]> Git Repo - linux.git/blob - fs/bcachefs/btree_write_buffer.c
Linux 6.14-rc3
[linux.git] / fs / bcachefs / btree_write_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "bkey_buf.h"
5 #include "btree_locking.h"
6 #include "btree_update.h"
7 #include "btree_update_interior.h"
8 #include "btree_write_buffer.h"
9 #include "disk_accounting.h"
10 #include "error.h"
11 #include "extents.h"
12 #include "journal.h"
13 #include "journal_io.h"
14 #include "journal_reclaim.h"
15
16 #include <linux/prefetch.h>
17 #include <linux/sort.h>
18
19 static int bch2_btree_write_buffer_journal_flush(struct journal *,
20                                 struct journal_entry_pin *, u64);
21
22 static inline bool __wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r)
23 {
24         return (cmp_int(l->hi, r->hi) ?:
25                 cmp_int(l->mi, r->mi) ?:
26                 cmp_int(l->lo, r->lo)) >= 0;
27 }
28
29 static inline bool wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r)
30 {
31 #ifdef CONFIG_X86_64
32         int cmp;
33
34         asm("mov   (%[l]), %%rax;"
35             "sub   (%[r]), %%rax;"
36             "mov  8(%[l]), %%rax;"
37             "sbb  8(%[r]), %%rax;"
38             "mov 16(%[l]), %%rax;"
39             "sbb 16(%[r]), %%rax;"
40             : "=@ccae" (cmp)
41             : [l] "r" (l), [r] "r" (r)
42             : "rax", "cc");
43
44         EBUG_ON(cmp != __wb_key_ref_cmp(l, r));
45         return cmp;
46 #else
47         return __wb_key_ref_cmp(l, r);
48 #endif
49 }
50
51 static int wb_key_seq_cmp(const void *_l, const void *_r)
52 {
53         const struct btree_write_buffered_key *l = _l;
54         const struct btree_write_buffered_key *r = _r;
55
56         return cmp_int(l->journal_seq, r->journal_seq);
57 }
58
59 /* Compare excluding idx, the low 24 bits: */
60 static inline bool wb_key_eq(const void *_l, const void *_r)
61 {
62         const struct wb_key_ref *l = _l;
63         const struct wb_key_ref *r = _r;
64
65         return !((l->hi ^ r->hi)|
66                  (l->mi ^ r->mi)|
67                  ((l->lo >> 24) ^ (r->lo >> 24)));
68 }
69
70 static noinline void wb_sort(struct wb_key_ref *base, size_t num)
71 {
72         size_t n = num, a = num / 2;
73
74         if (!a)         /* num < 2 || size == 0 */
75                 return;
76
77         for (;;) {
78                 size_t b, c, d;
79
80                 if (a)                  /* Building heap: sift down --a */
81                         --a;
82                 else if (--n)           /* Sorting: Extract root to --n */
83                         swap(base[0], base[n]);
84                 else                    /* Sort complete */
85                         break;
86
87                 /*
88                  * Sift element at "a" down into heap.  This is the
89                  * "bottom-up" variant, which significantly reduces
90                  * calls to cmp_func(): we find the sift-down path all
91                  * the way to the leaves (one compare per level), then
92                  * backtrack to find where to insert the target element.
93                  *
94                  * Because elements tend to sift down close to the leaves,
95                  * this uses fewer compares than doing two per level
96                  * on the way down.  (A bit more than half as many on
97                  * average, 3/4 worst-case.)
