1 // SPDX-License-Identifier: GPL-2.0
3 * Scheduler topology setup/handling methods
6 #include <linux/bsearch.h>
8 DEFINE_MUTEX(sched_domains_mutex);
10 /* Protected by sched_domains_mutex: */
11 static cpumask_var_t sched_domains_tmpmask;
12 static cpumask_var_t sched_domains_tmpmask2;
14 #ifdef CONFIG_SCHED_DEBUG
16 static int __init sched_debug_setup(char *str)
18 sched_debug_verbose = true;
22 early_param("sched_verbose", sched_debug_setup);
24 static inline bool sched_debug(void)
26 return sched_debug_verbose;
29 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
30 const struct sd_flag_debug sd_flag_debug[] = {
31 #include <linux/sched/sd_flags.h>
35 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
36 struct cpumask *groupmask)
38 struct sched_group *group = sd->groups;
39 unsigned long flags = sd->flags;
42 cpumask_clear(groupmask);
44 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
45 printk(KERN_CONT "span=%*pbl level=%s\n",
46 cpumask_pr_args(sched_domain_span(sd)), sd->name);
48 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
49 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
51 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
52 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
55 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
56 unsigned int flag = BIT(idx);
57 unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
59 if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
60 !(sd->child->flags & flag))
61 printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
62 sd_flag_debug[idx].name);
64 if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
65 !(sd->parent->flags & flag))
66 printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
67 sd_flag_debug[idx].name);
70 printk(KERN_DEBUG "%*s groups:", level + 1, "");
74 printk(KERN_ERR "ERROR: group is NULL\n");
78 if (cpumask_empty(sched_group_span(group))) {
79 printk(KERN_CONT "\n");
80 printk(KERN_ERR "ERROR: empty group\n");
84 if (!(sd->flags & SD_OVERLAP) &&
85 cpumask_intersects(groupmask, sched_group_span(group))) {
86 printk(KERN_CONT "\n");
87 printk(KERN_ERR "ERROR: repeated CPUs\n");
91 cpumask_or(groupmask, groupmask, sched_group_span(group));
93 printk(KERN_CONT " %d:{ span=%*pbl",
95 cpumask_pr_args(sched_group_span(group)));
97 if ((sd->flags & SD_OVERLAP) &&
98 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
99 printk(KERN_CONT " mask=%*pbl",
100 cpumask_pr_args(group_balance_mask(group)));
103 if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
104 printk(KERN_CONT " cap=%lu", group->sgc->capacity);
106 if (group == sd->groups && sd->child &&
107 !cpumask_equal(sched_domain_span(sd->child),
108 sched_group_span(group))) {
109 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
112 printk(KERN_CONT " }");
116 if (group != sd->groups)
117 printk(KERN_CONT ",");
119 } while (group != sd->groups);
120 printk(KERN_CONT "\n");
122 if (!cpumask_equal(sched_domain_span(sd), groupmask))
123 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
126 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
127 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
131 static void sched_domain_debug(struct sched_domain *sd, int cpu)
135 if (!sched_debug_verbose)
139 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
143 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
146 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
154 #else /* !CONFIG_SCHED_DEBUG */
156 # define sched_debug_verbose 0
157 # define sched_domain_debug(sd, cpu) do { } while (0)
158 static inline bool sched_debug(void)
162 #endif /* CONFIG_SCHED_DEBUG */
164 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
165 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
166 static const unsigned int SD_DEGENERATE_GROUPS_MASK =
167 #include <linux/sched/sd_flags.h>
171 static int sd_degenerate(struct sched_domain *sd)
173 if (cpumask_weight(sched_domain_span(sd)) == 1)
176 /* Following flags need at least 2 groups */
177 if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
178 (sd->groups != sd->groups->next))
181 /* Following flags don't use groups */
182 if (sd->flags & (SD_WAKE_AFFINE))
189 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
191 unsigned long cflags = sd->flags, pflags = parent->flags;
193 if (sd_degenerate(parent))
196 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
199 /* Flags needing groups don't count if only 1 group in parent */
200 if (parent->groups == parent->groups->next)
201 pflags &= ~SD_DEGENERATE_GROUPS_MASK;
203 if (~cflags & pflags)
209 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
210 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
211 static unsigned int sysctl_sched_energy_aware = 1;
212 static DEFINE_MUTEX(sched_energy_mutex);
213 static bool sched_energy_update;
215 static bool sched_is_eas_possible(const struct cpumask *cpu_mask)
217 bool any_asym_capacity = false;
218 struct cpufreq_policy *policy;
219 struct cpufreq_governor *gov;
222 /* EAS is enabled for asymmetric CPU capacity topologies. */
223 for_each_cpu(i, cpu_mask) {
224 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, i))) {
225 any_asym_capacity = true;
229 if (!any_asym_capacity) {
231 pr_info("rd %*pbl: Checking EAS, CPUs do not have asymmetric capacities\n",
232 cpumask_pr_args(cpu_mask));
237 /* EAS definitely does *not* handle SMT */
238 if (sched_smt_active()) {
240 pr_info("rd %*pbl: Checking EAS, SMT is not supported\n",
241 cpumask_pr_args(cpu_mask));
246 if (!arch_scale_freq_invariant()) {
248 pr_info("rd %*pbl: Checking EAS: frequency-invariant load tracking not yet supported",
249 cpumask_pr_args(cpu_mask));
254 /* Do not attempt EAS if schedutil is not being used. */
255 for_each_cpu(i, cpu_mask) {
256 policy = cpufreq_cpu_get(i);
259 pr_info("rd %*pbl: Checking EAS, cpufreq policy not set for CPU: %d",
260 cpumask_pr_args(cpu_mask), i);
264 gov = policy->governor;
265 cpufreq_cpu_put(policy);
266 if (gov != &schedutil_gov) {
268 pr_info("rd %*pbl: Checking EAS, schedutil is mandatory\n",
269 cpumask_pr_args(cpu_mask));
278 void rebuild_sched_domains_energy(void)
280 mutex_lock(&sched_energy_mutex);
281 sched_energy_update = true;
282 rebuild_sched_domains();
283 sched_energy_update = false;
284 mutex_unlock(&sched_energy_mutex);
287 #ifdef CONFIG_PROC_SYSCTL
288 static int sched_energy_aware_handler(const struct ctl_table *table, int write,
289 void *buffer, size_t *lenp, loff_t *ppos)
293 if (write && !capable(CAP_SYS_ADMIN))
296 if (!sched_is_eas_possible(cpu_active_mask)) {
305 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
307 state = static_branch_unlikely(&sched_energy_present);
308 if (state != sysctl_sched_energy_aware)
309 rebuild_sched_domains_energy();
315 static const struct ctl_table sched_energy_aware_sysctls[] = {
317 .procname = "sched_energy_aware",
318 .data = &sysctl_sched_energy_aware,
319 .maxlen = sizeof(unsigned int),
321 .proc_handler = sched_energy_aware_handler,
322 .extra1 = SYSCTL_ZERO,
323 .extra2 = SYSCTL_ONE,
327 static int __init sched_energy_aware_sysctl_init(void)
329 register_sysctl_init("kernel", sched_energy_aware_sysctls);
333 late_initcall(sched_energy_aware_sysctl_init);
336 static void free_pd(struct perf_domain *pd)
338 struct perf_domain *tmp;
347 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
350 if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
358 static struct perf_domain *pd_init(int cpu)
360 struct em_perf_domain *obj = em_cpu_get(cpu);
361 struct perf_domain *pd;
365 pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
369 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
377 static void perf_domain_debug(const struct cpumask *cpu_map,
378 struct perf_domain *pd)
380 if (!sched_debug() || !pd)
383 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
386 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
387 cpumask_first(perf_domain_span(pd)),
388 cpumask_pr_args(perf_domain_span(pd)),
389 em_pd_nr_perf_states(pd->em_pd));
393 printk(KERN_CONT "\n");
396 static void destroy_perf_domain_rcu(struct rcu_head *rp)
398 struct perf_domain *pd;
400 pd = container_of(rp, struct perf_domain, rcu);
404 static void sched_energy_set(bool has_eas)
406 if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
408 pr_info("%s: stopping EAS\n", __func__);
409 static_branch_disable_cpuslocked(&sched_energy_present);
410 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
412 pr_info("%s: starting EAS\n", __func__);
413 static_branch_enable_cpuslocked(&sched_energy_present);
418 * EAS can be used on a root domain if it meets all the following conditions:
419 * 1. an Energy Model (EM) is available;
420 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
421 * 3. no SMT is detected.
