]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/i915_irq.c
Merge tag 'for-linus-4.16' of git://git.kernel.org/pub/scm/linux/kernel/git/hubcap...
[linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61         [HPD_CRT] = SDE_CRT_HOTPLUG,
62         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121         POSTING_READ(GEN8_##type##_IMR(which)); \
122         I915_WRITE(GEN8_##type##_IER(which), 0); \
123         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124         POSTING_READ(GEN8_##type##_IIR(which)); \
125         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126         POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN3_IRQ_RESET(type) do { \
130         I915_WRITE(type##IMR, 0xffffffff); \
131         POSTING_READ(type##IMR); \
132         I915_WRITE(type##IER, 0); \
133         I915_WRITE(type##IIR, 0xffffffff); \
134         POSTING_READ(type##IIR); \
135         I915_WRITE(type##IIR, 0xffffffff); \
136         POSTING_READ(type##IIR); \
137 } while (0)
138
139 #define GEN2_IRQ_RESET(type) do { \
140         I915_WRITE16(type##IMR, 0xffff); \
141         POSTING_READ16(type##IMR); \
142         I915_WRITE16(type##IER, 0); \
143         I915_WRITE16(type##IIR, 0xffff); \
144         POSTING_READ16(type##IIR); \
145         I915_WRITE16(type##IIR, 0xffff); \
146         POSTING_READ16(type##IIR); \
147 } while (0)
148
149 /*
150  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
151  */
152 static void gen3_assert_iir_is_zero(struct drm_i915_private *dev_priv,
153                                     i915_reg_t reg)
154 {
155         u32 val = I915_READ(reg);
156
157         if (val == 0)
158                 return;
159
160         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
161              i915_mmio_reg_offset(reg), val);
162         I915_WRITE(reg, 0xffffffff);
163         POSTING_READ(reg);
164         I915_WRITE(reg, 0xffffffff);
165         POSTING_READ(reg);
166 }
167
168 static void gen2_assert_iir_is_zero(struct drm_i915_private *dev_priv,
169                                     i915_reg_t reg)
170 {
171         u16 val = I915_READ16(reg);
172
173         if (val == 0)
174                 return;
175
176         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
177              i915_mmio_reg_offset(reg), val);
178         I915_WRITE16(reg, 0xffff);
179         POSTING_READ16(reg);
180         I915_WRITE16(reg, 0xffff);
181         POSTING_READ16(reg);
182 }
183
184 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
185         gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
186         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
187         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
188         POSTING_READ(GEN8_##type##_IMR(which)); \
189 } while (0)
190
191 #define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \
192         gen3_assert_iir_is_zero(dev_priv, type##IIR); \
193         I915_WRITE(type##IER, (ier_val)); \
194         I915_WRITE(type##IMR, (imr_val)); \
195         POSTING_READ(type##IMR); \
196 } while (0)
197
198 #define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \
199         gen2_assert_iir_is_zero(dev_priv, type##IIR); \
200         I915_WRITE16(type##IER, (ier_val)); \
201         I915_WRITE16(type##IMR, (imr_val)); \
202         POSTING_READ16(type##IMR); \
203 } while (0)
204
205 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
206 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
207
208 /* For display hotplug interrupt */
209 static inline void
210 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
211                                      uint32_t mask,
212                                      uint32_t bits)
213 {
214         uint32_t val;
215
216         lockdep_assert_held(&dev_priv->irq_lock);
217         WARN_ON(bits & ~mask);
218
219         val = I915_READ(PORT_HOTPLUG_EN);
220         val &= ~mask;
221         val |= bits;
222         I915_WRITE(PORT_HOTPLUG_EN, val);
223 }
224
225 /**
226  * i915_hotplug_interrupt_update - update hotplug interrupt enable
227  * @dev_priv: driver private
228  * @mask: bits to update
229  * @bits: bits to enable
230  * NOTE: the HPD enable bits are modified both inside and outside
231  * of an interrupt context. To avoid that read-modify-write cycles
232  * interfer, these bits are protected by a spinlock. Since this
233  * function is usually not called from a context where the lock is
234  * held already, this function acquires the lock itself. A non-locking
235  * version is also available.
236  */
237 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
238                                    uint32_t mask,
239                                    uint32_t bits)
240 {
241         spin_lock_irq(&dev_priv->irq_lock);
242         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
243         spin_unlock_irq(&dev_priv->irq_lock);
244 }
245
246 /**
247  * ilk_update_display_irq - update DEIMR
248  * @dev_priv: driver private
249  * @interrupt_mask: mask of interrupt bits to update
250  * @enabled_irq_mask: mask of interrupt bits to enable
251  */
252 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
253                             uint32_t interrupt_mask,
254                             uint32_t enabled_irq_mask)
255 {
256         uint32_t new_val;
257
258         lockdep_assert_held(&dev_priv->irq_lock);
259
260         WARN_ON(enabled_irq_mask & ~interrupt_mask);
261
262         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
263                 return;
264
265         new_val = dev_priv->irq_mask;
266         new_val &= ~interrupt_mask;
267         new_val |= (~enabled_irq_mask & interrupt_mask);
268
269         if (new_val != dev_priv->irq_mask) {
270                 dev_priv->irq_mask = new_val;
271                 I915_WRITE(DEIMR, dev_priv->irq_mask);
272                 POSTING_READ(DEIMR);
273         }
274 }
275
276 /**
277  * ilk_update_gt_irq - update GTIMR
278  * @dev_priv: driver private
279  * @interrupt_mask: mask of interrupt bits to update
280  * @enabled_irq_mask: mask of interrupt bits to enable
281  */
282 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
283                               uint32_t interrupt_mask,
284                               uint32_t enabled_irq_mask)
285 {
286         lockdep_assert_held(&dev_priv->irq_lock);
287
288         WARN_ON(enabled_irq_mask & ~interrupt_mask);
289
290         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
291                 return;
292
293         dev_priv->gt_irq_mask &= ~interrupt_mask;
294         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
295         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
296 }
297
298 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
299 {
300         ilk_update_gt_irq(dev_priv, mask, mask);
301         POSTING_READ_FW(GTIMR);
302 }
303
304 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
305 {
306         ilk_update_gt_irq(dev_priv, mask, 0);
307 }
308
309 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
310 {
311         return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
312 }
313
314 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
315 {
316         return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
317 }
318
319 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
320 {
321         return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
322 }
323
324 /**
325  * snb_update_pm_irq - update GEN6_PMIMR
326  * @dev_priv: driver private
327  * @interrupt_mask: mask of interrupt bits to update
328  * @enabled_irq_mask: mask of interrupt bits to enable
329  */
330 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
331                               uint32_t interrupt_mask,
332                               uint32_t enabled_irq_mask)
333 {
334         uint32_t new_val;
335
336         WARN_ON(enabled_irq_mask & ~interrupt_mask);
337
338         lockdep_assert_held(&dev_priv->irq_lock);
339
340         new_val = dev_priv->pm_imr;
341         new_val &= ~interrupt_mask;
342         new_val |= (~enabled_irq_mask & interrupt_mask);
343
344         if (new_val != dev_priv->pm_imr) {
345                 dev_priv->pm_imr = new_val;
346                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
347                 POSTING_READ(gen6_pm_imr(dev_priv));
348         }
349 }
350
351 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
352 {
353         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
354                 return;
355
356         snb_update_pm_irq(dev_priv, mask, mask);
357 }
358
359 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
360 {
361         snb_update_pm_irq(dev_priv, mask, 0);
362 }
363
364 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
365 {
366         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
367                 return;
368
369         __gen6_mask_pm_irq(dev_priv, mask);
370 }
371
372 static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
373 {
374         i915_reg_t reg = gen6_pm_iir(dev_priv);
375
376         lockdep_assert_held(&dev_priv->irq_lock);
377
378         I915_WRITE(reg, reset_mask);
379         I915_WRITE(reg, reset_mask);
380         POSTING_READ(reg);
381 }
382
383 static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
384 {
385         lockdep_assert_held(&dev_priv->irq_lock);
386
387         dev_priv->pm_ier |= enable_mask;
388         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
389         gen6_unmask_pm_irq(dev_priv, enable_mask);
390         /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
391 }
392
393 static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
394 {
395         lockdep_assert_held(&dev_priv->irq_lock);
396
397         dev_priv->pm_ier &= ~disable_mask;
398         __gen6_mask_pm_irq(dev_priv, disable_mask);
399         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
400         /* though a barrier is missing here, but don't really need a one */
401 }
402
403 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
404 {
405         spin_lock_irq(&dev_priv->irq_lock);
406         gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
407         dev_priv->gt_pm.rps.pm_iir = 0;
408         spin_unlock_irq(&dev_priv->irq_lock);
409 }
410
411 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
412 {
413         struct intel_rps *rps = &dev_priv->gt_pm.rps;
414
415         if (READ_ONCE(rps->interrupts_enabled))
416                 return;
417
418         spin_lock_irq(&dev_priv->irq_lock);
419         WARN_ON_ONCE(rps->pm_iir);
420         WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
421         rps->interrupts_enabled = true;
422         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
423
424         spin_unlock_irq(&dev_priv->irq_lock);
425 }
426
427 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
428 {
429         struct intel_rps *rps = &dev_priv->gt_pm.rps;
430
431         if (!READ_ONCE(rps->interrupts_enabled))
432                 return;
433
434         spin_lock_irq(&dev_priv->irq_lock);
435         rps->interrupts_enabled = false;
436
437         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
438
439         gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
440
441         spin_unlock_irq(&dev_priv->irq_lock);
442         synchronize_irq(dev_priv->drm.irq);
443
444         /* Now that we will not be generating any more work, flush any
445          * outstanding tasks. As we are called on the RPS idle path,
446          * we will reset the GPU to minimum frequencies, so the current
447          * state of the worker can be discarded.
448          */
449         cancel_work_sync(&rps->work);
450         gen6_reset_rps_interrupts(dev_priv);
451 }
452
453 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
454 {
455         spin_lock_irq(&dev_priv->irq_lock);
456         gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
457         spin_unlock_irq(&dev_priv->irq_lock);
458 }
459
460 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
461 {
462         spin_lock_irq(&dev_priv->irq_lock);
463         if (!dev_priv->guc.interrupts_enabled) {
464                 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
465                                        dev_priv->pm_guc_events);
466                 dev_priv->guc.interrupts_enabled = true;
467                 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
468         }
469         spin_unlock_irq(&dev_priv->irq_lock);
470 }
471
472 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
473 {
474         spin_lock_irq(&dev_priv->irq_lock);
475         dev_priv->guc.interrupts_enabled = false;
476
477         gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
478
479         spin_unlock_irq(&dev_priv->irq_lock);
480         synchronize_irq(dev_priv->drm.irq);
481
482         gen9_reset_guc_interrupts(dev_priv);
483 }
484
485 /**
486  * bdw_update_port_irq - update DE port interrupt
487  * @dev_priv: driver private
488  * @interrupt_mask: mask of interrupt bits to update
489  * @enabled_irq_mask: mask of interrupt bits to enable
490  */
491 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
492                                 uint32_t interrupt_mask,
493                                 uint32_t enabled_irq_mask)
494 {
495         uint32_t new_val;
496         uint32_t old_val;
497
498         lockdep_assert_held(&dev_priv->irq_lock);
499
500         WARN_ON(enabled_irq_mask & ~interrupt_mask);
501
502         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
503                 return;
504
505         old_val = I915_READ(GEN8_DE_PORT_IMR);
506
507         new_val = old_val;
508         new_val &= ~interrupt_mask;
509         new_val |= (~enabled_irq_mask & interrupt_mask);
510
511         if (new_val != old_val) {
512                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
513                 POSTING_READ(GEN8_DE_PORT_IMR);
514         }
515 }
516
517 /**
518  * bdw_update_pipe_irq - update DE pipe interrupt
519  * @dev_priv: driver private
520  * @pipe: pipe whose interrupt to update
521  * @interrupt_mask: mask of interrupt bits to update
522  * @enabled_irq_mask: mask of interrupt bits to enable
523  */
524 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
525                          enum pipe pipe,
526                          uint32_t interrupt_mask,
527                          uint32_t enabled_irq_mask)
528 {
529         uint32_t new_val;
530
531         lockdep_assert_held(&dev_priv->irq_lock);
532
533         WARN_ON(enabled_irq_mask & ~interrupt_mask);
534
535         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
536                 return;
537
538         new_val = dev_priv->de_irq_mask[pipe];
539         new_val &= ~interrupt_mask;
540         new_val |= (~enabled_irq_mask & interrupt_mask);
541
542         if (new_val != dev_priv->de_irq_mask[pipe]) {
543                 dev_priv->de_irq_mask[pipe] = new_val;
544                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
545                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
546         }
547 }
548
549 /**
550  * ibx_display_interrupt_update - update SDEIMR
551  * @dev_priv: driver private
552  * @interrupt_mask: mask of interrupt bits to update
553  * @enabled_irq_mask: mask of interrupt bits to enable
554  */
555 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
556                                   uint32_t interrupt_mask,
557                                   uint32_t enabled_irq_mask)
558 {
559         uint32_t sdeimr = I915_READ(SDEIMR);
560         sdeimr &= ~interrupt_mask;
561         sdeimr |= (~enabled_irq_mask & interrupt_mask);
562
563         WARN_ON(enabled_irq_mask & ~interrupt_mask);
564
565         lockdep_assert_held(&dev_priv->irq_lock);
566
567         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
568                 return;
569
570         I915_WRITE(SDEIMR, sdeimr);
571         POSTING_READ(SDEIMR);
572 }
573
574 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
575                               enum pipe pipe)
576 {
577         u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
578         u32 enable_mask = status_mask << 16;
579
580         lockdep_assert_held(&dev_priv->irq_lock);
581
582         if (INTEL_GEN(dev_priv) < 5)
583                 goto out;
584
585         /*
586          * On pipe A we don't support the PSR interrupt yet,
587          * on pipe B and C the same bit MBZ.
588          */
589         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
590                 return 0;
591         /*
592          * On pipe B and C we don't support the PSR interrupt yet, on pipe
593          * A the same bit is for perf counters which we don't use either.