98                  */
99                 for (b = a; c = 2*b + 1, (d = c + 1) < n;)
100                         b = wb_key_ref_cmp(base + c, base + d) ? c : d;
101                 if (d == n)             /* Special case last leaf with no sibling */
102                         b = c;
103
104                 /* Now backtrack from "b" to the correct location for "a" */
105                 while (b != a && wb_key_ref_cmp(base + a, base + b))
106                         b = (b - 1) / 2;
107                 c = b;                  /* Where "a" belongs */
108                 while (b != a) {        /* Shift it into place */
109                         b = (b - 1) / 2;
110                         swap(base[b], base[c]);
111                 }
112         }
113 }
114
115 static noinline int wb_flush_one_slowpath(struct btree_trans *trans,
116                                           struct btree_iter *iter,
117                                           struct btree_write_buffered_key *wb)
118 {
119         struct btree_path *path = btree_iter_path(trans, iter);
120
121         bch2_btree_node_unlock_write(trans, path, path->l[0].b);
122
123         trans->journal_res.seq = wb->journal_seq;
124
125         return bch2_trans_update(trans, iter, &wb->k,
126                                  BTREE_UPDATE_internal_snapshot_node) ?:
127                 bch2_trans_commit(trans, NULL, NULL,
128                                   BCH_TRANS_COMMIT_no_enospc|
129                                   BCH_TRANS_COMMIT_no_check_rw|
130                                   BCH_TRANS_COMMIT_no_journal_res|
131                                   BCH_TRANS_COMMIT_journal_reclaim);
132 }
133
134 static inline int wb_flush_one(struct btree_trans *trans, struct btree_iter *iter,
135                                struct btree_write_buffered_key *wb,
136                                bool *write_locked,
137                                bool *accounting_accumulated,
138                                size_t *fast)
139 {
140         struct btree_path *path;
141         int ret;
142
143         EBUG_ON(!wb->journal_seq);
144         EBUG_ON(!trans->c->btree_write_buffer.flushing.pin.seq);
145         EBUG_ON(trans->c->btree_write_buffer.flushing.pin.seq > wb->journal_seq);
146
147         ret = bch2_btree_iter_traverse(iter);
148         if (ret)
149                 return ret;
150
151         if (!*accounting_accumulated && wb->k.k.type == KEY_TYPE_accounting) {
152                 struct bkey u;
153                 struct bkey_s_c k = bch2_btree_path_peek_slot_exact(btree_iter_path(trans, iter), &u);
154
155                 if (k.k->type == KEY_TYPE_accounting)
156                         bch2_accounting_accumulate(bkey_i_to_accounting(&wb->k),
157                                                    bkey_s_c_to_accounting(k));
158         }
159         *accounting_accumulated = true;
160
161         /*
162          * We can't clone a path that has write locks: unshare it now, before
163          * set_pos and traverse():
164          */
165         if (btree_iter_path(trans, iter)->ref > 1)
166                 iter->path = __bch2_btree_path_make_mut(trans, iter->path, true, _THIS_IP_);
167
168         path = btree_iter_path(trans, iter);
169
170         if (!*write_locked) {
171                 ret = bch2_btree_node_lock_write(trans, path, &path->l[0].b->c);
172                 if (ret)
173                         return ret;
174
175                 bch2_btree_node_prep_for_write(trans, path, path->l[0].b);
176                 *write_locked = true;
177         }
178
179         if (unlikely(!bch2_btree_node_insert_fits(path->l[0].b, wb->k.k.u64s))) {
180                 *write_locked = false;
181                 return wb_flush_one_slowpath(trans, iter, wb);
182         }
183
184         bch2_btree_insert_key_leaf(trans, path, &wb->k, wb->journal_seq);
185         (*fast)++;
186         return 0;
187 }
188
189 /*
190  * Update a btree with a write buffered key using the journal seq of the
191  * original write buffer insert.
192  *
193  * It is not safe to rejournal the key once it has been inserted into the write
194  * buffer because that may break recovery ordering. For example, the key may
195  * have already been modified in the active write buffer in a seq that comes
196  * before the current transaction. If we were to journal this key again and
197  * crash, recovery would process updates in the wrong order.
