1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Virtio ring implementation.
4 * Copyright 2007 Rusty Russell IBM Corporation
6 #include <linux/virtio.h>
7 #include <linux/virtio_ring.h>
8 #include <linux/virtio_config.h>
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/hrtimer.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/kmsan.h>
15 #include <linux/spinlock.h>
19 /* For development, we want to crash whenever the ring is screwed. */
20 #define BAD_RING(_vq, fmt, args...) \
22 dev_err(&(_vq)->vq.vdev->dev, \
23 "%s:"fmt, (_vq)->vq.name, ##args); \
26 /* Caller is supposed to guarantee no reentry. */
27 #define START_USE(_vq) \
30 panic("%s:in_use = %i\n", \
31 (_vq)->vq.name, (_vq)->in_use); \
32 (_vq)->in_use = __LINE__; \
34 #define END_USE(_vq) \
35 do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0)
36 #define LAST_ADD_TIME_UPDATE(_vq) \
38 ktime_t now = ktime_get(); \
40 /* No kick or get, with .1 second between? Warn. */ \
41 if ((_vq)->last_add_time_valid) \
42 WARN_ON(ktime_to_ms(ktime_sub(now, \
43 (_vq)->last_add_time)) > 100); \
44 (_vq)->last_add_time = now; \
45 (_vq)->last_add_time_valid = true; \
47 #define LAST_ADD_TIME_CHECK(_vq) \
49 if ((_vq)->last_add_time_valid) { \
50 WARN_ON(ktime_to_ms(ktime_sub(ktime_get(), \
51 (_vq)->last_add_time)) > 100); \
54 #define LAST_ADD_TIME_INVALID(_vq) \
55 ((_vq)->last_add_time_valid = false)
57 #define BAD_RING(_vq, fmt, args...) \
59 dev_err(&_vq->vq.vdev->dev, \
60 "%s:"fmt, (_vq)->vq.name, ##args); \
61 (_vq)->broken = true; \
65 #define LAST_ADD_TIME_UPDATE(vq)
66 #define LAST_ADD_TIME_CHECK(vq)
67 #define LAST_ADD_TIME_INVALID(vq)
70 struct vring_desc_state_split {
71 void *data; /* Data for callback. */
73 /* Indirect desc table and extra table, if any. These two will be
74 * allocated together. So we won't stress more to the memory allocator.
76 struct vring_desc *indir_desc;
79 struct vring_desc_state_packed {
80 void *data; /* Data for callback. */
82 /* Indirect desc table and extra table, if any. These two will be
83 * allocated together. So we won't stress more to the memory allocator.
85 struct vring_packed_desc *indir_desc;
86 u16 num; /* Descriptor list length. */
87 u16 last; /* The last desc state in a list. */
90 struct vring_desc_extra {
91 dma_addr_t addr; /* Descriptor DMA addr. */
92 u32 len; /* Descriptor length. */
93 u16 flags; /* Descriptor flags. */
94 u16 next; /* The next desc state in a list. */
97 struct vring_virtqueue_split {
98 /* Actual memory layout for this queue. */
101 /* Last written value to avail->flags */
102 u16 avail_flags_shadow;
105 * Last written value to avail->idx in
108 u16 avail_idx_shadow;
110 /* Per-descriptor state. */
111 struct vring_desc_state_split *desc_state;
112 struct vring_desc_extra *desc_extra;
114 /* DMA address and size information */
115 dma_addr_t queue_dma_addr;
116 size_t queue_size_in_bytes;
119 * The parameters for creating vrings are reserved for creating new
126 struct vring_virtqueue_packed {
127 /* Actual memory layout for this queue. */
130 struct vring_packed_desc *desc;
131 struct vring_packed_desc_event *driver;
132 struct vring_packed_desc_event *device;
135 /* Driver ring wrap counter. */
136 bool avail_wrap_counter;
138 /* Avail used flags. */
139 u16 avail_used_flags;
141 /* Index of the next avail descriptor. */
145 * Last written value to driver->flags in
148 u16 event_flags_shadow;
150 /* Per-descriptor state. */
151 struct vring_desc_state_packed *desc_state;
152 struct vring_desc_extra *desc_extra;
154 /* DMA address and size information */
155 dma_addr_t ring_dma_addr;
156 dma_addr_t driver_event_dma_addr;
157 dma_addr_t device_event_dma_addr;
158 size_t ring_size_in_bytes;
159 size_t event_size_in_bytes;
162 struct vring_virtqueue {
165 /* Is this a packed ring? */
168 /* Is DMA API used? */
171 /* Can we use weak barriers? */
174 /* Other side has made a mess, don't try any more. */
177 /* Host supports indirect buffers */
180 /* Host publishes avail event idx */
183 /* Head of free buffer list. */
184 unsigned int free_head;
185 /* Number we've added since last sync. */
186 unsigned int num_added;
188 /* Last used index we've seen.