594          */
595         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
596                 return 0;
597
598         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
599                          SPRITE0_FLIP_DONE_INT_EN_VLV |
600                          SPRITE1_FLIP_DONE_INT_EN_VLV);
601         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
602                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
603         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
604                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
605
606 out:
607         WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
608                   status_mask & ~PIPESTAT_INT_STATUS_MASK,
609                   "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
610                   pipe_name(pipe), enable_mask, status_mask);
611
612         return enable_mask;
613 }
614
615 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
616                           enum pipe pipe, u32 status_mask)
617 {
618         i915_reg_t reg = PIPESTAT(pipe);
619         u32 enable_mask;
620
621         WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
622                   "pipe %c: status_mask=0x%x\n",
623                   pipe_name(pipe), status_mask);
624
625         lockdep_assert_held(&dev_priv->irq_lock);
626         WARN_ON(!intel_irqs_enabled(dev_priv));
627
628         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
629                 return;
630
631         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
632         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
633
634         I915_WRITE(reg, enable_mask | status_mask);
635         POSTING_READ(reg);
636 }
637
638 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
639                            enum pipe pipe, u32 status_mask)
640 {
641         i915_reg_t reg = PIPESTAT(pipe);
642         u32 enable_mask;
643
644         WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
645                   "pipe %c: status_mask=0x%x\n",
646                   pipe_name(pipe), status_mask);
647
648         lockdep_assert_held(&dev_priv->irq_lock);
649         WARN_ON(!intel_irqs_enabled(dev_priv));
650
651         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
652                 return;
653
654         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
655         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
656
657         I915_WRITE(reg, enable_mask | status_mask);
658         POSTING_READ(reg);
659 }
660
661 /**
662  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
663  * @dev_priv: i915 device private
664  */
665 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
666 {
667         if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
668                 return;
669
670         spin_lock_irq(&dev_priv->irq_lock);
671
672         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
673         if (INTEL_GEN(dev_priv) >= 4)
674                 i915_enable_pipestat(dev_priv, PIPE_A,
675                                      PIPE_LEGACY_BLC_EVENT_STATUS);
676
677         spin_unlock_irq(&dev_priv->irq_lock);
678 }
679
680 /*
681  * This timing diagram depicts the video signal in and
682  * around the vertical blanking period.
683  *
684  * Assumptions about the fictitious mode used in this example:
685  *  vblank_start >= 3
686  *  vsync_start = vblank_start + 1
687  *  vsync_end = vblank_start + 2
688  *  vtotal = vblank_start + 3
689  *
690  *           start of vblank:
691  *           latch double buffered registers
692  *           increment frame counter (ctg+)
693  *           generate start of vblank interrupt (gen4+)
694  *           |
695  *           |          frame start:
696  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
697  *           |          may be shifted forward 1-3 extra lines via PIPECONF
698  *           |          |
699  *           |          |  start of vsync:
700  *           |          |  generate vsync interrupt
701  *           |          |  |
702  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
703  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
704  * ----va---> <-----------------vb--------------------> <--------va-------------
705  *       |          |       <----vs----->                     |
706  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
707  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
708  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
709  *       |          |                                         |
710  *       last visible pixel                                   first visible pixel
711  *                  |                                         increment frame counter (gen3/4)
712  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
713  *
714  * x  = horizontal active
715  * _  = horizontal blanking
716  * hs = horizontal sync
717  * va = vertical active
718  * vb = vertical blanking
719  * vs = vertical sync
720  * vbs = vblank_start (number)
721  *
722  * Summary:
723  * - most events happen at the start of horizontal sync
724  * - frame start happens at the start of horizontal blank, 1-4 lines
725  *   (depending on PIPECONF settings) after the start of vblank
726  * - gen3/4 pixel and frame counter are synchronized with the start
727  *   of horizontal active on the first line of vertical active
728  */
729
730 /* Called from drm generic code, passed a 'crtc', which
731  * we use as a pipe index
732  */
733 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
734 {
735         struct drm_i915_private *dev_priv = to_i915(dev);
736         i915_reg_t high_frame, low_frame;
737         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
738         const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
739         unsigned long irqflags;
740
741         htotal = mode->crtc_htotal;
742         hsync_start = mode->crtc_hsync_start;
743         vbl_start = mode->crtc_vblank_start;
744         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
745                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
746
747         /* Convert to pixel count */
748         vbl_start *= htotal;
749
750         /* Start of vblank event occurs at start of hsync */
751         vbl_start -= htotal - hsync_start;
752
753         high_frame = PIPEFRAME(pipe);
754         low_frame = PIPEFRAMEPIXEL(pipe);
755
756         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
757
758         /*
759          * High & low register fields aren't synchronized, so make sure
760          * we get a low value that's stable across two reads of the high
761          * register.
762          */
763         do {
764                 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
765                 low   = I915_READ_FW(low_frame);
766                 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
767         } while (high1 != high2);
768
769         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
770
771         high1 >>= PIPE_FRAME_HIGH_SHIFT;
772         pixel = low & PIPE_PIXEL_MASK;
773         low >>= PIPE_FRAME_LOW_SHIFT;
774
775         /*
776          * The frame counter increments at beginning of active.
777          * Cook up a vblank counter by also checking the pixel
778          * counter against vblank start.
779          */
780         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
781 }
782
783 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
784 {
785         struct drm_i915_private *dev_priv = to_i915(dev);
786
787         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
788 }
789
790 /*
791  * On certain encoders on certain platforms, pipe
792  * scanline register will not work to get the scanline,
793  * since the timings are driven from the PORT or issues
794  * with scanline register updates.
795  * This function will use Framestamp and current
796  * timestamp registers to calculate the scanline.
797  */
798 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
799 {
800         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
801         struct drm_vblank_crtc *vblank =
802                 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
803         const struct drm_display_mode *mode = &vblank->hwmode;
804         u32 vblank_start = mode->crtc_vblank_start;
805         u32 vtotal = mode->crtc_vtotal;
806         u32 htotal = mode->crtc_htotal;
807         u32 clock = mode->crtc_clock;
808         u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
809
810         /*
811          * To avoid the race condition where we might cross into the
812          * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
813          * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
814          * during the same frame.
815          */
816         do {
817                 /*
818                  * This field provides read back of the display
819                  * pipe frame time stamp. The time stamp value
820                  * is sampled at every start of vertical blank.
821                  */
822                 scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
823
824                 /*
825                  * The TIMESTAMP_CTR register has the current
826                  * time stamp value.
827                  */
828                 scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
829
830                 scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
831         } while (scan_post_time != scan_prev_time);
832
833         scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
834                                         clock), 1000 * htotal);
835         scanline = min(scanline, vtotal - 1);
836         scanline = (scanline + vblank_start) % vtotal;
837
838         return scanline;
839 }
840
841 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
842 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
843 {
844         struct drm_device *dev = crtc->base.dev;
845         struct drm_i915_private *dev_priv = to_i915(dev);
846         const struct drm_display_mode *mode;
847         struct drm_vblank_crtc *vblank;
848         enum pipe pipe = crtc->pipe;
849         int position, vtotal;
850
851         if (!crtc->active)
852                 return -1;
853
854         vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
855         mode = &vblank->hwmode;
856
857         if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
858                 return __intel_get_crtc_scanline_from_timestamp(crtc);
859
860         vtotal = mode->crtc_vtotal;
861         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
862                 vtotal /= 2;
863
864         if (IS_GEN2(dev_priv))
865                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
866         else
867                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
868
869         /*
870          * On HSW, the DSL reg (0x70000) appears to return 0 if we
871          * read it just before the start of vblank.  So try it again
872          * so we don't accidentally end up spanning a vblank frame
873          * increment, causing the pipe_update_end() code to squak at us.
874          *
875          * The nature of this problem means we can't simply check the ISR
876          * bit and return the vblank start value; nor can we use the scanline
877          * debug register in the transcoder as it appears to have the same
878          * problem.  We may need to extend this to include other platforms,
879          * but so far testing only shows the problem on HSW.
880          */
881         if (HAS_DDI(dev_priv) && !position) {
882                 int i, temp;
883
884                 for (i = 0; i < 100; i++) {
885                         udelay(1);
886                         temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
887                         if (temp != position) {
888                                 position = temp;
889                                 break;
890                         }
891                 }
892         }
893
894         /*
895          * See update_scanline_offset() for the details on the
896          * scanline_offset adjustment.
897          */
898         return (position + crtc->scanline_offset) % vtotal;
899 }
900
901 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
902                                      bool in_vblank_irq, int *vpos, int *hpos,
903                                      ktime_t *stime, ktime_t *etime,
904                                      const struct drm_display_mode *mode)
905 {
906         struct drm_i915_private *dev_priv = to_i915(dev);
907         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
908                                                                 pipe);
909         int position;
910         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
911         unsigned long irqflags;
912
913         if (WARN_ON(!mode->crtc_clock)) {
914                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
915                                  "pipe %c\n", pipe_name(pipe));
916                 return false;
917         }
918
919         htotal = mode->crtc_htotal;
920         hsync_start = mode->crtc_hsync_start;
921         vtotal = mode->crtc_vtotal;
922         vbl_start = mode->crtc_vblank_start;
923         vbl_end = mode->crtc_vblank_end;
924
925         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
926                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
927                 vbl_end /= 2;
928                 vtotal /= 2;
929         }
930
931         /*
932          * Lock uncore.lock, as we will do multiple timing critical raw
933          * register reads, potentially with preemption disabled, so the
934          * following code must not block on uncore.lock.
935          */
936         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
937
938         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
939
940         /* Get optional system timestamp before query. */
941         if (stime)
942                 *stime = ktime_get();
943
944         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
945                 /* No obvious pixelcount register. Only query vertical
946                  * scanout position from Display scan line register.
947                  */
948                 position = __intel_get_crtc_scanline(intel_crtc);
949         } else {
950                 /* Have access to pixelcount since start of frame.
951                  * We can split this into vertical and horizontal
952                  * scanout position.
953                  */
954                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
955
956                 /* convert to pixel counts */
957                 vbl_start *= htotal;
958                 vbl_end *= htotal;
959                 vtotal *= htotal;
960
961                 /*
962                  * In interlaced modes, the pixel counter counts all pixels,
963                  * so one field will have htotal more pixels. In order to avoid
964                  * the reported position from jumping backwards when the pixel
965                  * counter is beyond the length of the shorter field, just
966                  * clamp the position the length of the shorter field. This
967                  * matches how the scanline counter based position works since
968                  * the scanline counter doesn't count the two half lines.
969                  */
970                 if (position >= vtotal)
971                         position = vtotal - 1;
972
973                 /*
974                  * Start of vblank interrupt is triggered at start of hsync,
975                  * just prior to the first active line of vblank. However we
976                  * consider lines to start at the leading edge of horizontal
977                  * active. So, should we get here before we've crossed into
978                  * the horizontal active of the first line in vblank, we would
979                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
980                  * always add htotal-hsync_start to the current pixel position.
981                  */
982                 position = (position + htotal - hsync_start) % vtotal;
983         }
984
985         /* Get optional system timestamp after query. */
986         if (etime)
987                 *etime = ktime_get();
988
989         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
990
991         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
992
993         /*
994          * While in vblank, position will be negative
995          * counting up towards 0 at vbl_end. And outside
996          * vblank, position will be positive counting
997          * up since vbl_end.
998          */
999         if (position >= vbl_start)
1000                 position -= vbl_end;
1001         else
1002                 position += vtotal - vbl_end;
1003
1004         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1005                 *vpos = position;
1006                 *hpos = 0;
1007         } else {
1008                 *vpos = position / htotal;
1009                 *hpos = position - (*vpos * htotal);
1010         }
1011
1012         return true;
1013 }
1014
1015 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1016 {
1017         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1018         unsigned long irqflags;
1019         int position;
1020
1021         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1022         position = __intel_get_crtc_scanline(crtc);
1023         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1024
1025         return position;
1026 }
1027
1028 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1029 {
1030         u32 busy_up, busy_down, max_avg, min_avg;
1031         u8 new_delay;
1032
1033         spin_lock(&mchdev_lock);
1034
1035         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1036
1037         new_delay = dev_priv->ips.cur_delay;
1038
1039         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1040         busy_up = I915_READ(RCPREVBSYTUPAVG);
1041         busy_down = I915_READ(RCPREVBSYTDNAVG);
1042         max_avg = I915_READ(RCBMAXAVG);
1043         min_avg = I915_READ(RCBMINAVG);
1044
1045         /* Handle RCS change request from hw */
1046         if (busy_up > max_avg) {
1047                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1048                         new_delay = dev_priv->ips.cur_delay - 1;
1049                 if (new_delay < dev_priv->ips.max_delay)
1050                         new_delay = dev_priv->ips.max_delay;
1051         } else if (busy_down < min_avg) {
1052                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1053                         new_delay = dev_priv->ips.cur_delay + 1;
1054                 if (new_delay > dev_priv->ips.min_delay)
1055                         new_delay = dev_priv->ips.min_delay;
1056         }
1057
1058         if (ironlake_set_drps(dev_priv, new_delay))
1059                 dev_priv->ips.cur_delay = new_delay;
1060
1061         spin_unlock(&mchdev_lock);
1062
1063         return;
1064 }
1065
1066 static void notify_ring(struct intel_engine_cs *engine)
1067 {
1068         struct drm_i915_gem_request *rq = NULL;
1069         struct intel_wait *wait;
1070
1071         if (!engine->breadcrumbs.irq_armed)
1072                 return;
1073
1074         atomic_inc(&engine->irq_count);
1075         set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
1076
1077         spin_lock(&engine->breadcrumbs.irq_lock);
1078         wait = engine->breadcrumbs.irq_wait;
1079         if (wait) {
1080                 bool wakeup = engine->irq_seqno_barrier;
1081
1082                 /* We use a callback from the dma-fence to submit
1083                  * requests after waiting on our own requests. To
1084                  * ensure minimum delay in queuing the next request to
1085                  * hardware, signal the fence now rather than wait for
1086                  * the signaler to be woken up. We still wake up the
1087                  * waiter in order to handle the irq-seqno coherency
1088                  * issues (we may receive the interrupt before the
1089                  * seqno is written, see __i915_request_irq_complete())
1090                  * and to handle coalescing of multiple seqno updates
1091                  * and many waiters.
1092                  */
1093                 if (i915_seqno_passed(intel_engine_get_seqno(engine),
1094                                       wait->seqno)) {
1095                         struct drm_i915_gem_request *waiter = wait->request;
1096
1097                         wakeup = true;
1098                         if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1099                                       &waiter->fence.flags) &&
1100                             intel_wait_check_request(wait, waiter))
1101                                 rq = i915_gem_request_get(waiter);
1102                 }
1103
1104                 if (wakeup)
1105                         wake_up_process(wait->tsk);
1106         } else {
1107                 if (engine->breadcrumbs.irq_armed)
1108                         __intel_engine_disarm_breadcrumbs(engine);
1109         }
1110         spin_unlock(&engine->breadcrumbs.irq_lock);
1111
1112         if (rq) {
1113                 dma_fence_signal(&rq->fence);
1114                 i915_gem_request_put(rq);
1115         }
1116
1117         trace_intel_engine_notify(engine, wait);
1118 }
1119
1120 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1121                         struct intel_rps_ei *ei)
1122 {
1123         ei->ktime = ktime_get_raw();
1124         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1125         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1126 }
1127
1128 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1129 {
1130         memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1131 }
1132
1133 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1134 {
1135         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1136         const struct intel_rps_ei *prev = &rps->ei;
1137         struct intel_rps_ei now;
1138         u32 events = 0;
1139
1140         if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1141                 return 0;
1142
1143         vlv_c0_read(dev_priv, &now);
1144
1145         if (prev->ktime) {
1146                 u64 time, c0;
1147                 u32 render, media;
1148
1149                 time = ktime_us_delta(now.ktime, prev->ktime);
1150
1151                 time *= dev_priv->czclk_freq;
1152
1153                 /* Workload can be split between render + media,
1154                  * e.g. SwapBuffers being blitted in X after being rendered in
1155                  * mesa. To account for this we need to combine both engines
1156                  * into our activity counter.
