1 // SPDX-License-Identifier: GPL-2.0
5 #include "alloc_foreground.h"
8 #include "fs-io-direct.h"
9 #include "fs-io-pagecache.h"
13 #include <linux/kthread.h>
14 #include <linux/pagemap.h>
15 #include <linux/prefetch.h>
16 #include <linux/task_io_accounting_ops.h>
25 struct bch_read_bio rbio;
28 static void bio_check_or_release(struct bio *bio, bool check_dirty)
31 bio_check_pages_dirty(bio);
33 bio_release_pages(bio, false);
38 static CLOSURE_CALLBACK(bch2_dio_read_complete)
40 closure_type(dio, struct dio_read, cl);
42 dio->req->ki_complete(dio->req, dio->ret);
43 bio_check_or_release(&dio->rbio.bio, dio->should_dirty);
46 static void bch2_direct_IO_read_endio(struct bio *bio)
48 struct dio_read *dio = bio->bi_private;
51 dio->ret = blk_status_to_errno(bio->bi_status);
53 closure_put(&dio->cl);
56 static void bch2_direct_IO_read_split_endio(struct bio *bio)
58 struct dio_read *dio = bio->bi_private;
59 bool should_dirty = dio->should_dirty;
61 bch2_direct_IO_read_endio(bio);
62 bio_check_or_release(bio, should_dirty);
65 static int bch2_direct_IO_read(struct kiocb *req, struct iov_iter *iter)
67 struct file *file = req->ki_filp;
68 struct bch_inode_info *inode = file_bch_inode(file);
69 struct bch_fs *c = inode->v.i_sb->s_fs_info;
70 struct bch_io_opts opts;
74 loff_t offset = req->ki_pos;
75 bool sync = is_sync_kiocb(req);
79 bch2_inode_opts_get(&opts, c, &inode->ei_inode);
81 /* bios must be 512 byte aligned: */
82 if ((offset|iter->count) & (SECTOR_SIZE - 1))
85 ret = min_t(loff_t, iter->count,
86 max_t(loff_t, 0, i_size_read(&inode->v) - offset));
91 shorten = iov_iter_count(iter) - round_up(ret, block_bytes(c));
92 if (shorten >= iter->count)
94 iter->count -= shorten;
96 bio = bio_alloc_bioset(NULL,
97 bio_iov_vecs_to_alloc(iter, BIO_MAX_VECS),
100 &c->dio_read_bioset);
102 bio->bi_end_io = bch2_direct_IO_read_endio;
104 dio = container_of(bio, struct dio_read, rbio.bio);
105 closure_init(&dio->cl, NULL);
108 * this is a _really_ horrible hack just to avoid an atomic sub at the
112 set_closure_fn(&dio->cl, bch2_dio_read_complete, NULL);
113 atomic_set(&dio->cl.remaining,
114 CLOSURE_REMAINING_INITIALIZER -
118 atomic_set(&dio->cl.remaining,
119 CLOSURE_REMAINING_INITIALIZER + 1);
120 dio->cl.closure_get_happened = true;
126 * This is one of the sketchier things I've encountered: we have to skip
127 * the dirtying of requests that are internal from the kernel (i.e. from
128 * loopback), because we'll deadlock on page_lock.
130 dio->should_dirty = iter_is_iovec(iter);
132 blk_start_plug(&plug);
135 while (iter->count) {
136 bio = bio_alloc_bioset(NULL,
137 bio_iov_vecs_to_alloc(iter, BIO_MAX_VECS),
141 bio->bi_end_io = bch2_direct_IO_read_split_endio;
143 bio->bi_opf = REQ_OP_READ|REQ_SYNC;
144 bio->bi_iter.bi_sector = offset >> 9;
145 bio->bi_private = dio;
147 ret = bio_iov_iter_get_pages(bio, iter);
149 /* XXX: fault inject this path */
150 bio->bi_status = BLK_STS_RESOURCE;
155 offset += bio->bi_iter.bi_size;
157 if (dio->should_dirty)
158 bio_set_pages_dirty(bio);
161 closure_get(&dio->cl);
163 bch2_read(c, rbio_init(bio, opts), inode_inum(inode));
166 blk_finish_plug(&plug);
168 iter->count += shorten;
171 closure_sync(&dio->cl);
172 closure_debug_destroy(&dio->cl);
174 bio_check_or_release(&dio->rbio.bio, dio->should_dirty);
181 ssize_t bch2_read_iter(struct kiocb *iocb, struct iov_iter *iter)
183 struct file *file = iocb->ki_filp;
184 struct bch_inode_info *inode = file_bch_inode(file);
185 struct address_space *mapping = file->f_mapping;
186 size_t count = iov_iter_count(iter);
