1552 if (flags & I915_DISPATCH_PINNED) {
1553 ret = intel_ring_begin(ring, 4);
1557 intel_ring_emit(ring, MI_BATCH_BUFFER);
1558 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1559 intel_ring_emit(ring, offset + len - 8);
1560 intel_ring_emit(ring, MI_NOOP);
1561 intel_ring_advance(ring);
1563 u32 cs_offset = ring->scratch.gtt_offset;
1565 if (len > I830_BATCH_LIMIT)
1568 ret = intel_ring_begin(ring, 9+3);
1571 /* Blit the batch (which has now all relocs applied) to the stable batch
1572 * scratch bo area (so that the CS never stumbles over its tlb
1573 * invalidation bug) ... */
1574 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1575 XY_SRC_COPY_BLT_WRITE_ALPHA |
1576 XY_SRC_COPY_BLT_WRITE_RGB);
1577 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1578 intel_ring_emit(ring, 0);
1579 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1580 intel_ring_emit(ring, cs_offset);
1581 intel_ring_emit(ring, 0);
1582 intel_ring_emit(ring, 4096);
1583 intel_ring_emit(ring, offset);
1584 intel_ring_emit(ring, MI_FLUSH);
1586 /* ... and execute it. */
1587 intel_ring_emit(ring, MI_BATCH_BUFFER);
1588 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1589 intel_ring_emit(ring, cs_offset + len - 8);
1590 intel_ring_advance(ring);
1597 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1598 u64 offset, u32 len,
1603 ret = intel_ring_begin(ring, 2);
1607 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1608 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1609 intel_ring_advance(ring);
1614 static void cleanup_status_page(struct intel_engine_cs *ring)
1616 struct drm_i915_gem_object *obj;
1618 obj = ring->status_page.obj;
1622 kunmap(sg_page(obj->pages->sgl));
1623 i915_gem_object_ggtt_unpin(obj);
1624 drm_gem_object_unreference(&obj->base);
1625 ring->status_page.obj = NULL;
1628 static int init_status_page(struct intel_engine_cs *ring)
1630 struct drm_i915_gem_object *obj;
1632 if ((obj = ring->status_page.obj) == NULL) {
1636 obj = i915_gem_alloc_object(ring->dev, 4096);
1638 DRM_ERROR("Failed to allocate status page\n");
1642 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1647 if (!HAS_LLC(ring->dev))
1648 /* On g33, we cannot place HWS above 256MiB, so
1649 * restrict its pinning to the low mappable arena.
1650 * Though this restriction is not documented for
1651 * gen4, gen5, or byt, they also behave similarly
1652 * and hang if the HWS is placed at the top of the
1653 * GTT. To generalise, it appears that all !llc
1654 * platforms have issues with us placing the HWS
1655 * above the mappable region (even though we never
1658 flags |= PIN_MAPPABLE;
1659 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1662 drm_gem_object_unreference(&obj->base);
1666 ring->status_page.obj = obj;
1669 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1670 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1671 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1673 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1674 ring->name, ring->status_page.gfx_addr);
1679 static int init_phys_status_page(struct intel_engine_cs *ring)
1681 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1683 if (!dev_priv->status_page_dmah) {
1684 dev_priv->status_page_dmah =
1685 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1686 if (!dev_priv->status_page_dmah)
1690 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1691 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1696 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1701 iounmap(ringbuf->virtual_start);
1702 i915_gem_object_ggtt_unpin(ringbuf->obj);
1703 drm_gem_object_unreference(&ringbuf->obj->base);
1704 ringbuf->obj = NULL;
1707 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1708 struct intel_ringbuffer *ringbuf)
1710 struct drm_i915_private *dev_priv = to_i915(dev);
1711 struct drm_i915_gem_object *obj;
1719 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1721 obj = i915_gem_alloc_object(dev, ringbuf->size);
1725 /* mark ring buffers as read-only from GPU side by default */
1728 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1732 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1736 ringbuf->virtual_start =
