]> Git Repo - linux.git/blob - mm/madvise.c
Merge tag 'tomoyo-pr-20250211' of git://git.code.sf.net/p/tomoyo/tomoyo
[linux.git] / mm / madvise.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *      linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/mm_inline.h>
22 #include <linux/string.h>
23 #include <linux/uio.h>
24 #include <linux/ksm.h>
25 #include <linux/fs.h>
26 #include <linux/file.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagewalk.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/mmu_notifier.h>
34
35 #include <asm/tlb.h>
36
37 #include "internal.h"
38 #include "swap.h"
39
40 /*
41  * Maximum number of attempts we make to install guard pages before we give up
42  * and return -ERESTARTNOINTR to have userspace try again.
43  */
44 #define MAX_MADVISE_GUARD_RETRIES 3
45
46 struct madvise_walk_private {
47         struct mmu_gather *tlb;
48         bool pageout;
49 };
50
51 /*
52  * Any behaviour which results in changes to the vma->vm_flags needs to
53  * take mmap_lock for writing. Others, which simply traverse vmas, need
54  * to only take it for reading.
55  */
56 static int madvise_need_mmap_write(int behavior)
57 {
58         switch (behavior) {
59         case MADV_REMOVE:
60         case MADV_WILLNEED:
61         case MADV_DONTNEED:
62         case MADV_DONTNEED_LOCKED:
63         case MADV_COLD:
64         case MADV_PAGEOUT:
65         case MADV_FREE:
66         case MADV_POPULATE_READ:
67         case MADV_POPULATE_WRITE:
68         case MADV_COLLAPSE:
69         case MADV_GUARD_INSTALL:
70         case MADV_GUARD_REMOVE:
71                 return 0;
72         default:
73                 /* be safe, default to 1. list exceptions explicitly */
74                 return 1;
75         }
76 }
77
78 #ifdef CONFIG_ANON_VMA_NAME
79 struct anon_vma_name *anon_vma_name_alloc(const char *name)
80 {
81         struct anon_vma_name *anon_name;
82         size_t count;
83
84         /* Add 1 for NUL terminator at the end of the anon_name->name */
85         count = strlen(name) + 1;
86         anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
87         if (anon_name) {
88                 kref_init(&anon_name->kref);
89                 memcpy(anon_name->name, name, count);
90         }
91
92         return anon_name;
93 }
94
95 void anon_vma_name_free(struct kref *kref)
96 {
97         struct anon_vma_name *anon_name =
98                         container_of(kref, struct anon_vma_name, kref);
99         kfree(anon_name);
100 }
101
102 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
103 {
104         mmap_assert_locked(vma->vm_mm);
105
106         return vma->anon_name;
107 }
108
109 /* mmap_lock should be write-locked */
110 static int replace_anon_vma_name(struct vm_area_struct *vma,
111                                  struct anon_vma_name *anon_name)
112 {
113         struct anon_vma_name *orig_name = anon_vma_name(vma);
114
115         if (!anon_name) {
116                 vma->anon_name = NULL;
117                 anon_vma_name_put(orig_name);
118                 return 0;
119         }
120
121         if (anon_vma_name_eq(orig_name, anon_name))
122                 return 0;
123
124         vma->anon_name = anon_vma_name_reuse(anon_name);
125         anon_vma_name_put(orig_name);
126
127         return 0;
128 }
129 #else /* CONFIG_ANON_VMA_NAME */
130 static int replace_anon_vma_name(struct vm_area_struct *vma,
131                                  struct anon_vma_name *anon_name)
132 {
133         if (anon_name)
134                 return -EINVAL;
135
136         return 0;
137 }
138 #endif /* CONFIG_ANON_VMA_NAME */
139 /*
140  * Update the vm_flags on region of a vma, splitting it or merging it as
141  * necessary.  Must be called with mmap_lock held for writing;
142  * Caller should ensure anon_name stability by raising its refcount even when
143  * anon_name belongs to a valid vma because this function might free that vma.
144  */
145 static int madvise_update_vma(struct vm_area_struct *vma,
146                               struct vm_area_struct **prev, unsigned long start,
147                               unsigned long end, unsigned long new_flags,
148                               struct anon_vma_name *anon_name)
149 {
150         struct mm_struct *mm = vma->vm_mm;
151         int error;
152         VMA_ITERATOR(vmi, mm, start);
153
154         if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
155                 *prev = vma;
156                 return 0;
157         }
158
159         vma = vma_modify_flags_name(&vmi, *prev, vma, start, end, new_flags,
160                                     anon_name);
161         if (IS_ERR(vma))
162                 return PTR_ERR(vma);
163
164         *prev = vma;
165
166         /* vm_flags is protected by the mmap_lock held in write mode. */
167         vma_start_write(vma);
168         vm_flags_reset(vma, new_flags);
169         if (!vma->vm_file || vma_is_anon_shmem(vma)) {
170                 error = replace_anon_vma_name(vma, anon_name);
171                 if (error)
172                         return error;
173         }
174
175         return 0;
176 }
177
178 #ifdef CONFIG_SWAP
179 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
180                 unsigned long end, struct mm_walk *walk)
181 {
182         struct vm_area_struct *vma = walk->private;
183         struct swap_iocb *splug = NULL;
184         pte_t *ptep = NULL;
185         spinlock_t *ptl;
186         unsigned long addr;
187
188         for (addr = start; addr < end; addr += PAGE_SIZE) {
189                 pte_t pte;
190                 swp_entry_t entry;
191                 struct folio *folio;
192
193                 if (!ptep++) {
194                         ptep = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
195                         if (!ptep)
196                                 break;
197                 }
198
199                 pte = ptep_get(ptep);
200                 if (!is_swap_pte(pte))
201                         continue;
202                 entry = pte_to_swp_entry(pte);
203                 if (unlikely(non_swap_entry(entry)))
204                         continue;
205
206                 pte_unmap_unlock(ptep, ptl);
207                 ptep = NULL;
208
209                 folio = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
210                                              vma, addr, &splug);
211                 if (folio)
212                         folio_put(folio);
213         }
214
215         if (ptep)
216                 pte_unmap_unlock(ptep, ptl);
217         swap_read_unplug(splug);
218         cond_resched();
219
220         return 0;
221 }
222
223 static const struct mm_walk_ops swapin_walk_ops = {
224         .pmd_entry              = swapin_walk_pmd_entry,
225         .walk_lock              = PGWALK_RDLOCK,
226 };
227
228 static void shmem_swapin_range(struct vm_area_struct *vma,
229                 unsigned long start, unsigned long end,
230                 struct address_space *mapping)
231 {
232         XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
233         pgoff_t end_index = linear_page_index(vma, end) - 1;
234         struct folio *folio;
235         struct swap_iocb *splug = NULL;
236
237         rcu_read_lock();
238         xas_for_each(&xas, folio, end_index) {
239                 unsigned long addr;
240                 swp_entry_t entry;
241
242                 if (!xa_is_value(folio))
243                         continue;
244                 entry = radix_to_swp_entry(folio);
245                 /* There might be swapin error entries in shmem mapping. */
246                 if (non_swap_entry(entry))
247                         continue;
248
249                 addr = vma->vm_start +
250                         ((xas.xa_index - vma->vm_pgoff) << PAGE_SHIFT);
251                 xas_pause(&xas);
252                 rcu_read_unlock();
253
254                 folio = read_swap_cache_async(entry, mapping_gfp_mask(mapping),
255                                              vma, addr, &splug);
256                 if (folio)
257                         folio_put(folio);
258
259                 rcu_read_lock();
260         }
261         rcu_read_unlock();
262         swap_read_unplug(splug);
263 }
264 #endif          /* CONFIG_SWAP */
265
266 /*
267  * Schedule all required I/O operations.  Do not wait for completion.