190 return 0; /* skip atime */
192 if (iocb->ki_flags & IOCB_DIRECT) {
193 struct blk_plug plug;
195 if (unlikely(mapping->nrpages)) {
196 ret = filemap_write_and_wait_range(mapping,
198 iocb->ki_pos + count - 1);
205 blk_start_plug(&plug);
206 ret = bch2_direct_IO_read(iocb, iter);
207 blk_finish_plug(&plug);
212 bch2_pagecache_add_get(inode);
213 ret = filemap_read(iocb, iter, ret);
214 bch2_pagecache_add_put(inode);
217 return bch2_err_class(ret);
220 /* O_DIRECT writes */
224 struct address_space *mapping;
225 struct bch_inode_info *inode;
226 struct mm_struct *mm;
227 const struct iovec *iov;
232 struct quota_res quota_res;
235 struct iov_iter iter;
236 struct iovec inline_vecs[2];
239 struct bch_write_op op;
242 static bool bch2_check_range_allocated(struct bch_fs *c, subvol_inum inum,
243 u64 offset, u64 size,
244 unsigned nr_replicas, bool compressed)
246 struct btree_trans *trans = bch2_trans_get(c);
247 struct btree_iter iter;
249 u64 end = offset + size;
254 bch2_trans_begin(trans);
256 err = bch2_subvolume_get_snapshot(trans, inum.subvol, &snapshot);
260 for_each_btree_key_norestart(trans, iter, BTREE_ID_extents,
261 SPOS(inum.inum, offset, snapshot),
262 BTREE_ITER_slots, k, err) {
263 if (bkey_ge(bkey_start_pos(k.k), POS(inum.inum, end)))
266 if (k.k->p.snapshot != snapshot ||
267 nr_replicas > bch2_bkey_replicas(c, k) ||
268 (!compressed && bch2_bkey_sectors_compressed(k))) {
274 offset = iter.pos.offset;
275 bch2_trans_iter_exit(trans, &iter);
277 if (bch2_err_matches(err, BCH_ERR_transaction_restart))
279 bch2_trans_put(trans);
281 return err ? false : ret;
284 static noinline bool bch2_dio_write_check_allocated(struct dio_write *dio)
286 struct bch_fs *c = dio->op.c;
287 struct bch_inode_info *inode = dio->inode;
288 struct bio *bio = &dio->op.wbio.bio;
290 return bch2_check_range_allocated(c, inode_inum(inode),
291 dio->op.pos.offset, bio_sectors(bio),
292 dio->op.opts.data_replicas,
293 dio->op.opts.compression != 0);
296 static void bch2_dio_write_loop_async(struct bch_write_op *);
297 static __always_inline long bch2_dio_write_done(struct dio_write *dio);
300 * We're going to return -EIOCBQUEUED, but we haven't finished consuming the
301 * iov_iter yet, so we need to stash a copy of the iovec: it might be on the
302 * caller's stack, we're not guaranteed that it will live for the duration of
305 static noinline int bch2_dio_write_copy_iov(struct dio_write *dio)
307 struct iovec *iov = dio->inline_vecs;
310 * iov_iter has a single embedded iovec - nothing to do:
312 if (iter_is_ubuf(&dio->iter))
316 * We don't currently handle non-iovec iov_iters here - return an error,
317 * and we'll fall back to doing the IO synchronously:
319 if (!iter_is_iovec(&dio->iter))
322 if (dio->iter.nr_segs > ARRAY_SIZE(dio->inline_vecs)) {
323 dio->iov = iov = kmalloc_array(dio->iter.nr_segs, sizeof(*iov),
329 memcpy(iov, dio->iter.__iov, dio->iter.nr_segs * sizeof(*iov));
330 dio->iter.__iov = iov;
334 static CLOSURE_CALLBACK(bch2_dio_write_flush_done)
336 closure_type(dio, struct dio_write, op.cl);
337 struct bch_fs *c = dio->op.c;
339 closure_debug_destroy(cl);
341 dio->op.error = bch2_journal_error(&c->journal);
343 bch2_dio_write_done(dio);
346 static noinline void bch2_dio_write_flush(struct dio_write *dio)
348 struct bch_fs *c = dio->op.c;
349 struct bch_inode_unpacked inode;
354 closure_init(&dio->op.cl, NULL);
356 if (!dio->op.error) {
357 ret = bch2_inode_find_by_inum(c, inode_inum(dio->inode), &inode);
361 bch2_journal_flush_seq_async(&c->journal, inode.bi_journal_seq,