1157                  */
1158                 render = now.render_c0 - prev->render_c0;
1159                 media = now.media_c0 - prev->media_c0;
1160                 c0 = max(render, media);
1161                 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1162
1163                 if (c0 > time * rps->up_threshold)
1164                         events = GEN6_PM_RP_UP_THRESHOLD;
1165                 else if (c0 < time * rps->down_threshold)
1166                         events = GEN6_PM_RP_DOWN_THRESHOLD;
1167         }
1168
1169         rps->ei = now;
1170         return events;
1171 }
1172
1173 static void gen6_pm_rps_work(struct work_struct *work)
1174 {
1175         struct drm_i915_private *dev_priv =
1176                 container_of(work, struct drm_i915_private, gt_pm.rps.work);
1177         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1178         bool client_boost = false;
1179         int new_delay, adj, min, max;
1180         u32 pm_iir = 0;
1181
1182         spin_lock_irq(&dev_priv->irq_lock);
1183         if (rps->interrupts_enabled) {
1184                 pm_iir = fetch_and_zero(&rps->pm_iir);
1185                 client_boost = atomic_read(&rps->num_waiters);
1186         }
1187         spin_unlock_irq(&dev_priv->irq_lock);
1188
1189         /* Make sure we didn't queue anything we're not going to process. */
1190         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1191         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1192                 goto out;
1193
1194         mutex_lock(&dev_priv->pcu_lock);
1195
1196         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1197
1198         adj = rps->last_adj;
1199         new_delay = rps->cur_freq;
1200         min = rps->min_freq_softlimit;
1201         max = rps->max_freq_softlimit;
1202         if (client_boost)
1203                 max = rps->max_freq;
1204         if (client_boost && new_delay < rps->boost_freq) {
1205                 new_delay = rps->boost_freq;
1206                 adj = 0;
1207         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1208                 if (adj > 0)
1209                         adj *= 2;
1210                 else /* CHV needs even encode values */
1211                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1212
1213                 if (new_delay >= rps->max_freq_softlimit)
1214                         adj = 0;
1215         } else if (client_boost) {
1216                 adj = 0;
1217         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1218                 if (rps->cur_freq > rps->efficient_freq)
1219                         new_delay = rps->efficient_freq;
1220                 else if (rps->cur_freq > rps->min_freq_softlimit)
1221                         new_delay = rps->min_freq_softlimit;
1222                 adj = 0;
1223         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1224                 if (adj < 0)
1225                         adj *= 2;
1226                 else /* CHV needs even encode values */
1227                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1228
1229                 if (new_delay <= rps->min_freq_softlimit)
1230                         adj = 0;
1231         } else { /* unknown event */
1232                 adj = 0;
1233         }
1234
1235         rps->last_adj = adj;
1236
1237         /* sysfs frequency interfaces may have snuck in while servicing the
1238          * interrupt
1239          */
1240         new_delay += adj;
1241         new_delay = clamp_t(int, new_delay, min, max);
1242
1243         if (intel_set_rps(dev_priv, new_delay)) {
1244                 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1245                 rps->last_adj = 0;
1246         }
1247
1248         mutex_unlock(&dev_priv->pcu_lock);
1249
1250 out:
1251         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1252         spin_lock_irq(&dev_priv->irq_lock);
1253         if (rps->interrupts_enabled)
1254                 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1255         spin_unlock_irq(&dev_priv->irq_lock);
1256 }
1257
1258
1259 /**
1260  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1261  * occurred.
1262  * @work: workqueue struct
1263  *
1264  * Doesn't actually do anything except notify userspace. As a consequence of
1265  * this event, userspace should try to remap the bad rows since statistically
1266  * it is likely the same row is more likely to go bad again.
1267  */
1268 static void ivybridge_parity_work(struct work_struct *work)
1269 {
1270         struct drm_i915_private *dev_priv =
1271                 container_of(work, typeof(*dev_priv), l3_parity.error_work);
1272         u32 error_status, row, bank, subbank;
1273         char *parity_event[6];
1274         uint32_t misccpctl;
1275         uint8_t slice = 0;
1276
1277         /* We must turn off DOP level clock gating to access the L3 registers.
1278          * In order to prevent a get/put style interface, acquire struct mutex
1279          * any time we access those registers.
1280          */
1281         mutex_lock(&dev_priv->drm.struct_mutex);
1282
1283         /* If we've screwed up tracking, just let the interrupt fire again */
1284         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1285                 goto out;
1286
1287         misccpctl = I915_READ(GEN7_MISCCPCTL);
1288         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1289         POSTING_READ(GEN7_MISCCPCTL);
1290
1291         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1292                 i915_reg_t reg;
1293
1294                 slice--;
1295                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1296                         break;
1297
1298                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1299
1300                 reg = GEN7_L3CDERRST1(slice);
1301
1302                 error_status = I915_READ(reg);
1303                 row = GEN7_PARITY_ERROR_ROW(error_status);
1304                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1305                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1306
1307                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1308                 POSTING_READ(reg);
1309
1310                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1311                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1312                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1313                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1314                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1315                 parity_event[5] = NULL;
1316
1317                 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1318                                    KOBJ_CHANGE, parity_event);
1319
1320                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1321                           slice, row, bank, subbank);
1322
1323                 kfree(parity_event[4]);
1324                 kfree(parity_event[3]);
1325                 kfree(parity_event[2]);
1326                 kfree(parity_event[1]);
1327         }
1328
1329         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1330
1331 out:
1332         WARN_ON(dev_priv->l3_parity.which_slice);
1333         spin_lock_irq(&dev_priv->irq_lock);
1334         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1335         spin_unlock_irq(&dev_priv->irq_lock);
1336
1337         mutex_unlock(&dev_priv->drm.struct_mutex);
1338 }
1339
1340 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1341                                                u32 iir)
1342 {
1343         if (!HAS_L3_DPF(dev_priv))
1344                 return;
1345
1346         spin_lock(&dev_priv->irq_lock);
1347         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1348         spin_unlock(&dev_priv->irq_lock);
1349
1350         iir &= GT_PARITY_ERROR(dev_priv);
1351         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1352                 dev_priv->l3_parity.which_slice |= 1 << 1;
1353
1354         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1355                 dev_priv->l3_parity.which_slice |= 1 << 0;
1356
1357         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1358 }
1359
1360 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1361                                u32 gt_iir)
1362 {
1363         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1364                 notify_ring(dev_priv->engine[RCS]);
1365         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1366                 notify_ring(dev_priv->engine[VCS]);
1367 }
1368
1369 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1370                                u32 gt_iir)
1371 {
1372         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1373                 notify_ring(dev_priv->engine[RCS]);
1374         if (gt_iir & GT_BSD_USER_INTERRUPT)
1375                 notify_ring(dev_priv->engine[VCS]);
1376         if (gt_iir & GT_BLT_USER_INTERRUPT)
1377                 notify_ring(dev_priv->engine[BCS]);
1378
1379         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1380                       GT_BSD_CS_ERROR_INTERRUPT |
1381                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1382                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1383
1384         if (gt_iir & GT_PARITY_ERROR(dev_priv))
1385                 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1386 }
1387
1388 static void
1389 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1390 {
1391         struct intel_engine_execlists * const execlists = &engine->execlists;
1392         bool tasklet = false;
1393
1394         if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift)) {
1395                 if (READ_ONCE(engine->execlists.active)) {
1396                         __set_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1397                         tasklet = true;
1398                 }
1399         }
1400
1401         if (iir & (GT_RENDER_USER_INTERRUPT << test_shift)) {
1402                 notify_ring(engine);
1403                 tasklet |= USES_GUC_SUBMISSION(engine->i915);
1404         }
1405
1406         if (tasklet)
1407                 tasklet_hi_schedule(&execlists->tasklet);
1408 }
1409
1410 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1411                                    u32 master_ctl,
1412                                    u32 gt_iir[4])
1413 {
1414         irqreturn_t ret = IRQ_NONE;
1415
1416         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1417                 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1418                 if (gt_iir[0]) {
1419                         I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1420                         ret = IRQ_HANDLED;
1421                 } else
1422                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1423         }
1424
1425         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1426                 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1427                 if (gt_iir[1]) {
1428                         I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1429                         ret = IRQ_HANDLED;
1430                 } else
1431                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1432         }
1433
1434         if (master_ctl & GEN8_GT_VECS_IRQ) {
1435                 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1436                 if (gt_iir[3]) {
1437                         I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1438                         ret = IRQ_HANDLED;
1439                 } else
1440                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1441         }
1442
1443         if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1444                 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1445                 if (gt_iir[2] & (dev_priv->pm_rps_events |
1446                                  dev_priv->pm_guc_events)) {
1447                         I915_WRITE_FW(GEN8_GT_IIR(2),
1448                                       gt_iir[2] & (dev_priv->pm_rps_events |
1449                                                    dev_priv->pm_guc_events));
1450                         ret = IRQ_HANDLED;
1451                 } else
1452                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1453         }
1454
1455         return ret;
1456 }
1457
1458 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1459                                 u32 gt_iir[4])
1460 {
1461         if (gt_iir[0]) {
1462                 gen8_cs_irq_handler(dev_priv->engine[RCS],
1463                                     gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1464                 gen8_cs_irq_handler(dev_priv->engine[BCS],
1465                                     gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1466         }
1467
1468         if (gt_iir[1]) {
1469                 gen8_cs_irq_handler(dev_priv->engine[VCS],
1470                                     gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1471                 gen8_cs_irq_handler(dev_priv->engine[VCS2],
1472                                     gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1473         }
1474
1475         if (gt_iir[3])
1476                 gen8_cs_irq_handler(dev_priv->engine[VECS],
1477                                     gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1478
1479         if (gt_iir[2] & dev_priv->pm_rps_events)
1480                 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1481
1482         if (gt_iir[2] & dev_priv->pm_guc_events)
1483                 gen9_guc_irq_handler(dev_priv, gt_iir[2]);
1484 }
1485
1486 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1487 {
1488         switch (port) {
1489         case PORT_A:
1490                 return val & PORTA_HOTPLUG_LONG_DETECT;
1491         case PORT_B:
1492                 return val & PORTB_HOTPLUG_LONG_DETECT;
1493         case PORT_C:
1494                 return val & PORTC_HOTPLUG_LONG_DETECT;
1495         default:
1496                 return false;
1497         }
1498 }
1499
1500 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1501 {
1502         switch (port) {
1503         case PORT_E:
1504                 return val & PORTE_HOTPLUG_LONG_DETECT;
1505         default:
1506                 return false;
1507         }
1508 }
1509
1510 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1511 {
1512         switch (port) {
1513         case PORT_A:
1514                 return val & PORTA_HOTPLUG_LONG_DETECT;
1515         case PORT_B:
1516                 return val & PORTB_HOTPLUG_LONG_DETECT;
1517         case PORT_C:
1518                 return val & PORTC_HOTPLUG_LONG_DETECT;
1519         case PORT_D:
1520                 return val & PORTD_HOTPLUG_LONG_DETECT;
1521         default:
1522                 return false;
1523         }
1524 }
1525
1526 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1527 {
1528         switch (port) {
1529         case PORT_A:
1530                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1531         default:
1532                 return false;
1533         }
1534 }
1535
1536 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1537 {
1538         switch (port) {
1539         case PORT_B:
1540                 return val & PORTB_HOTPLUG_LONG_DETECT;
1541         case PORT_C:
1542                 return val & PORTC_HOTPLUG_LONG_DETECT;
1543         case PORT_D:
1544                 return val & PORTD_HOTPLUG_LONG_DETECT;
1545         default:
1546                 return false;
1547         }
1548 }
1549
1550 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1551 {
1552         switch (port) {
1553         case PORT_B:
1554                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1555         case PORT_C:
1556                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1557         case PORT_D:
1558                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1559         default:
1560                 return false;
1561         }
1562 }
1563
1564 /*
1565  * Get a bit mask of pins that have triggered, and which ones may be long.
1566  * This can be called multiple times with the same masks to accumulate
1567  * hotplug detection results from several registers.
1568  *
1569  * Note that the caller is expected to zero out the masks initially.
1570  */
1571 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1572                              u32 hotplug_trigger, u32 dig_hotplug_reg,
1573                              const u32 hpd[HPD_NUM_PINS],
1574                              bool long_pulse_detect(enum port port, u32 val))
1575 {
1576         enum port port;
1577         int i;
1578
1579         for_each_hpd_pin(i) {
1580                 if ((hpd[i] & hotplug_trigger) == 0)
1581                         continue;
1582
1583                 *pin_mask |= BIT(i);
1584
1585                 port = intel_hpd_pin_to_port(i);
1586                 if (port == PORT_NONE)
1587                         continue;
1588
1589                 if (long_pulse_detect(port, dig_hotplug_reg))
1590                         *long_mask |= BIT(i);
1591         }
1592
1593         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1594                          hotplug_trigger, dig_hotplug_reg, *pin_mask);
1595
1596 }
1597
1598 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1599 {
1600         wake_up_all(&dev_priv->gmbus_wait_queue);
1601 }
1602
1603 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1604 {
1605         wake_up_all(&dev_priv->gmbus_wait_queue);
1606 }
1607
1608 #if defined(CONFIG_DEBUG_FS)
1609 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1610                                          enum pipe pipe,
1611                                          uint32_t crc0, uint32_t crc1,
1612                                          uint32_t crc2, uint32_t crc3,
1613                                          uint32_t crc4)
1614 {
1615         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1616         struct intel_pipe_crc_entry *entry;
1617         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1618         struct drm_driver *driver = dev_priv->drm.driver;
1619         uint32_t crcs[5];
1620         int head, tail;
1621
1622         spin_lock(&pipe_crc->lock);
1623         if (pipe_crc->source) {
1624                 if (!pipe_crc->entries) {
1625                         spin_unlock(&pipe_crc->lock);
1626                         DRM_DEBUG_KMS("spurious interrupt\n");
1627                         return;
1628                 }
1629
1630                 head = pipe_crc->head;
1631                 tail = pipe_crc->tail;
1632
1633                 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1634                         spin_unlock(&pipe_crc->lock);
1635                         DRM_ERROR("CRC buffer overflowing\n");
1636                         return;
1637                 }
1638
1639                 entry = &pipe_crc->entries[head];
1640
1641                 entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1642                 entry->crc[0] = crc0;
1643                 entry->crc[1] = crc1;
1644                 entry->crc[2] = crc2;
1645                 entry->crc[3] = crc3;
1646                 entry->crc[4] = crc4;
1647
1648                 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1649                 pipe_crc->head = head;
1650
1651                 spin_unlock(&pipe_crc->lock);
1652
1653                 wake_up_interruptible(&pipe_crc->wq);
1654         } else {
1655                 /*
1656                  * For some not yet identified reason, the first CRC is
1657                  * bonkers. So let's just wait for the next vblank and read
1658                  * out the buggy result.
1659                  *
1660                  * On GEN8+ sometimes the second CRC is bonkers as well, so
1661                  * don't trust that one either.
