]> Git Repo - linux.git/blob - kernel/trace/ring_buffer.c
Merge tag 'tomoyo-pr-20250211' of git://git.code.sf.net/p/tomoyo/tomoyo
[linux.git] / kernel / trace / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <[email protected]>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/cacheflush.h>
13 #include <linux/trace_seq.h>
14 #include <linux/spinlock.h>
15 #include <linux/irq_work.h>
16 #include <linux/security.h>
17 #include <linux/uaccess.h>
18 #include <linux/hardirq.h>
19 #include <linux/kthread.h>      /* for self test */
20 #include <linux/module.h>
21 #include <linux/percpu.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/list.h>
28 #include <linux/cpu.h>
29 #include <linux/oom.h>
30 #include <linux/mm.h>
31
32 #include <asm/local64.h>
33 #include <asm/local.h>
34
35 #include "trace.h"
36
37 /*
38  * The "absolute" timestamp in the buffer is only 59 bits.
39  * If a clock has the 5 MSBs set, it needs to be saved and
40  * reinserted.
41  */
42 #define TS_MSB          (0xf8ULL << 56)
43 #define ABS_TS_MASK     (~TS_MSB)
44
45 static void update_pages_handler(struct work_struct *work);
46
47 #define RING_BUFFER_META_MAGIC  0xBADFEED
48
49 struct ring_buffer_meta {
50         int             magic;
51         int             struct_size;
52         unsigned long   text_addr;
53         unsigned long   data_addr;
54         unsigned long   first_buffer;
55         unsigned long   head_buffer;
56         unsigned long   commit_buffer;
57         __u32           subbuf_size;
58         __u32           nr_subbufs;
59         int             buffers[];
60 };
61
62 /*
63  * The ring buffer header is special. We must manually up keep it.
64  */
65 int ring_buffer_print_entry_header(struct trace_seq *s)
66 {
67         trace_seq_puts(s, "# compressed entry header\n");
68         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
69         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
70         trace_seq_puts(s, "\tarray       :   32 bits\n");
71         trace_seq_putc(s, '\n');
72         trace_seq_printf(s, "\tpadding     : type == %d\n",
73                          RINGBUF_TYPE_PADDING);
74         trace_seq_printf(s, "\ttime_extend : type == %d\n",
75                          RINGBUF_TYPE_TIME_EXTEND);
76         trace_seq_printf(s, "\ttime_stamp : type == %d\n",
77                          RINGBUF_TYPE_TIME_STAMP);
78         trace_seq_printf(s, "\tdata max type_len  == %d\n",
79                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
80
81         return !trace_seq_has_overflowed(s);
82 }
83
84 /*
85  * The ring buffer is made up of a list of pages. A separate list of pages is
86  * allocated for each CPU. A writer may only write to a buffer that is
87  * associated with the CPU it is currently executing on.  A reader may read
88  * from any per cpu buffer.
89  *
90  * The reader is special. For each per cpu buffer, the reader has its own
91  * reader page. When a reader has read the entire reader page, this reader
92  * page is swapped with another page in the ring buffer.
93  *
94  * Now, as long as the writer is off the reader page, the reader can do what
95  * ever it wants with that page. The writer will never write to that page
96  * again (as long as it is out of the ring buffer).
97  *
98  * Here's some silly ASCII art.
99  *
100  *   +------+
101  *   |reader|          RING BUFFER
102  *   |page  |
103  *   +------+        +---+   +---+   +---+
104  *                   |   |-->|   |-->|   |
105  *                   +---+   +---+   +---+
106  *                     ^               |
107  *                     |               |
108  *                     +---------------+
109  *
110  *
111  *   +------+
112  *   |reader|          RING BUFFER
113  *   |page  |------------------v
114  *   +------+        +---+   +---+   +---+
115  *                   |   |-->|   |-->|   |
116  *                   +---+   +---+   +---+
117  *                     ^               |
118  *                     |               |
119  *                     +---------------+
120  *
121  *
122  *   +------+
123  *   |reader|          RING BUFFER
124  *   |page  |------------------v
125  *   +------+        +---+   +---+   +---+
126  *      ^            |   |-->|   |-->|   |
127  *      |            +---+   +---+   +---+
128  *      |                              |
129  *      |                              |
130  *      +------------------------------+
131  *
132  *
133  *   +------+
134  *   |buffer|          RING BUFFER
135  *   |page  |------------------v
136  *   +------+        +---+   +---+   +---+
137  *      ^            |   |   |   |-->|   |
138  *      |   New      +---+   +---+   +---+
139  *      |  Reader------^               |
140  *      |   page                       |
141  *      +------------------------------+
142  *
143  *
144  * After we make this swap, the reader can hand this page off to the splice
145  * code and be done with it. It can even allocate a new page if it needs to
146  * and swap that into the ring buffer.
147  *
148  * We will be using cmpxchg soon to make all this lockless.
149  *
150  */
151
152 /* Used for individual buffers (after the counter) */
153 #define RB_BUFFER_OFF           (1 << 20)
154
155 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156
157 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
158 #define RB_ALIGNMENT            4U
159 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
160 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
161
162 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
163 # define RB_FORCE_8BYTE_ALIGNMENT       0
164 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
165 #else
166 # define RB_FORCE_8BYTE_ALIGNMENT       1
167 # define RB_ARCH_ALIGNMENT              8U
168 #endif
169
170 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
171
172 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
173 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
174
175 enum {
176         RB_LEN_TIME_EXTEND = 8,
177         RB_LEN_TIME_STAMP =  8,
178 };
179
180 #define skip_time_extend(event) \
181         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
182
183 #define extended_time(event) \
184         (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
185
186 static inline bool rb_null_event(struct ring_buffer_event *event)
187 {
188         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
189 }
190
191 static void rb_event_set_padding(struct ring_buffer_event *event)
192 {
193         /* padding has a NULL time_delta */
194         event->type_len = RINGBUF_TYPE_PADDING;
195         event->time_delta = 0;
196 }
197
198 static unsigned
199 rb_event_data_length(struct ring_buffer_event *event)
200 {
201         unsigned length;
202
203         if (event->type_len)
204                 length = event->type_len * RB_ALIGNMENT;
205         else
206                 length = event->array[0];
207         return length + RB_EVNT_HDR_SIZE;
208 }
209
210 /*
211  * Return the length of the given event. Will return
212  * the length of the time extend if the event is a
213  * time extend.
214  */
215 static inline unsigned
216 rb_event_length(struct ring_buffer_event *event)
217 {
218         switch (event->type_len) {
219         case RINGBUF_TYPE_PADDING:
220                 if (rb_null_event(event))
221                         /* undefined */
222                         return -1;
223                 return  event->array[0] + RB_EVNT_HDR_SIZE;
224
225         case RINGBUF_TYPE_TIME_EXTEND:
226                 return RB_LEN_TIME_EXTEND;
227
228         case RINGBUF_TYPE_TIME_STAMP:
229                 return RB_LEN_TIME_STAMP;
230
231         case RINGBUF_TYPE_DATA:
232                 return rb_event_data_length(event);
233         default:
234                 WARN_ON_ONCE(1);
235         }
236         /* not hit */
237         return 0;
238 }
239
240 /*
241  * Return total length of time extend and data,
242  *   or just the event length for all other events.
243  */
244 static inline unsigned
245 rb_event_ts_length(struct ring_buffer_event *event)
246 {
247         unsigned len = 0;
248
249         if (extended_time(event)) {
250                 /* time extends include the data event after it */
251                 len = RB_LEN_TIME_EXTEND;
252                 event = skip_time_extend(event);
253         }
254         return len + rb_event_length(event);
255 }
256
257 /**
258  * ring_buffer_event_length - return the length of the event
259  * @event: the event to get the length of
260  *
261  * Returns the size of the data load of a data event.
262  * If the event is something other than a data event, it
263  * returns the size of the event itself. With the exception
264  * of a TIME EXTEND, where it still returns the size of the
265  * data load of the data event after it.
266  */
267 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
268 {
269         unsigned length;
270
271         if (extended_time(event))
272                 event = skip_time_extend(event);
273
274         length = rb_event_length(event);
275         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
276                 return length;
277         length -= RB_EVNT_HDR_SIZE;
278         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
279                 length -= sizeof(event->array[0]);
280         return length;
281 }
282 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
283
284 /* inline for ring buffer fast paths */
285 static __always_inline void *
286 rb_event_data(struct ring_buffer_event *event)
287 {
288         if (extended_time(event))
289                 event = skip_time_extend(event);
290         WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
291         /* If length is in len field, then array[0] has the data */
292         if (event->type_len)
293                 return (void *)&event->array[0];
294         /* Otherwise length is in array[0] and array[1] has the data */
295         return (void *)&event->array[1];
296 }
297
298 /**
299  * ring_buffer_event_data - return the data of the event
300  * @event: the event to get the data from
301  */
302 void *ring_buffer_event_data(struct ring_buffer_event *event)
303 {
304         return rb_event_data(event);
305 }
306 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
307
308 #define for_each_buffer_cpu(buffer, cpu)                \
309         for_each_cpu(cpu, buffer->cpumask)
310
311 #define for_each_online_buffer_cpu(buffer, cpu)         \
312         for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
313
314 #define TS_SHIFT        27
315 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
316 #define TS_DELTA_TEST   (~TS_MASK)
317
318 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
319 {
320         u64 ts;
321
322         ts = event->array[0];
323         ts <<= TS_SHIFT;
324         ts += event->time_delta;
325
326         return ts;
327 }
328
329 /* Flag when events were overwritten */
330 #define RB_MISSED_EVENTS        (1 << 31)
331 /* Missed count stored at end */
332 #define RB_MISSED_STORED        (1 << 30)
333
334 #define RB_MISSED_MASK          (3 << 30)
335
336 struct buffer_data_page {
337         u64              time_stamp;    /* page time stamp */
338         local_t          commit;        /* write committed index */
339         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
340 };
341
342 struct buffer_data_read_page {
343         unsigned                order;  /* order of the page */
344         struct buffer_data_page *data;  /* actual data, stored in this page */
345 };
346
347 /*
348  * Note, the buffer_page list must be first. The buffer pages
349  * are allocated in cache lines, which means that each buffer
350  * page will be at the beginning of a cache line, and thus
351  * the least significant bits will be zero. We use this to
352  * add flags in the list struct pointers, to make the ring buffer
353  * lockless.
354  */
355 struct buffer_page {
356         struct list_head list;          /* list of buffer pages */
357         local_t          write;         /* index for next write */
358         unsigned         read;          /* index for next read */
359         local_t          entries;       /* entries on this page */
360         unsigned long    real_end;      /* real end of data */
361         unsigned         order;         /* order of the page */
362         u32              id:30;         /* ID for external mapping */
363         u32              range:1;       /* Mapped via a range */
364         struct buffer_data_page *page;  /* Actual data page */
365 };
366
367 /*
368  * The buffer page counters, write and entries, must be reset
369  * atomically when crossing page boundaries. To synchronize this
370  * update, two counters are inserted into the number. One is
371  * the actual counter for the write position or count on the page.
372  *
373  * The other is a counter of updaters. Before an update happens
374  * the update partition of the counter is incremented. This will
375  * allow the updater to update the counter atomically.
376  *
377  * The counter is 20 bits, and the state data is 12.
378  */
379 #define RB_WRITE_MASK           0xfffff
380 #define RB_WRITE_INTCNT         (1 << 20)
381
382 static void rb_init_page(struct buffer_data_page *bpage)
383 {
384         local_set(&bpage->commit, 0);
385 }
386
387 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
388 {
389         return local_read(&bpage->page->commit);
390 }
391
392 static void free_buffer_page(struct buffer_page *bpage)
393 {
394         /* Range pages are not to be freed */
395         if (!bpage->range)
396                 free_pages((unsigned long)bpage->page, bpage->order);
397         kfree(bpage);
398 }
399
400 /*
401  * We need to fit the time_stamp delta into 27 bits.
402  */
403 static inline bool test_time_stamp(u64 delta)
404 {
405         return !!(delta & TS_DELTA_TEST);
406 }
407
408 struct rb_irq_work {
409         struct irq_work                 work;
410         wait_queue_head_t               waiters;
411         wait_queue_head_t               full_waiters;
412         atomic_t                        seq;
413         bool                            waiters_pending;
414         bool                            full_waiters_pending;
415         bool                            wakeup_full;
416 };
417
418 /*
419  * Structure to hold event state and handle nested events.
420  */
421 struct rb_event_info {
422         u64                     ts;
423         u64                     delta;
424         u64                     before;
425         u64                     after;
426         unsigned long           length;
427         struct buffer_page      *tail_page;
428         int                     add_timestamp;
429 };
430
431 /*
432  * Used for the add_timestamp
433  *  NONE
434  *  EXTEND - wants a time extend
435  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
436  *  FORCE - force a full time stamp.
437  */
438 enum {
439         RB_ADD_STAMP_NONE               = 0,
440         RB_ADD_STAMP_EXTEND             = BIT(1),
441         RB_ADD_STAMP_ABSOLUTE           = BIT(2),
442         RB_ADD_STAMP_FORCE              = BIT(3)
443 };
444 /*
445  * Used for which event context the event is in.
446  *  TRANSITION = 0
447  *  NMI     = 1
448  *  IRQ     = 2
449  *  SOFTIRQ = 3
450  *  NORMAL  = 4
451  *
452  * See trace_recursive_lock() comment below for more details.
453  */
454 enum {
455         RB_CTX_TRANSITION,
456         RB_CTX_NMI,
457         RB_CTX_IRQ,
458         RB_CTX_SOFTIRQ,
459         RB_CTX_NORMAL,
460         RB_CTX_MAX
461 };
462
463 struct rb_time_struct {
464         local64_t       time;
465 };
466 typedef struct rb_time_struct rb_time_t;
467
468 #define MAX_NEST        5
469
470 /*
471  * head_page == tail_page && head == tail then buffer is empty.
472  */
473 struct ring_buffer_per_cpu {
474         int                             cpu;
475         atomic_t                        record_disabled;
476         atomic_t                        resize_disabled;
477         struct trace_buffer     *buffer;
478         raw_spinlock_t                  reader_lock;    /* serialize readers */
479         arch_spinlock_t                 lock;
480         struct lock_class_key           lock_key;
481         struct buffer_data_page         *free_page;
482         unsigned long                   nr_pages;
483         unsigned int                    current_context;
484         struct list_head                *pages;
485         /* pages generation counter, incremented when the list changes */
486         unsigned long                   cnt;
487         struct buffer_page              *head_page;     /* read from head */
488         struct buffer_page              *tail_page;     /* write to tail */
489         struct buffer_page              *commit_page;   /* committed pages */
490         struct buffer_page              *reader_page;
491         unsigned long                   lost_events;
492         unsigned long                   last_overrun;
493         unsigned long                   nest;
494         local_t                         entries_bytes;
495         local_t                         entries;
496         local_t                         overrun;
497         local_t                         commit_overrun;
498         local_t                         dropped_events;
499         local_t                         committing;
500         local_t                         commits;
501         local_t                         pages_touched;
502         local_t                         pages_lost;
503         local_t                         pages_read;
504         long                            last_pages_touch;
505         size_t                          shortest_full;
506         unsigned long                   read;
507         unsigned long                   read_bytes;
508         rb_time_t                       write_stamp;
509         rb_time_t                       before_stamp;
510         u64                             event_stamp[MAX_NEST];
511         u64                             read_stamp;
512         /* pages removed since last reset */
513         unsigned long                   pages_removed;
514
515         unsigned int                    mapped;
516         unsigned int                    user_mapped;    /* user space mapping */
517         struct mutex                    mapping_lock;
518         unsigned long                   *subbuf_ids;    /* ID to subbuf VA */
519         struct trace_buffer_meta        *meta_page;
520         struct ring_buffer_meta         *ring_meta;
521
522         /* ring buffer pages to update, > 0 to add, < 0 to remove */
523         long                            nr_pages_to_update;
524         struct list_head                new_pages; /* new pages to add */
525         struct work_struct              update_pages_work;
526         struct completion               update_done;
527
528         struct rb_irq_work              irq_work;
529 };
530
531 struct trace_buffer {
532         unsigned                        flags;
533         int                             cpus;
534         atomic_t                        record_disabled;
535         atomic_t                        resizing;
536         cpumask_var_t                   cpumask;
537
538         struct lock_class_key           *reader_lock_key;
539
540         struct mutex                    mutex;
541
542         struct ring_buffer_per_cpu      **buffers;
543
544         struct hlist_node               node;
545         u64                             (*clock)(void);
546
547         struct rb_irq_work              irq_work;
548         bool                            time_stamp_abs;
549
550         unsigned long                   range_addr_start;
551         unsigned long                   range_addr_end;
552
553         long                            last_text_delta;
554         long                            last_data_delta;
555
556         unsigned int                    subbuf_size;
557         unsigned int                    subbuf_order;
558         unsigned int                    max_data_size;
559 };
560
561 struct ring_buffer_iter {
562         struct ring_buffer_per_cpu      *cpu_buffer;
563         unsigned long                   head;
564         unsigned long                   next_event;
565         struct buffer_page              *head_page;
566         struct buffer_page              *cache_reader_page;
567         unsigned long                   cache_read;
568         unsigned long                   cache_pages_removed;
569         u64                             read_stamp;
570         u64                             page_stamp;
571         struct ring_buffer_event        *event;
572         size_t                          event_size;
573         int                             missed_events;
574 };
575
576 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
577 {
578         struct buffer_data_page field;
579
580         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
581                          "offset:0;\tsize:%u;\tsigned:%u;\n",
582                          (unsigned int)sizeof(field.time_stamp),
583                          (unsigned int)is_signed_type(u64));
584
585         trace_seq_printf(s, "\tfield: local_t commit;\t"
586                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
587                          (unsigned int)offsetof(typeof(field), commit),
588                          (unsigned int)sizeof(field.commit),
589                          (unsigned int)is_signed_type(long));
590
591         trace_seq_printf(s, "\tfield: int overwrite;\t"
592                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
593                          (unsigned int)offsetof(typeof(field), commit),
594                          1,
595                          (unsigned int)is_signed_type(long));
596
597         trace_seq_printf(s, "\tfield: char data;\t"
598                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
599                          (unsigned int)offsetof(typeof(field), data),
600                          (unsigned int)buffer->subbuf_size,
601                          (unsigned int)is_signed_type(char));
602
603         return !trace_seq_has_overflowed(s);
604 }
605
606 static inline void rb_time_read(rb_time_t *t, u64 *ret)
607 {
608         *ret = local64_read(&t->time);
609 }
610 static void rb_time_set(rb_time_t *t, u64 val)
611 {
612         local64_set(&t->time, val);
613 }
614
615 /*
616  * Enable this to make sure that the event passed to
617  * ring_buffer_event_time_stamp() is not committed and also
618  * is on the buffer that it passed in.
619  */
620 //#define RB_VERIFY_EVENT
621 #ifdef RB_VERIFY_EVENT
622 static struct list_head *rb_list_head(struct list_head *list);
623 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
624                          void *event)
625 {
626         struct buffer_page *page = cpu_buffer->commit_page;
627         struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
628         struct list_head *next;
629         long commit, write;
630         unsigned long addr = (unsigned long)event;
631         bool done = false;
632         int stop = 0;
633
634         /* Make sure the event exists and is not committed yet */
635         do {
636                 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
637                         done = true;
638                 commit = local_read(&page->page->commit);
639                 write = local_read(&page->write);
640                 if (addr >= (unsigned long)&page->page->data[commit] &&
641                     addr < (unsigned long)&page->page->data[write])
642                         return;
643
644                 next = rb_list_head(page->list.next);
645                 page = list_entry(next, struct buffer_page, list);
646         } while (!done);
647         WARN_ON_ONCE(1);
648 }
649 #else
650 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
651                          void *event)
652 {
653 }
654 #endif
655
656 /*
657  * The absolute time stamp drops the 5 MSBs and some clocks may
658  * require them. The rb_fix_abs_ts() will take a previous full
659  * time stamp, and add the 5 MSB of that time stamp on to the
660  * saved absolute time stamp. Then they are compared in case of
661  * the unlikely event that the latest time stamp incremented
662  * the 5 MSB.
663  */
664 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
665 {
666         if (save_ts & TS_MSB) {
667                 abs |= save_ts & TS_MSB;
668                 /* Check for overflow */
669                 if (unlikely(abs < save_ts))
670                         abs += 1ULL << 59;
671         }
672         return abs;
673 }
674
675 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
676
677 /**
678  * ring_buffer_event_time_stamp - return the event's current time stamp
679  * @buffer: The buffer that the event is on
680  * @event: the event to get the time stamp of
681  *
682  * Note, this must be called after @event is reserved, and before it is
683  * committed to the ring buffer. And must be called from the same
684  * context where the event was reserved (normal, softirq, irq, etc).
685  *
686  * Returns the time stamp associated with the current event.
687  * If the event has an extended time stamp, then that is used as
688  * the time stamp to return.
689  * In the highly unlikely case that the event was nested more than
690  * the max nesting, then the write_stamp of the buffer is returned,
691  * otherwise  current time is returned, but that really neither of
692  * the last two cases should ever happen.
693  */
694 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
695                                  struct ring_buffer_event *event)
696 {
697         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
698         unsigned int nest;
699         u64 ts;
700
701         /* If the event includes an absolute time, then just use that */
702         if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
703                 ts = rb_event_time_stamp(event);
704                 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
705         }
706
707         nest = local_read(&cpu_buffer->committing);
708         verify_event(cpu_buffer, event);
709         if (WARN_ON_ONCE(!nest))
710                 goto fail;
711
712         /* Read the current saved nesting level time stamp */
713         if (likely(--nest < MAX_NEST))
714                 return cpu_buffer->event_stamp[nest];
715
716         /* Shouldn't happen, warn if it does */
717         WARN_ONCE(1, "nest (%d) greater than max", nest);
718
719  fail:
720         rb_time_read(&cpu_buffer->write_stamp, &ts);
721
722         return ts;
723 }
724
725 /**
726  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
727  * @buffer: The ring_buffer to get the number of pages from
728  * @cpu: The cpu of the ring_buffer to get the number of pages from
729  *
730  * Returns the number of pages that have content in the ring buffer.
731  */
732 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
733 {
734         size_t read;
735         size_t lost;
736         size_t cnt;
737
738         read = local_read(&buffer->buffers[cpu]->pages_read);
739         lost = local_read(&buffer->buffers[cpu]->pages_lost);
740         cnt = local_read(&buffer->buffers[cpu]->pages_touched);
741
742         if (WARN_ON_ONCE(cnt < lost))
743                 return 0;
744
745         cnt -= lost;
746
747         /* The reader can read an empty page, but not more than that */
748         if (cnt < read) {
749                 WARN_ON_ONCE(read > cnt + 1);
750                 return 0;
751         }
752
753         return cnt - read;
754 }
755
756 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
757 {
758         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
759         size_t nr_pages;
760         size_t dirty;
761
762         nr_pages = cpu_buffer->nr_pages;
763         if (!nr_pages || !full)
764                 return true;
765
766         /*
767          * Add one as dirty will never equal nr_pages, as the sub-buffer
768          * that the writer is on is not counted as dirty.
769          * This is needed if "buffer_percent" is set to 100.
770          */
771         dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
772
773         return (dirty * 100) >= (full * nr_pages);
774 }
775
776 /*
777  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
778  *
779  * Schedules a delayed work to wake up any task that is blocked on the
780  * ring buffer waiters queue.
781  */
782 static void rb_wake_up_waiters(struct irq_work *work)
783 {
784         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
785
786         /* For waiters waiting for the first wake up */
787         (void)atomic_fetch_inc_release(&rbwork->seq);
788
789         wake_up_all(&rbwork->waiters);
790         if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
791                 /* Only cpu_buffer sets the above flags */
792                 struct ring_buffer_per_cpu *cpu_buffer =
793                         container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
794
795                 /* Called from interrupt context */
796                 raw_spin_lock(&cpu_buffer->reader_lock);
797                 rbwork->wakeup_full = false;
798                 rbwork->full_waiters_pending = false;
799
800                 /* Waking up all waiters, they will reset the shortest full */
801                 cpu_buffer->shortest_full = 0;
802                 raw_spin_unlock(&cpu_buffer->reader_lock);
803
804                 wake_up_all(&rbwork->full_waiters);
805         }
806 }
807
808 /**
809  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
810  * @buffer: The ring buffer to wake waiters on
811  * @cpu: The CPU buffer to wake waiters on
812  *
813  * In the case of a file that represents a ring buffer is closing,
814  * it is prudent to wake up any waiters that are on this.
815  */
816 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
817 {
818         struct ring_buffer_per_cpu *cpu_buffer;
819         struct rb_irq_work *rbwork;
820
821         if (!buffer)
822                 return;
823
824         if (cpu == RING_BUFFER_ALL_CPUS) {
825
826                 /* Wake up individual ones too. One level recursion */
827                 for_each_buffer_cpu(buffer, cpu)
828                         ring_buffer_wake_waiters(buffer, cpu);
829
830                 rbwork = &buffer->irq_work;
831         } else {
832                 if (WARN_ON_ONCE(!buffer->buffers))
833                         return;
834                 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
835                         return;
836
837                 cpu_buffer = buffer->buffers[cpu];
838                 /* The CPU buffer may not have been initialized yet */
839                 if (!cpu_buffer)
840                         return;
841                 rbwork = &cpu_buffer->irq_work;
842         }
843
844         /* This can be called in any context */
845         irq_work_queue(&rbwork->work);
846 }
847
848 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
849 {
850         struct ring_buffer_per_cpu *cpu_buffer;
851         bool ret = false;
852
853         /* Reads of all CPUs always waits for any data */
854         if (cpu == RING_BUFFER_ALL_CPUS)
855                 return !ring_buffer_empty(buffer);
856
857         cpu_buffer = buffer->buffers[cpu];
858
859         if (!ring_buffer_empty_cpu(buffer, cpu)) {
860                 unsigned long flags;
861                 bool pagebusy;
862
863                 if (!full)
864                         return true;
865
866                 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
867                 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
868                 ret = !pagebusy && full_hit(buffer, cpu, full);
869
870                 if (!ret && (!cpu_buffer->shortest_full ||
871                              cpu_buffer->shortest_full > full)) {
872                     cpu_buffer->shortest_full = full;
873                 }
874                 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
875         }
876         return ret;
877 }
878
879 static inline bool
880 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
881              int cpu, int full, ring_buffer_cond_fn cond, void *data)
882 {
883         if (rb_watermark_hit(buffer, cpu, full))
884                 return true;
885
886         if (cond(data))
887                 return true;
888
889         /*
890          * The events can happen in critical sections where
891          * checking a work queue can cause deadlocks.
892          * After adding a task to the queue, this flag is set
893          * only to notify events to try to wake up the queue
894          * using irq_work.
895          *
896          * We don't clear it even if the buffer is no longer
897          * empty. The flag only causes the next event to run
898          * irq_work to do the work queue wake up. The worse
899          * that can happen if we race with !trace_empty() is that
900          * an event will cause an irq_work to try to wake up
901          * an empty queue.
902          *
903          * There's no reason to protect this flag either, as
904          * the work queue and irq_work logic will do the necessary
905          * synchronization for the wake ups. The only thing
906          * that is necessary is that the wake up happens after
907          * a task has been queued. It's OK for spurious wake ups.
908          */
909         if (full)
910                 rbwork->full_waiters_pending = true;
911         else
912                 rbwork->waiters_pending = true;
913
914         return false;
915 }
916
917 struct rb_wait_data {
918         struct rb_irq_work              *irq_work;
919         int                             seq;
920 };
921
922 /*
923  * The default wait condition for ring_buffer_wait() is to just to exit the
924  * wait loop the first time it is woken up.
925  */
926 static bool rb_wait_once(void *data)
927 {
928         struct rb_wait_data *rdata = data;
929         struct rb_irq_work *rbwork = rdata->irq_work;
930
931         return atomic_read_acquire(&rbwork->seq) != rdata->seq;
932 }
933
934 /**
935  * ring_buffer_wait - wait for input to the ring buffer
936  * @buffer: buffer to wait on
937  * @cpu: the cpu buffer to wait on
938  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
939  * @cond: condition function to break out of wait (NULL to run once)
940  * @data: the data to pass to @cond.
941  *
942  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
943  * as data is added to any of the @buffer's cpu buffers. Otherwise
944  * it will wait for data to be added to a specific cpu buffer.
945  */
946 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
947                      ring_buffer_cond_fn cond, void *data)
948 {
949         struct ring_buffer_per_cpu *cpu_buffer;
950         struct wait_queue_head *waitq;
951         struct rb_irq_work *rbwork;
952         struct rb_wait_data rdata;
953         int ret = 0;
954
955         /*
956          * Depending on what the caller is waiting for, either any
957          * data in any cpu buffer, or a specific buffer, put the
958          * caller on the appropriate wait queue.
959          */
960         if (cpu == RING_BUFFER_ALL_CPUS) {
961                 rbwork = &buffer->irq_work;
962                 /* Full only makes sense on per cpu reads */
963                 full = 0;
964         } else {
965                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
966                         return -ENODEV;
967                 cpu_buffer = buffer->buffers[cpu];
968                 rbwork = &cpu_buffer->irq_work;
969         }
970
971         if (full)
972                 waitq = &rbwork->full_waiters;
973         else
974                 waitq = &rbwork->waiters;
975
976         /* Set up to exit loop as soon as it is woken */
977         if (!cond) {
978                 cond = rb_wait_once;
979                 rdata.irq_work = rbwork;
980                 rdata.seq = atomic_read_acquire(&rbwork->seq);
981                 data = &rdata;
982         }
983
984         ret = wait_event_interruptible((*waitq),
985                                 rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
986
987         return ret;
988 }
989
990 /**
991  * ring_buffer_poll_wait - poll on buffer input
992  * @buffer: buffer to wait on
993  * @cpu: the cpu buffer to wait on
994  * @filp: the file descriptor
995  * @poll_table: The poll descriptor
996  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
997  *
998  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
999  * as data is added to any of the @buffer's cpu buffers. Otherwise
1000  * it will wait for data to be added to a specific cpu buffer.