363 bch2_inode_flush_nocow_writes_async(c, dio->inode, &dio->op.cl);
368 closure_sync(&dio->op.cl);
369 closure_debug_destroy(&dio->op.cl);
371 continue_at(&dio->op.cl, bch2_dio_write_flush_done, NULL);
375 static __always_inline long bch2_dio_write_done(struct dio_write *dio)
377 struct bch_fs *c = dio->op.c;
378 struct kiocb *req = dio->req;
379 struct bch_inode_info *inode = dio->inode;
380 bool sync = dio->sync;
383 if (unlikely(dio->flush)) {
384 bch2_dio_write_flush(dio);
389 bch2_pagecache_block_put(inode);
393 ret = dio->op.error ?: ((long) dio->written << 9);
394 bio_put(&dio->op.wbio.bio);
396 bch2_write_ref_put(c, BCH_WRITE_REF_dio_write);
398 /* inode->i_dio_count is our ref on inode and thus bch_fs */
399 inode_dio_end(&inode->v);
402 ret = bch2_err_class(ret);
405 req->ki_complete(req, ret);
411 static __always_inline void bch2_dio_write_end(struct dio_write *dio)
413 struct bch_fs *c = dio->op.c;
414 struct kiocb *req = dio->req;
415 struct bch_inode_info *inode = dio->inode;
416 struct bio *bio = &dio->op.wbio.bio;
418 req->ki_pos += (u64) dio->op.written << 9;
419 dio->written += dio->op.written;
421 if (dio->extending) {
422 spin_lock(&inode->v.i_lock);
423 if (req->ki_pos > inode->v.i_size)
424 i_size_write(&inode->v, req->ki_pos);
425 spin_unlock(&inode->v.i_lock);
428 if (dio->op.i_sectors_delta || dio->quota_res.sectors) {
429 mutex_lock(&inode->ei_quota_lock);
430 __bch2_i_sectors_acct(c, inode, &dio->quota_res, dio->op.i_sectors_delta);
431 __bch2_quota_reservation_put(c, inode, &dio->quota_res);
432 mutex_unlock(&inode->ei_quota_lock);
435 bio_release_pages(bio, false);
437 if (unlikely(dio->op.error))
438 set_bit(EI_INODE_ERROR, &inode->ei_flags);
441 static __always_inline long bch2_dio_write_loop(struct dio_write *dio)
443 struct bch_fs *c = dio->op.c;
444 struct kiocb *req = dio->req;
445 struct address_space *mapping = dio->mapping;
446 struct bch_inode_info *inode = dio->inode;
447 struct bch_io_opts opts;
448 struct bio *bio = &dio->op.wbio.bio;
449 unsigned unaligned, iter_count;
450 bool sync = dio->sync, dropped_locks;
453 bch2_inode_opts_get(&opts, c, &inode->ei_inode);
456 iter_count = dio->iter.count;
458 EBUG_ON(current->faults_disabled_mapping);
459 current->faults_disabled_mapping = mapping;
461 ret = bio_iov_iter_get_pages(bio, &dio->iter);
463 dropped_locks = fdm_dropped_locks();
465 current->faults_disabled_mapping = NULL;
468 * If the fault handler returned an error but also signalled
469 * that it dropped & retook ei_pagecache_lock, we just need to
470 * re-shoot down the page cache and retry:
472 if (dropped_locks && ret)
475 if (unlikely(ret < 0))
478 if (unlikely(dropped_locks)) {
479 ret = bch2_write_invalidate_inode_pages_range(mapping,
481 req->ki_pos + iter_count - 1);
485 if (!bio->bi_iter.bi_size)
489 unaligned = bio->bi_iter.bi_size & (block_bytes(c) - 1);
490 bio->bi_iter.bi_size -= unaligned;
491 iov_iter_revert(&dio->iter, unaligned);
493 if (!bio->bi_iter.bi_size) {
495 * bio_iov_iter_get_pages was only able to get <
496 * blocksize worth of pages:
502 bch2_write_op_init(&dio->op, c, opts);
503 dio->op.end_io = sync
505 : bch2_dio_write_loop_async;
506 dio->op.target = dio->op.opts.foreground_target;
507 dio->op.write_point = writepoint_hashed((unsigned long) current);
508 dio->op.nr_replicas = dio->op.opts.data_replicas;
509 dio->op.subvol = inode->ei_inum.subvol;
510 dio->op.pos = POS(inode->v.i_ino, (u64) req->ki_pos >> 9);
511 dio->op.devs_need_flush = &inode->ei_devs_need_flush;
514 dio->op.flags |= BCH_WRITE_SYNC;
