1 // SPDX-License-Identifier: GPL-2.0
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
8 #include <linux/fiemap.h>
10 #include <linux/minmax.h>
11 #include <linux/vmalloc.h>
16 #ifdef CONFIG_NTFS3_LZX_XPRESS
20 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree,
21 CLST ino, struct rb_node *ins)
23 struct rb_node **p = &tree->rb_node;
24 struct rb_node *pr = NULL;
30 mi = rb_entry(pr, struct mft_inode, node);
33 else if (mi->rno < ino)
42 rb_link_node(ins, pr, p);
43 rb_insert_color(ins, tree);
44 return rb_entry(ins, struct mft_inode, node);
48 * ni_find_mi - Find mft_inode by record number.
50 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno)
52 return ni_ins_mi(ni, &ni->mi_tree, rno, NULL);
56 * ni_add_mi - Add new mft_inode into ntfs_inode.
58 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi)
60 ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node);
64 * ni_remove_mi - Remove mft_inode from ntfs_inode.
66 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi)
68 rb_erase(&mi->node, &ni->mi_tree);
72 * ni_std - Return: Pointer into std_info from primary record.
74 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni)
76 const struct ATTRIB *attr;
78 attr = mi_find_attr(ni, &ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
79 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO)) :
86 * Return: Pointer into std_info from primary record.
88 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni)
90 const struct ATTRIB *attr;
92 attr = mi_find_attr(ni, &ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
94 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5)) :
99 * ni_clear - Clear resources allocated by ntfs_inode.
101 void ni_clear(struct ntfs_inode *ni)
103 struct rb_node *node;
105 if (!ni->vfs_inode.i_nlink && ni->mi.mrec &&
106 is_rec_inuse(ni->mi.mrec) &&
107 !(ni->mi.sbi->flags & NTFS_FLAGS_LOG_REPLAYING))
112 for (node = rb_first(&ni->mi_tree); node;) {
113 struct rb_node *next = rb_next(node);
114 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
116 rb_erase(node, &ni->mi_tree);
121 /* Bad inode always has mode == S_IFREG. */
122 if (ni->ni_flags & NI_FLAG_DIR)
123 indx_clear(&ni->dir);
125 run_close(&ni->file.run);
126 #ifdef CONFIG_NTFS3_LZX_XPRESS
127 if (ni->file.offs_folio) {
128 /* On-demand allocated page for offsets. */
129 folio_put(ni->file.offs_folio);
130 ni->file.offs_folio = NULL;
139 * ni_load_mi_ex - Find mft_inode by record number.
141 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
146 r = ni_find_mi(ni, rno);
150 err = mi_get(ni->mi.sbi, rno, &r);
152 _ntfs_bad_inode(&ni->vfs_inode);
165 * ni_load_mi - Load mft_inode corresponded list_entry.
167 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le,
168 struct mft_inode **mi)
177 rno = ino_get(&le->ref);
178 if (rno == ni->mi.rno) {
182 return ni_load_mi_ex(ni, rno, mi);
188 * Return: Attribute and record this attribute belongs to.
190 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr,
191 struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type,
192 const __le16 *name, u8 name_len, const CLST *vcn,
193 struct mft_inode **mi)
195 struct ATTR_LIST_ENTRY *le;
198 if (!ni->attr_list.size ||
199 (!name_len && (type == ATTR_LIST || type == ATTR_STD))) {
205 /* Look for required attribute in primary record. */
206 return mi_find_attr(ni, &ni->mi, attr, type, name, name_len,
210 /* First look for list entry of required type. */
211 le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn);
218 /* Load record that contains this attribute. */
219 if (ni_load_mi(ni, le, &m))
222 /* Look for required attribute. */
223 attr = mi_find_attr(ni, m, NULL, type, name, name_len, &le->id);
228 if (!attr->non_res) {
234 } else if (le64_to_cpu(attr->nres.svcn) > *vcn ||
235 *vcn > le64_to_cpu(attr->nres.evcn)) {
244 _ntfs_bad_inode(&ni->vfs_inode);
249 * ni_enum_attr_ex - Enumerates attributes in ntfs_inode.
251 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr,
252 struct ATTR_LIST_ENTRY **le,
253 struct mft_inode **mi)
255 struct mft_inode *mi2;
256 struct ATTR_LIST_ENTRY *le2;
258 /* Do we have an attribute list? */
259 if (!ni->attr_list.size) {
263 /* Enum attributes in primary record. */
264 return mi_enum_attr(ni, &ni->mi, attr);
267 /* Get next list entry. */
268 le2 = *le = al_enumerate(ni, attr ? *le : NULL);
272 /* Load record that contains the required attribute. */
273 if (ni_load_mi(ni, le2, &mi2))
279 /* Find attribute in loaded record. */
280 return rec_find_attr_le(ni, mi2, le2);
284 * ni_load_attr - Load attribute that contains given VCN.
286 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
287 const __le16 *name, u8 name_len, CLST vcn,
288 struct mft_inode **pmi)
290 struct ATTR_LIST_ENTRY *le;
292 struct mft_inode *mi;
293 struct ATTR_LIST_ENTRY *next;
295 if (!ni->attr_list.size) {
298 return mi_find_attr(ni, &ni->mi, NULL, type, name, name_len,
302 le = al_find_ex(ni, NULL, type, name, name_len, NULL);
307 * Unfortunately ATTR_LIST_ENTRY contains only start VCN.
308 * So to find the ATTRIB segment that contains 'vcn' we should
309 * enumerate some entries.
313 next = al_find_ex(ni, le, type, name, name_len, NULL);
314 if (!next || le64_to_cpu(next->vcn) > vcn)
319 if (ni_load_mi(ni, le, &mi))
325 attr = mi_find_attr(ni, mi, NULL, type, name, name_len, &le->id);
332 if (le64_to_cpu(attr->nres.svcn) <= vcn &&
333 vcn <= le64_to_cpu(attr->nres.evcn))
336 _ntfs_bad_inode(&ni->vfs_inode);
341 * ni_load_all_mi - Load all subrecords.
343 int ni_load_all_mi(struct ntfs_inode *ni)
346 struct ATTR_LIST_ENTRY *le;
348 if (!ni->attr_list.size)
353 while ((le = al_enumerate(ni, le))) {
354 CLST rno = ino_get(&le->ref);
356 if (rno == ni->mi.rno)
359 err = ni_load_mi_ex(ni, rno, NULL);
368 * ni_add_subrecord - Allocate + format + attach a new subrecord.
370 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
374 m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
378 if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) {
383 mi_get_ref(&ni->mi, &m->mrec->parent_ref);
391 * ni_remove_attr - Remove all attributes for the given type/name/id.
393 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
394 const __le16 *name, u8 name_len, bool base_only,
399 struct ATTR_LIST_ENTRY *le;
400 struct mft_inode *mi;
404 if (base_only || type == ATTR_LIST || !ni->attr_list.size) {
405 attr = mi_find_attr(ni, &ni->mi, NULL, type, name, name_len,
410 mi_remove_attr(ni, &ni->mi, attr);
414 type_in = le32_to_cpu(type);
418 le = al_enumerate(ni, le);
423 diff = le32_to_cpu(le->type) - type_in;
430 if (le->name_len != name_len)
434 memcmp(le_name(le), name, name_len * sizeof(short)))
437 if (id && le->id != *id)
439 err = ni_load_mi(ni, le, &mi);
443 al_remove_le(ni, le);
445 attr = mi_find_attr(ni, mi, NULL, type, name, name_len, id);
449 mi_remove_attr(ni, mi, attr);
451 if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size)
458 * ni_ins_new_attr - Insert the attribute into record.
460 * Return: Not full constructed attribute or NULL if not possible to create.
462 static struct ATTRIB *
463 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi,
464 struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type,
465 const __le16 *name, u8 name_len, u32 asize, u16 name_off,
466 CLST svcn, struct ATTR_LIST_ENTRY **ins_le)
470 bool le_added = false;
473 mi_get_ref(mi, &ref);
475 if (type != ATTR_LIST && !le && ni->attr_list.size) {
476 err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1),
479 /* No memory or no space. */
485 * al_add_le -> attr_set_size (list) -> ni_expand_list
486 * which moves some attributes out of primary record
487 * this means that name may point into moved memory
488 * reinit 'name' from le.
493 attr = mi_insert_attr(ni, mi, type, name, name_len, asize, name_off);
496 al_remove_le(ni, le);
500 if (type == ATTR_LIST) {
501 /* Attr list is not in list entry array. */
508 /* Update ATTRIB Id and record reference. */
510 ni->attr_list.dirty = true;
522 * Random write access to sparsed or compressed file may result to
523 * not optimized packed runs.