198  */
199 static int
200 btree_write_buffered_insert(struct btree_trans *trans,
201                           struct btree_write_buffered_key *wb)
202 {
203         struct btree_iter iter;
204         int ret;
205
206         bch2_trans_iter_init(trans, &iter, wb->btree, bkey_start_pos(&wb->k.k),
207                              BTREE_ITER_cached|BTREE_ITER_intent);
208
209         trans->journal_res.seq = wb->journal_seq;
210
211         ret   = bch2_btree_iter_traverse(&iter) ?:
212                 bch2_trans_update(trans, &iter, &wb->k,
213                                   BTREE_UPDATE_internal_snapshot_node);
214         bch2_trans_iter_exit(trans, &iter);
215         return ret;
216 }
217
218 static void move_keys_from_inc_to_flushing(struct btree_write_buffer *wb)
219 {
220         struct bch_fs *c = container_of(wb, struct bch_fs, btree_write_buffer);
221         struct journal *j = &c->journal;
222
223         if (!wb->inc.keys.nr)
224                 return;
225
226         bch2_journal_pin_add(j, wb->inc.keys.data[0].journal_seq, &wb->flushing.pin,
227                              bch2_btree_write_buffer_journal_flush);
228
229         darray_resize(&wb->flushing.keys, min_t(size_t, 1U << 20, wb->flushing.keys.nr + wb->inc.keys.nr));
230         darray_resize(&wb->sorted, wb->flushing.keys.size);
231
232         if (!wb->flushing.keys.nr && wb->sorted.size >= wb->inc.keys.nr) {
233                 swap(wb->flushing.keys, wb->inc.keys);
234                 goto out;
235         }
236
237         size_t nr = min(darray_room(wb->flushing.keys),
238                         wb->sorted.size - wb->flushing.keys.nr);
239         nr = min(nr, wb->inc.keys.nr);
240
241         memcpy(&darray_top(wb->flushing.keys),
242                wb->inc.keys.data,
243                sizeof(wb->inc.keys.data[0]) * nr);
244
245         memmove(wb->inc.keys.data,
246                 wb->inc.keys.data + nr,
247                sizeof(wb->inc.keys.data[0]) * (wb->inc.keys.nr - nr));
248
249         wb->flushing.keys.nr    += nr;
250         wb->inc.keys.nr         -= nr;
251 out:
252         if (!wb->inc.keys.nr)
253                 bch2_journal_pin_drop(j, &wb->inc.pin);
254         else
255                 bch2_journal_pin_update(j, wb->inc.keys.data[0].journal_seq, &wb->inc.pin,
256                                         bch2_btree_write_buffer_journal_flush);
257
258         if (j->watermark) {
259                 spin_lock(&j->lock);
260                 bch2_journal_set_watermark(j);
261                 spin_unlock(&j->lock);
262         }
263
264         BUG_ON(wb->sorted.size < wb->flushing.keys.nr);
265 }
266
267 static int bch2_btree_write_buffer_flush_locked(struct btree_trans *trans)
268 {
269         struct bch_fs *c = trans->c;
270         struct journal *j = &c->journal;
271         struct btree_write_buffer *wb = &c->btree_write_buffer;
272         struct btree_iter iter = { NULL };
273         size_t overwritten = 0, fast = 0, slowpath = 0, could_not_insert = 0;
274         bool write_locked = false;
275         bool accounting_replay_done = test_bit(BCH_FS_accounting_replay_done, &c->flags);
276         int ret = 0;
277
278         ret = bch2_journal_error(&c->journal);
279         if (ret)
280                 return ret;
281
282         bch2_trans_unlock(trans);
283         bch2_trans_begin(trans);
284
285         mutex_lock(&wb->inc.lock);
286         move_keys_from_inc_to_flushing(wb);
287         mutex_unlock(&wb->inc.lock);
288
289         for (size_t i = 0; i < wb->flushing.keys.nr; i++) {
290                 wb->sorted.data[i].idx = i;
291                 wb->sorted.data[i].btree = wb->flushing.keys.data[i].btree;
292                 memcpy(&wb->sorted.data[i].pos, &wb->flushing.keys.data[i].k.k.p, sizeof(struct bpos));
293         }
294         wb->sorted.nr = wb->flushing.keys.nr;
295
296         /*
297          * We first sort so that we can detect and skip redundant updates, and
298          * then we attempt to flush in sorted btree order, as this is most
299          * efficient.
300          *
301          * However, since we're not flushing in the order they appear in the
302          * journal we won't be able to drop our journal pin until everything is
303          * flushed - which means this could deadlock the journal if we weren't
304          * passing BCH_TRANS_COMMIT_journal_reclaim. This causes the update to fail
305          * if it would block taking a journal reservation.
306          *
307          * If that happens, simply skip the key so we can optimistically insert
308          * as many keys as possible in the fast path.