189 * for split ring, it just contains last used index
191 * bits up to VRING_PACKED_EVENT_F_WRAP_CTR include the last used index.
192 * bits from VRING_PACKED_EVENT_F_WRAP_CTR include the used wrap counter.
196 /* Hint for event idx: already triggered no need to disable. */
197 bool event_triggered;
200 /* Available for split ring */
201 struct vring_virtqueue_split split;
203 /* Available for packed ring */
204 struct vring_virtqueue_packed packed;
207 /* How to notify other side. FIXME: commonalize hcalls! */
208 bool (*notify)(struct virtqueue *vq);
210 /* DMA, allocation, and size information */
213 /* Device used for doing DMA */
214 struct device *dma_dev;
217 /* They're supposed to lock for us. */
220 /* Figure out if their kicks are too delayed. */
221 bool last_add_time_valid;
222 ktime_t last_add_time;
226 static struct vring_desc_extra *vring_alloc_desc_extra(unsigned int num);
227 static void vring_free(struct virtqueue *_vq);
233 #define to_vvq(_vq) container_of_const(_vq, struct vring_virtqueue, vq)
235 static bool virtqueue_use_indirect(const struct vring_virtqueue *vq,
236 unsigned int total_sg)
239 * If the host supports indirect descriptor tables, and we have multiple
240 * buffers, then go indirect. FIXME: tune this threshold
242 return (vq->indirect && total_sg > 1 && vq->vq.num_free);
246 * Modern virtio devices have feature bits to specify whether they need a
247 * quirk and bypass the IOMMU. If not there, just use the DMA API.
249 * If there, the interaction between virtio and DMA API is messy.
251 * On most systems with virtio, physical addresses match bus addresses,
252 * and it doesn't particularly matter whether we use the DMA API.
254 * On some systems, including Xen and any system with a physical device
255 * that speaks virtio behind a physical IOMMU, we must use the DMA API
256 * for virtio DMA to work at all.
258 * On other systems, including SPARC and PPC64, virtio-pci devices are
259 * enumerated as though they are behind an IOMMU, but the virtio host
260 * ignores the IOMMU, so we must either pretend that the IOMMU isn't
261 * there or somehow map everything as the identity.
263 * For the time being, we preserve historic behavior and bypass the DMA
266 * TODO: install a per-device DMA ops structure that does the right thing
267 * taking into account all the above quirks, and use the DMA API
268 * unconditionally on data path.
271 static bool vring_use_dma_api(const struct virtio_device *vdev)
273 if (!virtio_has_dma_quirk(vdev))
276 /* Otherwise, we are left to guess. */
278 * In theory, it's possible to have a buggy QEMU-supposed
279 * emulated Q35 IOMMU and Xen enabled at the same time. On
280 * such a configuration, virtio has never worked and will
281 * not work without an even larger kludge. Instead, enable
282 * the DMA API if we're a Xen guest, which at least allows
283 * all of the sensible Xen configurations to work correctly.