1662                  */
1663                 if (pipe_crc->skipped == 0 ||
1664                     (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1665                         pipe_crc->skipped++;
1666                         spin_unlock(&pipe_crc->lock);
1667                         return;
1668                 }
1669                 spin_unlock(&pipe_crc->lock);
1670                 crcs[0] = crc0;
1671                 crcs[1] = crc1;
1672                 crcs[2] = crc2;
1673                 crcs[3] = crc3;
1674                 crcs[4] = crc4;
1675                 drm_crtc_add_crc_entry(&crtc->base, true,
1676                                        drm_crtc_accurate_vblank_count(&crtc->base),
1677                                        crcs);
1678         }
1679 }
1680 #else
1681 static inline void
1682 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1683                              enum pipe pipe,
1684                              uint32_t crc0, uint32_t crc1,
1685                              uint32_t crc2, uint32_t crc3,
1686                              uint32_t crc4) {}
1687 #endif
1688
1689
1690 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1691                                      enum pipe pipe)
1692 {
1693         display_pipe_crc_irq_handler(dev_priv, pipe,
1694                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1695                                      0, 0, 0, 0);
1696 }
1697
1698 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1699                                      enum pipe pipe)
1700 {
1701         display_pipe_crc_irq_handler(dev_priv, pipe,
1702                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1703                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1704                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1705                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1706                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1707 }
1708
1709 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1710                                       enum pipe pipe)
1711 {
1712         uint32_t res1, res2;
1713
1714         if (INTEL_GEN(dev_priv) >= 3)
1715                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1716         else
1717                 res1 = 0;
1718
1719         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1720                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1721         else
1722                 res2 = 0;
1723
1724         display_pipe_crc_irq_handler(dev_priv, pipe,
1725                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1726                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1727                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1728                                      res1, res2);
1729 }
1730
1731 /* The RPS events need forcewake, so we add them to a work queue and mask their
1732  * IMR bits until the work is done. Other interrupts can be processed without
1733  * the work queue. */
1734 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1735 {
1736         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1737
1738         if (pm_iir & dev_priv->pm_rps_events) {
1739                 spin_lock(&dev_priv->irq_lock);
1740                 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1741                 if (rps->interrupts_enabled) {
1742                         rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1743                         schedule_work(&rps->work);
1744                 }
1745                 spin_unlock(&dev_priv->irq_lock);
1746         }
1747
1748         if (INTEL_GEN(dev_priv) >= 8)
1749                 return;
1750
1751         if (HAS_VEBOX(dev_priv)) {
1752                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1753                         notify_ring(dev_priv->engine[VECS]);
1754
1755                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1756                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1757         }
1758 }
1759
1760 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1761 {
1762         if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1763                 /* Sample the log buffer flush related bits & clear them out now
1764                  * itself from the message identity register to minimize the
1765                  * probability of losing a flush interrupt, when there are back
1766                  * to back flush interrupts.
1767                  * There can be a new flush interrupt, for different log buffer
1768                  * type (like for ISR), whilst Host is handling one (for DPC).
1769                  * Since same bit is used in message register for ISR & DPC, it
1770                  * could happen that GuC sets the bit for 2nd interrupt but Host
1771                  * clears out the bit on handling the 1st interrupt.
1772                  */
1773                 u32 msg, flush;
1774
1775                 msg = I915_READ(SOFT_SCRATCH(15));
1776                 flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
1777                                INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
1778                 if (flush) {
1779                         /* Clear the message bits that are handled */
1780                         I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1781
1782                         /* Handle flush interrupt in bottom half */
1783                         queue_work(dev_priv->guc.log.runtime.flush_wq,
1784                                    &dev_priv->guc.log.runtime.flush_work);
1785
1786                         dev_priv->guc.log.flush_interrupt_count++;
1787                 } else {
1788                         /* Not clearing of unhandled event bits won't result in
1789                          * re-triggering of the interrupt.
1790                          */
1791                 }
1792         }
1793 }
1794
1795 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1796 {
1797         enum pipe pipe;
1798
1799         for_each_pipe(dev_priv, pipe) {
1800                 I915_WRITE(PIPESTAT(pipe),
1801                            PIPESTAT_INT_STATUS_MASK |
1802                            PIPE_FIFO_UNDERRUN_STATUS);
1803
1804                 dev_priv->pipestat_irq_mask[pipe] = 0;
1805         }
1806 }
1807
1808 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1809                                   u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1810 {
1811         int pipe;
1812
1813         spin_lock(&dev_priv->irq_lock);
1814
1815         if (!dev_priv->display_irqs_enabled) {
1816                 spin_unlock(&dev_priv->irq_lock);
1817                 return;
1818         }
1819
1820         for_each_pipe(dev_priv, pipe) {
1821                 i915_reg_t reg;
1822                 u32 status_mask, enable_mask, iir_bit = 0;
1823
1824                 /*
1825                  * PIPESTAT bits get signalled even when the interrupt is
1826                  * disabled with the mask bits, and some of the status bits do
1827                  * not generate interrupts at all (like the underrun bit). Hence
1828                  * we need to be careful that we only handle what we want to
1829                  * handle.
1830                  */
1831
1832                 /* fifo underruns are filterered in the underrun handler. */
1833                 status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1834
1835                 switch (pipe) {
1836                 case PIPE_A:
1837                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1838                         break;
1839                 case PIPE_B:
1840                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1841                         break;
1842                 case PIPE_C:
1843                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1844                         break;
1845                 }
1846                 if (iir & iir_bit)
1847                         status_mask |= dev_priv->pipestat_irq_mask[pipe];
1848
1849                 if (!status_mask)
1850                         continue;
1851
1852                 reg = PIPESTAT(pipe);
1853                 pipe_stats[pipe] = I915_READ(reg) & status_mask;
1854                 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1855
1856                 /*
1857                  * Clear the PIPE*STAT regs before the IIR
1858                  */
1859                 if (pipe_stats[pipe])
1860                         I915_WRITE(reg, enable_mask | pipe_stats[pipe]);
1861         }
1862         spin_unlock(&dev_priv->irq_lock);
1863 }
1864
1865 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1866                                       u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1867 {
1868         enum pipe pipe;
1869
1870         for_each_pipe(dev_priv, pipe) {
1871                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1872                         drm_handle_vblank(&dev_priv->drm, pipe);
1873
1874                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1875                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1876
1877                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1878                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1879         }
1880 }
1881
1882 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1883                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1884 {
1885         bool blc_event = false;
1886         enum pipe pipe;
1887
1888         for_each_pipe(dev_priv, pipe) {
1889                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1890                         drm_handle_vblank(&dev_priv->drm, pipe);
1891
1892                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1893                         blc_event = true;
1894
1895                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1896                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1897
1898                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1899                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1900         }
1901
1902         if (blc_event || (iir & I915_ASLE_INTERRUPT))
1903                 intel_opregion_asle_intr(dev_priv);
1904 }
1905
1906 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1907                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1908 {
1909         bool blc_event = false;
1910         enum pipe pipe;
1911
1912         for_each_pipe(dev_priv, pipe) {
1913                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1914                         drm_handle_vblank(&dev_priv->drm, pipe);
1915
1916                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1917                         blc_event = true;
1918
1919                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1920                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1921
1922                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1923                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1924         }
1925
1926         if (blc_event || (iir & I915_ASLE_INTERRUPT))
1927                 intel_opregion_asle_intr(dev_priv);
1928
1929         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1930                 gmbus_irq_handler(dev_priv);
1931 }
1932
1933 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1934                                             u32 pipe_stats[I915_MAX_PIPES])
1935 {
1936         enum pipe pipe;
1937
1938         for_each_pipe(dev_priv, pipe) {
1939                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1940                         drm_handle_vblank(&dev_priv->drm, pipe);
1941
1942                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1943                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1944
1945                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1946                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1947         }
1948
1949         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1950                 gmbus_irq_handler(dev_priv);
1951 }
1952
1953 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1954 {
1955         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1956
1957         if (hotplug_status)
1958                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1959
1960         return hotplug_status;
1961 }
1962
1963 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1964                                  u32 hotplug_status)
1965 {
1966         u32 pin_mask = 0, long_mask = 0;
1967
1968         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1969             IS_CHERRYVIEW(dev_priv)) {
1970                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1971
1972                 if (hotplug_trigger) {
1973                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1974                                            hotplug_trigger, hpd_status_g4x,
1975                                            i9xx_port_hotplug_long_detect);
1976
1977                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1978                 }
1979
1980                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1981                         dp_aux_irq_handler(dev_priv);
1982         } else {
1983                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1984
1985                 if (hotplug_trigger) {
1986                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1987                                            hotplug_trigger, hpd_status_i915,
1988                                            i9xx_port_hotplug_long_detect);
1989                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1990                 }
1991         }
1992 }
1993
1994 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1995 {
1996         struct drm_device *dev = arg;
1997         struct drm_i915_private *dev_priv = to_i915(dev);
1998         irqreturn_t ret = IRQ_NONE;
1999
2000         if (!intel_irqs_enabled(dev_priv))
2001                 return IRQ_NONE;
2002
2003         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2004         disable_rpm_wakeref_asserts(dev_priv);
2005
2006         do {
2007                 u32 iir, gt_iir, pm_iir;
2008                 u32 pipe_stats[I915_MAX_PIPES] = {};
2009                 u32 hotplug_status = 0;
2010                 u32 ier = 0;
2011
2012                 gt_iir = I915_READ(GTIIR);
2013                 pm_iir = I915_READ(GEN6_PMIIR);
2014                 iir = I915_READ(VLV_IIR);
2015
2016                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2017                         break;
2018
2019                 ret = IRQ_HANDLED;
2020
2021                 /*
2022                  * Theory on interrupt generation, based on empirical evidence:
2023                  *
2024                  * x = ((VLV_IIR & VLV_IER) ||
2025                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
2026                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
2027                  *
2028                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2029                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
2030                  * guarantee the CPU interrupt will be raised again even if we
2031                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
2032                  * bits this time around.
2033                  */
2034                 I915_WRITE(VLV_MASTER_IER, 0);
2035                 ier = I915_READ(VLV_IER);
2036                 I915_WRITE(VLV_IER, 0);
2037
2038                 if (gt_iir)
2039                         I915_WRITE(GTIIR, gt_iir);
2040                 if (pm_iir)
2041                         I915_WRITE(GEN6_PMIIR, pm_iir);
2042
2043                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2044                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2045
2046                 /* Call regardless, as some status bits might not be
2047                  * signalled in iir */
2048                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2049
2050                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2051                            I915_LPE_PIPE_B_INTERRUPT))
2052                         intel_lpe_audio_irq_handler(dev_priv);
2053
2054                 /*
2055                  * VLV_IIR is single buffered, and reflects the level
2056                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2057                  */
2058                 if (iir)
2059                         I915_WRITE(VLV_IIR, iir);
2060
2061                 I915_WRITE(VLV_IER, ier);
2062                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2063                 POSTING_READ(VLV_MASTER_IER);
2064
2065                 if (gt_iir)
2066                         snb_gt_irq_handler(dev_priv, gt_iir);
2067                 if (pm_iir)
2068                         gen6_rps_irq_handler(dev_priv, pm_iir);
2069
2070                 if (hotplug_status)
2071                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2072
2073                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2074         } while (0);
2075
2076         enable_rpm_wakeref_asserts(dev_priv);
2077
2078         return ret;
2079 }
2080
2081 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2082 {
2083         struct drm_device *dev = arg;
2084         struct drm_i915_private *dev_priv = to_i915(dev);
2085         irqreturn_t ret = IRQ_NONE;
2086
2087         if (!intel_irqs_enabled(dev_priv))
2088                 return IRQ_NONE;
2089
2090         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2091         disable_rpm_wakeref_asserts(dev_priv);
2092
2093         do {
2094                 u32 master_ctl, iir;
2095                 u32 gt_iir[4] = {};
2096                 u32 pipe_stats[I915_MAX_PIPES] = {};
2097                 u32 hotplug_status = 0;
2098                 u32 ier = 0;
2099
2100                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2101                 iir = I915_READ(VLV_IIR);
2102
2103                 if (master_ctl == 0 && iir == 0)
2104                         break;
2105
2106                 ret = IRQ_HANDLED;
2107
2108                 /*
2109                  * Theory on interrupt generation, based on empirical evidence:
2110                  *
2111                  * x = ((VLV_IIR & VLV_IER) ||
2112                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2113                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2114                  *
2115                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2116                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2117                  * guarantee the CPU interrupt will be raised again even if we
2118                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2119                  * bits this time around.
2120                  */
2121                 I915_WRITE(GEN8_MASTER_IRQ, 0);
2122                 ier = I915_READ(VLV_IER);
2123                 I915_WRITE(VLV_IER, 0);
2124
2125                 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2126
2127                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2128                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2129
2130                 /* Call regardless, as some status bits might not be
2131                  * signalled in iir */
2132                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2133
2134                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2135                            I915_LPE_PIPE_B_INTERRUPT |
2136                            I915_LPE_PIPE_C_INTERRUPT))
2137                         intel_lpe_audio_irq_handler(dev_priv);
2138
2139                 /*
2140                  * VLV_IIR is single buffered, and reflects the level
2141                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2142                  */
2143                 if (iir)
2144                         I915_WRITE(VLV_IIR, iir);
2145
2146                 I915_WRITE(VLV_IER, ier);
2147                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2148                 POSTING_READ(GEN8_MASTER_IRQ);
2149
2150                 gen8_gt_irq_handler(dev_priv, gt_iir);
2151
2152                 if (hotplug_status)
2153                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2154
2155                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2156         } while (0);
2157
2158         enable_rpm_wakeref_asserts(dev_priv);
2159
2160         return ret;
2161 }
2162
2163 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2164                                 u32 hotplug_trigger,
2165                                 const u32 hpd[HPD_NUM_PINS])
2166 {
2167         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2168
2169         /*
2170          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2171          * unless we touch the hotplug register, even if hotplug_trigger is
2172          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2173          * errors.