524 * Here is the place to optimize it.
526 static int ni_repack(struct ntfs_inode *ni)
532 struct ntfs_sb_info *sbi = ni->mi.sbi;
533 struct mft_inode *mi, *mi_p = NULL;
534 struct ATTRIB *attr = NULL, *attr_p;
535 struct ATTR_LIST_ENTRY *le = NULL, *le_p;
537 u8 cluster_bits = sbi->cluster_bits;
538 CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn;
539 u32 roff, rs = sbi->record_size;
540 struct runs_tree run;
544 while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) {
548 svcn = le64_to_cpu(attr->nres.svcn);
549 if (svcn != le64_to_cpu(le->vcn)) {
555 alloc = le64_to_cpu(attr->nres.alloc_size) >>
558 } else if (svcn != evcn + 1) {
563 evcn = le64_to_cpu(attr->nres.evcn);
565 if (svcn > evcn + 1) {
571 /* Do not try if not enough free space. */
572 if (le32_to_cpu(mi->mrec->used) + 8 >= rs)
575 /* Do not try if last attribute segment. */
576 if (evcn + 1 == alloc)
581 roff = le16_to_cpu(attr->nres.run_off);
583 if (roff > le32_to_cpu(attr->size)) {
588 err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn,
590 le32_to_cpu(attr->size) - roff);
605 * Run contains data from two records: mi_p and mi
606 * Try to pack in one.
608 err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p);
612 next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1;
614 if (next_svcn >= evcn + 1) {
615 /* We can remove this attribute segment. */
616 al_remove_le(ni, le);
617 mi_remove_attr(NULL, mi, attr);
622 attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn);
624 ni->attr_list.dirty = true;
626 if (evcn + 1 == alloc) {
627 err = mi_pack_runs(mi, attr, &run,
628 evcn + 1 - next_svcn);
638 run_truncate_head(&run, next_svcn);
643 ntfs_inode_warn(&ni->vfs_inode, "repack problem");
644 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
646 /* Pack loaded but not packed runs. */
648 mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p);
657 * ni_try_remove_attr_list
659 * Can we remove attribute list?
660 * Check the case when primary record contains enough space for all attributes.
662 static int ni_try_remove_attr_list(struct ntfs_inode *ni)
665 struct ntfs_sb_info *sbi = ni->mi.sbi;
666 struct ATTRIB *attr, *attr_list, *attr_ins;
667 struct ATTR_LIST_ENTRY *le;
668 struct mft_inode *mi;
671 struct MFT_REC *mrec;
674 if (!ni->attr_list.dirty)
681 attr_list = mi_find_attr(ni, &ni->mi, NULL, ATTR_LIST, NULL, 0, NULL);
685 asize = le32_to_cpu(attr_list->size);
687 /* Free space in primary record without attribute list. */
688 free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize;
689 mi_get_ref(&ni->mi, &ref);
692 while ((le = al_enumerate(ni, le))) {
693 if (!memcmp(&le->ref, &ref, sizeof(ref)))
699 mi = ni_find_mi(ni, ino_get(&le->ref));
703 attr = mi_find_attr(ni, mi, NULL, le->type, le_name(le),
704 le->name_len, &le->id);
708 asize = le32_to_cpu(attr->size);
715 /* Make a copy of primary record to restore if error. */
716 mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS);
718 return 0; /* Not critical. */
720 /* It seems that attribute list can be removed from primary record. */
721 mi_remove_attr(NULL, &ni->mi, attr_list);
724 * Repeat the cycle above and copy all attributes to primary record.
725 * Do not remove original attributes from subrecords!
726 * It should be success!
729 while ((le = al_enumerate(ni, le))) {
730 if (!memcmp(&le->ref, &ref, sizeof(ref)))
733 mi = ni_find_mi(ni, ino_get(&le->ref));
735 /* Should never happened, 'cause already checked. */
739 attr = mi_find_attr(ni, mi, NULL, le->type, le_name(le),
740 le->name_len, &le->id);
742 /* Should never happened, 'cause already checked. */
745 asize = le32_to_cpu(attr->size);
747 /* Insert into primary record. */
748 attr_ins = mi_insert_attr(ni, &ni->mi, le->type, le_name(le),
750 le16_to_cpu(attr->name_off));
753 * No space in primary record (already checked).
758 /* Copy all except id. */
760 memcpy(attr_ins, attr, asize);
765 * Repeat the cycle above and remove all attributes from subrecords.
768 while ((le = al_enumerate(ni, le))) {
769 if (!memcmp(&le->ref, &ref, sizeof(ref)))
772 mi = ni_find_mi(ni, ino_get(&le->ref));
776 attr = mi_find_attr(ni, mi, NULL, le->type, le_name(le),
777 le->name_len, &le->id);
781 /* Remove from original record. */
782 mi_remove_attr(NULL, mi, attr);
785 run_deallocate(sbi, &ni->attr_list.run, true);
786 run_close(&ni->attr_list.run);
787 ni->attr_list.size = 0;
788 kvfree(ni->attr_list.le);
789 ni->attr_list.le = NULL;
790 ni->attr_list.dirty = false;
795 /* Restore primary record. */
796 swap(mrec, ni->mi.mrec);
802 * ni_create_attr_list - Generates an attribute list for this primary record.
804 int ni_create_attr_list(struct ntfs_inode *ni)
806 struct ntfs_sb_info *sbi = ni->mi.sbi;
810 struct ATTRIB *arr_move[7];
811 struct ATTR_LIST_ENTRY *le, *le_b[7];
815 struct mft_inode *mi;
816 u32 free_b, nb, to_free, rs;
819 is_mft = ni->mi.rno == MFT_REC_MFT;
821 rs = sbi->record_size;
824 * Skip estimating exact memory requirement.
825 * Looks like one record_size is always enough.
827 le = kmalloc(al_aligned(rs), GFP_NOFS);
831 mi_get_ref(&ni->mi, &le->ref);
832 ni->attr_list.le = le;
839 for (; (attr = mi_enum_attr(ni, &ni->mi, attr)); le = Add2Ptr(le, sz)) {
840 sz = le_size(attr->name_len);
841 le->type = attr->type;
842 le->size = cpu_to_le16(sz);
843 le->name_len = attr->name_len;
844 le->name_off = offsetof(struct ATTR_LIST_ENTRY, name);
846 if (le != ni->attr_list.le)
847 le->ref = ni->attr_list.le->ref;
851 memcpy(le->name, attr_name(attr),
852 sizeof(short) * attr->name_len);
853 else if (attr->type == ATTR_STD)
855 else if (attr->type == ATTR_LIST)
857 else if (is_mft && attr->type == ATTR_DATA)
860 if (!nb || nb < ARRAY_SIZE(arr_move)) {
862 arr_move[nb++] = attr;
863 free_b += le32_to_cpu(attr->size);
867 lsize = PtrOffset(ni->attr_list.le, le);
868 ni->attr_list.size = lsize;
870 to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT;
876 if (to_free > free_b) {
882 /* Allocate child MFT. */
883 err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi);
888 /* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */
889 while (to_free > 0) {
890 struct ATTRIB *b = arr_move[--nb];
891 u32 asize = le32_to_cpu(b->size);
892 u16 name_off = le16_to_cpu(b->name_off);
894 attr = mi_insert_attr(ni, mi, b->type, Add2Ptr(b, name_off),
895 b->name_len, asize, name_off);
899 mi_get_ref(mi, &le_b[nb]->ref);
900 le_b[nb]->id = attr->id;
902 /* Copy all except id. */
903 memcpy(attr, b, asize);
904 attr->id = le_b[nb]->id;
906 /* Remove from primary record. */
907 if (!mi_remove_attr(NULL, &ni->mi, b))
910 if (to_free <= asize)
917 attr = mi_insert_attr(ni, &ni->mi, ATTR_LIST, NULL, 0,
918 lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT);
924 attr->res.data_size = cpu_to_le32(lsize);
925 attr->res.data_off = SIZEOF_RESIDENT_LE;
929 memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize);
931 ni->attr_list.dirty = false;
933 mark_inode_dirty(&ni->vfs_inode);
937 kvfree(ni->attr_list.le);
938 ni->attr_list.le = NULL;
939 ni->attr_list.size = 0;
944 * ni_ins_attr_ext - Add an external attribute to the ntfs_inode.