309          */
310         wb_sort(wb->sorted.data, wb->sorted.nr);
311
312         darray_for_each(wb->sorted, i) {
313                 struct btree_write_buffered_key *k = &wb->flushing.keys.data[i->idx];
314
315                 BUG_ON(!btree_type_uses_write_buffer(k->btree));
316
317                 for (struct wb_key_ref *n = i + 1; n < min(i + 4, &darray_top(wb->sorted)); n++)
318                         prefetch(&wb->flushing.keys.data[n->idx]);
319
320                 BUG_ON(!k->journal_seq);
321
322                 if (!accounting_replay_done &&
323                     k->k.k.type == KEY_TYPE_accounting) {
324                         slowpath++;
325                         continue;
326                 }
327
328                 if (i + 1 < &darray_top(wb->sorted) &&
329                     wb_key_eq(i, i + 1)) {
330                         struct btree_write_buffered_key *n = &wb->flushing.keys.data[i[1].idx];
331
332                         if (k->k.k.type == KEY_TYPE_accounting &&
333                             n->k.k.type == KEY_TYPE_accounting)
334                                 bch2_accounting_accumulate(bkey_i_to_accounting(&n->k),
335                                                            bkey_i_to_s_c_accounting(&k->k));
336
337                         overwritten++;
338                         n->journal_seq = min_t(u64, n->journal_seq, k->journal_seq);
339                         k->journal_seq = 0;
340                         continue;
341                 }
342
343                 if (write_locked) {
344                         struct btree_path *path = btree_iter_path(trans, &iter);
345
346                         if (path->btree_id != i->btree ||
347                             bpos_gt(k->k.k.p, path->l[0].b->key.k.p)) {
348                                 bch2_btree_node_unlock_write(trans, path, path->l[0].b);
349                                 write_locked = false;
350
351                                 ret = lockrestart_do(trans,
352                                         bch2_btree_iter_traverse(&iter) ?:
353                                         bch2_foreground_maybe_merge(trans, iter.path, 0,
354                                                         BCH_WATERMARK_reclaim|
355                                                         BCH_TRANS_COMMIT_journal_reclaim|
356                                                         BCH_TRANS_COMMIT_no_check_rw|
357                                                         BCH_TRANS_COMMIT_no_enospc));
358                                 if (ret)
359                                         goto err;
360                         }
361                 }
362
363                 if (!iter.path || iter.btree_id != k->btree) {
364                         bch2_trans_iter_exit(trans, &iter);
365                         bch2_trans_iter_init(trans, &iter, k->btree, k->k.k.p,
366                                              BTREE_ITER_intent|BTREE_ITER_all_snapshots);
367                 }
368
369                 bch2_btree_iter_set_pos(&iter, k->k.k.p);
370                 btree_iter_path(trans, &iter)->preserve = false;
371
372                 bool accounting_accumulated = false;
373                 do {
374                         if (race_fault()) {
375                                 ret = -BCH_ERR_journal_reclaim_would_deadlock;
376                                 break;
377                         }
378
379                         ret = wb_flush_one(trans, &iter, k, &write_locked,
380                                            &accounting_accumulated, &fast);
381                         if (!write_locked)
382                                 bch2_trans_begin(trans);
383                 } while (bch2_err_matches(ret, BCH_ERR_transaction_restart));
384
385                 if (!ret) {
386                         k->journal_seq = 0;
387                 } else if (ret == -BCH_ERR_journal_reclaim_would_deadlock) {
388                         slowpath++;
389                         ret = 0;
390                 } else
391                         break;
392         }
393
394         if (write_locked) {
395                 struct btree_path *path = btree_iter_path(trans, &iter);
396                 bch2_btree_node_unlock_write(trans, path, path->l[0].b);
397         }
398         bch2_trans_iter_exit(trans, &iter);
399
400         if (ret)
401                 goto err;
402
403         if (slowpath) {
404                 /*
405                  * Flush in the order they were present in the journal, so that
406                  * we can release journal pins:
407                  * The fastpath zapped the seq of keys that were successfully flushed so
408                  * we can skip those here.