268  */
269 static long madvise_willneed(struct vm_area_struct *vma,
270                              struct vm_area_struct **prev,
271                              unsigned long start, unsigned long end)
272 {
273         struct mm_struct *mm = vma->vm_mm;
274         struct file *file = vma->vm_file;
275         loff_t offset;
276
277         *prev = vma;
278 #ifdef CONFIG_SWAP
279         if (!file) {
280                 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
281                 lru_add_drain(); /* Push any new pages onto the LRU now */
282                 return 0;
283         }
284
285         if (shmem_mapping(file->f_mapping)) {
286                 shmem_swapin_range(vma, start, end, file->f_mapping);
287                 lru_add_drain(); /* Push any new pages onto the LRU now */
288                 return 0;
289         }
290 #else
291         if (!file)
292                 return -EBADF;
293 #endif
294
295         if (IS_DAX(file_inode(file))) {
296                 /* no bad return value, but ignore advice */
297                 return 0;
298         }
299
300         /*
301          * Filesystem's fadvise may need to take various locks.  We need to
302          * explicitly grab a reference because the vma (and hence the
303          * vma's reference to the file) can go away as soon as we drop
304          * mmap_lock.
305          */
306         *prev = NULL;   /* tell sys_madvise we drop mmap_lock */
307         get_file(file);
308         offset = (loff_t)(start - vma->vm_start)
309                         + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
310         mmap_read_unlock(mm);
311         vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
312         fput(file);
313         mmap_read_lock(mm);
314         return 0;
315 }
316
317 static inline bool can_do_file_pageout(struct vm_area_struct *vma)
318 {
319         if (!vma->vm_file)
320                 return false;
321         /*
322          * paging out pagecache only for non-anonymous mappings that correspond
323          * to the files the calling process could (if tried) open for writing;
324          * otherwise we'd be including shared non-exclusive mappings, which
325          * opens a side channel.
326          */
327         return inode_owner_or_capable(&nop_mnt_idmap,
328                                       file_inode(vma->vm_file)) ||
329                file_permission(vma->vm_file, MAY_WRITE) == 0;
330 }
331
332 static inline int madvise_folio_pte_batch(unsigned long addr, unsigned long end,
333                                           struct folio *folio, pte_t *ptep,
334                                           pte_t pte, bool *any_young,
335                                           bool *any_dirty)
336 {
337         const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
338         int max_nr = (end - addr) / PAGE_SIZE;
339
340         return folio_pte_batch(folio, addr, ptep, pte, max_nr, fpb_flags, NULL,
341                                any_young, any_dirty);
342 }
343
344 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
345                                 unsigned long addr, unsigned long end,
346                                 struct mm_walk *walk)
347 {
348         struct madvise_walk_private *private = walk->private;
349         struct mmu_gather *tlb = private->tlb;
350         bool pageout = private->pageout;
351         struct mm_struct *mm = tlb->mm;
352         struct vm_area_struct *vma = walk->vma;
353         pte_t *start_pte, *pte, ptent;
354         spinlock_t *ptl;
355         struct folio *folio = NULL;
356         LIST_HEAD(folio_list);
357         bool pageout_anon_only_filter;
358         unsigned int batch_count = 0;
359         int nr;
360
361         if (fatal_signal_pending(current))
362                 return -EINTR;
363
364         pageout_anon_only_filter = pageout && !vma_is_anonymous(vma) &&
365                                         !can_do_file_pageout(vma);
366
367 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
368         if (pmd_trans_huge(*pmd)) {
369                 pmd_t orig_pmd;
370                 unsigned long next = pmd_addr_end(addr, end);
371
372                 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
373                 ptl = pmd_trans_huge_lock(pmd, vma);
374                 if (!ptl)
375                         return 0;
376
377                 orig_pmd = *pmd;
378                 if (is_huge_zero_pmd(orig_pmd))
379                         goto huge_unlock;
380
381                 if (unlikely(!pmd_present(orig_pmd))) {
382                         VM_BUG_ON(thp_migration_supported() &&
383                                         !is_pmd_migration_entry(orig_pmd));
384                         goto huge_unlock;
385                 }
386
387                 folio = pmd_folio(orig_pmd);
388
389                 /* Do not interfere with other mappings of this folio */
390                 if (folio_likely_mapped_shared(folio))
391                         goto huge_unlock;
392
393                 if (pageout_anon_only_filter && !folio_test_anon(folio))
394                         goto huge_unlock;
395
396                 if (next - addr != HPAGE_PMD_SIZE) {
397                         int err;
398
399                         folio_get(folio);
400                         spin_unlock(ptl);
401                         folio_lock(folio);
402                         err = split_folio(folio);
403                         folio_unlock(folio);
404                         folio_put(folio);
405                         if (!err)
406                                 goto regular_folio;
407                         return 0;
408                 }
409
410                 if (!pageout && pmd_young(orig_pmd)) {
411                         pmdp_invalidate(vma, addr, pmd);
412                         orig_pmd = pmd_mkold(orig_pmd);
413
414                         set_pmd_at(mm, addr, pmd, orig_pmd);
415                         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
416                 }
417
418                 folio_clear_referenced(folio);
419                 folio_test_clear_young(folio);
420                 if (folio_test_active(folio))
421                         folio_set_workingset(folio);
422                 if (pageout) {
423                         if (folio_isolate_lru(folio)) {
424                                 if (folio_test_unevictable(folio))
425                                         folio_putback_lru(folio);
426                                 else
427                                         list_add(&folio->lru, &folio_list);
428                         }
429                 } else
430                         folio_deactivate(folio);
431 huge_unlock:
432                 spin_unlock(ptl);
433                 if (pageout)
434                         reclaim_pages(&folio_list);
435                 return 0;
436         }
437
438 regular_folio:
439 #endif
440         tlb_change_page_size(tlb, PAGE_SIZE);
441 restart:
442         start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
443         if (!start_pte)
444                 return 0;
445         flush_tlb_batched_pending(mm);
446         arch_enter_lazy_mmu_mode();
447         for (; addr < end; pte += nr, addr += nr * PAGE_SIZE) {
448                 nr = 1;
449                 ptent = ptep_get(pte);
450
451                 if (++batch_count == SWAP_CLUSTER_MAX) {
452                         batch_count = 0;
453                         if (need_resched()) {
454                                 arch_leave_lazy_mmu_mode();
455                                 pte_unmap_unlock(start_pte, ptl);
456                                 cond_resched();
457                                 goto restart;
458                         }
459                 }
460
461                 if (pte_none(ptent))
462                         continue;
463
464                 if (!pte_present(ptent))
465                         continue;
466
467                 folio = vm_normal_folio(vma, addr, ptent);
468                 if (!folio || folio_is_zone_device(folio))
469                         continue;
470
471                 /*
472                  * If we encounter a large folio, only split it if it is not
473                  * fully mapped within the range we are operating on. Otherwise
474                  * leave it as is so that it can be swapped out whole. If we
475                  * fail to split a folio, leave it in place and advance to the
476                  * next pte in the range.