422 * 4. schedutil is driving the frequency of all CPUs of the rd;
423 * 5. frequency invariance support is present;
425 static bool build_perf_domains(const struct cpumask *cpu_map)
428 struct perf_domain *pd = NULL, *tmp;
429 int cpu = cpumask_first(cpu_map);
430 struct root_domain *rd = cpu_rq(cpu)->rd;
432 if (!sysctl_sched_energy_aware)
435 if (!sched_is_eas_possible(cpu_map))
438 for_each_cpu(i, cpu_map) {
439 /* Skip already covered CPUs. */
443 /* Create the new pd and add it to the local list. */
451 perf_domain_debug(cpu_map, pd);
453 /* Attach the new list of performance domains to the root domain. */
455 rcu_assign_pointer(rd->pd, pd);
457 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
464 rcu_assign_pointer(rd->pd, NULL);
466 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
471 static void free_pd(struct perf_domain *pd) { }
472 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
474 static void free_rootdomain(struct rcu_head *rcu)
476 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
478 cpupri_cleanup(&rd->cpupri);
479 cpudl_cleanup(&rd->cpudl);
480 free_cpumask_var(rd->dlo_mask);
481 free_cpumask_var(rd->rto_mask);
482 free_cpumask_var(rd->online);
483 free_cpumask_var(rd->span);
488 void rq_attach_root(struct rq *rq, struct root_domain *rd)
490 struct root_domain *old_rd = NULL;
493 rq_lock_irqsave(rq, &rf);
498 if (cpumask_test_cpu(rq->cpu, old_rd->online))
501 cpumask_clear_cpu(rq->cpu, old_rd->span);
504 * If we don't want to free the old_rd yet then
505 * set old_rd to NULL to skip the freeing later
508 if (!atomic_dec_and_test(&old_rd->refcount))
512 atomic_inc(&rd->refcount);
515 cpumask_set_cpu(rq->cpu, rd->span);
516 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
520 * Because the rq is not a task, dl_add_task_root_domain() did not
521 * move the fair server bw to the rd if it already started.
524 if (rq->fair_server.dl_server)
525 __dl_server_attach_root(&rq->fair_server, rq);
527 rq_unlock_irqrestore(rq, &rf);
530 call_rcu(&old_rd->rcu, free_rootdomain);
533 void sched_get_rd(struct root_domain *rd)
535 atomic_inc(&rd->refcount);
538 void sched_put_rd(struct root_domain *rd)
540 if (!atomic_dec_and_test(&rd->refcount))
543 call_rcu(&rd->rcu, free_rootdomain);
546 static int init_rootdomain(struct root_domain *rd)
548 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
550 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
552 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
554 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
557 #ifdef HAVE_RT_PUSH_IPI
559 raw_spin_lock_init(&rd->rto_lock);
560 rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
564 init_dl_bw(&rd->dl_bw);
565 if (cpudl_init(&rd->cpudl) != 0)
568 if (cpupri_init(&rd->cpupri) != 0)
573 cpudl_cleanup(&rd->cpudl);
575 free_cpumask_var(rd->rto_mask);
577 free_cpumask_var(rd->dlo_mask);
579 free_cpumask_var(rd->online);
581 free_cpumask_var(rd->span);
587 * By default the system creates a single root-domain with all CPUs as
588 * members (mimicking the global state we have today).
590 struct root_domain def_root_domain;
592 void __init init_defrootdomain(void)
594 init_rootdomain(&def_root_domain);
596 atomic_set(&def_root_domain.refcount, 1);
599 static struct root_domain *alloc_rootdomain(void)
601 struct root_domain *rd;
603 rd = kzalloc(sizeof(*rd), GFP_KERNEL);
607 if (init_rootdomain(rd) != 0) {
615 static void free_sched_groups(struct sched_group *sg, int free_sgc)
617 struct sched_group *tmp, *first;
626 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
629 if (atomic_dec_and_test(&sg->ref))
632 } while (sg != first);
635 static void destroy_sched_domain(struct sched_domain *sd)
638 * A normal sched domain may have multiple group references, an
639 * overlapping domain, having private groups, only one. Iterate,
640 * dropping group/capacity references, freeing where none remain.
642 free_sched_groups(sd->groups, 1);
644 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
649 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
651 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
654 struct sched_domain *parent = sd->parent;
655 destroy_sched_domain(sd);
660 static void destroy_sched_domains(struct sched_domain *sd)
663 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
667 * Keep a special pointer to the highest sched_domain that has SD_SHARE_LLC set
668 * (Last Level Cache Domain) for this allows us to avoid some pointer chasing
669 * select_idle_sibling().
671 * Also keep a unique ID per domain (we use the first CPU number in the cpumask
672 * of the domain), this allows us to quickly tell if two CPUs are in the same
673 * cache domain, see cpus_share_cache().
675 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
676 DEFINE_PER_CPU(int, sd_llc_size);
677 DEFINE_PER_CPU(int, sd_llc_id);
678 DEFINE_PER_CPU(int, sd_share_id);
679 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
680 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
681 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
682 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
684 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
685 DEFINE_STATIC_KEY_FALSE(sched_cluster_active);
687 static void update_top_cache_domain(int cpu)
689 struct sched_domain_shared *sds = NULL;
690 struct sched_domain *sd;
694 sd = highest_flag_domain(cpu, SD_SHARE_LLC);
696 id = cpumask_first(sched_domain_span(sd));
697 size = cpumask_weight(sched_domain_span(sd));
701 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
702 per_cpu(sd_llc_size, cpu) = size;
703 per_cpu(sd_llc_id, cpu) = id;
704 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
706 sd = lowest_flag_domain(cpu, SD_CLUSTER);
708 id = cpumask_first(sched_domain_span(sd));
711 * This assignment should be placed after the sd_llc_id as
712 * we want this id equals to cluster id on cluster machines
713 * but equals to LLC id on non-Cluster machines.
715 per_cpu(sd_share_id, cpu) = id;
717 sd = lowest_flag_domain(cpu, SD_NUMA);
718 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
720 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
721 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
723 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
724 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
728 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
729 * hold the hotplug lock.
732 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
734 struct rq *rq = cpu_rq(cpu);
735 struct sched_domain *tmp;
737 /* Remove the sched domains which do not contribute to scheduling. */
738 for (tmp = sd; tmp; ) {
739 struct sched_domain *parent = tmp->parent;
743 if (sd_parent_degenerate(tmp, parent)) {
744 tmp->parent = parent->parent;
746 if (parent->parent) {
747 parent->parent->child = tmp;
748 parent->parent->groups->flags = tmp->flags;
752 * Transfer SD_PREFER_SIBLING down in case of a
753 * degenerate parent; the spans match for this
754 * so the property transfers.
756 if (parent->flags & SD_PREFER_SIBLING)
757 tmp->flags |= SD_PREFER_SIBLING;
758 destroy_sched_domain(parent);
763 if (sd && sd_degenerate(sd)) {
766 destroy_sched_domain(tmp);
768 struct sched_group *sg = sd->groups;
771 * sched groups hold the flags of the child sched
772 * domain for convenience. Clear such flags since
773 * the child is being destroyed.