946 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le,
947 enum ATTR_TYPE type, const __le16 *name, u8 name_len,
948 u32 asize, CLST svcn, u16 name_off, bool force_ext,
949 struct ATTRIB **ins_attr, struct mft_inode **ins_mi,
950 struct ATTR_LIST_ENTRY **ins_le)
953 struct mft_inode *mi;
956 struct rb_node *node;
958 bool is_mft, is_mft_data;
959 struct ntfs_sb_info *sbi = ni->mi.sbi;
961 is_mft = ni->mi.rno == MFT_REC_MFT;
962 is_mft_data = is_mft && type == ATTR_DATA && !name_len;
964 if (asize > sbi->max_bytes_per_attr) {
970 * Standard information and attr_list cannot be made external.
971 * The Log File cannot have any external attributes.
973 if (type == ATTR_STD || type == ATTR_LIST ||
974 ni->mi.rno == MFT_REC_LOG) {
979 /* Create attribute list if it is not already existed. */
980 if (!ni->attr_list.size) {
981 err = ni_create_attr_list(ni);
986 vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0;
991 /* Load all subrecords into memory. */
992 err = ni_load_all_mi(ni);
996 /* Check each of loaded subrecord. */
997 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
998 mi = rb_entry(node, struct mft_inode, node);
1001 (mi_enum_attr(ni, mi, NULL) ||
1002 vbo <= ((u64)mi->rno << sbi->record_bits))) {
1003 /* We can't accept this record 'cause MFT's bootstrapping. */
1007 mi_find_attr(ni, mi, NULL, ATTR_DATA, NULL, 0, NULL)) {
1009 * This child record already has a ATTR_DATA.
1010 * So it can't accept any other records.
1015 if ((type != ATTR_NAME || name_len) &&
1016 mi_find_attr(ni, mi, NULL, type, name, name_len, NULL)) {
1017 /* Only indexed attributes can share same record. */
1022 * Do not try to insert this attribute
1023 * if there is no room in record.
1025 if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size)
1028 /* Try to insert attribute into this subrecord. */
1029 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1030 name_off, svcn, ins_le);
1034 return PTR_ERR(attr);
1044 /* We have to allocate a new child subrecord. */
1045 err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi);
1049 if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) {
1054 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1055 name_off, svcn, ins_le);
1062 err = PTR_ERR(attr);
1074 ni_remove_mi(ni, mi);
1078 ntfs_mark_rec_free(sbi, rno, is_mft);
1085 * ni_insert_attr - Insert an attribute into the file.
1087 * If the primary record has room, it will just insert the attribute.
1088 * If not, it may make the attribute external.
1089 * For $MFT::Data it may make room for the attribute by
1090 * making other attributes external.
1093 * The ATTR_LIST and ATTR_STD cannot be made external.
1094 * This function does not fill new attribute full.
1095 * It only fills 'size'/'type'/'id'/'name_len' fields.
1097 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
1098 const __le16 *name, u8 name_len, u32 asize,
1099 u16 name_off, CLST svcn, struct ATTRIB **ins_attr,
1100 struct mft_inode **ins_mi,
1101 struct ATTR_LIST_ENTRY **ins_le)
1103 struct ntfs_sb_info *sbi = ni->mi.sbi;
1105 struct ATTRIB *attr, *eattr;
1106 struct MFT_REC *rec;
1108 struct ATTR_LIST_ENTRY *le;
1109 u32 list_reserve, max_free, free, used, t32;
1113 is_mft = ni->mi.rno == MFT_REC_MFT;
1116 list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32));
1117 used = le32_to_cpu(rec->used);
1118 free = sbi->record_size - used;
1120 if (is_mft && type != ATTR_LIST) {
1121 /* Reserve space for the ATTRIB list. */
1122 if (free < list_reserve)
1125 free -= list_reserve;
1128 if (asize <= free) {
1129 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len,
1130 asize, name_off, svcn, ins_le);
1132 err = PTR_ERR(attr);
1146 if (!is_mft || type != ATTR_DATA || svcn) {
1147 /* This ATTRIB will be external. */
1148 err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize,
1149 svcn, name_off, false, ins_attr, ins_mi,
1155 * Here we have: "is_mft && type == ATTR_DATA && !svcn"
1157 * The first chunk of the $MFT::Data ATTRIB must be the base record.
1158 * Evict as many other attributes as possible.
1162 /* Estimate the result of moving all possible attributes away. */
1165 while ((attr = mi_enum_attr(ni, &ni->mi, attr))) {
1166 if (attr->type == ATTR_STD)
1168 if (attr->type == ATTR_LIST)
1170 max_free += le32_to_cpu(attr->size);
1173 if (max_free < asize + list_reserve) {
1174 /* Impossible to insert this attribute into primary record. */
1179 /* Start real attribute moving. */
1183 attr = mi_enum_attr(ni, &ni->mi, attr);
1185 /* We should never be here 'cause we have already check this case. */
1190 /* Skip attributes that MUST be primary record. */
1191 if (attr->type == ATTR_STD || attr->type == ATTR_LIST)
1195 if (ni->attr_list.size) {
1196 le = al_find_le(ni, NULL, attr);
1198 /* Really this is a serious bug. */
1204 t32 = le32_to_cpu(attr->size);
1205 t16 = le16_to_cpu(attr->name_off);
1206 err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16),
1207 attr->name_len, t32, attr_svcn(attr), t16,
1208 false, &eattr, NULL, NULL);
1213 memcpy(eattr, attr, t32);
1216 /* Remove from primary record. */
1217 mi_remove_attr(NULL, &ni->mi, attr);
1219 /* attr now points to next attribute. */
1220 if (attr->type == ATTR_END)
1223 while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used))
1226 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize,
1227 name_off, svcn, ins_le);
1234 err = PTR_ERR(attr);
1247 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */
1248 static int ni_expand_mft_list(struct ntfs_inode *ni)
1251 struct runs_tree *run = &ni->file.run;
1252 u32 asize, run_size, done = 0;
1253 struct ATTRIB *attr;
1254 struct rb_node *node;
1255 CLST mft_min, mft_new, svcn, evcn, plen;
1256 struct mft_inode *mi, *mi_min, *mi_new;
1257 struct ntfs_sb_info *sbi = ni->mi.sbi;
1259 /* Find the nearest MFT. */
1264 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
1265 mi = rb_entry(node, struct mft_inode, node);
1267 attr = mi_enum_attr(ni, mi, NULL);
1276 if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) {
1278 /* Really this is not critical. */
1279 } else if (mft_min > mft_new) {
1283 ntfs_mark_rec_free(sbi, mft_new, true);
1285 ni_remove_mi(ni, mi_new);
1288 attr = mi_find_attr(ni, &ni->mi, NULL, ATTR_DATA, NULL, 0, NULL);
1294 asize = le32_to_cpu(attr->size);
1296 evcn = le64_to_cpu(attr->nres.evcn);
1297 svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits);
1298 if (evcn + 1 >= svcn) {
1304 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn].
1306 * Update first part of ATTR_DATA in 'primary MFT.
1308 err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1309 asize - SIZEOF_NONRESIDENT, &plen);
1313 run_size = ALIGN(err, 8);
1321 attr->nres.evcn = cpu_to_le64(svcn - 1);
1322 attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT);
1323 /* 'done' - How many bytes of primary MFT becomes free. */
1324 done = asize - run_size - SIZEOF_NONRESIDENT;
1325 le32_sub_cpu(&ni->mi.mrec->used, done);
1327 /* Estimate packed size (run_buf=NULL). */
1328 err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size,
1333 run_size = ALIGN(err, 8);
1336 if (plen < evcn + 1 - svcn) {
1342 * This function may implicitly call expand attr_list.
1343 * Insert second part of ATTR_DATA in 'mi_min'.
1345 attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0,
1346 SIZEOF_NONRESIDENT + run_size,
1347 SIZEOF_NONRESIDENT, svcn, NULL);
1354 err = PTR_ERR(attr);
1359 attr->name_off = SIZEOF_NONRESIDENT_LE;
1362 /* This function can't fail - cause already checked above. */
1363 run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1366 attr->nres.svcn = cpu_to_le64(svcn);
1367 attr->nres.evcn = cpu_to_le64(evcn);
1368 attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT);
1372 ntfs_mark_rec_free(sbi, mft_new, true);
1373 ni_remove_mi(ni, mi_new);
1376 return !err && !done ? -EOPNOTSUPP : err;
1380 * ni_expand_list - Move all possible attributes out of primary record.