409                  */
410                 trace_and_count(c, write_buffer_flush_slowpath, trans, slowpath, wb->flushing.keys.nr);
411
412                 sort(wb->flushing.keys.data,
413                      wb->flushing.keys.nr,
414                      sizeof(wb->flushing.keys.data[0]),
415                      wb_key_seq_cmp, NULL);
416
417                 darray_for_each(wb->flushing.keys, i) {
418                         if (!i->journal_seq)
419                                 continue;
420
421                         if (!accounting_replay_done &&
422                             i->k.k.type == KEY_TYPE_accounting) {
423                                 could_not_insert++;
424                                 continue;
425                         }
426
427                         if (!could_not_insert)
428                                 bch2_journal_pin_update(j, i->journal_seq, &wb->flushing.pin,
429                                                         bch2_btree_write_buffer_journal_flush);
430
431                         bch2_trans_begin(trans);
432
433                         ret = commit_do(trans, NULL, NULL,
434                                         BCH_WATERMARK_reclaim|
435                                         BCH_TRANS_COMMIT_journal_reclaim|
436                                         BCH_TRANS_COMMIT_no_check_rw|
437                                         BCH_TRANS_COMMIT_no_enospc|
438                                         BCH_TRANS_COMMIT_no_journal_res ,
439                                         btree_write_buffered_insert(trans, i));
440                         if (ret)
441                                 goto err;
442
443                         i->journal_seq = 0;
444                 }
445
446                 /*
447                  * If journal replay hasn't finished with accounting keys we
448                  * can't flush accounting keys at all - condense them and leave
449                  * them for next time.
450                  *
451                  * Q: Can the write buffer overflow?
452                  * A Shouldn't be any actual risk. It's just new accounting
453                  * updates that the write buffer can't flush, and those are only
454                  * going to be generated by interior btree node updates as
455                  * journal replay has to split/rewrite nodes to make room for
456                  * its updates.
457                  *
458                  * And for those new acounting updates, updates to the same
459                  * counters get accumulated as they're flushed from the journal
460                  * to the write buffer - see the patch for eytzingcer tree
461                  * accumulated. So we could only overflow if the number of
462                  * distinct counters touched somehow was very large.
463                  */
464                 if (could_not_insert) {
465                         struct btree_write_buffered_key *dst = wb->flushing.keys.data;
466
467                         darray_for_each(wb->flushing.keys, i)
468                                 if (i->journal_seq)
469                                         *dst++ = *i;
470                         wb->flushing.keys.nr = dst - wb->flushing.keys.data;
471                 }
472         }
473 err:
474         if (ret || !could_not_insert) {
475                 bch2_journal_pin_drop(j, &wb->flushing.pin);
476                 wb->flushing.keys.nr = 0;
477         }
478
479         bch2_fs_fatal_err_on(ret, c, "%s", bch2_err_str(ret));
480         trace_write_buffer_flush(trans, wb->flushing.keys.nr, overwritten, fast, 0);
481         return ret;
482 }
483
484 static int bch2_journal_keys_to_write_buffer(struct bch_fs *c, struct journal_buf *buf)
485 {
486         struct journal_keys_to_wb dst;
487         int ret = 0;
488
489         bch2_journal_keys_to_write_buffer_start(c, &dst, le64_to_cpu(buf->data->seq));
490
491         for_each_jset_entry_type(entry, buf->data, BCH_JSET_ENTRY_write_buffer_keys) {
492                 jset_entry_for_each_key(entry, k) {
493                         ret = bch2_journal_key_to_wb(c, &dst, entry->btree_id, k);
494                         if (ret)
495                                 goto out;
496                 }
497
498                 entry->type = BCH_JSET_ENTRY_btree_keys;
499         }
500 out:
501         ret = bch2_journal_keys_to_write_buffer_end(c, &dst) ?: ret;