1001  *
1002  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1003  * zero otherwise.
1004  */
1005 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1006                           struct file *filp, poll_table *poll_table, int full)
1007 {
1008         struct ring_buffer_per_cpu *cpu_buffer;
1009         struct rb_irq_work *rbwork;
1010
1011         if (cpu == RING_BUFFER_ALL_CPUS) {
1012                 rbwork = &buffer->irq_work;
1013                 full = 0;
1014         } else {
1015                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1016                         return EPOLLERR;
1017
1018                 cpu_buffer = buffer->buffers[cpu];
1019                 rbwork = &cpu_buffer->irq_work;
1020         }
1021
1022         if (full) {
1023                 poll_wait(filp, &rbwork->full_waiters, poll_table);
1024
1025                 if (rb_watermark_hit(buffer, cpu, full))
1026                         return EPOLLIN | EPOLLRDNORM;
1027                 /*
1028                  * Only allow full_waiters_pending update to be seen after
1029                  * the shortest_full is set (in rb_watermark_hit). If the
1030                  * writer sees the full_waiters_pending flag set, it will
1031                  * compare the amount in the ring buffer to shortest_full.
1032                  * If the amount in the ring buffer is greater than the
1033                  * shortest_full percent, it will call the irq_work handler
1034                  * to wake up this list. The irq_handler will reset shortest_full
1035                  * back to zero. That's done under the reader_lock, but
1036                  * the below smp_mb() makes sure that the update to
1037                  * full_waiters_pending doesn't leak up into the above.
1038                  */
1039                 smp_mb();
1040                 rbwork->full_waiters_pending = true;
1041                 return 0;
1042         }
1043
1044         poll_wait(filp, &rbwork->waiters, poll_table);
1045         rbwork->waiters_pending = true;
1046
1047         /*
1048          * There's a tight race between setting the waiters_pending and
1049          * checking if the ring buffer is empty.  Once the waiters_pending bit
1050          * is set, the next event will wake the task up, but we can get stuck
1051          * if there's only a single event in.
1052          *
1053          * FIXME: Ideally, we need a memory barrier on the writer side as well,
1054          * but adding a memory barrier to all events will cause too much of a
1055          * performance hit in the fast path.  We only need a memory barrier when
1056          * the buffer goes from empty to having content.  But as this race is
1057          * extremely small, and it's not a problem if another event comes in, we
1058          * will fix it later.
1059          */
1060         smp_mb();
1061
1062         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1063             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1064                 return EPOLLIN | EPOLLRDNORM;
1065         return 0;
1066 }
1067
1068 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1069 #define RB_WARN_ON(b, cond)                                             \
1070         ({                                                              \
1071                 int _____ret = unlikely(cond);                          \
1072                 if (_____ret) {                                         \
1073                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1074                                 struct ring_buffer_per_cpu *__b =       \
1075                                         (void *)b;                      \
1076                                 atomic_inc(&__b->buffer->record_disabled); \
1077                         } else                                          \
1078                                 atomic_inc(&b->record_disabled);        \
1079                         WARN_ON(1);                                     \
1080                 }                                                       \
1081                 _____ret;                                               \
1082         })
1083
1084 /* Up this if you want to test the TIME_EXTENTS and normalization */
1085 #define DEBUG_SHIFT 0
1086
1087 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1088 {
1089         u64 ts;
1090
1091         /* Skip retpolines :-( */
1092         if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1093                 ts = trace_clock_local();
1094         else
1095                 ts = buffer->clock();
1096
1097         /* shift to debug/test normalization and TIME_EXTENTS */
1098         return ts << DEBUG_SHIFT;
1099 }
1100
1101 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1102 {
1103         u64 time;
1104
1105         preempt_disable_notrace();
1106         time = rb_time_stamp(buffer);
1107         preempt_enable_notrace();
1108
1109         return time;
1110 }
1111 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1112
1113 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1114                                       int cpu, u64 *ts)
1115 {
1116         /* Just stupid testing the normalize function and deltas */
1117         *ts >>= DEBUG_SHIFT;
1118 }
1119 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1120
1121 /*
1122  * Making the ring buffer lockless makes things tricky.
1123  * Although writes only happen on the CPU that they are on,
1124  * and they only need to worry about interrupts. Reads can
1125  * happen on any CPU.
1126  *
1127  * The reader page is always off the ring buffer, but when the
1128  * reader finishes with a page, it needs to swap its page with
1129  * a new one from the buffer. The reader needs to take from
1130  * the head (writes go to the tail). But if a writer is in overwrite
1131  * mode and wraps, it must push the head page forward.
1132  *
1133  * Here lies the problem.
1134  *
1135  * The reader must be careful to replace only the head page, and
1136  * not another one. As described at the top of the file in the
1137  * ASCII art, the reader sets its old page to point to the next
1138  * page after head. It then sets the page after head to point to
1139  * the old reader page. But if the writer moves the head page
1140  * during this operation, the reader could end up with the tail.
1141  *
1142  * We use cmpxchg to help prevent this race. We also do something
1143  * special with the page before head. We set the LSB to 1.
1144  *
1145  * When the writer must push the page forward, it will clear the
1146  * bit that points to the head page, move the head, and then set
1147  * the bit that points to the new head page.
1148  *
1149  * We also don't want an interrupt coming in and moving the head
1150  * page on another writer. Thus we use the second LSB to catch
1151  * that too. Thus:
1152  *
1153  * head->list->prev->next        bit 1          bit 0
1154  *                              -------        -------
1155  * Normal page                     0              0
1156  * Points to head page             0              1
1157  * New head page                   1              0
1158  *
1159  * Note we can not trust the prev pointer of the head page, because:
1160  *
1161  * +----+       +-----+        +-----+
1162  * |    |------>|  T  |---X--->|  N  |
1163  * |    |<------|     |        |     |
1164  * +----+       +-----+        +-----+
1165  *   ^                           ^ |
1166  *   |          +-----+          | |
1167  *   +----------|  R  |----------+ |
1168  *              |     |<-----------+
1169  *              +-----+
1170  *
1171  * Key:  ---X-->  HEAD flag set in pointer
1172  *         T      Tail page
1173  *         R      Reader page
1174  *         N      Next page
1175  *
1176  * (see __rb_reserve_next() to see where this happens)
1177  *
1178  *  What the above shows is that the reader just swapped out
1179  *  the reader page with a page in the buffer, but before it
1180  *  could make the new header point back to the new page added
1181  *  it was preempted by a writer. The writer moved forward onto
1182  *  the new page added by the reader and is about to move forward
1183  *  again.
1184  *
1185  *  You can see, it is legitimate for the previous pointer of
1186  *  the head (or any page) not to point back to itself. But only
1187  *  temporarily.
1188  */
1189
1190 #define RB_PAGE_NORMAL          0UL
1191 #define RB_PAGE_HEAD            1UL
1192 #define RB_PAGE_UPDATE          2UL
1193
1194
1195 #define RB_FLAG_MASK            3UL
1196
1197 /* PAGE_MOVED is not part of the mask */
1198 #define RB_PAGE_MOVED           4UL
1199
1200 /*
1201  * rb_list_head - remove any bit
1202  */
1203 static struct list_head *rb_list_head(struct list_head *list)
1204 {
1205         unsigned long val = (unsigned long)list;
1206
1207         return (struct list_head *)(val & ~RB_FLAG_MASK);
1208 }
1209
1210 /*
1211  * rb_is_head_page - test if the given page is the head page
1212  *
1213  * Because the reader may move the head_page pointer, we can
1214  * not trust what the head page is (it may be pointing to
1215  * the reader page). But if the next page is a header page,
1216  * its flags will be non zero.
1217  */
1218 static inline int
1219 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1220 {
1221         unsigned long val;
1222
1223         val = (unsigned long)list->next;
1224
1225         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1226                 return RB_PAGE_MOVED;
1227
1228         return val & RB_FLAG_MASK;
1229 }
1230
1231 /*
1232  * rb_is_reader_page
1233  *
1234  * The unique thing about the reader page, is that, if the
1235  * writer is ever on it, the previous pointer never points
1236  * back to the reader page.
1237  */
1238 static bool rb_is_reader_page(struct buffer_page *page)
1239 {
1240         struct list_head *list = page->list.prev;
1241
1242         return rb_list_head(list->next) != &page->list;
1243 }
1244
1245 /*
1246  * rb_set_list_to_head - set a list_head to be pointing to head.
1247  */
1248 static void rb_set_list_to_head(struct list_head *list)
1249 {
1250         unsigned long *ptr;
1251
1252         ptr = (unsigned long *)&list->next;
1253         *ptr |= RB_PAGE_HEAD;
1254         *ptr &= ~RB_PAGE_UPDATE;
1255 }
1256
1257 /*
1258  * rb_head_page_activate - sets up head page
1259  */
1260 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1261 {
1262         struct buffer_page *head;
1263
1264         head = cpu_buffer->head_page;
1265         if (!head)
1266                 return;
1267
1268         /*
1269          * Set the previous list pointer to have the HEAD flag.
1270          */
1271         rb_set_list_to_head(head->list.prev);
1272
1273         if (cpu_buffer->ring_meta) {
1274                 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1275                 meta->head_buffer = (unsigned long)head->page;
1276         }
1277 }
1278
1279 static void rb_list_head_clear(struct list_head *list)
1280 {
1281         unsigned long *ptr = (unsigned long *)&list->next;
1282
1283         *ptr &= ~RB_FLAG_MASK;
1284 }
1285
1286 /*
1287  * rb_head_page_deactivate - clears head page ptr (for free list)
1288  */
1289 static void
1290 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1291 {
1292         struct list_head *hd;
1293
1294         /* Go through the whole list and clear any pointers found. */
1295         rb_list_head_clear(cpu_buffer->pages);
1296
1297         list_for_each(hd, cpu_buffer->pages)
1298                 rb_list_head_clear(hd);
1299 }
1300
1301 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1302                             struct buffer_page *head,
1303                             struct buffer_page *prev,
1304                             int old_flag, int new_flag)
1305 {
1306         struct list_head *list;
1307         unsigned long val = (unsigned long)&head->list;
1308         unsigned long ret;
1309
1310         list = &prev->list;
1311
1312         val &= ~RB_FLAG_MASK;
1313
1314         ret = cmpxchg((unsigned long *)&list->next,
1315                       val | old_flag, val | new_flag);
1316
1317         /* check if the reader took the page */
1318         if ((ret & ~RB_FLAG_MASK) != val)
1319                 return RB_PAGE_MOVED;
1320
1321         return ret & RB_FLAG_MASK;
1322 }
1323
1324 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1325                                    struct buffer_page *head,
1326                                    struct buffer_page *prev,
1327                                    int old_flag)
1328 {
1329         return rb_head_page_set(cpu_buffer, head, prev,
1330                                 old_flag, RB_PAGE_UPDATE);
1331 }
1332
1333 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1334                                  struct buffer_page *head,
1335                                  struct buffer_page *prev,
1336                                  int old_flag)
1337 {
1338         return rb_head_page_set(cpu_buffer, head, prev,
1339                                 old_flag, RB_PAGE_HEAD);
1340 }
1341
1342 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1343                                    struct buffer_page *head,
1344                                    struct buffer_page *prev,
1345                                    int old_flag)
1346 {
1347         return rb_head_page_set(cpu_buffer, head, prev,
1348                                 old_flag, RB_PAGE_NORMAL);
1349 }
1350
1351 static inline void rb_inc_page(struct buffer_page **bpage)
1352 {
1353         struct list_head *p = rb_list_head((*bpage)->list.next);
1354
1355         *bpage = list_entry(p, struct buffer_page, list);
1356 }
1357
1358 static struct buffer_page *
1359 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1360 {
1361         struct buffer_page *head;
1362         struct buffer_page *page;
1363         struct list_head *list;
1364         int i;
1365
1366         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1367                 return NULL;
1368
1369         /* sanity check */
1370         list = cpu_buffer->pages;
1371         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1372                 return NULL;
1373
1374         page = head = cpu_buffer->head_page;
1375         /*
1376          * It is possible that the writer moves the header behind
1377          * where we started, and we miss in one loop.
1378          * A second loop should grab the header, but we'll do
1379          * three loops just because I'm paranoid.
1380          */
1381         for (i = 0; i < 3; i++) {
1382                 do {
1383                         if (rb_is_head_page(page, page->list.prev)) {
1384                                 cpu_buffer->head_page = page;
1385                                 return page;
1386                         }
1387                         rb_inc_page(&page);
1388                 } while (page != head);
1389         }
1390
1391         RB_WARN_ON(cpu_buffer, 1);
1392
1393         return NULL;
1394 }
1395
1396 static bool rb_head_page_replace(struct buffer_page *old,
1397                                 struct buffer_page *new)
1398 {
1399         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1400         unsigned long val;
1401
1402         val = *ptr & ~RB_FLAG_MASK;
1403         val |= RB_PAGE_HEAD;
1404
1405         return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1406 }
1407
1408 /*
1409  * rb_tail_page_update - move the tail page forward
1410  */
1411 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1412                                struct buffer_page *tail_page,
1413                                struct buffer_page *next_page)
1414 {
1415         unsigned long old_entries;
1416         unsigned long old_write;
1417
1418         /*
1419          * The tail page now needs to be moved forward.
1420          *
1421          * We need to reset the tail page, but without messing
1422          * with possible erasing of data brought in by interrupts
1423          * that have moved the tail page and are currently on it.
1424          *
1425          * We add a counter to the write field to denote this.
1426          */
1427         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1428         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1429
1430         /*
1431          * Just make sure we have seen our old_write and synchronize
1432          * with any interrupts that come in.
1433          */
1434         barrier();
1435
1436         /*
1437          * If the tail page is still the same as what we think
1438          * it is, then it is up to us to update the tail
1439          * pointer.
1440          */
1441         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1442                 /* Zero the write counter */
1443                 unsigned long val = old_write & ~RB_WRITE_MASK;
1444                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1445
1446                 /*
1447                  * This will only succeed if an interrupt did
1448                  * not come in and change it. In which case, we
1449                  * do not want to modify it.
1450                  *
1451                  * We add (void) to let the compiler know that we do not care
1452                  * about the return value of these functions. We use the
1453                  * cmpxchg to only update if an interrupt did not already
1454                  * do it for us. If the cmpxchg fails, we don't care.
1455                  */
1456                 (void)local_cmpxchg(&next_page->write, old_write, val);
1457                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1458
1459                 /*
1460                  * No need to worry about races with clearing out the commit.
1461                  * it only can increment when a commit takes place. But that
1462                  * only happens in the outer most nested commit.
1463                  */
1464                 local_set(&next_page->page->commit, 0);
1465
1466                 /* Either we update tail_page or an interrupt does */
1467                 if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1468                         local_inc(&cpu_buffer->pages_touched);
1469         }
1470 }
1471
1472 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1473                           struct buffer_page *bpage)
1474 {
1475         unsigned long val = (unsigned long)bpage;
1476
1477         RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1478 }
1479
1480 static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer,
1481                            struct list_head *list)
1482 {
1483         if (RB_WARN_ON(cpu_buffer,
1484                        rb_list_head(rb_list_head(list->next)->prev) != list))
1485                 return false;
1486
1487         if (RB_WARN_ON(cpu_buffer,
1488                        rb_list_head(rb_list_head(list->prev)->next) != list))
1489                 return false;
1490
1491         return true;
1492 }
1493
1494 /**
1495  * rb_check_pages - integrity check of buffer pages
1496  * @cpu_buffer: CPU buffer with pages to test
1497  *
1498  * As a safety measure we check to make sure the data pages have not
1499  * been corrupted.
1500  */
1501 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1502 {
1503         struct list_head *head, *tmp;
1504         unsigned long buffer_cnt;
1505         unsigned long flags;
1506         int nr_loops = 0;
1507
1508         /*
1509          * Walk the linked list underpinning the ring buffer and validate all
1510          * its next and prev links.
1511          *
1512          * The check acquires the reader_lock to avoid concurrent processing
1513          * with code that could be modifying the list. However, the lock cannot
1514          * be held for the entire duration of the walk, as this would make the
1515          * time when interrupts are disabled non-deterministic, dependent on the
1516          * ring buffer size. Therefore, the code releases and re-acquires the
1517          * lock after checking each page. The ring_buffer_per_cpu.cnt variable
1518          * is then used to detect if the list was modified while the lock was
1519          * not held, in which case the check needs to be restarted.
1520          *
1521          * The code attempts to perform the check at most three times before
1522          * giving up. This is acceptable because this is only a self-validation
1523          * to detect problems early on. In practice, the list modification
1524          * operations are fairly spaced, and so this check typically succeeds at
1525          * most on the second try.
1526          */
1527 again:
1528         if (++nr_loops > 3)
1529                 return;
1530
1531         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1532         head = rb_list_head(cpu_buffer->pages);
1533         if (!rb_check_links(cpu_buffer, head))
1534                 goto out_locked;
1535         buffer_cnt = cpu_buffer->cnt;
1536         tmp = head;
1537         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1538
1539         while (true) {
1540                 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1541
1542                 if (buffer_cnt != cpu_buffer->cnt) {
1543                         /* The list was updated, try again. */
1544                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1545                         goto again;
1546                 }
1547
1548                 tmp = rb_list_head(tmp->next);
1549                 if (tmp == head)
1550                         /* The iteration circled back, all is done. */
1551                         goto out_locked;
1552
1553                 if (!rb_check_links(cpu_buffer, tmp))
1554                         goto out_locked;
1555
1556                 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1557         }
1558
1559 out_locked:
1560         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1561 }
1562
1563 /*
1564  * Take an address, add the meta data size as well as the array of
1565  * array subbuffer indexes, then align it to a subbuffer size.
1566  *
1567  * This is used to help find the next per cpu subbuffer within a mapped range.
1568  */
1569 static unsigned long
1570 rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs)
1571 {
1572         addr += sizeof(struct ring_buffer_meta) +
1573                 sizeof(int) * nr_subbufs;
1574         return ALIGN(addr, subbuf_size);
1575 }
1576
1577 /*
1578  * Return the ring_buffer_meta for a given @cpu.
1579  */
1580 static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu)
1581 {
1582         int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
1583         unsigned long ptr = buffer->range_addr_start;
1584         struct ring_buffer_meta *meta;
1585         int nr_subbufs;
1586
1587         if (!ptr)
1588                 return NULL;
1589
1590         /* When nr_pages passed in is zero, the first meta has already been initialized */
1591         if (!nr_pages) {
1592                 meta = (struct ring_buffer_meta *)ptr;
1593                 nr_subbufs = meta->nr_subbufs;
1594         } else {
1595                 meta = NULL;
1596                 /* Include the reader page */
1597                 nr_subbufs = nr_pages + 1;
1598         }
1599
1600         /*
1601          * The first chunk may not be subbuffer aligned, where as
1602          * the rest of the chunks are.
1603          */
1604         if (cpu) {
1605                 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1606                 ptr += subbuf_size * nr_subbufs;
1607
1608                 /* We can use multiplication to find chunks greater than 1 */
1609                 if (cpu > 1) {
1610                         unsigned long size;
1611                         unsigned long p;
1612
1613                         /* Save the beginning of this CPU chunk */
1614                         p = ptr;
1615                         ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1616                         ptr += subbuf_size * nr_subbufs;
1617
1618                         /* Now all chunks after this are the same size */
1619                         size = ptr - p;
1620                         ptr += size * (cpu - 2);
1621                 }
1622         }
1623         return (void *)ptr;
1624 }
1625
1626 /* Return the start of subbufs given the meta pointer */
1627 static void *rb_subbufs_from_meta(struct ring_buffer_meta *meta)
1628 {
1629         int subbuf_size = meta->subbuf_size;
1630         unsigned long ptr;
1631
1632         ptr = (unsigned long)meta;
1633         ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs);
1634
1635         return (void *)ptr;
1636 }
1637
1638 /*
1639  * Return a specific sub-buffer for a given @cpu defined by @idx.
1640  */
1641 static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx)
1642 {
1643         struct ring_buffer_meta *meta;
1644         unsigned long ptr;
1645         int subbuf_size;
1646
1647         meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu);
1648         if (!meta)
1649                 return NULL;
1650
1651         if (WARN_ON_ONCE(idx >= meta->nr_subbufs))
1652                 return NULL;
1653
1654         subbuf_size = meta->subbuf_size;
1655
1656         /* Map this buffer to the order that's in meta->buffers[] */
1657         idx = meta->buffers[idx];
1658
1659         ptr = (unsigned long)rb_subbufs_from_meta(meta);
1660
1661         ptr += subbuf_size * idx;
1662         if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end)
1663                 return NULL;
1664
1665         return (void *)ptr;
1666 }
1667
1668 /*
1669  * See if the existing memory contains valid ring buffer data.
1670  * As the previous kernel must be the same as this kernel, all
1671  * the calculations (size of buffers and number of buffers)
1672  * must be the same.
1673  */
1674 static bool rb_meta_valid(struct ring_buffer_meta *meta, int cpu,
1675                           struct trace_buffer *buffer, int nr_pages)
1676 {
1677         int subbuf_size = PAGE_SIZE;
1678         struct buffer_data_page *subbuf;
1679         unsigned long buffers_start;
1680         unsigned long buffers_end;
1681         int i;
1682
1683         /* Check the meta magic and meta struct size */
1684         if (meta->magic != RING_BUFFER_META_MAGIC ||
1685             meta->struct_size != sizeof(*meta)) {
1686                 pr_info("Ring buffer boot meta[%d] mismatch of magic or struct size\n", cpu);
1687                 return false;
1688         }
1689
1690         /* The subbuffer's size and number of subbuffers must match */
1691         if (meta->subbuf_size != subbuf_size ||
1692             meta->nr_subbufs != nr_pages + 1) {
1693                 pr_info("Ring buffer boot meta [%d] mismatch of subbuf_size/nr_pages\n", cpu);
1694                 return false;
1695         }
1696
1697         buffers_start = meta->first_buffer;
1698         buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs);
1699
1700         /* Is the head and commit buffers within the range of buffers? */
1701         if (meta->head_buffer < buffers_start ||
1702             meta->head_buffer >= buffers_end) {
1703                 pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu);
1704                 return false;
1705         }
1706
1707         if (meta->commit_buffer < buffers_start ||
1708             meta->commit_buffer >= buffers_end) {
1709                 pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu);
1710                 return false;
1711         }
1712
1713         subbuf = rb_subbufs_from_meta(meta);
1714
1715         /* Is the meta buffers and the subbufs themselves have correct data? */
1716         for (i = 0; i < meta->nr_subbufs; i++) {
1717                 if (meta->buffers[i] < 0 ||
1718                     meta->buffers[i] >= meta->nr_subbufs) {
1719                         pr_info("Ring buffer boot meta [%d] array out of range\n", cpu);
1720                         return false;
1721                 }
1722
1723                 if ((unsigned)local_read(&subbuf->commit) > subbuf_size) {
1724                         pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu);
1725                         return false;
1726                 }
1727
1728                 subbuf = (void *)subbuf + subbuf_size;
1729         }
1730
1731         return true;
1732 }
1733
1734 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf);
1735
1736 static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu,
1737                                unsigned long long *timestamp, u64 *delta_ptr)
1738 {
1739         struct ring_buffer_event *event;
1740         u64 ts, delta;
1741         int events = 0;
1742         int e;
1743
1744         *delta_ptr = 0;
1745         *timestamp = 0;
1746
1747         ts = dpage->time_stamp;
1748
1749         for (e = 0; e < tail; e += rb_event_length(event)) {
1750
1751                 event = (struct ring_buffer_event *)(dpage->data + e);
1752
1753                 switch (event->type_len) {
1754
1755                 case RINGBUF_TYPE_TIME_EXTEND:
1756                         delta = rb_event_time_stamp(event);
1757                         ts += delta;
1758                         break;
1759
1760                 case RINGBUF_TYPE_TIME_STAMP:
1761                         delta = rb_event_time_stamp(event);
1762                         delta = rb_fix_abs_ts(delta, ts);
1763                         if (delta < ts) {
1764                                 *delta_ptr = delta;
1765                                 *timestamp = ts;
1766                                 return -1;
1767                         }
1768                         ts = delta;
1769                         break;
1770
1771                 case RINGBUF_TYPE_PADDING:
1772                         if (event->time_delta == 1)
1773                                 break;
1774                         fallthrough;
1775                 case RINGBUF_TYPE_DATA:
1776                         events++;
1777                         ts += event->time_delta;
1778                         break;
1779
1780                 default:
1781                         return -1;
1782                 }
1783         }
1784         *timestamp = ts;
1785         return events;
1786 }
1787
1788 static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu)
1789 {
1790         unsigned long long ts;
1791         u64 delta;
1792         int tail;
1793
1794         tail = local_read(&dpage->commit);
1795         return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta);
1796 }
1797
1798 /* If the meta data has been validated, now validate the events */
1799 static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer)
1800 {
1801         struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1802         struct buffer_page *head_page;
1803         unsigned long entry_bytes = 0;
1804         unsigned long entries = 0;
1805         int ret;
1806         int i;
1807
1808         if (!meta || !meta->head_buffer)
1809                 return;
1810
1811         /* Do the reader page first */
1812         ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu);
1813         if (ret < 0) {
1814                 pr_info("Ring buffer reader page is invalid\n");
1815                 goto invalid;
1816         }
1817         entries += ret;
1818         entry_bytes += local_read(&cpu_buffer->reader_page->page->commit);
1819         local_set(&cpu_buffer->reader_page->entries, ret);
1820
1821         head_page = cpu_buffer->head_page;
1822
1823         /* If both the head and commit are on the reader_page then we are done. */
1824         if (head_page == cpu_buffer->reader_page &&
1825             head_page == cpu_buffer->commit_page)
1826                 goto done;
1827
1828         /* Iterate until finding the commit page */
1829         for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) {
1830
1831                 /* Reader page has already been done */
1832                 if (head_page == cpu_buffer->reader_page)
1833                         continue;
1834
1835                 ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
1836                 if (ret < 0) {
1837                         pr_info("Ring buffer meta [%d] invalid buffer page\n",
1838                                 cpu_buffer->cpu);
1839                         goto invalid;
1840                 }
1841                 entries += ret;
1842                 entry_bytes += local_read(&head_page->page->commit);
1843                 local_set(&cpu_buffer->head_page->entries, ret);
1844
1845                 if (head_page == cpu_buffer->commit_page)
1846                         break;
1847         }
1848
1849         if (head_page != cpu_buffer->commit_page) {
1850                 pr_info("Ring buffer meta [%d] commit page not found\n",
1851                         cpu_buffer->cpu);
1852                 goto invalid;
1853         }
1854  done:
1855         local_set(&cpu_buffer->entries, entries);
1856         local_set(&cpu_buffer->entries_bytes, entry_bytes);
1857
1858         pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu);
1859         return;
1860
1861  invalid:
1862         /* The content of the buffers are invalid, reset the meta data */
1863         meta->head_buffer = 0;
1864         meta->commit_buffer = 0;
1865
1866         /* Reset the reader page */
1867         local_set(&cpu_buffer->reader_page->entries, 0);
1868         local_set(&cpu_buffer->reader_page->page->commit, 0);
1869
1870         /* Reset all the subbuffers */
1871         for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) {
1872                 local_set(&head_page->entries, 0);
1873                 local_set(&head_page->page->commit, 0);
1874         }
1875 }
1876
1877 /* Used to calculate data delta */
1878 static char rb_data_ptr[] = "";
1879
1880 #define THIS_TEXT_PTR           ((unsigned long)rb_meta_init_text_addr)
1881 #define THIS_DATA_PTR           ((unsigned long)rb_data_ptr)
1882
1883 static void rb_meta_init_text_addr(struct ring_buffer_meta *meta)
1884 {
1885         meta->text_addr = THIS_TEXT_PTR;
1886         meta->data_addr = THIS_DATA_PTR;
1887 }
1888
1889 static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages)
1890 {
1891         struct ring_buffer_meta *meta;
1892         unsigned long delta;
1893         void *subbuf;
1894         int cpu;
1895         int i;
1896
1897         for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1898                 void *next_meta;
1899
1900                 meta = rb_range_meta(buffer, nr_pages, cpu);
1901
1902                 if (rb_meta_valid(meta, cpu, buffer, nr_pages)) {
1903                         /* Make the mappings match the current address */
1904                         subbuf = rb_subbufs_from_meta(meta);
1905                         delta = (unsigned long)subbuf - meta->first_buffer;
1906                         meta->first_buffer += delta;
1907                         meta->head_buffer += delta;
1908                         meta->commit_buffer += delta;
1909                         buffer->last_text_delta = THIS_TEXT_PTR - meta->text_addr;
1910                         buffer->last_data_delta = THIS_DATA_PTR - meta->data_addr;
1911                         continue;
1912                 }
1913
1914                 if (cpu < nr_cpu_ids - 1)
1915                         next_meta = rb_range_meta(buffer, nr_pages, cpu + 1);
1916                 else
1917                         next_meta = (void *)buffer->range_addr_end;
1918
1919                 memset(meta, 0, next_meta - (void *)meta);
1920
1921                 meta->magic = RING_BUFFER_META_MAGIC;
1922                 meta->struct_size = sizeof(*meta);
1923
1924                 meta->nr_subbufs = nr_pages + 1;
1925                 meta->subbuf_size = PAGE_SIZE;
1926
1927                 subbuf = rb_subbufs_from_meta(meta);
1928
1929                 meta->first_buffer = (unsigned long)subbuf;
1930                 rb_meta_init_text_addr(meta);
1931
1932                 /*
1933                  * The buffers[] array holds the order of the sub-buffers
1934                  * that are after the meta data. The sub-buffers may
1935                  * be swapped out when read and inserted into a different
1936                  * location of the ring buffer. Although their addresses
1937                  * remain the same, the buffers[] array contains the
1938                  * index into the sub-buffers holding their actual order.