477                  */
478                 if (folio_test_large(folio)) {
479                         bool any_young;
480
481                         nr = madvise_folio_pte_batch(addr, end, folio, pte,
482                                                      ptent, &any_young, NULL);
483                         if (any_young)
484                                 ptent = pte_mkyoung(ptent);
485
486                         if (nr < folio_nr_pages(folio)) {
487                                 int err;
488
489                                 if (folio_likely_mapped_shared(folio))
490                                         continue;
491                                 if (pageout_anon_only_filter && !folio_test_anon(folio))
492                                         continue;
493                                 if (!folio_trylock(folio))
494                                         continue;
495                                 folio_get(folio);
496                                 arch_leave_lazy_mmu_mode();
497                                 pte_unmap_unlock(start_pte, ptl);
498                                 start_pte = NULL;
499                                 err = split_folio(folio);
500                                 folio_unlock(folio);
501                                 folio_put(folio);
502                                 start_pte = pte =
503                                         pte_offset_map_lock(mm, pmd, addr, &ptl);
504                                 if (!start_pte)
505                                         break;
506                                 arch_enter_lazy_mmu_mode();
507                                 if (!err)
508                                         nr = 0;
509                                 continue;
510                         }
511                 }
512
513                 /*
514                  * Do not interfere with other mappings of this folio and
515                  * non-LRU folio. If we have a large folio at this point, we
516                  * know it is fully mapped so if its mapcount is the same as its
517                  * number of pages, it must be exclusive.
518                  */
519                 if (!folio_test_lru(folio) ||
520                     folio_mapcount(folio) != folio_nr_pages(folio))
521                         continue;
522
523                 if (pageout_anon_only_filter && !folio_test_anon(folio))
524                         continue;
525
526                 if (!pageout && pte_young(ptent)) {
527                         clear_young_dirty_ptes(vma, addr, pte, nr,
528                                                CYDP_CLEAR_YOUNG);
529                         tlb_remove_tlb_entries(tlb, pte, nr, addr);
530                 }
531
532                 /*
533                  * We are deactivating a folio for accelerating reclaiming.
534                  * VM couldn't reclaim the folio unless we clear PG_young.
535                  * As a side effect, it makes confuse idle-page tracking
536                  * because they will miss recent referenced history.
537                  */
538                 folio_clear_referenced(folio);
539                 folio_test_clear_young(folio);
540                 if (folio_test_active(folio))
541                         folio_set_workingset(folio);
542                 if (pageout) {
543                         if (folio_isolate_lru(folio)) {
544                                 if (folio_test_unevictable(folio))
545                                         folio_putback_lru(folio);
546                                 else
547                                         list_add(&folio->lru, &folio_list);
548                         }
549                 } else
550                         folio_deactivate(folio);
551         }
552
553         if (start_pte) {
554                 arch_leave_lazy_mmu_mode();
555                 pte_unmap_unlock(start_pte, ptl);
556         }
557         if (pageout)
558                 reclaim_pages(&folio_list);
559         cond_resched();
560
561         return 0;
562 }
563
564 static const struct mm_walk_ops cold_walk_ops = {
565         .pmd_entry = madvise_cold_or_pageout_pte_range,
566         .walk_lock = PGWALK_RDLOCK,
567 };
568
569 static void madvise_cold_page_range(struct mmu_gather *tlb,
570                              struct vm_area_struct *vma,
571                              unsigned long addr, unsigned long end)
572 {
573         struct madvise_walk_private walk_private = {
574                 .pageout = false,
575                 .tlb = tlb,
576         };
577
578         tlb_start_vma(tlb, vma);
579         walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
580         tlb_end_vma(tlb, vma);
581 }
582
583 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
584 {
585         return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
586 }
587
588 static long madvise_cold(struct vm_area_struct *vma,
589                         struct vm_area_struct **prev,
590                         unsigned long start_addr, unsigned long end_addr)
591 {
592         struct mm_struct *mm = vma->vm_mm;
593         struct mmu_gather tlb;
594
595         *prev = vma;
596         if (!can_madv_lru_vma(vma))
597                 return -EINVAL;
598
599         lru_add_drain();
600         tlb_gather_mmu(&tlb, mm);
601         madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
602         tlb_finish_mmu(&tlb);
603
604         return 0;
605 }
606
607 static void madvise_pageout_page_range(struct mmu_gather *tlb,
608                              struct vm_area_struct *vma,
609                              unsigned long addr, unsigned long end)
610 {
611         struct madvise_walk_private walk_private = {
612                 .pageout = true,
613                 .tlb = tlb,
614         };
615
616         tlb_start_vma(tlb, vma);
617         walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
618         tlb_end_vma(tlb, vma);
619 }
620
621 static long madvise_pageout(struct vm_area_struct *vma,
622                         struct vm_area_struct **prev,
623                         unsigned long start_addr, unsigned long end_addr)
624 {
625         struct mm_struct *mm = vma->vm_mm;
626         struct mmu_gather tlb;
627
628         *prev = vma;
629         if (!can_madv_lru_vma(vma))
630                 return -EINVAL;
631
632         /*
633          * If the VMA belongs to a private file mapping, there can be private
634          * dirty pages which can be paged out if even this process is neither
635          * owner nor write capable of the file. We allow private file mappings
636          * further to pageout dirty anon pages.
637          */
638         if (!vma_is_anonymous(vma) && (!can_do_file_pageout(vma) &&
639                                 (vma->vm_flags & VM_MAYSHARE)))
640                 return 0;
641
642         lru_add_drain();
643         tlb_gather_mmu(&tlb, mm);
644         madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
645         tlb_finish_mmu(&tlb);
646
647         return 0;
648 }
649
650 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
651                                 unsigned long end, struct mm_walk *walk)
652
653 {
654         const cydp_t cydp_flags = CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY;
655         struct mmu_gather *tlb = walk->private;
656         struct mm_struct *mm = tlb->mm;
657         struct vm_area_struct *vma = walk->vma;
658         spinlock_t *ptl;
659         pte_t *start_pte, *pte, ptent;
660         struct folio *folio;
661         int nr_swap = 0;
662         unsigned long next;
663         int nr, max_nr;
664
665         next = pmd_addr_end(addr, end);
666         if (pmd_trans_huge(*pmd))
667                 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
668                         return 0;
669
670         tlb_change_page_size(tlb, PAGE_SIZE);
671         start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
672         if (!start_pte)
673                 return 0;
674         flush_tlb_batched_pending(mm);
675         arch_enter_lazy_mmu_mode();
676         for (; addr != end; pte += nr, addr += PAGE_SIZE * nr) {
677                 nr = 1;
678                 ptent = ptep_get(pte);
679
680                 if (pte_none(ptent))
681                         continue;
682                 /*
683                  * If the pte has swp_entry, just clear page table to
684                  * prevent swap-in which is more expensive rather than
685                  * (page allocation + zeroing).
686                  */
687                 if (!pte_present(ptent)) {
688                         swp_entry_t entry;
689
690                         entry = pte_to_swp_entry(ptent);
691                         if (!non_swap_entry(entry)) {
692                                 max_nr = (end - addr) / PAGE_SIZE;
693                                 nr = swap_pte_batch(pte, max_nr, ptent);
694                                 nr_swap -= nr;
695                                 free_swap_and_cache_nr(entry, nr);
696                                 clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
697                         } else if (is_hwpoison_entry(entry) ||
698                                    is_poisoned_swp_entry(entry)) {
699                                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
700                         }
701                         continue;
702                 }
703
704                 folio = vm_normal_folio(vma, addr, ptent);
705                 if (!folio || folio_is_zone_device(folio))
706                         continue;
707
708                 /*
709                  * If we encounter a large folio, only split it if it is not
710                  * fully mapped within the range we are operating on. Otherwise
711                  * leave it as is so that it can be marked as lazyfree. If we
712                  * fail to split a folio, leave it in place and advance to the
713                  * next pte in the range.
