1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * zswap.c - zswap driver file
5 * zswap is a cache that takes pages that are in the process
6 * of being swapped out and attempts to compress and store them in a
7 * RAM-based memory pool. This can result in a significant I/O reduction on
8 * the swap device and, in the case where decompressing from RAM is faster
9 * than reading from the swap device, can also improve workload performance.
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/rbtree.h>
24 #include <linux/swap.h>
25 #include <linux/crypto.h>
26 #include <linux/scatterlist.h>
27 #include <linux/mempolicy.h>
28 #include <linux/mempool.h>
29 #include <linux/zpool.h>
30 #include <crypto/acompress.h>
31 #include <linux/zswap.h>
32 #include <linux/mm_types.h>
33 #include <linux/page-flags.h>
34 #include <linux/swapops.h>
35 #include <linux/writeback.h>
36 #include <linux/pagemap.h>
37 #include <linux/workqueue.h>
38 #include <linux/list_lru.h>
43 /*********************************
45 **********************************/
46 /* Total bytes used by the compressed storage */
47 u64 zswap_pool_total_size;
48 /* The number of compressed pages currently stored in zswap */
49 atomic_t zswap_stored_pages = ATOMIC_INIT(0);
50 /* The number of same-value filled pages currently stored in zswap */
51 static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0);
54 * The statistics below are not protected from concurrent access for
55 * performance reasons so they may not be a 100% accurate. However,
56 * they do provide useful information on roughly how many times a
57 * certain event is occurring.
60 /* Pool limit was hit (see zswap_max_pool_percent) */
61 static u64 zswap_pool_limit_hit;
62 /* Pages written back when pool limit was reached */
63 static u64 zswap_written_back_pages;
64 /* Store failed due to a reclaim failure after pool limit was reached */
65 static u64 zswap_reject_reclaim_fail;
66 /* Store failed due to compression algorithm failure */
67 static u64 zswap_reject_compress_fail;
68 /* Compressed page was too big for the allocator to (optimally) store */
69 static u64 zswap_reject_compress_poor;
70 /* Store failed because underlying allocator could not get memory */
71 static u64 zswap_reject_alloc_fail;
72 /* Store failed because the entry metadata could not be allocated (rare) */
73 static u64 zswap_reject_kmemcache_fail;
75 /* Shrinker work queue */
76 static struct workqueue_struct *shrink_wq;
77 /* Pool limit was hit, we need to calm down */
78 static bool zswap_pool_reached_full;
80 /*********************************
82 **********************************/
84 #define ZSWAP_PARAM_UNSET ""
86 static int zswap_setup(void);
88 /* Enable/disable zswap */
89 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
90 static int zswap_enabled_param_set(const char *,
91 const struct kernel_param *);
92 static const struct kernel_param_ops zswap_enabled_param_ops = {
93 .set = zswap_enabled_param_set,
94 .get = param_get_bool,
96 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
98 /* Crypto compressor to use */
99 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
100 static int zswap_compressor_param_set(const char *,
101 const struct kernel_param *);
102 static const struct kernel_param_ops zswap_compressor_param_ops = {
103 .set = zswap_compressor_param_set,
104 .get = param_get_charp,
105 .free = param_free_charp,
107 module_param_cb(compressor, &zswap_compressor_param_ops,
108 &zswap_compressor, 0644);
110 /* Compressed storage zpool to use */
111 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
112 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
113 static const struct kernel_param_ops zswap_zpool_param_ops = {
114 .set = zswap_zpool_param_set,
115 .get = param_get_charp,
116 .free = param_free_charp,
118 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
120 /* The maximum percentage of memory that the compressed pool can occupy */
121 static unsigned int zswap_max_pool_percent = 20;
122 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
124 /* The threshold for accepting new pages after the max_pool_percent was hit */
125 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
126 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
130 * Enable/disable handling same-value filled pages (enabled by default).
131 * If disabled every page is considered non-same-value filled.
133 static bool zswap_same_filled_pages_enabled = true;
134 module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled,
137 /* Enable/disable handling non-same-value filled pages (enabled by default) */
138 static bool zswap_non_same_filled_pages_enabled = true;
139 module_param_named(non_same_filled_pages_enabled, zswap_non_same_filled_pages_enabled,
142 /* Number of zpools in zswap_pool (empirically determined for scalability) */
143 #define ZSWAP_NR_ZPOOLS 32
145 /* Enable/disable memory pressure-based shrinker. */
146 static bool zswap_shrinker_enabled = IS_ENABLED(
147 CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
148 module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
150 bool is_zswap_enabled(void)
152 return zswap_enabled;
155 /*********************************
157 **********************************/
159 struct crypto_acomp_ctx {
160 struct crypto_acomp *acomp;
161 struct acomp_req *req;
162 struct crypto_wait wait;
169 * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
170 * The only case where lru_lock is not acquired while holding tree.lock is
171 * when a zswap_entry is taken off the lru for writeback, in that case it
172 * needs to be verified that it's still valid in the tree.
175 struct zpool *zpools[ZSWAP_NR_ZPOOLS];
176 struct crypto_acomp_ctx __percpu *acomp_ctx;
177 struct percpu_ref ref;
178 struct list_head list;
179 struct work_struct release_work;
180 struct hlist_node node;
181 char tfm_name[CRYPTO_MAX_ALG_NAME];
184 /* Global LRU lists shared by all zswap pools. */
185 static struct list_lru zswap_list_lru;
186 /* counter of pages stored in all zswap pools. */
187 static atomic_t zswap_nr_stored = ATOMIC_INIT(0);
189 /* The lock protects zswap_next_shrink updates. */
190 static DEFINE_SPINLOCK(zswap_shrink_lock);
191 static struct mem_cgroup *zswap_next_shrink;
192 static struct work_struct zswap_shrink_work;
193 static struct shrinker *zswap_shrinker;
198 * This structure contains the metadata for tracking a single compressed
201 * rbnode - links the entry into red-black tree for the appropriate swap type
202 * swpentry - associated swap entry, the offset indexes into the red-black tree
203 * length - the length in bytes of the compressed page data. Needed during
204 * decompression. For a same value filled page length is 0, and both
205 * pool and lru are invalid and must be ignored.