291 static bool vring_need_unmap_buffer(const struct vring_virtqueue *vring,
292 const struct vring_desc_extra *extra)
294 return vring->use_dma_api && (extra->addr != DMA_MAPPING_ERROR);
297 size_t virtio_max_dma_size(const struct virtio_device *vdev)
299 size_t max_segment_size = SIZE_MAX;
301 if (vring_use_dma_api(vdev))
302 max_segment_size = dma_max_mapping_size(vdev->dev.parent);
304 return max_segment_size;
306 EXPORT_SYMBOL_GPL(virtio_max_dma_size);
308 static void *vring_alloc_queue(struct virtio_device *vdev, size_t size,
309 dma_addr_t *dma_handle, gfp_t flag,
310 struct device *dma_dev)
312 if (vring_use_dma_api(vdev)) {
313 return dma_alloc_coherent(dma_dev, size,
316 void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag);
319 phys_addr_t phys_addr = virt_to_phys(queue);
320 *dma_handle = (dma_addr_t)phys_addr;
323 * Sanity check: make sure we dind't truncate
324 * the address. The only arches I can find that
325 * have 64-bit phys_addr_t but 32-bit dma_addr_t
326 * are certain non-highmem MIPS and x86
327 * configurations, but these configurations
328 * should never allocate physical pages above 32
329 * bits, so this is fine. Just in case, throw a
330 * warning and abort if we end up with an
331 * unrepresentable address.
333 if (WARN_ON_ONCE(*dma_handle != phys_addr)) {
334 free_pages_exact(queue, PAGE_ALIGN(size));
342 static void vring_free_queue(struct virtio_device *vdev, size_t size,
343 void *queue, dma_addr_t dma_handle,
344 struct device *dma_dev)
346 if (vring_use_dma_api(vdev))
347 dma_free_coherent(dma_dev, size, queue, dma_handle);
349 free_pages_exact(queue, PAGE_ALIGN(size));
353 * The DMA ops on various arches are rather gnarly right now, and
354 * making all of the arch DMA ops work on the vring device itself
357 static struct device *vring_dma_dev(const struct vring_virtqueue *vq)
362 /* Map one sg entry. */
363 static int vring_map_one_sg(const struct vring_virtqueue *vq, struct scatterlist *sg,
364 enum dma_data_direction direction, dma_addr_t *addr,
365 u32 *len, bool premapped)
368 *addr = sg_dma_address(sg);
369 *len = sg_dma_len(sg);
375 if (!vq->use_dma_api) {
377 * If DMA is not used, KMSAN doesn't know that the scatterlist
378 * is initialized by the hardware. Explicitly check/unpoison it
379 * depending on the direction.
381 kmsan_handle_dma(sg_page(sg), sg->offset, sg->length, direction);
382 *addr = (dma_addr_t)sg_phys(sg);
387 * We can't use dma_map_sg, because we don't use scatterlists in
388 * the way it expects (we don't guarantee that the scatterlist
389 * will exist for the lifetime of the mapping).
391 *addr = dma_map_page(vring_dma_dev(vq),
392 sg_page(sg), sg->offset, sg->length,
395 if (dma_mapping_error(vring_dma_dev(vq), *addr))
401 static dma_addr_t vring_map_single(const struct vring_virtqueue *vq,
402 void *cpu_addr, size_t size,
403 enum dma_data_direction direction)
405 if (!vq->use_dma_api)
406 return (dma_addr_t)virt_to_phys(cpu_addr);
408 return dma_map_single(vring_dma_dev(vq),
409 cpu_addr, size, direction);
412 static int vring_mapping_error(const struct vring_virtqueue *vq,
415 if (!vq->use_dma_api)
418 return dma_mapping_error(vring_dma_dev(vq), addr);
421 static void virtqueue_init(struct vring_virtqueue *vq, u32 num)
423 vq->vq.num_free = num;
426 vq->last_used_idx = 0 | (1 << VRING_PACKED_EVENT_F_WRAP_CTR);
428 vq->last_used_idx = 0;
430 vq->event_triggered = false;
435 vq->last_add_time_valid = false;
441 * Split ring specific functions - *_split().
