]> Git Repo - linux.git/blob - kernel/bpf/cpumap.c
Linux 6.14-rc3
[linux.git] / kernel / bpf / cpumap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* bpf/cpumap.c
3  *
4  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5  */
6
7 /**
8  * DOC: cpu map
9  * The 'cpumap' is primarily used as a backend map for XDP BPF helper
10  * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
11  *
12  * Unlike devmap which redirects XDP frames out to another NIC device,
13  * this map type redirects raw XDP frames to another CPU.  The remote
14  * CPU will do SKB-allocation and call the normal network stack.
15  */
16 /*
17  * This is a scalability and isolation mechanism, that allow
18  * separating the early driver network XDP layer, from the rest of the
19  * netstack, and assigning dedicated CPUs for this stage.  This
20  * basically allows for 10G wirespeed pre-filtering via bpf.
21  */
22 #include <linux/bitops.h>
23 #include <linux/bpf.h>
24 #include <linux/filter.h>
25 #include <linux/ptr_ring.h>
26 #include <net/xdp.h>
27 #include <net/hotdata.h>
28
29 #include <linux/sched.h>
30 #include <linux/workqueue.h>
31 #include <linux/kthread.h>
32 #include <linux/completion.h>
33 #include <trace/events/xdp.h>
34 #include <linux/btf_ids.h>
35
36 #include <linux/netdevice.h>   /* netif_receive_skb_list */
37 #include <linux/etherdevice.h> /* eth_type_trans */
38
39 /* General idea: XDP packets getting XDP redirected to another CPU,
40  * will maximum be stored/queued for one driver ->poll() call.  It is
41  * guaranteed that queueing the frame and the flush operation happen on
42  * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
43  * which queue in bpf_cpu_map_entry contains packets.
44  */
45
46 #define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
47 struct bpf_cpu_map_entry;
48 struct bpf_cpu_map;
49
50 struct xdp_bulk_queue {
51         void *q[CPU_MAP_BULK_SIZE];
52         struct list_head flush_node;
53         struct bpf_cpu_map_entry *obj;
54         unsigned int count;
55 };
56
57 /* Struct for every remote "destination" CPU in map */
58 struct bpf_cpu_map_entry {
59         u32 cpu;    /* kthread CPU and map index */
60         int map_id; /* Back reference to map */
61
62         /* XDP can run multiple RX-ring queues, need __percpu enqueue store */
63         struct xdp_bulk_queue __percpu *bulkq;
64
65         /* Queue with potential multi-producers, and single-consumer kthread */
66         struct ptr_ring *queue;
67         struct task_struct *kthread;
68
69         struct bpf_cpumap_val value;
70         struct bpf_prog *prog;
71
72         struct completion kthread_running;
73         struct rcu_work free_work;
74 };
75
76 struct bpf_cpu_map {
77         struct bpf_map map;
78         /* Below members specific for map type */
79         struct bpf_cpu_map_entry __rcu **cpu_map;
80 };
81
82 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
83 {
84         u32 value_size = attr->value_size;
85         struct bpf_cpu_map *cmap;
86
87         /* check sanity of attributes */
88         if (attr->max_entries == 0 || attr->key_size != 4 ||
89             (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
90              value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
91             attr->map_flags & ~BPF_F_NUMA_NODE)
92                 return ERR_PTR(-EINVAL);
93
94         /* Pre-limit array size based on NR_CPUS, not final CPU check */
95         if (attr->max_entries > NR_CPUS)
96                 return ERR_PTR(-E2BIG);
97
98         cmap = bpf_map_area_alloc(sizeof(*cmap), NUMA_NO_NODE);
99         if (!cmap)
100                 return ERR_PTR(-ENOMEM);
101
102         bpf_map_init_from_attr(&cmap->map, attr);
103
104         /* Alloc array for possible remote "destination" CPUs */
105         cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
106                                            sizeof(struct bpf_cpu_map_entry *),
107                                            cmap->map.numa_node);
108         if (!cmap->cpu_map) {
109                 bpf_map_area_free(cmap);
110                 return ERR_PTR(-ENOMEM);
111         }
112
113         return &cmap->map;
114 }
115
116 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
117 {
118         /* The tear-down procedure should have made sure that queue is
119          * empty.  See __cpu_map_entry_replace() and work-queue
120          * invoked cpu_map_kthread_stop(). Catch any broken behaviour
121          * gracefully and warn once.