1382 int ni_expand_list(struct ntfs_inode *ni)
1385 u32 asize, done = 0;
1386 struct ATTRIB *attr, *ins_attr;
1387 struct ATTR_LIST_ENTRY *le;
1388 bool is_mft = ni->mi.rno == MFT_REC_MFT;
1391 mi_get_ref(&ni->mi, &ref);
1394 while ((le = al_enumerate(ni, le))) {
1395 if (le->type == ATTR_STD)
1398 if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF)))
1401 if (is_mft && le->type == ATTR_DATA)
1404 /* Find attribute in primary record. */
1405 attr = rec_find_attr_le(ni, &ni->mi, le);
1411 asize = le32_to_cpu(attr->size);
1413 /* Always insert into new record to avoid collisions (deep recursive). */
1414 err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr),
1415 attr->name_len, asize, attr_svcn(attr),
1416 le16_to_cpu(attr->name_off), true,
1417 &ins_attr, NULL, NULL);
1422 memcpy(ins_attr, attr, asize);
1423 ins_attr->id = le->id;
1424 /* Remove from primary record. */
1425 mi_remove_attr(NULL, &ni->mi, attr);
1432 err = -EFBIG; /* Attr list is too big(?) */
1436 /* Split MFT data as much as possible. */
1437 err = ni_expand_mft_list(ni);
1440 return !err && !done ? -EOPNOTSUPP : err;
1444 * ni_insert_nonresident - Insert new nonresident attribute.
1446 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type,
1447 const __le16 *name, u8 name_len,
1448 const struct runs_tree *run, CLST svcn, CLST len,
1449 __le16 flags, struct ATTRIB **new_attr,
1450 struct mft_inode **mi, struct ATTR_LIST_ENTRY **le)
1454 struct ATTRIB *attr;
1455 bool is_ext = (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) &&
1457 u32 name_size = ALIGN(name_len * sizeof(short), 8);
1458 u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT;
1459 u32 run_off = name_off + name_size;
1460 u32 run_size, asize;
1461 struct ntfs_sb_info *sbi = ni->mi.sbi;
1463 /* Estimate packed size (run_buf=NULL). */
1464 err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off,
1469 run_size = ALIGN(err, 8);
1476 asize = run_off + run_size;
1478 if (asize > sbi->max_bytes_per_attr) {
1483 err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn,
1490 attr->name_off = cpu_to_le16(name_off);
1491 attr->flags = flags;
1493 /* This function can't fail - cause already checked above. */
1494 run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen);
1496 attr->nres.svcn = cpu_to_le64(svcn);
1497 attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1);
1502 *(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off);
1504 attr->nres.alloc_size =
1505 svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits);
1506 attr->nres.data_size = attr->nres.alloc_size;
1507 attr->nres.valid_size = attr->nres.alloc_size;
1510 if (flags & ATTR_FLAG_COMPRESSED)
1511 attr->nres.c_unit = NTFS_LZNT_CUNIT;
1512 attr->nres.total_size = attr->nres.alloc_size;
1520 * ni_insert_resident - Inserts new resident attribute.
1522 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size,
1523 enum ATTR_TYPE type, const __le16 *name, u8 name_len,
1524 struct ATTRIB **new_attr, struct mft_inode **mi,
1525 struct ATTR_LIST_ENTRY **le)
1528 u32 name_size = ALIGN(name_len * sizeof(short), 8);
1529 u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8);
1530 struct ATTRIB *attr;
1532 err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT,
1540 attr->res.data_size = cpu_to_le32(data_size);
1541 attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size);
1542 if (type == ATTR_NAME) {
1543 attr->res.flags = RESIDENT_FLAG_INDEXED;
1545 /* is_attr_indexed(attr)) == true */
1546 le16_add_cpu(&ni->mi.mrec->hard_links, 1);
1547 ni->mi.dirty = true;
1558 * ni_remove_attr_le - Remove attribute from record.
1560 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr,
1561 struct mft_inode *mi, struct ATTR_LIST_ENTRY *le)
1563 mi_remove_attr(ni, mi, attr);
1566 al_remove_le(ni, le);
1570 * ni_delete_all - Remove all attributes and frees allocates space.
1572 * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links).
1574 int ni_delete_all(struct ntfs_inode *ni)
1577 struct ATTR_LIST_ENTRY *le = NULL;
1578 struct ATTRIB *attr = NULL;
1579 struct rb_node *node;
1583 struct ntfs_sb_info *sbi = ni->mi.sbi;
1584 bool nt3 = is_ntfs3(sbi);
1587 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
1588 if (!nt3 || attr->name_len) {
1590 } else if (attr->type == ATTR_REPARSE) {
1591 mi_get_ref(&ni->mi, &ref);
1592 ntfs_remove_reparse(sbi, 0, &ref);
1593 } else if (attr->type == ATTR_ID && !attr->non_res &&
1594 le32_to_cpu(attr->res.data_size) >=
1595 sizeof(struct GUID)) {
1596 ntfs_objid_remove(sbi, resident_data(attr));
1602 svcn = le64_to_cpu(attr->nres.svcn);
1603 evcn = le64_to_cpu(attr->nres.evcn);
1605 if (evcn + 1 <= svcn)
1608 asize = le32_to_cpu(attr->size);
1609 roff = le16_to_cpu(attr->nres.run_off);
1612 /* ni_enum_attr_ex checks this case. */
1616 /* run==1 means unpack and deallocate. */
1617 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
1618 Add2Ptr(attr, roff), asize - roff);
1621 if (ni->attr_list.size) {
1622 run_deallocate(ni->mi.sbi, &ni->attr_list.run, true);
1626 /* Free all subrecords. */
1627 for (node = rb_first(&ni->mi_tree); node;) {
1628 struct rb_node *next = rb_next(node);
1629 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
1631 clear_rec_inuse(mi->mrec);
1635 ntfs_mark_rec_free(sbi, mi->rno, false);
1636 ni_remove_mi(ni, mi);
1641 /* Free base record. */
1642 clear_rec_inuse(ni->mi.mrec);
1643 ni->mi.dirty = true;
1644 err = mi_write(&ni->mi, 0);
1646 ntfs_mark_rec_free(sbi, ni->mi.rno, false);
1653 * Return: File name attribute by its value.
1655 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni,
1656 const struct le_str *uni,
1657 const struct MFT_REF *home_dir,
1658 struct mft_inode **mi,
1659 struct ATTR_LIST_ENTRY **le)
1661 struct ATTRIB *attr = NULL;
1662 struct ATTR_FILE_NAME *fname;
1667 /* Enumerate all names. */
1669 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1673 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1677 if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir)))
1683 if (uni->len != fname->name_len)
1686 if (ntfs_cmp_names(uni->name, uni->len, fname->name, uni->len, NULL,
1695 * Return: File name attribute with given type.
1697 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type,
1698 struct mft_inode **mi,
1699 struct ATTR_LIST_ENTRY **le)
1701 struct ATTRIB *attr = NULL;
1702 struct ATTR_FILE_NAME *fname;
1706 if (name_type == FILE_NAME_POSIX)
1709 /* Enumerate all names. */
1711 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1715 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1716 if (fname && name_type == fname->type)
1724 * Process compressed/sparsed in special way.
1725 * NOTE: You need to set ni->std_fa = new_fa
1726 * after this function to keep internal structures in consistency.