2174          */
2175         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2176         if (!hotplug_trigger) {
2177                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2178                         PORTD_HOTPLUG_STATUS_MASK |
2179                         PORTC_HOTPLUG_STATUS_MASK |
2180                         PORTB_HOTPLUG_STATUS_MASK;
2181                 dig_hotplug_reg &= ~mask;
2182         }
2183
2184         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2185         if (!hotplug_trigger)
2186                 return;
2187
2188         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2189                            dig_hotplug_reg, hpd,
2190                            pch_port_hotplug_long_detect);
2191
2192         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2193 }
2194
2195 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2196 {
2197         int pipe;
2198         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2199
2200         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2201
2202         if (pch_iir & SDE_AUDIO_POWER_MASK) {
2203                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2204                                SDE_AUDIO_POWER_SHIFT);
2205                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2206                                  port_name(port));
2207         }
2208
2209         if (pch_iir & SDE_AUX_MASK)
2210                 dp_aux_irq_handler(dev_priv);
2211
2212         if (pch_iir & SDE_GMBUS)
2213                 gmbus_irq_handler(dev_priv);
2214
2215         if (pch_iir & SDE_AUDIO_HDCP_MASK)
2216                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2217
2218         if (pch_iir & SDE_AUDIO_TRANS_MASK)
2219                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2220
2221         if (pch_iir & SDE_POISON)
2222                 DRM_ERROR("PCH poison interrupt\n");
2223
2224         if (pch_iir & SDE_FDI_MASK)
2225                 for_each_pipe(dev_priv, pipe)
2226                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2227                                          pipe_name(pipe),
2228                                          I915_READ(FDI_RX_IIR(pipe)));
2229
2230         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2231                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2232
2233         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2234                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2235
2236         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2237                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2238
2239         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2240                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2241 }
2242
2243 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2244 {
2245         u32 err_int = I915_READ(GEN7_ERR_INT);
2246         enum pipe pipe;
2247
2248         if (err_int & ERR_INT_POISON)
2249                 DRM_ERROR("Poison interrupt\n");
2250
2251         for_each_pipe(dev_priv, pipe) {
2252                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2253                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2254
2255                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2256                         if (IS_IVYBRIDGE(dev_priv))
2257                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2258                         else
2259                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2260                 }
2261         }
2262
2263         I915_WRITE(GEN7_ERR_INT, err_int);
2264 }
2265
2266 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2267 {
2268         u32 serr_int = I915_READ(SERR_INT);
2269         enum pipe pipe;
2270
2271         if (serr_int & SERR_INT_POISON)
2272                 DRM_ERROR("PCH poison interrupt\n");
2273
2274         for_each_pipe(dev_priv, pipe)
2275                 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2276                         intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2277
2278         I915_WRITE(SERR_INT, serr_int);
2279 }
2280
2281 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2282 {
2283         int pipe;
2284         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2285
2286         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2287
2288         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2289                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2290                                SDE_AUDIO_POWER_SHIFT_CPT);
2291                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2292                                  port_name(port));
2293         }
2294
2295         if (pch_iir & SDE_AUX_MASK_CPT)
2296                 dp_aux_irq_handler(dev_priv);
2297
2298         if (pch_iir & SDE_GMBUS_CPT)
2299                 gmbus_irq_handler(dev_priv);
2300
2301         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2302                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2303
2304         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2305                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2306
2307         if (pch_iir & SDE_FDI_MASK_CPT)
2308                 for_each_pipe(dev_priv, pipe)
2309                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2310                                          pipe_name(pipe),
2311                                          I915_READ(FDI_RX_IIR(pipe)));
2312
2313         if (pch_iir & SDE_ERROR_CPT)
2314                 cpt_serr_int_handler(dev_priv);
2315 }
2316
2317 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2318 {
2319         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2320                 ~SDE_PORTE_HOTPLUG_SPT;
2321         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2322         u32 pin_mask = 0, long_mask = 0;
2323
2324         if (hotplug_trigger) {
2325                 u32 dig_hotplug_reg;
2326
2327                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2328                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2329
2330                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2331                                    dig_hotplug_reg, hpd_spt,
2332                                    spt_port_hotplug_long_detect);
2333         }
2334
2335         if (hotplug2_trigger) {
2336                 u32 dig_hotplug_reg;
2337
2338                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2339                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2340
2341                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2342                                    dig_hotplug_reg, hpd_spt,
2343                                    spt_port_hotplug2_long_detect);
2344         }
2345
2346         if (pin_mask)
2347                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2348
2349         if (pch_iir & SDE_GMBUS_CPT)
2350                 gmbus_irq_handler(dev_priv);
2351 }
2352
2353 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2354                                 u32 hotplug_trigger,
2355                                 const u32 hpd[HPD_NUM_PINS])
2356 {
2357         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2358
2359         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2360         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2361
2362         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2363                            dig_hotplug_reg, hpd,
2364                            ilk_port_hotplug_long_detect);
2365
2366         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2367 }
2368
2369 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2370                                     u32 de_iir)
2371 {
2372         enum pipe pipe;
2373         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2374
2375         if (hotplug_trigger)
2376                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2377
2378         if (de_iir & DE_AUX_CHANNEL_A)
2379                 dp_aux_irq_handler(dev_priv);
2380
2381         if (de_iir & DE_GSE)
2382                 intel_opregion_asle_intr(dev_priv);
2383
2384         if (de_iir & DE_POISON)
2385                 DRM_ERROR("Poison interrupt\n");
2386
2387         for_each_pipe(dev_priv, pipe) {
2388                 if (de_iir & DE_PIPE_VBLANK(pipe))
2389                         drm_handle_vblank(&dev_priv->drm, pipe);
2390
2391                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2392                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2393
2394                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2395                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2396         }
2397
2398         /* check event from PCH */
2399         if (de_iir & DE_PCH_EVENT) {
2400                 u32 pch_iir = I915_READ(SDEIIR);
2401
2402                 if (HAS_PCH_CPT(dev_priv))
2403                         cpt_irq_handler(dev_priv, pch_iir);
2404                 else
2405                         ibx_irq_handler(dev_priv, pch_iir);
2406
2407                 /* should clear PCH hotplug event before clear CPU irq */
2408                 I915_WRITE(SDEIIR, pch_iir);
2409         }
2410
2411         if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2412                 ironlake_rps_change_irq_handler(dev_priv);
2413 }
2414
2415 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2416                                     u32 de_iir)
2417 {
2418         enum pipe pipe;
2419         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2420
2421         if (hotplug_trigger)
2422                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2423
2424         if (de_iir & DE_ERR_INT_IVB)
2425                 ivb_err_int_handler(dev_priv);
2426
2427         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2428                 dp_aux_irq_handler(dev_priv);
2429
2430         if (de_iir & DE_GSE_IVB)
2431                 intel_opregion_asle_intr(dev_priv);
2432
2433         for_each_pipe(dev_priv, pipe) {
2434                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2435                         drm_handle_vblank(&dev_priv->drm, pipe);
2436         }
2437
2438         /* check event from PCH */
2439         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2440                 u32 pch_iir = I915_READ(SDEIIR);
2441
2442                 cpt_irq_handler(dev_priv, pch_iir);
2443
2444                 /* clear PCH hotplug event before clear CPU irq */
2445                 I915_WRITE(SDEIIR, pch_iir);
2446         }
2447 }
2448
2449 /*
2450  * To handle irqs with the minimum potential races with fresh interrupts, we:
2451  * 1 - Disable Master Interrupt Control.
2452  * 2 - Find the source(s) of the interrupt.
2453  * 3 - Clear the Interrupt Identity bits (IIR).
2454  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2455  * 5 - Re-enable Master Interrupt Control.
2456  */
2457 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2458 {
2459         struct drm_device *dev = arg;
2460         struct drm_i915_private *dev_priv = to_i915(dev);
2461         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2462         irqreturn_t ret = IRQ_NONE;
2463
2464         if (!intel_irqs_enabled(dev_priv))
2465                 return IRQ_NONE;
2466
2467         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2468         disable_rpm_wakeref_asserts(dev_priv);
2469
2470         /* disable master interrupt before clearing iir  */
2471         de_ier = I915_READ(DEIER);
2472         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2473         POSTING_READ(DEIER);
2474
2475         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2476          * interrupts will will be stored on its back queue, and then we'll be
2477          * able to process them after we restore SDEIER (as soon as we restore
2478          * it, we'll get an interrupt if SDEIIR still has something to process
2479          * due to its back queue). */
2480         if (!HAS_PCH_NOP(dev_priv)) {
2481                 sde_ier = I915_READ(SDEIER);
2482                 I915_WRITE(SDEIER, 0);
2483                 POSTING_READ(SDEIER);
2484         }
2485
2486         /* Find, clear, then process each source of interrupt */
2487
2488         gt_iir = I915_READ(GTIIR);
2489         if (gt_iir) {
2490                 I915_WRITE(GTIIR, gt_iir);
2491                 ret = IRQ_HANDLED;
2492                 if (INTEL_GEN(dev_priv) >= 6)
2493                         snb_gt_irq_handler(dev_priv, gt_iir);
2494                 else
2495                         ilk_gt_irq_handler(dev_priv, gt_iir);
2496         }
2497
2498         de_iir = I915_READ(DEIIR);
2499         if (de_iir) {
2500                 I915_WRITE(DEIIR, de_iir);
2501                 ret = IRQ_HANDLED;
2502                 if (INTEL_GEN(dev_priv) >= 7)
2503                         ivb_display_irq_handler(dev_priv, de_iir);
2504                 else
2505                         ilk_display_irq_handler(dev_priv, de_iir);
2506         }
2507
2508         if (INTEL_GEN(dev_priv) >= 6) {
2509                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2510                 if (pm_iir) {
2511                         I915_WRITE(GEN6_PMIIR, pm_iir);
2512                         ret = IRQ_HANDLED;
2513                         gen6_rps_irq_handler(dev_priv, pm_iir);
2514                 }
2515         }
2516
2517         I915_WRITE(DEIER, de_ier);
2518         POSTING_READ(DEIER);
2519         if (!HAS_PCH_NOP(dev_priv)) {
2520                 I915_WRITE(SDEIER, sde_ier);
2521                 POSTING_READ(SDEIER);
2522         }
2523
2524         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2525         enable_rpm_wakeref_asserts(dev_priv);
2526
2527         return ret;
2528 }
2529
2530 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2531                                 u32 hotplug_trigger,
2532                                 const u32 hpd[HPD_NUM_PINS])
2533 {
2534         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2535
2536         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2537         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2538
2539         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2540                            dig_hotplug_reg, hpd,
2541                            bxt_port_hotplug_long_detect);
2542
2543         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2544 }
2545
2546 static irqreturn_t
2547 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2548 {
2549         irqreturn_t ret = IRQ_NONE;
2550         u32 iir;
2551         enum pipe pipe;
2552
2553         if (master_ctl & GEN8_DE_MISC_IRQ) {
2554                 iir = I915_READ(GEN8_DE_MISC_IIR);
2555                 if (iir) {
2556                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2557                         ret = IRQ_HANDLED;
2558                         if (iir & GEN8_DE_MISC_GSE)
2559                                 intel_opregion_asle_intr(dev_priv);
2560                         else
2561                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2562                 }
2563                 else
2564                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2565         }
2566
2567         if (master_ctl & GEN8_DE_PORT_IRQ) {
2568                 iir = I915_READ(GEN8_DE_PORT_IIR);
2569                 if (iir) {
2570                         u32 tmp_mask;
2571                         bool found = false;
2572
2573                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2574                         ret = IRQ_HANDLED;
2575
2576                         tmp_mask = GEN8_AUX_CHANNEL_A;
2577                         if (INTEL_GEN(dev_priv) >= 9)
2578                                 tmp_mask |= GEN9_AUX_CHANNEL_B |
2579                                             GEN9_AUX_CHANNEL_C |
2580                                             GEN9_AUX_CHANNEL_D;
2581
2582                         if (iir & tmp_mask) {
2583                                 dp_aux_irq_handler(dev_priv);
2584                                 found = true;
2585                         }
2586
2587                         if (IS_GEN9_LP(dev_priv)) {
2588                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2589                                 if (tmp_mask) {
2590                                         bxt_hpd_irq_handler(dev_priv, tmp_mask,
2591                                                             hpd_bxt);
2592                                         found = true;
2593                                 }
2594                         } else if (IS_BROADWELL(dev_priv)) {
2595                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2596                                 if (tmp_mask) {
2597                                         ilk_hpd_irq_handler(dev_priv,
2598                                                             tmp_mask, hpd_bdw);
2599                                         found = true;
2600                                 }
2601                         }
2602
2603                         if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2604                                 gmbus_irq_handler(dev_priv);
2605                                 found = true;
2606                         }
2607
2608                         if (!found)
2609                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2610                 }
2611                 else
2612                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2613         }
2614
2615         for_each_pipe(dev_priv, pipe) {
2616                 u32 fault_errors;
2617
2618                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2619                         continue;
2620
2621                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2622                 if (!iir) {
2623                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2624                         continue;
2625                 }
2626
2627                 ret = IRQ_HANDLED;
2628                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2629
2630                 if (iir & GEN8_PIPE_VBLANK)
2631                         drm_handle_vblank(&dev_priv->drm, pipe);
2632
2633                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2634                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2635
2636                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2637                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2638
2639                 fault_errors = iir;
2640                 if (INTEL_GEN(dev_priv) >= 9)
2641                         fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2642                 else
2643                         fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2644
2645                 if (fault_errors)
2646                         DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2647                                   pipe_name(pipe),
2648                                   fault_errors);
2649         }
2650
2651         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2652             master_ctl & GEN8_DE_PCH_IRQ) {
2653                 /*
2654                  * FIXME(BDW): Assume for now that the new interrupt handling
2655                  * scheme also closed the SDE interrupt handling race we've seen
2656                  * on older pch-split platforms. But this needs testing.
2657                  */
2658                 iir = I915_READ(SDEIIR);
2659                 if (iir) {
2660                         I915_WRITE(SDEIIR, iir);
2661                         ret = IRQ_HANDLED;
2662
2663                         if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
2664                             HAS_PCH_CNP(dev_priv))
2665                                 spt_irq_handler(dev_priv, iir);
2666                         else
2667                                 cpt_irq_handler(dev_priv, iir);
2668                 } else {
2669                         /*
2670                          * Like on previous PCH there seems to be something
2671                          * fishy going on with forwarding PCH interrupts.
2672                          */
2673                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2674                 }
2675         }
2676
2677         return ret;
2678 }
2679
2680 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2681 {
2682         struct drm_device *dev = arg;
2683         struct drm_i915_private *dev_priv = to_i915(dev);
2684         u32 master_ctl;
2685         u32 gt_iir[4] = {};
2686         irqreturn_t ret;
2687
2688         if (!intel_irqs_enabled(dev_priv))
2689                 return IRQ_NONE;
2690
2691         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2692         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2693         if (!master_ctl)
2694                 return IRQ_NONE;
2695
2696         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2697
2698         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2699         disable_rpm_wakeref_asserts(dev_priv);
2700
2701         /* Find, clear, then process each source of interrupt */
2702         ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2703         gen8_gt_irq_handler(dev_priv, gt_iir);
2704         ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2705
2706         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2707         POSTING_READ_FW(GEN8_MASTER_IRQ);
2708
2709         enable_rpm_wakeref_asserts(dev_priv);
2710
2711         return ret;
2712 }
2713
2714 struct wedge_me {
2715         struct delayed_work work;
2716         struct drm_i915_private *i915;
2717         const char *name;
2718 };
2719
2720 static void wedge_me(struct work_struct *work)
2721 {
2722         struct wedge_me *w = container_of(work, typeof(*w), work.work);
2723
2724         dev_err(w->i915->drm.dev,
2725                 "%s timed out, cancelling all in-flight rendering.\n",
2726                 w->name);
2727         i915_gem_set_wedged(w->i915);
2728 }
2729
2730 static void __init_wedge(struct wedge_me *w,
2731                          struct drm_i915_private *i915,
2732                          long timeout,
2733                          const char *name)
2734 {
2735         w->i915 = i915;
2736         w->name = name;
2737
2738         INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
2739         schedule_delayed_work(&w->work, timeout);
2740 }
2741
2742 static void __fini_wedge(struct wedge_me *w)
2743 {
2744         cancel_delayed_work_sync(&w->work);
2745         destroy_delayed_work_on_stack(&w->work);
2746         w->i915 = NULL;
2747 }
2748
2749 #define i915_wedge_on_timeout(W, DEV, TIMEOUT)                          \
2750         for (__init_wedge((W), (DEV), (TIMEOUT), __func__);             \
2751              (W)->i915;                                                 \
2752              __fini_wedge((W)))
2753
2754 /**
2755  * i915_reset_device - do process context error handling work
2756  * @dev_priv: i915 device private
2757  *
2758  * Fire an error uevent so userspace can see that a hang or error
2759  * was detected.