122          */
123         void *ptr;
124
125         while ((ptr = ptr_ring_consume(ring))) {
126                 WARN_ON_ONCE(1);
127                 if (unlikely(__ptr_test_bit(0, &ptr))) {
128                         __ptr_clear_bit(0, &ptr);
129                         kfree_skb(ptr);
130                         continue;
131                 }
132                 xdp_return_frame(ptr);
133         }
134 }
135
136 static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu,
137                                      struct list_head *listp,
138                                      struct xdp_cpumap_stats *stats)
139 {
140         struct sk_buff *skb, *tmp;
141         struct xdp_buff xdp;
142         u32 act;
143         int err;
144
145         list_for_each_entry_safe(skb, tmp, listp, list) {
146                 act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog);
147                 switch (act) {
148                 case XDP_PASS:
149                         break;
150                 case XDP_REDIRECT:
151                         skb_list_del_init(skb);
152                         err = xdp_do_generic_redirect(skb->dev, skb, &xdp,
153                                                       rcpu->prog);
154                         if (unlikely(err)) {
155                                 kfree_skb(skb);
156                                 stats->drop++;
157                         } else {
158                                 stats->redirect++;
159                         }
160                         return;
161                 default:
162                         bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
163                         fallthrough;
164                 case XDP_ABORTED:
165                         trace_xdp_exception(skb->dev, rcpu->prog, act);
166                         fallthrough;
167                 case XDP_DROP:
168                         skb_list_del_init(skb);
169                         kfree_skb(skb);
170                         stats->drop++;
171                         return;
172                 }
173         }
174 }
175
176 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
177                                     void **frames, int n,
178                                     struct xdp_cpumap_stats *stats)
179 {
180         struct xdp_rxq_info rxq = {};
181         struct xdp_buff xdp;
182         int i, nframes = 0;
183
184         xdp_set_return_frame_no_direct();
185         xdp.rxq = &rxq;
186
187         for (i = 0; i < n; i++) {
188                 struct xdp_frame *xdpf = frames[i];
189                 u32 act;
190                 int err;
191
192                 rxq.dev = xdpf->dev_rx;
193                 rxq.mem.type = xdpf->mem_type;
194                 /* TODO: report queue_index to xdp_rxq_info */
195
196                 xdp_convert_frame_to_buff(xdpf, &xdp);
197
198                 act = bpf_prog_run_xdp(rcpu->prog, &xdp);
199                 switch (act) {
200                 case XDP_PASS:
201                         err = xdp_update_frame_from_buff(&xdp, xdpf);
202                         if (err < 0) {
203                                 xdp_return_frame(xdpf);
204                                 stats->drop++;
205                         } else {
206                                 frames[nframes++] = xdpf;
207                                 stats->pass++;
208                         }
209                         break;
210                 case XDP_REDIRECT:
211                         err = xdp_do_redirect(xdpf->dev_rx, &xdp,
212                                               rcpu->prog);
213                         if (unlikely(err)) {
214                                 xdp_return_frame(xdpf);
215                                 stats->drop++;
216                         } else {
217                                 stats->redirect++;
218                         }
219                         break;
220                 default:
221                         bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
222                         fallthrough;
223                 case XDP_DROP:
224                         xdp_return_frame(xdpf);
225                         stats->drop++;
226                         break;
227                 }
228         }
229
230         xdp_clear_return_frame_no_direct();
231
232         return nframes;
233 }
234
235 #define CPUMAP_BATCH 8
236
237 static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames,
238                                 int xdp_n, struct xdp_cpumap_stats *stats,
239                                 struct list_head *list)
240 {
241         struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
242         int nframes;
243
244         if (!rcpu->prog)
245                 return xdp_n;
246
247         rcu_read_lock_bh();
248         bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
249
250         nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats);
251
252         if (stats->redirect)
253                 xdp_do_flush();
254
255         if (unlikely(!list_empty(list)))
256                 cpu_map_bpf_prog_run_skb(rcpu, list, stats);
257
258         bpf_net_ctx_clear(bpf_net_ctx);
259         rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
260
261         return nframes;
262 }
263
264 static int cpu_map_kthread_run(void *data)
265 {
266         struct bpf_cpu_map_entry *rcpu = data;
267         unsigned long last_qs = jiffies;
268
269         complete(&rcpu->kthread_running);
270         set_current_state(TASK_INTERRUPTIBLE);
271
272         /* When kthread gives stop order, then rcpu have been disconnected
273          * from map, thus no new packets can enter. Remaining in-flight
274          * per CPU stored packets are flushed to this queue.  Wait honoring
275          * kthread_stop signal until queue is empty.