515 dio->op.flags |= BCH_WRITE_CHECK_ENOSPC;
517 ret = bch2_quota_reservation_add(c, inode, &dio->quota_res,
518 bio_sectors(bio), true);
522 ret = bch2_disk_reservation_get(c, &dio->op.res, bio_sectors(bio),
523 dio->op.opts.data_replicas, 0);
525 !bch2_dio_write_check_allocated(dio))
528 task_io_account_write(bio->bi_iter.bi_size);
530 if (unlikely(dio->iter.count) &&
533 bch2_dio_write_copy_iov(dio))
534 dio->sync = sync = true;
537 closure_call(&dio->op.cl, bch2_write, NULL, NULL);
542 bch2_dio_write_end(dio);
544 if (likely(!dio->iter.count) || dio->op.error)
547 bio_reset(bio, NULL, REQ_OP_WRITE | REQ_SYNC | REQ_IDLE);
550 return bch2_dio_write_done(dio);
554 bio_release_pages(bio, false);
556 bch2_quota_reservation_put(c, inode, &dio->quota_res);
560 static noinline __cold void bch2_dio_write_continue(struct dio_write *dio)
562 struct mm_struct *mm = dio->mm;
564 bio_reset(&dio->op.wbio.bio, NULL, REQ_OP_WRITE);
568 bch2_dio_write_loop(dio);
570 kthread_unuse_mm(mm);
573 static void bch2_dio_write_loop_async(struct bch_write_op *op)
575 struct dio_write *dio = container_of(op, struct dio_write, op);
577 bch2_dio_write_end(dio);
579 if (likely(!dio->iter.count) || dio->op.error)
580 bch2_dio_write_done(dio);
582 bch2_dio_write_continue(dio);
585 ssize_t bch2_direct_write(struct kiocb *req, struct iov_iter *iter)
587 struct file *file = req->ki_filp;
588 struct address_space *mapping = file->f_mapping;
589 struct bch_inode_info *inode = file_bch_inode(file);
590 struct bch_fs *c = inode->v.i_sb->s_fs_info;
591 struct dio_write *dio;
593 bool locked = true, extending;
597 prefetch((void *) &c->opts + 64);
598 prefetch(&inode->ei_inode);
599 prefetch((void *) &inode->ei_inode + 64);
601 if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_dio_write))
604 inode_lock(&inode->v);
606 ret = generic_write_checks(req, iter);
607 if (unlikely(ret <= 0))
608 goto err_put_write_ref;
610 ret = file_remove_privs(file);
612 goto err_put_write_ref;
614 ret = file_update_time(file);
616 goto err_put_write_ref;
618 if (unlikely((req->ki_pos|iter->count) & (block_bytes(c) - 1))) {
620 goto err_put_write_ref;
623 inode_dio_begin(&inode->v);
624 bch2_pagecache_block_get(inode);
626 extending = req->ki_pos + iter->count > inode->v.i_size;
628 inode_unlock(&inode->v);
632 bio = bio_alloc_bioset(NULL,
633 bio_iov_vecs_to_alloc(iter, BIO_MAX_VECS),
634 REQ_OP_WRITE | REQ_SYNC | REQ_IDLE,
636 &c->dio_write_bioset);
637 dio = container_of(bio, struct dio_write, op.wbio.bio);
639 dio->mapping = mapping;
641 dio->mm = current->mm;
644 dio->extending = extending;
645 dio->sync = is_sync_kiocb(req) || extending;
646 dio->flush = iocb_is_dsync(req) && !c->opts.journal_flush_disabled;
647 dio->quota_res.sectors = 0;
652 if (unlikely(mapping->nrpages)) {
653 ret = bch2_write_invalidate_inode_pages_range(mapping,
655 req->ki_pos + iter->count - 1);
660 ret = bch2_dio_write_loop(dio);
663 inode_unlock(&inode->v);
666 bch2_pagecache_block_put(inode);
668 inode_dio_end(&inode->v);
670 bch2_write_ref_put(c, BCH_WRITE_REF_dio_write);
674 void bch2_fs_fs_io_direct_exit(struct bch_fs *c)
676 bioset_exit(&c->dio_write_bioset);
677 bioset_exit(&c->dio_read_bioset);
680 int bch2_fs_fs_io_direct_init(struct bch_fs *c)
682 if (bioset_init(&c->dio_read_bioset,
683 4, offsetof(struct dio_read, rbio.bio),
685 return -BCH_ERR_ENOMEM_dio_read_bioset_init;
687 if (bioset_init(&c->dio_write_bioset,
688 4, offsetof(struct dio_write, op.wbio.bio),
690 return -BCH_ERR_ENOMEM_dio_write_bioset_init;
695 #endif /* NO_BCACHEFS_FS */