444 static unsigned int vring_unmap_one_split(const struct vring_virtqueue *vq,
445 struct vring_desc_extra *extra)
449 flags = extra->flags;
451 if (flags & VRING_DESC_F_INDIRECT) {
452 if (!vq->use_dma_api)
455 dma_unmap_single(vring_dma_dev(vq),
458 (flags & VRING_DESC_F_WRITE) ?
459 DMA_FROM_DEVICE : DMA_TO_DEVICE);
461 if (!vring_need_unmap_buffer(vq, extra))
464 dma_unmap_page(vring_dma_dev(vq),
467 (flags & VRING_DESC_F_WRITE) ?
468 DMA_FROM_DEVICE : DMA_TO_DEVICE);
475 static struct vring_desc *alloc_indirect_split(struct virtqueue *_vq,
476 unsigned int total_sg,
479 struct vring_desc_extra *extra;
480 struct vring_desc *desc;
481 unsigned int i, size;
484 * We require lowmem mappings for the descriptors because
485 * otherwise virt_to_phys will give us bogus addresses in the
488 gfp &= ~__GFP_HIGHMEM;
490 size = sizeof(*desc) * total_sg + sizeof(*extra) * total_sg;
492 desc = kmalloc(size, gfp);
496 extra = (struct vring_desc_extra *)&desc[total_sg];
498 for (i = 0; i < total_sg; i++)
499 extra[i].next = i + 1;
504 static inline unsigned int virtqueue_add_desc_split(struct virtqueue *vq,
505 struct vring_desc *desc,
506 struct vring_desc_extra *extra,
510 u16 flags, bool premapped)
514 desc[i].flags = cpu_to_virtio16(vq->vdev, flags);
515 desc[i].addr = cpu_to_virtio64(vq->vdev, addr);
516 desc[i].len = cpu_to_virtio32(vq->vdev, len);
518 extra[i].addr = premapped ? DMA_MAPPING_ERROR : addr;
520 extra[i].flags = flags;
522 next = extra[i].next;
524 desc[i].next = cpu_to_virtio16(vq->vdev, next);
529 static inline int virtqueue_add_split(struct virtqueue *_vq,
530 struct scatterlist *sgs[],
531 unsigned int total_sg,
532 unsigned int out_sgs,
539 struct vring_virtqueue *vq = to_vvq(_vq);
540 struct vring_desc_extra *extra;
541 struct scatterlist *sg;
542 struct vring_desc *desc;
543 unsigned int i, n, avail, descs_used, prev, err_idx;
549 BUG_ON(data == NULL);
550 BUG_ON(ctx && vq->indirect);
552 if (unlikely(vq->broken)) {
557 LAST_ADD_TIME_UPDATE(vq);
559 BUG_ON(total_sg == 0);
561 head = vq->free_head;
563 if (virtqueue_use_indirect(vq, total_sg))
564 desc = alloc_indirect_split(_vq, total_sg, gfp);
567 WARN_ON_ONCE(total_sg > vq->split.vring.num && !vq->indirect);
571 /* Use a single buffer which doesn't continue */
573 /* Set up rest to use this indirect table. */
576 extra = (struct vring_desc_extra *)&desc[total_sg];
579 desc = vq->split.vring.desc;
580 extra = vq->split.desc_extra;
582 descs_used = total_sg;
585 if (unlikely(vq->vq.num_free < descs_used)) {
586 pr_debug("Can't add buf len %i - avail = %i\n",
587 descs_used, vq->vq.num_free);
588 /* FIXME: for historical reasons, we force a notify here if
589 * there are outgoing parts to the buffer. Presumably the
590 * host should service the ring ASAP. */
599 for (n = 0; n < out_sgs; n++) {
600 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
604 if (vring_map_one_sg(vq, sg, DMA_TO_DEVICE, &addr, &len, premapped))
608 /* Note that we trust indirect descriptor
609 * table since it use stream DMA mapping.