777 } while (sg != sd->groups);
783 sched_domain_debug(sd, cpu);
785 rq_attach_root(rq, rd);
787 rcu_assign_pointer(rq->sd, sd);
788 dirty_sched_domain_sysctl(cpu);
789 destroy_sched_domains(tmp);
791 update_top_cache_domain(cpu);
795 struct sched_domain * __percpu *sd;
796 struct root_domain *rd;
807 * Return the canonical balance CPU for this group, this is the first CPU
808 * of this group that's also in the balance mask.
810 * The balance mask are all those CPUs that could actually end up at this
811 * group. See build_balance_mask().
813 * Also see should_we_balance().
815 int group_balance_cpu(struct sched_group *sg)
817 return cpumask_first(group_balance_mask(sg));
822 * NUMA topology (first read the regular topology blurb below)
824 * Given a node-distance table, for example:
832 * which represents a 4 node ring topology like:
840 * We want to construct domains and groups to represent this. The way we go
841 * about doing this is to build the domains on 'hops'. For each NUMA level we
842 * construct the mask of all nodes reachable in @level hops.
844 * For the above NUMA topology that gives 3 levels:
846 * NUMA-2 0-3 0-3 0-3 0-3
847 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
849 * NUMA-1 0-1,3 0-2 1-3 0,2-3
850 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
855 * As can be seen; things don't nicely line up as with the regular topology.
856 * When we iterate a domain in child domain chunks some nodes can be
857 * represented multiple times -- hence the "overlap" naming for this part of
860 * In order to minimize this overlap, we only build enough groups to cover the
861 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
865 * - the first group of each domain is its child domain; this
866 * gets us the first 0-1,3
867 * - the only uncovered node is 2, who's child domain is 1-3.
869 * However, because of the overlap, computing a unique CPU for each group is
870 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
871 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
872 * end up at those groups (they would end up in group: 0-1,3).
874 * To correct this we have to introduce the group balance mask. This mask
875 * will contain those CPUs in the group that can reach this group given the
876 * (child) domain tree.
878 * With this we can once again compute balance_cpu and sched_group_capacity
881 * XXX include words on how balance_cpu is unique and therefore can be
882 * used for sched_group_capacity links.
885 * Another 'interesting' topology is:
893 * Which looks a little like:
901 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
904 * This leads to a few particularly weird cases where the sched_domain's are
905 * not of the same number for each CPU. Consider:
908 * groups: {0-2},{1-3} {1-3},{0-2}
910 * NUMA-1 0-2 0-3 0-3 1-3
918 * Build the balance mask; it contains only those CPUs that can arrive at this
919 * group and should be considered to continue balancing.
921 * We do this during the group creation pass, therefore the group information
922 * isn't complete yet, however since each group represents a (child) domain we
923 * can fully construct this using the sched_domain bits (which are already
927 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
929 const struct cpumask *sg_span = sched_group_span(sg);
930 struct sd_data *sdd = sd->private;
931 struct sched_domain *sibling;
936 for_each_cpu(i, sg_span) {
937 sibling = *per_cpu_ptr(sdd->sd, i);
940 * Can happen in the asymmetric case, where these siblings are
941 * unused. The mask will not be empty because those CPUs that
942 * do have the top domain _should_ span the domain.
947 /* If we would not end up here, we can't continue from here */
948 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
951 cpumask_set_cpu(i, mask);
954 /* We must not have empty masks here */
955 WARN_ON_ONCE(cpumask_empty(mask));
959 * XXX: This creates per-node group entries; since the load-balancer will
960 * immediately access remote memory to construct this group's load-balance
961 * statistics having the groups node local is of dubious benefit.
963 static struct sched_group *
964 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
966 struct sched_group *sg;
967 struct cpumask *sg_span;
969 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
970 GFP_KERNEL, cpu_to_node(cpu));
975 sg_span = sched_group_span(sg);
977 cpumask_copy(sg_span, sched_domain_span(sd->child));
978 sg->flags = sd->child->flags;
980 cpumask_copy(sg_span, sched_domain_span(sd));
983 atomic_inc(&sg->ref);
987 static void init_overlap_sched_group(struct sched_domain *sd,
988 struct sched_group *sg)
990 struct cpumask *mask = sched_domains_tmpmask2;
991 struct sd_data *sdd = sd->private;
992 struct cpumask *sg_span;
995 build_balance_mask(sd, sg, mask);
996 cpu = cpumask_first(mask);
998 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
999 if (atomic_inc_return(&sg->sgc->ref) == 1)
1000 cpumask_copy(group_balance_mask(sg), mask);
1002 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
1005 * Initialize sgc->capacity such that even if we mess up the
1006 * domains and no possible iteration will get us here, we won't
1009 sg_span = sched_group_span(sg);
1010 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
1011 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1012 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1015 static struct sched_domain *
1016 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
1019 * The proper descendant would be the one whose child won't span out
1022 while (sibling->child &&
1023 !cpumask_subset(sched_domain_span(sibling->child),
1024 sched_domain_span(sd)))
1025 sibling = sibling->child;
1028 * As we are referencing sgc across different topology level, we need
1029 * to go down to skip those sched_domains which don't contribute to
1030 * scheduling because they will be degenerated in cpu_attach_domain
1032 while (sibling->child &&
1033 cpumask_equal(sched_domain_span(sibling->child),
1034 sched_domain_span(sibling)))
1035 sibling = sibling->child;
1041 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1043 struct sched_group *first = NULL, *last = NULL, *sg;
1044 const struct cpumask *span = sched_domain_span(sd);
1045 struct cpumask *covered = sched_domains_tmpmask;
1046 struct sd_data *sdd = sd->private;
1047 struct sched_domain *sibling;
1050 cpumask_clear(covered);
1052 for_each_cpu_wrap(i, span, cpu) {
1053 struct cpumask *sg_span;
1055 if (cpumask_test_cpu(i, covered))
1058 sibling = *per_cpu_ptr(sdd->sd, i);
1061 * Asymmetric node setups can result in situations where the
1062 * domain tree is of unequal depth, make sure to skip domains
1063 * that already cover the entire range.
1065 * In that case build_sched_domains() will have terminated the
1066 * iteration early and our sibling sd spans will be empty.
1067 * Domains should always include the CPU they're built on, so
1070 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1074 * Usually we build sched_group by sibling's child sched_domain
1075 * But for machines whose NUMA diameter are 3 or above, we move
1076 * to build sched_group by sibling's proper descendant's child
1077 * domain because sibling's child sched_domain will span out of
1078 * the sched_domain being built as below.
1080 * Smallest diameter=3 topology is:
1088 * 0 --- 1 --- 2 --- 3
1090 * NUMA-3 0-3 N/A N/A 0-3
1091 * groups: {0-2},{1-3} {1-3},{0-2}
1093 * NUMA-2 0-2 0-3 0-3 1-3
1094 * groups: {0-1},{1-3} {0-2},{2-3} {1-3},{0-1} {2-3},{0-2}
1096 * NUMA-1 0-1 0-2 1-3 2-3
1097 * groups: {0},{1} {1},{2},{0} {2},{3},{1} {3},{2}
1101 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1102 * group span isn't a subset of the domain span.
1104 if (sibling->child &&
1105 !cpumask_subset(sched_domain_span(sibling->child), span))
1106 sibling = find_descended_sibling(sd, sibling);
1108 sg = build_group_from_child_sched_domain(sibling, cpu);
1112 sg_span = sched_group_span(sg);
1113 cpumask_or(covered, covered, sg_span);
1115 init_overlap_sched_group(sibling, sg);
1129 free_sched_groups(first, 0);
1136 * Package topology (also see the load-balance blurb in fair.c)
1138 * The scheduler builds a tree structure to represent a number of important
1139 * topology features. By default (default_topology[]) these include:
1141 * - Simultaneous multithreading (SMT)
1142 * - Multi-Core Cache (MC)
1145 * Where the last one more or less denotes everything up to a NUMA node.