206 * pool - the zswap_pool the entry's data is in
207 * handle - zpool allocation handle that stores the compressed page data
208 * value - value of the same-value filled pages which have same content
209 * objcg - the obj_cgroup that the compressed memory is charged to
210 * lru - handle to the pool's lru used to evict pages.
213 struct rb_node rbnode;
214 swp_entry_t swpentry;
216 struct zswap_pool *pool;
218 unsigned long handle;
221 struct obj_cgroup *objcg;
222 struct list_head lru;
226 struct rb_root rbroot;
230 static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
231 static unsigned int nr_zswap_trees[MAX_SWAPFILES];
233 /* RCU-protected iteration */
234 static LIST_HEAD(zswap_pools);
235 /* protects zswap_pools list modification */
236 static DEFINE_SPINLOCK(zswap_pools_lock);
237 /* pool counter to provide unique names to zpool */
238 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
240 enum zswap_init_type {
246 static enum zswap_init_type zswap_init_state;
248 /* used to ensure the integrity of initialization */
249 static DEFINE_MUTEX(zswap_init_lock);
251 /* init completed, but couldn't create the initial pool */
252 static bool zswap_has_pool;
254 /*********************************
255 * helpers and fwd declarations
256 **********************************/
258 static inline struct zswap_tree *swap_zswap_tree(swp_entry_t swp)
260 return &zswap_trees[swp_type(swp)][swp_offset(swp)
261 >> SWAP_ADDRESS_SPACE_SHIFT];
264 #define zswap_pool_debug(msg, p) \
265 pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name, \
266 zpool_get_type((p)->zpools[0]))
268 static bool zswap_is_full(void)
270 return totalram_pages() * zswap_max_pool_percent / 100 <
271 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
274 static bool zswap_can_accept(void)
276 return totalram_pages() * zswap_accept_thr_percent / 100 *
277 zswap_max_pool_percent / 100 >
278 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
281 static u64 get_zswap_pool_size(struct zswap_pool *pool)
286 for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
287 pool_size += zpool_get_total_size(pool->zpools[i]);
292 static void zswap_update_total_size(void)
294 struct zswap_pool *pool;
299 list_for_each_entry_rcu(pool, &zswap_pools, list)
300 total += get_zswap_pool_size(pool);
304 zswap_pool_total_size = total;
307 /*********************************
309 **********************************/
310 static void __zswap_pool_empty(struct percpu_ref *ref);
312 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
315 struct zswap_pool *pool;
316 char name[38]; /* 'zswap' + 32 char (max) num + \0 */
317 gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
320 if (!zswap_has_pool) {
321 /* if either are unset, pool initialization failed, and we
322 * need both params to be set correctly before trying to
325 if (!strcmp(type, ZSWAP_PARAM_UNSET))
327 if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
331 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
335 for (i = 0; i < ZSWAP_NR_ZPOOLS; i++) {
336 /* unique name for each pool specifically required by zsmalloc */
337 snprintf(name, 38, "zswap%x",
338 atomic_inc_return(&zswap_pools_count));
340 pool->zpools[i] = zpool_create_pool(type, name, gfp);
341 if (!pool->zpools[i]) {
342 pr_err("%s zpool not available\n", type);
346 pr_debug("using %s zpool\n", zpool_get_type(pool->zpools[0]));
348 strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
350 pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
351 if (!pool->acomp_ctx) {
352 pr_err("percpu alloc failed\n");
356 ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
361 /* being the current pool takes 1 ref; this func expects the
362 * caller to always add the new pool as the current pool
364 ret = percpu_ref_init(&pool->ref, __zswap_pool_empty,
365 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL);
368 INIT_LIST_HEAD(&pool->list);
370 zswap_pool_debug("created", pool);
375 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
378 free_percpu(pool->acomp_ctx);
380 zpool_destroy_pool(pool->zpools[i]);
385 static struct zswap_pool *__zswap_pool_create_fallback(void)
387 bool has_comp, has_zpool;
389 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
390 if (!has_comp && strcmp(zswap_compressor,
391 CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
392 pr_err("compressor %s not available, using default %s\n",
393 zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
394 param_free_charp(&zswap_compressor);
395 zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
396 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
399 pr_err("default compressor %s not available\n",
401 param_free_charp(&zswap_compressor);
402 zswap_compressor = ZSWAP_PARAM_UNSET;
405 has_zpool = zpool_has_pool(zswap_zpool_type);
406 if (!has_zpool && strcmp(zswap_zpool_type,
407 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
408 pr_err("zpool %s not available, using default %s\n",
409 zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
410 param_free_charp(&zswap_zpool_type);
411 zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
412 has_zpool = zpool_has_pool(zswap_zpool_type);
415 pr_err("default zpool %s not available\n",
417 param_free_charp(&zswap_zpool_type);
418 zswap_zpool_type = ZSWAP_PARAM_UNSET;
421 if (!has_comp || !has_zpool)
424 return zswap_pool_create(zswap_zpool_type, zswap_compressor);
427 static void zswap_pool_destroy(struct zswap_pool *pool)
431 zswap_pool_debug("destroying", pool);
433 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
434 free_percpu(pool->acomp_ctx);
436 for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
437 zpool_destroy_pool(pool->zpools[i]);
441 static void __zswap_pool_release(struct work_struct *work)
443 struct zswap_pool *pool = container_of(work, typeof(*pool),
448 /* nobody should have been able to get a ref... */
449 WARN_ON(!percpu_ref_is_zero(&pool->ref));
450 percpu_ref_exit(&pool->ref);
452 /* pool is now off zswap_pools list and has no references. */
453 zswap_pool_destroy(pool);