1939                  */
1940                 for (i = 0; i < meta->nr_subbufs; i++) {
1941                         meta->buffers[i] = i;
1942                         rb_init_page(subbuf);
1943                         subbuf += meta->subbuf_size;
1944                 }
1945         }
1946 }
1947
1948 static void *rbm_start(struct seq_file *m, loff_t *pos)
1949 {
1950         struct ring_buffer_per_cpu *cpu_buffer = m->private;
1951         struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1952         unsigned long val;
1953
1954         if (!meta)
1955                 return NULL;
1956
1957         if (*pos > meta->nr_subbufs)
1958                 return NULL;
1959
1960         val = *pos;
1961         val++;
1962
1963         return (void *)val;
1964 }
1965
1966 static void *rbm_next(struct seq_file *m, void *v, loff_t *pos)
1967 {
1968         (*pos)++;
1969
1970         return rbm_start(m, pos);
1971 }
1972
1973 static int rbm_show(struct seq_file *m, void *v)
1974 {
1975         struct ring_buffer_per_cpu *cpu_buffer = m->private;
1976         struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1977         unsigned long val = (unsigned long)v;
1978
1979         if (val == 1) {
1980                 seq_printf(m, "head_buffer:   %d\n",
1981                            rb_meta_subbuf_idx(meta, (void *)meta->head_buffer));
1982                 seq_printf(m, "commit_buffer: %d\n",
1983                            rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer));
1984                 seq_printf(m, "subbuf_size:   %d\n", meta->subbuf_size);
1985                 seq_printf(m, "nr_subbufs:    %d\n", meta->nr_subbufs);
1986                 return 0;
1987         }
1988
1989         val -= 2;
1990         seq_printf(m, "buffer[%ld]:    %d\n", val, meta->buffers[val]);
1991
1992         return 0;
1993 }
1994
1995 static void rbm_stop(struct seq_file *m, void *p)
1996 {
1997 }
1998
1999 static const struct seq_operations rb_meta_seq_ops = {
2000         .start          = rbm_start,
2001         .next           = rbm_next,
2002         .show           = rbm_show,
2003         .stop           = rbm_stop,
2004 };
2005
2006 int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu)
2007 {
2008         struct seq_file *m;
2009         int ret;
2010
2011         ret = seq_open(file, &rb_meta_seq_ops);
2012         if (ret)
2013                 return ret;
2014
2015         m = file->private_data;
2016         m->private = buffer->buffers[cpu];
2017
2018         return 0;
2019 }
2020
2021 /* Map the buffer_pages to the previous head and commit pages */
2022 static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer,
2023                                   struct buffer_page *bpage)
2024 {
2025         struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
2026
2027         if (meta->head_buffer == (unsigned long)bpage->page)
2028                 cpu_buffer->head_page = bpage;
2029
2030         if (meta->commit_buffer == (unsigned long)bpage->page) {
2031                 cpu_buffer->commit_page = bpage;
2032                 cpu_buffer->tail_page = bpage;
2033         }
2034 }
2035
2036 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2037                 long nr_pages, struct list_head *pages)
2038 {
2039         struct trace_buffer *buffer = cpu_buffer->buffer;
2040         struct ring_buffer_meta *meta = NULL;
2041         struct buffer_page *bpage, *tmp;
2042         bool user_thread = current->mm != NULL;
2043         gfp_t mflags;
2044         long i;
2045
2046         /*
2047          * Check if the available memory is there first.
2048          * Note, si_mem_available() only gives us a rough estimate of available
2049          * memory. It may not be accurate. But we don't care, we just want
2050          * to prevent doing any allocation when it is obvious that it is
2051          * not going to succeed.
2052          */
2053         i = si_mem_available();
2054         if (i < nr_pages)
2055                 return -ENOMEM;
2056
2057         /*
2058          * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
2059          * gracefully without invoking oom-killer and the system is not
2060          * destabilized.
2061          */
2062         mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
2063
2064         /*
2065          * If a user thread allocates too much, and si_mem_available()
2066          * reports there's enough memory, even though there is not.
2067          * Make sure the OOM killer kills this thread. This can happen
2068          * even with RETRY_MAYFAIL because another task may be doing
2069          * an allocation after this task has taken all memory.
2070          * This is the task the OOM killer needs to take out during this
2071          * loop, even if it was triggered by an allocation somewhere else.
2072          */
2073         if (user_thread)
2074                 set_current_oom_origin();
2075
2076         if (buffer->range_addr_start)
2077                 meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu);
2078
2079         for (i = 0; i < nr_pages; i++) {
2080                 struct page *page;
2081
2082                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2083                                     mflags, cpu_to_node(cpu_buffer->cpu));
2084                 if (!bpage)
2085                         goto free_pages;
2086
2087                 rb_check_bpage(cpu_buffer, bpage);
2088
2089                 /*
2090                  * Append the pages as for mapped buffers we want to keep
2091                  * the order
2092                  */
2093                 list_add_tail(&bpage->list, pages);
2094
2095                 if (meta) {
2096                         /* A range was given. Use that for the buffer page */
2097                         bpage->page = rb_range_buffer(cpu_buffer, i + 1);
2098                         if (!bpage->page)
2099                                 goto free_pages;
2100                         /* If this is valid from a previous boot */
2101                         if (meta->head_buffer)
2102                                 rb_meta_buffer_update(cpu_buffer, bpage);
2103                         bpage->range = 1;
2104                         bpage->id = i + 1;
2105                 } else {
2106                         page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
2107                                                 mflags | __GFP_COMP | __GFP_ZERO,
2108                                                 cpu_buffer->buffer->subbuf_order);
2109                         if (!page)
2110                                 goto free_pages;
2111                         bpage->page = page_address(page);
2112                         rb_init_page(bpage->page);
2113                 }
2114                 bpage->order = cpu_buffer->buffer->subbuf_order;
2115
2116                 if (user_thread && fatal_signal_pending(current))
2117                         goto free_pages;
2118         }
2119         if (user_thread)
2120                 clear_current_oom_origin();
2121
2122         return 0;
2123
2124 free_pages:
2125         list_for_each_entry_safe(bpage, tmp, pages, list) {
2126                 list_del_init(&bpage->list);
2127                 free_buffer_page(bpage);
2128         }
2129         if (user_thread)
2130                 clear_current_oom_origin();
2131
2132         return -ENOMEM;
2133 }
2134
2135 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2136                              unsigned long nr_pages)
2137 {
2138         LIST_HEAD(pages);
2139
2140         WARN_ON(!nr_pages);
2141
2142         if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
2143                 return -ENOMEM;
2144
2145         /*
2146          * The ring buffer page list is a circular list that does not
2147          * start and end with a list head. All page list items point to
2148          * other pages.
2149          */
2150         cpu_buffer->pages = pages.next;
2151         list_del(&pages);
2152
2153         cpu_buffer->nr_pages = nr_pages;
2154
2155         rb_check_pages(cpu_buffer);
2156
2157         return 0;
2158 }
2159
2160 static struct ring_buffer_per_cpu *
2161 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
2162 {
2163         struct ring_buffer_per_cpu *cpu_buffer;
2164         struct ring_buffer_meta *meta;
2165         struct buffer_page *bpage;
2166         struct page *page;
2167         int ret;
2168
2169         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
2170                                   GFP_KERNEL, cpu_to_node(cpu));
2171         if (!cpu_buffer)
2172                 return NULL;
2173
2174         cpu_buffer->cpu = cpu;
2175         cpu_buffer->buffer = buffer;
2176         raw_spin_lock_init(&cpu_buffer->reader_lock);
2177         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
2178         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
2179         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
2180         init_completion(&cpu_buffer->update_done);
2181         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
2182         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
2183         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
2184         mutex_init(&cpu_buffer->mapping_lock);
2185
2186         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2187                             GFP_KERNEL, cpu_to_node(cpu));
2188         if (!bpage)
2189                 goto fail_free_buffer;
2190
2191         rb_check_bpage(cpu_buffer, bpage);
2192
2193         cpu_buffer->reader_page = bpage;
2194
2195         if (buffer->range_addr_start) {
2196                 /*
2197                  * Range mapped buffers have the same restrictions as memory
2198                  * mapped ones do.
2199                  */
2200                 cpu_buffer->mapped = 1;
2201                 cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu);
2202                 bpage->page = rb_range_buffer(cpu_buffer, 0);
2203                 if (!bpage->page)
2204                         goto fail_free_reader;
2205                 if (cpu_buffer->ring_meta->head_buffer)
2206                         rb_meta_buffer_update(cpu_buffer, bpage);
2207                 bpage->range = 1;
2208         } else {
2209                 page = alloc_pages_node(cpu_to_node(cpu),
2210                                         GFP_KERNEL | __GFP_COMP | __GFP_ZERO,
2211                                         cpu_buffer->buffer->subbuf_order);
2212                 if (!page)
2213                         goto fail_free_reader;
2214                 bpage->page = page_address(page);
2215                 rb_init_page(bpage->page);
2216         }
2217
2218         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2219         INIT_LIST_HEAD(&cpu_buffer->new_pages);
2220
2221         ret = rb_allocate_pages(cpu_buffer, nr_pages);
2222         if (ret < 0)
2223                 goto fail_free_reader;
2224
2225         rb_meta_validate_events(cpu_buffer);
2226
2227         /* If the boot meta was valid then this has already been updated */
2228         meta = cpu_buffer->ring_meta;
2229         if (!meta || !meta->head_buffer ||
2230             !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) {
2231                 if (meta && meta->head_buffer &&
2232                     (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) {
2233                         pr_warn("Ring buffer meta buffers not all mapped\n");
2234                         if (!cpu_buffer->head_page)
2235                                 pr_warn("   Missing head_page\n");
2236                         if (!cpu_buffer->commit_page)
2237                                 pr_warn("   Missing commit_page\n");
2238                         if (!cpu_buffer->tail_page)
2239                                 pr_warn("   Missing tail_page\n");
2240                 }
2241
2242                 cpu_buffer->head_page
2243                         = list_entry(cpu_buffer->pages, struct buffer_page, list);
2244                 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
2245
2246                 rb_head_page_activate(cpu_buffer);
2247
2248                 if (cpu_buffer->ring_meta)
2249                         meta->commit_buffer = meta->head_buffer;
2250         } else {
2251                 /* The valid meta buffer still needs to activate the head page */
2252                 rb_head_page_activate(cpu_buffer);
2253         }
2254
2255         return cpu_buffer;
2256
2257  fail_free_reader:
2258         free_buffer_page(cpu_buffer->reader_page);
2259
2260  fail_free_buffer:
2261         kfree(cpu_buffer);
2262         return NULL;
2263 }
2264
2265 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
2266 {
2267         struct list_head *head = cpu_buffer->pages;
2268         struct buffer_page *bpage, *tmp;
2269
2270         irq_work_sync(&cpu_buffer->irq_work.work);
2271
2272         free_buffer_page(cpu_buffer->reader_page);
2273
2274         if (head) {
2275                 rb_head_page_deactivate(cpu_buffer);
2276
2277                 list_for_each_entry_safe(bpage, tmp, head, list) {
2278                         list_del_init(&bpage->list);
2279                         free_buffer_page(bpage);
2280                 }
2281                 bpage = list_entry(head, struct buffer_page, list);
2282                 free_buffer_page(bpage);
2283         }
2284
2285         free_page((unsigned long)cpu_buffer->free_page);
2286
2287         kfree(cpu_buffer);
2288 }
2289
2290 static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags,
2291                                          int order, unsigned long start,
2292                                          unsigned long end,
2293                                          struct lock_class_key *key)
2294 {
2295         struct trace_buffer *buffer;
2296         long nr_pages;
2297         int subbuf_size;
2298         int bsize;
2299         int cpu;
2300         int ret;
2301
2302         /* keep it in its own cache line */
2303         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
2304                          GFP_KERNEL);
2305         if (!buffer)
2306                 return NULL;
2307
2308         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
2309                 goto fail_free_buffer;
2310
2311         buffer->subbuf_order = order;
2312         subbuf_size = (PAGE_SIZE << order);
2313         buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE;
2314
2315         /* Max payload is buffer page size - header (8bytes) */
2316         buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
2317
2318         buffer->flags = flags;
2319         buffer->clock = trace_clock_local;
2320         buffer->reader_lock_key = key;
2321
2322         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
2323         init_waitqueue_head(&buffer->irq_work.waiters);
2324
2325         buffer->cpus = nr_cpu_ids;
2326
2327         bsize = sizeof(void *) * nr_cpu_ids;
2328         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
2329                                   GFP_KERNEL);
2330         if (!buffer->buffers)
2331                 goto fail_free_cpumask;
2332
2333         /* If start/end are specified, then that overrides size */
2334         if (start && end) {
2335                 unsigned long ptr;
2336                 int n;
2337
2338                 size = end - start;
2339                 size = size / nr_cpu_ids;
2340
2341                 /*
2342                  * The number of sub-buffers (nr_pages) is determined by the
2343                  * total size allocated minus the meta data size.
2344                  * Then that is divided by the number of per CPU buffers
2345                  * needed, plus account for the integer array index that
2346                  * will be appended to the meta data.
2347                  */
2348                 nr_pages = (size - sizeof(struct ring_buffer_meta)) /
2349                         (subbuf_size + sizeof(int));
2350                 /* Need at least two pages plus the reader page */
2351                 if (nr_pages < 3)
2352                         goto fail_free_buffers;
2353
2354  again:
2355                 /* Make sure that the size fits aligned */
2356                 for (n = 0, ptr = start; n < nr_cpu_ids; n++) {
2357                         ptr += sizeof(struct ring_buffer_meta) +
2358                                 sizeof(int) * nr_pages;
2359                         ptr = ALIGN(ptr, subbuf_size);
2360                         ptr += subbuf_size * nr_pages;
2361                 }
2362                 if (ptr > end) {
2363                         if (nr_pages <= 3)
2364                                 goto fail_free_buffers;
2365                         nr_pages--;
2366                         goto again;
2367                 }
2368
2369                 /* nr_pages should not count the reader page */
2370                 nr_pages--;
2371                 buffer->range_addr_start = start;
2372                 buffer->range_addr_end = end;
2373
2374                 rb_range_meta_init(buffer, nr_pages);
2375         } else {
2376
2377                 /* need at least two pages */
2378                 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2379                 if (nr_pages < 2)
2380                         nr_pages = 2;
2381         }
2382
2383         cpu = raw_smp_processor_id();
2384         cpumask_set_cpu(cpu, buffer->cpumask);
2385         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
2386         if (!buffer->buffers[cpu])
2387                 goto fail_free_buffers;
2388
2389         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2390         if (ret < 0)
2391                 goto fail_free_buffers;
2392
2393         mutex_init(&buffer->mutex);
2394
2395         return buffer;
2396
2397  fail_free_buffers:
2398         for_each_buffer_cpu(buffer, cpu) {
2399                 if (buffer->buffers[cpu])
2400                         rb_free_cpu_buffer(buffer->buffers[cpu]);
2401         }
2402         kfree(buffer->buffers);
2403
2404  fail_free_cpumask:
2405         free_cpumask_var(buffer->cpumask);
2406
2407  fail_free_buffer:
2408         kfree(buffer);
2409         return NULL;
2410 }
2411
2412 /**
2413  * __ring_buffer_alloc - allocate a new ring_buffer
2414  * @size: the size in bytes per cpu that is needed.
2415  * @flags: attributes to set for the ring buffer.
2416  * @key: ring buffer reader_lock_key.
2417  *
2418  * Currently the only flag that is available is the RB_FL_OVERWRITE
2419  * flag. This flag means that the buffer will overwrite old data
2420  * when the buffer wraps. If this flag is not set, the buffer will
2421  * drop data when the tail hits the head.
2422  */
2423 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
2424                                         struct lock_class_key *key)
2425 {
2426         /* Default buffer page size - one system page */
2427         return alloc_buffer(size, flags, 0, 0, 0,key);
2428
2429 }
2430 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
2431
2432 /**
2433  * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory
2434  * @size: the size in bytes per cpu that is needed.
2435  * @flags: attributes to set for the ring buffer.
2436  * @order: sub-buffer order
2437  * @start: start of allocated range
2438  * @range_size: size of allocated range
2439  * @key: ring buffer reader_lock_key.
2440  *
2441  * Currently the only flag that is available is the RB_FL_OVERWRITE
2442  * flag. This flag means that the buffer will overwrite old data
2443  * when the buffer wraps. If this flag is not set, the buffer will
2444  * drop data when the tail hits the head.
2445  */
2446 struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags,
2447                                                int order, unsigned long start,
2448                                                unsigned long range_size,
2449                                                struct lock_class_key *key)
2450 {
2451         return alloc_buffer(size, flags, order, start, start + range_size, key);
2452 }
2453
2454 /**
2455  * ring_buffer_last_boot_delta - return the delta offset from last boot
2456  * @buffer: The buffer to return the delta from
2457  * @text: Return text delta
2458  * @data: Return data delta
2459  *
2460  * Returns: The true if the delta is non zero
2461  */
2462 bool ring_buffer_last_boot_delta(struct trace_buffer *buffer, long *text,
2463                                  long *data)
2464 {
2465         if (!buffer)
2466                 return false;
2467
2468         if (!buffer->last_text_delta)
2469                 return false;
2470
2471         *text = buffer->last_text_delta;
2472         *data = buffer->last_data_delta;
2473
2474         return true;
2475 }
2476
2477 /**
2478  * ring_buffer_free - free a ring buffer.
2479  * @buffer: the buffer to free.
2480  */
2481 void
2482 ring_buffer_free(struct trace_buffer *buffer)
2483 {
2484         int cpu;
2485
2486         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2487
2488         irq_work_sync(&buffer->irq_work.work);
2489
2490         for_each_buffer_cpu(buffer, cpu)
2491                 rb_free_cpu_buffer(buffer->buffers[cpu]);
2492
2493         kfree(buffer->buffers);
2494         free_cpumask_var(buffer->cpumask);
2495
2496         kfree(buffer);
2497 }
2498 EXPORT_SYMBOL_GPL(ring_buffer_free);
2499
2500 void ring_buffer_set_clock(struct trace_buffer *buffer,
2501                            u64 (*clock)(void))
2502 {
2503         buffer->clock = clock;
2504 }
2505
2506 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
2507 {
2508         buffer->time_stamp_abs = abs;
2509 }
2510
2511 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
2512 {
2513         return buffer->time_stamp_abs;
2514 }
2515
2516 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
2517 {
2518         return local_read(&bpage->entries) & RB_WRITE_MASK;
2519 }
2520
2521 static inline unsigned long rb_page_write(struct buffer_page *bpage)
2522 {
2523         return local_read(&bpage->write) & RB_WRITE_MASK;
2524 }
2525
2526 static bool
2527 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
2528 {
2529         struct list_head *tail_page, *to_remove, *next_page;
2530         struct buffer_page *to_remove_page, *tmp_iter_page;
2531         struct buffer_page *last_page, *first_page;
2532         unsigned long nr_removed;
2533         unsigned long head_bit;
2534         int page_entries;
2535
2536         head_bit = 0;
2537
2538         raw_spin_lock_irq(&cpu_buffer->reader_lock);
2539         atomic_inc(&cpu_buffer->record_disabled);
2540         /*
2541          * We don't race with the readers since we have acquired the reader
2542          * lock. We also don't race with writers after disabling recording.
2543          * This makes it easy to figure out the first and the last page to be
2544          * removed from the list. We unlink all the pages in between including
2545          * the first and last pages. This is done in a busy loop so that we
2546          * lose the least number of traces.
2547          * The pages are freed after we restart recording and unlock readers.
2548          */
2549         tail_page = &cpu_buffer->tail_page->list;
2550
2551         /*
2552          * tail page might be on reader page, we remove the next page
2553          * from the ring buffer
2554          */
2555         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2556                 tail_page = rb_list_head(tail_page->next);
2557         to_remove = tail_page;
2558
2559         /* start of pages to remove */
2560         first_page = list_entry(rb_list_head(to_remove->next),
2561                                 struct buffer_page, list);
2562
2563         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
2564                 to_remove = rb_list_head(to_remove)->next;
2565                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
2566         }
2567         /* Read iterators need to reset themselves when some pages removed */
2568         cpu_buffer->pages_removed += nr_removed;
2569
2570         next_page = rb_list_head(to_remove)->next;
2571
2572         /*
2573          * Now we remove all pages between tail_page and next_page.
2574          * Make sure that we have head_bit value preserved for the
2575          * next page
2576          */
2577         tail_page->next = (struct list_head *)((unsigned long)next_page |
2578                                                 head_bit);
2579         next_page = rb_list_head(next_page);
2580         next_page->prev = tail_page;
2581
2582         /* make sure pages points to a valid page in the ring buffer */
2583         cpu_buffer->pages = next_page;
2584         cpu_buffer->cnt++;
2585
2586         /* update head page */
2587         if (head_bit)
2588                 cpu_buffer->head_page = list_entry(next_page,
2589                                                 struct buffer_page, list);
2590
2591         /* pages are removed, resume tracing and then free the pages */
2592         atomic_dec(&cpu_buffer->record_disabled);
2593         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2594
2595         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2596
2597         /* last buffer page to remove */
2598         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2599                                 list);
2600         tmp_iter_page = first_page;
2601
2602         do {
2603                 cond_resched();
2604
2605                 to_remove_page = tmp_iter_page;
2606                 rb_inc_page(&tmp_iter_page);
2607
2608                 /* update the counters */
2609                 page_entries = rb_page_entries(to_remove_page);
2610                 if (page_entries) {
2611                         /*
2612                          * If something was added to this page, it was full
2613                          * since it is not the tail page. So we deduct the
2614                          * bytes consumed in ring buffer from here.
2615                          * Increment overrun to account for the lost events.
2616                          */
2617                         local_add(page_entries, &cpu_buffer->overrun);
2618                         local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2619                         local_inc(&cpu_buffer->pages_lost);
2620                 }
2621
2622                 /*
2623                  * We have already removed references to this list item, just
2624                  * free up the buffer_page and its page
2625                  */
2626                 free_buffer_page(to_remove_page);
2627                 nr_removed--;
2628
2629         } while (to_remove_page != last_page);
2630
2631         RB_WARN_ON(cpu_buffer, nr_removed);
2632
2633         return nr_removed == 0;
2634 }
2635
2636 static bool
2637 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2638 {
2639         struct list_head *pages = &cpu_buffer->new_pages;
2640         unsigned long flags;
2641         bool success;
2642         int retries;
2643
2644         /* Can be called at early boot up, where interrupts must not been enabled */
2645         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2646         /*
2647          * We are holding the reader lock, so the reader page won't be swapped
2648          * in the ring buffer. Now we are racing with the writer trying to
2649          * move head page and the tail page.
2650          * We are going to adapt the reader page update process where:
2651          * 1. We first splice the start and end of list of new pages between
2652          *    the head page and its previous page.
2653          * 2. We cmpxchg the prev_page->next to point from head page to the
2654          *    start of new pages list.
2655          * 3. Finally, we update the head->prev to the end of new list.
2656          *
2657          * We will try this process 10 times, to make sure that we don't keep
2658          * spinning.
2659          */
2660         retries = 10;
2661         success = false;
2662         while (retries--) {
2663                 struct list_head *head_page, *prev_page;
2664                 struct list_head *last_page, *first_page;
2665                 struct list_head *head_page_with_bit;
2666                 struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2667
2668                 if (!hpage)
2669                         break;
2670                 head_page = &hpage->list;
2671                 prev_page = head_page->prev;
2672
2673                 first_page = pages->next;
2674                 last_page  = pages->prev;
2675
2676                 head_page_with_bit = (struct list_head *)
2677                                      ((unsigned long)head_page | RB_PAGE_HEAD);
2678
2679                 last_page->next = head_page_with_bit;
2680                 first_page->prev = prev_page;
2681
2682                 /* caution: head_page_with_bit gets updated on cmpxchg failure */
2683                 if (try_cmpxchg(&prev_page->next,
2684                                 &head_page_with_bit, first_page)) {
2685                         /*
2686                          * yay, we replaced the page pointer to our new list,
2687                          * now, we just have to update to head page's prev
2688                          * pointer to point to end of list
2689                          */
2690                         head_page->prev = last_page;
2691                         cpu_buffer->cnt++;
2692                         success = true;
2693                         break;
2694                 }
2695         }
2696
2697         if (success)
2698                 INIT_LIST_HEAD(pages);
2699         /*
2700          * If we weren't successful in adding in new pages, warn and stop
2701          * tracing
2702          */
2703         RB_WARN_ON(cpu_buffer, !success);
2704         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2705
2706         /* free pages if they weren't inserted */
2707         if (!success) {
2708                 struct buffer_page *bpage, *tmp;
2709                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2710                                          list) {
2711                         list_del_init(&bpage->list);
2712                         free_buffer_page(bpage);
2713                 }
2714         }
2715         return success;
2716 }
2717
2718 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2719 {
2720         bool success;
2721
2722         if (cpu_buffer->nr_pages_to_update > 0)
2723                 success = rb_insert_pages(cpu_buffer);
2724         else
2725                 success = rb_remove_pages(cpu_buffer,
2726                                         -cpu_buffer->nr_pages_to_update);
2727
2728         if (success)
2729                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2730 }
2731
2732 static void update_pages_handler(struct work_struct *work)
2733 {
2734         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2735                         struct ring_buffer_per_cpu, update_pages_work);
2736         rb_update_pages(cpu_buffer);
2737         complete(&cpu_buffer->update_done);
2738 }
2739
2740 /**
2741  * ring_buffer_resize - resize the ring buffer
2742  * @buffer: the buffer to resize.
2743  * @size: the new size.
2744  * @cpu_id: the cpu buffer to resize
2745  *
2746  * Minimum size is 2 * buffer->subbuf_size.
2747  *
2748  * Returns 0 on success and < 0 on failure.
2749  */
2750 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2751                         int cpu_id)
2752 {
2753         struct ring_buffer_per_cpu *cpu_buffer;
2754         unsigned long nr_pages;
2755         int cpu, err;
2756
2757         /*
2758          * Always succeed at resizing a non-existent buffer:
2759          */
2760         if (!buffer)
2761                 return 0;
2762
2763         /* Make sure the requested buffer exists */
2764         if (cpu_id != RING_BUFFER_ALL_CPUS &&
2765             !cpumask_test_cpu(cpu_id, buffer->cpumask))
2766                 return 0;
2767
2768         nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2769
2770         /* we need a minimum of two pages */
2771         if (nr_pages < 2)
2772                 nr_pages = 2;
2773
2774         /* prevent another thread from changing buffer sizes */
2775         mutex_lock(&buffer->mutex);
2776         atomic_inc(&buffer->resizing);
2777
2778         if (cpu_id == RING_BUFFER_ALL_CPUS) {
2779                 /*
2780                  * Don't succeed if resizing is disabled, as a reader might be
2781                  * manipulating the ring buffer and is expecting a sane state while
2782                  * this is true.
2783                  */
2784                 for_each_buffer_cpu(buffer, cpu) {
2785                         cpu_buffer = buffer->buffers[cpu];
2786                         if (atomic_read(&cpu_buffer->resize_disabled)) {
2787                                 err = -EBUSY;
2788                                 goto out_err_unlock;
2789                         }
2790                 }
2791
2792                 /* calculate the pages to update */
2793                 for_each_buffer_cpu(buffer, cpu) {
2794                         cpu_buffer = buffer->buffers[cpu];
2795
2796                         cpu_buffer->nr_pages_to_update = nr_pages -
2797                                                         cpu_buffer->nr_pages;
2798                         /*
2799                          * nothing more to do for removing pages or no update
2800                          */
2801                         if (cpu_buffer->nr_pages_to_update <= 0)
2802                                 continue;
2803                         /*
2804                          * to add pages, make sure all new pages can be
2805                          * allocated without receiving ENOMEM
2806                          */
2807                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
2808                         if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2809                                                 &cpu_buffer->new_pages)) {
2810                                 /* not enough memory for new pages */
2811                                 err = -ENOMEM;
2812                                 goto out_err;
2813                         }
2814
2815                         cond_resched();
2816                 }
2817
2818                 cpus_read_lock();
2819                 /*
2820                  * Fire off all the required work handlers
2821                  * We can't schedule on offline CPUs, but it's not necessary
2822                  * since we can change their buffer sizes without any race.
2823                  */
2824                 for_each_buffer_cpu(buffer, cpu) {
2825                         cpu_buffer = buffer->buffers[cpu];
2826                         if (!cpu_buffer->nr_pages_to_update)
2827                                 continue;
2828
2829                         /* Can't run something on an offline CPU. */
2830                         if (!cpu_online(cpu)) {
2831                                 rb_update_pages(cpu_buffer);
2832                                 cpu_buffer->nr_pages_to_update = 0;
2833                         } else {
2834                                 /* Run directly if possible. */
2835                                 migrate_disable();
2836                                 if (cpu != smp_processor_id()) {
2837                                         migrate_enable();
2838                                         schedule_work_on(cpu,
2839                                                          &cpu_buffer->update_pages_work);
2840                                 } else {
2841                                         update_pages_handler(&cpu_buffer->update_pages_work);
2842                                         migrate_enable();
2843                                 }
2844                         }
2845                 }
2846
2847                 /* wait for all the updates to complete */
2848                 for_each_buffer_cpu(buffer, cpu) {
2849                         cpu_buffer = buffer->buffers[cpu];
2850                         if (!cpu_buffer->nr_pages_to_update)
2851                                 continue;
2852
2853                         if (cpu_online(cpu))
2854                                 wait_for_completion(&cpu_buffer->update_done);
2855                         cpu_buffer->nr_pages_to_update = 0;
2856                 }
2857
2858                 cpus_read_unlock();
2859         } else {
2860                 cpu_buffer = buffer->buffers[cpu_id];
2861
2862                 if (nr_pages == cpu_buffer->nr_pages)
2863                         goto out;
2864
2865                 /*
2866                  * Don't succeed if resizing is disabled, as a reader might be
2867                  * manipulating the ring buffer and is expecting a sane state while
2868                  * this is true.