502         return ret;
503 }
504
505 static int fetch_wb_keys_from_journal(struct bch_fs *c, u64 max_seq)
506 {
507         struct journal *j = &c->journal;
508         struct journal_buf *buf;
509         bool blocked;
510         int ret = 0;
511
512         while (!ret && (buf = bch2_next_write_buffer_flush_journal_buf(j, max_seq, &blocked))) {
513                 ret = bch2_journal_keys_to_write_buffer(c, buf);
514
515                 if (!blocked && !ret) {
516                         spin_lock(&j->lock);
517                         buf->need_flush_to_write_buffer = false;
518                         spin_unlock(&j->lock);
519                 }
520
521                 mutex_unlock(&j->buf_lock);
522
523                 if (blocked) {
524                         bch2_journal_unblock(j);
525                         break;
526                 }
527         }
528
529         return ret;
530 }
531
532 static int btree_write_buffer_flush_seq(struct btree_trans *trans, u64 max_seq,
533                                         bool *did_work)
534 {
535         struct bch_fs *c = trans->c;
536         struct btree_write_buffer *wb = &c->btree_write_buffer;
537         int ret = 0, fetch_from_journal_err;
538
539         do {
540                 bch2_trans_unlock(trans);
541
542                 fetch_from_journal_err = fetch_wb_keys_from_journal(c, max_seq);
543
544                 *did_work |= wb->inc.keys.nr || wb->flushing.keys.nr;
545
546                 /*
547                  * On memory allocation failure, bch2_btree_write_buffer_flush_locked()
548                  * is not guaranteed to empty wb->inc:
549                  */
550                 mutex_lock(&wb->flushing.lock);
551                 ret = bch2_btree_write_buffer_flush_locked(trans);
552                 mutex_unlock(&wb->flushing.lock);
553         } while (!ret &&
554                  (fetch_from_journal_err ||
555                   (wb->inc.pin.seq && wb->inc.pin.seq <= max_seq) ||
556                   (wb->flushing.pin.seq && wb->flushing.pin.seq <= max_seq)));
557
558         return ret;
559 }
560
561 static int bch2_btree_write_buffer_journal_flush(struct journal *j,
562                                 struct journal_entry_pin *_pin, u64 seq)
563 {
564         struct bch_fs *c = container_of(j, struct bch_fs, journal);
565         bool did_work = false;
566
567         return bch2_trans_run(c, btree_write_buffer_flush_seq(trans, seq, &did_work));
568 }
569
570 int bch2_btree_write_buffer_flush_sync(struct btree_trans *trans)
571 {
572         struct bch_fs *c = trans->c;
573         bool did_work = false;
574
575         trace_and_count(c, write_buffer_flush_sync, trans, _RET_IP_);
576
577         return btree_write_buffer_flush_seq(trans, journal_cur_seq(&c->journal), &did_work);
578 }
579
580 /*
581  * The write buffer requires flushing when going RO: keys in the journal for the
582  * write buffer don't have a journal pin yet
583  */
584 bool bch2_btree_write_buffer_flush_going_ro(struct bch_fs *c)
585 {
586         if (bch2_journal_error(&c->journal))
587                 return false;
588
589         bool did_work = false;
590         bch2_trans_run(c, btree_write_buffer_flush_seq(trans,
591                                 journal_cur_seq(&c->journal), &did_work));
592         return did_work;
593 }
594
595 int bch2_btree_write_buffer_flush_nocheck_rw(struct btree_trans *trans)
596 {
597         struct bch_fs *c = trans->c;
598         struct btree_write_buffer *wb = &c->btree_write_buffer;
599         int ret = 0;
600
601         if (mutex_trylock(&wb->flushing.lock)) {
602                 ret = bch2_btree_write_buffer_flush_locked(trans);
603                 mutex_unlock(&wb->flushing.lock);
604         }
605
606         return ret;
607 }
608
609 int bch2_btree_write_buffer_tryflush(struct btree_trans *trans)
610 {
611         struct bch_fs *c = trans->c;
612
613         if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer))
614                 return -BCH_ERR_erofs_no_writes;
615
616         int ret = bch2_btree_write_buffer_flush_nocheck_rw(trans);
617         bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
618         return ret;
619 }
620
621 /*
622  * In check and repair code, when checking references to write buffer btrees we
623  * need to issue a flush before we have a definitive error: this issues a flush
624  * if this is a key we haven't yet checked.