456 static struct zswap_pool *zswap_pool_current(void);
458 static void __zswap_pool_empty(struct percpu_ref *ref)
460 struct zswap_pool *pool;
462 pool = container_of(ref, typeof(*pool), ref);
464 spin_lock_bh(&zswap_pools_lock);
466 WARN_ON(pool == zswap_pool_current());
468 list_del_rcu(&pool->list);
470 INIT_WORK(&pool->release_work, __zswap_pool_release);
471 schedule_work(&pool->release_work);
473 spin_unlock_bh(&zswap_pools_lock);
476 static int __must_check zswap_pool_get(struct zswap_pool *pool)
481 return percpu_ref_tryget(&pool->ref);
484 static void zswap_pool_put(struct zswap_pool *pool)
486 percpu_ref_put(&pool->ref);
489 static struct zswap_pool *__zswap_pool_current(void)
491 struct zswap_pool *pool;
493 pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
494 WARN_ONCE(!pool && zswap_has_pool,
495 "%s: no page storage pool!\n", __func__);
500 static struct zswap_pool *zswap_pool_current(void)
502 assert_spin_locked(&zswap_pools_lock);
504 return __zswap_pool_current();
507 static struct zswap_pool *zswap_pool_current_get(void)
509 struct zswap_pool *pool;
513 pool = __zswap_pool_current();
514 if (!zswap_pool_get(pool))
522 /* type and compressor must be null-terminated */
523 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
525 struct zswap_pool *pool;
527 assert_spin_locked(&zswap_pools_lock);
529 list_for_each_entry_rcu(pool, &zswap_pools, list) {
530 if (strcmp(pool->tfm_name, compressor))
532 /* all zpools share the same type */
533 if (strcmp(zpool_get_type(pool->zpools[0]), type))
535 /* if we can't get it, it's about to be destroyed */
536 if (!zswap_pool_get(pool))
544 /*********************************
546 **********************************/
548 static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
550 /* no change required */
551 if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
556 /* val must be a null-terminated string */
557 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
558 char *type, char *compressor)
560 struct zswap_pool *pool, *put_pool = NULL;
561 char *s = strstrip((char *)val);
563 bool new_pool = false;
565 mutex_lock(&zswap_init_lock);
566 switch (zswap_init_state) {
568 /* if this is load-time (pre-init) param setting,
569 * don't create a pool; that's done during init.
571 ret = param_set_charp(s, kp);
573 case ZSWAP_INIT_SUCCEED:
574 new_pool = zswap_pool_changed(s, kp);
576 case ZSWAP_INIT_FAILED:
577 pr_err("can't set param, initialization failed\n");
580 mutex_unlock(&zswap_init_lock);
582 /* no need to create a new pool, return directly */
587 if (!zpool_has_pool(s)) {
588 pr_err("zpool %s not available\n", s);
592 } else if (!compressor) {
593 if (!crypto_has_acomp(s, 0, 0)) {
594 pr_err("compressor %s not available\n", s);
603 spin_lock_bh(&zswap_pools_lock);
605 pool = zswap_pool_find_get(type, compressor);
607 zswap_pool_debug("using existing", pool);
608 WARN_ON(pool == zswap_pool_current());
609 list_del_rcu(&pool->list);
612 spin_unlock_bh(&zswap_pools_lock);
615 pool = zswap_pool_create(type, compressor);
618 * Restore the initial ref dropped by percpu_ref_kill()
619 * when the pool was decommissioned and switch it again
622 percpu_ref_resurrect(&pool->ref);
624 /* Drop the ref from zswap_pool_find_get(). */
625 zswap_pool_put(pool);
629 ret = param_set_charp(s, kp);
633 spin_lock_bh(&zswap_pools_lock);
636 put_pool = zswap_pool_current();
637 list_add_rcu(&pool->list, &zswap_pools);
638 zswap_has_pool = true;
640 /* add the possibly pre-existing pool to the end of the pools
641 * list; if it's new (and empty) then it'll be removed and
642 * destroyed by the put after we drop the lock
644 list_add_tail_rcu(&pool->list, &zswap_pools);
648 spin_unlock_bh(&zswap_pools_lock);
650 if (!zswap_has_pool && !pool) {
651 /* if initial pool creation failed, and this pool creation also
652 * failed, maybe both compressor and zpool params were bad.
653 * Allow changing this param, so pool creation will succeed
654 * when the other param is changed. We already verified this
655 * param is ok in the zpool_has_pool() or crypto_has_acomp()
658 ret = param_set_charp(s, kp);
661 /* drop the ref from either the old current pool,
662 * or the new pool we failed to add
665 percpu_ref_kill(&put_pool->ref);
670 static int zswap_compressor_param_set(const char *val,
671 const struct kernel_param *kp)
673 return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
676 static int zswap_zpool_param_set(const char *val,
677 const struct kernel_param *kp)
679 return __zswap_param_set(val, kp, NULL, zswap_compressor);
682 static int zswap_enabled_param_set(const char *val,
683 const struct kernel_param *kp)
687 /* if this is load-time (pre-init) param setting, only set param. */
688 if (system_state != SYSTEM_RUNNING)
689 return param_set_bool(val, kp);
691 mutex_lock(&zswap_init_lock);
692 switch (zswap_init_state) {
697 case ZSWAP_INIT_SUCCEED:
699 pr_err("can't enable, no pool configured\n");
701 ret = param_set_bool(val, kp);
703 case ZSWAP_INIT_FAILED:
704 pr_err("can't enable, initialization failed\n");
706 mutex_unlock(&zswap_init_lock);
711 /*********************************
713 **********************************/
715 /* should be called under RCU */
717 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
719 return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
722 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
728 static inline int entry_to_nid(struct zswap_entry *entry)
730 return page_to_nid(virt_to_page(entry));
733 static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
735 atomic_long_t *nr_zswap_protected;
736 unsigned long lru_size, old, new;
737 int nid = entry_to_nid(entry);
738 struct mem_cgroup *memcg;
739 struct lruvec *lruvec;
742 * Note that it is safe to use rcu_read_lock() here, even in the face of
743 * concurrent memcg offlining. Thanks to the memcg->kmemcg_id indirection
744 * used in list_lru lookup, only two scenarios are possible:
746 * 1. list_lru_add() is called before memcg->kmemcg_id is updated. The
747 * new entry will be reparented to memcg's parent's list_lru.