2869                  */
2870                 if (atomic_read(&cpu_buffer->resize_disabled)) {
2871                         err = -EBUSY;
2872                         goto out_err_unlock;
2873                 }
2874
2875                 cpu_buffer->nr_pages_to_update = nr_pages -
2876                                                 cpu_buffer->nr_pages;
2877
2878                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2879                 if (cpu_buffer->nr_pages_to_update > 0 &&
2880                         __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2881                                             &cpu_buffer->new_pages)) {
2882                         err = -ENOMEM;
2883                         goto out_err;
2884                 }
2885
2886                 cpus_read_lock();
2887
2888                 /* Can't run something on an offline CPU. */
2889                 if (!cpu_online(cpu_id))
2890                         rb_update_pages(cpu_buffer);
2891                 else {
2892                         /* Run directly if possible. */
2893                         migrate_disable();
2894                         if (cpu_id == smp_processor_id()) {
2895                                 rb_update_pages(cpu_buffer);
2896                                 migrate_enable();
2897                         } else {
2898                                 migrate_enable();
2899                                 schedule_work_on(cpu_id,
2900                                                  &cpu_buffer->update_pages_work);
2901                                 wait_for_completion(&cpu_buffer->update_done);
2902                         }
2903                 }
2904
2905                 cpu_buffer->nr_pages_to_update = 0;
2906                 cpus_read_unlock();
2907         }
2908
2909  out:
2910         /*
2911          * The ring buffer resize can happen with the ring buffer
2912          * enabled, so that the update disturbs the tracing as little
2913          * as possible. But if the buffer is disabled, we do not need
2914          * to worry about that, and we can take the time to verify
2915          * that the buffer is not corrupt.
2916          */
2917         if (atomic_read(&buffer->record_disabled)) {
2918                 atomic_inc(&buffer->record_disabled);
2919                 /*
2920                  * Even though the buffer was disabled, we must make sure
2921                  * that it is truly disabled before calling rb_check_pages.
2922                  * There could have been a race between checking
2923                  * record_disable and incrementing it.
2924                  */
2925                 synchronize_rcu();
2926                 for_each_buffer_cpu(buffer, cpu) {
2927                         cpu_buffer = buffer->buffers[cpu];
2928                         rb_check_pages(cpu_buffer);
2929                 }
2930                 atomic_dec(&buffer->record_disabled);
2931         }
2932
2933         atomic_dec(&buffer->resizing);
2934         mutex_unlock(&buffer->mutex);
2935         return 0;
2936
2937  out_err:
2938         for_each_buffer_cpu(buffer, cpu) {
2939                 struct buffer_page *bpage, *tmp;
2940
2941                 cpu_buffer = buffer->buffers[cpu];
2942                 cpu_buffer->nr_pages_to_update = 0;
2943
2944                 if (list_empty(&cpu_buffer->new_pages))
2945                         continue;
2946
2947                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2948                                         list) {
2949                         list_del_init(&bpage->list);
2950                         free_buffer_page(bpage);
2951                 }
2952         }
2953  out_err_unlock:
2954         atomic_dec(&buffer->resizing);
2955         mutex_unlock(&buffer->mutex);
2956         return err;
2957 }
2958 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2959
2960 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2961 {
2962         mutex_lock(&buffer->mutex);
2963         if (val)
2964                 buffer->flags |= RB_FL_OVERWRITE;
2965         else
2966                 buffer->flags &= ~RB_FL_OVERWRITE;
2967         mutex_unlock(&buffer->mutex);
2968 }
2969 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2970
2971 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2972 {
2973         return bpage->page->data + index;
2974 }
2975
2976 static __always_inline struct ring_buffer_event *
2977 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2978 {
2979         return __rb_page_index(cpu_buffer->reader_page,
2980                                cpu_buffer->reader_page->read);
2981 }
2982
2983 static struct ring_buffer_event *
2984 rb_iter_head_event(struct ring_buffer_iter *iter)
2985 {
2986         struct ring_buffer_event *event;
2987         struct buffer_page *iter_head_page = iter->head_page;
2988         unsigned long commit;
2989         unsigned length;
2990
2991         if (iter->head != iter->next_event)
2992                 return iter->event;
2993
2994         /*
2995          * When the writer goes across pages, it issues a cmpxchg which
2996          * is a mb(), which will synchronize with the rmb here.
2997          * (see rb_tail_page_update() and __rb_reserve_next())
2998          */
2999         commit = rb_page_commit(iter_head_page);
3000         smp_rmb();
3001
3002         /* An event needs to be at least 8 bytes in size */
3003         if (iter->head > commit - 8)
3004                 goto reset;
3005
3006         event = __rb_page_index(iter_head_page, iter->head);
3007         length = rb_event_length(event);
3008
3009         /*
3010          * READ_ONCE() doesn't work on functions and we don't want the
3011          * compiler doing any crazy optimizations with length.
3012          */
3013         barrier();
3014
3015         if ((iter->head + length) > commit || length > iter->event_size)
3016                 /* Writer corrupted the read? */
3017                 goto reset;
3018
3019         memcpy(iter->event, event, length);
3020         /*
3021          * If the page stamp is still the same after this rmb() then the
3022          * event was safely copied without the writer entering the page.
3023          */
3024         smp_rmb();
3025
3026         /* Make sure the page didn't change since we read this */
3027         if (iter->page_stamp != iter_head_page->page->time_stamp ||
3028             commit > rb_page_commit(iter_head_page))
3029                 goto reset;
3030
3031         iter->next_event = iter->head + length;
3032         return iter->event;
3033  reset:
3034         /* Reset to the beginning */
3035         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3036         iter->head = 0;
3037         iter->next_event = 0;
3038         iter->missed_events = 1;
3039         return NULL;
3040 }
3041
3042 /* Size is determined by what has been committed */
3043 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
3044 {
3045         return rb_page_commit(bpage) & ~RB_MISSED_MASK;
3046 }
3047
3048 static __always_inline unsigned
3049 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
3050 {
3051         return rb_page_commit(cpu_buffer->commit_page);
3052 }
3053
3054 static __always_inline unsigned
3055 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
3056 {
3057         unsigned long addr = (unsigned long)event;
3058
3059         addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
3060
3061         return addr - BUF_PAGE_HDR_SIZE;
3062 }
3063
3064 static void rb_inc_iter(struct ring_buffer_iter *iter)
3065 {
3066         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3067
3068         /*
3069          * The iterator could be on the reader page (it starts there).
3070          * But the head could have moved, since the reader was
3071          * found. Check for this case and assign the iterator
3072          * to the head page instead of next.
3073          */
3074         if (iter->head_page == cpu_buffer->reader_page)
3075                 iter->head_page = rb_set_head_page(cpu_buffer);
3076         else
3077                 rb_inc_page(&iter->head_page);
3078
3079         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3080         iter->head = 0;
3081         iter->next_event = 0;
3082 }
3083
3084 /* Return the index into the sub-buffers for a given sub-buffer */
3085 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf)
3086 {
3087         void *subbuf_array;
3088
3089         subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs;
3090         subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size);
3091         return (subbuf - subbuf_array) / meta->subbuf_size;
3092 }
3093
3094 static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer,
3095                                 struct buffer_page *next_page)
3096 {
3097         struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3098         unsigned long old_head = (unsigned long)next_page->page;
3099         unsigned long new_head;
3100
3101         rb_inc_page(&next_page);
3102         new_head = (unsigned long)next_page->page;
3103
3104         /*
3105          * Only move it forward once, if something else came in and
3106          * moved it forward, then we don't want to touch it.
3107          */
3108         (void)cmpxchg(&meta->head_buffer, old_head, new_head);
3109 }
3110
3111 static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer,
3112                                   struct buffer_page *reader)
3113 {
3114         struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3115         void *old_reader = cpu_buffer->reader_page->page;
3116         void *new_reader = reader->page;
3117         int id;
3118
3119         id = reader->id;
3120         cpu_buffer->reader_page->id = id;
3121         reader->id = 0;
3122
3123         meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader);
3124         meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader);
3125
3126         /* The head pointer is the one after the reader */
3127         rb_update_meta_head(cpu_buffer, reader);
3128 }
3129
3130 /*
3131  * rb_handle_head_page - writer hit the head page
3132  *
3133  * Returns: +1 to retry page
3134  *           0 to continue
3135  *          -1 on error
3136  */
3137 static int
3138 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
3139                     struct buffer_page *tail_page,
3140                     struct buffer_page *next_page)
3141 {
3142         struct buffer_page *new_head;
3143         int entries;
3144         int type;
3145         int ret;
3146
3147         entries = rb_page_entries(next_page);
3148
3149         /*
3150          * The hard part is here. We need to move the head
3151          * forward, and protect against both readers on
3152          * other CPUs and writers coming in via interrupts.
3153          */
3154         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
3155                                        RB_PAGE_HEAD);
3156
3157         /*
3158          * type can be one of four:
3159          *  NORMAL - an interrupt already moved it for us
3160          *  HEAD   - we are the first to get here.
3161          *  UPDATE - we are the interrupt interrupting
3162          *           a current move.
3163          *  MOVED  - a reader on another CPU moved the next
3164          *           pointer to its reader page. Give up
3165          *           and try again.
3166          */
3167
3168         switch (type) {
3169         case RB_PAGE_HEAD:
3170                 /*
3171                  * We changed the head to UPDATE, thus
3172                  * it is our responsibility to update
3173                  * the counters.
3174                  */
3175                 local_add(entries, &cpu_buffer->overrun);
3176                 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
3177                 local_inc(&cpu_buffer->pages_lost);
3178
3179                 if (cpu_buffer->ring_meta)
3180                         rb_update_meta_head(cpu_buffer, next_page);
3181                 /*
3182                  * The entries will be zeroed out when we move the
3183                  * tail page.
3184                  */
3185
3186                 /* still more to do */
3187                 break;
3188
3189         case RB_PAGE_UPDATE:
3190                 /*
3191                  * This is an interrupt that interrupt the
3192                  * previous update. Still more to do.
3193                  */
3194                 break;
3195         case RB_PAGE_NORMAL:
3196                 /*
3197                  * An interrupt came in before the update
3198                  * and processed this for us.
3199                  * Nothing left to do.
3200                  */
3201                 return 1;
3202         case RB_PAGE_MOVED:
3203                 /*
3204                  * The reader is on another CPU and just did
3205                  * a swap with our next_page.
3206                  * Try again.
3207                  */
3208                 return 1;
3209         default:
3210                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
3211                 return -1;
3212         }
3213
3214         /*
3215          * Now that we are here, the old head pointer is
3216          * set to UPDATE. This will keep the reader from
3217          * swapping the head page with the reader page.
3218          * The reader (on another CPU) will spin till
3219          * we are finished.
3220          *
3221          * We just need to protect against interrupts
3222          * doing the job. We will set the next pointer
3223          * to HEAD. After that, we set the old pointer
3224          * to NORMAL, but only if it was HEAD before.
3225          * otherwise we are an interrupt, and only
3226          * want the outer most commit to reset it.
3227          */
3228         new_head = next_page;
3229         rb_inc_page(&new_head);
3230
3231         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
3232                                     RB_PAGE_NORMAL);
3233
3234         /*
3235          * Valid returns are:
3236          *  HEAD   - an interrupt came in and already set it.
3237          *  NORMAL - One of two things:
3238          *            1) We really set it.
3239          *            2) A bunch of interrupts came in and moved
3240          *               the page forward again.
3241          */
3242         switch (ret) {
3243         case RB_PAGE_HEAD:
3244         case RB_PAGE_NORMAL:
3245                 /* OK */
3246                 break;
3247         default:
3248                 RB_WARN_ON(cpu_buffer, 1);
3249                 return -1;
3250         }
3251
3252         /*
3253          * It is possible that an interrupt came in,
3254          * set the head up, then more interrupts came in
3255          * and moved it again. When we get back here,
3256          * the page would have been set to NORMAL but we
3257          * just set it back to HEAD.
3258          *
3259          * How do you detect this? Well, if that happened
3260          * the tail page would have moved.
3261          */
3262         if (ret == RB_PAGE_NORMAL) {
3263                 struct buffer_page *buffer_tail_page;
3264
3265                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
3266                 /*
3267                  * If the tail had moved passed next, then we need
3268                  * to reset the pointer.
3269                  */
3270                 if (buffer_tail_page != tail_page &&
3271                     buffer_tail_page != next_page)
3272                         rb_head_page_set_normal(cpu_buffer, new_head,
3273                                                 next_page,
3274                                                 RB_PAGE_HEAD);
3275         }
3276
3277         /*
3278          * If this was the outer most commit (the one that
3279          * changed the original pointer from HEAD to UPDATE),
3280          * then it is up to us to reset it to NORMAL.
3281          */
3282         if (type == RB_PAGE_HEAD) {
3283                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
3284                                               tail_page,
3285                                               RB_PAGE_UPDATE);
3286                 if (RB_WARN_ON(cpu_buffer,
3287                                ret != RB_PAGE_UPDATE))
3288                         return -1;
3289         }
3290
3291         return 0;
3292 }
3293
3294 static inline void
3295 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
3296               unsigned long tail, struct rb_event_info *info)
3297 {
3298         unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
3299         struct buffer_page *tail_page = info->tail_page;
3300         struct ring_buffer_event *event;
3301         unsigned long length = info->length;
3302
3303         /*
3304          * Only the event that crossed the page boundary
3305          * must fill the old tail_page with padding.
3306          */
3307         if (tail >= bsize) {
3308                 /*
3309                  * If the page was filled, then we still need
3310                  * to update the real_end. Reset it to zero
3311                  * and the reader will ignore it.
3312                  */
3313                 if (tail == bsize)
3314                         tail_page->real_end = 0;
3315
3316                 local_sub(length, &tail_page->write);
3317                 return;
3318         }
3319
3320         event = __rb_page_index(tail_page, tail);
3321
3322         /*
3323          * Save the original length to the meta data.
3324          * This will be used by the reader to add lost event
3325          * counter.
3326          */
3327         tail_page->real_end = tail;
3328
3329         /*
3330          * If this event is bigger than the minimum size, then
3331          * we need to be careful that we don't subtract the
3332          * write counter enough to allow another writer to slip
3333          * in on this page.
3334          * We put in a discarded commit instead, to make sure
3335          * that this space is not used again, and this space will
3336          * not be accounted into 'entries_bytes'.
3337          *
3338          * If we are less than the minimum size, we don't need to
3339          * worry about it.
3340          */
3341         if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
3342                 /* No room for any events */
3343
3344                 /* Mark the rest of the page with padding */
3345                 rb_event_set_padding(event);
3346
3347                 /* Make sure the padding is visible before the write update */
3348                 smp_wmb();
3349
3350                 /* Set the write back to the previous setting */
3351                 local_sub(length, &tail_page->write);
3352                 return;
3353         }
3354
3355         /* Put in a discarded event */
3356         event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
3357         event->type_len = RINGBUF_TYPE_PADDING;
3358         /* time delta must be non zero */
3359         event->time_delta = 1;
3360
3361         /* account for padding bytes */
3362         local_add(bsize - tail, &cpu_buffer->entries_bytes);
3363
3364         /* Make sure the padding is visible before the tail_page->write update */
3365         smp_wmb();
3366
3367         /* Set write to end of buffer */
3368         length = (tail + length) - bsize;
3369         local_sub(length, &tail_page->write);
3370 }
3371
3372 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
3373
3374 /*
3375  * This is the slow path, force gcc not to inline it.
3376  */
3377 static noinline struct ring_buffer_event *
3378 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
3379              unsigned long tail, struct rb_event_info *info)
3380 {
3381         struct buffer_page *tail_page = info->tail_page;
3382         struct buffer_page *commit_page = cpu_buffer->commit_page;
3383         struct trace_buffer *buffer = cpu_buffer->buffer;
3384         struct buffer_page *next_page;
3385         int ret;
3386
3387         next_page = tail_page;
3388
3389         rb_inc_page(&next_page);
3390
3391         /*
3392          * If for some reason, we had an interrupt storm that made
3393          * it all the way around the buffer, bail, and warn
3394          * about it.
3395          */
3396         if (unlikely(next_page == commit_page)) {
3397                 local_inc(&cpu_buffer->commit_overrun);
3398                 goto out_reset;
3399         }
3400
3401         /*
3402          * This is where the fun begins!
3403          *
3404          * We are fighting against races between a reader that
3405          * could be on another CPU trying to swap its reader
3406          * page with the buffer head.
3407          *
3408          * We are also fighting against interrupts coming in and
3409          * moving the head or tail on us as well.
3410          *
3411          * If the next page is the head page then we have filled
3412          * the buffer, unless the commit page is still on the
3413          * reader page.
3414          */
3415         if (rb_is_head_page(next_page, &tail_page->list)) {
3416
3417                 /*
3418                  * If the commit is not on the reader page, then
3419                  * move the header page.
3420                  */
3421                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
3422                         /*
3423                          * If we are not in overwrite mode,
3424                          * this is easy, just stop here.
3425                          */
3426                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
3427                                 local_inc(&cpu_buffer->dropped_events);
3428                                 goto out_reset;
3429                         }
3430
3431                         ret = rb_handle_head_page(cpu_buffer,
3432                                                   tail_page,
3433                                                   next_page);
3434                         if (ret < 0)
3435                                 goto out_reset;
3436                         if (ret)
3437                                 goto out_again;
3438                 } else {
3439                         /*
3440                          * We need to be careful here too. The
3441                          * commit page could still be on the reader
3442                          * page. We could have a small buffer, and
3443                          * have filled up the buffer with events
3444                          * from interrupts and such, and wrapped.
3445                          *
3446                          * Note, if the tail page is also on the
3447                          * reader_page, we let it move out.
3448                          */
3449                         if (unlikely((cpu_buffer->commit_page !=
3450                                       cpu_buffer->tail_page) &&
3451                                      (cpu_buffer->commit_page ==
3452                                       cpu_buffer->reader_page))) {
3453                                 local_inc(&cpu_buffer->commit_overrun);
3454                                 goto out_reset;
3455                         }
3456                 }
3457         }
3458
3459         rb_tail_page_update(cpu_buffer, tail_page, next_page);
3460
3461  out_again:
3462
3463         rb_reset_tail(cpu_buffer, tail, info);
3464
3465         /* Commit what we have for now. */
3466         rb_end_commit(cpu_buffer);
3467         /* rb_end_commit() decs committing */
3468         local_inc(&cpu_buffer->committing);
3469
3470         /* fail and let the caller try again */
3471         return ERR_PTR(-EAGAIN);
3472
3473  out_reset:
3474         /* reset write */
3475         rb_reset_tail(cpu_buffer, tail, info);
3476
3477         return NULL;
3478 }
3479
3480 /* Slow path */
3481 static struct ring_buffer_event *
3482 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3483                   struct ring_buffer_event *event, u64 delta, bool abs)
3484 {
3485         if (abs)
3486                 event->type_len = RINGBUF_TYPE_TIME_STAMP;
3487         else
3488                 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
3489
3490         /* Not the first event on the page, or not delta? */
3491         if (abs || rb_event_index(cpu_buffer, event)) {
3492                 event->time_delta = delta & TS_MASK;
3493                 event->array[0] = delta >> TS_SHIFT;
3494         } else {
3495                 /* nope, just zero it */
3496                 event->time_delta = 0;
3497                 event->array[0] = 0;
3498         }
3499
3500         return skip_time_extend(event);
3501 }
3502
3503 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3504 static inline bool sched_clock_stable(void)
3505 {
3506         return true;
3507 }
3508 #endif
3509
3510 static void
3511 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3512                    struct rb_event_info *info)
3513 {
3514         u64 write_stamp;
3515
3516         WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
3517                   (unsigned long long)info->delta,
3518                   (unsigned long long)info->ts,
3519                   (unsigned long long)info->before,
3520                   (unsigned long long)info->after,
3521                   (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
3522                   sched_clock_stable() ? "" :
3523                   "If you just came from a suspend/resume,\n"
3524                   "please switch to the trace global clock:\n"
3525                   "  echo global > /sys/kernel/tracing/trace_clock\n"
3526                   "or add trace_clock=global to the kernel command line\n");
3527 }
3528
3529 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3530                                       struct ring_buffer_event **event,
3531                                       struct rb_event_info *info,
3532                                       u64 *delta,
3533                                       unsigned int *length)
3534 {
3535         bool abs = info->add_timestamp &
3536                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
3537
3538         if (unlikely(info->delta > (1ULL << 59))) {
3539                 /*
3540                  * Some timers can use more than 59 bits, and when a timestamp
3541                  * is added to the buffer, it will lose those bits.
3542                  */
3543                 if (abs && (info->ts & TS_MSB)) {
3544                         info->delta &= ABS_TS_MASK;
3545
3546                 /* did the clock go backwards */
3547                 } else if (info->before == info->after && info->before > info->ts) {
3548                         /* not interrupted */
3549                         static int once;
3550
3551                         /*
3552                          * This is possible with a recalibrating of the TSC.
3553                          * Do not produce a call stack, but just report it.
3554                          */
3555                         if (!once) {
3556                                 once++;
3557                                 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
3558                                         info->before, info->ts);
3559                         }
3560                 } else
3561                         rb_check_timestamp(cpu_buffer, info);
3562                 if (!abs)
3563                         info->delta = 0;
3564         }
3565         *event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
3566         *length -= RB_LEN_TIME_EXTEND;
3567         *delta = 0;
3568 }
3569
3570 /**
3571  * rb_update_event - update event type and data
3572  * @cpu_buffer: The per cpu buffer of the @event
3573  * @event: the event to update
3574  * @info: The info to update the @event with (contains length and delta)
3575  *
3576  * Update the type and data fields of the @event. The length
3577  * is the actual size that is written to the ring buffer,
3578  * and with this, we can determine what to place into the
3579  * data field.
3580  */
3581 static void
3582 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
3583                 struct ring_buffer_event *event,
3584                 struct rb_event_info *info)
3585 {
3586         unsigned length = info->length;
3587         u64 delta = info->delta;
3588         unsigned int nest = local_read(&cpu_buffer->committing) - 1;
3589
3590         if (!WARN_ON_ONCE(nest >= MAX_NEST))
3591                 cpu_buffer->event_stamp[nest] = info->ts;
3592
3593         /*
3594          * If we need to add a timestamp, then we
3595          * add it to the start of the reserved space.
3596          */
3597         if (unlikely(info->add_timestamp))
3598                 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
3599
3600         event->time_delta = delta;
3601         length -= RB_EVNT_HDR_SIZE;
3602         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
3603                 event->type_len = 0;
3604                 event->array[0] = length;
3605         } else
3606                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
3607 }
3608
3609 static unsigned rb_calculate_event_length(unsigned length)
3610 {
3611         struct ring_buffer_event event; /* Used only for sizeof array */
3612
3613         /* zero length can cause confusions */
3614         if (!length)
3615                 length++;
3616
3617         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
3618                 length += sizeof(event.array[0]);
3619
3620         length += RB_EVNT_HDR_SIZE;
3621         length = ALIGN(length, RB_ARCH_ALIGNMENT);
3622
3623         /*
3624          * In case the time delta is larger than the 27 bits for it
3625          * in the header, we need to add a timestamp. If another
3626          * event comes in when trying to discard this one to increase
3627          * the length, then the timestamp will be added in the allocated
3628          * space of this event. If length is bigger than the size needed
3629          * for the TIME_EXTEND, then padding has to be used. The events
3630          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
3631          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
3632          * As length is a multiple of 4, we only need to worry if it
3633          * is 12 (RB_LEN_TIME_EXTEND + 4).
3634          */
3635         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3636                 length += RB_ALIGNMENT;
3637
3638         return length;
3639 }
3640
3641 static inline bool
3642 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3643                   struct ring_buffer_event *event)
3644 {
3645         unsigned long new_index, old_index;
3646         struct buffer_page *bpage;
3647         unsigned long addr;
3648
3649         new_index = rb_event_index(cpu_buffer, event);
3650         old_index = new_index + rb_event_ts_length(event);
3651         addr = (unsigned long)event;
3652         addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3653
3654         bpage = READ_ONCE(cpu_buffer->tail_page);
3655
3656         /*
3657          * Make sure the tail_page is still the same and
3658          * the next write location is the end of this event
3659          */
3660         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3661                 unsigned long write_mask =
3662                         local_read(&bpage->write) & ~RB_WRITE_MASK;
3663                 unsigned long event_length = rb_event_length(event);
3664
3665                 /*
3666                  * For the before_stamp to be different than the write_stamp
3667                  * to make sure that the next event adds an absolute
3668                  * value and does not rely on the saved write stamp, which
3669                  * is now going to be bogus.
3670                  *
3671                  * By setting the before_stamp to zero, the next event
3672                  * is not going to use the write_stamp and will instead
3673                  * create an absolute timestamp. This means there's no
3674                  * reason to update the wirte_stamp!
3675                  */
3676                 rb_time_set(&cpu_buffer->before_stamp, 0);
3677
3678                 /*
3679                  * If an event were to come in now, it would see that the
3680                  * write_stamp and the before_stamp are different, and assume
3681                  * that this event just added itself before updating
3682                  * the write stamp. The interrupting event will fix the
3683                  * write stamp for us, and use an absolute timestamp.
3684                  */
3685
3686                 /*
3687                  * This is on the tail page. It is possible that
3688                  * a write could come in and move the tail page
3689                  * and write to the next page. That is fine
3690                  * because we just shorten what is on this page.
3691                  */
3692                 old_index += write_mask;
3693                 new_index += write_mask;
3694
3695                 /* caution: old_index gets updated on cmpxchg failure */
3696                 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3697                         /* update counters */
3698                         local_sub(event_length, &cpu_buffer->entries_bytes);
3699                         return true;
3700                 }
3701         }
3702
3703         /* could not discard */
3704         return false;
3705 }
3706
3707 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3708 {
3709         local_inc(&cpu_buffer->committing);
3710         local_inc(&cpu_buffer->commits);
3711 }
3712
3713 static __always_inline void
3714 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3715 {
3716         unsigned long max_count;
3717
3718         /*
3719          * We only race with interrupts and NMIs on this CPU.
3720          * If we own the commit event, then we can commit
3721          * all others that interrupted us, since the interruptions
3722          * are in stack format (they finish before they come
3723          * back to us). This allows us to do a simple loop to
3724          * assign the commit to the tail.
3725          */
3726  again:
3727         max_count = cpu_buffer->nr_pages * 100;
3728
3729         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3730                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3731                         return;
3732                 if (RB_WARN_ON(cpu_buffer,
3733                                rb_is_reader_page(cpu_buffer->tail_page)))
3734                         return;
3735                 /*
3736                  * No need for a memory barrier here, as the update
3737                  * of the tail_page did it for this page.
3738                  */
3739                 local_set(&cpu_buffer->commit_page->page->commit,
3740                           rb_page_write(cpu_buffer->commit_page));
3741                 rb_inc_page(&cpu_buffer->commit_page);
3742                 if (cpu_buffer->ring_meta) {
3743                         struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3744                         meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page;
3745                 }
3746                 /* add barrier to keep gcc from optimizing too much */
3747                 barrier();
3748         }
3749         while (rb_commit_index(cpu_buffer) !=
3750                rb_page_write(cpu_buffer->commit_page)) {
3751
3752                 /* Make sure the readers see the content of what is committed. */
3753                 smp_wmb();
3754                 local_set(&cpu_buffer->commit_page->page->commit,
3755                           rb_page_write(cpu_buffer->commit_page));
3756                 RB_WARN_ON(cpu_buffer,
3757                            local_read(&cpu_buffer->commit_page->page->commit) &
3758                            ~RB_WRITE_MASK);
3759                 barrier();
3760         }
3761
3762         /* again, keep gcc from optimizing */
3763         barrier();
3764
3765         /*
3766          * If an interrupt came in just after the first while loop
3767          * and pushed the tail page forward, we will be left with
3768          * a dangling commit that will never go forward.
3769          */
3770         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3771                 goto again;
3772 }
3773
3774 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3775 {
3776         unsigned long commits;
3777
3778         if (RB_WARN_ON(cpu_buffer,
3779                        !local_read(&cpu_buffer->committing)))
3780                 return;
3781
3782  again:
3783         commits = local_read(&cpu_buffer->commits);
3784         /* synchronize with interrupts */
3785         barrier();
3786         if (local_read(&cpu_buffer->committing) == 1)
3787                 rb_set_commit_to_write(cpu_buffer);
3788
3789         local_dec(&cpu_buffer->committing);
3790
3791         /* synchronize with interrupts */
3792         barrier();
3793
3794         /*
3795          * Need to account for interrupts coming in between the
3796          * updating of the commit page and the clearing of the
3797          * committing counter.