611 i = virtqueue_add_desc_split(_vq, desc, extra, i, addr, len,
616 for (; n < (out_sgs + in_sgs); n++) {
617 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
621 if (vring_map_one_sg(vq, sg, DMA_FROM_DEVICE, &addr, &len, premapped))
625 /* Note that we trust indirect descriptor
626 * table since it use stream DMA mapping.
628 i = virtqueue_add_desc_split(_vq, desc, extra, i, addr, len,
634 /* Last one doesn't continue. */
635 desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT);
636 if (!indirect && vring_need_unmap_buffer(vq, &extra[prev]))
637 vq->split.desc_extra[prev & (vq->split.vring.num - 1)].flags &=
641 /* Now that the indirect table is filled in, map it. */
642 dma_addr_t addr = vring_map_single(
643 vq, desc, total_sg * sizeof(struct vring_desc),
645 if (vring_mapping_error(vq, addr))
648 virtqueue_add_desc_split(_vq, vq->split.vring.desc,
649 vq->split.desc_extra,
651 total_sg * sizeof(struct vring_desc),
652 VRING_DESC_F_INDIRECT, false);
655 /* We're using some buffers from the free list. */
656 vq->vq.num_free -= descs_used;
658 /* Update free pointer */
660 vq->free_head = vq->split.desc_extra[head].next;
664 /* Store token and indirect buffer state. */
665 vq->split.desc_state[head].data = data;
667 vq->split.desc_state[head].indir_desc = desc;
669 vq->split.desc_state[head].indir_desc = ctx;
671 /* Put entry in available array (but don't update avail->idx until they
673 avail = vq->split.avail_idx_shadow & (vq->split.vring.num - 1);
674 vq->split.vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head);
676 /* Descriptors and available array need to be set before we expose the
677 * new available array entries. */
678 virtio_wmb(vq->weak_barriers);
679 vq->split.avail_idx_shadow++;
680 vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
681 vq->split.avail_idx_shadow);
684 pr_debug("Added buffer head %i to %p\n", head, vq);
687 /* This is very unlikely, but theoretically possible. Kick
689 if (unlikely(vq->num_added == (1 << 16) - 1))
702 for (n = 0; n < total_sg; n++) {
706 i = vring_unmap_one_split(vq, &extra[i]);
716 static bool virtqueue_kick_prepare_split(struct virtqueue *_vq)
718 struct vring_virtqueue *vq = to_vvq(_vq);
723 /* We need to expose available array entries before checking avail
725 virtio_mb(vq->weak_barriers);
727 old = vq->split.avail_idx_shadow - vq->num_added;
728 new = vq->split.avail_idx_shadow;
731 LAST_ADD_TIME_CHECK(vq);
732 LAST_ADD_TIME_INVALID(vq);
735 needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev,
736 vring_avail_event(&vq->split.vring)),
739 needs_kick = !(vq->split.vring.used->flags &
740 cpu_to_virtio16(_vq->vdev,
741 VRING_USED_F_NO_NOTIFY));
747 static void detach_buf_split(struct vring_virtqueue *vq, unsigned int head,
750 struct vring_desc_extra *extra;
752 __virtio16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT);
754 /* Clear data ptr. */
755 vq->split.desc_state[head].data = NULL;
757 extra = vq->split.desc_extra;
759 /* Put back on free list: unmap first-level descriptors and find end */
762 while (vq->split.vring.desc[i].flags & nextflag) {
763 vring_unmap_one_split(vq, &extra[i]);
764 i = vq->split.desc_extra[i].next;
768 vring_unmap_one_split(vq, &extra[i]);
769 vq->split.desc_extra[i].next = vq->free_head;
770 vq->free_head = head;
772 /* Plus final descriptor */
776 struct vring_desc *indir_desc =
777 vq->split.desc_state[head].indir_desc;
780 /* Free the indirect table, if any, now that it's unmapped. */
783 len = vq->split.desc_extra[head].len;
785 BUG_ON(!(vq->split.desc_extra[head].flags &