276          */
277         while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
278                 struct xdp_cpumap_stats stats = {}; /* zero stats */
279                 unsigned int kmem_alloc_drops = 0, sched = 0;
280                 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
281                 int i, n, m, nframes, xdp_n;
282                 void *frames[CPUMAP_BATCH];
283                 void *skbs[CPUMAP_BATCH];
284                 LIST_HEAD(list);
285
286                 /* Release CPU reschedule checks */
287                 if (__ptr_ring_empty(rcpu->queue)) {
288                         set_current_state(TASK_INTERRUPTIBLE);
289                         /* Recheck to avoid lost wake-up */
290                         if (__ptr_ring_empty(rcpu->queue)) {
291                                 schedule();
292                                 sched = 1;
293                                 last_qs = jiffies;
294                         } else {
295                                 __set_current_state(TASK_RUNNING);
296                         }
297                 } else {
298                         rcu_softirq_qs_periodic(last_qs);
299                         sched = cond_resched();
300                 }
301
302                 /*
303                  * The bpf_cpu_map_entry is single consumer, with this
304                  * kthread CPU pinned. Lockless access to ptr_ring
305                  * consume side valid as no-resize allowed of queue.
306                  */
307                 n = __ptr_ring_consume_batched(rcpu->queue, frames,
308                                                CPUMAP_BATCH);
309                 for (i = 0, xdp_n = 0; i < n; i++) {
310                         void *f = frames[i];
311                         struct page *page;
312
313                         if (unlikely(__ptr_test_bit(0, &f))) {
314                                 struct sk_buff *skb = f;
315
316                                 __ptr_clear_bit(0, &skb);
317                                 list_add_tail(&skb->list, &list);
318                                 continue;
319                         }
320
321                         frames[xdp_n++] = f;
322                         page = virt_to_page(f);
323
324                         /* Bring struct page memory area to curr CPU. Read by
325                          * build_skb_around via page_is_pfmemalloc(), and when
326                          * freed written by page_frag_free call.
327                          */
328                         prefetchw(page);
329                 }
330
331                 /* Support running another XDP prog on this CPU */
332                 nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list);
333                 if (nframes) {
334                         m = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
335                                                   gfp, nframes, skbs);
336                         if (unlikely(m == 0)) {
337                                 for (i = 0; i < nframes; i++)
338                                         skbs[i] = NULL; /* effect: xdp_return_frame */
339                                 kmem_alloc_drops += nframes;
340                         }
341                 }
342
343                 local_bh_disable();
344                 for (i = 0; i < nframes; i++) {
345                         struct xdp_frame *xdpf = frames[i];
346                         struct sk_buff *skb = skbs[i];
347
348                         skb = __xdp_build_skb_from_frame(xdpf, skb,
349                                                          xdpf->dev_rx);
350                         if (!skb) {
351                                 xdp_return_frame(xdpf);
352                                 continue;
353                         }
354
355                         list_add_tail(&skb->list, &list);
356                 }
357
358                 /* Feedback loop via tracepoint.
359                  * NB: keep before recv to allow measuring enqueue/dequeue latency.