3798          */
3799         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3800             !local_read(&cpu_buffer->committing)) {
3801                 local_inc(&cpu_buffer->committing);
3802                 goto again;
3803         }
3804 }
3805
3806 static inline void rb_event_discard(struct ring_buffer_event *event)
3807 {
3808         if (extended_time(event))
3809                 event = skip_time_extend(event);
3810
3811         /* array[0] holds the actual length for the discarded event */
3812         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3813         event->type_len = RINGBUF_TYPE_PADDING;
3814         /* time delta must be non zero */
3815         if (!event->time_delta)
3816                 event->time_delta = 1;
3817 }
3818
3819 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3820 {
3821         local_inc(&cpu_buffer->entries);
3822         rb_end_commit(cpu_buffer);
3823 }
3824
3825 static __always_inline void
3826 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3827 {
3828         if (buffer->irq_work.waiters_pending) {
3829                 buffer->irq_work.waiters_pending = false;
3830                 /* irq_work_queue() supplies it's own memory barriers */
3831                 irq_work_queue(&buffer->irq_work.work);
3832         }
3833
3834         if (cpu_buffer->irq_work.waiters_pending) {
3835                 cpu_buffer->irq_work.waiters_pending = false;
3836                 /* irq_work_queue() supplies it's own memory barriers */
3837                 irq_work_queue(&cpu_buffer->irq_work.work);
3838         }
3839
3840         if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3841                 return;
3842
3843         if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3844                 return;
3845
3846         if (!cpu_buffer->irq_work.full_waiters_pending)
3847                 return;
3848
3849         cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3850
3851         if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3852                 return;
3853
3854         cpu_buffer->irq_work.wakeup_full = true;
3855         cpu_buffer->irq_work.full_waiters_pending = false;
3856         /* irq_work_queue() supplies it's own memory barriers */
3857         irq_work_queue(&cpu_buffer->irq_work.work);
3858 }
3859
3860 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3861 # define do_ring_buffer_record_recursion()      \
3862         do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3863 #else
3864 # define do_ring_buffer_record_recursion() do { } while (0)
3865 #endif
3866
3867 /*
3868  * The lock and unlock are done within a preempt disable section.
3869  * The current_context per_cpu variable can only be modified
3870  * by the current task between lock and unlock. But it can
3871  * be modified more than once via an interrupt. To pass this
3872  * information from the lock to the unlock without having to
3873  * access the 'in_interrupt()' functions again (which do show
3874  * a bit of overhead in something as critical as function tracing,
3875  * we use a bitmask trick.
3876  *
3877  *  bit 1 =  NMI context
3878  *  bit 2 =  IRQ context
3879  *  bit 3 =  SoftIRQ context
3880  *  bit 4 =  normal context.
3881  *
3882  * This works because this is the order of contexts that can
3883  * preempt other contexts. A SoftIRQ never preempts an IRQ
3884  * context.
3885  *
3886  * When the context is determined, the corresponding bit is
3887  * checked and set (if it was set, then a recursion of that context
3888  * happened).
3889  *
3890  * On unlock, we need to clear this bit. To do so, just subtract
3891  * 1 from the current_context and AND it to itself.
3892  *
3893  * (binary)
3894  *  101 - 1 = 100
3895  *  101 & 100 = 100 (clearing bit zero)
3896  *
3897  *  1010 - 1 = 1001
3898  *  1010 & 1001 = 1000 (clearing bit 1)
3899  *
3900  * The least significant bit can be cleared this way, and it
3901  * just so happens that it is the same bit corresponding to
3902  * the current context.
3903  *
3904  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3905  * is set when a recursion is detected at the current context, and if
3906  * the TRANSITION bit is already set, it will fail the recursion.
3907  * This is needed because there's a lag between the changing of
3908  * interrupt context and updating the preempt count. In this case,
3909  * a false positive will be found. To handle this, one extra recursion
3910  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3911  * bit is already set, then it is considered a recursion and the function
3912  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3913  *
3914  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3915  * to be cleared. Even if it wasn't the context that set it. That is,
3916  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3917  * is called before preempt_count() is updated, since the check will
3918  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3919  * NMI then comes in, it will set the NMI bit, but when the NMI code
3920  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3921  * and leave the NMI bit set. But this is fine, because the interrupt
3922  * code that set the TRANSITION bit will then clear the NMI bit when it
3923  * calls trace_recursive_unlock(). If another NMI comes in, it will
3924  * set the TRANSITION bit and continue.
3925  *
3926  * Note: The TRANSITION bit only handles a single transition between context.
3927  */
3928
3929 static __always_inline bool
3930 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3931 {
3932         unsigned int val = cpu_buffer->current_context;
3933         int bit = interrupt_context_level();
3934
3935         bit = RB_CTX_NORMAL - bit;
3936
3937         if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3938                 /*
3939                  * It is possible that this was called by transitioning
3940                  * between interrupt context, and preempt_count() has not
3941                  * been updated yet. In this case, use the TRANSITION bit.
3942                  */
3943                 bit = RB_CTX_TRANSITION;
3944                 if (val & (1 << (bit + cpu_buffer->nest))) {
3945                         do_ring_buffer_record_recursion();
3946                         return true;
3947                 }
3948         }
3949
3950         val |= (1 << (bit + cpu_buffer->nest));
3951         cpu_buffer->current_context = val;
3952
3953         return false;
3954 }
3955
3956 static __always_inline void
3957 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3958 {
3959         cpu_buffer->current_context &=
3960                 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3961 }
3962
3963 /* The recursive locking above uses 5 bits */
3964 #define NESTED_BITS 5
3965
3966 /**
3967  * ring_buffer_nest_start - Allow to trace while nested
3968  * @buffer: The ring buffer to modify
3969  *
3970  * The ring buffer has a safety mechanism to prevent recursion.
3971  * But there may be a case where a trace needs to be done while
3972  * tracing something else. In this case, calling this function
3973  * will allow this function to nest within a currently active
3974  * ring_buffer_lock_reserve().
3975  *
3976  * Call this function before calling another ring_buffer_lock_reserve() and
3977  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3978  */
3979 void ring_buffer_nest_start(struct trace_buffer *buffer)
3980 {
3981         struct ring_buffer_per_cpu *cpu_buffer;
3982         int cpu;
3983
3984         /* Enabled by ring_buffer_nest_end() */
3985         preempt_disable_notrace();
3986         cpu = raw_smp_processor_id();
3987         cpu_buffer = buffer->buffers[cpu];
3988         /* This is the shift value for the above recursive locking */
3989         cpu_buffer->nest += NESTED_BITS;
3990 }
3991
3992 /**
3993  * ring_buffer_nest_end - Allow to trace while nested
3994  * @buffer: The ring buffer to modify
3995  *
3996  * Must be called after ring_buffer_nest_start() and after the
3997  * ring_buffer_unlock_commit().
3998  */
3999 void ring_buffer_nest_end(struct trace_buffer *buffer)
4000 {
4001         struct ring_buffer_per_cpu *cpu_buffer;
4002         int cpu;
4003
4004         /* disabled by ring_buffer_nest_start() */
4005         cpu = raw_smp_processor_id();
4006         cpu_buffer = buffer->buffers[cpu];
4007         /* This is the shift value for the above recursive locking */
4008         cpu_buffer->nest -= NESTED_BITS;
4009         preempt_enable_notrace();
4010 }
4011
4012 /**
4013  * ring_buffer_unlock_commit - commit a reserved
4014  * @buffer: The buffer to commit to
4015  *
4016  * This commits the data to the ring buffer, and releases any locks held.
4017  *
4018  * Must be paired with ring_buffer_lock_reserve.
4019  */
4020 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
4021 {
4022         struct ring_buffer_per_cpu *cpu_buffer;
4023         int cpu = raw_smp_processor_id();
4024
4025         cpu_buffer = buffer->buffers[cpu];
4026
4027         rb_commit(cpu_buffer);
4028
4029         rb_wakeups(buffer, cpu_buffer);
4030
4031         trace_recursive_unlock(cpu_buffer);
4032
4033         preempt_enable_notrace();
4034
4035         return 0;
4036 }
4037 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
4038
4039 /* Special value to validate all deltas on a page. */
4040 #define CHECK_FULL_PAGE         1L
4041
4042 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
4043
4044 static const char *show_irq_str(int bits)
4045 {
4046         const char *type[] = {
4047                 ".",    // 0
4048                 "s",    // 1
4049                 "h",    // 2
4050                 "Hs",   // 3
4051                 "n",    // 4
4052                 "Ns",   // 5
4053                 "Nh",   // 6
4054                 "NHs",  // 7
4055         };
4056
4057         return type[bits];
4058 }
4059
4060 /* Assume this is a trace event */
4061 static const char *show_flags(struct ring_buffer_event *event)
4062 {
4063         struct trace_entry *entry;
4064         int bits = 0;
4065
4066         if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4067                 return "X";
4068
4069         entry = ring_buffer_event_data(event);
4070
4071         if (entry->flags & TRACE_FLAG_SOFTIRQ)
4072                 bits |= 1;
4073
4074         if (entry->flags & TRACE_FLAG_HARDIRQ)
4075                 bits |= 2;
4076
4077         if (entry->flags & TRACE_FLAG_NMI)
4078                 bits |= 4;
4079
4080         return show_irq_str(bits);
4081 }
4082
4083 static const char *show_irq(struct ring_buffer_event *event)
4084 {
4085         struct trace_entry *entry;
4086
4087         if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4088                 return "";
4089
4090         entry = ring_buffer_event_data(event);
4091         if (entry->flags & TRACE_FLAG_IRQS_OFF)
4092                 return "d";
4093         return "";
4094 }
4095
4096 static const char *show_interrupt_level(void)
4097 {
4098         unsigned long pc = preempt_count();
4099         unsigned char level = 0;
4100
4101         if (pc & SOFTIRQ_OFFSET)
4102                 level |= 1;
4103
4104         if (pc & HARDIRQ_MASK)
4105                 level |= 2;
4106
4107         if (pc & NMI_MASK)
4108                 level |= 4;
4109
4110         return show_irq_str(level);
4111 }
4112
4113 static void dump_buffer_page(struct buffer_data_page *bpage,
4114                              struct rb_event_info *info,
4115                              unsigned long tail)
4116 {
4117         struct ring_buffer_event *event;
4118         u64 ts, delta;
4119         int e;
4120
4121         ts = bpage->time_stamp;
4122         pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
4123
4124         for (e = 0; e < tail; e += rb_event_length(event)) {
4125
4126                 event = (struct ring_buffer_event *)(bpage->data + e);
4127
4128                 switch (event->type_len) {
4129
4130                 case RINGBUF_TYPE_TIME_EXTEND:
4131                         delta = rb_event_time_stamp(event);
4132                         ts += delta;
4133                         pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
4134                                 e, ts, delta);
4135                         break;
4136
4137                 case RINGBUF_TYPE_TIME_STAMP:
4138                         delta = rb_event_time_stamp(event);
4139                         ts = rb_fix_abs_ts(delta, ts);
4140                         pr_warn(" 0x%x:  [%lld] absolute:%lld TIME STAMP\n",
4141                                 e, ts, delta);
4142                         break;
4143
4144                 case RINGBUF_TYPE_PADDING:
4145                         ts += event->time_delta;
4146                         pr_warn(" 0x%x:  [%lld] delta:%d PADDING\n",
4147                                 e, ts, event->time_delta);
4148                         break;
4149
4150                 case RINGBUF_TYPE_DATA:
4151                         ts += event->time_delta;
4152                         pr_warn(" 0x%x:  [%lld] delta:%d %s%s\n",
4153                                 e, ts, event->time_delta,
4154                                 show_flags(event), show_irq(event));
4155                         break;
4156
4157                 default:
4158                         break;
4159                 }
4160         }
4161         pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
4162 }
4163
4164 static DEFINE_PER_CPU(atomic_t, checking);
4165 static atomic_t ts_dump;
4166
4167 #define buffer_warn_return(fmt, ...)                                    \
4168         do {                                                            \
4169                 /* If another report is happening, ignore this one */   \
4170                 if (atomic_inc_return(&ts_dump) != 1) {                 \
4171                         atomic_dec(&ts_dump);                           \
4172                         goto out;                                       \
4173                 }                                                       \
4174                 atomic_inc(&cpu_buffer->record_disabled);               \
4175                 pr_warn(fmt, ##__VA_ARGS__);                            \
4176                 dump_buffer_page(bpage, info, tail);                    \
4177                 atomic_dec(&ts_dump);                                   \
4178                 /* There's some cases in boot up that this can happen */ \
4179                 if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING))       \
4180                         /* Do not re-enable checking */                 \
4181                         return;                                         \
4182         } while (0)
4183
4184 /*
4185  * Check if the current event time stamp matches the deltas on
4186  * the buffer page.
4187  */
4188 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4189                          struct rb_event_info *info,
4190                          unsigned long tail)
4191 {
4192         struct buffer_data_page *bpage;
4193         u64 ts, delta;
4194         bool full = false;
4195         int ret;
4196
4197         bpage = info->tail_page->page;
4198
4199         if (tail == CHECK_FULL_PAGE) {
4200                 full = true;
4201                 tail = local_read(&bpage->commit);
4202         } else if (info->add_timestamp &
4203                    (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
4204                 /* Ignore events with absolute time stamps */
4205                 return;
4206         }
4207
4208         /*
4209          * Do not check the first event (skip possible extends too).
4210          * Also do not check if previous events have not been committed.
4211          */
4212         if (tail <= 8 || tail > local_read(&bpage->commit))
4213                 return;
4214
4215         /*
4216          * If this interrupted another event,
4217          */
4218         if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
4219                 goto out;
4220
4221         ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta);
4222         if (ret < 0) {
4223                 if (delta < ts) {
4224                         buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
4225                                            cpu_buffer->cpu, ts, delta);
4226                         goto out;
4227                 }
4228         }
4229         if ((full && ts > info->ts) ||
4230             (!full && ts + info->delta != info->ts)) {
4231                 buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
4232                                    cpu_buffer->cpu,
4233                                    ts + info->delta, info->ts, info->delta,
4234                                    info->before, info->after,
4235                                    full ? " (full)" : "", show_interrupt_level());
4236         }
4237 out:
4238         atomic_dec(this_cpu_ptr(&checking));
4239 }
4240 #else
4241 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4242                          struct rb_event_info *info,
4243                          unsigned long tail)
4244 {
4245 }
4246 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
4247
4248 static struct ring_buffer_event *
4249 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
4250                   struct rb_event_info *info)
4251 {
4252         struct ring_buffer_event *event;
4253         struct buffer_page *tail_page;
4254         unsigned long tail, write, w;
4255
4256         /* Don't let the compiler play games with cpu_buffer->tail_page */
4257         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
4258
4259  /*A*/  w = local_read(&tail_page->write) & RB_WRITE_MASK;
4260         barrier();
4261         rb_time_read(&cpu_buffer->before_stamp, &info->before);
4262         rb_time_read(&cpu_buffer->write_stamp, &info->after);
4263         barrier();
4264         info->ts = rb_time_stamp(cpu_buffer->buffer);
4265
4266         if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
4267                 info->delta = info->ts;
4268         } else {
4269                 /*
4270                  * If interrupting an event time update, we may need an
4271                  * absolute timestamp.
4272                  * Don't bother if this is the start of a new page (w == 0).
4273                  */
4274                 if (!w) {
4275                         /* Use the sub-buffer timestamp */
4276                         info->delta = 0;
4277                 } else if (unlikely(info->before != info->after)) {
4278                         info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
4279                         info->length += RB_LEN_TIME_EXTEND;
4280                 } else {
4281                         info->delta = info->ts - info->after;
4282                         if (unlikely(test_time_stamp(info->delta))) {
4283                                 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
4284                                 info->length += RB_LEN_TIME_EXTEND;
4285                         }
4286                 }
4287         }
4288
4289  /*B*/  rb_time_set(&cpu_buffer->before_stamp, info->ts);
4290
4291  /*C*/  write = local_add_return(info->length, &tail_page->write);
4292
4293         /* set write to only the index of the write */
4294         write &= RB_WRITE_MASK;
4295
4296         tail = write - info->length;
4297
4298         /* See if we shot pass the end of this buffer page */
4299         if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
4300                 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
4301                 return rb_move_tail(cpu_buffer, tail, info);
4302         }
4303
4304         if (likely(tail == w)) {
4305                 /* Nothing interrupted us between A and C */
4306  /*D*/          rb_time_set(&cpu_buffer->write_stamp, info->ts);
4307                 /*
4308                  * If something came in between C and D, the write stamp
4309                  * may now not be in sync. But that's fine as the before_stamp
4310                  * will be different and then next event will just be forced
4311                  * to use an absolute timestamp.
4312                  */
4313                 if (likely(!(info->add_timestamp &
4314                              (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4315                         /* This did not interrupt any time update */
4316                         info->delta = info->ts - info->after;
4317                 else
4318                         /* Just use full timestamp for interrupting event */
4319                         info->delta = info->ts;
4320                 check_buffer(cpu_buffer, info, tail);
4321         } else {
4322                 u64 ts;
4323                 /* SLOW PATH - Interrupted between A and C */
4324
4325                 /* Save the old before_stamp */
4326                 rb_time_read(&cpu_buffer->before_stamp, &info->before);
4327
4328                 /*
4329                  * Read a new timestamp and update the before_stamp to make
4330                  * the next event after this one force using an absolute
4331                  * timestamp. This is in case an interrupt were to come in
4332                  * between E and F.
4333                  */
4334                 ts = rb_time_stamp(cpu_buffer->buffer);
4335                 rb_time_set(&cpu_buffer->before_stamp, ts);
4336
4337                 barrier();
4338  /*E*/          rb_time_read(&cpu_buffer->write_stamp, &info->after);
4339                 barrier();
4340  /*F*/          if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
4341                     info->after == info->before && info->after < ts) {
4342                         /*
4343                          * Nothing came after this event between C and F, it is
4344                          * safe to use info->after for the delta as it
4345                          * matched info->before and is still valid.
4346                          */
4347                         info->delta = ts - info->after;
4348                 } else {
4349                         /*
4350                          * Interrupted between C and F:
4351                          * Lost the previous events time stamp. Just set the
4352                          * delta to zero, and this will be the same time as
4353                          * the event this event interrupted. And the events that
4354                          * came after this will still be correct (as they would
4355                          * have built their delta on the previous event.
4356                          */
4357                         info->delta = 0;
4358                 }
4359                 info->ts = ts;
4360                 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
4361         }
4362
4363         /*
4364          * If this is the first commit on the page, then it has the same
4365          * timestamp as the page itself.
4366          */
4367         if (unlikely(!tail && !(info->add_timestamp &
4368                                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4369                 info->delta = 0;
4370
4371         /* We reserved something on the buffer */
4372
4373         event = __rb_page_index(tail_page, tail);
4374         rb_update_event(cpu_buffer, event, info);
4375
4376         local_inc(&tail_page->entries);
4377
4378         /*
4379          * If this is the first commit on the page, then update
4380          * its timestamp.
4381          */
4382         if (unlikely(!tail))
4383                 tail_page->page->time_stamp = info->ts;
4384
4385         /* account for these added bytes */
4386         local_add(info->length, &cpu_buffer->entries_bytes);
4387
4388         return event;
4389 }
4390
4391 static __always_inline struct ring_buffer_event *
4392 rb_reserve_next_event(struct trace_buffer *buffer,
4393                       struct ring_buffer_per_cpu *cpu_buffer,
4394                       unsigned long length)
4395 {
4396         struct ring_buffer_event *event;
4397         struct rb_event_info info;
4398         int nr_loops = 0;
4399         int add_ts_default;
4400
4401         /*
4402          * ring buffer does cmpxchg as well as atomic64 operations
4403          * (which some archs use locking for atomic64), make sure this
4404          * is safe in NMI context
4405          */
4406         if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) ||
4407              IS_ENABLED(CONFIG_GENERIC_ATOMIC64)) &&
4408             (unlikely(in_nmi()))) {
4409                 return NULL;
4410         }
4411
4412         rb_start_commit(cpu_buffer);
4413         /* The commit page can not change after this */
4414
4415 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4416         /*
4417          * Due to the ability to swap a cpu buffer from a buffer
4418          * it is possible it was swapped before we committed.
4419          * (committing stops a swap). We check for it here and
4420          * if it happened, we have to fail the write.
4421          */
4422         barrier();
4423         if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
4424                 local_dec(&cpu_buffer->committing);
4425                 local_dec(&cpu_buffer->commits);
4426                 return NULL;
4427         }
4428 #endif
4429
4430         info.length = rb_calculate_event_length(length);
4431
4432         if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
4433                 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
4434                 info.length += RB_LEN_TIME_EXTEND;
4435                 if (info.length > cpu_buffer->buffer->max_data_size)
4436                         goto out_fail;
4437         } else {
4438                 add_ts_default = RB_ADD_STAMP_NONE;
4439         }
4440
4441  again:
4442         info.add_timestamp = add_ts_default;
4443         info.delta = 0;
4444
4445         /*
4446          * We allow for interrupts to reenter here and do a trace.
4447          * If one does, it will cause this original code to loop
4448          * back here. Even with heavy interrupts happening, this
4449          * should only happen a few times in a row. If this happens
4450          * 1000 times in a row, there must be either an interrupt
4451          * storm or we have something buggy.
4452          * Bail!
4453          */
4454         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
4455                 goto out_fail;
4456
4457         event = __rb_reserve_next(cpu_buffer, &info);
4458
4459         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
4460                 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
4461                         info.length -= RB_LEN_TIME_EXTEND;
4462                 goto again;
4463         }
4464
4465         if (likely(event))
4466                 return event;
4467  out_fail:
4468         rb_end_commit(cpu_buffer);
4469         return NULL;
4470 }
4471
4472 /**
4473  * ring_buffer_lock_reserve - reserve a part of the buffer
4474  * @buffer: the ring buffer to reserve from
4475  * @length: the length of the data to reserve (excluding event header)
4476  *
4477  * Returns a reserved event on the ring buffer to copy directly to.
4478  * The user of this interface will need to get the body to write into
4479  * and can use the ring_buffer_event_data() interface.
4480  *
4481  * The length is the length of the data needed, not the event length
4482  * which also includes the event header.
4483  *
4484  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
4485  * If NULL is returned, then nothing has been allocated or locked.
4486  */
4487 struct ring_buffer_event *
4488 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
4489 {
4490         struct ring_buffer_per_cpu *cpu_buffer;
4491         struct ring_buffer_event *event;
4492         int cpu;
4493
4494         /* If we are tracing schedule, we don't want to recurse */
4495         preempt_disable_notrace();
4496
4497         if (unlikely(atomic_read(&buffer->record_disabled)))
4498                 goto out;
4499
4500         cpu = raw_smp_processor_id();
4501
4502         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
4503                 goto out;
4504
4505         cpu_buffer = buffer->buffers[cpu];
4506
4507         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
4508                 goto out;
4509
4510         if (unlikely(length > buffer->max_data_size))
4511                 goto out;
4512
4513         if (unlikely(trace_recursive_lock(cpu_buffer)))
4514                 goto out;
4515
4516         event = rb_reserve_next_event(buffer, cpu_buffer, length);
4517         if (!event)
4518                 goto out_unlock;
4519
4520         return event;
4521
4522  out_unlock:
4523         trace_recursive_unlock(cpu_buffer);
4524  out:
4525         preempt_enable_notrace();
4526         return NULL;
4527 }
4528 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
4529
4530 /*
4531  * Decrement the entries to the page that an event is on.
4532  * The event does not even need to exist, only the pointer
4533  * to the page it is on. This may only be called before the commit
4534  * takes place.
4535  */
4536 static inline void
4537 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
4538                    struct ring_buffer_event *event)
4539 {
4540         unsigned long addr = (unsigned long)event;
4541         struct buffer_page *bpage = cpu_buffer->commit_page;
4542         struct buffer_page *start;
4543
4544         addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
4545
4546         /* Do the likely case first */
4547         if (likely(bpage->page == (void *)addr)) {
4548                 local_dec(&bpage->entries);
4549                 return;
4550         }
4551
4552         /*
4553          * Because the commit page may be on the reader page we
4554          * start with the next page and check the end loop there.
4555          */
4556         rb_inc_page(&bpage);
4557         start = bpage;
4558         do {
4559                 if (bpage->page == (void *)addr) {
4560                         local_dec(&bpage->entries);
4561                         return;
4562                 }
4563                 rb_inc_page(&bpage);
4564         } while (bpage != start);
4565
4566         /* commit not part of this buffer?? */
4567         RB_WARN_ON(cpu_buffer, 1);
4568 }
4569
4570 /**
4571  * ring_buffer_discard_commit - discard an event that has not been committed
4572  * @buffer: the ring buffer
4573  * @event: non committed event to discard
4574  *
4575  * Sometimes an event that is in the ring buffer needs to be ignored.
4576  * This function lets the user discard an event in the ring buffer
4577  * and then that event will not be read later.
4578  *
4579  * This function only works if it is called before the item has been
4580  * committed. It will try to free the event from the ring buffer
4581  * if another event has not been added behind it.
4582  *
4583  * If another event has been added behind it, it will set the event
4584  * up as discarded, and perform the commit.
4585  *
4586  * If this function is called, do not call ring_buffer_unlock_commit on
4587  * the event.
4588  */
4589 void ring_buffer_discard_commit(struct trace_buffer *buffer,
4590                                 struct ring_buffer_event *event)
4591 {
4592         struct ring_buffer_per_cpu *cpu_buffer;
4593         int cpu;
4594
4595         /* The event is discarded regardless */
4596         rb_event_discard(event);
4597
4598         cpu = smp_processor_id();
4599         cpu_buffer = buffer->buffers[cpu];
4600
4601         /*
4602          * This must only be called if the event has not been
4603          * committed yet. Thus we can assume that preemption
4604          * is still disabled.
4605          */
4606         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
4607
4608         rb_decrement_entry(cpu_buffer, event);
4609         if (rb_try_to_discard(cpu_buffer, event))
4610                 goto out;
4611
4612  out:
4613         rb_end_commit(cpu_buffer);
4614
4615         trace_recursive_unlock(cpu_buffer);
4616
4617         preempt_enable_notrace();
4618
4619 }
4620 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
4621
4622 /**
4623  * ring_buffer_write - write data to the buffer without reserving
4624  * @buffer: The ring buffer to write to.
4625  * @length: The length of the data being written (excluding the event header)
4626  * @data: The data to write to the buffer.
4627  *
4628  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
4629  * one function. If you already have the data to write to the buffer, it
4630  * may be easier to simply call this function.
4631  *
4632  * Note, like ring_buffer_lock_reserve, the length is the length of the data
4633  * and not the length of the event which would hold the header.
4634  */
4635 int ring_buffer_write(struct trace_buffer *buffer,
4636                       unsigned long length,
4637                       void *data)
4638 {
4639         struct ring_buffer_per_cpu *cpu_buffer;
4640         struct ring_buffer_event *event;
4641         void *body;
4642         int ret = -EBUSY;
4643         int cpu;
4644
4645         preempt_disable_notrace();
4646
4647         if (atomic_read(&buffer->record_disabled))
4648                 goto out;
4649
4650         cpu = raw_smp_processor_id();
4651
4652         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4653                 goto out;
4654
4655         cpu_buffer = buffer->buffers[cpu];
4656
4657         if (atomic_read(&cpu_buffer->record_disabled))
4658                 goto out;
4659
4660         if (length > buffer->max_data_size)
4661                 goto out;
4662
4663         if (unlikely(trace_recursive_lock(cpu_buffer)))
4664                 goto out;
4665
4666         event = rb_reserve_next_event(buffer, cpu_buffer, length);
4667         if (!event)
4668                 goto out_unlock;
4669
4670         body = rb_event_data(event);
4671
4672         memcpy(body, data, length);
4673
4674         rb_commit(cpu_buffer);
4675
4676         rb_wakeups(buffer, cpu_buffer);
4677
4678         ret = 0;
4679
4680  out_unlock:
4681         trace_recursive_unlock(cpu_buffer);
4682
4683  out:
4684         preempt_enable_notrace();
4685
4686         return ret;
4687 }
4688 EXPORT_SYMBOL_GPL(ring_buffer_write);
4689
4690 /*
4691  * The total entries in the ring buffer is the running counter
4692  * of entries entered into the ring buffer, minus the sum of
4693  * the entries read from the ring buffer and the number of
4694  * entries that were overwritten.
4695  */
4696 static inline unsigned long
4697 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4698 {
4699         return local_read(&cpu_buffer->entries) -
4700                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4701 }
4702
4703 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4704 {
4705         return !rb_num_of_entries(cpu_buffer);
4706 }
4707
4708 /**
4709  * ring_buffer_record_disable - stop all writes into the buffer
4710  * @buffer: The ring buffer to stop writes to.
4711  *
4712  * This prevents all writes to the buffer. Any attempt to write
4713  * to the buffer after this will fail and return NULL.
4714  *
4715  * The caller should call synchronize_rcu() after this.
4716  */
4717 void ring_buffer_record_disable(struct trace_buffer *buffer)
4718 {
4719         atomic_inc(&buffer->record_disabled);
4720 }
4721 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4722
4723 /**
4724  * ring_buffer_record_enable - enable writes to the buffer
4725  * @buffer: The ring buffer to enable writes
4726  *
4727  * Note, multiple disables will need the same number of enables
4728  * to truly enable the writing (much like preempt_disable).
4729  */
4730 void ring_buffer_record_enable(struct trace_buffer *buffer)
4731 {
4732         atomic_dec(&buffer->record_disabled);
4733 }
4734 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4735
4736 /**
4737  * ring_buffer_record_off - stop all writes into the buffer
4738  * @buffer: The ring buffer to stop writes to.
4739  *
4740  * This prevents all writes to the buffer. Any attempt to write
4741  * to the buffer after this will fail and return NULL.
4742  *
4743  * This is different than ring_buffer_record_disable() as
4744  * it works like an on/off switch, where as the disable() version
4745  * must be paired with a enable().