748 * 2. list_lru_add() is called after memcg->kmemcg_id is updated. The
749 * new entry will be added directly to memcg's parent's list_lru.
751 * Similar reasoning holds for list_lru_del().
754 memcg = mem_cgroup_from_entry(entry);
755 /* will always succeed */
756 list_lru_add(list_lru, &entry->lru, nid, memcg);
758 /* Update the protection area */
759 lru_size = list_lru_count_one(list_lru, nid, memcg);
760 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
761 nr_zswap_protected = &lruvec->zswap_lruvec_state.nr_zswap_protected;
762 old = atomic_long_inc_return(nr_zswap_protected);
764 * Decay to avoid overflow and adapt to changing workloads.
765 * This is based on LRU reclaim cost decaying heuristics.
768 new = old > lru_size / 4 ? old / 2 : old;
769 } while (!atomic_long_try_cmpxchg(nr_zswap_protected, &old, new));
773 static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
775 int nid = entry_to_nid(entry);
776 struct mem_cgroup *memcg;
779 memcg = mem_cgroup_from_entry(entry);
780 /* will always succeed */
781 list_lru_del(list_lru, &entry->lru, nid, memcg);
785 void zswap_lruvec_state_init(struct lruvec *lruvec)
787 atomic_long_set(&lruvec->zswap_lruvec_state.nr_zswap_protected, 0);
790 void zswap_folio_swapin(struct folio *folio)
792 struct lruvec *lruvec;
795 lruvec = folio_lruvec(folio);
796 atomic_long_inc(&lruvec->zswap_lruvec_state.nr_zswap_protected);
800 void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
802 /* lock out zswap shrinker walking memcg tree */
803 spin_lock(&zswap_shrink_lock);
804 if (zswap_next_shrink == memcg)
805 zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
806 spin_unlock(&zswap_shrink_lock);
809 /*********************************
811 **********************************/
812 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
814 struct rb_node *node = root->rb_node;
815 struct zswap_entry *entry;
816 pgoff_t entry_offset;
819 entry = rb_entry(node, struct zswap_entry, rbnode);
820 entry_offset = swp_offset(entry->swpentry);
821 if (entry_offset > offset)
822 node = node->rb_left;
823 else if (entry_offset < offset)
824 node = node->rb_right;
832 * In the case that a entry with the same offset is found, a pointer to
833 * the existing entry is stored in dupentry and the function returns -EEXIST
835 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
836 struct zswap_entry **dupentry)
838 struct rb_node **link = &root->rb_node, *parent = NULL;
839 struct zswap_entry *myentry;
840 pgoff_t myentry_offset, entry_offset = swp_offset(entry->swpentry);
844 myentry = rb_entry(parent, struct zswap_entry, rbnode);
845 myentry_offset = swp_offset(myentry->swpentry);
846 if (myentry_offset > entry_offset)
847 link = &(*link)->rb_left;
848 else if (myentry_offset < entry_offset)
849 link = &(*link)->rb_right;
855 rb_link_node(&entry->rbnode, parent, link);
856 rb_insert_color(&entry->rbnode, root);
860 static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
862 rb_erase(&entry->rbnode, root);
863 RB_CLEAR_NODE(&entry->rbnode);
866 /*********************************
867 * zswap entry functions
868 **********************************/
869 static struct kmem_cache *zswap_entry_cache;
871 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
873 struct zswap_entry *entry;
874 entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
877 RB_CLEAR_NODE(&entry->rbnode);
881 static void zswap_entry_cache_free(struct zswap_entry *entry)
883 kmem_cache_free(zswap_entry_cache, entry);
886 static struct zpool *zswap_find_zpool(struct zswap_entry *entry)
890 if (ZSWAP_NR_ZPOOLS > 1)
891 i = hash_ptr(entry, ilog2(ZSWAP_NR_ZPOOLS));
893 return entry->pool->zpools[i];
897 * Carries out the common pattern of freeing and entry's zpool allocation,
898 * freeing the entry itself, and decrementing the number of stored pages.
900 static void zswap_entry_free(struct zswap_entry *entry)
903 atomic_dec(&zswap_same_filled_pages);
905 zswap_lru_del(&zswap_list_lru, entry);
906 zpool_free(zswap_find_zpool(entry), entry->handle);
907 atomic_dec(&zswap_nr_stored);
908 zswap_pool_put(entry->pool);
911 obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
912 obj_cgroup_put(entry->objcg);
914 zswap_entry_cache_free(entry);
915 atomic_dec(&zswap_stored_pages);
916 zswap_update_total_size();
920 * The caller hold the tree lock and search the entry from the tree,
921 * so it must be on the tree, remove it from the tree and free it.
923 static void zswap_invalidate_entry(struct zswap_tree *tree,
924 struct zswap_entry *entry)
926 zswap_rb_erase(&tree->rbroot, entry);
927 zswap_entry_free(entry);
930 /*********************************
931 * compressed storage functions
932 **********************************/
933 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
935 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
936 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
937 struct crypto_acomp *acomp;
938 struct acomp_req *req;
941 mutex_init(&acomp_ctx->mutex);
943 acomp_ctx->buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
944 if (!acomp_ctx->buffer)
947 acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
949 pr_err("could not alloc crypto acomp %s : %ld\n",
950 pool->tfm_name, PTR_ERR(acomp));
951 ret = PTR_ERR(acomp);
954 acomp_ctx->acomp = acomp;
955 acomp_ctx->is_sleepable = acomp_is_async(acomp);
957 req = acomp_request_alloc(acomp_ctx->acomp);
959 pr_err("could not alloc crypto acomp_request %s\n",
964 acomp_ctx->req = req;
966 crypto_init_wait(&acomp_ctx->wait);
968 * if the backend of acomp is async zip, crypto_req_done() will wakeup
969 * crypto_wait_req(); if the backend of acomp is scomp, the callback
970 * won't be called, crypto_wait_req() will return without blocking.