360                  */
361                 trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops,
362                                          sched, &stats);
363
364                 netif_receive_skb_list(&list);
365                 local_bh_enable(); /* resched point, may call do_softirq() */
366         }
367         __set_current_state(TASK_RUNNING);
368
369         return 0;
370 }
371
372 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu,
373                                       struct bpf_map *map, int fd)
374 {
375         struct bpf_prog *prog;
376
377         prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
378         if (IS_ERR(prog))
379                 return PTR_ERR(prog);
380
381         if (prog->expected_attach_type != BPF_XDP_CPUMAP ||
382             !bpf_prog_map_compatible(map, prog)) {
383                 bpf_prog_put(prog);
384                 return -EINVAL;
385         }
386
387         rcpu->value.bpf_prog.id = prog->aux->id;
388         rcpu->prog = prog;
389
390         return 0;
391 }
392
393 static struct bpf_cpu_map_entry *
394 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
395                       u32 cpu)
396 {
397         int numa, err, i, fd = value->bpf_prog.fd;
398         gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
399         struct bpf_cpu_map_entry *rcpu;
400         struct xdp_bulk_queue *bq;
401
402         /* Have map->numa_node, but choose node of redirect target CPU */
403         numa = cpu_to_node(cpu);
404
405         rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
406         if (!rcpu)
407                 return NULL;
408
409         /* Alloc percpu bulkq */
410         rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
411                                            sizeof(void *), gfp);
412         if (!rcpu->bulkq)
413                 goto free_rcu;
414
415         for_each_possible_cpu(i) {
416                 bq = per_cpu_ptr(rcpu->bulkq, i);
417                 bq->obj = rcpu;
418         }
419
420         /* Alloc queue */
421         rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
422                                            numa);
423         if (!rcpu->queue)
424                 goto free_bulkq;
425
426         err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
427         if (err)
428                 goto free_queue;
429
430         rcpu->cpu    = cpu;
431         rcpu->map_id = map->id;
432         rcpu->value.qsize  = value->qsize;
433
434         if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd))
435                 goto free_ptr_ring;
436
437         /* Setup kthread */
438         init_completion(&rcpu->kthread_running);
439         rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
440                                                "cpumap/%d/map:%d", cpu,
441                                                map->id);
442         if (IS_ERR(rcpu->kthread))
443                 goto free_prog;
444
445         /* Make sure kthread runs on a single CPU */
446         kthread_bind(rcpu->kthread, cpu);
447         wake_up_process(rcpu->kthread);
448
449         /* Make sure kthread has been running, so kthread_stop() will not
450          * stop the kthread prematurely and all pending frames or skbs
451          * will be handled by the kthread before kthread_stop() returns.
452          */
453         wait_for_completion(&rcpu->kthread_running);
454
455         return rcpu;
456
457 free_prog:
458         if (rcpu->prog)
459                 bpf_prog_put(rcpu->prog);
460 free_ptr_ring:
461         ptr_ring_cleanup(rcpu->queue, NULL);
462 free_queue:
463         kfree(rcpu->queue);
464 free_bulkq:
465         free_percpu(rcpu->bulkq);
466 free_rcu:
467         kfree(rcpu);
468         return NULL;
469 }
470
471 static void __cpu_map_entry_free(struct work_struct *work)
472 {
473         struct bpf_cpu_map_entry *rcpu;
474
475         /* This cpu_map_entry have been disconnected from map and one
476          * RCU grace-period have elapsed. Thus, XDP cannot queue any
477          * new packets and cannot change/set flush_needed that can
478          * find this entry.
479          */
480         rcpu = container_of(to_rcu_work(work), struct bpf_cpu_map_entry, free_work);
481
482         /* kthread_stop will wake_up_process and wait for it to complete.
483          * cpu_map_kthread_run() makes sure the pointer ring is empty
484          * before exiting.
485          */
486         kthread_stop(rcpu->kthread);
487
488         if (rcpu->prog)
489                 bpf_prog_put(rcpu->prog);
490         /* The queue should be empty at this point */
491         __cpu_map_ring_cleanup(rcpu->queue);
492         ptr_ring_cleanup(rcpu->queue, NULL);
493         kfree(rcpu->queue);
494         free_percpu(rcpu->bulkq);
495         kfree(rcpu);
496 }
497
498 /* After the xchg of the bpf_cpu_map_entry pointer, we need to make sure the old
499  * entry is no longer in use before freeing. We use queue_rcu_work() to call
500  * __cpu_map_entry_free() in a separate workqueue after waiting for an RCU grace
501  * period. This means that (a) all pending enqueue and flush operations have
502  * completed (because of the RCU callback), and (b) we are in a workqueue
503  * context where we can stop the kthread and wait for it to exit before freeing
504  * everything.
