]> Git Repo - linux.git/blob - fs/bcachefs/eytzinger.c
Linux 6.14-rc3
[linux.git] / fs / bcachefs / eytzinger.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "eytzinger.h"
4
5 /**
6  * is_aligned - is this pointer & size okay for word-wide copying?
7  * @base: pointer to data
8  * @size: size of each element
9  * @align: required alignment (typically 4 or 8)
10  *
11  * Returns true if elements can be copied using word loads and stores.
12  * The size must be a multiple of the alignment, and the base address must
13  * be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS.
14  *
15  * For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)"
16  * to "if ((a | b) & mask)", so we do that by hand.
17  */
18 __attribute_const__ __always_inline
19 static bool is_aligned(const void *base, size_t size, unsigned char align)
20 {
21         unsigned char lsbits = (unsigned char)size;
22
23         (void)base;
24 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
25         lsbits |= (unsigned char)(uintptr_t)base;
26 #endif
27         return (lsbits & (align - 1)) == 0;
28 }
29
30 /**
31  * swap_words_32 - swap two elements in 32-bit chunks
32  * @a: pointer to the first element to swap
33  * @b: pointer to the second element to swap
34  * @n: element size (must be a multiple of 4)
35  *
36  * Exchange the two objects in memory.  This exploits base+index addressing,
37  * which basically all CPUs have, to minimize loop overhead computations.
38  *
39  * For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the
40  * bottom of the loop, even though the zero flag is still valid from the
41  * subtract (since the intervening mov instructions don't alter the flags).
42  * Gcc 8.1.0 doesn't have that problem.
43  */
44 static void swap_words_32(void *a, void *b, size_t n)
45 {
46         do {
47                 u32 t = *(u32 *)(a + (n -= 4));
48                 *(u32 *)(a + n) = *(u32 *)(b + n);
49                 *(u32 *)(b + n) = t;
50         } while (n);
51 }
52
53 /**
54  * swap_words_64 - swap two elements in 64-bit chunks
55  * @a: pointer to the first element to swap
56  * @b: pointer to the second element to swap
57  * @n: element size (must be a multiple of 8)
58  *
59  * Exchange the two objects in memory.  This exploits base+index
60  * addressing, which basically all CPUs have, to minimize loop overhead
61  * computations.
62  *
63  * We'd like to use 64-bit loads if possible.  If they're not, emulating
64  * one requires base+index+4 addressing which x86 has but most other
65  * processors do not.  If CONFIG_64BIT, we definitely have 64-bit loads,
66  * but it's possible to have 64-bit loads without 64-bit pointers (e.g.
67  * x32 ABI).  Are there any cases the kernel needs to worry about?
68  */
69 static void swap_words_64(void *a, void *b, size_t n)
70 {
71         do {
72 #ifdef CONFIG_64BIT
73                 u64 t = *(u64 *)(a + (n -= 8));
74                 *(u64 *)(a + n) = *(u64 *)(b + n);
75                 *(u64 *)(b + n) = t;
76 #else
77                 /* Use two 32-bit transfers to avoid base+index+4 addressing */
78                 u32 t = *(u32 *)(a + (n -= 4));
79                 *(u32 *)(a + n) = *(u32 *)(b + n);
80                 *(u32 *)(b + n) = t;
81
82                 t = *(u32 *)(a + (n -= 4));
83                 *(u32 *)(a + n) = *(u32 *)(b + n);
84                 *(u32 *)(b + n) = t;
85 #endif
86         } while (n);
87 }
88
89 /**
90  * swap_bytes - swap two elements a byte at a time
91  * @a: pointer to the first element to swap
92  * @b: pointer to the second element to swap
93  * @n: element size
94  *
95  * This is the fallback if alignment doesn't allow using larger chunks.
96  */
97 static void swap_bytes(void *a, void *b, size_t n)
98 {
99         do {
100                 char t = ((char *)a)[--n];
101                 ((char *)a)[n] = ((char *)b)[n];
102                 ((char *)b)[n] = t;
103         } while (n);
104 }
105
106 /*
107  * The values are arbitrary as long as they can't be confused with
108  * a pointer, but small integers make for the smallest compare
109  * instructions.
110  */
111 #define SWAP_WORDS_64 (swap_r_func_t)0
112 #define SWAP_WORDS_32 (swap_r_func_t)1
113 #define SWAP_BYTES    (swap_r_func_t)2
114 #define SWAP_WRAPPER  (swap_r_func_t)3
115
116 struct wrapper {
117         cmp_func_t cmp;
118         swap_func_t swap_func;
119 };
120
121 /*
122  * The function pointer is last to make tail calls most efficient if the
123  * compiler decides not to inline this function.