972 acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
973 crypto_req_done, &acomp_ctx->wait);
978 crypto_free_acomp(acomp_ctx->acomp);
980 kfree(acomp_ctx->buffer);
984 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
986 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
987 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
989 if (!IS_ERR_OR_NULL(acomp_ctx)) {
990 if (!IS_ERR_OR_NULL(acomp_ctx->req))
991 acomp_request_free(acomp_ctx->req);
992 if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
993 crypto_free_acomp(acomp_ctx->acomp);
994 kfree(acomp_ctx->buffer);
1000 static bool zswap_compress(struct folio *folio, struct zswap_entry *entry)
1002 struct crypto_acomp_ctx *acomp_ctx;
1003 struct scatterlist input, output;
1004 int comp_ret = 0, alloc_ret = 0;
1005 unsigned int dlen = PAGE_SIZE;
1006 unsigned long handle;
1007 struct zpool *zpool;
1012 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1014 mutex_lock(&acomp_ctx->mutex);
1016 dst = acomp_ctx->buffer;
1017 sg_init_table(&input, 1);
1018 sg_set_page(&input, &folio->page, PAGE_SIZE, 0);
1021 * We need PAGE_SIZE * 2 here since there maybe over-compression case,
1022 * and hardware-accelerators may won't check the dst buffer size, so
1023 * giving the dst buffer with enough length to avoid buffer overflow.
1025 sg_init_one(&output, dst, PAGE_SIZE * 2);
1026 acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
1029 * it maybe looks a little bit silly that we send an asynchronous request,
1030 * then wait for its completion synchronously. This makes the process look
1031 * synchronous in fact.
1032 * Theoretically, acomp supports users send multiple acomp requests in one
1033 * acomp instance, then get those requests done simultaneously. but in this
1034 * case, zswap actually does store and load page by page, there is no
1035 * existing method to send the second page before the first page is done
1036 * in one thread doing zwap.
1037 * but in different threads running on different cpu, we have different
1038 * acomp instance, so multiple threads can do (de)compression in parallel.
1040 comp_ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
1041 dlen = acomp_ctx->req->dlen;
1045 zpool = zswap_find_zpool(entry);
1046 gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1047 if (zpool_malloc_support_movable(zpool))
1048 gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
1049 alloc_ret = zpool_malloc(zpool, dlen, gfp, &handle);
1053 buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO);
1054 memcpy(buf, dst, dlen);
1055 zpool_unmap_handle(zpool, handle);
1057 entry->handle = handle;
1058 entry->length = dlen;
1061 if (comp_ret == -ENOSPC || alloc_ret == -ENOSPC)
1062 zswap_reject_compress_poor++;
1064 zswap_reject_compress_fail++;
1066 zswap_reject_alloc_fail++;
1068 mutex_unlock(&acomp_ctx->mutex);
1069 return comp_ret == 0 && alloc_ret == 0;
1072 static void zswap_decompress(struct zswap_entry *entry, struct page *page)
1074 struct zpool *zpool = zswap_find_zpool(entry);
1075 struct scatterlist input, output;
1076 struct crypto_acomp_ctx *acomp_ctx;
1079 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1080 mutex_lock(&acomp_ctx->mutex);
1082 src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO);
1083 if (acomp_ctx->is_sleepable && !zpool_can_sleep_mapped(zpool)) {
1084 memcpy(acomp_ctx->buffer, src, entry->length);
1085 src = acomp_ctx->buffer;
1086 zpool_unmap_handle(zpool, entry->handle);
1089 sg_init_one(&input, src, entry->length);
1090 sg_init_table(&output, 1);
1091 sg_set_page(&output, page, PAGE_SIZE, 0);
1092 acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE);
1093 BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait));
1094 BUG_ON(acomp_ctx->req->dlen != PAGE_SIZE);
1095 mutex_unlock(&acomp_ctx->mutex);
1097 if (!acomp_ctx->is_sleepable || zpool_can_sleep_mapped(zpool))
1098 zpool_unmap_handle(zpool, entry->handle);
1101 /*********************************
1103 **********************************/
1105 * Attempts to free an entry by adding a folio to the swap cache,
1106 * decompressing the entry data into the folio, and issuing a
1107 * bio write to write the folio back to the swap device.
1109 * This can be thought of as a "resumed writeback" of the folio
1110 * to the swap device. We are basically resuming the same swap
1111 * writeback path that was intercepted with the zswap_store()
1112 * in the first place. After the folio has been decompressed into
1113 * the swap cache, the compressed version stored by zswap can be
1116 static int zswap_writeback_entry(struct zswap_entry *entry,
1117 swp_entry_t swpentry)
1119 struct zswap_tree *tree;
1120 struct folio *folio;
1121 struct mempolicy *mpol;
1122 bool folio_was_allocated;
1123 struct writeback_control wbc = {
1124 .sync_mode = WB_SYNC_NONE,
1127 /* try to allocate swap cache folio */
1128 mpol = get_task_policy(current);
1129 folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
1130 NO_INTERLEAVE_INDEX, &folio_was_allocated, true);
1135 * Found an existing folio, we raced with swapin or concurrent
1136 * shrinker. We generally writeback cold folios from zswap, and
1137 * swapin means the folio just became hot, so skip this folio.
1138 * For unlikely concurrent shrinker case, it will be unlinked
1139 * and freed when invalidated by the concurrent shrinker anyway.
1141 if (!folio_was_allocated) {
1147 * folio is locked, and the swapcache is now secured against
1148 * concurrent swapping to and from the slot, and concurrent
1149 * swapoff so we can safely dereference the zswap tree here.