1147 * The tree consists of 3 primary data structures:
1149 * sched_domain -> sched_group -> sched_group_capacity
1153 * The sched_domains are per-CPU and have a two way link (parent & child) and
1154 * denote the ever growing mask of CPUs belonging to that level of topology.
1156 * Each sched_domain has a circular (double) linked list of sched_group's, each
1157 * denoting the domains of the level below (or individual CPUs in case of the
1158 * first domain level). The sched_group linked by a sched_domain includes the
1159 * CPU of that sched_domain [*].
1161 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1163 * CPU 0 1 2 3 4 5 6 7
1167 * SMT [ ] [ ] [ ] [ ]
1171 * PKG 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1172 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1173 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1175 * CPU 0 1 2 3 4 5 6 7
1177 * One way to think about it is: sched_domain moves you up and down among these
1178 * topology levels, while sched_group moves you sideways through it, at child
1179 * domain granularity.
1181 * sched_group_capacity ensures each unique sched_group has shared storage.
1183 * There are two related construction problems, both require a CPU that
1184 * uniquely identify each group (for a given domain):
1186 * - The first is the balance_cpu (see should_we_balance() and the
1187 * load-balance blurb in fair.c); for each group we only want 1 CPU to
1188 * continue balancing at a higher domain.
1190 * - The second is the sched_group_capacity; we want all identical groups
1191 * to share a single sched_group_capacity.
1193 * Since these topologies are exclusive by construction. That is, its
1194 * impossible for an SMT thread to belong to multiple cores, and cores to
1195 * be part of multiple caches. There is a very clear and unique location
1196 * for each CPU in the hierarchy.
1198 * Therefore computing a unique CPU for each group is trivial (the iteration
1199 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1200 * group), we can simply pick the first CPU in each group.
1203 * [*] in other words, the first group of each domain is its child domain.
1206 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1208 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1209 struct sched_domain *child = sd->child;
1210 struct sched_group *sg;
1211 bool already_visited;
1214 cpu = cpumask_first(sched_domain_span(child));
1216 sg = *per_cpu_ptr(sdd->sg, cpu);
1217 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1219 /* Increase refcounts for claim_allocations: */
1220 already_visited = atomic_inc_return(&sg->ref) > 1;
1221 /* sgc visits should follow a similar trend as sg */
1222 WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1224 /* If we have already visited that group, it's already initialized. */
1225 if (already_visited)
1229 cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1230 cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1231 sg->flags = child->flags;
1233 cpumask_set_cpu(cpu, sched_group_span(sg));
1234 cpumask_set_cpu(cpu, group_balance_mask(sg));
1237 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1238 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1239 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1245 * build_sched_groups will build a circular linked list of the groups
1246 * covered by the given span, will set each group's ->cpumask correctly,
1247 * and will initialize their ->sgc.
1249 * Assumes the sched_domain tree is fully constructed
1252 build_sched_groups(struct sched_domain *sd, int cpu)
1254 struct sched_group *first = NULL, *last = NULL;
1255 struct sd_data *sdd = sd->private;
1256 const struct cpumask *span = sched_domain_span(sd);
1257 struct cpumask *covered;
1260 lockdep_assert_held(&sched_domains_mutex);
1261 covered = sched_domains_tmpmask;
1263 cpumask_clear(covered);
1265 for_each_cpu_wrap(i, span, cpu) {
1266 struct sched_group *sg;
1268 if (cpumask_test_cpu(i, covered))
1271 sg = get_group(i, sdd);
1273 cpumask_or(covered, covered, sched_group_span(sg));
1288 * Initialize sched groups cpu_capacity.
1290 * cpu_capacity indicates the capacity of sched group, which is used while
1291 * distributing the load between different sched groups in a sched domain.
1292 * Typically cpu_capacity for all the groups in a sched domain will be same
1293 * unless there are asymmetries in the topology. If there are asymmetries,
1294 * group having more cpu_capacity will pickup more load compared to the
1295 * group having less cpu_capacity.
1297 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1299 struct sched_group *sg = sd->groups;
1300 struct cpumask *mask = sched_domains_tmpmask2;
1305 int cpu, cores = 0, max_cpu = -1;
1307 sg->group_weight = cpumask_weight(sched_group_span(sg));
1309 cpumask_copy(mask, sched_group_span(sg));
1310 for_each_cpu(cpu, mask) {
1312 #ifdef CONFIG_SCHED_SMT
1313 cpumask_andnot(mask, mask, cpu_smt_mask(cpu));
1318 if (!(sd->flags & SD_ASYM_PACKING))
1321 for_each_cpu(cpu, sched_group_span(sg)) {
1324 else if (sched_asym_prefer(cpu, max_cpu))
1327 sg->asym_prefer_cpu = max_cpu;
1331 } while (sg != sd->groups);
1333 if (cpu != group_balance_cpu(sg))
1336 update_group_capacity(sd, cpu);
1340 * Set of available CPUs grouped by their corresponding capacities
1341 * Each list entry contains a CPU mask reflecting CPUs that share the same
1343 * The lifespan of data is unlimited.
1345 LIST_HEAD(asym_cap_list);
1348 * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1349 * Provides sd_flags reflecting the asymmetry scope.
1352 asym_cpu_capacity_classify(const struct cpumask *sd_span,
1353 const struct cpumask *cpu_map)
1355 struct asym_cap_data *entry;
1356 int count = 0, miss = 0;
1359 * Count how many unique CPU capacities this domain spans across
1360 * (compare sched_domain CPUs mask with ones representing available
1361 * CPUs capacities). Take into account CPUs that might be offline:
1364 list_for_each_entry(entry, &asym_cap_list, link) {
1365 if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1367 else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1371 WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1373 /* No asymmetry detected */
1376 /* Some of the available CPU capacity values have not been detected */
1378 return SD_ASYM_CPUCAPACITY;
1380 /* Full asymmetry */
1381 return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1385 static void free_asym_cap_entry(struct rcu_head *head)
1387 struct asym_cap_data *entry = container_of(head, struct asym_cap_data, rcu);
1391 static inline void asym_cpu_capacity_update_data(int cpu)
1393 unsigned long capacity = arch_scale_cpu_capacity(cpu);
1394 struct asym_cap_data *insert_entry = NULL;
1395 struct asym_cap_data *entry;
1398 * Search if capacity already exits. If not, track which the entry
1399 * where we should insert to keep the list ordered descending.
1401 list_for_each_entry(entry, &asym_cap_list, link) {
1402 if (capacity == entry->capacity)
1404 else if (!insert_entry && capacity > entry->capacity)
1405 insert_entry = list_prev_entry(entry, link);
1408 entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1409 if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1411 entry->capacity = capacity;
1413 /* If NULL then the new capacity is the smallest, add last. */
1415 list_add_tail_rcu(&entry->link, &asym_cap_list);
1417 list_add_rcu(&entry->link, &insert_entry->link);
1419 __cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1423 * Build-up/update list of CPUs grouped by their capacities
1424 * An update requires explicit request to rebuild sched domains
1425 * with state indicating CPU topology changes.
1427 static void asym_cpu_capacity_scan(void)
1429 struct asym_cap_data *entry, *next;
1432 list_for_each_entry(entry, &asym_cap_list, link)
1433 cpumask_clear(cpu_capacity_span(entry));
1435 for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1436 asym_cpu_capacity_update_data(cpu);
1438 list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1439 if (cpumask_empty(cpu_capacity_span(entry))) {
1440 list_del_rcu(&entry->link);
1441 call_rcu(&entry->rcu, free_asym_cap_entry);
1446 * Only one capacity value has been detected i.e. this system is symmetric.