1728 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa)
1730 struct ATTRIB *attr;
1731 struct mft_inode *mi;
1735 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
1739 new_aflags = attr->flags;
1741 if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE)
1742 new_aflags |= ATTR_FLAG_SPARSED;
1744 new_aflags &= ~ATTR_FLAG_SPARSED;
1746 if (new_fa & FILE_ATTRIBUTE_COMPRESSED)
1747 new_aflags |= ATTR_FLAG_COMPRESSED;
1749 new_aflags &= ~ATTR_FLAG_COMPRESSED;
1751 if (new_aflags == attr->flags)
1754 if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ==
1755 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) {
1756 ntfs_inode_warn(&ni->vfs_inode,
1757 "file can't be sparsed and compressed");
1764 if (attr->nres.data_size) {
1767 "one can change sparsed/compressed only for empty files");
1771 /* Resize nonresident empty attribute in-place only. */
1772 new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
1773 (SIZEOF_NONRESIDENT_EX + 8) :
1774 (SIZEOF_NONRESIDENT + 8);
1776 if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size)))
1779 if (new_aflags & ATTR_FLAG_SPARSED) {
1780 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1781 /* Windows uses 16 clusters per frame but supports one cluster per frame too. */
1782 attr->nres.c_unit = 0;
1783 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1784 } else if (new_aflags & ATTR_FLAG_COMPRESSED) {
1785 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1786 /* The only allowed: 16 clusters per frame. */
1787 attr->nres.c_unit = NTFS_LZNT_CUNIT;
1788 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr;
1790 attr->name_off = SIZEOF_NONRESIDENT_LE;
1792 attr->nres.c_unit = 0;
1793 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1795 attr->nres.run_off = attr->name_off;
1797 attr->flags = new_aflags;
1806 * buffer - memory for reparse buffer header
1808 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr,
1809 struct REPARSE_DATA_BUFFER *buffer)
1811 const struct REPARSE_DATA_BUFFER *rp = NULL;
1814 typeof(rp->CompressReparseBuffer) *cmpr;
1816 /* Try to estimate reparse point. */
1817 if (!attr->non_res) {
1818 rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER));
1819 } else if (le64_to_cpu(attr->nres.data_size) >=
1820 sizeof(struct REPARSE_DATA_BUFFER)) {
1821 struct runs_tree run;
1825 if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) &&
1826 !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer,
1827 sizeof(struct REPARSE_DATA_BUFFER),
1836 return REPARSE_NONE;
1838 len = le16_to_cpu(rp->ReparseDataLength);
1839 switch (rp->ReparseTag) {
1840 case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK):
1841 break; /* Symbolic link. */
1842 case IO_REPARSE_TAG_MOUNT_POINT:
1843 break; /* Mount points and junctions. */
1844 case IO_REPARSE_TAG_SYMLINK:
1846 case IO_REPARSE_TAG_COMPRESS:
1848 * WOF - Windows Overlay Filter - Used to compress files with
1851 * Unlike native NTFS file compression, the Windows
1852 * Overlay Filter supports only read operations. This means
1853 * that it doesn't need to sector-align each compressed chunk,
1854 * so the compressed data can be packed more tightly together.
1855 * If you open the file for writing, the WOF just decompresses
1856 * the entire file, turning it back into a plain file.
1858 * Ntfs3 driver decompresses the entire file only on write or
1859 * change size requests.
1862 cmpr = &rp->CompressReparseBuffer;
1863 if (len < sizeof(*cmpr) ||
1864 cmpr->WofVersion != WOF_CURRENT_VERSION ||
1865 cmpr->WofProvider != WOF_PROVIDER_SYSTEM ||
1866 cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) {
1867 return REPARSE_NONE;
1870 switch (cmpr->CompressionFormat) {
1871 case WOF_COMPRESSION_XPRESS4K:
1874 case WOF_COMPRESSION_XPRESS8K:
1877 case WOF_COMPRESSION_XPRESS16K:
1880 case WOF_COMPRESSION_LZX32K:
1887 ni_set_ext_compress_bits(ni, bits);
1888 return REPARSE_COMPRESSED;
1890 case IO_REPARSE_TAG_DEDUP:
1891 ni->ni_flags |= NI_FLAG_DEDUPLICATED;
1892 return REPARSE_DEDUPLICATED;
1895 if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE)
1898 return REPARSE_NONE;
1902 memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER));
1904 /* Looks like normal symlink. */
1905 return REPARSE_LINK;
1909 * ni_fiemap - Helper for file_fiemap().
1912 * TODO: Less aggressive locks.
1914 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo,
1915 __u64 vbo, __u64 len)
1918 struct ntfs_sb_info *sbi = ni->mi.sbi;
1919 u8 cluster_bits = sbi->cluster_bits;
1920 struct runs_tree run;
1921 struct ATTRIB *attr;
1922 CLST vcn = vbo >> cluster_bits;
1924 u64 valid = ni->i_valid;
1926 u64 end, alloc_size;
1932 if (S_ISDIR(ni->vfs_inode.i_mode)) {
1933 attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME,
1934 ARRAY_SIZE(I30_NAME), NULL, NULL);
1936 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL,
1942 if (is_attr_compressed(attr)) {
1943 /* Unfortunately cp -r incorrectly treats compressed clusters. */
1947 "fiemap is not supported for compressed file (cp -r)");
1952 if (!attr || !attr->non_res) {
1953 err = fiemap_fill_next_extent(
1955 attr ? le32_to_cpu(attr->res.data_size) : 0,
1956 FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST |
1957 FIEMAP_EXTENT_MERGED);
1962 alloc_size = le64_to_cpu(attr->nres.alloc_size);
1963 if (end > alloc_size)
1968 ok = run_lookup_entry(&run, vcn, &lcn, &clen, &idx);
1970 CLST vcn_next = vcn;
1972 ok = run_get_entry(&run, ++idx, &vcn, &lcn, &clen) &&
1979 err = attr_load_runs_vcn(ni, attr->type,
1981 attr->name_len, &run, vcn);
1986 ok = run_lookup_entry(&run, vcn, &lcn, &clen, &idx);
1999 if (lcn == SPARSE_LCN) {
2001 vbo = (u64)vcn << cluster_bits;
2005 flags = FIEMAP_EXTENT_MERGED;
2006 if (S_ISDIR(ni->vfs_inode.i_mode)) {
2008 } else if (is_attr_compressed(attr)) {
2011 err = attr_is_frame_compressed(ni, attr,
2012 vcn >> attr->nres.c_unit,
2016 if (clst_data < NTFS_LZNT_CLUSTERS)
2017 flags |= FIEMAP_EXTENT_ENCODED;
2018 } else if (is_attr_encrypted(attr)) {
2019 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2022 vbo = (u64)vcn << cluster_bits;
2023 bytes = (u64)clen << cluster_bits;
2024 lbo = (u64)lcn << cluster_bits;
2028 if (vbo + bytes >= end)
2031 if (vbo + bytes <= valid) {
2033 } else if (vbo >= valid) {
2034 flags |= FIEMAP_EXTENT_UNWRITTEN;
2036 /* vbo < valid && valid < vbo + bytes */
2037 u64 dlen = valid - vbo;
2039 if (vbo + dlen >= end)
2040 flags |= FIEMAP_EXTENT_LAST;
2042 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen,
2058 flags |= FIEMAP_EXTENT_UNWRITTEN;
2061 if (vbo + bytes >= end)
2062 flags |= FIEMAP_EXTENT_LAST;
2064 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags);
2083 * When decompressing, we typically obtain more than one page per reference.
2084 * We inject the additional pages into the page cache.
2086 int ni_readpage_cmpr(struct ntfs_inode *ni, struct folio *folio)
2089 struct ntfs_sb_info *sbi = ni->mi.sbi;
2090 struct address_space *mapping = folio->mapping;
2091 pgoff_t index = folio->index;
2092 u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT;
2093 struct page **pages = NULL; /* Array of at most 16 pages. stack? */
2096 u32 i, idx, frame_size, pages_per_frame;
2100 if (vbo >= i_size_read(&ni->vfs_inode)) {
2101 folio_zero_range(folio, 0, folio_size(folio));
2102 folio_mark_uptodate(folio);
2107 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2108 /* Xpress or LZX. */
2109 frame_bits = ni_ext_compress_bits(ni);
2111 /* LZNT compression. */
2112 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2114 frame_size = 1u << frame_bits;
2115 frame = vbo >> frame_bits;
2116 frame_vbo = (u64)frame << frame_bits;
2117 idx = (vbo - frame_vbo) >> PAGE_SHIFT;
2119 pages_per_frame = frame_size >> PAGE_SHIFT;
2120 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2126 pages[idx] = &folio->page;
2127 index = frame_vbo >> PAGE_SHIFT;
2128 gfp_mask = mapping_gfp_mask(mapping);
2130 for (i = 0; i < pages_per_frame; i++, index++) {
2134 pg = find_or_create_page(mapping, index, gfp_mask);
2142 err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame);
2145 for (i = 0; i < pages_per_frame; i++) {
2147 if (i == idx || !pg)
2154 /* At this point, err contains 0 or -EIO depending on the "critical" page. */
2156 folio_unlock(folio);
2161 #ifdef CONFIG_NTFS3_LZX_XPRESS
2163 * ni_decompress_file - Decompress LZX/Xpress compressed file.
2165 * Remove ATTR_DATA::WofCompressedData.
2166 * Remove ATTR_REPARSE.
2168 int ni_decompress_file(struct ntfs_inode *ni)
2170 struct ntfs_sb_info *sbi = ni->mi.sbi;
2171 struct inode *inode = &ni->vfs_inode;
2172 loff_t i_size = i_size_read(inode);
2173 struct address_space *mapping = inode->i_mapping;
2174 gfp_t gfp_mask = mapping_gfp_mask(mapping);
2175 struct page **pages = NULL;
2176 struct ATTR_LIST_ENTRY *le;
2177 struct ATTRIB *attr;
2178 CLST vcn, cend, lcn, clen, end;
2182 u32 i, frame_size, pages_per_frame, bytes;
2183 struct mft_inode *mi;
2186 /* Clusters for decompressed data. */
2187 cend = bytes_to_cluster(sbi, i_size);
2192 /* Check in advance. */
2193 if (cend > wnd_zeroes(&sbi->used.bitmap)) {
2198 frame_bits = ni_ext_compress_bits(ni);
2199 frame_size = 1u << frame_bits;
2200 pages_per_frame = frame_size >> PAGE_SHIFT;
2201 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2208 * Step 1: Decompress data and copy to new allocated clusters.