2760  */
2761 static void i915_reset_device(struct drm_i915_private *dev_priv)
2762 {
2763         struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2764         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2765         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2766         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2767         struct wedge_me w;
2768
2769         kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2770
2771         DRM_DEBUG_DRIVER("resetting chip\n");
2772         kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2773
2774         /* Use a watchdog to ensure that our reset completes */
2775         i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
2776                 intel_prepare_reset(dev_priv);
2777
2778                 /* Signal that locked waiters should reset the GPU */
2779                 set_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags);
2780                 wake_up_all(&dev_priv->gpu_error.wait_queue);
2781
2782                 /* Wait for anyone holding the lock to wakeup, without
2783                  * blocking indefinitely on struct_mutex.
2784                  */
2785                 do {
2786                         if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2787                                 i915_reset(dev_priv, 0);
2788                                 mutex_unlock(&dev_priv->drm.struct_mutex);
2789                         }
2790                 } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2791                                              I915_RESET_HANDOFF,
2792                                              TASK_UNINTERRUPTIBLE,
2793                                              1));
2794
2795                 intel_finish_reset(dev_priv);
2796         }
2797
2798         if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2799                 kobject_uevent_env(kobj,
2800                                    KOBJ_CHANGE, reset_done_event);
2801 }
2802
2803 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2804 {
2805         u32 eir;
2806
2807         if (!IS_GEN2(dev_priv))
2808                 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2809
2810         if (INTEL_GEN(dev_priv) < 4)
2811                 I915_WRITE(IPEIR, I915_READ(IPEIR));
2812         else
2813                 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2814
2815         I915_WRITE(EIR, I915_READ(EIR));
2816         eir = I915_READ(EIR);
2817         if (eir) {
2818                 /*
2819                  * some errors might have become stuck,
2820                  * mask them.
2821                  */
2822                 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2823                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2824                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2825         }
2826 }
2827
2828 /**
2829  * i915_handle_error - handle a gpu error
2830  * @dev_priv: i915 device private
2831  * @engine_mask: mask representing engines that are hung
2832  * @fmt: Error message format string
2833  *
2834  * Do some basic checking of register state at error time and
2835  * dump it to the syslog.  Also call i915_capture_error_state() to make
2836  * sure we get a record and make it available in debugfs.  Fire a uevent
2837  * so userspace knows something bad happened (should trigger collection
2838  * of a ring dump etc.).
2839  */
2840 void i915_handle_error(struct drm_i915_private *dev_priv,
2841                        u32 engine_mask,
2842                        const char *fmt, ...)
2843 {
2844         struct intel_engine_cs *engine;
2845         unsigned int tmp;
2846         va_list args;
2847         char error_msg[80];
2848
2849         va_start(args, fmt);
2850         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2851         va_end(args);
2852
2853         /*
2854          * In most cases it's guaranteed that we get here with an RPM
2855          * reference held, for example because there is a pending GPU
2856          * request that won't finish until the reset is done. This
2857          * isn't the case at least when we get here by doing a
2858          * simulated reset via debugfs, so get an RPM reference.
2859          */
2860         intel_runtime_pm_get(dev_priv);
2861
2862         i915_capture_error_state(dev_priv, engine_mask, error_msg);
2863         i915_clear_error_registers(dev_priv);
2864
2865         /*
2866          * Try engine reset when available. We fall back to full reset if
2867          * single reset fails.
2868          */
2869         if (intel_has_reset_engine(dev_priv)) {
2870                 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
2871                         BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
2872                         if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
2873                                              &dev_priv->gpu_error.flags))
2874                                 continue;
2875
2876                         if (i915_reset_engine(engine, 0) == 0)
2877                                 engine_mask &= ~intel_engine_flag(engine);
2878
2879                         clear_bit(I915_RESET_ENGINE + engine->id,
2880                                   &dev_priv->gpu_error.flags);
2881                         wake_up_bit(&dev_priv->gpu_error.flags,
2882                                     I915_RESET_ENGINE + engine->id);
2883                 }
2884         }
2885
2886         if (!engine_mask)
2887                 goto out;
2888
2889         /* Full reset needs the mutex, stop any other user trying to do so. */
2890         if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
2891                 wait_event(dev_priv->gpu_error.reset_queue,
2892                            !test_bit(I915_RESET_BACKOFF,
2893                                      &dev_priv->gpu_error.flags));
2894                 goto out;
2895         }
2896
2897         /* Prevent any other reset-engine attempt. */
2898         for_each_engine(engine, dev_priv, tmp) {
2899                 while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
2900                                         &dev_priv->gpu_error.flags))
2901                         wait_on_bit(&dev_priv->gpu_error.flags,
2902                                     I915_RESET_ENGINE + engine->id,
2903                                     TASK_UNINTERRUPTIBLE);
2904         }
2905
2906         i915_reset_device(dev_priv);
2907
2908         for_each_engine(engine, dev_priv, tmp) {
2909                 clear_bit(I915_RESET_ENGINE + engine->id,
2910                           &dev_priv->gpu_error.flags);
2911         }
2912
2913         clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
2914         wake_up_all(&dev_priv->gpu_error.reset_queue);
2915
2916 out:
2917         intel_runtime_pm_put(dev_priv);
2918 }
2919
2920 /* Called from drm generic code, passed 'crtc' which
2921  * we use as a pipe index
2922  */
2923 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2924 {
2925         struct drm_i915_private *dev_priv = to_i915(dev);
2926         unsigned long irqflags;
2927
2928         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2929         i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2930         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2931
2932         return 0;
2933 }
2934
2935 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2936 {
2937         struct drm_i915_private *dev_priv = to_i915(dev);
2938         unsigned long irqflags;
2939
2940         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2941         i915_enable_pipestat(dev_priv, pipe,
2942                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2943         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2944
2945         return 0;
2946 }
2947
2948 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2949 {
2950         struct drm_i915_private *dev_priv = to_i915(dev);
2951         unsigned long irqflags;
2952         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2953                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2954
2955         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2956         ilk_enable_display_irq(dev_priv, bit);
2957         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2958
2959         return 0;
2960 }
2961
2962 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2963 {
2964         struct drm_i915_private *dev_priv = to_i915(dev);
2965         unsigned long irqflags;
2966
2967         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2968         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2969         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2970
2971         return 0;
2972 }
2973
2974 /* Called from drm generic code, passed 'crtc' which
2975  * we use as a pipe index
2976  */
2977 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2978 {
2979         struct drm_i915_private *dev_priv = to_i915(dev);
2980         unsigned long irqflags;
2981
2982         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2983         i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2984         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2985 }
2986
2987 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2988 {
2989         struct drm_i915_private *dev_priv = to_i915(dev);
2990         unsigned long irqflags;
2991
2992         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2993         i915_disable_pipestat(dev_priv, pipe,
2994                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2995         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2996 }
2997
2998 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2999 {
3000         struct drm_i915_private *dev_priv = to_i915(dev);
3001         unsigned long irqflags;
3002         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3003                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3004
3005         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3006         ilk_disable_display_irq(dev_priv, bit);
3007         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3008 }
3009
3010 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
3011 {
3012         struct drm_i915_private *dev_priv = to_i915(dev);
3013         unsigned long irqflags;
3014
3015         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3016         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3017         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3018 }
3019
3020 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3021 {
3022         if (HAS_PCH_NOP(dev_priv))
3023                 return;
3024
3025         GEN3_IRQ_RESET(SDE);
3026
3027         if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3028                 I915_WRITE(SERR_INT, 0xffffffff);
3029 }
3030
3031 /*
3032  * SDEIER is also touched by the interrupt handler to work around missed PCH
3033  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3034  * instead we unconditionally enable all PCH interrupt sources here, but then
3035  * only unmask them as needed with SDEIMR.
3036  *
3037  * This function needs to be called before interrupts are enabled.
3038  */
3039 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3040 {
3041         struct drm_i915_private *dev_priv = to_i915(dev);
3042
3043         if (HAS_PCH_NOP(dev_priv))
3044                 return;
3045
3046         WARN_ON(I915_READ(SDEIER) != 0);
3047         I915_WRITE(SDEIER, 0xffffffff);
3048         POSTING_READ(SDEIER);
3049 }
3050
3051 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
3052 {
3053         GEN3_IRQ_RESET(GT);
3054         if (INTEL_GEN(dev_priv) >= 6)
3055                 GEN3_IRQ_RESET(GEN6_PM);
3056 }
3057
3058 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3059 {
3060         if (IS_CHERRYVIEW(dev_priv))
3061                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3062         else
3063                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3064
3065         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3066         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3067
3068         i9xx_pipestat_irq_reset(dev_priv);
3069
3070         GEN3_IRQ_RESET(VLV_);
3071         dev_priv->irq_mask = ~0u;
3072 }
3073
3074 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3075 {
3076         u32 pipestat_mask;
3077         u32 enable_mask;
3078         enum pipe pipe;
3079
3080         pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3081
3082         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3083         for_each_pipe(dev_priv, pipe)
3084                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3085
3086         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3087                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3088                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3089                 I915_LPE_PIPE_A_INTERRUPT |
3090                 I915_LPE_PIPE_B_INTERRUPT;
3091
3092         if (IS_CHERRYVIEW(dev_priv))
3093                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3094                         I915_LPE_PIPE_C_INTERRUPT;
3095
3096         WARN_ON(dev_priv->irq_mask != ~0u);
3097
3098         dev_priv->irq_mask = ~enable_mask;
3099
3100         GEN3_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3101 }
3102
3103 /* drm_dma.h hooks
3104 */
3105 static void ironlake_irq_reset(struct drm_device *dev)
3106 {
3107         struct drm_i915_private *dev_priv = to_i915(dev);
3108
3109         if (IS_GEN5(dev_priv))
3110                 I915_WRITE(HWSTAM, 0xffffffff);
3111
3112         GEN3_IRQ_RESET(DE);
3113         if (IS_GEN7(dev_priv))
3114                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3115
3116         gen5_gt_irq_reset(dev_priv);
3117
3118         ibx_irq_reset(dev_priv);
3119 }
3120
3121 static void valleyview_irq_reset(struct drm_device *dev)
3122 {
3123         struct drm_i915_private *dev_priv = to_i915(dev);
3124
3125         I915_WRITE(VLV_MASTER_IER, 0);
3126         POSTING_READ(VLV_MASTER_IER);
3127
3128         gen5_gt_irq_reset(dev_priv);
3129
3130         spin_lock_irq(&dev_priv->irq_lock);
3131         if (dev_priv->display_irqs_enabled)
3132                 vlv_display_irq_reset(dev_priv);
3133         spin_unlock_irq(&dev_priv->irq_lock);
3134 }
3135
3136 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3137 {
3138         GEN8_IRQ_RESET_NDX(GT, 0);
3139         GEN8_IRQ_RESET_NDX(GT, 1);
3140         GEN8_IRQ_RESET_NDX(GT, 2);
3141         GEN8_IRQ_RESET_NDX(GT, 3);
3142 }
3143
3144 static void gen8_irq_reset(struct drm_device *dev)
3145 {
3146         struct drm_i915_private *dev_priv = to_i915(dev);
3147         int pipe;
3148
3149         I915_WRITE(GEN8_MASTER_IRQ, 0);
3150         POSTING_READ(GEN8_MASTER_IRQ);
3151
3152         gen8_gt_irq_reset(dev_priv);
3153
3154         for_each_pipe(dev_priv, pipe)
3155                 if (intel_display_power_is_enabled(dev_priv,
3156                                                    POWER_DOMAIN_PIPE(pipe)))
3157                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3158
3159         GEN3_IRQ_RESET(GEN8_DE_PORT_);
3160         GEN3_IRQ_RESET(GEN8_DE_MISC_);
3161         GEN3_IRQ_RESET(GEN8_PCU_);
3162
3163         if (HAS_PCH_SPLIT(dev_priv))
3164                 ibx_irq_reset(dev_priv);
3165 }
3166
3167 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3168                                      u8 pipe_mask)
3169 {
3170         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3171         enum pipe pipe;
3172
3173         spin_lock_irq(&dev_priv->irq_lock);
3174
3175         if (!intel_irqs_enabled(dev_priv)) {
3176                 spin_unlock_irq(&dev_priv->irq_lock);
3177                 return;
3178         }
3179
3180         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3181                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3182                                   dev_priv->de_irq_mask[pipe],
3183                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3184
3185         spin_unlock_irq(&dev_priv->irq_lock);
3186 }
3187
3188 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3189                                      u8 pipe_mask)
3190 {
3191         enum pipe pipe;
3192
3193         spin_lock_irq(&dev_priv->irq_lock);
3194
3195         if (!intel_irqs_enabled(dev_priv)) {
3196                 spin_unlock_irq(&dev_priv->irq_lock);
3197                 return;
3198         }
3199
3200         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3201                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3202
3203         spin_unlock_irq(&dev_priv->irq_lock);
3204
3205         /* make sure we're done processing display irqs */
3206         synchronize_irq(dev_priv->drm.irq);
3207 }
3208
3209 static void cherryview_irq_reset(struct drm_device *dev)
3210 {
3211         struct drm_i915_private *dev_priv = to_i915(dev);
3212
3213         I915_WRITE(GEN8_MASTER_IRQ, 0);
3214         POSTING_READ(GEN8_MASTER_IRQ);
3215
3216         gen8_gt_irq_reset(dev_priv);
3217
3218         GEN3_IRQ_RESET(GEN8_PCU_);
3219
3220         spin_lock_irq(&dev_priv->irq_lock);
3221         if (dev_priv->display_irqs_enabled)
3222                 vlv_display_irq_reset(dev_priv);
3223         spin_unlock_irq(&dev_priv->irq_lock);
3224 }
3225
3226 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3227                                   const u32 hpd[HPD_NUM_PINS])
3228 {
3229         struct intel_encoder *encoder;
3230         u32 enabled_irqs = 0;
3231
3232         for_each_intel_encoder(&dev_priv->drm, encoder)
3233                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3234                         enabled_irqs |= hpd[encoder->hpd_pin];
3235
3236         return enabled_irqs;
3237 }
3238
3239 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3240 {
3241         u32 hotplug;
3242
3243         /*
3244          * Enable digital hotplug on the PCH, and configure the DP short pulse
3245          * duration to 2ms (which is the minimum in the Display Port spec).
3246          * The pulse duration bits are reserved on LPT+.
3247          */
3248         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3249         hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3250                      PORTC_PULSE_DURATION_MASK |
3251                      PORTD_PULSE_DURATION_MASK);
3252         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3253         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3254         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3255         /*
3256          * When CPU and PCH are on the same package, port A
3257          * HPD must be enabled in both north and south.