786 VRING_DESC_F_INDIRECT));
787 BUG_ON(len == 0 || len % sizeof(struct vring_desc));
789 num = len / sizeof(struct vring_desc);
791 extra = (struct vring_desc_extra *)&indir_desc[num];
793 if (vq->use_dma_api) {
794 for (j = 0; j < num; j++)
795 vring_unmap_one_split(vq, &extra[j]);
799 vq->split.desc_state[head].indir_desc = NULL;
801 *ctx = vq->split.desc_state[head].indir_desc;
805 static bool more_used_split(const struct vring_virtqueue *vq)
807 return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev,
808 vq->split.vring.used->idx);
811 static void *virtqueue_get_buf_ctx_split(struct virtqueue *_vq,
815 struct vring_virtqueue *vq = to_vvq(_vq);
822 if (unlikely(vq->broken)) {
827 if (!more_used_split(vq)) {
828 pr_debug("No more buffers in queue\n");
833 /* Only get used array entries after they have been exposed by host. */
834 virtio_rmb(vq->weak_barriers);
836 last_used = (vq->last_used_idx & (vq->split.vring.num - 1));
837 i = virtio32_to_cpu(_vq->vdev,
838 vq->split.vring.used->ring[last_used].id);
839 *len = virtio32_to_cpu(_vq->vdev,
840 vq->split.vring.used->ring[last_used].len);
842 if (unlikely(i >= vq->split.vring.num)) {
843 BAD_RING(vq, "id %u out of range\n", i);
846 if (unlikely(!vq->split.desc_state[i].data)) {
847 BAD_RING(vq, "id %u is not a head!\n", i);
851 /* detach_buf_split clears data, so grab it now. */
852 ret = vq->split.desc_state[i].data;
853 detach_buf_split(vq, i, ctx);
855 /* If we expect an interrupt for the next entry, tell host
856 * by writing event index and flush out the write before
857 * the read in the next get_buf call. */
858 if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT))
859 virtio_store_mb(vq->weak_barriers,
860 &vring_used_event(&vq->split.vring),
861 cpu_to_virtio16(_vq->vdev, vq->last_used_idx));
863 LAST_ADD_TIME_INVALID(vq);
869 static void virtqueue_disable_cb_split(struct virtqueue *_vq)
871 struct vring_virtqueue *vq = to_vvq(_vq);
873 if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) {
874 vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
877 * If device triggered an event already it won't trigger one again:
878 * no need to disable.
880 if (vq->event_triggered)
884 /* TODO: this is a hack. Figure out a cleaner value to write. */
885 vring_used_event(&vq->split.vring) = 0x0;
887 vq->split.vring.avail->flags =
888 cpu_to_virtio16(_vq->vdev,
889 vq->split.avail_flags_shadow);
893 static unsigned int virtqueue_enable_cb_prepare_split(struct virtqueue *_vq)
895 struct vring_virtqueue *vq = to_vvq(_vq);
900 /* We optimistically turn back on interrupts, then check if there was
902 /* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to
903 * either clear the flags bit or point the event index at the next
904 * entry. Always do both to keep code simple. */
905 if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
906 vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
908 vq->split.vring.avail->flags =
909 cpu_to_virtio16(_vq->vdev,
910 vq->split.avail_flags_shadow);
912 vring_used_event(&vq->split.vring) = cpu_to_virtio16(_vq->vdev,
913 last_used_idx = vq->last_used_idx);
915 return last_used_idx;
918 static bool virtqueue_poll_split(struct virtqueue *_vq, unsigned int last_used_idx)
920 struct vring_virtqueue *vq = to_vvq(_vq);
922 return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev,
923 vq->split.vring.used->idx);
926 static bool virtqueue_enable_cb_delayed_split(struct virtqueue *_vq)
928 struct vring_virtqueue *vq = to_vvq(_vq);
933 /* We optimistically turn back on interrupts, then check if there was