505  */
506 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
507                                     u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
508 {
509         struct bpf_cpu_map_entry *old_rcpu;
510
511         old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu)));
512         if (old_rcpu) {
513                 INIT_RCU_WORK(&old_rcpu->free_work, __cpu_map_entry_free);
514                 queue_rcu_work(system_wq, &old_rcpu->free_work);
515         }
516 }
517
518 static long cpu_map_delete_elem(struct bpf_map *map, void *key)
519 {
520         struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
521         u32 key_cpu = *(u32 *)key;
522
523         if (key_cpu >= map->max_entries)
524                 return -EINVAL;
525
526         /* notice caller map_delete_elem() uses rcu_read_lock() */
527         __cpu_map_entry_replace(cmap, key_cpu, NULL);
528         return 0;
529 }
530
531 static long cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
532                                 u64 map_flags)
533 {
534         struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
535         struct bpf_cpumap_val cpumap_value = {};
536         struct bpf_cpu_map_entry *rcpu;
537         /* Array index key correspond to CPU number */
538         u32 key_cpu = *(u32 *)key;
539
540         memcpy(&cpumap_value, value, map->value_size);
541
542         if (unlikely(map_flags > BPF_EXIST))
543                 return -EINVAL;
544         if (unlikely(key_cpu >= cmap->map.max_entries))
545                 return -E2BIG;
546         if (unlikely(map_flags == BPF_NOEXIST))
547                 return -EEXIST;
548         if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
549                 return -EOVERFLOW;
550
551         /* Make sure CPU is a valid possible cpu */
552         if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
553                 return -ENODEV;
554
555         if (cpumap_value.qsize == 0) {
556                 rcpu = NULL; /* Same as deleting */
557         } else {
558                 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */
559                 rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
560                 if (!rcpu)
561                         return -ENOMEM;
562         }
563         rcu_read_lock();
564         __cpu_map_entry_replace(cmap, key_cpu, rcpu);
565         rcu_read_unlock();
566         return 0;
567 }
568
569 static void cpu_map_free(struct bpf_map *map)
570 {
571         struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
572         u32 i;
573
574         /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
575          * so the bpf programs (can be more than one that used this map) were
576          * disconnected from events. Wait for outstanding critical sections in
577          * these programs to complete. synchronize_rcu() below not only
578          * guarantees no further "XDP/bpf-side" reads against
579          * bpf_cpu_map->cpu_map, but also ensure pending flush operations
580          * (if any) are completed.
581          */
582         synchronize_rcu();
583
584         /* The only possible user of bpf_cpu_map_entry is
585          * cpu_map_kthread_run().
586          */
587         for (i = 0; i < cmap->map.max_entries; i++) {
588                 struct bpf_cpu_map_entry *rcpu;
589
590                 rcpu = rcu_dereference_raw(cmap->cpu_map[i]);
591                 if (!rcpu)
592                         continue;
593
594                 /* Stop kthread and cleanup entry directly */
595                 __cpu_map_entry_free(&rcpu->free_work.work);
596         }
597         bpf_map_area_free(cmap->cpu_map);
598         bpf_map_area_free(cmap);
599 }
600
601 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
602  * by local_bh_disable() (from XDP calls inside NAPI). The
603  * rcu_read_lock_bh_held() below makes lockdep accept both.