1447 * No need to keep this data around.
1449 if (list_is_singular(&asym_cap_list)) {
1450 entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1451 list_del_rcu(&entry->link);
1452 call_rcu(&entry->rcu, free_asym_cap_entry);
1457 * Initializers for schedule domains
1458 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1461 static int default_relax_domain_level = -1;
1462 int sched_domain_level_max;
1464 static int __init setup_relax_domain_level(char *str)
1466 if (kstrtoint(str, 0, &default_relax_domain_level))
1467 pr_warn("Unable to set relax_domain_level\n");
1471 __setup("relax_domain_level=", setup_relax_domain_level);
1473 static void set_domain_attribute(struct sched_domain *sd,
1474 struct sched_domain_attr *attr)
1478 if (!attr || attr->relax_domain_level < 0) {
1479 if (default_relax_domain_level < 0)
1481 request = default_relax_domain_level;
1483 request = attr->relax_domain_level;
1485 if (sd->level >= request) {
1486 /* Turn off idle balance on this domain: */
1487 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1491 static void __sdt_free(const struct cpumask *cpu_map);
1492 static int __sdt_alloc(const struct cpumask *cpu_map);
1494 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1495 const struct cpumask *cpu_map)
1499 if (!atomic_read(&d->rd->refcount))
1500 free_rootdomain(&d->rd->rcu);
1506 __sdt_free(cpu_map);
1514 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1516 memset(d, 0, sizeof(*d));
1518 if (__sdt_alloc(cpu_map))
1519 return sa_sd_storage;
1520 d->sd = alloc_percpu(struct sched_domain *);
1522 return sa_sd_storage;
1523 d->rd = alloc_rootdomain();
1527 return sa_rootdomain;
1531 * NULL the sd_data elements we've used to build the sched_domain and
1532 * sched_group structure so that the subsequent __free_domain_allocs()
1533 * will not free the data we're using.
1535 static void claim_allocations(int cpu, struct sched_domain *sd)
1537 struct sd_data *sdd = sd->private;
1539 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1540 *per_cpu_ptr(sdd->sd, cpu) = NULL;
1542 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1543 *per_cpu_ptr(sdd->sds, cpu) = NULL;
1545 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1546 *per_cpu_ptr(sdd->sg, cpu) = NULL;
1548 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1549 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1553 enum numa_topology_type sched_numa_topology_type;
1555 static int sched_domains_numa_levels;
1556 static int sched_domains_curr_level;
1558 int sched_max_numa_distance;
1559 static int *sched_domains_numa_distance;
1560 static struct cpumask ***sched_domains_numa_masks;
1564 * SD_flags allowed in topology descriptions.
1566 * These flags are purely descriptive of the topology and do not prescribe
1567 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1568 * function. For details, see include/linux/sched/sd_flags.h.
1570 * SD_SHARE_CPUCAPACITY
1575 * Odd one out, which beside describing the topology has a quirk also
1576 * prescribes the desired behaviour that goes along with it:
1578 * SD_ASYM_PACKING - describes SMT quirks
1580 #define TOPOLOGY_SD_FLAGS \
1581 (SD_SHARE_CPUCAPACITY | \
1587 static struct sched_domain *
1588 sd_init(struct sched_domain_topology_level *tl,
1589 const struct cpumask *cpu_map,
1590 struct sched_domain *child, int cpu)
1592 struct sd_data *sdd = &tl->data;
1593 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1594 int sd_id, sd_weight, sd_flags = 0;
1595 struct cpumask *sd_span;
1599 * Ugly hack to pass state to sd_numa_mask()...
1601 sched_domains_curr_level = tl->numa_level;
1604 sd_weight = cpumask_weight(tl->mask(cpu));
1607 sd_flags = (*tl->sd_flags)();
1608 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1609 "wrong sd_flags in topology description\n"))
1610 sd_flags &= TOPOLOGY_SD_FLAGS;
1612 *sd = (struct sched_domain){
1613 .min_interval = sd_weight,
1614 .max_interval = 2*sd_weight,
1616 .imbalance_pct = 117,
1618 .cache_nice_tries = 0,
1620 .flags = 1*SD_BALANCE_NEWIDLE
1625 | 0*SD_SHARE_CPUCAPACITY
1628 | 1*SD_PREFER_SIBLING
1633 .last_balance = jiffies,
1634 .balance_interval = sd_weight,
1635 .max_newidle_lb_cost = 0,
1636 .last_decay_max_lb_cost = jiffies,
1641 sd_span = sched_domain_span(sd);
1642 cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1643 sd_id = cpumask_first(sd_span);
1645 sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1647 WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1648 (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1649 "CPU capacity asymmetry not supported on SMT\n");
1652 * Convert topological properties into behaviour.
1654 /* Don't attempt to spread across CPUs of different capacities. */
1655 if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1656 sd->child->flags &= ~SD_PREFER_SIBLING;
1658 if (sd->flags & SD_SHARE_CPUCAPACITY) {
1659 sd->imbalance_pct = 110;
1661 } else if (sd->flags & SD_SHARE_LLC) {
1662 sd->imbalance_pct = 117;
1663 sd->cache_nice_tries = 1;
1666 } else if (sd->flags & SD_NUMA) {
1667 sd->cache_nice_tries = 2;
1669 sd->flags &= ~SD_PREFER_SIBLING;
1670 sd->flags |= SD_SERIALIZE;
1671 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1672 sd->flags &= ~(SD_BALANCE_EXEC |
1679 sd->cache_nice_tries = 1;
1683 * For all levels sharing cache; connect a sched_domain_shared
1686 if (sd->flags & SD_SHARE_LLC) {
1687 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1688 atomic_inc(&sd->shared->ref);
1689 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1698 * Topology list, bottom-up.
1700 static struct sched_domain_topology_level default_topology[] = {
1701 #ifdef CONFIG_SCHED_SMT
1702 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1705 #ifdef CONFIG_SCHED_CLUSTER
1706 { cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
1709 #ifdef CONFIG_SCHED_MC
1710 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1712 { cpu_cpu_mask, SD_INIT_NAME(PKG) },
1716 static struct sched_domain_topology_level *sched_domain_topology =
1718 static struct sched_domain_topology_level *sched_domain_topology_saved;
1720 #define for_each_sd_topology(tl) \
1721 for (tl = sched_domain_topology; tl->mask; tl++)
1723 void __init set_sched_topology(struct sched_domain_topology_level *tl)
1725 if (WARN_ON_ONCE(sched_smp_initialized))
1728 sched_domain_topology = tl;
1729 sched_domain_topology_saved = NULL;
1734 static const struct cpumask *sd_numa_mask(int cpu)
1736 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1739 static void sched_numa_warn(const char *str)
1741 static int done = false;
1749 printk(KERN_WARNING "ERROR: %s\n\n", str);
1751 for (i = 0; i < nr_node_ids; i++) {
1752 printk(KERN_WARNING " ");
1753 for (j = 0; j < nr_node_ids; j++) {
1754 if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
1755 printk(KERN_CONT "(%02d) ", node_distance(i,j));
1757 printk(KERN_CONT " %02d ", node_distance(i,j));
1759 printk(KERN_CONT "\n");
1761 printk(KERN_WARNING "\n");
1764 bool find_numa_distance(int distance)
1769 if (distance == node_distance(0, 0))
1773 distances = rcu_dereference(sched_domains_numa_distance);
1776 for (i = 0; i < sched_domains_numa_levels; i++) {
1777 if (distances[i] == distance) {
1788 #define for_each_cpu_node_but(n, nbut) \
1789 for_each_node_state(n, N_CPU) \
1795 * A system can have three types of NUMA topology:
1796 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1797 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1798 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1800 * The difference between a glueless mesh topology and a backplane
1801 * topology lies in whether communication between not directly
1802 * connected nodes goes through intermediary nodes (where programs
1803 * could run), or through backplane controllers. This affects
1804 * placement of programs.