625  */
626 int bch2_btree_write_buffer_maybe_flush(struct btree_trans *trans,
627                                         struct bkey_s_c referring_k,
628                                         struct bkey_buf *last_flushed)
629 {
630         struct bch_fs *c = trans->c;
631         struct bkey_buf tmp;
632         int ret = 0;
633
634         bch2_bkey_buf_init(&tmp);
635
636         if (!bkey_and_val_eq(referring_k, bkey_i_to_s_c(last_flushed->k))) {
637                 if (trace_write_buffer_maybe_flush_enabled()) {
638                         struct printbuf buf = PRINTBUF;
639
640                         bch2_bkey_val_to_text(&buf, c, referring_k);
641                         trace_write_buffer_maybe_flush(trans, _RET_IP_, buf.buf);
642                         printbuf_exit(&buf);
643                 }
644
645                 bch2_bkey_buf_reassemble(&tmp, c, referring_k);
646
647                 if (bkey_is_btree_ptr(referring_k.k)) {
648                         bch2_trans_unlock(trans);
649                         bch2_btree_interior_updates_flush(c);
650                 }
651
652                 ret = bch2_btree_write_buffer_flush_sync(trans);
653                 if (ret)
654                         goto err;
655
656                 bch2_bkey_buf_copy(last_flushed, c, tmp.k);
657                 ret = -BCH_ERR_transaction_restart_write_buffer_flush;
658         }
659 err:
660         bch2_bkey_buf_exit(&tmp, c);
661         return ret;
662 }
663
664 static void bch2_btree_write_buffer_flush_work(struct work_struct *work)
665 {
666         struct bch_fs *c = container_of(work, struct bch_fs, btree_write_buffer.flush_work);
667         struct btree_write_buffer *wb = &c->btree_write_buffer;
668         int ret;
669
670         mutex_lock(&wb->flushing.lock);
671         do {
672                 ret = bch2_trans_run(c, bch2_btree_write_buffer_flush_locked(trans));
673         } while (!ret && bch2_btree_write_buffer_should_flush(c));
674         mutex_unlock(&wb->flushing.lock);
675
676         bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
677 }
678
679 static void wb_accounting_sort(struct btree_write_buffer *wb)
680 {
681         eytzinger0_sort(wb->accounting.data, wb->accounting.nr,
682                         sizeof(wb->accounting.data[0]),
683                         wb_key_cmp, NULL);
684 }
685
686 int bch2_accounting_key_to_wb_slowpath(struct bch_fs *c, enum btree_id btree,
687                                        struct bkey_i_accounting *k)
688 {
689         struct btree_write_buffer *wb = &c->btree_write_buffer;
690         struct btree_write_buffered_key new = { .btree = btree };
691
692         bkey_copy(&new.k, &k->k_i);
693
694         int ret = darray_push(&wb->accounting, new);
695         if (ret)
696                 return ret;
697
698         wb_accounting_sort(wb);
699         return 0;
700 }
701
702 int bch2_journal_key_to_wb_slowpath(struct bch_fs *c,
703                              struct journal_keys_to_wb *dst,
704                              enum btree_id btree, struct bkey_i *k)
705 {
706         struct btree_write_buffer *wb = &c->btree_write_buffer;
707         int ret;
708 retry:
709         ret = darray_make_room_gfp(&dst->wb->keys, 1, GFP_KERNEL);
710         if (!ret && dst->wb == &wb->flushing)
711                 ret = darray_resize(&wb->sorted, wb->flushing.keys.size);
712
713         if (unlikely(ret)) {
714                 if (dst->wb == &c->btree_write_buffer.flushing) {
715                         mutex_unlock(&dst->wb->lock);
716                         dst->wb = &c->btree_write_buffer.inc;
717                         bch2_journal_pin_add(&c->journal, dst->seq, &dst->wb->pin,
718                                              bch2_btree_write_buffer_journal_flush);
719                         goto retry;
720                 }
721
722                 return ret;
723         }
724
725         dst->room = darray_room(dst->wb->keys);
726         if (dst->wb == &wb->flushing)
727                 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr);
728         BUG_ON(!dst->room);
729         BUG_ON(!dst->seq);
730
731         struct btree_write_buffered_key *wb_k = &darray_top(dst->wb->keys);
732         wb_k->journal_seq       = dst->seq;
733         wb_k->btree             = btree;
734         bkey_copy(&wb_k->k, k);
735         dst->wb->keys.nr++;
736         dst->room--;
737         return 0;
738 }
739
740 void bch2_journal_keys_to_write_buffer_start(struct bch_fs *c, struct journal_keys_to_wb *dst, u64 seq)
741 {
742         struct btree_write_buffer *wb = &c->btree_write_buffer;
743
744         if (mutex_trylock(&wb->flushing.lock)) {