714                  */
715                 if (folio_test_large(folio)) {
716                         bool any_young, any_dirty;
717
718                         nr = madvise_folio_pte_batch(addr, end, folio, pte,
719                                                      ptent, &any_young, &any_dirty);
720
721                         if (nr < folio_nr_pages(folio)) {
722                                 int err;
723
724                                 if (folio_likely_mapped_shared(folio))
725                                         continue;
726                                 if (!folio_trylock(folio))
727                                         continue;
728                                 folio_get(folio);
729                                 arch_leave_lazy_mmu_mode();
730                                 pte_unmap_unlock(start_pte, ptl);
731                                 start_pte = NULL;
732                                 err = split_folio(folio);
733                                 folio_unlock(folio);
734                                 folio_put(folio);
735                                 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
736                                 start_pte = pte;
737                                 if (!start_pte)
738                                         break;
739                                 arch_enter_lazy_mmu_mode();
740                                 if (!err)
741                                         nr = 0;
742                                 continue;
743                         }
744
745                         if (any_young)
746                                 ptent = pte_mkyoung(ptent);
747                         if (any_dirty)
748                                 ptent = pte_mkdirty(ptent);
749                 }
750
751                 if (folio_test_swapcache(folio) || folio_test_dirty(folio)) {
752                         if (!folio_trylock(folio))
753                                 continue;
754                         /*
755                          * If we have a large folio at this point, we know it is
756                          * fully mapped so if its mapcount is the same as its
757                          * number of pages, it must be exclusive.
758                          */
759                         if (folio_mapcount(folio) != folio_nr_pages(folio)) {
760                                 folio_unlock(folio);
761                                 continue;
762                         }
763
764                         if (folio_test_swapcache(folio) &&
765                             !folio_free_swap(folio)) {
766                                 folio_unlock(folio);
767                                 continue;
768                         }
769
770                         folio_clear_dirty(folio);
771                         folio_unlock(folio);
772                 }
773
774                 if (pte_young(ptent) || pte_dirty(ptent)) {
775                         clear_young_dirty_ptes(vma, addr, pte, nr, cydp_flags);
776                         tlb_remove_tlb_entries(tlb, pte, nr, addr);
777                 }
778                 folio_mark_lazyfree(folio);
779         }
780
781         if (nr_swap)
782                 add_mm_counter(mm, MM_SWAPENTS, nr_swap);
783         if (start_pte) {
784                 arch_leave_lazy_mmu_mode();
785                 pte_unmap_unlock(start_pte, ptl);
786         }
787         cond_resched();
788
789         return 0;
790 }
791
792 static const struct mm_walk_ops madvise_free_walk_ops = {
793         .pmd_entry              = madvise_free_pte_range,
794         .walk_lock              = PGWALK_RDLOCK,
795 };
796
797 static int madvise_free_single_vma(struct vm_area_struct *vma,
798                         unsigned long start_addr, unsigned long end_addr)
799 {
800         struct mm_struct *mm = vma->vm_mm;
801         struct mmu_notifier_range range;
802         struct mmu_gather tlb;
803
804         /* MADV_FREE works for only anon vma at the moment */
805         if (!vma_is_anonymous(vma))
806                 return -EINVAL;
807
808         range.start = max(vma->vm_start, start_addr);
809         if (range.start >= vma->vm_end)
810                 return -EINVAL;
811         range.end = min(vma->vm_end, end_addr);
812         if (range.end <= vma->vm_start)
813                 return -EINVAL;
814         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
815                                 range.start, range.end);
816
817         lru_add_drain();
818         tlb_gather_mmu(&tlb, mm);
819         update_hiwater_rss(mm);
820
821         mmu_notifier_invalidate_range_start(&range);
822         tlb_start_vma(&tlb, vma);
823         walk_page_range(vma->vm_mm, range.start, range.end,
824                         &madvise_free_walk_ops, &tlb);
825         tlb_end_vma(&tlb, vma);
826         mmu_notifier_invalidate_range_end(&range);
827         tlb_finish_mmu(&tlb);
828
829         return 0;
830 }
831
832 /*
833  * Application no longer needs these pages.  If the pages are dirty,
834  * it's OK to just throw them away.  The app will be more careful about
835  * data it wants to keep.  Be sure to free swap resources too.  The
836  * zap_page_range_single call sets things up for shrink_active_list to actually
837  * free these pages later if no one else has touched them in the meantime,
838  * although we could add these pages to a global reuse list for
839  * shrink_active_list to pick up before reclaiming other pages.
840  *
841  * NB: This interface discards data rather than pushes it out to swap,
842  * as some implementations do.  This has performance implications for
843  * applications like large transactional databases which want to discard
844  * pages in anonymous maps after committing to backing store the data
845  * that was kept in them.  There is no reason to write this data out to
846  * the swap area if the application is discarding it.
847  *
848  * An interface that causes the system to free clean pages and flush
849  * dirty pages is already available as msync(MS_INVALIDATE).
850  */
851 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
852                                         unsigned long start, unsigned long end)
853 {
854         struct zap_details details = {
855                 .reclaim_pt = true,
856                 .even_cows = true,
857         };
858
859         zap_page_range_single(vma, start, end - start, &details);
860         return 0;
861 }
862
863 static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma,
864                                             unsigned long start,
865                                             unsigned long *end,
866                                             int behavior)
867 {
868         if (!is_vm_hugetlb_page(vma)) {
869                 unsigned int forbidden = VM_PFNMAP;
870
871                 if (behavior != MADV_DONTNEED_LOCKED)
872                         forbidden |= VM_LOCKED;
873
874                 return !(vma->vm_flags & forbidden);
875         }
876
877         if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
878                 return false;
879         if (start & ~huge_page_mask(hstate_vma(vma)))
880                 return false;
881
882         /*
883          * Madvise callers expect the length to be rounded up to PAGE_SIZE
884          * boundaries, and may be unaware that this VMA uses huge pages.
885          * Avoid unexpected data loss by rounding down the number of
886          * huge pages freed.
887          */
888         *end = ALIGN_DOWN(*end, huge_page_size(hstate_vma(vma)));
889
890         return true;
891 }
892
893 static long madvise_dontneed_free(struct vm_area_struct *vma,
894                                   struct vm_area_struct **prev,
895                                   unsigned long start, unsigned long end,
896                                   int behavior)
897 {
898         struct mm_struct *mm = vma->vm_mm;
899
900         *prev = vma;
901         if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior))
902                 return -EINVAL;
903
904         if (start == end)
905                 return 0;
906
907         if (!userfaultfd_remove(vma, start, end)) {
908                 *prev = NULL; /* mmap_lock has been dropped, prev is stale */
909
910                 mmap_read_lock(mm);
911                 vma = vma_lookup(mm, start);
912                 if (!vma)
913                         return -ENOMEM;
914                 /*
915                  * Potential end adjustment for hugetlb vma is OK as
916                  * the check below keeps end within vma.
917                  */
918                 if (!madvise_dontneed_free_valid_vma(vma, start, &end,
919                                                      behavior))
920                         return -EINVAL;
921                 if (end > vma->vm_end) {
922                         /*
923                          * Don't fail if end > vma->vm_end. If the old
924                          * vma was split while the mmap_lock was
925                          * released the effect of the concurrent
926                          * operation may not cause madvise() to
927                          * have an undefined result. There may be an
928                          * adjacent next vma that we'll walk
929                          * next. userfaultfd_remove() will generate an
930                          * UFFD_EVENT_REMOVE repetition on the
931                          * end-vma->vm_end range, but the manager can
932                          * handle a repetition fine.