1806 * The type of topology can be discerned with the following tests:
1807 * - If the maximum distance between any nodes is 1 hop, the system
1808 * is directly connected.
1809 * - If for two nodes A and B, located N > 1 hops away from each other,
1810 * there is an intermediary node C, which is < N hops away from both
1811 * nodes A and B, the system is a glueless mesh.
1813 static void init_numa_topology_type(int offline_node)
1817 n = sched_max_numa_distance;
1819 if (sched_domains_numa_levels <= 2) {
1820 sched_numa_topology_type = NUMA_DIRECT;
1824 for_each_cpu_node_but(a, offline_node) {
1825 for_each_cpu_node_but(b, offline_node) {
1826 /* Find two nodes furthest removed from each other. */
1827 if (node_distance(a, b) < n)
1830 /* Is there an intermediary node between a and b? */
1831 for_each_cpu_node_but(c, offline_node) {
1832 if (node_distance(a, c) < n &&
1833 node_distance(b, c) < n) {
1834 sched_numa_topology_type =
1840 sched_numa_topology_type = NUMA_BACKPLANE;
1845 pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
1846 sched_numa_topology_type = NUMA_DIRECT;
1850 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1852 void sched_init_numa(int offline_node)
1854 struct sched_domain_topology_level *tl;
1855 unsigned long *distance_map;
1859 struct cpumask ***masks;
1862 * O(nr_nodes^2) de-duplicating selection sort -- in order to find the
1863 * unique distances in the node_distance() table.
1865 distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1869 bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1870 for_each_cpu_node_but(i, offline_node) {
1871 for_each_cpu_node_but(j, offline_node) {
1872 int distance = node_distance(i, j);
1874 if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1875 sched_numa_warn("Invalid distance value range");
1876 bitmap_free(distance_map);
1880 bitmap_set(distance_map, distance, 1);
1884 * We can now figure out how many unique distance values there are and
1885 * allocate memory accordingly.
1887 nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1889 distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1891 bitmap_free(distance_map);
1895 for (i = 0, j = 0; i < nr_levels; i++, j++) {
1896 j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1899 rcu_assign_pointer(sched_domains_numa_distance, distances);
1901 bitmap_free(distance_map);
1904 * 'nr_levels' contains the number of unique distances
1906 * The sched_domains_numa_distance[] array includes the actual distance
1911 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1912 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1913 * the array will contain less then 'nr_levels' members. This could be
1914 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1915 * in other functions.
1917 * We reset it to 'nr_levels' at the end of this function.
1919 sched_domains_numa_levels = 0;
1921 masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1926 * Now for each level, construct a mask per node which contains all
1927 * CPUs of nodes that are that many hops away from us.
1929 for (i = 0; i < nr_levels; i++) {
1930 masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1934 for_each_cpu_node_but(j, offline_node) {
1935 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1943 for_each_cpu_node_but(k, offline_node) {
1944 if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1945 sched_numa_warn("Node-distance not symmetric");
1947 if (node_distance(j, k) > sched_domains_numa_distance[i])
1950 cpumask_or(mask, mask, cpumask_of_node(k));
1954 rcu_assign_pointer(sched_domains_numa_masks, masks);
1956 /* Compute default topology size */
1957 for (i = 0; sched_domain_topology[i].mask; i++);
1959 tl = kzalloc((i + nr_levels + 1) *
1960 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1965 * Copy the default topology bits..
1967 for (i = 0; sched_domain_topology[i].mask; i++)
1968 tl[i] = sched_domain_topology[i];
1971 * Add the NUMA identity distance, aka single NODE.
1973 tl[i++] = (struct sched_domain_topology_level){
1974 .mask = sd_numa_mask,
1980 * .. and append 'j' levels of NUMA goodness.
1982 for (j = 1; j < nr_levels; i++, j++) {
1983 tl[i] = (struct sched_domain_topology_level){
1984 .mask = sd_numa_mask,
1985 .sd_flags = cpu_numa_flags,
1986 .flags = SDTL_OVERLAP,
1992 sched_domain_topology_saved = sched_domain_topology;
1993 sched_domain_topology = tl;
1995 sched_domains_numa_levels = nr_levels;
1996 WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
1998 init_numa_topology_type(offline_node);
2002 static void sched_reset_numa(void)
2004 int nr_levels, *distances;
2005 struct cpumask ***masks;
2007 nr_levels = sched_domains_numa_levels;
2008 sched_domains_numa_levels = 0;
2009 sched_max_numa_distance = 0;
2010 sched_numa_topology_type = NUMA_DIRECT;
2011 distances = sched_domains_numa_distance;
2012 rcu_assign_pointer(sched_domains_numa_distance, NULL);
2013 masks = sched_domains_numa_masks;
2014 rcu_assign_pointer(sched_domains_numa_masks, NULL);
2015 if (distances || masks) {
2020 for (i = 0; i < nr_levels && masks; i++) {
2029 if (sched_domain_topology_saved) {
2030 kfree(sched_domain_topology);
2031 sched_domain_topology = sched_domain_topology_saved;
2032 sched_domain_topology_saved = NULL;
2037 * Call with hotplug lock held
2039 void sched_update_numa(int cpu, bool online)
2043 node = cpu_to_node(cpu);
2045 * Scheduler NUMA topology is updated when the first CPU of a
2046 * node is onlined or the last CPU of a node is offlined.
2048 if (cpumask_weight(cpumask_of_node(node)) != 1)
2052 sched_init_numa(online ? NUMA_NO_NODE : node);
2055 void sched_domains_numa_masks_set(unsigned int cpu)
2057 int node = cpu_to_node(cpu);
2060 for (i = 0; i < sched_domains_numa_levels; i++) {
2061 for (j = 0; j < nr_node_ids; j++) {
2062 if (!node_state(j, N_CPU))
2065 /* Set ourselves in the remote node's masks */
2066 if (node_distance(j, node) <= sched_domains_numa_distance[i])
2067 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2072 void sched_domains_numa_masks_clear(unsigned int cpu)
2076 for (i = 0; i < sched_domains_numa_levels; i++) {
2077 for (j = 0; j < nr_node_ids; j++) {
2078 if (sched_domains_numa_masks[i][j])
2079 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2085 * sched_numa_find_closest() - given the NUMA topology, find the cpu
2086 * closest to @cpu from @cpumask.
2087 * cpumask: cpumask to find a cpu from
2088 * cpu: cpu to be close to
2090 * returns: cpu, or nr_cpu_ids when nothing found.
2092 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2094 int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
2095 struct cpumask ***masks;
2098 masks = rcu_dereference(sched_domains_numa_masks);
2101 for (i = 0; i < sched_domains_numa_levels; i++) {
2104 cpu = cpumask_any_and(cpus, masks[i][j]);
2105 if (cpu < nr_cpu_ids) {
2117 const struct cpumask *cpus;
2118 struct cpumask ***masks;
2124 static int hop_cmp(const void *a, const void *b)
2126 struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b;
2127 struct __cmp_key *k = (struct __cmp_key *)a;
2129 if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu)
2132 if (b == k->masks) {
2137 prev_hop = *((struct cpumask ***)b - 1);
2138 k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]);
2146 * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth closest CPU
2147 * from @cpus to @cpu, taking into account distance
2148 * from a given @node.
2149 * @cpus: cpumask to find a cpu from
2150 * @cpu: CPU to start searching
2151 * @node: NUMA node to order CPUs by distance
2153 * Return: cpu, or nr_cpu_ids when nothing found.