604  */
605 static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
606 {
607         struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
608         struct bpf_cpu_map_entry *rcpu;
609
610         if (key >= map->max_entries)
611                 return NULL;
612
613         rcpu = rcu_dereference_check(cmap->cpu_map[key],
614                                      rcu_read_lock_bh_held());
615         return rcpu;
616 }
617
618 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
619 {
620         struct bpf_cpu_map_entry *rcpu =
621                 __cpu_map_lookup_elem(map, *(u32 *)key);
622
623         return rcpu ? &rcpu->value : NULL;
624 }
625
626 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
627 {
628         struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
629         u32 index = key ? *(u32 *)key : U32_MAX;
630         u32 *next = next_key;
631
632         if (index >= cmap->map.max_entries) {
633                 *next = 0;
634                 return 0;
635         }
636
637         if (index == cmap->map.max_entries - 1)
638                 return -ENOENT;
639         *next = index + 1;
640         return 0;
641 }
642
643 static long cpu_map_redirect(struct bpf_map *map, u64 index, u64 flags)
644 {
645         return __bpf_xdp_redirect_map(map, index, flags, 0,
646                                       __cpu_map_lookup_elem);
647 }
648
649 static u64 cpu_map_mem_usage(const struct bpf_map *map)
650 {
651         u64 usage = sizeof(struct bpf_cpu_map);
652
653         /* Currently the dynamically allocated elements are not counted */
654         usage += (u64)map->max_entries * sizeof(struct bpf_cpu_map_entry *);
655         return usage;
656 }
657
658 BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map)
659 const struct bpf_map_ops cpu_map_ops = {
660         .map_meta_equal         = bpf_map_meta_equal,
661         .map_alloc              = cpu_map_alloc,
662         .map_free               = cpu_map_free,
663         .map_delete_elem        = cpu_map_delete_elem,
664         .map_update_elem        = cpu_map_update_elem,
665         .map_lookup_elem        = cpu_map_lookup_elem,
666         .map_get_next_key       = cpu_map_get_next_key,
667         .map_check_btf          = map_check_no_btf,
668         .map_mem_usage          = cpu_map_mem_usage,
669         .map_btf_id             = &cpu_map_btf_ids[0],
670         .map_redirect           = cpu_map_redirect,
671 };
672
673 static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
674 {
675         struct bpf_cpu_map_entry *rcpu = bq->obj;
676         unsigned int processed = 0, drops = 0;
677         const int to_cpu = rcpu->cpu;
678         struct ptr_ring *q;
679         int i;
680
681         if (unlikely(!bq->count))
682                 return;
683
684         q = rcpu->queue;
685         spin_lock(&q->producer_lock);
686
687         for (i = 0; i < bq->count; i++) {
688                 struct xdp_frame *xdpf = bq->q[i];
689                 int err;
690
691                 err = __ptr_ring_produce(q, xdpf);
692                 if (err) {
693                         drops++;
694                         xdp_return_frame_rx_napi(xdpf);
695                 }
696                 processed++;
697         }
698         bq->count = 0;
699         spin_unlock(&q->producer_lock);
700
701         __list_del_clearprev(&bq->flush_node);
702
703         /* Feedback loop via tracepoints */
704         trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
705 }
706
707 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
708  * Thus, safe percpu variable access.
709  */
710 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
711 {
712         struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
713
714         if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
715                 bq_flush_to_queue(bq);
716
717         /* Notice, xdp_buff/page MUST be queued here, long enough for
718          * driver to code invoking us to finished, due to driver
719          * (e.g. ixgbe) recycle tricks based on page-refcnt.
720          *
721          * Thus, incoming xdp_frame is always queued here (else we race
722          * with another CPU on page-refcnt and remaining driver code).
723          * Queue time is very short, as driver will invoke flush
724          * operation, when completing napi->poll call.
725          */
726         bq->q[bq->count++] = xdpf;
727
728         if (!bq->flush_node.prev) {
729                 struct list_head *flush_list = bpf_net_ctx_get_cpu_map_flush_list();
730
731                 list_add(&bq->flush_node, flush_list);
732         }
733 }
734
735 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
736                     struct net_device *dev_rx)
737 {
738         /* Info needed when constructing SKB on remote CPU */
739         xdpf->dev_rx = dev_rx;
740
741         bq_enqueue(rcpu, xdpf);
742         return 0;
743 }
744
745 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
746                              struct sk_buff *skb)
747 {
748         int ret;
749
750         __skb_pull(skb, skb->mac_len);
751         skb_set_redirected(skb, false);
752         __ptr_set_bit(0, &skb);
753
754         ret = ptr_ring_produce(rcpu->queue, skb);
755         if (ret < 0)
756                 goto trace;
757
758         wake_up_process(rcpu->kthread);
759 trace:
760         trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu);
761         return ret;
762 }
763
764 void __cpu_map_flush(struct list_head *flush_list)
765 {
766         struct xdp_bulk_queue *bq, *tmp;
767
768         list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
769                 bq_flush_to_queue(bq);
770
771                 /* If already running, costs spin_lock_irqsave + smb_mb */
772                 wake_up_process(bq->obj->kthread);
773         }
774 }
This page took 0.087006 seconds and 4 git commands to generate.