933                          */
934                         end = vma->vm_end;
935                 }
936                 VM_WARN_ON(start >= end);
937         }
938
939         if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
940                 return madvise_dontneed_single_vma(vma, start, end);
941         else if (behavior == MADV_FREE)
942                 return madvise_free_single_vma(vma, start, end);
943         else
944                 return -EINVAL;
945 }
946
947 static long madvise_populate(struct mm_struct *mm, unsigned long start,
948                 unsigned long end, int behavior)
949 {
950         const bool write = behavior == MADV_POPULATE_WRITE;
951         int locked = 1;
952         long pages;
953
954         while (start < end) {
955                 /* Populate (prefault) page tables readable/writable. */
956                 pages = faultin_page_range(mm, start, end, write, &locked);
957                 if (!locked) {
958                         mmap_read_lock(mm);
959                         locked = 1;
960                 }
961                 if (pages < 0) {
962                         switch (pages) {
963                         case -EINTR:
964                                 return -EINTR;
965                         case -EINVAL: /* Incompatible mappings / permissions. */
966                                 return -EINVAL;
967                         case -EHWPOISON:
968                                 return -EHWPOISON;
969                         case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
970                                 return -EFAULT;
971                         default:
972                                 pr_warn_once("%s: unhandled return value: %ld\n",
973                                              __func__, pages);
974                                 fallthrough;
975                         case -ENOMEM: /* No VMA or out of memory. */
976                                 return -ENOMEM;
977                         }
978                 }
979                 start += pages * PAGE_SIZE;
980         }
981         return 0;
982 }
983
984 /*
985  * Application wants to free up the pages and associated backing store.
986  * This is effectively punching a hole into the middle of a file.
987  */
988 static long madvise_remove(struct vm_area_struct *vma,
989                                 struct vm_area_struct **prev,
990                                 unsigned long start, unsigned long end)
991 {
992         loff_t offset;
993         int error;
994         struct file *f;
995         struct mm_struct *mm = vma->vm_mm;
996
997         *prev = NULL;   /* tell sys_madvise we drop mmap_lock */
998
999         if (vma->vm_flags & VM_LOCKED)
1000                 return -EINVAL;
1001
1002         f = vma->vm_file;
1003
1004         if (!f || !f->f_mapping || !f->f_mapping->host) {
1005                         return -EINVAL;
1006         }
1007
1008         if (!vma_is_shared_maywrite(vma))
1009                 return -EACCES;
1010
1011         offset = (loff_t)(start - vma->vm_start)
1012                         + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
1013
1014         /*
1015          * Filesystem's fallocate may need to take i_rwsem.  We need to
1016          * explicitly grab a reference because the vma (and hence the
1017          * vma's reference to the file) can go away as soon as we drop
1018          * mmap_lock.
1019          */
1020         get_file(f);
1021         if (userfaultfd_remove(vma, start, end)) {
1022                 /* mmap_lock was not released by userfaultfd_remove() */
1023                 mmap_read_unlock(mm);
1024         }
1025         error = vfs_fallocate(f,
1026                                 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
1027                                 offset, end - start);
1028         fput(f);
1029         mmap_read_lock(mm);
1030         return error;
1031 }
1032
1033 static bool is_valid_guard_vma(struct vm_area_struct *vma, bool allow_locked)
1034 {
1035         vm_flags_t disallowed = VM_SPECIAL | VM_HUGETLB;
1036
1037         /*
1038          * A user could lock after setting a guard range but that's fine, as
1039          * they'd not be able to fault in. The issue arises when we try to zap
1040          * existing locked VMAs. We don't want to do that.
1041          */
1042         if (!allow_locked)
1043                 disallowed |= VM_LOCKED;
1044
1045         if (!vma_is_anonymous(vma))
1046                 return false;
1047
1048         if ((vma->vm_flags & (VM_MAYWRITE | disallowed)) != VM_MAYWRITE)
1049                 return false;
1050
1051         return true;
1052 }
1053
1054 static bool is_guard_pte_marker(pte_t ptent)
1055 {
1056         return is_pte_marker(ptent) &&
1057                 is_guard_swp_entry(pte_to_swp_entry(ptent));
1058 }
1059
1060 static int guard_install_pud_entry(pud_t *pud, unsigned long addr,
1061                                    unsigned long next, struct mm_walk *walk)
1062 {
1063         pud_t pudval = pudp_get(pud);
1064
1065         /* If huge return >0 so we abort the operation + zap. */
1066         return pud_trans_huge(pudval) || pud_devmap(pudval);
1067 }
1068
1069 static int guard_install_pmd_entry(pmd_t *pmd, unsigned long addr,
1070                                    unsigned long next, struct mm_walk *walk)
1071 {
1072         pmd_t pmdval = pmdp_get(pmd);
1073
1074         /* If huge return >0 so we abort the operation + zap. */
1075         return pmd_trans_huge(pmdval) || pmd_devmap(pmdval);
1076 }
1077
1078 static int guard_install_pte_entry(pte_t *pte, unsigned long addr,
1079                                    unsigned long next, struct mm_walk *walk)
1080 {
1081         pte_t pteval = ptep_get(pte);
1082         unsigned long *nr_pages = (unsigned long *)walk->private;
1083
1084         /* If there is already a guard page marker, we have nothing to do. */
1085         if (is_guard_pte_marker(pteval)) {
1086                 (*nr_pages)++;
1087
1088                 return 0;
1089         }
1090
1091         /* If populated return >0 so we abort the operation + zap. */
1092         return 1;
1093 }
1094
1095 static int guard_install_set_pte(unsigned long addr, unsigned long next,
1096                                  pte_t *ptep, struct mm_walk *walk)
1097 {
1098         unsigned long *nr_pages = (unsigned long *)walk->private;
1099
1100         /* Simply install a PTE marker, this causes segfault on access. */
1101         *ptep = make_pte_marker(PTE_MARKER_GUARD);
1102         (*nr_pages)++;
1103
1104         return 0;
1105 }
1106
1107 static const struct mm_walk_ops guard_install_walk_ops = {
1108         .pud_entry              = guard_install_pud_entry,
1109         .pmd_entry              = guard_install_pmd_entry,
1110         .pte_entry              = guard_install_pte_entry,
1111         .install_pte            = guard_install_set_pte,
1112         .walk_lock              = PGWALK_RDLOCK,
1113 };
1114
1115 static long madvise_guard_install(struct vm_area_struct *vma,
1116                                  struct vm_area_struct **prev,
1117                                  unsigned long start, unsigned long end)
1118 {
1119         long err;
1120         int i;
1121
1122         *prev = vma;
1123         if (!is_valid_guard_vma(vma, /* allow_locked = */false))
1124                 return -EINVAL;
1125
1126         /*
1127          * If we install guard markers, then the range is no longer
1128          * empty from a page table perspective and therefore it's
1129          * appropriate to have an anon_vma.
1130          *
1131          * This ensures that on fork, we copy page tables correctly.
1132          */
1133         err = anon_vma_prepare(vma);
1134         if (err)
1135                 return err;
1136
1137         /*
1138          * Optimistically try to install the guard marker pages first. If any
1139          * non-guard pages are encountered, give up and zap the range before
1140          * trying again.
1141          *
1142          * We try a few times before giving up and releasing back to userland to
1143          * loop around, releasing locks in the process to avoid contention. This
1144          * would only happen if there was a great many racing page faults.
1145          *
1146          * In most cases we should simply install the guard markers immediately
1147          * with no zap or looping.