2155 int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node)
2157 struct __cmp_key k = { .cpus = cpus, .cpu = cpu };
2158 struct cpumask ***hop_masks;
2159 int hop, ret = nr_cpu_ids;
2161 if (node == NUMA_NO_NODE)
2162 return cpumask_nth_and(cpu, cpus, cpu_online_mask);
2166 /* CPU-less node entries are uninitialized in sched_domains_numa_masks */
2167 node = numa_nearest_node(node, N_CPU);
2170 k.masks = rcu_dereference(sched_domains_numa_masks);
2174 hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp);
2175 hop = hop_masks - k.masks;
2178 cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) :
2179 cpumask_nth_and(cpu, cpus, k.masks[0][node]);
2184 EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu);
2187 * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from
2189 * @node: The node to count hops from.
2190 * @hops: Include CPUs up to that many hops away. 0 means local node.
2192 * Return: On success, a pointer to a cpumask of CPUs at most @hops away from
2193 * @node, an error value otherwise.
2195 * Requires rcu_lock to be held. Returned cpumask is only valid within that
2196 * read-side section, copy it if required beyond that.
2198 * Note that not all hops are equal in distance; see sched_init_numa() for how
2199 * distances and masks are handled.
2200 * Also note that this is a reflection of sched_domains_numa_masks, which may change
2201 * during the lifetime of the system (offline nodes are taken out of the masks).
2203 const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops)
2205 struct cpumask ***masks;
2207 if (node >= nr_node_ids || hops >= sched_domains_numa_levels)
2208 return ERR_PTR(-EINVAL);
2210 masks = rcu_dereference(sched_domains_numa_masks);
2212 return ERR_PTR(-EBUSY);
2214 return masks[hops][node];
2216 EXPORT_SYMBOL_GPL(sched_numa_hop_mask);
2218 #endif /* CONFIG_NUMA */
2220 static int __sdt_alloc(const struct cpumask *cpu_map)
2222 struct sched_domain_topology_level *tl;
2225 for_each_sd_topology(tl) {
2226 struct sd_data *sdd = &tl->data;
2228 sdd->sd = alloc_percpu(struct sched_domain *);
2232 sdd->sds = alloc_percpu(struct sched_domain_shared *);
2236 sdd->sg = alloc_percpu(struct sched_group *);
2240 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2244 for_each_cpu(j, cpu_map) {
2245 struct sched_domain *sd;
2246 struct sched_domain_shared *sds;
2247 struct sched_group *sg;
2248 struct sched_group_capacity *sgc;
2250 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2251 GFP_KERNEL, cpu_to_node(j));
2255 *per_cpu_ptr(sdd->sd, j) = sd;
2257 sds = kzalloc_node(sizeof(struct sched_domain_shared),
2258 GFP_KERNEL, cpu_to_node(j));
2262 *per_cpu_ptr(sdd->sds, j) = sds;
2264 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2265 GFP_KERNEL, cpu_to_node(j));
2271 *per_cpu_ptr(sdd->sg, j) = sg;
2273 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2274 GFP_KERNEL, cpu_to_node(j));
2278 #ifdef CONFIG_SCHED_DEBUG
2282 *per_cpu_ptr(sdd->sgc, j) = sgc;
2289 static void __sdt_free(const struct cpumask *cpu_map)
2291 struct sched_domain_topology_level *tl;
2294 for_each_sd_topology(tl) {
2295 struct sd_data *sdd = &tl->data;
2297 for_each_cpu(j, cpu_map) {
2298 struct sched_domain *sd;
2301 sd = *per_cpu_ptr(sdd->sd, j);
2302 if (sd && (sd->flags & SD_OVERLAP))
2303 free_sched_groups(sd->groups, 0);
2304 kfree(*per_cpu_ptr(sdd->sd, j));
2308 kfree(*per_cpu_ptr(sdd->sds, j));
2310 kfree(*per_cpu_ptr(sdd->sg, j));
2312 kfree(*per_cpu_ptr(sdd->sgc, j));
2314 free_percpu(sdd->sd);
2316 free_percpu(sdd->sds);
2318 free_percpu(sdd->sg);
2320 free_percpu(sdd->sgc);
2325 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2326 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2327 struct sched_domain *child, int cpu)
2329 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2332 sd->level = child->level + 1;
2333 sched_domain_level_max = max(sched_domain_level_max, sd->level);
2336 if (!cpumask_subset(sched_domain_span(child),
2337 sched_domain_span(sd))) {
2338 pr_err("BUG: arch topology borken\n");
2339 pr_err(" the %s domain not a subset of the %s domain\n",
2340 child->name, sd->name);
2341 /* Fixup, ensure @sd has at least @child CPUs. */
2342 cpumask_or(sched_domain_span(sd),
2343 sched_domain_span(sd),
2344 sched_domain_span(child));
2348 set_domain_attribute(sd, attr);
2354 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2355 * any two given CPUs at this (non-NUMA) topology level.
2357 static bool topology_span_sane(struct sched_domain_topology_level *tl,
2358 const struct cpumask *cpu_map, int cpu)
2362 /* NUMA levels are allowed to overlap */
2363 if (tl->flags & SDTL_OVERLAP)
2367 * Non-NUMA levels cannot partially overlap - they must be either
2368 * completely equal or completely disjoint. Otherwise we can end up
2369 * breaking the sched_group lists - i.e. a later get_group() pass
2370 * breaks the linking done for an earlier span.
2372 for_each_cpu_from(i, cpu_map) {
2374 * We should 'and' all those masks with 'cpu_map' to exactly
2375 * match the topology we're about to build, but that can only
2376 * remove CPUs, which only lessens our ability to detect
2379 if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2380 cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2388 * Build sched domains for a given set of CPUs and attach the sched domains
2389 * to the individual CPUs
2392 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2394 enum s_alloc alloc_state = sa_none;
2395 struct sched_domain *sd;
2397 struct rq *rq = NULL;
2398 int i, ret = -ENOMEM;
2399 bool has_asym = false;
2400 bool has_cluster = false;
2402 if (WARN_ON(cpumask_empty(cpu_map)))
2405 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2406 if (alloc_state != sa_rootdomain)
2409 /* Set up domains for CPUs specified by the cpu_map: */
2410 for_each_cpu(i, cpu_map) {
2411 struct sched_domain_topology_level *tl;
2414 for_each_sd_topology(tl) {
2416 if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2419 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2421 has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2423 if (tl == sched_domain_topology)
2424 *per_cpu_ptr(d.sd, i) = sd;
2425 if (tl->flags & SDTL_OVERLAP)
2426 sd->flags |= SD_OVERLAP;
2427 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2432 /* Build the groups for the domains */
2433 for_each_cpu(i, cpu_map) {
2434 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2435 sd->span_weight = cpumask_weight(sched_domain_span(sd));
2436 if (sd->flags & SD_OVERLAP) {
2437 if (build_overlap_sched_groups(sd, i))
2440 if (build_sched_groups(sd, i))
2447 * Calculate an allowed NUMA imbalance such that LLCs do not get
2450 for_each_cpu(i, cpu_map) {
2451 unsigned int imb = 0;
2452 unsigned int imb_span = 1;
2454 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2455 struct sched_domain *child = sd->child;
2457 if (!(sd->flags & SD_SHARE_LLC) && child &&
2458 (child->flags & SD_SHARE_LLC)) {
2459 struct sched_domain __rcu *top_p;
2460 unsigned int nr_llcs;
2463 * For a single LLC per node, allow an
2464 * imbalance up to 12.5% of the node. This is
2465 * arbitrary cutoff based two factors -- SMT and
2466 * memory channels. For SMT-2, the intent is to
2467 * avoid premature sharing of HT resources but
2468 * SMT-4 or SMT-8 *may* benefit from a different
2469 * cutoff. For memory channels, this is a very
2470 * rough estimate of how many channels may be
2471 * active and is based on recent CPUs with
2474 * For multiple LLCs, allow an imbalance
2475 * until multiple tasks would share an LLC
2476 * on one node while LLCs on another node
2477 * remain idle. This assumes that there are
2478 * enough logical CPUs per LLC to avoid SMT
2479 * factors and that there is a correlation
2480 * between LLCs and memory channels.