1737 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1739 if (ringbuf->virtual_start == NULL) {
1748 i915_gem_object_ggtt_unpin(obj);
1750 drm_gem_object_unreference(&obj->base);
1754 static int intel_init_ring_buffer(struct drm_device *dev,
1755 struct intel_engine_cs *ring)
1757 struct intel_ringbuffer *ringbuf = ring->buffer;
1760 if (ringbuf == NULL) {
1761 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1764 ring->buffer = ringbuf;
1768 INIT_LIST_HEAD(&ring->active_list);
1769 INIT_LIST_HEAD(&ring->request_list);
1770 INIT_LIST_HEAD(&ring->execlist_queue);
1771 ringbuf->size = 32 * PAGE_SIZE;
1772 ringbuf->ring = ring;
1773 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1775 init_waitqueue_head(&ring->irq_queue);
1777 if (I915_NEED_GFX_HWS(dev)) {
1778 ret = init_status_page(ring);
1782 BUG_ON(ring->id != RCS);
1783 ret = init_phys_status_page(ring);
1788 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1790 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1794 /* Workaround an erratum on the i830 which causes a hang if
1795 * the TAIL pointer points to within the last 2 cachelines
1798 ringbuf->effective_size = ringbuf->size;
1799 if (IS_I830(dev) || IS_845G(dev))
1800 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1802 ret = i915_cmd_parser_init_ring(ring);
1806 ret = ring->init(ring);
1814 ring->buffer = NULL;
1818 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1820 struct drm_i915_private *dev_priv = to_i915(ring->dev);
1821 struct intel_ringbuffer *ringbuf = ring->buffer;
1823 if (!intel_ring_initialized(ring))
1826 intel_stop_ring_buffer(ring);
1827 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1829 intel_destroy_ringbuffer_obj(ringbuf);
1830 ring->preallocated_lazy_request = NULL;
1831 ring->outstanding_lazy_seqno = 0;
1834 ring->cleanup(ring);
1836 cleanup_status_page(ring);
1838 i915_cmd_parser_fini_ring(ring);
1841 ring->buffer = NULL;
1844 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1846 struct intel_ringbuffer *ringbuf = ring->buffer;
1847 struct drm_i915_gem_request *request;
1851 if (ringbuf->last_retired_head != -1) {
1852 ringbuf->head = ringbuf->last_retired_head;
1853 ringbuf->last_retired_head = -1;
1855 ringbuf->space = intel_ring_space(ringbuf);
1856 if (ringbuf->space >= n)
1860 list_for_each_entry(request, &ring->request_list, list) {
1861 if (__intel_ring_space(request->tail, ringbuf->tail,
1862 ringbuf->size) >= n) {
1863 seqno = request->seqno;
1871 ret = i915_wait_seqno(ring, seqno);
1875 i915_gem_retire_requests_ring(ring);
1876 ringbuf->head = ringbuf->last_retired_head;
1877 ringbuf->last_retired_head = -1;
1879 ringbuf->space = intel_ring_space(ringbuf);
1883 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1885 struct drm_device *dev = ring->dev;
1886 struct drm_i915_private *dev_priv = dev->dev_private;
1887 struct intel_ringbuffer *ringbuf = ring->buffer;
1891 ret = intel_ring_wait_request(ring, n);
1895 /* force the tail write in case we have been skipping them */
1896 __intel_ring_advance(ring);
1898 /* With GEM the hangcheck timer should kick us out of the loop,
1899 * leaving it early runs the risk of corrupting GEM state (due
1900 * to running on almost untested codepaths). But on resume
1901 * timers don't work yet, so prevent a complete hang in that
1902 * case by choosing an insanely large timeout. */
1903 end = jiffies + 60 * HZ;
1905 trace_i915_ring_wait_begin(ring);
1907 ringbuf->head = I915_READ_HEAD(ring);
1908 ringbuf->space = intel_ring_space(ringbuf);
1909 if (ringbuf->space >= n) {
1914 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1915 dev->primary->master) {
1916 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1917 if (master_priv->sarea_priv)
1918 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1923 if (dev_priv->mm.interruptible && signal_pending(current)) {
1928 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1929 dev_priv->mm.interruptible);
1933 if (time_after(jiffies, end)) {
1938 trace_i915_ring_wait_end(ring);
1942 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1944 uint32_t __iomem *virt;
1945 struct intel_ringbuffer *ringbuf = ring->buffer;
1946 int rem = ringbuf->size - ringbuf->tail;