1148          */
1149         for (i = 0; i < MAX_MADVISE_GUARD_RETRIES; i++) {
1150                 unsigned long nr_pages = 0;
1151
1152                 /* Returns < 0 on error, == 0 if success, > 0 if zap needed. */
1153                 err = walk_page_range_mm(vma->vm_mm, start, end,
1154                                          &guard_install_walk_ops, &nr_pages);
1155                 if (err < 0)
1156                         return err;
1157
1158                 if (err == 0) {
1159                         unsigned long nr_expected_pages = PHYS_PFN(end - start);
1160
1161                         VM_WARN_ON(nr_pages != nr_expected_pages);
1162                         return 0;
1163                 }
1164
1165                 /*
1166                  * OK some of the range have non-guard pages mapped, zap
1167                  * them. This leaves existing guard pages in place.
1168                  */
1169                 zap_page_range_single(vma, start, end - start, NULL);
1170         }
1171
1172         /*
1173          * We were unable to install the guard pages due to being raced by page
1174          * faults. This should not happen ordinarily. We return to userspace and
1175          * immediately retry, relieving lock contention.
1176          */
1177         return restart_syscall();
1178 }
1179
1180 static int guard_remove_pud_entry(pud_t *pud, unsigned long addr,
1181                                   unsigned long next, struct mm_walk *walk)
1182 {
1183         pud_t pudval = pudp_get(pud);
1184
1185         /* If huge, cannot have guard pages present, so no-op - skip. */
1186         if (pud_trans_huge(pudval) || pud_devmap(pudval))
1187                 walk->action = ACTION_CONTINUE;
1188
1189         return 0;
1190 }
1191
1192 static int guard_remove_pmd_entry(pmd_t *pmd, unsigned long addr,
1193                                   unsigned long next, struct mm_walk *walk)
1194 {
1195         pmd_t pmdval = pmdp_get(pmd);
1196
1197         /* If huge, cannot have guard pages present, so no-op - skip. */
1198         if (pmd_trans_huge(pmdval) || pmd_devmap(pmdval))
1199                 walk->action = ACTION_CONTINUE;
1200
1201         return 0;
1202 }
1203
1204 static int guard_remove_pte_entry(pte_t *pte, unsigned long addr,
1205                                   unsigned long next, struct mm_walk *walk)
1206 {
1207         pte_t ptent = ptep_get(pte);
1208
1209         if (is_guard_pte_marker(ptent)) {
1210                 /* Simply clear the PTE marker. */
1211                 pte_clear_not_present_full(walk->mm, addr, pte, false);
1212                 update_mmu_cache(walk->vma, addr, pte);
1213         }
1214
1215         return 0;
1216 }
1217
1218 static const struct mm_walk_ops guard_remove_walk_ops = {
1219         .pud_entry              = guard_remove_pud_entry,
1220         .pmd_entry              = guard_remove_pmd_entry,
1221         .pte_entry              = guard_remove_pte_entry,
1222         .walk_lock              = PGWALK_RDLOCK,
1223 };
1224
1225 static long madvise_guard_remove(struct vm_area_struct *vma,
1226                                  struct vm_area_struct **prev,
1227                                  unsigned long start, unsigned long end)
1228 {
1229         *prev = vma;
1230         /*
1231          * We're ok with removing guards in mlock()'d ranges, as this is a
1232          * non-destructive action.
1233          */
1234         if (!is_valid_guard_vma(vma, /* allow_locked = */true))
1235                 return -EINVAL;
1236
1237         return walk_page_range(vma->vm_mm, start, end,
1238                                &guard_remove_walk_ops, NULL);
1239 }
1240
1241 /*
1242  * Apply an madvise behavior to a region of a vma.  madvise_update_vma
1243  * will handle splitting a vm area into separate areas, each area with its own
1244  * behavior.
1245  */
1246 static int madvise_vma_behavior(struct vm_area_struct *vma,
1247                                 struct vm_area_struct **prev,
1248                                 unsigned long start, unsigned long end,
1249                                 unsigned long behavior)
1250 {
1251         int error;
1252         struct anon_vma_name *anon_name;
1253         unsigned long new_flags = vma->vm_flags;
1254
1255         if (unlikely(!can_modify_vma_madv(vma, behavior)))
1256                 return -EPERM;
1257
1258         switch (behavior) {
1259         case MADV_REMOVE:
1260                 return madvise_remove(vma, prev, start, end);
1261         case MADV_WILLNEED:
1262                 return madvise_willneed(vma, prev, start, end);
1263         case MADV_COLD:
1264                 return madvise_cold(vma, prev, start, end);
1265         case MADV_PAGEOUT:
1266                 return madvise_pageout(vma, prev, start, end);
1267         case MADV_FREE:
1268         case MADV_DONTNEED:
1269         case MADV_DONTNEED_LOCKED:
1270                 return madvise_dontneed_free(vma, prev, start, end, behavior);
1271         case MADV_NORMAL:
1272                 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
1273                 break;
1274         case MADV_SEQUENTIAL:
1275                 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
1276                 break;
1277         case MADV_RANDOM:
1278                 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
1279                 break;
1280         case MADV_DONTFORK:
1281                 new_flags |= VM_DONTCOPY;
1282                 break;
1283         case MADV_DOFORK:
1284                 if (vma->vm_flags & VM_IO)
1285                         return -EINVAL;
1286                 new_flags &= ~VM_DONTCOPY;
1287                 break;
1288         case MADV_WIPEONFORK:
1289                 /* MADV_WIPEONFORK is only supported on anonymous memory. */
1290                 if (vma->vm_file || vma->vm_flags & VM_SHARED)
1291                         return -EINVAL;
1292                 new_flags |= VM_WIPEONFORK;
1293                 break;
1294         case MADV_KEEPONFORK:
1295                 if (vma->vm_flags & VM_DROPPABLE)
1296                         return -EINVAL;
1297                 new_flags &= ~VM_WIPEONFORK;
1298                 break;
1299         case MADV_DONTDUMP:
1300                 new_flags |= VM_DONTDUMP;
1301                 break;
1302         case MADV_DODUMP:
1303                 if ((!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) ||
1304                     (vma->vm_flags & VM_DROPPABLE))
1305                         return -EINVAL;
1306                 new_flags &= ~VM_DONTDUMP;
1307                 break;
1308         case MADV_MERGEABLE:
1309         case MADV_UNMERGEABLE:
1310                 error = ksm_madvise(vma, start, end, behavior, &new_flags);
1311                 if (error)
1312                         goto out;
1313                 break;
1314         case MADV_HUGEPAGE:
1315         case MADV_NOHUGEPAGE:
1316                 error = hugepage_madvise(vma, &new_flags, behavior);
1317                 if (error)
1318                         goto out;
1319                 break;
1320         case MADV_COLLAPSE:
1321                 return madvise_collapse(vma, prev, start, end);
1322         case MADV_GUARD_INSTALL:
1323                 return madvise_guard_install(vma, prev, start, end);
1324         case MADV_GUARD_REMOVE:
1325                 return madvise_guard_remove(vma, prev, start, end);
1326         }
1327
1328         anon_name = anon_vma_name(vma);
1329         anon_vma_name_get(anon_name);
1330         error = madvise_update_vma(vma, prev, start, end, new_flags,
1331                                    anon_name);
1332         anon_vma_name_put(anon_name);
1333
1334 out:
1335         /*
1336          * madvise() returns EAGAIN if kernel resources, such as
1337          * slab, are temporarily unavailable.
1338          */
1339         if (error == -ENOMEM)
1340                 error = -EAGAIN;
1341         return error;
1342 }
1343
1344 #ifdef CONFIG_MEMORY_FAILURE
1345 /*
1346  * Error injection support for memory error handling.