1150 * Verify that the swap entry hasn't been invalidated and recycled
1151 * behind our backs, to avoid overwriting a new swap folio with
1152 * old compressed data. Only when this is successful can the entry
1155 tree = swap_zswap_tree(swpentry);
1156 spin_lock(&tree->lock);
1157 if (zswap_rb_search(&tree->rbroot, swp_offset(swpentry)) != entry) {
1158 spin_unlock(&tree->lock);
1159 delete_from_swap_cache(folio);
1160 folio_unlock(folio);
1165 /* Safe to deref entry after the entry is verified above. */
1166 zswap_rb_erase(&tree->rbroot, entry);
1167 spin_unlock(&tree->lock);
1169 zswap_decompress(entry, &folio->page);
1171 count_vm_event(ZSWPWB);
1173 count_objcg_event(entry->objcg, ZSWPWB);
1175 zswap_entry_free(entry);
1177 /* folio is up to date */
1178 folio_mark_uptodate(folio);
1180 /* move it to the tail of the inactive list after end_writeback */
1181 folio_set_reclaim(folio);
1183 /* start writeback */
1184 __swap_writepage(folio, &wbc);
1190 /*********************************
1191 * shrinker functions
1192 **********************************/
1193 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
1194 spinlock_t *lock, void *arg)
1196 struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
1197 bool *encountered_page_in_swapcache = (bool *)arg;
1198 swp_entry_t swpentry;
1199 enum lru_status ret = LRU_REMOVED_RETRY;
1200 int writeback_result;
1203 * As soon as we drop the LRU lock, the entry can be freed by
1204 * a concurrent invalidation. This means the following:
1206 * 1. We extract the swp_entry_t to the stack, allowing
1207 * zswap_writeback_entry() to pin the swap entry and
1208 * then validate the zwap entry against that swap entry's
1209 * tree using pointer value comparison. Only when that
1210 * is successful can the entry be dereferenced.
1212 * 2. Usually, objects are taken off the LRU for reclaim. In
1213 * this case this isn't possible, because if reclaim fails
1214 * for whatever reason, we have no means of knowing if the
1215 * entry is alive to put it back on the LRU.
1217 * So rotate it before dropping the lock. If the entry is
1218 * written back or invalidated, the free path will unlink
1219 * it. For failures, rotation is the right thing as well.
1221 * Temporary failures, where the same entry should be tried
1222 * again immediately, almost never happen for this shrinker.
1223 * We don't do any trylocking; -ENOMEM comes closest,
1224 * but that's extremely rare and doesn't happen spuriously
1225 * either. Don't bother distinguishing this case.
1227 list_move_tail(item, &l->list);
1230 * Once the lru lock is dropped, the entry might get freed. The
1231 * swpentry is copied to the stack, and entry isn't deref'd again
1232 * until the entry is verified to still be alive in the tree.
1234 swpentry = entry->swpentry;
1237 * It's safe to drop the lock here because we return either
1238 * LRU_REMOVED_RETRY or LRU_RETRY.
1242 writeback_result = zswap_writeback_entry(entry, swpentry);
1244 if (writeback_result) {
1245 zswap_reject_reclaim_fail++;
1249 * Encountering a page already in swap cache is a sign that we are shrinking
1250 * into the warmer region. We should terminate shrinking (if we're in the dynamic
1251 * shrinker context).
1253 if (writeback_result == -EEXIST && encountered_page_in_swapcache) {
1255 *encountered_page_in_swapcache = true;
1258 zswap_written_back_pages++;
1265 static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
1266 struct shrink_control *sc)
1268 struct lruvec *lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
1269 unsigned long shrink_ret, nr_protected, lru_size;
1270 bool encountered_page_in_swapcache = false;
1272 if (!zswap_shrinker_enabled ||
1273 !mem_cgroup_zswap_writeback_enabled(sc->memcg)) {
1279 atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
1280 lru_size = list_lru_shrink_count(&zswap_list_lru, sc);
1283 * Abort if we are shrinking into the protected region.
1285 * This short-circuiting is necessary because if we have too many multiple
1286 * concurrent reclaimers getting the freeable zswap object counts at the
1287 * same time (before any of them made reasonable progress), the total
1288 * number of reclaimed objects might be more than the number of unprotected
1289 * objects (i.e the reclaimers will reclaim into the protected area of the
1292 if (nr_protected >= lru_size - sc->nr_to_scan) {
1297 shrink_ret = list_lru_shrink_walk(&zswap_list_lru, sc, &shrink_memcg_cb,
1298 &encountered_page_in_swapcache);
1300 if (encountered_page_in_swapcache)
1303 return shrink_ret ? shrink_ret : SHRINK_STOP;
1306 static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
1307 struct shrink_control *sc)
1309 struct mem_cgroup *memcg = sc->memcg;
1310 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
1311 unsigned long nr_backing, nr_stored, nr_freeable, nr_protected;
1313 if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg))
1316 #ifdef CONFIG_MEMCG_KMEM
1317 mem_cgroup_flush_stats(memcg);
1318 nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
1319 nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
1321 /* use pool stats instead of memcg stats */
1322 nr_backing = zswap_pool_total_size >> PAGE_SHIFT;
1323 nr_stored = atomic_read(&zswap_nr_stored);
1330 atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
1331 nr_freeable = list_lru_shrink_count(&zswap_list_lru, sc);
1333 * Subtract the lru size by an estimate of the number of pages
1334 * that should be protected.
1336 nr_freeable = nr_freeable > nr_protected ? nr_freeable - nr_protected : 0;
1339 * Scale the number of freeable pages by the memory saving factor.
1340 * This ensures that the better zswap compresses memory, the fewer
1341 * pages we will evict to swap (as it will otherwise incur IO for
1342 * relatively small memory saving).
1344 return mult_frac(nr_freeable, nr_backing, nr_stored);
1347 static struct shrinker *zswap_alloc_shrinker(void)
1349 struct shrinker *shrinker;
1352 shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
1356 shrinker->scan_objects = zswap_shrinker_scan;
1357 shrinker->count_objects = zswap_shrinker_count;
1358 shrinker->batch = 0;
1359 shrinker->seeks = DEFAULT_SEEKS;
1363 static int shrink_memcg(struct mem_cgroup *memcg)
1365 int nid, shrunk = 0;
1367 if (!mem_cgroup_zswap_writeback_enabled(memcg))
1371 * Skip zombies because their LRUs are reparented and we would be
1372 * reclaiming from the parent instead of the dead memcg.