1948 if (ringbuf->space < rem) {
1949 int ret = ring_wait_for_space(ring, rem);
1954 virt = ringbuf->virtual_start + ringbuf->tail;
1957 iowrite32(MI_NOOP, virt++);
1960 ringbuf->space = intel_ring_space(ringbuf);
1965 int intel_ring_idle(struct intel_engine_cs *ring)
1970 /* We need to add any requests required to flush the objects and ring */
1971 if (ring->outstanding_lazy_seqno) {
1972 ret = i915_add_request(ring, NULL);
1977 /* Wait upon the last request to be completed */
1978 if (list_empty(&ring->request_list))
1981 seqno = list_entry(ring->request_list.prev,
1982 struct drm_i915_gem_request,
1985 return i915_wait_seqno(ring, seqno);
1989 intel_ring_alloc_seqno(struct intel_engine_cs *ring)
1991 if (ring->outstanding_lazy_seqno)
1994 if (ring->preallocated_lazy_request == NULL) {
1995 struct drm_i915_gem_request *request;
1997 request = kmalloc(sizeof(*request), GFP_KERNEL);
1998 if (request == NULL)
2001 ring->preallocated_lazy_request = request;
2004 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
2007 static int __intel_ring_prepare(struct intel_engine_cs *ring,
2010 struct intel_ringbuffer *ringbuf = ring->buffer;
2013 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2014 ret = intel_wrap_ring_buffer(ring);
2019 if (unlikely(ringbuf->space < bytes)) {
2020 ret = ring_wait_for_space(ring, bytes);
2028 int intel_ring_begin(struct intel_engine_cs *ring,
2031 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2034 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2035 dev_priv->mm.interruptible);
2039 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2043 /* Preallocate the olr before touching the ring */
2044 ret = intel_ring_alloc_seqno(ring);
2048 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2052 /* Align the ring tail to a cacheline boundary */
2053 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2055 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2058 if (num_dwords == 0)
2061 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2062 ret = intel_ring_begin(ring, num_dwords);
2066 while (num_dwords--)
2067 intel_ring_emit(ring, MI_NOOP);
2069 intel_ring_advance(ring);
2074 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2076 struct drm_device *dev = ring->dev;
2077 struct drm_i915_private *dev_priv = dev->dev_private;
2079 BUG_ON(ring->outstanding_lazy_seqno);
2081 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2082 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2083 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2085 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2088 ring->set_seqno(ring, seqno);
2089 ring->hangcheck.seqno = seqno;
2092 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2095 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2097 /* Every tail move must follow the sequence below */
2099 /* Disable notification that the ring is IDLE. The GT
2100 * will then assume that it is busy and bring it out of rc6.
2102 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2103 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2105 /* Clear the context id. Here be magic! */
2106 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2108 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2109 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2110 GEN6_BSD_SLEEP_INDICATOR) == 0,
2112 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2114 /* Now that the ring is fully powered up, update the tail */
2115 I915_WRITE_TAIL(ring, value);
2116 POSTING_READ(RING_TAIL(ring->mmio_base));
2118 /* Let the ring send IDLE messages to the GT again,
2119 * and so let it sleep to conserve power when idle.
2121 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2122 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2125 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2126 u32 invalidate, u32 flush)
2131 ret = intel_ring_begin(ring, 4);
2136 if (INTEL_INFO(ring->dev)->gen >= 8)
2139 * Bspec vol 1c.5 - video engine command streamer:
2140 * "If ENABLED, all TLBs will be invalidated once the flush
2141 * operation is complete. This bit is only valid when the
2142 * Post-Sync Operation field is a value of 1h or 3h."