2211 for (vbo = 0; vbo < i_size; vbo += bytes) {
2215 if (vbo + frame_size > i_size) {
2216 bytes = i_size - vbo;
2217 nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT;
2219 nr_pages = pages_per_frame;
2223 end = bytes_to_cluster(sbi, vbo + bytes);
2225 for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) {
2226 err = attr_data_get_block(ni, vcn, cend - vcn, &lcn,
2227 &clen, &new, false);
2232 for (i = 0; i < pages_per_frame; i++, index++) {
2235 pg = find_or_create_page(mapping, index, gfp_mask);
2238 unlock_page(pages[i]);
2247 err = ni_read_frame(ni, vbo, pages, pages_per_frame);
2250 down_read(&ni->file.run_lock);
2251 err = ntfs_bio_pages(sbi, &ni->file.run, pages,
2252 nr_pages, vbo, bytes,
2254 up_read(&ni->file.run_lock);
2257 for (i = 0; i < pages_per_frame; i++) {
2258 unlock_page(pages[i]);
2270 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData
2275 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
2279 if (attr->type == ATTR_REPARSE) {
2282 mi_get_ref(&ni->mi, &ref);
2283 ntfs_remove_reparse(sbi, 0, &ref);
2289 if (attr->type != ATTR_REPARSE &&
2290 (attr->type != ATTR_DATA ||
2291 attr->name_len != ARRAY_SIZE(WOF_NAME) ||
2292 memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME))))
2295 svcn = le64_to_cpu(attr->nres.svcn);
2296 evcn = le64_to_cpu(attr->nres.evcn);
2298 if (evcn + 1 <= svcn)
2301 asize = le32_to_cpu(attr->size);
2302 roff = le16_to_cpu(attr->nres.run_off);
2309 /*run==1 Means unpack and deallocate. */
2310 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
2311 Add2Ptr(attr, roff), asize - roff);
2315 * Step 3: Remove attribute ATTR_DATA::WofCompressedData.
2317 err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME),
2323 * Step 4: Remove ATTR_REPARSE.
2325 err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL);
2330 * Step 5: Remove sparse flag from data attribute.
2332 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
2338 if (attr->non_res && is_attr_sparsed(attr)) {
2339 /* Sparsed attribute header is 8 bytes bigger than normal. */
2340 struct MFT_REC *rec = mi->mrec;
2341 u32 used = le32_to_cpu(rec->used);
2342 u32 asize = le32_to_cpu(attr->size);
2343 u16 roff = le16_to_cpu(attr->nres.run_off);
2344 char *rbuf = Add2Ptr(attr, roff);
2346 memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf));
2347 attr->size = cpu_to_le32(asize - 8);
2348 attr->flags &= ~ATTR_FLAG_SPARSED;
2349 attr->nres.run_off = cpu_to_le16(roff - 8);
2350 attr->nres.c_unit = 0;
2351 rec->used = cpu_to_le32(used - 8);
2353 ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE |
2354 FILE_ATTRIBUTE_REPARSE_POINT);
2356 mark_inode_dirty(inode);
2359 /* Clear cached flag. */
2360 ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK;
2361 if (ni->file.offs_folio) {
2362 folio_put(ni->file.offs_folio);
2363 ni->file.offs_folio = NULL;
2365 mapping->a_ops = &ntfs_aops;
2370 _ntfs_bad_inode(inode);
2376 * decompress_lzx_xpress - External compression LZX/Xpress.
2378 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr,
2379 size_t cmpr_size, void *unc, size_t unc_size,
2385 if (cmpr_size == unc_size) {
2386 /* Frame not compressed. */
2387 memcpy(unc, cmpr, unc_size);
2392 if (frame_size == 0x8000) {
2393 mutex_lock(&sbi->compress.mtx_lzx);
2394 /* LZX: Frame compressed. */
2395 ctx = sbi->compress.lzx;
2397 /* Lazy initialize LZX decompress context. */
2398 ctx = lzx_allocate_decompressor();
2404 sbi->compress.lzx = ctx;
2407 if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2408 /* Treat all errors as "invalid argument". */
2412 mutex_unlock(&sbi->compress.mtx_lzx);
2414 /* XPRESS: Frame compressed. */
2415 mutex_lock(&sbi->compress.mtx_xpress);
2416 ctx = sbi->compress.xpress;
2418 /* Lazy initialize Xpress decompress context. */
2419 ctx = xpress_allocate_decompressor();
2425 sbi->compress.xpress = ctx;
2428 if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2429 /* Treat all errors as "invalid argument". */
2433 mutex_unlock(&sbi->compress.mtx_xpress);
2442 * Pages - Array of locked pages.
2444 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages,
2445 u32 pages_per_frame)
2448 struct ntfs_sb_info *sbi = ni->mi.sbi;
2449 u8 cluster_bits = sbi->cluster_bits;
2450 char *frame_ondisk = NULL;
2451 char *frame_mem = NULL;
2452 struct page **pages_disk = NULL;
2453 struct ATTR_LIST_ENTRY *le = NULL;
2454 struct runs_tree *run = &ni->file.run;
2455 u64 valid_size = ni->i_valid;
2458 u32 frame_size, i, npages_disk, ondisk_size;
2460 struct ATTRIB *attr;
2461 CLST frame, clst_data;
2464 * To simplify decompress algorithm do vmap for source
2467 for (i = 0; i < pages_per_frame; i++)
2470 frame_size = pages_per_frame << PAGE_SHIFT;
2471 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL);
2477 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL);
2483 if (!attr->non_res) {
2484 u32 data_size = le32_to_cpu(attr->res.data_size);
2486 memset(frame_mem, 0, frame_size);
2487 if (frame_vbo < data_size) {
2488 ondisk_size = data_size - frame_vbo;
2489 memcpy(frame_mem, resident_data(attr) + frame_vbo,
2490 min(ondisk_size, frame_size));
2496 if (frame_vbo >= valid_size) {
2497 memset(frame_mem, 0, frame_size);
2502 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2503 #ifndef CONFIG_NTFS3_LZX_XPRESS
2507 loff_t i_size = i_size_read(&ni->vfs_inode);
2508 u32 frame_bits = ni_ext_compress_bits(ni);
2509 u64 frame64 = frame_vbo >> frame_bits;
2510 u64 frames, vbo_data;
2512 if (frame_size != (1u << frame_bits)) {
2516 switch (frame_size) {
2523 /* Unknown compression. */
2528 attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME,
2529 ARRAY_SIZE(WOF_NAME), NULL, NULL);
2533 "external compressed file should contains data attribute \"WofCompressedData\"");
2538 if (!attr->non_res) {
2548 frames = (i_size - 1) >> frame_bits;
2550 err = attr_wof_frame_info(ni, attr, run, frame64, frames,
2551 frame_bits, &ondisk_size, &vbo_data);
2555 if (frame64 == frames) {
2556 unc_size = 1 + ((i_size - 1) & (frame_size - 1));
2557 ondisk_size = attr_size(attr) - vbo_data;
2559 unc_size = frame_size;
2562 if (ondisk_size > frame_size) {
2567 if (!attr->non_res) {
2568 if (vbo_data + ondisk_size >
2569 le32_to_cpu(attr->res.data_size)) {
2574 err = decompress_lzx_xpress(
2575 sbi, Add2Ptr(resident_data(attr), vbo_data),
2576 ondisk_size, frame_mem, unc_size, frame_size);
2579 vbo_disk = vbo_data;
2580 /* Load all runs to read [vbo_disk-vbo_to). */
2581 err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
2582 ARRAY_SIZE(WOF_NAME), run, vbo_disk,
2583 vbo_data + ondisk_size);
2586 npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) +
2590 } else if (is_attr_compressed(attr)) {
2591 /* LZNT compression. */
2592 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2597 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2602 down_write(&ni->file.run_lock);
2603 run_truncate_around(run, le64_to_cpu(attr->nres.svcn));
2604 frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT);
2605 err = attr_is_frame_compressed(ni, attr, frame, &clst_data,
2607 up_write(&ni->file.run_lock);
2612 memset(frame_mem, 0, frame_size);
2616 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2617 ondisk_size = clst_data << cluster_bits;
2619 if (clst_data >= NTFS_LZNT_CLUSTERS) {
2620 /* Frame is not compressed. */
2621 down_read(&ni->file.run_lock);
2622 err = ntfs_bio_pages(sbi, run, pages, pages_per_frame,
2623 frame_vbo, ondisk_size,
2625 up_read(&ni->file.run_lock);
2628 vbo_disk = frame_vbo;
2629 npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2631 __builtin_unreachable();
2636 pages_disk = kcalloc(npages_disk, sizeof(*pages_disk), GFP_NOFS);
2642 for (i = 0; i < npages_disk; i++) {
2643 pg = alloc_page(GFP_KERNEL);
2653 /* Read 'ondisk_size' bytes from disk. */
2654 down_read(&ni->file.run_lock);
2655 err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk,
2656 ondisk_size, REQ_OP_READ);
2657 up_read(&ni->file.run_lock);
2662 * To simplify decompress algorithm do vmap for source and target pages.