1347  */
1348 static int madvise_inject_error(int behavior,
1349                 unsigned long start, unsigned long end)
1350 {
1351         unsigned long size;
1352
1353         if (!capable(CAP_SYS_ADMIN))
1354                 return -EPERM;
1355
1356
1357         for (; start < end; start += size) {
1358                 unsigned long pfn;
1359                 struct page *page;
1360                 int ret;
1361
1362                 ret = get_user_pages_fast(start, 1, 0, &page);
1363                 if (ret != 1)
1364                         return ret;
1365                 pfn = page_to_pfn(page);
1366
1367                 /*
1368                  * When soft offlining hugepages, after migrating the page
1369                  * we dissolve it, therefore in the second loop "page" will
1370                  * no longer be a compound page.
1371                  */
1372                 size = page_size(compound_head(page));
1373
1374                 if (behavior == MADV_SOFT_OFFLINE) {
1375                         pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1376                                  pfn, start);
1377                         ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1378                 } else {
1379                         pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1380                                  pfn, start);
1381                         ret = memory_failure(pfn, MF_ACTION_REQUIRED | MF_COUNT_INCREASED | MF_SW_SIMULATED);
1382                         if (ret == -EOPNOTSUPP)
1383                                 ret = 0;
1384                 }
1385
1386                 if (ret)
1387                         return ret;
1388         }
1389
1390         return 0;
1391 }
1392 #endif
1393
1394 static bool
1395 madvise_behavior_valid(int behavior)
1396 {
1397         switch (behavior) {
1398         case MADV_DOFORK:
1399         case MADV_DONTFORK:
1400         case MADV_NORMAL:
1401         case MADV_SEQUENTIAL:
1402         case MADV_RANDOM:
1403         case MADV_REMOVE:
1404         case MADV_WILLNEED:
1405         case MADV_DONTNEED:
1406         case MADV_DONTNEED_LOCKED:
1407         case MADV_FREE:
1408         case MADV_COLD:
1409         case MADV_PAGEOUT:
1410         case MADV_POPULATE_READ:
1411         case MADV_POPULATE_WRITE:
1412 #ifdef CONFIG_KSM
1413         case MADV_MERGEABLE:
1414         case MADV_UNMERGEABLE:
1415 #endif
1416 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1417         case MADV_HUGEPAGE:
1418         case MADV_NOHUGEPAGE:
1419         case MADV_COLLAPSE:
1420 #endif
1421         case MADV_DONTDUMP:
1422         case MADV_DODUMP:
1423         case MADV_WIPEONFORK:
1424         case MADV_KEEPONFORK:
1425         case MADV_GUARD_INSTALL:
1426         case MADV_GUARD_REMOVE:
1427 #ifdef CONFIG_MEMORY_FAILURE
1428         case MADV_SOFT_OFFLINE:
1429         case MADV_HWPOISON:
1430 #endif
1431                 return true;
1432
1433         default:
1434                 return false;
1435         }
1436 }
1437
1438 /* Can we invoke process_madvise() on a remote mm for the specified behavior? */
1439 static bool process_madvise_remote_valid(int behavior)
1440 {
1441         switch (behavior) {
1442         case MADV_COLD:
1443         case MADV_PAGEOUT:
1444         case MADV_WILLNEED:
1445         case MADV_COLLAPSE:
1446                 return true;
1447         default:
1448                 return false;
1449         }
1450 }
1451
1452 /*
1453  * Walk the vmas in range [start,end), and call the visit function on each one.
1454  * The visit function will get start and end parameters that cover the overlap
1455  * between the current vma and the original range.  Any unmapped regions in the
1456  * original range will result in this function returning -ENOMEM while still
1457  * calling the visit function on all of the existing vmas in the range.
1458  * Must be called with the mmap_lock held for reading or writing.
1459  */
1460 static
1461 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1462                       unsigned long end, unsigned long arg,
1463                       int (*visit)(struct vm_area_struct *vma,
1464                                    struct vm_area_struct **prev, unsigned long start,
1465                                    unsigned long end, unsigned long arg))
1466 {
1467         struct vm_area_struct *vma;
1468         struct vm_area_struct *prev;
1469         unsigned long tmp;
1470         int unmapped_error = 0;
1471
1472         /*
1473          * If the interval [start,end) covers some unmapped address
1474          * ranges, just ignore them, but return -ENOMEM at the end.
1475          * - different from the way of handling in mlock etc.
1476          */
1477         vma = find_vma_prev(mm, start, &prev);
1478         if (vma && start > vma->vm_start)
1479                 prev = vma;
1480
1481         for (;;) {
1482                 int error;
1483
1484                 /* Still start < end. */
1485                 if (!vma)
1486                         return -ENOMEM;
1487
1488                 /* Here start < (end|vma->vm_end). */
1489                 if (start < vma->vm_start) {
1490                         unmapped_error = -ENOMEM;
1491                         start = vma->vm_start;
1492                         if (start >= end)
1493                                 break;
1494                 }
1495
1496                 /* Here vma->vm_start <= start < (end|vma->vm_end) */
1497                 tmp = vma->vm_end;
1498                 if (end < tmp)
1499                         tmp = end;
1500
1501                 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1502                 error = visit(vma, &prev, start, tmp, arg);
1503                 if (error)
1504                         return error;
1505                 start = tmp;
1506                 if (prev && start < prev->vm_end)
1507                         start = prev->vm_end;
1508                 if (start >= end)
1509                         break;
1510                 if (prev)
1511                         vma = find_vma(mm, prev->vm_end);
1512                 else    /* madvise_remove dropped mmap_lock */
1513                         vma = find_vma(mm, start);
1514         }
1515
1516         return unmapped_error;
1517 }
1518
1519 #ifdef CONFIG_ANON_VMA_NAME
1520 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1521                                  struct vm_area_struct **prev,
1522                                  unsigned long start, unsigned long end,
1523                                  unsigned long anon_name)
1524 {
1525         int error;
1526
1527         /* Only anonymous mappings can be named */
1528         if (vma->vm_file && !vma_is_anon_shmem(vma))
1529                 return -EBADF;
1530
1531         error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1532                                    (struct anon_vma_name *)anon_name);
1533
1534         /*
1535          * madvise() returns EAGAIN if kernel resources, such as
1536          * slab, are temporarily unavailable.
1537          */
1538         if (error == -ENOMEM)
1539                 error = -EAGAIN;
1540         return error;
1541 }
1542
1543 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1544                           unsigned long len_in, struct anon_vma_name *anon_name)
1545 {
1546         unsigned long end;
1547         unsigned long len;
1548
1549         if (start & ~PAGE_MASK)
1550                 return -EINVAL;
1551         len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1552
1553         /* Check to see whether len was rounded up from small -ve to zero */
1554         if (len_in && !len)
1555                 return -EINVAL;
1556
1557         end = start + len;
1558         if (end < start)
1559                 return -EINVAL;
1560
1561         if (end == start)
1562                 return 0;
1563
1564         return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1565                                  madvise_vma_anon_name);
1566 }
1567 #endif /* CONFIG_ANON_VMA_NAME */
1568 /*
1569  * The madvise(2) system call.
1570  *
1571  * Applications can use madvise() to advise the kernel how it should
1572  * handle paging I/O in this VM area.  The idea is to help the kernel
1573  * use appropriate read-ahead and caching techniques.  The information
1574  * provided is advisory only, and can be safely disregarded by the
1575  * kernel without affecting the correct operation of the application.
1576  *
1577  * behavior values:
1578  *  MADV_NORMAL - the default behavior is to read clusters.  This
1579  *              results in some read-ahead and read-behind.
1580  *  MADV_RANDOM - the system should read the minimum amount of data
1581  *              on any access, since it is unlikely that the appli-
1582  *              cation will need more than what it asks for.