2144 if (invalidate & I915_GEM_GPU_DOMAINS)
2145 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
2146 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2147 intel_ring_emit(ring, cmd);
2148 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2149 if (INTEL_INFO(ring->dev)->gen >= 8) {
2150 intel_ring_emit(ring, 0); /* upper addr */
2151 intel_ring_emit(ring, 0); /* value */
2153 intel_ring_emit(ring, 0);
2154 intel_ring_emit(ring, MI_NOOP);
2156 intel_ring_advance(ring);
2161 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2162 u64 offset, u32 len,
2165 bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
2168 ret = intel_ring_begin(ring, 4);
2172 /* FIXME(BDW): Address space and security selectors. */
2173 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2174 intel_ring_emit(ring, lower_32_bits(offset));
2175 intel_ring_emit(ring, upper_32_bits(offset));
2176 intel_ring_emit(ring, MI_NOOP);
2177 intel_ring_advance(ring);
2183 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2184 u64 offset, u32 len,
2189 ret = intel_ring_begin(ring, 2);
2193 intel_ring_emit(ring,
2194 MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
2195 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
2196 /* bit0-7 is the length on GEN6+ */
2197 intel_ring_emit(ring, offset);
2198 intel_ring_advance(ring);
2204 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2205 u64 offset, u32 len,
2210 ret = intel_ring_begin(ring, 2);
2214 intel_ring_emit(ring,
2215 MI_BATCH_BUFFER_START |
2216 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2217 /* bit0-7 is the length on GEN6+ */
2218 intel_ring_emit(ring, offset);
2219 intel_ring_advance(ring);
2224 /* Blitter support (SandyBridge+) */
2226 static int gen6_ring_flush(struct intel_engine_cs *ring,
2227 u32 invalidate, u32 flush)
2229 struct drm_device *dev = ring->dev;
2233 ret = intel_ring_begin(ring, 4);
2238 if (INTEL_INFO(ring->dev)->gen >= 8)
2241 * Bspec vol 1c.3 - blitter engine command streamer:
2242 * "If ENABLED, all TLBs will be invalidated once the flush
2243 * operation is complete. This bit is only valid when the
2244 * Post-Sync Operation field is a value of 1h or 3h."
2246 if (invalidate & I915_GEM_DOMAIN_RENDER)
2247 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
2248 MI_FLUSH_DW_OP_STOREDW;
2249 intel_ring_emit(ring, cmd);
2250 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2251 if (INTEL_INFO(ring->dev)->gen >= 8) {
2252 intel_ring_emit(ring, 0); /* upper addr */
2253 intel_ring_emit(ring, 0); /* value */
2255 intel_ring_emit(ring, 0);
2256 intel_ring_emit(ring, MI_NOOP);
2258 intel_ring_advance(ring);
2260 if (IS_GEN7(dev) && !invalidate && flush)
2261 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2266 int intel_init_render_ring_buffer(struct drm_device *dev)
2268 struct drm_i915_private *dev_priv = dev->dev_private;
2269 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2270 struct drm_i915_gem_object *obj;
2273 ring->name = "render ring";
2275 ring->mmio_base = RENDER_RING_BASE;
2277 if (INTEL_INFO(dev)->gen >= 8) {
2278 if (i915_semaphore_is_enabled(dev)) {
2279 obj = i915_gem_alloc_object(dev, 4096);
2281 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2282 i915.semaphores = 0;
2284 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2285 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2287 drm_gem_object_unreference(&obj->base);
2288 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2289 i915.semaphores = 0;
2291 dev_priv->semaphore_obj = obj;
2294 if (IS_CHERRYVIEW(dev))
2295 ring->init_context = chv_init_workarounds;
2297 ring->init_context = bdw_init_workarounds;
2298 ring->add_request = gen6_add_request;
2299 ring->flush = gen8_render_ring_flush;
2300 ring->irq_get = gen8_ring_get_irq;
2301 ring->irq_put = gen8_ring_put_irq;
2302 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2303 ring->get_seqno = gen6_ring_get_seqno;
2304 ring->set_seqno = ring_set_seqno;
2305 if (i915_semaphore_is_enabled(dev)) {
2306 WARN_ON(!dev_priv->semaphore_obj);
2307 ring->semaphore.sync_to = gen8_ring_sync;
2308 ring->semaphore.signal = gen8_rcs_signal;
2309 GEN8_RING_SEMAPHORE_INIT;
2311 } else if (INTEL_INFO(dev)->gen >= 6) {
2312 ring->add_request = gen6_add_request;
2313 ring->flush = gen7_render_ring_flush;
2314 if (INTEL_INFO(dev)->gen == 6)
2315 ring->flush = gen6_render_ring_flush;
2316 ring->irq_get = gen6_ring_get_irq;
2317 ring->irq_put = gen6_ring_put_irq;
2318 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2319 ring->get_seqno = gen6_ring_get_seqno;
2320 ring->set_seqno = ring_set_seqno;
2321 if (i915_semaphore_is_enabled(dev)) {
2322 ring->semaphore.sync_to = gen6_ring_sync;
2323 ring->semaphore.signal = gen6_signal;
2325 * The current semaphore is only applied on pre-gen8
2326 * platform. And there is no VCS2 ring on the pre-gen8
2327 * platform. So the semaphore between RCS and VCS2 is
2328 * initialized as INVALID. Gen8 will initialize the
2329 * sema between VCS2 and RCS later.