2664 frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO);
2665 if (!frame_ondisk) {
2670 /* Decompress: Frame_ondisk -> frame_mem. */
2671 #ifdef CONFIG_NTFS3_LZX_XPRESS
2672 if (run != &ni->file.run) {
2674 err = decompress_lzx_xpress(
2675 sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)),
2676 ondisk_size, frame_mem, unc_size, frame_size);
2680 /* LZNT - Native NTFS compression. */
2681 unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem,
2683 if ((ssize_t)unc_size < 0)
2685 else if (!unc_size || unc_size > frame_size)
2688 if (!err && valid_size < frame_vbo + frame_size) {
2689 size_t ok = valid_size - frame_vbo;
2691 memset(frame_mem + ok, 0, frame_size - ok);
2694 vunmap(frame_ondisk);
2697 for (i = 0; i < npages_disk; i++) {
2708 #ifdef CONFIG_NTFS3_LZX_XPRESS
2709 if (run != &ni->file.run)
2715 for (i = 0; i < pages_per_frame; i++) {
2718 SetPageUptodate(pg);
2727 * Pages - Array of locked pages.
2729 int ni_write_frame(struct ntfs_inode *ni, struct page **pages,
2730 u32 pages_per_frame)
2733 struct ntfs_sb_info *sbi = ni->mi.sbi;
2734 struct folio *folio = page_folio(pages[0]);
2735 u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2736 u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2737 u64 frame_vbo = folio_pos(folio);
2738 CLST frame = frame_vbo >> frame_bits;
2739 char *frame_ondisk = NULL;
2740 struct page **pages_disk = NULL;
2741 struct ATTR_LIST_ENTRY *le = NULL;
2743 struct ATTRIB *attr;
2744 struct mft_inode *mi;
2747 size_t compr_size, ondisk_size;
2750 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi);
2756 if (WARN_ON(!is_attr_compressed(attr))) {
2761 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2766 if (!attr->non_res) {
2767 down_write(&ni->file.run_lock);
2768 err = attr_make_nonresident(ni, attr, le, mi,
2769 le32_to_cpu(attr->res.data_size),
2770 &ni->file.run, &attr, pages[0]);
2771 up_write(&ni->file.run_lock);
2776 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2781 pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2787 for (i = 0; i < pages_per_frame; i++) {
2788 pg = alloc_page(GFP_KERNEL);
2798 /* To simplify compress algorithm do vmap for source and target pages. */
2799 frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL);
2800 if (!frame_ondisk) {
2805 for (i = 0; i < pages_per_frame; i++)
2808 /* Map in-memory frame for read-only. */
2809 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO);
2815 mutex_lock(&sbi->compress.mtx_lznt);
2817 if (!sbi->compress.lznt) {
2819 * LZNT implements two levels of compression:
2820 * 0 - Standard compression
2821 * 1 - Best compression, requires a lot of cpu
2824 lznt = get_lznt_ctx(0);
2826 mutex_unlock(&sbi->compress.mtx_lznt);
2831 sbi->compress.lznt = lznt;
2835 /* Compress: frame_mem -> frame_ondisk */
2836 compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk,
2837 frame_size, sbi->compress.lznt);
2838 mutex_unlock(&sbi->compress.mtx_lznt);
2841 if (compr_size + sbi->cluster_size > frame_size) {
2842 /* Frame is not compressed. */
2843 compr_size = frame_size;
2844 ondisk_size = frame_size;
2845 } else if (compr_size) {
2846 /* Frame is compressed. */
2847 ondisk_size = ntfs_up_cluster(sbi, compr_size);
2848 memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size);
2850 /* Frame is sparsed. */
2854 down_write(&ni->file.run_lock);
2855 run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn));
2856 err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid);
2857 up_write(&ni->file.run_lock);
2864 down_read(&ni->file.run_lock);
2865 err = ntfs_bio_pages(sbi, &ni->file.run,
2866 ondisk_size < frame_size ? pages_disk : pages,
2867 pages_per_frame, frame_vbo, ondisk_size,
2869 up_read(&ni->file.run_lock);
2875 for (i = 0; i < pages_per_frame; i++)
2878 vunmap(frame_ondisk);
2880 for (i = 0; i < pages_per_frame; i++) {
2894 * ni_remove_name - Removes name 'de' from MFT and from directory.
2895 * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs.
2897 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2898 struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step)
2901 struct ntfs_sb_info *sbi = ni->mi.sbi;
2902 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2903 struct ATTR_FILE_NAME *fname;
2904 struct ATTR_LIST_ENTRY *le;
2905 struct mft_inode *mi;
2906 u16 de_key_size = le16_to_cpu(de->key_size);
2911 /* Find name in record. */
2912 mi_get_ref(&dir_ni->mi, &de_name->home);
2914 fname = ni_fname_name(ni, (struct le_str *)&de_name->name_len,
2915 &de_name->home, &mi, &le);
2919 memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO));
2920 name_type = paired_name(fname->type);
2922 /* Mark ntfs as dirty. It will be cleared at umount. */
2923 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
2925 /* Step 1: Remove name from directory. */
2926 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi);
2930 /* Step 2: Remove name from MFT. */
2931 ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2935 /* Get paired name. */
2936 fname = ni_fname_type(ni, name_type, &mi, &le);
2938 u16 de2_key_size = fname_full_size(fname);
2940 *de2 = Add2Ptr(de, 1024);
2941 (*de2)->key_size = cpu_to_le16(de2_key_size);
2943 memcpy(*de2 + 1, fname, de2_key_size);
2945 /* Step 3: Remove paired name from directory. */
2946 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname,
2951 /* Step 4: Remove paired name from MFT. */
2952 ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2960 * ni_remove_name_undo - Paired function for ni_remove_name.
2962 * Return: True if ok
2964 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2965 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step)
2967 struct ntfs_sb_info *sbi = ni->mi.sbi;
2968 struct ATTRIB *attr;
2971 switch (undo_step) {
2973 de_key_size = le16_to_cpu(de2->key_size);
2974 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2977 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size);
2979 mi_get_ref(&ni->mi, &de2->ref);
2980 de2->size = cpu_to_le16(ALIGN(de_key_size, 8) +
2981 sizeof(struct NTFS_DE));
2985 if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL, 1))
2990 de_key_size = le16_to_cpu(de->key_size);
2992 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2996 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size);
2997 mi_get_ref(&ni->mi, &de->ref);
2999 if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1))
3007 * ni_add_name - Add new name into MFT and into directory.
3009 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
3013 struct ntfs_sb_info *sbi = ni->mi.sbi;
3014 struct ATTRIB *attr;
3015 struct ATTR_LIST_ENTRY *le;
3016 struct mft_inode *mi;
3017 struct ATTR_FILE_NAME *fname;
3018 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
3019 u16 de_key_size = le16_to_cpu(de->key_size);
3021 if (sbi->options->windows_names &&
3022 !valid_windows_name(sbi, (struct le_str *)&de_name->name_len))
3025 /* If option "hide_dot_files" then set hidden attribute for dot files. */
3026 if (ni->mi.sbi->options->hide_dot_files) {
3027 if (de_name->name_len > 0 &&
3028 le16_to_cpu(de_name->name[0]) == '.')