1374 if (memcg && !mem_cgroup_online(memcg))
1377 for_each_node_state(nid, N_NORMAL_MEMORY) {
1378 unsigned long nr_to_walk = 1;
1380 shrunk += list_lru_walk_one(&zswap_list_lru, nid, memcg,
1381 &shrink_memcg_cb, NULL, &nr_to_walk);
1383 return shrunk ? 0 : -EAGAIN;
1386 static void shrink_worker(struct work_struct *w)
1388 struct mem_cgroup *memcg;
1389 int ret, failures = 0;
1391 /* global reclaim will select cgroup in a round-robin fashion. */
1393 spin_lock(&zswap_shrink_lock);
1394 zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
1395 memcg = zswap_next_shrink;
1398 * We need to retry if we have gone through a full round trip, or if we
1399 * got an offline memcg (or else we risk undoing the effect of the
1400 * zswap memcg offlining cleanup callback). This is not catastrophic
1401 * per se, but it will keep the now offlined memcg hostage for a while.
1403 * Note that if we got an online memcg, we will keep the extra
1404 * reference in case the original reference obtained by mem_cgroup_iter
1405 * is dropped by the zswap memcg offlining callback, ensuring that the
1406 * memcg is not killed when we are reclaiming.
1409 spin_unlock(&zswap_shrink_lock);
1410 if (++failures == MAX_RECLAIM_RETRIES)
1416 if (!mem_cgroup_tryget_online(memcg)) {
1417 /* drop the reference from mem_cgroup_iter() */
1418 mem_cgroup_iter_break(NULL, memcg);
1419 zswap_next_shrink = NULL;
1420 spin_unlock(&zswap_shrink_lock);
1422 if (++failures == MAX_RECLAIM_RETRIES)
1427 spin_unlock(&zswap_shrink_lock);
1429 ret = shrink_memcg(memcg);
1430 /* drop the extra reference */
1431 mem_cgroup_put(memcg);
1435 if (ret && ++failures == MAX_RECLAIM_RETRIES)
1440 } while (!zswap_can_accept());
1443 static int zswap_is_page_same_filled(void *ptr, unsigned long *value)
1445 unsigned long *page;
1447 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
1449 page = (unsigned long *)ptr;
1452 if (val != page[last_pos])
1455 for (pos = 1; pos < last_pos; pos++) {
1456 if (val != page[pos])
1465 static void zswap_fill_page(void *ptr, unsigned long value)
1467 unsigned long *page;
1469 page = (unsigned long *)ptr;
1470 memset_l(page, value, PAGE_SIZE / sizeof(unsigned long));
1473 bool zswap_store(struct folio *folio)
1475 swp_entry_t swp = folio->swap;
1476 pgoff_t offset = swp_offset(swp);
1477 struct zswap_tree *tree = swap_zswap_tree(swp);
1478 struct zswap_entry *entry, *dupentry;
1479 struct obj_cgroup *objcg = NULL;
1480 struct mem_cgroup *memcg = NULL;
1482 VM_WARN_ON_ONCE(!folio_test_locked(folio));
1483 VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
1485 /* Large folios aren't supported */
1486 if (folio_test_large(folio))
1492 objcg = get_obj_cgroup_from_folio(folio);
1493 if (objcg && !obj_cgroup_may_zswap(objcg)) {
1494 memcg = get_mem_cgroup_from_objcg(objcg);
1495 if (shrink_memcg(memcg)) {
1496 mem_cgroup_put(memcg);
1499 mem_cgroup_put(memcg);
1502 /* reclaim space if needed */
1503 if (zswap_is_full()) {
1504 zswap_pool_limit_hit++;
1505 zswap_pool_reached_full = true;
1509 if (zswap_pool_reached_full) {
1510 if (!zswap_can_accept())
1513 zswap_pool_reached_full = false;
1516 /* allocate entry */
1517 entry = zswap_entry_cache_alloc(GFP_KERNEL, folio_nid(folio));
1519 zswap_reject_kmemcache_fail++;
1523 if (zswap_same_filled_pages_enabled) {
1524 unsigned long value;
1527 src = kmap_local_folio(folio, 0);
1528 if (zswap_is_page_same_filled(src, &value)) {
1531 entry->value = value;
1532 atomic_inc(&zswap_same_filled_pages);
1538 if (!zswap_non_same_filled_pages_enabled)
1541 /* if entry is successfully added, it keeps the reference */
1542 entry->pool = zswap_pool_current_get();
1547 memcg = get_mem_cgroup_from_objcg(objcg);
1548 if (memcg_list_lru_alloc(memcg, &zswap_list_lru, GFP_KERNEL)) {
1549 mem_cgroup_put(memcg);
1552 mem_cgroup_put(memcg);
1555 if (!zswap_compress(folio, entry))
1559 entry->swpentry = swp;
1560 entry->objcg = objcg;
1562 obj_cgroup_charge_zswap(objcg, entry->length);
1563 /* Account before objcg ref is moved to tree */
1564 count_objcg_event(objcg, ZSWPOUT);
1568 spin_lock(&tree->lock);
1570 * The folio may have been dirtied again, invalidate the
1571 * possibly stale entry before inserting the new entry.
1573 if (zswap_rb_insert(&tree->rbroot, entry, &dupentry) == -EEXIST) {
1574 zswap_invalidate_entry(tree, dupentry);
1575 WARN_ON(zswap_rb_insert(&tree->rbroot, entry, &dupentry));
1577 if (entry->length) {
1578 INIT_LIST_HEAD(&entry->lru);
1579 zswap_lru_add(&zswap_list_lru, entry);
1580 atomic_inc(&zswap_nr_stored);
1582 spin_unlock(&tree->lock);
1585 atomic_inc(&zswap_stored_pages);
1586 zswap_update_total_size();
1587 count_vm_event(ZSWPOUT);
1592 zswap_pool_put(entry->pool);
1594 zswap_entry_cache_free(entry);
1597 obj_cgroup_put(objcg);
1600 * If the zswap store fails or zswap is disabled, we must invalidate the
1601 * possibly stale entry which was previously stored at this offset.
1602 * Otherwise, writeback could overwrite the new data in the swapfile.