745                 mutex_lock(&wb->inc.lock);
746                 move_keys_from_inc_to_flushing(wb);
747
748                 /*
749                  * Attempt to skip wb->inc, and add keys directly to
750                  * wb->flushing, saving us a copy later:
751                  */
752
753                 if (!wb->inc.keys.nr) {
754                         dst->wb = &wb->flushing;
755                 } else {
756                         mutex_unlock(&wb->flushing.lock);
757                         dst->wb = &wb->inc;
758                 }
759         } else {
760                 mutex_lock(&wb->inc.lock);
761                 dst->wb = &wb->inc;
762         }
763
764         dst->room = darray_room(dst->wb->keys);
765         if (dst->wb == &wb->flushing)
766                 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr);
767         dst->seq = seq;
768
769         bch2_journal_pin_add(&c->journal, seq, &dst->wb->pin,
770                              bch2_btree_write_buffer_journal_flush);
771
772         darray_for_each(wb->accounting, i)
773                 memset(&i->k.v, 0, bkey_val_bytes(&i->k.k));
774 }
775
776 int bch2_journal_keys_to_write_buffer_end(struct bch_fs *c, struct journal_keys_to_wb *dst)
777 {
778         struct btree_write_buffer *wb = &c->btree_write_buffer;
779         unsigned live_accounting_keys = 0;
780         int ret = 0;
781
782         darray_for_each(wb->accounting, i)
783                 if (!bch2_accounting_key_is_zero(bkey_i_to_s_c_accounting(&i->k))) {
784                         i->journal_seq = dst->seq;
785                         live_accounting_keys++;
786                         ret = __bch2_journal_key_to_wb(c, dst, i->btree, &i->k);
787                         if (ret)
788                                 break;
789                 }
790
791         if (live_accounting_keys * 2 < wb->accounting.nr) {
792                 struct btree_write_buffered_key *dst = wb->accounting.data;
793
794                 darray_for_each(wb->accounting, src)
795                         if (!bch2_accounting_key_is_zero(bkey_i_to_s_c_accounting(&src->k)))
796                                 *dst++ = *src;
797                 wb->accounting.nr = dst - wb->accounting.data;
798                 wb_accounting_sort(wb);
799         }
800
801         if (!dst->wb->keys.nr)
802                 bch2_journal_pin_drop(&c->journal, &dst->wb->pin);
803
804         if (bch2_btree_write_buffer_should_flush(c) &&
805             __bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer) &&
806             !queue_work(system_unbound_wq, &c->btree_write_buffer.flush_work))
807                 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
808
809         if (dst->wb == &wb->flushing)
810                 mutex_unlock(&wb->flushing.lock);
811         mutex_unlock(&wb->inc.lock);
812
813         return ret;
814 }
815
816 static int wb_keys_resize(struct btree_write_buffer_keys *wb, size_t new_size)
817 {
818         if (wb->keys.size >= new_size)
819                 return 0;
820
821         if (!mutex_trylock(&wb->lock))
822                 return -EINTR;
823
824         int ret = darray_resize(&wb->keys, new_size);
825         mutex_unlock(&wb->lock);
826         return ret;
827 }
828
829 int bch2_btree_write_buffer_resize(struct bch_fs *c, size_t new_size)
830 {
831         struct btree_write_buffer *wb = &c->btree_write_buffer;
832
833         return wb_keys_resize(&wb->flushing, new_size) ?:
834                 wb_keys_resize(&wb->inc, new_size);
835 }
836
837 void bch2_fs_btree_write_buffer_exit(struct bch_fs *c)
838 {
839         struct btree_write_buffer *wb = &c->btree_write_buffer;
840
841         BUG_ON((wb->inc.keys.nr || wb->flushing.keys.nr) &&
842                !bch2_journal_error(&c->journal));
843
844         darray_exit(&wb->accounting);
845         darray_exit(&wb->sorted);
846         darray_exit(&wb->flushing.keys);
847         darray_exit(&wb->inc.keys);
848 }
849
850 int bch2_fs_btree_write_buffer_init(struct bch_fs *c)
851 {
852         struct btree_write_buffer *wb = &c->btree_write_buffer;
853
854         mutex_init(&wb->inc.lock);
855         mutex_init(&wb->flushing.lock);
856         INIT_WORK(&wb->flush_work, bch2_btree_write_buffer_flush_work);
857
858         /* Will be resized by journal as needed: */
859         unsigned initial_size = 1 << 16;
860
861         return  darray_make_room(&wb->inc.keys, initial_size) ?:
862                 darray_make_room(&wb->flushing.keys, initial_size) ?:
863                 darray_make_room(&wb->sorted, initial_size);
864 }
This page took 0.083217 seconds and 4 git commands to generate.