2331 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2332 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2333 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2334 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2335 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2336 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2337 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2338 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2339 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2340 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2342 } else if (IS_GEN5(dev)) {
2343 ring->add_request = pc_render_add_request;
2344 ring->flush = gen4_render_ring_flush;
2345 ring->get_seqno = pc_render_get_seqno;
2346 ring->set_seqno = pc_render_set_seqno;
2347 ring->irq_get = gen5_ring_get_irq;
2348 ring->irq_put = gen5_ring_put_irq;
2349 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2350 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2352 ring->add_request = i9xx_add_request;
2353 if (INTEL_INFO(dev)->gen < 4)
2354 ring->flush = gen2_render_ring_flush;
2356 ring->flush = gen4_render_ring_flush;
2357 ring->get_seqno = ring_get_seqno;
2358 ring->set_seqno = ring_set_seqno;
2360 ring->irq_get = i8xx_ring_get_irq;
2361 ring->irq_put = i8xx_ring_put_irq;
2363 ring->irq_get = i9xx_ring_get_irq;
2364 ring->irq_put = i9xx_ring_put_irq;
2366 ring->irq_enable_mask = I915_USER_INTERRUPT;
2368 ring->write_tail = ring_write_tail;
2370 if (IS_HASWELL(dev))
2371 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2372 else if (IS_GEN8(dev))
2373 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2374 else if (INTEL_INFO(dev)->gen >= 6)
2375 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2376 else if (INTEL_INFO(dev)->gen >= 4)
2377 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2378 else if (IS_I830(dev) || IS_845G(dev))
2379 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2381 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2382 ring->init = init_render_ring;
2383 ring->cleanup = render_ring_cleanup;
2385 /* Workaround batchbuffer to combat CS tlb bug. */
2386 if (HAS_BROKEN_CS_TLB(dev)) {
2387 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
2389 DRM_ERROR("Failed to allocate batch bo\n");
2393 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2395 drm_gem_object_unreference(&obj->base);
2396 DRM_ERROR("Failed to ping batch bo\n");
2400 ring->scratch.obj = obj;
2401 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2404 return intel_init_ring_buffer(dev, ring);
2407 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2409 struct drm_i915_private *dev_priv = dev->dev_private;
2410 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2411 struct intel_ringbuffer *ringbuf = ring->buffer;
2414 if (ringbuf == NULL) {
2415 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2418 ring->buffer = ringbuf;
2421 ring->name = "render ring";
2423 ring->mmio_base = RENDER_RING_BASE;
2425 if (INTEL_INFO(dev)->gen >= 6) {
2426 /* non-kms not supported on gen6+ */
2431 /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2432 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2433 * the special gen5 functions. */
2434 ring->add_request = i9xx_add_request;
2435 if (INTEL_INFO(dev)->gen < 4)
2436 ring->flush = gen2_render_ring_flush;
2438 ring->flush = gen4_render_ring_flush;
2439 ring->get_seqno = ring_get_seqno;
2440 ring->set_seqno = ring_set_seqno;
2442 ring->irq_get = i8xx_ring_get_irq;
2443 ring->irq_put = i8xx_ring_put_irq;
2445 ring->irq_get = i9xx_ring_get_irq;
2446 ring->irq_put = i9xx_ring_put_irq;