1583  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1584  *              once, so they can be aggressively read ahead, and
1585  *              can be freed soon after they are accessed.
1586  *  MADV_WILLNEED - the application is notifying the system to read
1587  *              some pages ahead.
1588  *  MADV_DONTNEED - the application is finished with the given range,
1589  *              so the kernel can free resources associated with it.
1590  *  MADV_FREE - the application marks pages in the given range as lazy free,
1591  *              where actual purges are postponed until memory pressure happens.
1592  *  MADV_REMOVE - the application wants to free up the given range of
1593  *              pages and associated backing store.
1594  *  MADV_DONTFORK - omit this area from child's address space when forking:
1595  *              typically, to avoid COWing pages pinned by get_user_pages().
1596  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1597  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1598  *              range after a fork.
1599  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1600  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1601  *              were corrupted by unrecoverable hardware memory failure.
1602  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1603  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1604  *              this area with pages of identical content from other such areas.
1605  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1606  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1607  *              huge pages in the future. Existing pages might be coalesced and
1608  *              new pages might be allocated as THP.
1609  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1610  *              transparent huge pages so the existing pages will not be
1611  *              coalesced into THP and new pages will not be allocated as THP.
1612  *  MADV_COLLAPSE - synchronously coalesce pages into new THP.
1613  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1614  *              from being included in its core dump.
1615  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1616  *  MADV_COLD - the application is not expected to use this memory soon,
1617  *              deactivate pages in this range so that they can be reclaimed
1618  *              easily if memory pressure happens.
1619  *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1620  *              page out the pages in this range immediately.
1621  *  MADV_POPULATE_READ - populate (prefault) page tables readable by
1622  *              triggering read faults if required
1623  *  MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1624  *              triggering write faults if required
1625  *
1626  * return values:
1627  *  zero    - success
1628  *  -EINVAL - start + len < 0, start is not page-aligned,
1629  *              "behavior" is not a valid value, or application
1630  *              is attempting to release locked or shared pages,
1631  *              or the specified address range includes file, Huge TLB,
1632  *              MAP_SHARED or VMPFNMAP range.
1633  *  -ENOMEM - addresses in the specified range are not currently
1634  *              mapped, or are outside the AS of the process.
1635  *  -EIO    - an I/O error occurred while paging in data.
1636  *  -EBADF  - map exists, but area maps something that isn't a file.
1637  *  -EAGAIN - a kernel resource was temporarily unavailable.
1638  *  -EPERM  - memory is sealed.
1639  */
1640 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1641 {
1642         unsigned long end;
1643         int error;
1644         int write;
1645         size_t len;
1646         struct blk_plug plug;
1647
1648         if (!madvise_behavior_valid(behavior))
1649                 return -EINVAL;
1650
1651         if (!PAGE_ALIGNED(start))
1652                 return -EINVAL;
1653         len = PAGE_ALIGN(len_in);
1654
1655         /* Check to see whether len was rounded up from small -ve to zero */
1656         if (len_in && !len)
1657                 return -EINVAL;
1658
1659         end = start + len;
1660         if (end < start)
1661                 return -EINVAL;
1662
1663         if (end == start)
1664                 return 0;
1665
1666 #ifdef CONFIG_MEMORY_FAILURE
1667         if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1668                 return madvise_inject_error(behavior, start, start + len_in);
1669 #endif
1670
1671         write = madvise_need_mmap_write(behavior);
1672         if (write) {
1673                 if (mmap_write_lock_killable(mm))
1674                         return -EINTR;
1675         } else {
1676                 mmap_read_lock(mm);
1677         }
1678
1679         start = untagged_addr_remote(mm, start);
1680         end = start + len;
1681
1682         blk_start_plug(&plug);
1683         switch (behavior) {
1684         case MADV_POPULATE_READ:
1685         case MADV_POPULATE_WRITE:
1686                 error = madvise_populate(mm, start, end, behavior);
1687                 break;
1688         default:
1689                 error = madvise_walk_vmas(mm, start, end, behavior,
1690                                           madvise_vma_behavior);
1691                 break;
1692         }
1693         blk_finish_plug(&plug);
1694
1695         if (write)
1696                 mmap_write_unlock(mm);
1697         else
1698                 mmap_read_unlock(mm);
1699
1700         return error;
1701 }
1702
1703 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1704 {
1705         return do_madvise(current->mm, start, len_in, behavior);
1706 }
1707
1708 /* Perform an madvise operation over a vector of addresses and lengths. */
1709 static ssize_t vector_madvise(struct mm_struct *mm, struct iov_iter *iter,
1710                               int behavior)
1711 {
1712         ssize_t ret = 0;
1713         size_t total_len;
1714
1715         total_len = iov_iter_count(iter);
1716
1717         while (iov_iter_count(iter)) {
1718                 ret = do_madvise(mm, (unsigned long)iter_iov_addr(iter),
1719                                  iter_iov_len(iter), behavior);
1720                 /*
1721                  * An madvise operation is attempting to restart the syscall,
1722                  * but we cannot proceed as it would not be correct to repeat
1723                  * the operation in aggregate, and would be surprising to the
1724                  * user.
1725                  *
1726                  * As we have already dropped locks, it is safe to just loop and
1727                  * try again. We check for fatal signals in case we need exit
1728                  * early anyway.
1729                  */
1730                 if (ret == -ERESTARTNOINTR) {
1731                         if (fatal_signal_pending(current)) {
1732                                 ret = -EINTR;
1733                                 break;
1734                         }
1735                         continue;
1736                 }
1737                 if (ret < 0)
1738                         break;
1739                 iov_iter_advance(iter, iter_iov_len(iter));
1740         }
1741
1742         ret = (total_len - iov_iter_count(iter)) ? : ret;
1743
1744         return ret;
1745 }
1746
1747 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1748                 size_t, vlen, int, behavior, unsigned int, flags)
1749 {
1750         ssize_t ret;
1751         struct iovec iovstack[UIO_FASTIOV];
1752         struct iovec *iov = iovstack;
1753         struct iov_iter iter;
1754         struct task_struct *task;
1755         struct mm_struct *mm;
1756         unsigned int f_flags;
1757
1758         if (flags != 0) {
1759                 ret = -EINVAL;
1760                 goto out;
1761         }
1762
1763         ret = import_iovec(ITER_DEST, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1764         if (ret < 0)
1765                 goto out;
1766
1767         task = pidfd_get_task(pidfd, &f_flags);
1768         if (IS_ERR(task)) {
1769                 ret = PTR_ERR(task);
1770                 goto free_iov;
1771         }
1772
1773         /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1774         mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1775         if (IS_ERR(mm)) {
1776                 ret = PTR_ERR(mm);
1777                 goto release_task;
1778         }
1779
1780         /*
1781          * We need only perform this check if we are attempting to manipulate a
1782          * remote process's address space.
1783          */
1784         if (mm != current->mm && !process_madvise_remote_valid(behavior)) {
1785                 ret = -EINVAL;
1786                 goto release_mm;
1787         }
1788
1789         /*
1790          * Require CAP_SYS_NICE for influencing process performance. Note that
1791          * only non-destructive hints are currently supported for remote
1792          * processes.
1793          */
1794         if (mm != current->mm && !capable(CAP_SYS_NICE)) {
1795                 ret = -EPERM;
1796                 goto release_mm;
1797         }
1798
1799         ret = vector_madvise(mm, &iter, behavior);
1800
1801 release_mm:
1802         mmput(mm);
1803 release_task:
1804         put_task_struct(task);
1805 free_iov:
1806         kfree(iov);
1807 out:
1808         return ret;
1809 }
This page took 0.142312 seconds and 4 git commands to generate.