124  */
125 static void do_swap(void *a, void *b, size_t size, swap_r_func_t swap_func, const void *priv)
126 {
127         if (swap_func == SWAP_WRAPPER) {
128                 ((const struct wrapper *)priv)->swap_func(a, b, (int)size);
129                 return;
130         }
131
132         if (swap_func == SWAP_WORDS_64)
133                 swap_words_64(a, b, size);
134         else if (swap_func == SWAP_WORDS_32)
135                 swap_words_32(a, b, size);
136         else if (swap_func == SWAP_BYTES)
137                 swap_bytes(a, b, size);
138         else
139                 swap_func(a, b, (int)size, priv);
140 }
141
142 #define _CMP_WRAPPER ((cmp_r_func_t)0L)
143
144 static int do_cmp(const void *a, const void *b, cmp_r_func_t cmp, const void *priv)
145 {
146         if (cmp == _CMP_WRAPPER)
147                 return ((const struct wrapper *)priv)->cmp(a, b);
148         return cmp(a, b, priv);
149 }
150
151 static inline int eytzinger0_do_cmp(void *base, size_t n, size_t size,
152                          cmp_r_func_t cmp_func, const void *priv,
153                          size_t l, size_t r)
154 {
155         return do_cmp(base + inorder_to_eytzinger0(l, n) * size,
156                       base + inorder_to_eytzinger0(r, n) * size,
157                       cmp_func, priv);
158 }
159
160 static inline void eytzinger0_do_swap(void *base, size_t n, size_t size,
161                            swap_r_func_t swap_func, const void *priv,
162                            size_t l, size_t r)
163 {
164         do_swap(base + inorder_to_eytzinger0(l, n) * size,
165                 base + inorder_to_eytzinger0(r, n) * size,
166                 size, swap_func, priv);
167 }
168
169 void eytzinger0_sort_r(void *base, size_t n, size_t size,
170                        cmp_r_func_t cmp_func,
171                        swap_r_func_t swap_func,
172                        const void *priv)
173 {
174         int i, j, k;
175
176         /* called from 'sort' without swap function, let's pick the default */
177         if (swap_func == SWAP_WRAPPER && !((struct wrapper *)priv)->swap_func)
178                 swap_func = NULL;
179
180         if (!swap_func) {
181                 if (is_aligned(base, size, 8))
182                         swap_func = SWAP_WORDS_64;
183                 else if (is_aligned(base, size, 4))
184                         swap_func = SWAP_WORDS_32;
185                 else
186                         swap_func = SWAP_BYTES;
187         }
188
189         /* heapify */
190         for (i = n / 2 - 1; i >= 0; --i) {
191                 /* Find the sift-down path all the way to the leaves. */
192                 for (j = i; k = j * 2 + 1, k + 1 < n;)
193                         j = eytzinger0_do_cmp(base, n, size, cmp_func, priv, k, k + 1) > 0 ? k : k + 1;
194
195                 /* Special case for the last leaf with no sibling. */
196                 if (j * 2 + 2 == n)
197                         j = j * 2 + 1;
198
199                 /* Backtrack to the correct location. */
200                 while (j != i && eytzinger0_do_cmp(base, n, size, cmp_func, priv, i, j) >= 0)
201                         j = (j - 1) / 2;
202
203                 /* Shift the element into its correct place. */
204                 for (k = j; j != i;) {
205                         j = (j - 1) / 2;
206                         eytzinger0_do_swap(base, n, size, swap_func, priv, j, k);
207                 }
208         }
209
210         /* sort */
211         for (i = n - 1; i > 0; --i) {
212                 eytzinger0_do_swap(base, n, size, swap_func, priv, 0, i);
213
214                 /* Find the sift-down path all the way to the leaves. */
215                 for (j = 0; k = j * 2 + 1, k + 1 < i;)
216                         j = eytzinger0_do_cmp(base, n, size, cmp_func, priv, k, k + 1) > 0 ? k : k + 1;
217
218                 /* Special case for the last leaf with no sibling. */
219                 if (j * 2 + 2 == i)
220                         j = j * 2 + 1;
221
222                 /* Backtrack to the correct location. */
223                 while (j && eytzinger0_do_cmp(base, n, size, cmp_func, priv, 0, j) >= 0)
224                         j = (j - 1) / 2;
225
226                 /* Shift the element into its correct place. */
227                 for (k = j; j;) {
228                         j = (j - 1) / 2;
229                         eytzinger0_do_swap(base, n, size, swap_func, priv, j, k);
230                 }
231         }
232 }
233
234 void eytzinger0_sort(void *base, size_t n, size_t size,
235                      cmp_func_t cmp_func,
236                      swap_func_t swap_func)
237 {
238         struct wrapper w = {
239                 .cmp  = cmp_func,
240                 .swap_func = swap_func,
241         };
242
243         return eytzinger0_sort_r(base, n, size, _CMP_WRAPPER, SWAP_WRAPPER, &w);
244 }
245
246 #if 0
247 #include <linux/slab.h>
248 #include <linux/random.h>
249 #include <linux/ktime.h>
250
251 static u64 cmp_count;
252
253 static int mycmp(const void *a, const void *b)
254 {
255         u32 _a = *(u32 *)a;
256         u32 _b = *(u32 *)b;
257
258         cmp_count++;
259         if (_a < _b)
260                 return -1;
261         else if (_a > _b)
262                 return 1;
263         else
264                 return 0;
265 }
266
267 static int test(void)
268 {
269         size_t N, i;
270         ktime_t start, end;
271         s64 delta;
272         u32 *arr;
273
274         for (N = 10000; N <= 100000; N += 10000) {
275                 arr = kmalloc_array(N, sizeof(u32), GFP_KERNEL);
276                 cmp_count = 0;
277
278                 for (i = 0; i < N; i++)
279                         arr[i] = get_random_u32();
280
281                 start = ktime_get();
282                 eytzinger0_sort(arr, N, sizeof(u32), mycmp, NULL);
283                 end = ktime_get();
284
285                 delta = ktime_us_delta(end, start);
286                 printk(KERN_INFO "time: %lld\n", delta);
287                 printk(KERN_INFO "comparisons: %lld\n", cmp_count);
288
289                 u32 prev = 0;
290
291                 eytzinger0_for_each(i, N) {
292                         if (prev > arr[i])
293                                 goto err;
294                         prev = arr[i];
295                 }
296
297                 kfree(arr);
298         }
299         return 0;
300
301 err:
302         kfree(arr);
303         return -1;
304 }
305 #endif
This page took 0.048804 seconds and 4 git commands to generate.