3029 ni->std_fa |= FILE_ATTRIBUTE_HIDDEN;
3031 ni->std_fa &= ~FILE_ATTRIBUTE_HIDDEN;
3034 mi_get_ref(&ni->mi, &de->ref);
3035 mi_get_ref(&dir_ni->mi, &de_name->home);
3037 /* Fill duplicate from any ATTR_NAME. */
3038 fname = ni_fname_name(ni, NULL, NULL, NULL, NULL);
3040 memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup));
3041 de_name->dup.fa = ni->std_fa;
3043 /* Insert new name into MFT. */
3044 err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr,
3049 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size);
3051 /* Insert new name into directory. */
3052 err = indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 0);
3054 ni_remove_attr_le(ni, attr, mi, le);
3060 * ni_rename - Remove one name and insert new name.
3062 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni,
3063 struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de,
3067 struct NTFS_DE *de2 = NULL;
3071 * There are two possible ways to rename:
3072 * 1) Add new name and remove old name.
3073 * 2) Remove old name and add new name.
3075 * In most cases (not all!) adding new name into MFT and into directory can
3076 * allocate additional cluster(s).
3077 * Second way may result to bad inode if we can't add new name
3078 * and then can't restore (add) old name.
3082 * Way 1 - Add new + remove old.
3084 err = ni_add_name(new_dir_ni, ni, new_de);
3086 err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3087 if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo))
3092 * Way 2 - Remove old + add new.
3095 * err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3097 * err = ni_add_name(new_dir_ni, ni, new_de);
3098 * if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo))
3107 * ni_is_dirty - Return: True if 'ni' requires ni_write_inode.
3109 bool ni_is_dirty(struct inode *inode)
3111 struct ntfs_inode *ni = ntfs_i(inode);
3112 struct rb_node *node;
3114 if (ni->mi.dirty || ni->attr_list.dirty ||
3115 (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3118 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
3119 if (rb_entry(node, struct mft_inode, node)->dirty)
3129 * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories.
3131 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup,
3134 struct ATTRIB *attr;
3135 struct mft_inode *mi;
3136 struct ATTR_LIST_ENTRY *le = NULL;
3137 struct ntfs_sb_info *sbi = ni->mi.sbi;
3138 struct super_block *sb = sbi->sb;
3139 bool re_dirty = false;
3141 if (ni->mi.mrec->flags & RECORD_FLAG_DIR) {
3142 dup->fa |= FILE_ATTRIBUTE_DIRECTORY;
3144 dup->alloc_size = 0;
3147 dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY;
3149 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL,
3152 dup->alloc_size = dup->data_size = 0;
3153 } else if (!attr->non_res) {
3154 u32 data_size = le32_to_cpu(attr->res.data_size);
3156 dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8));
3157 dup->data_size = cpu_to_le64(data_size);
3159 u64 new_valid = ni->i_valid;
3160 u64 data_size = le64_to_cpu(attr->nres.data_size);
3163 dup->alloc_size = is_attr_ext(attr) ?
3164 attr->nres.total_size :
3165 attr->nres.alloc_size;
3166 dup->data_size = attr->nres.data_size;
3168 if (new_valid > data_size)
3169 new_valid = data_size;
3171 valid_le = cpu_to_le64(new_valid);
3172 if (valid_le != attr->nres.valid_size) {
3173 attr->nres.valid_size = valid_le;
3179 /* TODO: Fill reparse info. */
3183 if (ni->ni_flags & NI_FLAG_EA) {
3184 attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL,
3187 const struct EA_INFO *info;
3189 info = resident_data_ex(attr, sizeof(struct EA_INFO));
3190 /* If ATTR_EA_INFO exists 'info' can't be NULL. */
3192 dup->ea_size = info->size_pack;
3199 while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL,
3202 struct ATTR_FILE_NAME *fname;
3204 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
3205 if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup)))
3208 /* Check simple case when parent inode equals current inode. */
3209 if (ino_get(&fname->home) == ni->vfs_inode.i_ino) {
3210 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3214 /* ntfs_iget5 may sleep. */
3215 dir = ntfs_iget5(sb, &fname->home, NULL);
3219 "failed to open parent directory r=%lx to update",
3220 (long)ino_get(&fname->home));
3224 if (!is_bad_inode(dir)) {
3225 struct ntfs_inode *dir_ni = ntfs_i(dir);
3227 if (!ni_trylock(dir_ni)) {
3230 indx_update_dup(dir_ni, sbi, fname, dup, sync);
3232 memcpy(&fname->dup, dup, sizeof(fname->dup));
3243 * ni_write_inode - Write MFT base record and all subrecords to disk.
3245 int ni_write_inode(struct inode *inode, int sync, const char *hint)
3248 struct ntfs_inode *ni = ntfs_i(inode);
3249 struct super_block *sb = inode->i_sb;
3250 struct ntfs_sb_info *sbi = sb->s_fs_info;
3251 bool re_dirty = false;
3252 struct ATTR_STD_INFO *std;
3253 struct rb_node *node, *next;
3254 struct NTFS_DUP_INFO dup;
3256 if (is_bad_inode(inode) || sb_rdonly(sb))
3259 if (unlikely(ntfs3_forced_shutdown(sb)))
3262 if (!ni_trylock(ni)) {
3263 /* 'ni' is under modification, skip for now. */
3264 mark_inode_dirty_sync(inode);
3271 if (is_rec_inuse(ni->mi.mrec) &&
3272 !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) {
3273 bool modified = false;
3274 struct timespec64 ts;
3276 /* Update times in standard attribute. */
3283 /* Update the access times if they have changed. */
3284 ts = inode_get_mtime(inode);
3285 dup.m_time = kernel2nt(&ts);
3286 if (std->m_time != dup.m_time) {
3287 std->m_time = dup.m_time;
3291 ts = inode_get_ctime(inode);
3292 dup.c_time = kernel2nt(&ts);
3293 if (std->c_time != dup.c_time) {
3294 std->c_time = dup.c_time;
3298 ts = inode_get_atime(inode);
3299 dup.a_time = kernel2nt(&ts);
3300 if (std->a_time != dup.a_time) {
3301 std->a_time = dup.a_time;
3305 dup.fa = ni->std_fa;
3306 if (std->fa != dup.fa) {
3311 /* std attribute is always in primary MFT record. */
3313 ni->mi.dirty = true;
3315 if (!ntfs_is_meta_file(sbi, inode->i_ino) &&
3316 (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3317 /* Avoid __wait_on_freeing_inode(inode). */
3318 && (sb->s_flags & SB_ACTIVE)) {
3319 dup.cr_time = std->cr_time;
3320 /* Not critical if this function fail. */
3321 re_dirty = ni_update_parent(ni, &dup, sync);
3324 ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3326 ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT;
3329 /* Update attribute list. */
3330 if (ni->attr_list.size && ni->attr_list.dirty) {
3331 if (inode->i_ino != MFT_REC_MFT || sync) {
3332 err = ni_try_remove_attr_list(ni);
3337 err = al_update(ni, sync);
3343 for (node = rb_first(&ni->mi_tree); node; node = next) {
3344 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
3347 next = rb_next(node);
3352 is_empty = !mi_enum_attr(ni, mi, NULL);
3355 clear_rec_inuse(mi->mrec);
3357 err2 = mi_write(mi, sync);
3362 ntfs_mark_rec_free(sbi, mi->rno, false);
3363 rb_erase(node, &ni->mi_tree);
3369 err2 = mi_write(&ni->mi, sync);
3377 ntfs_inode_err(inode, "%s failed, %d.", hint, err);
3378 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3383 mark_inode_dirty_sync(inode);
3391 * Helper for 'ntfs_fileattr_set'.
3392 * Changes compression for empty files and directories only.
3394 int ni_set_compress(struct inode *inode, bool compr)
3397 struct ntfs_inode *ni = ntfs_i(inode);
3398 struct ATTR_STD_INFO *std;
3399 const char *bad_inode;
3401 if (is_compressed(ni) == !!compr)
3404 if (is_sparsed(ni)) {
3405 /* sparse and compress not compatible. */
3409 if (!S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode)) {
3410 /*Skip other inodes. (symlink,fifo,...) */
3420 bad_inode = "no std";
3424 if (S_ISREG(inode->i_mode)) {
3425 err = attr_set_compress(ni, compr);
3427 if (err == -ENOENT) {
3428 /* Fix on the fly? */
3429 /* Each file must contain data attribute. */
3430 bad_inode = "no data attribute";
3436 ni->std_fa = std->fa;
3438 std->fa |= FILE_ATTRIBUTE_COMPRESSED;
3440 std->fa &= ~FILE_ATTRIBUTE_COMPRESSED;
3442 if (ni->std_fa != std->fa) {
3443 ni->std_fa = std->fa;
3444 ni->mi.dirty = true;
3446 /* update duplicate information and directory entries in ni_write_inode.*/
3447 ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3453 ntfs_bad_inode(inode, bad_inode);