2448 ring->irq_enable_mask = I915_USER_INTERRUPT;
2449 ring->write_tail = ring_write_tail;
2450 if (INTEL_INFO(dev)->gen >= 4)
2451 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2452 else if (IS_I830(dev) || IS_845G(dev))
2453 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2455 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2456 ring->init = init_render_ring;
2457 ring->cleanup = render_ring_cleanup;
2460 INIT_LIST_HEAD(&ring->active_list);
2461 INIT_LIST_HEAD(&ring->request_list);
2463 ringbuf->size = size;
2464 ringbuf->effective_size = ringbuf->size;
2465 if (IS_I830(ring->dev) || IS_845G(ring->dev))
2466 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2468 ringbuf->virtual_start = ioremap_wc(start, size);
2469 if (ringbuf->virtual_start == NULL) {
2470 DRM_ERROR("can not ioremap virtual address for"
2476 if (!I915_NEED_GFX_HWS(dev)) {
2477 ret = init_phys_status_page(ring);
2485 iounmap(ringbuf->virtual_start);
2488 ring->buffer = NULL;
2492 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2494 struct drm_i915_private *dev_priv = dev->dev_private;
2495 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2497 ring->name = "bsd ring";
2500 ring->write_tail = ring_write_tail;
2501 if (INTEL_INFO(dev)->gen >= 6) {
2502 ring->mmio_base = GEN6_BSD_RING_BASE;
2503 /* gen6 bsd needs a special wa for tail updates */
2505 ring->write_tail = gen6_bsd_ring_write_tail;
2506 ring->flush = gen6_bsd_ring_flush;
2507 ring->add_request = gen6_add_request;
2508 ring->get_seqno = gen6_ring_get_seqno;
2509 ring->set_seqno = ring_set_seqno;
2510 if (INTEL_INFO(dev)->gen >= 8) {
2511 ring->irq_enable_mask =
2512 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2513 ring->irq_get = gen8_ring_get_irq;
2514 ring->irq_put = gen8_ring_put_irq;
2515 ring->dispatch_execbuffer =
2516 gen8_ring_dispatch_execbuffer;
2517 if (i915_semaphore_is_enabled(dev)) {
2518 ring->semaphore.sync_to = gen8_ring_sync;
2519 ring->semaphore.signal = gen8_xcs_signal;
2520 GEN8_RING_SEMAPHORE_INIT;
2523 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2524 ring->irq_get = gen6_ring_get_irq;
2525 ring->irq_put = gen6_ring_put_irq;
2526 ring->dispatch_execbuffer =
2527 gen6_ring_dispatch_execbuffer;
2528 if (i915_semaphore_is_enabled(dev)) {
2529 ring->semaphore.sync_to = gen6_ring_sync;
2530 ring->semaphore.signal = gen6_signal;
2531 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2532 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2533 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2534 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2535 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2536 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2537 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2538 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2539 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2540 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2544 ring->mmio_base = BSD_RING_BASE;
2545 ring->flush = bsd_ring_flush;
2546 ring->add_request = i9xx_add_request;
2547 ring->get_seqno = ring_get_seqno;
2548 ring->set_seqno = ring_set_seqno;
2550 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2551 ring->irq_get = gen5_ring_get_irq;
2552 ring->irq_put = gen5_ring_put_irq;
2554 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2555 ring->irq_get = i9xx_ring_get_irq;
2556 ring->irq_put = i9xx_ring_put_irq;
2558 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2560 ring->init = init_ring_common;
2562 return intel_init_ring_buffer(dev, ring);
2566 * Initialize the second BSD ring for Broadwell GT3.
2567 * It is noted that this only exists on Broadwell GT3.