2482 nr_llcs = sd->span_weight / child->span_weight;
2484 imb = sd->span_weight >> 3;
2488 sd->imb_numa_nr = imb;
2490 /* Set span based on the first NUMA domain. */
2492 while (top_p && !(top_p->flags & SD_NUMA)) {
2493 top_p = top_p->parent;
2495 imb_span = top_p ? top_p->span_weight : sd->span_weight;
2497 int factor = max(1U, (sd->span_weight / imb_span));
2499 sd->imb_numa_nr = imb * factor;
2504 /* Calculate CPU capacity for physical packages and nodes */
2505 for (i = nr_cpumask_bits-1; i >= 0; i--) {
2506 if (!cpumask_test_cpu(i, cpu_map))
2509 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2510 claim_allocations(i, sd);
2511 init_sched_groups_capacity(i, sd);
2515 /* Attach the domains */
2517 for_each_cpu(i, cpu_map) {
2519 sd = *per_cpu_ptr(d.sd, i);
2521 cpu_attach_domain(sd, d.rd, i);
2523 if (lowest_flag_domain(i, SD_CLUSTER))
2529 static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2532 static_branch_inc_cpuslocked(&sched_cluster_active);
2534 if (rq && sched_debug_verbose)
2535 pr_info("root domain span: %*pbl\n", cpumask_pr_args(cpu_map));
2539 __free_domain_allocs(&d, alloc_state, cpu_map);
2544 /* Current sched domains: */
2545 static cpumask_var_t *doms_cur;
2547 /* Number of sched domains in 'doms_cur': */
2548 static int ndoms_cur;
2550 /* Attributes of custom domains in 'doms_cur' */
2551 static struct sched_domain_attr *dattr_cur;
2554 * Special case: If a kmalloc() of a doms_cur partition (array of
2555 * cpumask) fails, then fallback to a single sched domain,
2556 * as determined by the single cpumask fallback_doms.
2558 static cpumask_var_t fallback_doms;
2561 * arch_update_cpu_topology lets virtualized architectures update the
2562 * CPU core maps. It is supposed to return 1 if the topology changed
2563 * or 0 if it stayed the same.
2565 int __weak arch_update_cpu_topology(void)
2570 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2573 cpumask_var_t *doms;
2575 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2578 for (i = 0; i < ndoms; i++) {
2579 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2580 free_sched_domains(doms, i);
2587 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2590 for (i = 0; i < ndoms; i++)
2591 free_cpumask_var(doms[i]);
2596 * Set up scheduler domains and groups. For now this just excludes isolated
2597 * CPUs, but could be used to exclude other special cases in the future.
2599 int __init sched_init_domains(const struct cpumask *cpu_map)
2603 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2604 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2605 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2607 arch_update_cpu_topology();
2608 asym_cpu_capacity_scan();
2610 doms_cur = alloc_sched_domains(ndoms_cur);
2612 doms_cur = &fallback_doms;
2613 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2614 err = build_sched_domains(doms_cur[0], NULL);
2620 * Detach sched domains from a group of CPUs specified in cpu_map
2621 * These CPUs will now be attached to the NULL domain
2623 static void detach_destroy_domains(const struct cpumask *cpu_map)
2625 unsigned int cpu = cpumask_any(cpu_map);
2628 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2629 static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2631 if (static_branch_unlikely(&sched_cluster_active))
2632 static_branch_dec_cpuslocked(&sched_cluster_active);
2635 for_each_cpu(i, cpu_map)
2636 cpu_attach_domain(NULL, &def_root_domain, i);
2640 /* handle null as "default" */
2641 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2642 struct sched_domain_attr *new, int idx_new)
2644 struct sched_domain_attr tmp;
2652 return !memcmp(cur ? (cur + idx_cur) : &tmp,
2653 new ? (new + idx_new) : &tmp,
2654 sizeof(struct sched_domain_attr));
2658 * Partition sched domains as specified by the 'ndoms_new'
2659 * cpumasks in the array doms_new[] of cpumasks. This compares
2660 * doms_new[] to the current sched domain partitioning, doms_cur[].
2661 * It destroys each deleted domain and builds each new domain.
2663 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2664 * The masks don't intersect (don't overlap.) We should setup one
2665 * sched domain for each mask. CPUs not in any of the cpumasks will
2666 * not be load balanced. If the same cpumask appears both in the
2667 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2670 * The passed in 'doms_new' should be allocated using
2671 * alloc_sched_domains. This routine takes ownership of it and will
2672 * free_sched_domains it when done with it. If the caller failed the
2673 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2674 * and partition_sched_domains() will fallback to the single partition
2675 * 'fallback_doms', it also forces the domains to be rebuilt.
2677 * If doms_new == NULL it will be replaced with cpu_online_mask.
2678 * ndoms_new == 0 is a special case for destroying existing domains,
2679 * and it will not create the default domain.
2681 * Call with hotplug lock and sched_domains_mutex held
2683 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2684 struct sched_domain_attr *dattr_new)
2686 bool __maybe_unused has_eas = false;
2690 lockdep_assert_held(&sched_domains_mutex);
2692 /* Let the architecture update CPU core mappings: */
2693 new_topology = arch_update_cpu_topology();
2694 /* Trigger rebuilding CPU capacity asymmetry data */
2696 asym_cpu_capacity_scan();
2699 WARN_ON_ONCE(dattr_new);
2701 doms_new = alloc_sched_domains(1);
2704 cpumask_and(doms_new[0], cpu_active_mask,
2705 housekeeping_cpumask(HK_TYPE_DOMAIN));
2711 /* Destroy deleted domains: */
2712 for (i = 0; i < ndoms_cur; i++) {
2713 for (j = 0; j < n && !new_topology; j++) {
2714 if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2715 dattrs_equal(dattr_cur, i, dattr_new, j)) {
2716 struct root_domain *rd;
2719 * This domain won't be destroyed and as such
2720 * its dl_bw->total_bw needs to be cleared.
2721 * Tasks contribution will be then recomputed
2722 * in function dl_update_tasks_root_domain(),
2723 * dl_servers contribution in function
2724 * dl_restore_server_root_domain().
2726 rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2727 dl_clear_root_domain(rd);
2731 /* No match - a current sched domain not in new doms_new[] */
2732 detach_destroy_domains(doms_cur[i]);
2740 doms_new = &fallback_doms;
2741 cpumask_and(doms_new[0], cpu_active_mask,
2742 housekeeping_cpumask(HK_TYPE_DOMAIN));
2745 /* Build new domains: */
2746 for (i = 0; i < ndoms_new; i++) {
2747 for (j = 0; j < n && !new_topology; j++) {
2748 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2749 dattrs_equal(dattr_new, i, dattr_cur, j))
2752 /* No match - add a new doms_new */
2753 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2758 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2759 /* Build perf domains: */
2760 for (i = 0; i < ndoms_new; i++) {
2761 for (j = 0; j < n && !sched_energy_update; j++) {
2762 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2763 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2768 /* No match - add perf domains for a new rd */
2769 has_eas |= build_perf_domains(doms_new[i]);
2773 sched_energy_set(has_eas);
2776 /* Remember the new sched domains: */
2777 if (doms_cur != &fallback_doms)
2778 free_sched_domains(doms_cur, ndoms_cur);
2781 doms_cur = doms_new;
2782 dattr_cur = dattr_new;
2783 ndoms_cur = ndoms_new;
2785 update_sched_domain_debugfs();
2789 * Call with hotplug lock held
2791 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2792 struct sched_domain_attr *dattr_new)
2794 mutex_lock(&sched_domains_mutex);
2795 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2796 mutex_unlock(&sched_domains_mutex);