4746  */
4747 void ring_buffer_record_off(struct trace_buffer *buffer)
4748 {
4749         unsigned int rd;
4750         unsigned int new_rd;
4751
4752         rd = atomic_read(&buffer->record_disabled);
4753         do {
4754                 new_rd = rd | RB_BUFFER_OFF;
4755         } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4756 }
4757 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4758
4759 /**
4760  * ring_buffer_record_on - restart writes into the buffer
4761  * @buffer: The ring buffer to start writes to.
4762  *
4763  * This enables all writes to the buffer that was disabled by
4764  * ring_buffer_record_off().
4765  *
4766  * This is different than ring_buffer_record_enable() as
4767  * it works like an on/off switch, where as the enable() version
4768  * must be paired with a disable().
4769  */
4770 void ring_buffer_record_on(struct trace_buffer *buffer)
4771 {
4772         unsigned int rd;
4773         unsigned int new_rd;
4774
4775         rd = atomic_read(&buffer->record_disabled);
4776         do {
4777                 new_rd = rd & ~RB_BUFFER_OFF;
4778         } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4779 }
4780 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4781
4782 /**
4783  * ring_buffer_record_is_on - return true if the ring buffer can write
4784  * @buffer: The ring buffer to see if write is enabled
4785  *
4786  * Returns true if the ring buffer is in a state that it accepts writes.
4787  */
4788 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4789 {
4790         return !atomic_read(&buffer->record_disabled);
4791 }
4792
4793 /**
4794  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4795  * @buffer: The ring buffer to see if write is set enabled
4796  *
4797  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4798  * Note that this does NOT mean it is in a writable state.
4799  *
4800  * It may return true when the ring buffer has been disabled by
4801  * ring_buffer_record_disable(), as that is a temporary disabling of
4802  * the ring buffer.
4803  */
4804 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4805 {
4806         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4807 }
4808
4809 /**
4810  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4811  * @buffer: The ring buffer to stop writes to.
4812  * @cpu: The CPU buffer to stop
4813  *
4814  * This prevents all writes to the buffer. Any attempt to write
4815  * to the buffer after this will fail and return NULL.
4816  *
4817  * The caller should call synchronize_rcu() after this.
4818  */
4819 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4820 {
4821         struct ring_buffer_per_cpu *cpu_buffer;
4822
4823         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4824                 return;
4825
4826         cpu_buffer = buffer->buffers[cpu];
4827         atomic_inc(&cpu_buffer->record_disabled);
4828 }
4829 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4830
4831 /**
4832  * ring_buffer_record_enable_cpu - enable writes to the buffer
4833  * @buffer: The ring buffer to enable writes
4834  * @cpu: The CPU to enable.
4835  *
4836  * Note, multiple disables will need the same number of enables
4837  * to truly enable the writing (much like preempt_disable).
4838  */
4839 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4840 {
4841         struct ring_buffer_per_cpu *cpu_buffer;
4842
4843         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4844                 return;
4845
4846         cpu_buffer = buffer->buffers[cpu];
4847         atomic_dec(&cpu_buffer->record_disabled);
4848 }
4849 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4850
4851 /**
4852  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4853  * @buffer: The ring buffer
4854  * @cpu: The per CPU buffer to read from.
4855  */
4856 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4857 {
4858         unsigned long flags;
4859         struct ring_buffer_per_cpu *cpu_buffer;
4860         struct buffer_page *bpage;
4861         u64 ret = 0;
4862
4863         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4864                 return 0;
4865
4866         cpu_buffer = buffer->buffers[cpu];
4867         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4868         /*
4869          * if the tail is on reader_page, oldest time stamp is on the reader
4870          * page
4871          */
4872         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4873                 bpage = cpu_buffer->reader_page;
4874         else
4875                 bpage = rb_set_head_page(cpu_buffer);
4876         if (bpage)
4877                 ret = bpage->page->time_stamp;
4878         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4879
4880         return ret;
4881 }
4882 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4883
4884 /**
4885  * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4886  * @buffer: The ring buffer
4887  * @cpu: The per CPU buffer to read from.
4888  */
4889 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4890 {
4891         struct ring_buffer_per_cpu *cpu_buffer;
4892         unsigned long ret;
4893
4894         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4895                 return 0;
4896
4897         cpu_buffer = buffer->buffers[cpu];
4898         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4899
4900         return ret;
4901 }
4902 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4903
4904 /**
4905  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4906  * @buffer: The ring buffer
4907  * @cpu: The per CPU buffer to get the entries from.
4908  */
4909 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4910 {
4911         struct ring_buffer_per_cpu *cpu_buffer;
4912
4913         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4914                 return 0;
4915
4916         cpu_buffer = buffer->buffers[cpu];
4917
4918         return rb_num_of_entries(cpu_buffer);
4919 }
4920 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4921
4922 /**
4923  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4924  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4925  * @buffer: The ring buffer
4926  * @cpu: The per CPU buffer to get the number of overruns from
4927  */
4928 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4929 {
4930         struct ring_buffer_per_cpu *cpu_buffer;
4931         unsigned long ret;
4932
4933         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4934                 return 0;
4935
4936         cpu_buffer = buffer->buffers[cpu];
4937         ret = local_read(&cpu_buffer->overrun);
4938
4939         return ret;
4940 }
4941 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4942
4943 /**
4944  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4945  * commits failing due to the buffer wrapping around while there are uncommitted
4946  * events, such as during an interrupt storm.
4947  * @buffer: The ring buffer
4948  * @cpu: The per CPU buffer to get the number of overruns from
4949  */
4950 unsigned long
4951 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4952 {
4953         struct ring_buffer_per_cpu *cpu_buffer;
4954         unsigned long ret;
4955
4956         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4957                 return 0;
4958
4959         cpu_buffer = buffer->buffers[cpu];
4960         ret = local_read(&cpu_buffer->commit_overrun);
4961
4962         return ret;
4963 }
4964 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4965
4966 /**
4967  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4968  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4969  * @buffer: The ring buffer
4970  * @cpu: The per CPU buffer to get the number of overruns from
4971  */
4972 unsigned long
4973 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4974 {
4975         struct ring_buffer_per_cpu *cpu_buffer;
4976         unsigned long ret;
4977
4978         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4979                 return 0;
4980
4981         cpu_buffer = buffer->buffers[cpu];
4982         ret = local_read(&cpu_buffer->dropped_events);
4983
4984         return ret;
4985 }
4986 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4987
4988 /**
4989  * ring_buffer_read_events_cpu - get the number of events successfully read
4990  * @buffer: The ring buffer
4991  * @cpu: The per CPU buffer to get the number of events read
4992  */
4993 unsigned long
4994 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4995 {
4996         struct ring_buffer_per_cpu *cpu_buffer;
4997
4998         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4999                 return 0;
5000
5001         cpu_buffer = buffer->buffers[cpu];
5002         return cpu_buffer->read;
5003 }
5004 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
5005
5006 /**
5007  * ring_buffer_entries - get the number of entries in a buffer
5008  * @buffer: The ring buffer
5009  *
5010  * Returns the total number of entries in the ring buffer
5011  * (all CPU entries)
5012  */
5013 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
5014 {
5015         struct ring_buffer_per_cpu *cpu_buffer;
5016         unsigned long entries = 0;
5017         int cpu;
5018
5019         /* if you care about this being correct, lock the buffer */
5020         for_each_buffer_cpu(buffer, cpu) {
5021                 cpu_buffer = buffer->buffers[cpu];
5022                 entries += rb_num_of_entries(cpu_buffer);
5023         }
5024
5025         return entries;
5026 }
5027 EXPORT_SYMBOL_GPL(ring_buffer_entries);
5028
5029 /**
5030  * ring_buffer_overruns - get the number of overruns in buffer
5031  * @buffer: The ring buffer
5032  *
5033  * Returns the total number of overruns in the ring buffer
5034  * (all CPU entries)
5035  */
5036 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
5037 {
5038         struct ring_buffer_per_cpu *cpu_buffer;
5039         unsigned long overruns = 0;
5040         int cpu;
5041
5042         /* if you care about this being correct, lock the buffer */
5043         for_each_buffer_cpu(buffer, cpu) {
5044                 cpu_buffer = buffer->buffers[cpu];
5045                 overruns += local_read(&cpu_buffer->overrun);
5046         }
5047
5048         return overruns;
5049 }
5050 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
5051
5052 static void rb_iter_reset(struct ring_buffer_iter *iter)
5053 {
5054         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5055
5056         /* Iterator usage is expected to have record disabled */
5057         iter->head_page = cpu_buffer->reader_page;
5058         iter->head = cpu_buffer->reader_page->read;
5059         iter->next_event = iter->head;
5060
5061         iter->cache_reader_page = iter->head_page;
5062         iter->cache_read = cpu_buffer->read;
5063         iter->cache_pages_removed = cpu_buffer->pages_removed;
5064
5065         if (iter->head) {
5066                 iter->read_stamp = cpu_buffer->read_stamp;
5067                 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
5068         } else {
5069                 iter->read_stamp = iter->head_page->page->time_stamp;
5070                 iter->page_stamp = iter->read_stamp;
5071         }
5072 }
5073
5074 /**
5075  * ring_buffer_iter_reset - reset an iterator
5076  * @iter: The iterator to reset
5077  *
5078  * Resets the iterator, so that it will start from the beginning
5079  * again.
5080  */
5081 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
5082 {
5083         struct ring_buffer_per_cpu *cpu_buffer;
5084         unsigned long flags;
5085
5086         if (!iter)
5087                 return;
5088
5089         cpu_buffer = iter->cpu_buffer;
5090
5091         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5092         rb_iter_reset(iter);
5093         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5094 }
5095 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
5096
5097 /**
5098  * ring_buffer_iter_empty - check if an iterator has no more to read
5099  * @iter: The iterator to check
5100  */
5101 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
5102 {
5103         struct ring_buffer_per_cpu *cpu_buffer;
5104         struct buffer_page *reader;
5105         struct buffer_page *head_page;
5106         struct buffer_page *commit_page;
5107         struct buffer_page *curr_commit_page;
5108         unsigned commit;
5109         u64 curr_commit_ts;
5110         u64 commit_ts;
5111
5112         cpu_buffer = iter->cpu_buffer;
5113         reader = cpu_buffer->reader_page;
5114         head_page = cpu_buffer->head_page;
5115         commit_page = READ_ONCE(cpu_buffer->commit_page);
5116         commit_ts = commit_page->page->time_stamp;
5117
5118         /*
5119          * When the writer goes across pages, it issues a cmpxchg which
5120          * is a mb(), which will synchronize with the rmb here.
5121          * (see rb_tail_page_update())
5122          */
5123         smp_rmb();
5124         commit = rb_page_commit(commit_page);
5125         /* We want to make sure that the commit page doesn't change */
5126         smp_rmb();
5127
5128         /* Make sure commit page didn't change */
5129         curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
5130         curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
5131
5132         /* If the commit page changed, then there's more data */
5133         if (curr_commit_page != commit_page ||
5134             curr_commit_ts != commit_ts)
5135                 return 0;
5136
5137         /* Still racy, as it may return a false positive, but that's OK */
5138         return ((iter->head_page == commit_page && iter->head >= commit) ||
5139                 (iter->head_page == reader && commit_page == head_page &&
5140                  head_page->read == commit &&
5141                  iter->head == rb_page_size(cpu_buffer->reader_page)));
5142 }
5143 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
5144
5145 static void
5146 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
5147                      struct ring_buffer_event *event)
5148 {
5149         u64 delta;
5150
5151         switch (event->type_len) {
5152         case RINGBUF_TYPE_PADDING:
5153                 return;
5154
5155         case RINGBUF_TYPE_TIME_EXTEND:
5156                 delta = rb_event_time_stamp(event);
5157                 cpu_buffer->read_stamp += delta;
5158                 return;
5159
5160         case RINGBUF_TYPE_TIME_STAMP:
5161                 delta = rb_event_time_stamp(event);
5162                 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
5163                 cpu_buffer->read_stamp = delta;
5164                 return;
5165
5166         case RINGBUF_TYPE_DATA:
5167                 cpu_buffer->read_stamp += event->time_delta;
5168                 return;
5169
5170         default:
5171                 RB_WARN_ON(cpu_buffer, 1);
5172         }
5173 }
5174
5175 static void
5176 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
5177                           struct ring_buffer_event *event)
5178 {
5179         u64 delta;
5180
5181         switch (event->type_len) {
5182         case RINGBUF_TYPE_PADDING:
5183                 return;
5184
5185         case RINGBUF_TYPE_TIME_EXTEND:
5186                 delta = rb_event_time_stamp(event);
5187                 iter->read_stamp += delta;
5188                 return;
5189
5190         case RINGBUF_TYPE_TIME_STAMP:
5191                 delta = rb_event_time_stamp(event);
5192                 delta = rb_fix_abs_ts(delta, iter->read_stamp);
5193                 iter->read_stamp = delta;
5194                 return;
5195
5196         case RINGBUF_TYPE_DATA:
5197                 iter->read_stamp += event->time_delta;
5198                 return;
5199
5200         default:
5201                 RB_WARN_ON(iter->cpu_buffer, 1);
5202         }
5203 }
5204
5205 static struct buffer_page *
5206 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
5207 {
5208         struct buffer_page *reader = NULL;
5209         unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
5210         unsigned long overwrite;
5211         unsigned long flags;
5212         int nr_loops = 0;
5213         bool ret;
5214
5215         local_irq_save(flags);
5216         arch_spin_lock(&cpu_buffer->lock);
5217
5218  again:
5219         /*
5220          * This should normally only loop twice. But because the
5221          * start of the reader inserts an empty page, it causes
5222          * a case where we will loop three times. There should be no
5223          * reason to loop four times (that I know of).
5224          */
5225         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
5226                 reader = NULL;
5227                 goto out;
5228         }
5229
5230         reader = cpu_buffer->reader_page;
5231
5232         /* If there's more to read, return this page */
5233         if (cpu_buffer->reader_page->read < rb_page_size(reader))
5234                 goto out;
5235
5236         /* Never should we have an index greater than the size */
5237         if (RB_WARN_ON(cpu_buffer,
5238                        cpu_buffer->reader_page->read > rb_page_size(reader)))
5239                 goto out;
5240
5241         /* check if we caught up to the tail */
5242         reader = NULL;
5243         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
5244                 goto out;
5245
5246         /* Don't bother swapping if the ring buffer is empty */
5247         if (rb_num_of_entries(cpu_buffer) == 0)
5248                 goto out;
5249
5250         /*
5251          * Reset the reader page to size zero.
5252          */
5253         local_set(&cpu_buffer->reader_page->write, 0);
5254         local_set(&cpu_buffer->reader_page->entries, 0);
5255         local_set(&cpu_buffer->reader_page->page->commit, 0);
5256         cpu_buffer->reader_page->real_end = 0;
5257
5258  spin:
5259         /*
5260          * Splice the empty reader page into the list around the head.
5261          */
5262         reader = rb_set_head_page(cpu_buffer);
5263         if (!reader)
5264                 goto out;
5265         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
5266         cpu_buffer->reader_page->list.prev = reader->list.prev;
5267
5268         /*
5269          * cpu_buffer->pages just needs to point to the buffer, it
5270          *  has no specific buffer page to point to. Lets move it out
5271          *  of our way so we don't accidentally swap it.
5272          */
5273         cpu_buffer->pages = reader->list.prev;
5274
5275         /* The reader page will be pointing to the new head */
5276         rb_set_list_to_head(&cpu_buffer->reader_page->list);
5277
5278         /*
5279          * We want to make sure we read the overruns after we set up our
5280          * pointers to the next object. The writer side does a
5281          * cmpxchg to cross pages which acts as the mb on the writer
5282          * side. Note, the reader will constantly fail the swap
5283          * while the writer is updating the pointers, so this
5284          * guarantees that the overwrite recorded here is the one we
5285          * want to compare with the last_overrun.
5286          */
5287         smp_mb();
5288         overwrite = local_read(&(cpu_buffer->overrun));
5289
5290         /*
5291          * Here's the tricky part.
5292          *
5293          * We need to move the pointer past the header page.
5294          * But we can only do that if a writer is not currently
5295          * moving it. The page before the header page has the
5296          * flag bit '1' set if it is pointing to the page we want.
5297          * but if the writer is in the process of moving it
5298          * than it will be '2' or already moved '0'.
5299          */
5300
5301         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
5302
5303         /*
5304          * If we did not convert it, then we must try again.
5305          */
5306         if (!ret)
5307                 goto spin;
5308
5309         if (cpu_buffer->ring_meta)
5310                 rb_update_meta_reader(cpu_buffer, reader);
5311
5312         /*
5313          * Yay! We succeeded in replacing the page.
5314          *
5315          * Now make the new head point back to the reader page.
5316          */
5317         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
5318         rb_inc_page(&cpu_buffer->head_page);
5319
5320         cpu_buffer->cnt++;
5321         local_inc(&cpu_buffer->pages_read);
5322
5323         /* Finally update the reader page to the new head */
5324         cpu_buffer->reader_page = reader;
5325         cpu_buffer->reader_page->read = 0;
5326
5327         if (overwrite != cpu_buffer->last_overrun) {
5328                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
5329                 cpu_buffer->last_overrun = overwrite;
5330         }
5331
5332         goto again;
5333
5334  out:
5335         /* Update the read_stamp on the first event */
5336         if (reader && reader->read == 0)
5337                 cpu_buffer->read_stamp = reader->page->time_stamp;
5338
5339         arch_spin_unlock(&cpu_buffer->lock);
5340         local_irq_restore(flags);
5341
5342         /*
5343          * The writer has preempt disable, wait for it. But not forever
5344          * Although, 1 second is pretty much "forever"
5345          */
5346 #define USECS_WAIT      1000000
5347         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
5348                 /* If the write is past the end of page, a writer is still updating it */
5349                 if (likely(!reader || rb_page_write(reader) <= bsize))
5350                         break;
5351
5352                 udelay(1);
5353
5354                 /* Get the latest version of the reader write value */
5355                 smp_rmb();
5356         }
5357
5358         /* The writer is not moving forward? Something is wrong */
5359         if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
5360                 reader = NULL;
5361
5362         /*
5363          * Make sure we see any padding after the write update
5364          * (see rb_reset_tail()).
5365          *
5366          * In addition, a writer may be writing on the reader page
5367          * if the page has not been fully filled, so the read barrier
5368          * is also needed to make sure we see the content of what is
5369          * committed by the writer (see rb_set_commit_to_write()).
5370          */
5371         smp_rmb();
5372
5373
5374         return reader;
5375 }
5376
5377 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
5378 {
5379         struct ring_buffer_event *event;
5380         struct buffer_page *reader;
5381         unsigned length;
5382
5383         reader = rb_get_reader_page(cpu_buffer);
5384
5385         /* This function should not be called when buffer is empty */
5386         if (RB_WARN_ON(cpu_buffer, !reader))
5387                 return;
5388
5389         event = rb_reader_event(cpu_buffer);
5390
5391         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
5392                 cpu_buffer->read++;
5393
5394         rb_update_read_stamp(cpu_buffer, event);
5395
5396         length = rb_event_length(event);
5397         cpu_buffer->reader_page->read += length;
5398         cpu_buffer->read_bytes += length;
5399 }
5400
5401 static void rb_advance_iter(struct ring_buffer_iter *iter)
5402 {
5403         struct ring_buffer_per_cpu *cpu_buffer;
5404
5405         cpu_buffer = iter->cpu_buffer;
5406
5407         /* If head == next_event then we need to jump to the next event */
5408         if (iter->head == iter->next_event) {
5409                 /* If the event gets overwritten again, there's nothing to do */
5410                 if (rb_iter_head_event(iter) == NULL)
5411                         return;
5412         }
5413
5414         iter->head = iter->next_event;
5415
5416         /*
5417          * Check if we are at the end of the buffer.
5418          */
5419         if (iter->next_event >= rb_page_size(iter->head_page)) {
5420                 /* discarded commits can make the page empty */
5421                 if (iter->head_page == cpu_buffer->commit_page)
5422                         return;
5423                 rb_inc_iter(iter);
5424                 return;
5425         }
5426
5427         rb_update_iter_read_stamp(iter, iter->event);
5428 }
5429
5430 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
5431 {
5432         return cpu_buffer->lost_events;
5433 }
5434
5435 static struct ring_buffer_event *
5436 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
5437                unsigned long *lost_events)
5438 {
5439         struct ring_buffer_event *event;
5440         struct buffer_page *reader;
5441         int nr_loops = 0;
5442
5443         if (ts)
5444                 *ts = 0;
5445  again:
5446         /*
5447          * We repeat when a time extend is encountered.
5448          * Since the time extend is always attached to a data event,
5449          * we should never loop more than once.
5450          * (We never hit the following condition more than twice).
5451          */
5452         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
5453                 return NULL;
5454
5455         reader = rb_get_reader_page(cpu_buffer);
5456         if (!reader)
5457                 return NULL;
5458
5459         event = rb_reader_event(cpu_buffer);
5460
5461         switch (event->type_len) {
5462         case RINGBUF_TYPE_PADDING:
5463                 if (rb_null_event(event))
5464                         RB_WARN_ON(cpu_buffer, 1);
5465                 /*
5466                  * Because the writer could be discarding every
5467                  * event it creates (which would probably be bad)
5468                  * if we were to go back to "again" then we may never
5469                  * catch up, and will trigger the warn on, or lock
5470                  * the box. Return the padding, and we will release
5471                  * the current locks, and try again.
5472                  */
5473                 return event;
5474
5475         case RINGBUF_TYPE_TIME_EXTEND:
5476                 /* Internal data, OK to advance */
5477                 rb_advance_reader(cpu_buffer);
5478                 goto again;
5479
5480         case RINGBUF_TYPE_TIME_STAMP:
5481                 if (ts) {
5482                         *ts = rb_event_time_stamp(event);
5483                         *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
5484                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5485                                                          cpu_buffer->cpu, ts);
5486                 }
5487                 /* Internal data, OK to advance */
5488                 rb_advance_reader(cpu_buffer);
5489                 goto again;
5490
5491         case RINGBUF_TYPE_DATA:
5492                 if (ts && !(*ts)) {
5493                         *ts = cpu_buffer->read_stamp + event->time_delta;
5494                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5495                                                          cpu_buffer->cpu, ts);
5496                 }
5497                 if (lost_events)
5498                         *lost_events = rb_lost_events(cpu_buffer);
5499                 return event;
5500
5501         default:
5502                 RB_WARN_ON(cpu_buffer, 1);
5503         }
5504
5505         return NULL;
5506 }
5507 EXPORT_SYMBOL_GPL(ring_buffer_peek);
5508
5509 static struct ring_buffer_event *
5510 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5511 {
5512         struct trace_buffer *buffer;
5513         struct ring_buffer_per_cpu *cpu_buffer;
5514         struct ring_buffer_event *event;
5515         int nr_loops = 0;
5516
5517         if (ts)
5518                 *ts = 0;
5519
5520         cpu_buffer = iter->cpu_buffer;
5521         buffer = cpu_buffer->buffer;
5522
5523         /*
5524          * Check if someone performed a consuming read to the buffer
5525          * or removed some pages from the buffer. In these cases,
5526          * iterator was invalidated and we need to reset it.
5527          */
5528         if (unlikely(iter->cache_read != cpu_buffer->read ||
5529                      iter->cache_reader_page != cpu_buffer->reader_page ||
5530                      iter->cache_pages_removed != cpu_buffer->pages_removed))
5531                 rb_iter_reset(iter);
5532
5533  again:
5534         if (ring_buffer_iter_empty(iter))
5535                 return NULL;
5536
5537         /*
5538          * As the writer can mess with what the iterator is trying
5539          * to read, just give up if we fail to get an event after
5540          * three tries. The iterator is not as reliable when reading
5541          * the ring buffer with an active write as the consumer is.
5542          * Do not warn if the three failures is reached.
5543          */
5544         if (++nr_loops > 3)
5545                 return NULL;
5546
5547         if (rb_per_cpu_empty(cpu_buffer))
5548                 return NULL;
5549
5550         if (iter->head >= rb_page_size(iter->head_page)) {
5551                 rb_inc_iter(iter);
5552                 goto again;
5553         }
5554
5555         event = rb_iter_head_event(iter);
5556         if (!event)
5557                 goto again;
5558
5559         switch (event->type_len) {
5560         case RINGBUF_TYPE_PADDING:
5561                 if (rb_null_event(event)) {
5562                         rb_inc_iter(iter);
5563                         goto again;
5564                 }
5565                 rb_advance_iter(iter);
5566                 return event;
5567
5568         case RINGBUF_TYPE_TIME_EXTEND:
5569                 /* Internal data, OK to advance */
5570                 rb_advance_iter(iter);
5571                 goto again;
5572
5573         case RINGBUF_TYPE_TIME_STAMP:
5574                 if (ts) {
5575                         *ts = rb_event_time_stamp(event);
5576                         *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
5577                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5578                                                          cpu_buffer->cpu, ts);
5579                 }
5580                 /* Internal data, OK to advance */
5581                 rb_advance_iter(iter);
5582                 goto again;
5583
5584         case RINGBUF_TYPE_DATA:
5585                 if (ts && !(*ts)) {
5586                         *ts = iter->read_stamp + event->time_delta;
5587                         ring_buffer_normalize_time_stamp(buffer,
5588                                                          cpu_buffer->cpu, ts);
5589                 }
5590                 return event;
5591
5592         default:
5593                 RB_WARN_ON(cpu_buffer, 1);
5594         }
5595
5596         return NULL;
5597 }
5598 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
5599
5600 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
5601 {
5602         if (likely(!in_nmi())) {
5603                 raw_spin_lock(&cpu_buffer->reader_lock);
5604                 return true;
5605         }
5606
5607         /*
5608          * If an NMI die dumps out the content of the ring buffer
5609          * trylock must be used to prevent a deadlock if the NMI
5610          * preempted a task that holds the ring buffer locks. If
5611          * we get the lock then all is fine, if not, then continue
5612          * to do the read, but this can corrupt the ring buffer,
5613          * so it must be permanently disabled from future writes.
5614          * Reading from NMI is a oneshot deal.
5615          */
5616         if (raw_spin_trylock(&cpu_buffer->reader_lock))
5617                 return true;
5618
5619         /* Continue without locking, but disable the ring buffer */
5620         atomic_inc(&cpu_buffer->record_disabled);
5621         return false;
5622 }
5623
5624 static inline void
5625 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
5626 {
5627         if (likely(locked))
5628                 raw_spin_unlock(&cpu_buffer->reader_lock);
5629 }
5630
5631 /**
5632  * ring_buffer_peek - peek at the next event to be read
5633  * @buffer: The ring buffer to read
5634  * @cpu: The cpu to peak at
5635  * @ts: The timestamp counter of this event.
5636  * @lost_events: a variable to store if events were lost (may be NULL)
5637  *
5638  * This will return the event that will be read next, but does
5639  * not consume the data.
5640  */
5641 struct ring_buffer_event *
5642 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
5643                  unsigned long *lost_events)
5644 {
5645         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5646         struct ring_buffer_event *event;
5647         unsigned long flags;
5648         bool dolock;
5649
5650         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5651                 return NULL;
5652
5653  again:
5654         local_irq_save(flags);
5655         dolock = rb_reader_lock(cpu_buffer);
5656         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5657         if (event && event->type_len == RINGBUF_TYPE_PADDING)
5658                 rb_advance_reader(cpu_buffer);
5659         rb_reader_unlock(cpu_buffer, dolock);
5660         local_irq_restore(flags);
5661
5662         if (event && event->type_len == RINGBUF_TYPE_PADDING)
5663                 goto again;
5664
5665         return event;
5666 }
5667
5668 /** ring_buffer_iter_dropped - report if there are dropped events
5669  * @iter: The ring buffer iterator
5670  *
5671  * Returns true if there was dropped events since the last peek.
5672  */
5673 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5674 {
5675         bool ret = iter->missed_events != 0;
5676
5677         iter->missed_events = 0;
5678         return ret;
5679 }
5680 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5681
5682 /**
5683  * ring_buffer_iter_peek - peek at the next event to be read
5684  * @iter: The ring buffer iterator
5685  * @ts: The timestamp counter of this event.
5686  *
5687  * This will return the event that will be read next, but does
5688  * not increment the iterator.
5689  */
5690 struct ring_buffer_event *
5691 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5692 {
5693         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5694         struct ring_buffer_event *event;
5695         unsigned long flags;
5696
5697  again:
5698         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5699         event = rb_iter_peek(iter, ts);
5700         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5701
5702         if (event && event->type_len == RINGBUF_TYPE_PADDING)
5703                 goto again;
5704
5705         return event;
5706 }
5707
5708 /**
5709  * ring_buffer_consume - return an event and consume it
5710  * @buffer: The ring buffer to get the next event from
5711  * @cpu: the cpu to read the buffer from
5712  * @ts: a variable to store the timestamp (may be NULL)
5713  * @lost_events: a variable to store if events were lost (may be NULL)
5714  *
5715  * Returns the next event in the ring buffer, and that event is consumed.
5716  * Meaning, that sequential reads will keep returning a different event,
5717  * and eventually empty the ring buffer if the producer is slower.
5718  */
5719 struct ring_buffer_event *
5720 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5721                     unsigned long *lost_events)
5722 {
5723         struct ring_buffer_per_cpu *cpu_buffer;
5724         struct ring_buffer_event *event = NULL;
5725         unsigned long flags;
5726         bool dolock;
5727
5728  again:
5729         /* might be called in atomic */
5730         preempt_disable();
5731
5732         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5733                 goto out;
5734
5735         cpu_buffer = buffer->buffers[cpu];
5736         local_irq_save(flags);
5737         dolock = rb_reader_lock(cpu_buffer);
5738
5739         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5740         if (event) {
5741                 cpu_buffer->lost_events = 0;
5742                 rb_advance_reader(cpu_buffer);
5743         }
5744
5745         rb_reader_unlock(cpu_buffer, dolock);
5746         local_irq_restore(flags);
5747
5748  out:
5749         preempt_enable();
5750
5751         if (event && event->type_len == RINGBUF_TYPE_PADDING)
5752                 goto again;
5753
5754         return event;
5755 }
5756 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5757
5758 /**
5759  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5760  * @buffer: The ring buffer to read from
5761  * @cpu: The cpu buffer to iterate over
5762  * @flags: gfp flags to use for memory allocation
5763  *
5764  * This performs the initial preparations necessary to iterate
5765  * through the buffer.  Memory is allocated, buffer resizing
5766  * is disabled, and the iterator pointer is returned to the caller.