2569 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2571 struct drm_i915_private *dev_priv = dev->dev_private;
2572 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2574 if ((INTEL_INFO(dev)->gen != 8)) {
2575 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2579 ring->name = "bsd2 ring";
2582 ring->write_tail = ring_write_tail;
2583 ring->mmio_base = GEN8_BSD2_RING_BASE;
2584 ring->flush = gen6_bsd_ring_flush;
2585 ring->add_request = gen6_add_request;
2586 ring->get_seqno = gen6_ring_get_seqno;
2587 ring->set_seqno = ring_set_seqno;
2588 ring->irq_enable_mask =
2589 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2590 ring->irq_get = gen8_ring_get_irq;
2591 ring->irq_put = gen8_ring_put_irq;
2592 ring->dispatch_execbuffer =
2593 gen8_ring_dispatch_execbuffer;
2594 if (i915_semaphore_is_enabled(dev)) {
2595 ring->semaphore.sync_to = gen8_ring_sync;
2596 ring->semaphore.signal = gen8_xcs_signal;
2597 GEN8_RING_SEMAPHORE_INIT;
2599 ring->init = init_ring_common;
2601 return intel_init_ring_buffer(dev, ring);
2604 int intel_init_blt_ring_buffer(struct drm_device *dev)
2606 struct drm_i915_private *dev_priv = dev->dev_private;
2607 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2609 ring->name = "blitter ring";
2612 ring->mmio_base = BLT_RING_BASE;
2613 ring->write_tail = ring_write_tail;
2614 ring->flush = gen6_ring_flush;
2615 ring->add_request = gen6_add_request;
2616 ring->get_seqno = gen6_ring_get_seqno;
2617 ring->set_seqno = ring_set_seqno;
2618 if (INTEL_INFO(dev)->gen >= 8) {
2619 ring->irq_enable_mask =
2620 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2621 ring->irq_get = gen8_ring_get_irq;
2622 ring->irq_put = gen8_ring_put_irq;
2623 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2624 if (i915_semaphore_is_enabled(dev)) {
2625 ring->semaphore.sync_to = gen8_ring_sync;
2626 ring->semaphore.signal = gen8_xcs_signal;
2627 GEN8_RING_SEMAPHORE_INIT;
2630 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2631 ring->irq_get = gen6_ring_get_irq;
2632 ring->irq_put = gen6_ring_put_irq;
2633 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2634 if (i915_semaphore_is_enabled(dev)) {
2635 ring->semaphore.signal = gen6_signal;
2636 ring->semaphore.sync_to = gen6_ring_sync;
2638 * The current semaphore is only applied on pre-gen8
2639 * platform. And there is no VCS2 ring on the pre-gen8
2640 * platform. So the semaphore between BCS and VCS2 is
2641 * initialized as INVALID. Gen8 will initialize the
2642 * sema between BCS and VCS2 later.
2644 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2645 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2646 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2647 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2648 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2649 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2650 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2651 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2652 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2653 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2656 ring->init = init_ring_common;
2658 return intel_init_ring_buffer(dev, ring);
2661 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2663 struct drm_i915_private *dev_priv = dev->dev_private;
2664 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2666 ring->name = "video enhancement ring";
2669 ring->mmio_base = VEBOX_RING_BASE;
2670 ring->write_tail = ring_write_tail;
2671 ring->flush = gen6_ring_flush;
2672 ring->add_request = gen6_add_request;
2673 ring->get_seqno = gen6_ring_get_seqno;
2674 ring->set_seqno = ring_set_seqno;
2676 if (INTEL_INFO(dev)->gen >= 8) {
2677 ring->irq_enable_mask =
2678 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2679 ring->irq_get = gen8_ring_get_irq;
2680 ring->irq_put = gen8_ring_put_irq;
2681 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2682 if (i915_semaphore_is_enabled(dev)) {
2683 ring->semaphore.sync_to = gen8_ring_sync;
2684 ring->semaphore.signal = gen8_xcs_signal;
2685 GEN8_RING_SEMAPHORE_INIT;
2688 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2689 ring->irq_get = hsw_vebox_get_irq;
2690 ring->irq_put = hsw_vebox_put_irq;
2691 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2692 if (i915_semaphore_is_enabled(dev)) {
2693 ring->semaphore.sync_to = gen6_ring_sync;
2694 ring->semaphore.signal = gen6_signal;
2695 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2696 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2697 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2698 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2699 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2700 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2701 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2702 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2703 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2704 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2707 ring->init = init_ring_common;
2709 return intel_init_ring_buffer(dev, ring);
2713 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2717 if (!ring->gpu_caches_dirty)
2720 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2724 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2726 ring->gpu_caches_dirty = false;
2731 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2733 uint32_t flush_domains;
2737 if (ring->gpu_caches_dirty)
2738 flush_domains = I915_GEM_GPU_DOMAINS;
2740 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2744 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2746 ring->gpu_caches_dirty = false;
2751 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2755 if (!intel_ring_initialized(ring))
2758 ret = intel_ring_idle(ring);
2759 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2760 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",