3258          */
3259         if (HAS_PCH_LPT_LP(dev_priv))
3260                 hotplug |= PORTA_HOTPLUG_ENABLE;
3261         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3262 }
3263
3264 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3265 {
3266         u32 hotplug_irqs, enabled_irqs;
3267
3268         if (HAS_PCH_IBX(dev_priv)) {
3269                 hotplug_irqs = SDE_HOTPLUG_MASK;
3270                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3271         } else {
3272                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3273                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3274         }
3275
3276         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3277
3278         ibx_hpd_detection_setup(dev_priv);
3279 }
3280
3281 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3282 {
3283         u32 val, hotplug;
3284
3285         /* Display WA #1179 WaHardHangonHotPlug: cnp */
3286         if (HAS_PCH_CNP(dev_priv)) {
3287                 val = I915_READ(SOUTH_CHICKEN1);
3288                 val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3289                 val |= CHASSIS_CLK_REQ_DURATION(0xf);
3290                 I915_WRITE(SOUTH_CHICKEN1, val);
3291         }
3292
3293         /* Enable digital hotplug on the PCH */
3294         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3295         hotplug |= PORTA_HOTPLUG_ENABLE |
3296                    PORTB_HOTPLUG_ENABLE |
3297                    PORTC_HOTPLUG_ENABLE |
3298                    PORTD_HOTPLUG_ENABLE;
3299         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3300
3301         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3302         hotplug |= PORTE_HOTPLUG_ENABLE;
3303         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3304 }
3305
3306 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3307 {
3308         u32 hotplug_irqs, enabled_irqs;
3309
3310         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3311         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3312
3313         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3314
3315         spt_hpd_detection_setup(dev_priv);
3316 }
3317
3318 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3319 {
3320         u32 hotplug;
3321
3322         /*
3323          * Enable digital hotplug on the CPU, and configure the DP short pulse
3324          * duration to 2ms (which is the minimum in the Display Port spec)
3325          * The pulse duration bits are reserved on HSW+.
3326          */
3327         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3328         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3329         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3330                    DIGITAL_PORTA_PULSE_DURATION_2ms;
3331         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3332 }
3333
3334 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3335 {
3336         u32 hotplug_irqs, enabled_irqs;
3337
3338         if (INTEL_GEN(dev_priv) >= 8) {
3339                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3340                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3341
3342                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3343         } else if (INTEL_GEN(dev_priv) >= 7) {
3344                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3345                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3346
3347                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3348         } else {
3349                 hotplug_irqs = DE_DP_A_HOTPLUG;
3350                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3351
3352                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3353         }
3354
3355         ilk_hpd_detection_setup(dev_priv);
3356
3357         ibx_hpd_irq_setup(dev_priv);
3358 }
3359
3360 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3361                                       u32 enabled_irqs)
3362 {
3363         u32 hotplug;
3364
3365         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3366         hotplug |= PORTA_HOTPLUG_ENABLE |
3367                    PORTB_HOTPLUG_ENABLE |
3368                    PORTC_HOTPLUG_ENABLE;
3369
3370         DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3371                       hotplug, enabled_irqs);
3372         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3373
3374         /*
3375          * For BXT invert bit has to be set based on AOB design
3376          * for HPD detection logic, update it based on VBT fields.
3377          */
3378         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3379             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3380                 hotplug |= BXT_DDIA_HPD_INVERT;
3381         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3382             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3383                 hotplug |= BXT_DDIB_HPD_INVERT;
3384         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3385             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3386                 hotplug |= BXT_DDIC_HPD_INVERT;
3387
3388         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3389 }
3390
3391 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3392 {
3393         __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3394 }
3395
3396 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3397 {
3398         u32 hotplug_irqs, enabled_irqs;
3399
3400         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3401         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3402
3403         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3404
3405         __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3406 }
3407
3408 static void ibx_irq_postinstall(struct drm_device *dev)
3409 {
3410         struct drm_i915_private *dev_priv = to_i915(dev);
3411         u32 mask;
3412
3413         if (HAS_PCH_NOP(dev_priv))
3414                 return;
3415
3416         if (HAS_PCH_IBX(dev_priv))
3417                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3418         else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3419                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3420         else
3421                 mask = SDE_GMBUS_CPT;
3422
3423         gen3_assert_iir_is_zero(dev_priv, SDEIIR);
3424         I915_WRITE(SDEIMR, ~mask);
3425
3426         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3427             HAS_PCH_LPT(dev_priv))
3428                 ibx_hpd_detection_setup(dev_priv);
3429         else
3430                 spt_hpd_detection_setup(dev_priv);
3431 }
3432
3433 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3434 {
3435         struct drm_i915_private *dev_priv = to_i915(dev);
3436         u32 pm_irqs, gt_irqs;
3437
3438         pm_irqs = gt_irqs = 0;
3439
3440         dev_priv->gt_irq_mask = ~0;
3441         if (HAS_L3_DPF(dev_priv)) {
3442                 /* L3 parity interrupt is always unmasked. */
3443                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3444                 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3445         }
3446
3447         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3448         if (IS_GEN5(dev_priv)) {
3449                 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3450         } else {
3451                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3452         }
3453
3454         GEN3_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3455
3456         if (INTEL_GEN(dev_priv) >= 6) {
3457                 /*
3458                  * RPS interrupts will get enabled/disabled on demand when RPS
3459                  * itself is enabled/disabled.
3460                  */
3461                 if (HAS_VEBOX(dev_priv)) {
3462                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3463                         dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3464                 }
3465
3466                 dev_priv->pm_imr = 0xffffffff;
3467                 GEN3_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3468         }
3469 }
3470
3471 static int ironlake_irq_postinstall(struct drm_device *dev)
3472 {
3473         struct drm_i915_private *dev_priv = to_i915(dev);
3474         u32 display_mask, extra_mask;
3475
3476         if (INTEL_GEN(dev_priv) >= 7) {
3477                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3478                                 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3479                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3480                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3481                               DE_DP_A_HOTPLUG_IVB);
3482         } else {
3483                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3484                                 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3485                                 DE_PIPEA_CRC_DONE | DE_POISON);
3486                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3487                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3488                               DE_DP_A_HOTPLUG);
3489         }
3490
3491         dev_priv->irq_mask = ~display_mask;
3492
3493         ibx_irq_pre_postinstall(dev);
3494
3495         GEN3_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3496
3497         gen5_gt_irq_postinstall(dev);
3498
3499         ilk_hpd_detection_setup(dev_priv);
3500
3501         ibx_irq_postinstall(dev);
3502
3503         if (IS_IRONLAKE_M(dev_priv)) {
3504                 /* Enable PCU event interrupts
3505                  *
3506                  * spinlocking not required here for correctness since interrupt
3507                  * setup is guaranteed to run in single-threaded context. But we
3508                  * need it to make the assert_spin_locked happy. */
3509                 spin_lock_irq(&dev_priv->irq_lock);
3510                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3511                 spin_unlock_irq(&dev_priv->irq_lock);
3512         }
3513
3514         return 0;
3515 }
3516
3517 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3518 {
3519         lockdep_assert_held(&dev_priv->irq_lock);
3520
3521         if (dev_priv->display_irqs_enabled)
3522                 return;
3523
3524         dev_priv->display_irqs_enabled = true;
3525
3526         if (intel_irqs_enabled(dev_priv)) {
3527                 vlv_display_irq_reset(dev_priv);
3528                 vlv_display_irq_postinstall(dev_priv);
3529         }
3530 }
3531
3532 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3533 {
3534         lockdep_assert_held(&dev_priv->irq_lock);
3535
3536         if (!dev_priv->display_irqs_enabled)
3537                 return;
3538
3539         dev_priv->display_irqs_enabled = false;
3540
3541         if (intel_irqs_enabled(dev_priv))
3542                 vlv_display_irq_reset(dev_priv);
3543 }
3544
3545
3546 static int valleyview_irq_postinstall(struct drm_device *dev)
3547 {
3548         struct drm_i915_private *dev_priv = to_i915(dev);
3549
3550         gen5_gt_irq_postinstall(dev);
3551
3552         spin_lock_irq(&dev_priv->irq_lock);
3553         if (dev_priv->display_irqs_enabled)
3554                 vlv_display_irq_postinstall(dev_priv);
3555         spin_unlock_irq(&dev_priv->irq_lock);
3556
3557         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3558         POSTING_READ(VLV_MASTER_IER);
3559
3560         return 0;
3561 }
3562
3563 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3564 {
3565         /* These are interrupts we'll toggle with the ring mask register */
3566         uint32_t gt_interrupts[] = {
3567                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3568                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3569                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3570                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3571                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3572                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3573                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3574                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3575                 0,
3576                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3577                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3578                 };
3579
3580         if (HAS_L3_DPF(dev_priv))
3581                 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3582
3583         dev_priv->pm_ier = 0x0;
3584         dev_priv->pm_imr = ~dev_priv->pm_ier;
3585         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3586         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3587         /*
3588          * RPS interrupts will get enabled/disabled on demand when RPS itself
3589          * is enabled/disabled. Same wil be the case for GuC interrupts.
3590          */
3591         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3592         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3593 }
3594
3595 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3596 {
3597         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3598         uint32_t de_pipe_enables;
3599         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3600         u32 de_port_enables;
3601         u32 de_misc_masked = GEN8_DE_MISC_GSE;
3602         enum pipe pipe;
3603
3604         if (INTEL_GEN(dev_priv) >= 9) {
3605                 de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3606                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3607                                   GEN9_AUX_CHANNEL_D;
3608                 if (IS_GEN9_LP(dev_priv))
3609                         de_port_masked |= BXT_DE_PORT_GMBUS;
3610         } else {
3611                 de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3612         }
3613
3614         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3615                                            GEN8_PIPE_FIFO_UNDERRUN;
3616
3617         de_port_enables = de_port_masked;
3618         if (IS_GEN9_LP(dev_priv))
3619                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3620         else if (IS_BROADWELL(dev_priv))
3621                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3622
3623         for_each_pipe(dev_priv, pipe) {
3624                 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3625
3626                 if (intel_display_power_is_enabled(dev_priv,
3627                                 POWER_DOMAIN_PIPE(pipe)))
3628                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3629                                           dev_priv->de_irq_mask[pipe],
3630                                           de_pipe_enables);
3631         }
3632
3633         GEN3_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3634         GEN3_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3635
3636         if (IS_GEN9_LP(dev_priv))
3637                 bxt_hpd_detection_setup(dev_priv);
3638         else if (IS_BROADWELL(dev_priv))
3639                 ilk_hpd_detection_setup(dev_priv);
3640 }
3641
3642 static int gen8_irq_postinstall(struct drm_device *dev)
3643 {
3644         struct drm_i915_private *dev_priv = to_i915(dev);
3645
3646         if (HAS_PCH_SPLIT(dev_priv))
3647                 ibx_irq_pre_postinstall(dev);
3648
3649         gen8_gt_irq_postinstall(dev_priv);
3650         gen8_de_irq_postinstall(dev_priv);
3651
3652         if (HAS_PCH_SPLIT(dev_priv))
3653                 ibx_irq_postinstall(dev);
3654
3655         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3656         POSTING_READ(GEN8_MASTER_IRQ);
3657
3658         return 0;
3659 }
3660
3661 static int cherryview_irq_postinstall(struct drm_device *dev)
3662 {
3663         struct drm_i915_private *dev_priv = to_i915(dev);
3664
3665         gen8_gt_irq_postinstall(dev_priv);
3666
3667         spin_lock_irq(&dev_priv->irq_lock);
3668         if (dev_priv->display_irqs_enabled)
3669                 vlv_display_irq_postinstall(dev_priv);
3670         spin_unlock_irq(&dev_priv->irq_lock);
3671
3672         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3673         POSTING_READ(GEN8_MASTER_IRQ);
3674
3675         return 0;
3676 }
3677
3678 static void i8xx_irq_reset(struct drm_device *dev)
3679 {
3680         struct drm_i915_private *dev_priv = to_i915(dev);
3681
3682         i9xx_pipestat_irq_reset(dev_priv);
3683
3684         I915_WRITE16(HWSTAM, 0xffff);
3685
3686         GEN2_IRQ_RESET();
3687 }
3688
3689 static int i8xx_irq_postinstall(struct drm_device *dev)
3690 {
3691         struct drm_i915_private *dev_priv = to_i915(dev);
3692         u16 enable_mask;
3693
3694         I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE |
3695                             I915_ERROR_MEMORY_REFRESH));
3696
3697         /* Unmask the interrupts that we always want on. */
3698         dev_priv->irq_mask =
3699                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3700                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT);
3701
3702         enable_mask =
3703                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3704                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3705                 I915_USER_INTERRUPT;
3706
3707         GEN2_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
3708
3709         /* Interrupt setup is already guaranteed to be single-threaded, this is
3710          * just to make the assert_spin_locked check happy. */
3711         spin_lock_irq(&dev_priv->irq_lock);
3712         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3713         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3714         spin_unlock_irq(&dev_priv->irq_lock);
3715
3716         return 0;
3717 }
3718
3719 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3720 {
3721         struct drm_device *dev = arg;
3722         struct drm_i915_private *dev_priv = to_i915(dev);
3723         irqreturn_t ret = IRQ_NONE;
3724
3725         if (!intel_irqs_enabled(dev_priv))
3726                 return IRQ_NONE;
3727
3728         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3729         disable_rpm_wakeref_asserts(dev_priv);
3730
3731         do {
3732                 u32 pipe_stats[I915_MAX_PIPES] = {};
3733                 u16 iir;
3734
3735                 iir = I915_READ16(IIR);
3736                 if (iir == 0)
3737                         break;
3738
3739                 ret = IRQ_HANDLED;
3740
3741                 /* Call regardless, as some status bits might not be
3742                  * signalled in iir */
3743                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3744
3745                 I915_WRITE16(IIR, iir);
3746
3747                 if (iir & I915_USER_INTERRUPT)
3748                         notify_ring(dev_priv->engine[RCS]);
3749
3750                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3751                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3752
3753                 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3754         } while (0);
3755
3756         enable_rpm_wakeref_asserts(dev_priv);
3757
3758         return ret;
3759 }
3760
3761 static void i915_irq_reset(struct drm_device *dev)
3762 {
3763         struct drm_i915_private *dev_priv = to_i915(dev);
3764
3765         if (I915_HAS_HOTPLUG(dev_priv)) {
3766                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3767                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3768         }
3769
3770         i9xx_pipestat_irq_reset(dev_priv);
3771
3772         I915_WRITE(HWSTAM, 0xffffffff);
3773
3774         GEN3_IRQ_RESET();
3775 }
3776
3777 static int i915_irq_postinstall(struct drm_device *dev)
3778 {
3779         struct drm_i915_private *dev_priv = to_i915(dev);
3780         u32 enable_mask;
3781
3782         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
3783                           I915_ERROR_MEMORY_REFRESH));
3784
3785         /* Unmask the interrupts that we always want on. */
3786         dev_priv->irq_mask =
3787                 ~(I915_ASLE_INTERRUPT |
3788                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3789                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT);
3790
3791         enable_mask =
3792                 I915_ASLE_INTERRUPT |
3793                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3794                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3795                 I915_USER_INTERRUPT;
3796
3797         if (I915_HAS_HOTPLUG(dev_priv)) {
3798                 /* Enable in IER... */
3799                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3800                 /* and unmask in IMR */
3801                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3802         }
3803
3804         GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
3805
3806         /* Interrupt setup is already guaranteed to be single-threaded, this is
3807          * just to make the assert_spin_locked check happy. */
3808         spin_lock_irq(&dev_priv->irq_lock);
3809         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3810         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3811         spin_unlock_irq(&dev_priv->irq_lock);
3812
3813         i915_enable_asle_pipestat(dev_priv);
3814
3815         return 0;
3816 }
3817
3818 static irqreturn_t i915_irq_handler(int irq, void *arg)
3819 {
3820         struct drm_device *dev = arg;
3821         struct drm_i915_private *dev_priv = to_i915(dev);
3822         irqreturn_t ret = IRQ_NONE;
3823
3824         if (!intel_irqs_enabled(dev_priv))
3825                 return IRQ_NONE;
3826
3827         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3828         disable_rpm_wakeref_asserts(dev_priv);
3829
3830         do {
3831                 u32 pipe_stats[I915_MAX_PIPES] = {};
3832                 u32 hotplug_status = 0;
3833                 u32 iir;
3834
3835                 iir = I915_READ(IIR);
3836                 if (iir == 0)
3837                         break;
3838
3839                 ret = IRQ_HANDLED;
3840
3841                 if (I915_HAS_HOTPLUG(dev_priv) &&
3842                     iir & I915_DISPLAY_PORT_INTERRUPT)
3843                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3844
3845                 /* Call regardless, as some status bits might not be
3846                  * signalled in iir */
3847                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3848
3849                 I915_WRITE(IIR, iir);
3850
3851                 if (iir & I915_USER_INTERRUPT)
3852                         notify_ring(dev_priv->engine[RCS]);
3853
3854                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3855                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3856
3857                 if (hotplug_status)
3858                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3859
3860                 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3861         } while (0);
3862
3863         enable_rpm_wakeref_asserts(dev_priv);
3864
3865         return ret;
3866 }
3867
3868 static void i965_irq_reset(struct drm_device *dev)
3869 {
3870         struct drm_i915_private *dev_priv = to_i915(dev);
3871
3872         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3873         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3874
3875         i9xx_pipestat_irq_reset(dev_priv);
3876
3877         I915_WRITE(HWSTAM, 0xffffffff);
3878
3879         GEN3_IRQ_RESET();
3880 }
3881
3882 static int i965_irq_postinstall(struct drm_device *dev)
3883 {
3884         struct drm_i915_private *dev_priv = to_i915(dev);
3885         u32 enable_mask;
3886         u32 error_mask;
3887
3888         /*
3889          * Enable some error detection, note the instruction error mask
3890          * bit is reserved, so we leave it masked.