5767  *
5768  * After a sequence of ring_buffer_read_prepare calls, the user is
5769  * expected to make at least one call to ring_buffer_read_prepare_sync.
5770  * Afterwards, ring_buffer_read_start is invoked to get things going
5771  * for real.
5772  *
5773  * This overall must be paired with ring_buffer_read_finish.
5774  */
5775 struct ring_buffer_iter *
5776 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5777 {
5778         struct ring_buffer_per_cpu *cpu_buffer;
5779         struct ring_buffer_iter *iter;
5780
5781         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5782                 return NULL;
5783
5784         iter = kzalloc(sizeof(*iter), flags);
5785         if (!iter)
5786                 return NULL;
5787
5788         /* Holds the entire event: data and meta data */
5789         iter->event_size = buffer->subbuf_size;
5790         iter->event = kmalloc(iter->event_size, flags);
5791         if (!iter->event) {
5792                 kfree(iter);
5793                 return NULL;
5794         }
5795
5796         cpu_buffer = buffer->buffers[cpu];
5797
5798         iter->cpu_buffer = cpu_buffer;
5799
5800         atomic_inc(&cpu_buffer->resize_disabled);
5801
5802         return iter;
5803 }
5804 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5805
5806 /**
5807  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5808  *
5809  * All previously invoked ring_buffer_read_prepare calls to prepare
5810  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5811  * calls on those iterators are allowed.
5812  */
5813 void
5814 ring_buffer_read_prepare_sync(void)
5815 {
5816         synchronize_rcu();
5817 }
5818 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5819
5820 /**
5821  * ring_buffer_read_start - start a non consuming read of the buffer
5822  * @iter: The iterator returned by ring_buffer_read_prepare
5823  *
5824  * This finalizes the startup of an iteration through the buffer.
5825  * The iterator comes from a call to ring_buffer_read_prepare and
5826  * an intervening ring_buffer_read_prepare_sync must have been
5827  * performed.
5828  *
5829  * Must be paired with ring_buffer_read_finish.
5830  */
5831 void
5832 ring_buffer_read_start(struct ring_buffer_iter *iter)
5833 {
5834         struct ring_buffer_per_cpu *cpu_buffer;
5835         unsigned long flags;
5836
5837         if (!iter)
5838                 return;
5839
5840         cpu_buffer = iter->cpu_buffer;
5841
5842         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5843         arch_spin_lock(&cpu_buffer->lock);
5844         rb_iter_reset(iter);
5845         arch_spin_unlock(&cpu_buffer->lock);
5846         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5847 }
5848 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5849
5850 /**
5851  * ring_buffer_read_finish - finish reading the iterator of the buffer
5852  * @iter: The iterator retrieved by ring_buffer_start
5853  *
5854  * This re-enables resizing of the buffer, and frees the iterator.
5855  */
5856 void
5857 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5858 {
5859         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5860
5861         /* Use this opportunity to check the integrity of the ring buffer. */
5862         rb_check_pages(cpu_buffer);
5863
5864         atomic_dec(&cpu_buffer->resize_disabled);
5865         kfree(iter->event);
5866         kfree(iter);
5867 }
5868 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5869
5870 /**
5871  * ring_buffer_iter_advance - advance the iterator to the next location
5872  * @iter: The ring buffer iterator
5873  *
5874  * Move the location of the iterator such that the next read will
5875  * be the next location of the iterator.
5876  */
5877 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5878 {
5879         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5880         unsigned long flags;
5881
5882         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5883
5884         rb_advance_iter(iter);
5885
5886         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5887 }
5888 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5889
5890 /**
5891  * ring_buffer_size - return the size of the ring buffer (in bytes)
5892  * @buffer: The ring buffer.
5893  * @cpu: The CPU to get ring buffer size from.
5894  */
5895 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5896 {
5897         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5898                 return 0;
5899
5900         return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5901 }
5902 EXPORT_SYMBOL_GPL(ring_buffer_size);
5903
5904 /**
5905  * ring_buffer_max_event_size - return the max data size of an event
5906  * @buffer: The ring buffer.
5907  *
5908  * Returns the maximum size an event can be.
5909  */
5910 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5911 {
5912         /* If abs timestamp is requested, events have a timestamp too */
5913         if (ring_buffer_time_stamp_abs(buffer))
5914                 return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5915         return buffer->max_data_size;
5916 }
5917 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5918
5919 static void rb_clear_buffer_page(struct buffer_page *page)
5920 {
5921         local_set(&page->write, 0);
5922         local_set(&page->entries, 0);
5923         rb_init_page(page->page);
5924         page->read = 0;
5925 }
5926
5927 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
5928 {
5929         struct trace_buffer_meta *meta = cpu_buffer->meta_page;
5930
5931         if (!meta)
5932                 return;
5933
5934         meta->reader.read = cpu_buffer->reader_page->read;
5935         meta->reader.id = cpu_buffer->reader_page->id;
5936         meta->reader.lost_events = cpu_buffer->lost_events;
5937
5938         meta->entries = local_read(&cpu_buffer->entries);
5939         meta->overrun = local_read(&cpu_buffer->overrun);
5940         meta->read = cpu_buffer->read;
5941
5942         /* Some archs do not have data cache coherency between kernel and user-space */
5943         flush_dcache_folio(virt_to_folio(cpu_buffer->meta_page));
5944 }
5945
5946 static void
5947 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5948 {
5949         struct buffer_page *page;
5950
5951         rb_head_page_deactivate(cpu_buffer);
5952
5953         cpu_buffer->head_page
5954                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
5955         rb_clear_buffer_page(cpu_buffer->head_page);
5956         list_for_each_entry(page, cpu_buffer->pages, list) {
5957                 rb_clear_buffer_page(page);
5958         }
5959
5960         cpu_buffer->tail_page = cpu_buffer->head_page;
5961         cpu_buffer->commit_page = cpu_buffer->head_page;
5962
5963         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5964         INIT_LIST_HEAD(&cpu_buffer->new_pages);
5965         rb_clear_buffer_page(cpu_buffer->reader_page);
5966
5967         local_set(&cpu_buffer->entries_bytes, 0);
5968         local_set(&cpu_buffer->overrun, 0);
5969         local_set(&cpu_buffer->commit_overrun, 0);
5970         local_set(&cpu_buffer->dropped_events, 0);
5971         local_set(&cpu_buffer->entries, 0);
5972         local_set(&cpu_buffer->committing, 0);
5973         local_set(&cpu_buffer->commits, 0);
5974         local_set(&cpu_buffer->pages_touched, 0);
5975         local_set(&cpu_buffer->pages_lost, 0);
5976         local_set(&cpu_buffer->pages_read, 0);
5977         cpu_buffer->last_pages_touch = 0;
5978         cpu_buffer->shortest_full = 0;
5979         cpu_buffer->read = 0;
5980         cpu_buffer->read_bytes = 0;
5981
5982         rb_time_set(&cpu_buffer->write_stamp, 0);
5983         rb_time_set(&cpu_buffer->before_stamp, 0);
5984
5985         memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5986
5987         cpu_buffer->lost_events = 0;
5988         cpu_buffer->last_overrun = 0;
5989
5990         rb_head_page_activate(cpu_buffer);
5991         cpu_buffer->pages_removed = 0;
5992
5993         if (cpu_buffer->mapped) {
5994                 rb_update_meta_page(cpu_buffer);
5995                 if (cpu_buffer->ring_meta) {
5996                         struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
5997                         meta->commit_buffer = meta->head_buffer;
5998                 }
5999         }
6000 }
6001
6002 /* Must have disabled the cpu buffer then done a synchronize_rcu */
6003 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6004 {
6005         unsigned long flags;
6006
6007         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6008
6009         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
6010                 goto out;
6011
6012         arch_spin_lock(&cpu_buffer->lock);
6013
6014         rb_reset_cpu(cpu_buffer);
6015
6016         arch_spin_unlock(&cpu_buffer->lock);
6017
6018  out:
6019         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6020 }
6021
6022 /**
6023  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
6024  * @buffer: The ring buffer to reset a per cpu buffer of
6025  * @cpu: The CPU buffer to be reset
6026  */
6027 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
6028 {
6029         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6030         struct ring_buffer_meta *meta;
6031
6032         if (!cpumask_test_cpu(cpu, buffer->cpumask))
6033                 return;
6034
6035         /* prevent another thread from changing buffer sizes */
6036         mutex_lock(&buffer->mutex);
6037
6038         atomic_inc(&cpu_buffer->resize_disabled);
6039         atomic_inc(&cpu_buffer->record_disabled);
6040
6041         /* Make sure all commits have finished */
6042         synchronize_rcu();
6043
6044         reset_disabled_cpu_buffer(cpu_buffer);
6045
6046         atomic_dec(&cpu_buffer->record_disabled);
6047         atomic_dec(&cpu_buffer->resize_disabled);
6048
6049         /* Make sure persistent meta now uses this buffer's addresses */
6050         meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6051         if (meta)
6052                 rb_meta_init_text_addr(meta);
6053
6054         mutex_unlock(&buffer->mutex);
6055 }
6056 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
6057
6058 /* Flag to ensure proper resetting of atomic variables */
6059 #define RESET_BIT       (1 << 30)
6060
6061 /**
6062  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
6063  * @buffer: The ring buffer to reset a per cpu buffer of
6064  */
6065 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
6066 {
6067         struct ring_buffer_per_cpu *cpu_buffer;
6068         struct ring_buffer_meta *meta;
6069         int cpu;
6070
6071         /* prevent another thread from changing buffer sizes */
6072         mutex_lock(&buffer->mutex);
6073
6074         for_each_online_buffer_cpu(buffer, cpu) {
6075                 cpu_buffer = buffer->buffers[cpu];
6076
6077                 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
6078                 atomic_inc(&cpu_buffer->record_disabled);
6079         }
6080
6081         /* Make sure all commits have finished */
6082         synchronize_rcu();
6083
6084         for_each_buffer_cpu(buffer, cpu) {
6085                 cpu_buffer = buffer->buffers[cpu];
6086
6087                 /*
6088                  * If a CPU came online during the synchronize_rcu(), then
6089                  * ignore it.
6090                  */
6091                 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
6092                         continue;
6093
6094                 reset_disabled_cpu_buffer(cpu_buffer);
6095
6096                 /* Make sure persistent meta now uses this buffer's addresses */
6097                 meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6098                 if (meta)
6099                         rb_meta_init_text_addr(meta);
6100
6101                 atomic_dec(&cpu_buffer->record_disabled);
6102                 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
6103         }
6104
6105         mutex_unlock(&buffer->mutex);
6106 }
6107
6108 /**
6109  * ring_buffer_reset - reset a ring buffer
6110  * @buffer: The ring buffer to reset all cpu buffers
6111  */
6112 void ring_buffer_reset(struct trace_buffer *buffer)
6113 {
6114         struct ring_buffer_per_cpu *cpu_buffer;
6115         int cpu;
6116
6117         /* prevent another thread from changing buffer sizes */
6118         mutex_lock(&buffer->mutex);
6119
6120         for_each_buffer_cpu(buffer, cpu) {
6121                 cpu_buffer = buffer->buffers[cpu];
6122
6123                 atomic_inc(&cpu_buffer->resize_disabled);
6124                 atomic_inc(&cpu_buffer->record_disabled);
6125         }
6126
6127         /* Make sure all commits have finished */
6128         synchronize_rcu();
6129
6130         for_each_buffer_cpu(buffer, cpu) {
6131                 cpu_buffer = buffer->buffers[cpu];
6132
6133                 reset_disabled_cpu_buffer(cpu_buffer);
6134
6135                 atomic_dec(&cpu_buffer->record_disabled);
6136                 atomic_dec(&cpu_buffer->resize_disabled);
6137         }
6138
6139         mutex_unlock(&buffer->mutex);
6140 }
6141 EXPORT_SYMBOL_GPL(ring_buffer_reset);
6142
6143 /**
6144  * ring_buffer_empty - is the ring buffer empty?
6145  * @buffer: The ring buffer to test
6146  */
6147 bool ring_buffer_empty(struct trace_buffer *buffer)
6148 {
6149         struct ring_buffer_per_cpu *cpu_buffer;
6150         unsigned long flags;
6151         bool dolock;
6152         bool ret;
6153         int cpu;
6154
6155         /* yes this is racy, but if you don't like the race, lock the buffer */
6156         for_each_buffer_cpu(buffer, cpu) {
6157                 cpu_buffer = buffer->buffers[cpu];
6158                 local_irq_save(flags);
6159                 dolock = rb_reader_lock(cpu_buffer);
6160                 ret = rb_per_cpu_empty(cpu_buffer);
6161                 rb_reader_unlock(cpu_buffer, dolock);
6162                 local_irq_restore(flags);
6163
6164                 if (!ret)
6165                         return false;
6166         }
6167
6168         return true;
6169 }
6170 EXPORT_SYMBOL_GPL(ring_buffer_empty);
6171
6172 /**
6173  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
6174  * @buffer: The ring buffer
6175  * @cpu: The CPU buffer to test
6176  */
6177 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
6178 {
6179         struct ring_buffer_per_cpu *cpu_buffer;
6180         unsigned long flags;
6181         bool dolock;
6182         bool ret;
6183
6184         if (!cpumask_test_cpu(cpu, buffer->cpumask))
6185                 return true;
6186
6187         cpu_buffer = buffer->buffers[cpu];
6188         local_irq_save(flags);
6189         dolock = rb_reader_lock(cpu_buffer);
6190         ret = rb_per_cpu_empty(cpu_buffer);
6191         rb_reader_unlock(cpu_buffer, dolock);
6192         local_irq_restore(flags);
6193
6194         return ret;
6195 }
6196 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
6197
6198 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
6199 /**
6200  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
6201  * @buffer_a: One buffer to swap with
6202  * @buffer_b: The other buffer to swap with
6203  * @cpu: the CPU of the buffers to swap
6204  *
6205  * This function is useful for tracers that want to take a "snapshot"
6206  * of a CPU buffer and has another back up buffer lying around.
6207  * it is expected that the tracer handles the cpu buffer not being
6208  * used at the moment.
6209  */
6210 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
6211                          struct trace_buffer *buffer_b, int cpu)
6212 {
6213         struct ring_buffer_per_cpu *cpu_buffer_a;
6214         struct ring_buffer_per_cpu *cpu_buffer_b;
6215         int ret = -EINVAL;
6216
6217         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
6218             !cpumask_test_cpu(cpu, buffer_b->cpumask))
6219                 goto out;
6220
6221         cpu_buffer_a = buffer_a->buffers[cpu];
6222         cpu_buffer_b = buffer_b->buffers[cpu];
6223
6224         /* It's up to the callers to not try to swap mapped buffers */
6225         if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) {
6226                 ret = -EBUSY;
6227                 goto out;
6228         }
6229
6230         /* At least make sure the two buffers are somewhat the same */
6231         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
6232                 goto out;
6233
6234         if (buffer_a->subbuf_order != buffer_b->subbuf_order)
6235                 goto out;
6236
6237         ret = -EAGAIN;
6238
6239         if (atomic_read(&buffer_a->record_disabled))
6240                 goto out;
6241
6242         if (atomic_read(&buffer_b->record_disabled))
6243                 goto out;
6244
6245         if (atomic_read(&cpu_buffer_a->record_disabled))
6246                 goto out;
6247
6248         if (atomic_read(&cpu_buffer_b->record_disabled))
6249                 goto out;
6250
6251         /*
6252          * We can't do a synchronize_rcu here because this
6253          * function can be called in atomic context.
6254          * Normally this will be called from the same CPU as cpu.
6255          * If not it's up to the caller to protect this.
6256          */
6257         atomic_inc(&cpu_buffer_a->record_disabled);
6258         atomic_inc(&cpu_buffer_b->record_disabled);
6259
6260         ret = -EBUSY;
6261         if (local_read(&cpu_buffer_a->committing))
6262                 goto out_dec;
6263         if (local_read(&cpu_buffer_b->committing))
6264                 goto out_dec;
6265
6266         /*
6267          * When resize is in progress, we cannot swap it because
6268          * it will mess the state of the cpu buffer.
6269          */
6270         if (atomic_read(&buffer_a->resizing))
6271                 goto out_dec;
6272         if (atomic_read(&buffer_b->resizing))
6273                 goto out_dec;
6274
6275         buffer_a->buffers[cpu] = cpu_buffer_b;
6276         buffer_b->buffers[cpu] = cpu_buffer_a;
6277
6278         cpu_buffer_b->buffer = buffer_a;
6279         cpu_buffer_a->buffer = buffer_b;
6280
6281         ret = 0;
6282
6283 out_dec:
6284         atomic_dec(&cpu_buffer_a->record_disabled);
6285         atomic_dec(&cpu_buffer_b->record_disabled);
6286 out:
6287         return ret;
6288 }
6289 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
6290 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
6291
6292 /**
6293  * ring_buffer_alloc_read_page - allocate a page to read from buffer
6294  * @buffer: the buffer to allocate for.
6295  * @cpu: the cpu buffer to allocate.
6296  *
6297  * This function is used in conjunction with ring_buffer_read_page.
6298  * When reading a full page from the ring buffer, these functions
6299  * can be used to speed up the process. The calling function should
6300  * allocate a few pages first with this function. Then when it
6301  * needs to get pages from the ring buffer, it passes the result
6302  * of this function into ring_buffer_read_page, which will swap
6303  * the page that was allocated, with the read page of the buffer.
6304  *
6305  * Returns:
6306  *  The page allocated, or ERR_PTR
6307  */
6308 struct buffer_data_read_page *
6309 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
6310 {
6311         struct ring_buffer_per_cpu *cpu_buffer;
6312         struct buffer_data_read_page *bpage = NULL;
6313         unsigned long flags;
6314         struct page *page;
6315
6316         if (!cpumask_test_cpu(cpu, buffer->cpumask))
6317                 return ERR_PTR(-ENODEV);
6318
6319         bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
6320         if (!bpage)
6321                 return ERR_PTR(-ENOMEM);
6322
6323         bpage->order = buffer->subbuf_order;
6324         cpu_buffer = buffer->buffers[cpu];
6325         local_irq_save(flags);
6326         arch_spin_lock(&cpu_buffer->lock);
6327
6328         if (cpu_buffer->free_page) {
6329                 bpage->data = cpu_buffer->free_page;
6330                 cpu_buffer->free_page = NULL;
6331         }
6332
6333         arch_spin_unlock(&cpu_buffer->lock);
6334         local_irq_restore(flags);
6335
6336         if (bpage->data)
6337                 goto out;
6338
6339         page = alloc_pages_node(cpu_to_node(cpu),
6340                                 GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO,
6341                                 cpu_buffer->buffer->subbuf_order);
6342         if (!page) {
6343                 kfree(bpage);
6344                 return ERR_PTR(-ENOMEM);
6345         }
6346
6347         bpage->data = page_address(page);
6348
6349  out:
6350         rb_init_page(bpage->data);
6351
6352         return bpage;
6353 }
6354 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
6355
6356 /**
6357  * ring_buffer_free_read_page - free an allocated read page
6358  * @buffer: the buffer the page was allocate for
6359  * @cpu: the cpu buffer the page came from
6360  * @data_page: the page to free
6361  *
6362  * Free a page allocated from ring_buffer_alloc_read_page.
6363  */
6364 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
6365                                 struct buffer_data_read_page *data_page)
6366 {
6367         struct ring_buffer_per_cpu *cpu_buffer;
6368         struct buffer_data_page *bpage = data_page->data;
6369         struct page *page = virt_to_page(bpage);
6370         unsigned long flags;
6371
6372         if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
6373                 return;
6374
6375         cpu_buffer = buffer->buffers[cpu];
6376
6377         /*
6378          * If the page is still in use someplace else, or order of the page
6379          * is different from the subbuffer order of the buffer -
6380          * we can't reuse it
6381          */
6382         if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
6383                 goto out;
6384
6385         local_irq_save(flags);
6386         arch_spin_lock(&cpu_buffer->lock);
6387
6388         if (!cpu_buffer->free_page) {
6389                 cpu_buffer->free_page = bpage;
6390                 bpage = NULL;
6391         }
6392
6393         arch_spin_unlock(&cpu_buffer->lock);
6394         local_irq_restore(flags);
6395
6396  out:
6397         free_pages((unsigned long)bpage, data_page->order);
6398         kfree(data_page);
6399 }
6400 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
6401
6402 /**
6403  * ring_buffer_read_page - extract a page from the ring buffer
6404  * @buffer: buffer to extract from
6405  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
6406  * @len: amount to extract
6407  * @cpu: the cpu of the buffer to extract
6408  * @full: should the extraction only happen when the page is full.
6409  *
6410  * This function will pull out a page from the ring buffer and consume it.
6411  * @data_page must be the address of the variable that was returned
6412  * from ring_buffer_alloc_read_page. This is because the page might be used
6413  * to swap with a page in the ring buffer.
6414  *
6415  * for example:
6416  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
6417  *      if (IS_ERR(rpage))
6418  *              return PTR_ERR(rpage);
6419  *      ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
6420  *      if (ret >= 0)
6421  *              process_page(ring_buffer_read_page_data(rpage), ret);
6422  *      ring_buffer_free_read_page(buffer, cpu, rpage);
6423  *
6424  * When @full is set, the function will not return true unless
6425  * the writer is off the reader page.
6426  *
6427  * Note: it is up to the calling functions to handle sleeps and wakeups.
6428  *  The ring buffer can be used anywhere in the kernel and can not
6429  *  blindly call wake_up. The layer that uses the ring buffer must be
6430  *  responsible for that.
6431  *
6432  * Returns:
6433  *  >=0 if data has been transferred, returns the offset of consumed data.
6434  *  <0 if no data has been transferred.
6435  */
6436 int ring_buffer_read_page(struct trace_buffer *buffer,
6437                           struct buffer_data_read_page *data_page,
6438                           size_t len, int cpu, int full)
6439 {
6440         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6441         struct ring_buffer_event *event;
6442         struct buffer_data_page *bpage;
6443         struct buffer_page *reader;
6444         unsigned long missed_events;
6445         unsigned long flags;
6446         unsigned int commit;
6447         unsigned int read;
6448         u64 save_timestamp;
6449         int ret = -1;
6450
6451         if (!cpumask_test_cpu(cpu, buffer->cpumask))
6452                 goto out;
6453
6454         /*
6455          * If len is not big enough to hold the page header, then
6456          * we can not copy anything.
6457          */
6458         if (len <= BUF_PAGE_HDR_SIZE)
6459                 goto out;
6460
6461         len -= BUF_PAGE_HDR_SIZE;
6462
6463         if (!data_page || !data_page->data)
6464                 goto out;
6465         if (data_page->order != buffer->subbuf_order)
6466                 goto out;
6467
6468         bpage = data_page->data;
6469         if (!bpage)
6470                 goto out;
6471
6472         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6473
6474         reader = rb_get_reader_page(cpu_buffer);
6475         if (!reader)
6476                 goto out_unlock;
6477
6478         event = rb_reader_event(cpu_buffer);
6479
6480         read = reader->read;
6481         commit = rb_page_size(reader);
6482
6483         /* Check if any events were dropped */
6484         missed_events = cpu_buffer->lost_events;
6485
6486         /*
6487          * If this page has been partially read or
6488          * if len is not big enough to read the rest of the page or
6489          * a writer is still on the page, then
6490          * we must copy the data from the page to the buffer.
6491          * Otherwise, we can simply swap the page with the one passed in.
6492          */
6493         if (read || (len < (commit - read)) ||
6494             cpu_buffer->reader_page == cpu_buffer->commit_page ||
6495             cpu_buffer->mapped) {
6496                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
6497                 unsigned int rpos = read;
6498                 unsigned int pos = 0;
6499                 unsigned int size;
6500
6501                 /*
6502                  * If a full page is expected, this can still be returned
6503                  * if there's been a previous partial read and the
6504                  * rest of the page can be read and the commit page is off
6505                  * the reader page.
6506                  */
6507                 if (full &&
6508                     (!read || (len < (commit - read)) ||
6509                      cpu_buffer->reader_page == cpu_buffer->commit_page))
6510                         goto out_unlock;
6511
6512                 if (len > (commit - read))
6513                         len = (commit - read);
6514
6515                 /* Always keep the time extend and data together */
6516                 size = rb_event_ts_length(event);
6517
6518                 if (len < size)
6519                         goto out_unlock;
6520
6521                 /* save the current timestamp, since the user will need it */
6522                 save_timestamp = cpu_buffer->read_stamp;
6523
6524                 /* Need to copy one event at a time */
6525                 do {
6526                         /* We need the size of one event, because
6527                          * rb_advance_reader only advances by one event,
6528                          * whereas rb_event_ts_length may include the size of
6529                          * one or two events.
6530                          * We have already ensured there's enough space if this
6531                          * is a time extend. */
6532                         size = rb_event_length(event);
6533                         memcpy(bpage->data + pos, rpage->data + rpos, size);
6534
6535                         len -= size;
6536
6537                         rb_advance_reader(cpu_buffer);
6538                         rpos = reader->read;
6539                         pos += size;
6540
6541                         if (rpos >= commit)
6542                                 break;
6543
6544                         event = rb_reader_event(cpu_buffer);
6545                         /* Always keep the time extend and data together */
6546                         size = rb_event_ts_length(event);
6547                 } while (len >= size);
6548
6549                 /* update bpage */
6550                 local_set(&bpage->commit, pos);
6551                 bpage->time_stamp = save_timestamp;
6552
6553                 /* we copied everything to the beginning */
6554                 read = 0;
6555         } else {
6556                 /* update the entry counter */
6557                 cpu_buffer->read += rb_page_entries(reader);
6558                 cpu_buffer->read_bytes += rb_page_size(reader);
6559
6560                 /* swap the pages */
6561                 rb_init_page(bpage);
6562                 bpage = reader->page;
6563                 reader->page = data_page->data;
6564                 local_set(&reader->write, 0);
6565                 local_set(&reader->entries, 0);
6566                 reader->read = 0;
6567                 data_page->data = bpage;
6568
6569                 /*
6570                  * Use the real_end for the data size,
6571                  * This gives us a chance to store the lost events
6572                  * on the page.
6573                  */
6574                 if (reader->real_end)
6575                         local_set(&bpage->commit, reader->real_end);
6576         }
6577         ret = read;
6578
6579         cpu_buffer->lost_events = 0;
6580
6581         commit = local_read(&bpage->commit);
6582         /*
6583          * Set a flag in the commit field if we lost events
6584          */
6585         if (missed_events) {
6586                 /* If there is room at the end of the page to save the
6587                  * missed events, then record it there.
6588                  */
6589                 if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6590                         memcpy(&bpage->data[commit], &missed_events,
6591                                sizeof(missed_events));
6592                         local_add(RB_MISSED_STORED, &bpage->commit);
6593                         commit += sizeof(missed_events);
6594                 }
6595                 local_add(RB_MISSED_EVENTS, &bpage->commit);
6596         }
6597
6598         /*
6599          * This page may be off to user land. Zero it out here.
6600          */
6601         if (commit < buffer->subbuf_size)
6602                 memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
6603
6604  out_unlock:
6605         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6606
6607  out:
6608         return ret;
6609 }
6610 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
6611
6612 /**
6613  * ring_buffer_read_page_data - get pointer to the data in the page.
6614  * @page:  the page to get the data from
6615  *
6616  * Returns pointer to the actual data in this page.
6617  */
6618 void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
6619 {
6620         return page->data;
6621 }
6622 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
6623
6624 /**
6625  * ring_buffer_subbuf_size_get - get size of the sub buffer.
6626  * @buffer: the buffer to get the sub buffer size from
6627  *
6628  * Returns size of the sub buffer, in bytes.
6629  */
6630 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
6631 {
6632         return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6633 }
6634 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
6635
6636 /**
6637  * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
6638  * @buffer: The ring_buffer to get the system sub page order from
6639  *
6640  * By default, one ring buffer sub page equals to one system page. This parameter
6641  * is configurable, per ring buffer. The size of the ring buffer sub page can be
6642  * extended, but must be an order of system page size.
6643  *
6644  * Returns the order of buffer sub page size, in system pages:
6645  * 0 means the sub buffer size is 1 system page and so forth.
6646  * In case of an error < 0 is returned.
6647  */
6648 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
6649 {
6650         if (!buffer)
6651                 return -EINVAL;
6652
6653         return buffer->subbuf_order;
6654 }
6655 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
6656
6657 /**
6658  * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
6659  * @buffer: The ring_buffer to set the new page size.
6660  * @order: Order of the system pages in one sub buffer page
6661  *
6662  * By default, one ring buffer pages equals to one system page. This API can be
6663  * used to set new size of the ring buffer page. The size must be order of
6664  * system page size, that's why the input parameter @order is the order of
6665  * system pages that are allocated for one ring buffer page:
6666  *  0 - 1 system page
6667  *  1 - 2 system pages
6668  *  3 - 4 system pages
6669  *  ...
6670  *
6671  * Returns 0 on success or < 0 in case of an error.