1604 spin_lock(&tree->lock);
1605 entry = zswap_rb_search(&tree->rbroot, offset);
1607 zswap_invalidate_entry(tree, entry);
1608 spin_unlock(&tree->lock);
1612 queue_work(shrink_wq, &zswap_shrink_work);
1616 bool zswap_load(struct folio *folio)
1618 swp_entry_t swp = folio->swap;
1619 pgoff_t offset = swp_offset(swp);
1620 struct page *page = &folio->page;
1621 struct zswap_tree *tree = swap_zswap_tree(swp);
1622 struct zswap_entry *entry;
1625 VM_WARN_ON_ONCE(!folio_test_locked(folio));
1627 spin_lock(&tree->lock);
1628 entry = zswap_rb_search(&tree->rbroot, offset);
1630 spin_unlock(&tree->lock);
1633 zswap_rb_erase(&tree->rbroot, entry);
1634 spin_unlock(&tree->lock);
1637 zswap_decompress(entry, page);
1639 dst = kmap_local_page(page);
1640 zswap_fill_page(dst, entry->value);
1644 count_vm_event(ZSWPIN);
1646 count_objcg_event(entry->objcg, ZSWPIN);
1648 zswap_entry_free(entry);
1650 folio_mark_dirty(folio);
1655 void zswap_invalidate(swp_entry_t swp)
1657 pgoff_t offset = swp_offset(swp);
1658 struct zswap_tree *tree = swap_zswap_tree(swp);
1659 struct zswap_entry *entry;
1661 spin_lock(&tree->lock);
1662 entry = zswap_rb_search(&tree->rbroot, offset);
1664 zswap_invalidate_entry(tree, entry);
1665 spin_unlock(&tree->lock);
1668 int zswap_swapon(int type, unsigned long nr_pages)
1670 struct zswap_tree *trees, *tree;
1673 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
1674 trees = kvcalloc(nr, sizeof(*tree), GFP_KERNEL);
1676 pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1680 for (i = 0; i < nr; i++) {
1682 tree->rbroot = RB_ROOT;
1683 spin_lock_init(&tree->lock);
1686 nr_zswap_trees[type] = nr;
1687 zswap_trees[type] = trees;
1691 void zswap_swapoff(int type)
1693 struct zswap_tree *trees = zswap_trees[type];
1699 /* try_to_unuse() invalidated all the entries already */
1700 for (i = 0; i < nr_zswap_trees[type]; i++)
1701 WARN_ON_ONCE(!RB_EMPTY_ROOT(&trees[i].rbroot));
1704 nr_zswap_trees[type] = 0;
1705 zswap_trees[type] = NULL;
1708 /*********************************
1710 **********************************/
1711 #ifdef CONFIG_DEBUG_FS
1712 #include <linux/debugfs.h>
1714 static struct dentry *zswap_debugfs_root;
1716 static int zswap_debugfs_init(void)
1718 if (!debugfs_initialized())
1721 zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1723 debugfs_create_u64("pool_limit_hit", 0444,
1724 zswap_debugfs_root, &zswap_pool_limit_hit);
1725 debugfs_create_u64("reject_reclaim_fail", 0444,
1726 zswap_debugfs_root, &zswap_reject_reclaim_fail);
1727 debugfs_create_u64("reject_alloc_fail", 0444,
1728 zswap_debugfs_root, &zswap_reject_alloc_fail);
1729 debugfs_create_u64("reject_kmemcache_fail", 0444,
1730 zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1731 debugfs_create_u64("reject_compress_fail", 0444,
1732 zswap_debugfs_root, &zswap_reject_compress_fail);
1733 debugfs_create_u64("reject_compress_poor", 0444,
1734 zswap_debugfs_root, &zswap_reject_compress_poor);
1735 debugfs_create_u64("written_back_pages", 0444,
1736 zswap_debugfs_root, &zswap_written_back_pages);
1737 debugfs_create_u64("pool_total_size", 0444,
1738 zswap_debugfs_root, &zswap_pool_total_size);
1739 debugfs_create_atomic_t("stored_pages", 0444,
1740 zswap_debugfs_root, &zswap_stored_pages);
1741 debugfs_create_atomic_t("same_filled_pages", 0444,
1742 zswap_debugfs_root, &zswap_same_filled_pages);
1747 static int zswap_debugfs_init(void)
1753 /*********************************
1754 * module init and exit
1755 **********************************/
1756 static int zswap_setup(void)
1758 struct zswap_pool *pool;
1761 zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1762 if (!zswap_entry_cache) {
1763 pr_err("entry cache creation failed\n");
1767 ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1768 "mm/zswap_pool:prepare",
1769 zswap_cpu_comp_prepare,
1770 zswap_cpu_comp_dead);
1774 shrink_wq = alloc_workqueue("zswap-shrink",
1775 WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
1777 goto shrink_wq_fail;
1779 zswap_shrinker = zswap_alloc_shrinker();
1780 if (!zswap_shrinker)
1782 if (list_lru_init_memcg(&zswap_list_lru, zswap_shrinker))
1784 shrinker_register(zswap_shrinker);
1786 INIT_WORK(&zswap_shrink_work, shrink_worker);
1788 pool = __zswap_pool_create_fallback();
1790 pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1791 zpool_get_type(pool->zpools[0]));
1792 list_add(&pool->list, &zswap_pools);
1793 zswap_has_pool = true;
1795 pr_err("pool creation failed\n");
1796 zswap_enabled = false;
1799 if (zswap_debugfs_init())
1800 pr_warn("debugfs initialization failed\n");
1801 zswap_init_state = ZSWAP_INIT_SUCCEED;
1805 shrinker_free(zswap_shrinker);
1807 destroy_workqueue(shrink_wq);
1809 cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE);
1811 kmem_cache_destroy(zswap_entry_cache);
1813 /* if built-in, we aren't unloaded on failure; don't allow use */
1814 zswap_init_state = ZSWAP_INIT_FAILED;
1815 zswap_enabled = false;
1819 static int __init zswap_init(void)
1823 return zswap_setup();
1825 /* must be late so crypto has time to come up */
1826 late_initcall(zswap_init);
1829 MODULE_DESCRIPTION("Compressed cache for swap pages");