3891          */
3892         if (IS_G4X(dev_priv)) {
3893                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3894                                GM45_ERROR_MEM_PRIV |
3895                                GM45_ERROR_CP_PRIV |
3896                                I915_ERROR_MEMORY_REFRESH);
3897         } else {
3898                 error_mask = ~(I915_ERROR_PAGE_TABLE |
3899                                I915_ERROR_MEMORY_REFRESH);
3900         }
3901         I915_WRITE(EMR, error_mask);
3902
3903         /* Unmask the interrupts that we always want on. */
3904         dev_priv->irq_mask =
3905                 ~(I915_ASLE_INTERRUPT |
3906                   I915_DISPLAY_PORT_INTERRUPT |
3907                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3908                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3909                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3910
3911         enable_mask =
3912                 I915_ASLE_INTERRUPT |
3913                 I915_DISPLAY_PORT_INTERRUPT |
3914                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3915                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3916                 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3917                 I915_USER_INTERRUPT;
3918
3919         if (IS_G4X(dev_priv))
3920                 enable_mask |= I915_BSD_USER_INTERRUPT;
3921
3922         GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
3923
3924         /* Interrupt setup is already guaranteed to be single-threaded, this is
3925          * just to make the assert_spin_locked check happy. */
3926         spin_lock_irq(&dev_priv->irq_lock);
3927         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3928         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3929         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3930         spin_unlock_irq(&dev_priv->irq_lock);
3931
3932         i915_enable_asle_pipestat(dev_priv);
3933
3934         return 0;
3935 }
3936
3937 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
3938 {
3939         u32 hotplug_en;
3940
3941         lockdep_assert_held(&dev_priv->irq_lock);
3942
3943         /* Note HDMI and DP share hotplug bits */
3944         /* enable bits are the same for all generations */
3945         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
3946         /* Programming the CRT detection parameters tends
3947            to generate a spurious hotplug event about three
3948            seconds later.  So just do it once.
3949         */
3950         if (IS_G4X(dev_priv))
3951                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3952         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3953
3954         /* Ignore TV since it's buggy */
3955         i915_hotplug_interrupt_update_locked(dev_priv,
3956                                              HOTPLUG_INT_EN_MASK |
3957                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
3958                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
3959                                              hotplug_en);
3960 }
3961
3962 static irqreturn_t i965_irq_handler(int irq, void *arg)
3963 {
3964         struct drm_device *dev = arg;
3965         struct drm_i915_private *dev_priv = to_i915(dev);
3966         irqreturn_t ret = IRQ_NONE;
3967
3968         if (!intel_irqs_enabled(dev_priv))
3969                 return IRQ_NONE;
3970
3971         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3972         disable_rpm_wakeref_asserts(dev_priv);
3973
3974         do {
3975                 u32 pipe_stats[I915_MAX_PIPES] = {};
3976                 u32 hotplug_status = 0;
3977                 u32 iir;
3978
3979                 iir = I915_READ(IIR);
3980                 if (iir == 0)
3981                         break;
3982
3983                 ret = IRQ_HANDLED;
3984
3985                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
3986                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3987
3988                 /* Call regardless, as some status bits might not be
3989                  * signalled in iir */
3990                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3991
3992                 I915_WRITE(IIR, iir);
3993
3994                 if (iir & I915_USER_INTERRUPT)
3995                         notify_ring(dev_priv->engine[RCS]);
3996
3997                 if (iir & I915_BSD_USER_INTERRUPT)
3998                         notify_ring(dev_priv->engine[VCS]);
3999
4000                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4001                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4002
4003                 if (hotplug_status)
4004                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4005
4006                 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4007         } while (0);
4008
4009         enable_rpm_wakeref_asserts(dev_priv);
4010
4011         return ret;
4012 }
4013
4014 /**
4015  * intel_irq_init - initializes irq support
4016  * @dev_priv: i915 device instance
4017  *
4018  * This function initializes all the irq support including work items, timers
4019  * and all the vtables. It does not setup the interrupt itself though.
4020  */
4021 void intel_irq_init(struct drm_i915_private *dev_priv)
4022 {
4023         struct drm_device *dev = &dev_priv->drm;
4024         struct intel_rps *rps = &dev_priv->gt_pm.rps;
4025         int i;
4026
4027         intel_hpd_init_work(dev_priv);
4028
4029         INIT_WORK(&rps->work, gen6_pm_rps_work);
4030
4031         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4032         for (i = 0; i < MAX_L3_SLICES; ++i)
4033                 dev_priv->l3_parity.remap_info[i] = NULL;
4034
4035         if (HAS_GUC_SCHED(dev_priv))
4036                 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4037
4038         /* Let's track the enabled rps events */
4039         if (IS_VALLEYVIEW(dev_priv))
4040                 /* WaGsvRC0ResidencyMethod:vlv */
4041                 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4042         else
4043                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4044
4045         rps->pm_intrmsk_mbz = 0;
4046
4047         /*
4048          * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4049          * if GEN6_PM_UP_EI_EXPIRED is masked.
4050          *
4051          * TODO: verify if this can be reproduced on VLV,CHV.
4052          */
4053         if (INTEL_GEN(dev_priv) <= 7)
4054                 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4055
4056         if (INTEL_GEN(dev_priv) >= 8)
4057                 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4058
4059         if (IS_GEN2(dev_priv)) {
4060                 /* Gen2 doesn't have a hardware frame counter */
4061                 dev->max_vblank_count = 0;
4062         } else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
4063                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4064                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4065         } else {
4066                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4067                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4068         }
4069
4070         /*
4071          * Opt out of the vblank disable timer on everything except gen2.
4072          * Gen2 doesn't have a hardware frame counter and so depends on
4073          * vblank interrupts to produce sane vblank seuquence numbers.
4074          */
4075         if (!IS_GEN2(dev_priv))
4076                 dev->vblank_disable_immediate = true;
4077
4078         /* Most platforms treat the display irq block as an always-on
4079          * power domain. vlv/chv can disable it at runtime and need
4080          * special care to avoid writing any of the display block registers
4081          * outside of the power domain. We defer setting up the display irqs
4082          * in this case to the runtime pm.
4083          */
4084         dev_priv->display_irqs_enabled = true;
4085         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4086                 dev_priv->display_irqs_enabled = false;
4087
4088         dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4089
4090         dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4091         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4092
4093         if (IS_CHERRYVIEW(dev_priv)) {
4094                 dev->driver->irq_handler = cherryview_irq_handler;
4095                 dev->driver->irq_preinstall = cherryview_irq_reset;
4096                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4097                 dev->driver->irq_uninstall = cherryview_irq_reset;
4098                 dev->driver->enable_vblank = i965_enable_vblank;
4099                 dev->driver->disable_vblank = i965_disable_vblank;
4100                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4101         } else if (IS_VALLEYVIEW(dev_priv)) {
4102                 dev->driver->irq_handler = valleyview_irq_handler;
4103                 dev->driver->irq_preinstall = valleyview_irq_reset;
4104                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4105                 dev->driver->irq_uninstall = valleyview_irq_reset;
4106                 dev->driver->enable_vblank = i965_enable_vblank;
4107                 dev->driver->disable_vblank = i965_disable_vblank;
4108                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4109         } else if (INTEL_GEN(dev_priv) >= 8) {
4110                 dev->driver->irq_handler = gen8_irq_handler;
4111                 dev->driver->irq_preinstall = gen8_irq_reset;
4112                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4113                 dev->driver->irq_uninstall = gen8_irq_reset;
4114                 dev->driver->enable_vblank = gen8_enable_vblank;
4115                 dev->driver->disable_vblank = gen8_disable_vblank;
4116                 if (IS_GEN9_LP(dev_priv))
4117                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4118                 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4119                          HAS_PCH_CNP(dev_priv))
4120                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4121                 else
4122                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4123         } else if (HAS_PCH_SPLIT(dev_priv)) {
4124                 dev->driver->irq_handler = ironlake_irq_handler;
4125                 dev->driver->irq_preinstall = ironlake_irq_reset;
4126                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4127                 dev->driver->irq_uninstall = ironlake_irq_reset;
4128                 dev->driver->enable_vblank = ironlake_enable_vblank;
4129                 dev->driver->disable_vblank = ironlake_disable_vblank;
4130                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4131         } else {
4132                 if (IS_GEN2(dev_priv)) {
4133                         dev->driver->irq_preinstall = i8xx_irq_reset;
4134                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4135                         dev->driver->irq_handler = i8xx_irq_handler;
4136                         dev->driver->irq_uninstall = i8xx_irq_reset;
4137                         dev->driver->enable_vblank = i8xx_enable_vblank;
4138                         dev->driver->disable_vblank = i8xx_disable_vblank;
4139                 } else if (IS_GEN3(dev_priv)) {
4140                         dev->driver->irq_preinstall = i915_irq_reset;
4141                         dev->driver->irq_postinstall = i915_irq_postinstall;
4142                         dev->driver->irq_uninstall = i915_irq_reset;
4143                         dev->driver->irq_handler = i915_irq_handler;
4144                         dev->driver->enable_vblank = i8xx_enable_vblank;
4145                         dev->driver->disable_vblank = i8xx_disable_vblank;
4146                 } else {
4147                         dev->driver->irq_preinstall = i965_irq_reset;
4148                         dev->driver->irq_postinstall = i965_irq_postinstall;
4149                         dev->driver->irq_uninstall = i965_irq_reset;
4150                         dev->driver->irq_handler = i965_irq_handler;
4151                         dev->driver->enable_vblank = i965_enable_vblank;
4152                         dev->driver->disable_vblank = i965_disable_vblank;
4153                 }
4154                 if (I915_HAS_HOTPLUG(dev_priv))
4155                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4156         }
4157 }
4158
4159 /**
4160  * intel_irq_fini - deinitializes IRQ support
4161  * @i915: i915 device instance
4162  *
4163  * This function deinitializes all the IRQ support.
4164  */
4165 void intel_irq_fini(struct drm_i915_private *i915)
4166 {
4167         int i;
4168
4169         for (i = 0; i < MAX_L3_SLICES; ++i)
4170                 kfree(i915->l3_parity.remap_info[i]);
4171 }
4172
4173 /**
4174  * intel_irq_install - enables the hardware interrupt
4175  * @dev_priv: i915 device instance
4176  *
4177  * This function enables the hardware interrupt handling, but leaves the hotplug
4178  * handling still disabled. It is called after intel_irq_init().
4179  *
4180  * In the driver load and resume code we need working interrupts in a few places
4181  * but don't want to deal with the hassle of concurrent probe and hotplug
4182  * workers. Hence the split into this two-stage approach.
4183  */
4184 int intel_irq_install(struct drm_i915_private *dev_priv)
4185 {
4186         /*
4187          * We enable some interrupt sources in our postinstall hooks, so mark
4188          * interrupts as enabled _before_ actually enabling them to avoid
4189          * special cases in our ordering checks.
4190          */
4191         dev_priv->runtime_pm.irqs_enabled = true;
4192
4193         return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4194 }
4195
4196 /**
4197  * intel_irq_uninstall - finilizes all irq handling
4198  * @dev_priv: i915 device instance
4199  *
4200  * This stops interrupt and hotplug handling and unregisters and frees all
4201  * resources acquired in the init functions.
4202  */
4203 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4204 {
4205         drm_irq_uninstall(&dev_priv->drm);
4206         intel_hpd_cancel_work(dev_priv);
4207         dev_priv->runtime_pm.irqs_enabled = false;
4208 }
4209
4210 /**
4211  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4212  * @dev_priv: i915 device instance
4213  *
4214  * This function is used to disable interrupts at runtime, both in the runtime
4215  * pm and the system suspend/resume code.
4216  */
4217 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4218 {
4219         dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4220         dev_priv->runtime_pm.irqs_enabled = false;
4221         synchronize_irq(dev_priv->drm.irq);
4222 }
4223
4224 /**
4225  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4226  * @dev_priv: i915 device instance
4227  *
4228  * This function is used to enable interrupts at runtime, both in the runtime
4229  * pm and the system suspend/resume code.
4230  */
4231 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4232 {
4233         dev_priv->runtime_pm.irqs_enabled = true;
4234         dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4235         dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4236 }
This page took 0.289375 seconds and 4 git commands to generate.