6672  */
6673 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
6674 {
6675         struct ring_buffer_per_cpu *cpu_buffer;
6676         struct buffer_page *bpage, *tmp;
6677         int old_order, old_size;
6678         int nr_pages;
6679         int psize;
6680         int err;
6681         int cpu;
6682
6683         if (!buffer || order < 0)
6684                 return -EINVAL;
6685
6686         if (buffer->subbuf_order == order)
6687                 return 0;
6688
6689         psize = (1 << order) * PAGE_SIZE;
6690         if (psize <= BUF_PAGE_HDR_SIZE)
6691                 return -EINVAL;
6692
6693         /* Size of a subbuf cannot be greater than the write counter */
6694         if (psize > RB_WRITE_MASK + 1)
6695                 return -EINVAL;
6696
6697         old_order = buffer->subbuf_order;
6698         old_size = buffer->subbuf_size;
6699
6700         /* prevent another thread from changing buffer sizes */
6701         mutex_lock(&buffer->mutex);
6702         atomic_inc(&buffer->record_disabled);
6703
6704         /* Make sure all commits have finished */
6705         synchronize_rcu();
6706
6707         buffer->subbuf_order = order;
6708         buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
6709
6710         /* Make sure all new buffers are allocated, before deleting the old ones */
6711         for_each_buffer_cpu(buffer, cpu) {
6712
6713                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6714                         continue;
6715
6716                 cpu_buffer = buffer->buffers[cpu];
6717
6718                 if (cpu_buffer->mapped) {
6719                         err = -EBUSY;
6720                         goto error;
6721                 }
6722
6723                 /* Update the number of pages to match the new size */
6724                 nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
6725                 nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
6726
6727                 /* we need a minimum of two pages */
6728                 if (nr_pages < 2)
6729                         nr_pages = 2;
6730
6731                 cpu_buffer->nr_pages_to_update = nr_pages;
6732
6733                 /* Include the reader page */
6734                 nr_pages++;
6735
6736                 /* Allocate the new size buffer */
6737                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
6738                 if (__rb_allocate_pages(cpu_buffer, nr_pages,
6739                                         &cpu_buffer->new_pages)) {
6740                         /* not enough memory for new pages */
6741                         err = -ENOMEM;
6742                         goto error;
6743                 }
6744         }
6745
6746         for_each_buffer_cpu(buffer, cpu) {
6747                 struct buffer_data_page *old_free_data_page;
6748                 struct list_head old_pages;
6749                 unsigned long flags;
6750
6751                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6752                         continue;
6753
6754                 cpu_buffer = buffer->buffers[cpu];
6755
6756                 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6757
6758                 /* Clear the head bit to make the link list normal to read */
6759                 rb_head_page_deactivate(cpu_buffer);
6760
6761                 /*
6762                  * Collect buffers from the cpu_buffer pages list and the
6763                  * reader_page on old_pages, so they can be freed later when not
6764                  * under a spinlock. The pages list is a linked list with no
6765                  * head, adding old_pages turns it into a regular list with
6766                  * old_pages being the head.
6767                  */
6768                 list_add(&old_pages, cpu_buffer->pages);
6769                 list_add(&cpu_buffer->reader_page->list, &old_pages);
6770
6771                 /* One page was allocated for the reader page */
6772                 cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6773                                                      struct buffer_page, list);
6774                 list_del_init(&cpu_buffer->reader_page->list);
6775
6776                 /* Install the new pages, remove the head from the list */
6777                 cpu_buffer->pages = cpu_buffer->new_pages.next;
6778                 list_del_init(&cpu_buffer->new_pages);
6779                 cpu_buffer->cnt++;
6780
6781                 cpu_buffer->head_page
6782                         = list_entry(cpu_buffer->pages, struct buffer_page, list);
6783                 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6784
6785                 cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6786                 cpu_buffer->nr_pages_to_update = 0;
6787
6788                 old_free_data_page = cpu_buffer->free_page;
6789                 cpu_buffer->free_page = NULL;
6790
6791                 rb_head_page_activate(cpu_buffer);
6792
6793                 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6794
6795                 /* Free old sub buffers */
6796                 list_for_each_entry_safe(bpage, tmp, &old_pages, list) {
6797                         list_del_init(&bpage->list);
6798                         free_buffer_page(bpage);
6799                 }
6800                 free_pages((unsigned long)old_free_data_page, old_order);
6801
6802                 rb_check_pages(cpu_buffer);
6803         }
6804
6805         atomic_dec(&buffer->record_disabled);
6806         mutex_unlock(&buffer->mutex);
6807
6808         return 0;
6809
6810 error:
6811         buffer->subbuf_order = old_order;
6812         buffer->subbuf_size = old_size;
6813
6814         atomic_dec(&buffer->record_disabled);
6815         mutex_unlock(&buffer->mutex);
6816
6817         for_each_buffer_cpu(buffer, cpu) {
6818                 cpu_buffer = buffer->buffers[cpu];
6819
6820                 if (!cpu_buffer->nr_pages_to_update)
6821                         continue;
6822
6823                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6824                         list_del_init(&bpage->list);
6825                         free_buffer_page(bpage);
6826                 }
6827         }
6828
6829         return err;
6830 }
6831 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6832
6833 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6834 {
6835         struct page *page;
6836
6837         if (cpu_buffer->meta_page)
6838                 return 0;
6839
6840         page = alloc_page(GFP_USER | __GFP_ZERO);
6841         if (!page)
6842                 return -ENOMEM;
6843
6844         cpu_buffer->meta_page = page_to_virt(page);
6845
6846         return 0;
6847 }
6848
6849 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6850 {
6851         unsigned long addr = (unsigned long)cpu_buffer->meta_page;
6852
6853         free_page(addr);
6854         cpu_buffer->meta_page = NULL;
6855 }
6856
6857 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
6858                                    unsigned long *subbuf_ids)
6859 {
6860         struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6861         unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
6862         struct buffer_page *first_subbuf, *subbuf;
6863         int id = 0;
6864
6865         subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page;
6866         cpu_buffer->reader_page->id = id++;
6867
6868         first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
6869         do {
6870                 if (WARN_ON(id >= nr_subbufs))
6871                         break;
6872
6873                 subbuf_ids[id] = (unsigned long)subbuf->page;
6874                 subbuf->id = id;
6875
6876                 rb_inc_page(&subbuf);
6877                 id++;
6878         } while (subbuf != first_subbuf);
6879
6880         /* install subbuf ID to kern VA translation */
6881         cpu_buffer->subbuf_ids = subbuf_ids;
6882
6883         meta->meta_struct_len = sizeof(*meta);
6884         meta->nr_subbufs = nr_subbufs;
6885         meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6886         meta->meta_page_size = meta->subbuf_size;
6887
6888         rb_update_meta_page(cpu_buffer);
6889 }
6890
6891 static struct ring_buffer_per_cpu *
6892 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
6893 {
6894         struct ring_buffer_per_cpu *cpu_buffer;
6895
6896         if (!cpumask_test_cpu(cpu, buffer->cpumask))
6897                 return ERR_PTR(-EINVAL);
6898
6899         cpu_buffer = buffer->buffers[cpu];
6900
6901         mutex_lock(&cpu_buffer->mapping_lock);
6902
6903         if (!cpu_buffer->user_mapped) {
6904                 mutex_unlock(&cpu_buffer->mapping_lock);
6905                 return ERR_PTR(-ENODEV);
6906         }
6907
6908         return cpu_buffer;
6909 }
6910
6911 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6912 {
6913         mutex_unlock(&cpu_buffer->mapping_lock);
6914 }
6915
6916 /*
6917  * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
6918  * to be set-up or torn-down.
6919  */
6920 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
6921                                bool inc)
6922 {
6923         unsigned long flags;
6924
6925         lockdep_assert_held(&cpu_buffer->mapping_lock);
6926
6927         /* mapped is always greater or equal to user_mapped */
6928         if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped))
6929                 return -EINVAL;
6930
6931         if (inc && cpu_buffer->mapped == UINT_MAX)
6932                 return -EBUSY;
6933
6934         if (WARN_ON(!inc && cpu_buffer->user_mapped == 0))
6935                 return -EINVAL;
6936
6937         mutex_lock(&cpu_buffer->buffer->mutex);
6938         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6939
6940         if (inc) {
6941                 cpu_buffer->user_mapped++;
6942                 cpu_buffer->mapped++;
6943         } else {
6944                 cpu_buffer->user_mapped--;
6945                 cpu_buffer->mapped--;
6946         }
6947
6948         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6949         mutex_unlock(&cpu_buffer->buffer->mutex);
6950
6951         return 0;
6952 }
6953
6954 /*
6955  *   +--------------+  pgoff == 0
6956  *   |   meta page  |
6957  *   +--------------+  pgoff == 1
6958  *   | subbuffer 0  |
6959  *   |              |
6960  *   +--------------+  pgoff == (1 + (1 << subbuf_order))
6961  *   | subbuffer 1  |
6962  *   |              |
6963  *         ...
6964  */
6965 #ifdef CONFIG_MMU
6966 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
6967                         struct vm_area_struct *vma)
6968 {
6969         unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff;
6970         unsigned int subbuf_pages, subbuf_order;
6971         struct page **pages;
6972         int p = 0, s = 0;
6973         int err;
6974
6975         /* Refuse MP_PRIVATE or writable mappings */
6976         if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
6977             !(vma->vm_flags & VM_MAYSHARE))
6978                 return -EPERM;
6979
6980         subbuf_order = cpu_buffer->buffer->subbuf_order;
6981         subbuf_pages = 1 << subbuf_order;
6982
6983         if (subbuf_order && pgoff % subbuf_pages)
6984                 return -EINVAL;
6985
6986         /*
6987          * Make sure the mapping cannot become writable later. Also tell the VM
6988          * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
6989          */
6990         vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
6991                      VM_MAYWRITE);
6992
6993         lockdep_assert_held(&cpu_buffer->mapping_lock);
6994
6995         nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
6996         nr_pages = ((nr_subbufs + 1) << subbuf_order); /* + meta-page */
6997         if (nr_pages <= pgoff)
6998                 return -EINVAL;
6999
7000         nr_pages -= pgoff;
7001
7002         nr_vma_pages = vma_pages(vma);
7003         if (!nr_vma_pages || nr_vma_pages > nr_pages)
7004                 return -EINVAL;
7005
7006         nr_pages = nr_vma_pages;
7007
7008         pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL);
7009         if (!pages)
7010                 return -ENOMEM;
7011
7012         if (!pgoff) {
7013                 unsigned long meta_page_padding;
7014
7015                 pages[p++] = virt_to_page(cpu_buffer->meta_page);
7016
7017                 /*
7018                  * Pad with the zero-page to align the meta-page with the
7019                  * sub-buffers.
7020                  */
7021                 meta_page_padding = subbuf_pages - 1;
7022                 while (meta_page_padding-- && p < nr_pages) {
7023                         unsigned long __maybe_unused zero_addr =
7024                                 vma->vm_start + (PAGE_SIZE * p);
7025
7026                         pages[p++] = ZERO_PAGE(zero_addr);
7027                 }
7028         } else {
7029                 /* Skip the meta-page */
7030                 pgoff -= subbuf_pages;
7031
7032                 s += pgoff / subbuf_pages;
7033         }
7034
7035         while (p < nr_pages) {
7036                 struct page *page;
7037                 int off = 0;
7038
7039                 if (WARN_ON_ONCE(s >= nr_subbufs)) {
7040                         err = -EINVAL;
7041                         goto out;
7042                 }
7043
7044                 page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
7045
7046                 for (; off < (1 << (subbuf_order)); off++, page++) {
7047                         if (p >= nr_pages)
7048                                 break;
7049
7050                         pages[p++] = page;
7051                 }
7052                 s++;
7053         }
7054
7055         err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
7056
7057 out:
7058         kfree(pages);
7059
7060         return err;
7061 }
7062 #else
7063 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7064                         struct vm_area_struct *vma)
7065 {
7066         return -EOPNOTSUPP;
7067 }
7068 #endif
7069
7070 int ring_buffer_map(struct trace_buffer *buffer, int cpu,
7071                     struct vm_area_struct *vma)
7072 {
7073         struct ring_buffer_per_cpu *cpu_buffer;
7074         unsigned long flags, *subbuf_ids;
7075         int err = 0;
7076
7077         if (!cpumask_test_cpu(cpu, buffer->cpumask))
7078                 return -EINVAL;
7079
7080         cpu_buffer = buffer->buffers[cpu];
7081
7082         mutex_lock(&cpu_buffer->mapping_lock);
7083
7084         if (cpu_buffer->user_mapped) {
7085                 err = __rb_map_vma(cpu_buffer, vma);
7086                 if (!err)
7087                         err = __rb_inc_dec_mapped(cpu_buffer, true);
7088                 mutex_unlock(&cpu_buffer->mapping_lock);
7089                 return err;
7090         }
7091
7092         /* prevent another thread from changing buffer/sub-buffer sizes */
7093         mutex_lock(&buffer->mutex);
7094
7095         err = rb_alloc_meta_page(cpu_buffer);
7096         if (err)
7097                 goto unlock;
7098
7099         /* subbuf_ids include the reader while nr_pages does not */
7100         subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
7101         if (!subbuf_ids) {
7102                 rb_free_meta_page(cpu_buffer);
7103                 err = -ENOMEM;
7104                 goto unlock;
7105         }
7106
7107         atomic_inc(&cpu_buffer->resize_disabled);
7108
7109         /*
7110          * Lock all readers to block any subbuf swap until the subbuf IDs are
7111          * assigned.
7112          */
7113         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7114         rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
7115
7116         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7117
7118         err = __rb_map_vma(cpu_buffer, vma);
7119         if (!err) {
7120                 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7121                 /* This is the first time it is mapped by user */
7122                 cpu_buffer->mapped++;
7123                 cpu_buffer->user_mapped = 1;
7124                 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7125         } else {
7126                 kfree(cpu_buffer->subbuf_ids);
7127                 cpu_buffer->subbuf_ids = NULL;
7128                 rb_free_meta_page(cpu_buffer);
7129         }
7130
7131 unlock:
7132         mutex_unlock(&buffer->mutex);
7133         mutex_unlock(&cpu_buffer->mapping_lock);
7134
7135         return err;
7136 }
7137
7138 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
7139 {
7140         struct ring_buffer_per_cpu *cpu_buffer;
7141         unsigned long flags;
7142         int err = 0;
7143
7144         if (!cpumask_test_cpu(cpu, buffer->cpumask))
7145                 return -EINVAL;
7146
7147         cpu_buffer = buffer->buffers[cpu];
7148
7149         mutex_lock(&cpu_buffer->mapping_lock);
7150
7151         if (!cpu_buffer->user_mapped) {
7152                 err = -ENODEV;
7153                 goto out;
7154         } else if (cpu_buffer->user_mapped > 1) {
7155                 __rb_inc_dec_mapped(cpu_buffer, false);
7156                 goto out;
7157         }
7158
7159         mutex_lock(&buffer->mutex);
7160         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7161
7162         /* This is the last user space mapping */
7163         if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped))
7164                 cpu_buffer->mapped--;
7165         cpu_buffer->user_mapped = 0;
7166
7167         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7168
7169         kfree(cpu_buffer->subbuf_ids);
7170         cpu_buffer->subbuf_ids = NULL;
7171         rb_free_meta_page(cpu_buffer);
7172         atomic_dec(&cpu_buffer->resize_disabled);
7173
7174         mutex_unlock(&buffer->mutex);
7175
7176 out:
7177         mutex_unlock(&cpu_buffer->mapping_lock);
7178
7179         return err;
7180 }
7181
7182 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
7183 {
7184         struct ring_buffer_per_cpu *cpu_buffer;
7185         struct buffer_page *reader;
7186         unsigned long missed_events;
7187         unsigned long reader_size;
7188         unsigned long flags;
7189
7190         cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
7191         if (IS_ERR(cpu_buffer))
7192                 return (int)PTR_ERR(cpu_buffer);
7193
7194         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7195
7196 consume:
7197         if (rb_per_cpu_empty(cpu_buffer))
7198                 goto out;
7199
7200         reader_size = rb_page_size(cpu_buffer->reader_page);
7201
7202         /*
7203          * There are data to be read on the current reader page, we can
7204          * return to the caller. But before that, we assume the latter will read
7205          * everything. Let's update the kernel reader accordingly.
7206          */
7207         if (cpu_buffer->reader_page->read < reader_size) {
7208                 while (cpu_buffer->reader_page->read < reader_size)
7209                         rb_advance_reader(cpu_buffer);
7210                 goto out;
7211         }
7212
7213         reader = rb_get_reader_page(cpu_buffer);
7214         if (WARN_ON(!reader))
7215                 goto out;
7216
7217         /* Check if any events were dropped */
7218         missed_events = cpu_buffer->lost_events;
7219
7220         if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
7221                 if (missed_events) {
7222                         struct buffer_data_page *bpage = reader->page;
7223                         unsigned int commit;
7224                         /*
7225                          * Use the real_end for the data size,
7226                          * This gives us a chance to store the lost events
7227                          * on the page.
7228                          */
7229                         if (reader->real_end)
7230                                 local_set(&bpage->commit, reader->real_end);
7231                         /*
7232                          * If there is room at the end of the page to save the
7233                          * missed events, then record it there.
7234                          */
7235                         commit = rb_page_size(reader);
7236                         if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
7237                                 memcpy(&bpage->data[commit], &missed_events,
7238                                        sizeof(missed_events));
7239                                 local_add(RB_MISSED_STORED, &bpage->commit);
7240                         }
7241                         local_add(RB_MISSED_EVENTS, &bpage->commit);
7242                 }
7243         } else {
7244                 /*
7245                  * There really shouldn't be any missed events if the commit
7246                  * is on the reader page.
7247                  */
7248                 WARN_ON_ONCE(missed_events);
7249         }
7250
7251         cpu_buffer->lost_events = 0;
7252
7253         goto consume;
7254
7255 out:
7256         /* Some archs do not have data cache coherency between kernel and user-space */
7257         flush_dcache_folio(virt_to_folio(cpu_buffer->reader_page->page));
7258
7259         rb_update_meta_page(cpu_buffer);
7260
7261         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7262         rb_put_mapped_buffer(cpu_buffer);
7263
7264         return 0;
7265 }
7266
7267 /*
7268  * We only allocate new buffers, never free them if the CPU goes down.
7269  * If we were to free the buffer, then the user would lose any trace that was in
7270  * the buffer.
7271  */
7272 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
7273 {
7274         struct trace_buffer *buffer;
7275         long nr_pages_same;
7276         int cpu_i;
7277         unsigned long nr_pages;
7278
7279         buffer = container_of(node, struct trace_buffer, node);
7280         if (cpumask_test_cpu(cpu, buffer->cpumask))
7281                 return 0;
7282
7283         nr_pages = 0;
7284         nr_pages_same = 1;
7285         /* check if all cpu sizes are same */
7286         for_each_buffer_cpu(buffer, cpu_i) {
7287                 /* fill in the size from first enabled cpu */
7288                 if (nr_pages == 0)
7289                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
7290                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
7291                         nr_pages_same = 0;
7292                         break;
7293                 }
7294         }
7295         /* allocate minimum pages, user can later expand it */
7296         if (!nr_pages_same)
7297                 nr_pages = 2;
7298         buffer->buffers[cpu] =
7299                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7300         if (!buffer->buffers[cpu]) {
7301                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
7302                      cpu);
7303                 return -ENOMEM;
7304         }
7305         smp_wmb();
7306         cpumask_set_cpu(cpu, buffer->cpumask);
7307         return 0;
7308 }
7309
7310 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
7311 /*
7312  * This is a basic integrity check of the ring buffer.
7313  * Late in the boot cycle this test will run when configured in.
7314  * It will kick off a thread per CPU that will go into a loop
7315  * writing to the per cpu ring buffer various sizes of data.
7316  * Some of the data will be large items, some small.
7317  *
7318  * Another thread is created that goes into a spin, sending out
7319  * IPIs to the other CPUs to also write into the ring buffer.
7320  * this is to test the nesting ability of the buffer.
7321  *
7322  * Basic stats are recorded and reported. If something in the
7323  * ring buffer should happen that's not expected, a big warning
7324  * is displayed and all ring buffers are disabled.
7325  */
7326 static struct task_struct *rb_threads[NR_CPUS] __initdata;
7327
7328 struct rb_test_data {
7329         struct trace_buffer *buffer;
7330         unsigned long           events;
7331         unsigned long           bytes_written;
7332         unsigned long           bytes_alloc;
7333         unsigned long           bytes_dropped;
7334         unsigned long           events_nested;
7335         unsigned long           bytes_written_nested;
7336         unsigned long           bytes_alloc_nested;
7337         unsigned long           bytes_dropped_nested;
7338         int                     min_size_nested;
7339         int                     max_size_nested;
7340         int                     max_size;
7341         int                     min_size;
7342         int                     cpu;
7343         int                     cnt;
7344 };
7345
7346 static struct rb_test_data rb_data[NR_CPUS] __initdata;
7347
7348 /* 1 meg per cpu */
7349 #define RB_TEST_BUFFER_SIZE     1048576
7350
7351 static char rb_string[] __initdata =
7352         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
7353         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
7354         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
7355
7356 static bool rb_test_started __initdata;
7357
7358 struct rb_item {
7359         int size;
7360         char str[];
7361 };
7362
7363 static __init int rb_write_something(struct rb_test_data *data, bool nested)
7364 {
7365         struct ring_buffer_event *event;
7366         struct rb_item *item;
7367         bool started;
7368         int event_len;
7369         int size;
7370         int len;
7371         int cnt;
7372
7373         /* Have nested writes different that what is written */
7374         cnt = data->cnt + (nested ? 27 : 0);
7375
7376         /* Multiply cnt by ~e, to make some unique increment */
7377         size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
7378
7379         len = size + sizeof(struct rb_item);
7380
7381         started = rb_test_started;
7382         /* read rb_test_started before checking buffer enabled */
7383         smp_rmb();
7384
7385         event = ring_buffer_lock_reserve(data->buffer, len);
7386         if (!event) {
7387                 /* Ignore dropped events before test starts. */
7388                 if (started) {
7389                         if (nested)
7390                                 data->bytes_dropped += len;
7391                         else
7392                                 data->bytes_dropped_nested += len;
7393                 }
7394                 return len;
7395         }
7396
7397         event_len = ring_buffer_event_length(event);
7398
7399         if (RB_WARN_ON(data->buffer, event_len < len))
7400                 goto out;
7401
7402         item = ring_buffer_event_data(event);
7403         item->size = size;
7404         memcpy(item->str, rb_string, size);
7405
7406         if (nested) {
7407                 data->bytes_alloc_nested += event_len;
7408                 data->bytes_written_nested += len;
7409                 data->events_nested++;
7410                 if (!data->min_size_nested || len < data->min_size_nested)
7411                         data->min_size_nested = len;
7412                 if (len > data->max_size_nested)
7413                         data->max_size_nested = len;
7414         } else {
7415                 data->bytes_alloc += event_len;
7416                 data->bytes_written += len;
7417                 data->events++;
7418                 if (!data->min_size || len < data->min_size)
7419                         data->max_size = len;
7420                 if (len > data->max_size)
7421                         data->max_size = len;
7422         }
7423
7424  out:
7425         ring_buffer_unlock_commit(data->buffer);
7426
7427         return 0;
7428 }
7429
7430 static __init int rb_test(void *arg)
7431 {
7432         struct rb_test_data *data = arg;
7433
7434         while (!kthread_should_stop()) {
7435                 rb_write_something(data, false);
7436                 data->cnt++;
7437
7438                 set_current_state(TASK_INTERRUPTIBLE);
7439                 /* Now sleep between a min of 100-300us and a max of 1ms */
7440                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
7441         }
7442
7443         return 0;
7444 }
7445
7446 static __init void rb_ipi(void *ignore)
7447 {
7448         struct rb_test_data *data;
7449         int cpu = smp_processor_id();
7450
7451         data = &rb_data[cpu];
7452         rb_write_something(data, true);
7453 }
7454
7455 static __init int rb_hammer_test(void *arg)
7456 {
7457         while (!kthread_should_stop()) {
7458
7459                 /* Send an IPI to all cpus to write data! */
7460                 smp_call_function(rb_ipi, NULL, 1);
7461                 /* No sleep, but for non preempt, let others run */
7462                 schedule();
7463         }
7464
7465         return 0;
7466 }
7467
7468 static __init int test_ringbuffer(void)
7469 {
7470         struct task_struct *rb_hammer;
7471         struct trace_buffer *buffer;
7472         int cpu;
7473         int ret = 0;
7474
7475         if (security_locked_down(LOCKDOWN_TRACEFS)) {
7476                 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
7477                 return 0;
7478         }
7479
7480         pr_info("Running ring buffer tests...\n");
7481
7482         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
7483         if (WARN_ON(!buffer))
7484                 return 0;
7485
7486         /* Disable buffer so that threads can't write to it yet */
7487         ring_buffer_record_off(buffer);
7488
7489         for_each_online_cpu(cpu) {
7490                 rb_data[cpu].buffer = buffer;
7491                 rb_data[cpu].cpu = cpu;
7492                 rb_data[cpu].cnt = cpu;
7493                 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
7494                                                      cpu, "rbtester/%u");
7495                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
7496                         pr_cont("FAILED\n");
7497                         ret = PTR_ERR(rb_threads[cpu]);
7498                         goto out_free;
7499                 }
7500         }
7501
7502         /* Now create the rb hammer! */
7503         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
7504         if (WARN_ON(IS_ERR(rb_hammer))) {
7505                 pr_cont("FAILED\n");
7506                 ret = PTR_ERR(rb_hammer);
7507                 goto out_free;
7508         }
7509
7510         ring_buffer_record_on(buffer);
7511         /*
7512          * Show buffer is enabled before setting rb_test_started.
7513          * Yes there's a small race window where events could be
7514          * dropped and the thread wont catch it. But when a ring
7515          * buffer gets enabled, there will always be some kind of
7516          * delay before other CPUs see it. Thus, we don't care about
7517          * those dropped events. We care about events dropped after
7518          * the threads see that the buffer is active.
7519          */
7520         smp_wmb();
7521         rb_test_started = true;
7522
7523         set_current_state(TASK_INTERRUPTIBLE);
7524         /* Just run for 10 seconds */;
7525         schedule_timeout(10 * HZ);
7526
7527         kthread_stop(rb_hammer);
7528
7529  out_free:
7530         for_each_online_cpu(cpu) {
7531                 if (!rb_threads[cpu])
7532                         break;
7533                 kthread_stop(rb_threads[cpu]);
7534         }
7535         if (ret) {
7536                 ring_buffer_free(buffer);
7537                 return ret;
7538         }
7539
7540         /* Report! */
7541         pr_info("finished\n");
7542         for_each_online_cpu(cpu) {
7543                 struct ring_buffer_event *event;
7544                 struct rb_test_data *data = &rb_data[cpu];
7545                 struct rb_item *item;
7546                 unsigned long total_events;
7547                 unsigned long total_dropped;
7548                 unsigned long total_written;
7549                 unsigned long total_alloc;
7550                 unsigned long total_read = 0;
7551                 unsigned long total_size = 0;
7552                 unsigned long total_len = 0;
7553                 unsigned long total_lost = 0;
7554                 unsigned long lost;
7555                 int big_event_size;
7556                 int small_event_size;
7557
7558                 ret = -1;
7559
7560                 total_events = data->events + data->events_nested;
7561                 total_written = data->bytes_written + data->bytes_written_nested;
7562                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
7563                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
7564
7565                 big_event_size = data->max_size + data->max_size_nested;
7566                 small_event_size = data->min_size + data->min_size_nested;
7567
7568                 pr_info("CPU %d:\n", cpu);
7569                 pr_info("              events:    %ld\n", total_events);
7570                 pr_info("       dropped bytes:    %ld\n", total_dropped);
7571                 pr_info("       alloced bytes:    %ld\n", total_alloc);
7572                 pr_info("       written bytes:    %ld\n", total_written);
7573                 pr_info("       biggest event:    %d\n", big_event_size);
7574                 pr_info("      smallest event:    %d\n", small_event_size);
7575
7576                 if (RB_WARN_ON(buffer, total_dropped))
7577                         break;
7578
7579                 ret = 0;
7580
7581                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
7582                         total_lost += lost;
7583                         item = ring_buffer_event_data(event);
7584                         total_len += ring_buffer_event_length(event);
7585                         total_size += item->size + sizeof(struct rb_item);
7586                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
7587                                 pr_info("FAILED!\n");
7588                                 pr_info("buffer had: %.*s\n", item->size, item->str);
7589                                 pr_info("expected:   %.*s\n", item->size, rb_string);
7590                                 RB_WARN_ON(buffer, 1);
7591                                 ret = -1;
7592                                 break;
7593                         }
7594                         total_read++;
7595                 }
7596                 if (ret)
7597                         break;
7598
7599                 ret = -1;
7600
7601                 pr_info("         read events:   %ld\n", total_read);
7602                 pr_info("         lost events:   %ld\n", total_lost);
7603                 pr_info("        total events:   %ld\n", total_lost + total_read);
7604                 pr_info("  recorded len bytes:   %ld\n", total_len);
7605                 pr_info(" recorded size bytes:   %ld\n", total_size);
7606                 if (total_lost) {
7607                         pr_info(" With dropped events, record len and size may not match\n"
7608                                 " alloced and written from above\n");
7609                 } else {
7610                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
7611                                        total_size != total_written))
7612                                 break;
7613                 }
7614                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
7615                         break;
7616
7617                 ret = 0;
7618         }
7619         if (!ret)
7620                 pr_info("Ring buffer PASSED!\n");
7621
7622         ring_buffer_free(buffer);
7623         return 0;
7624 }
7625
7626 late_initcall(test_ringbuffer);
7627 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
This page took 0.466305 seconds and 4 git commands to generate.