935 /* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to
936 * either clear the flags bit or point the event index at the next
937 * entry. Always update the event index to keep code simple. */
938 if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
939 vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
941 vq->split.vring.avail->flags =
942 cpu_to_virtio16(_vq->vdev,
943 vq->split.avail_flags_shadow);
945 /* TODO: tune this threshold */
946 bufs = (u16)(vq->split.avail_idx_shadow - vq->last_used_idx) * 3 / 4;
948 virtio_store_mb(vq->weak_barriers,
949 &vring_used_event(&vq->split.vring),
950 cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs));
952 if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->split.vring.used->idx)
953 - vq->last_used_idx) > bufs)) {
962 static void *virtqueue_detach_unused_buf_split(struct virtqueue *_vq)
964 struct vring_virtqueue *vq = to_vvq(_vq);
970 for (i = 0; i < vq->split.vring.num; i++) {
971 if (!vq->split.desc_state[i].data)
973 /* detach_buf_split clears data, so grab it now. */
974 buf = vq->split.desc_state[i].data;
975 detach_buf_split(vq, i, NULL);
976 vq->split.avail_idx_shadow--;
977 vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
978 vq->split.avail_idx_shadow);
982 /* That should have freed everything. */
983 BUG_ON(vq->vq.num_free != vq->split.vring.num);
989 static void virtqueue_vring_init_split(struct vring_virtqueue_split *vring_split,
990 struct vring_virtqueue *vq)
992 struct virtio_device *vdev;
996 vring_split->avail_flags_shadow = 0;
997 vring_split->avail_idx_shadow = 0;
999 /* No callback? Tell other side not to bother us. */
1000 if (!vq->vq.callback) {
1001 vring_split->avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
1003 vring_split->vring.avail->flags = cpu_to_virtio16(vdev,
1004 vring_split->avail_flags_shadow);
1008 static void virtqueue_reinit_split(struct vring_virtqueue *vq)
1012 num = vq->split.vring.num;
1014 vq->split.vring.avail->flags = 0;
1015 vq->split.vring.avail->idx = 0;
1017 /* reset avail event */
1018 vq->split.vring.avail->ring[num] = 0;
1020 vq->split.vring.used->flags = 0;
1021 vq->split.vring.used->idx = 0;
1023 /* reset used event */
1024 *(__virtio16 *)&(vq->split.vring.used->ring[num]) = 0;
1026 virtqueue_init(vq, num);
1028 virtqueue_vring_init_split(&vq->split, vq);
1031 static void virtqueue_vring_attach_split(struct vring_virtqueue *vq,
1032 struct vring_virtqueue_split *vring_split)
1034 vq->split = *vring_split;
1036 /* Put everything in free lists. */
1040 static int vring_alloc_state_extra_split(struct vring_virtqueue_split *vring_split)
1042 struct vring_desc_state_split *state;
1043 struct vring_desc_extra *extra;
1044 u32 num = vring_split->vring.num;
1046 state = kmalloc_array(num, sizeof(struct vring_desc_state_split), GFP_KERNEL);
1050 extra = vring_alloc_desc_extra(num);
1054 memset(state, 0, num * sizeof(struct vring_desc_state_split));
1056 vring_split->desc_state = state;
1057 vring_split->desc_extra = extra;
1066 static void vring_free_split(struct vring_virtqueue_split *vring_split,
1067 struct virtio_device *vdev, struct device *dma_dev)
1069 vring_free_queue(vdev, vring_split->queue_size_in_bytes,
1070 vring_split->vring.desc,
1071 vring_split->queue_dma_addr,
1074 kfree(vring_split->desc_state);
1075 kfree(vring_split->desc_extra);
1078 static int vring_alloc_queue_split(struct vring_virtqueue_split *vring_split,
1079 struct virtio_device *vdev,
1081 unsigned int vring_align,
1082 bool may_reduce_num,
1083 struct device *dma_dev)
1086 dma_addr_t dma_addr;
1088 /* We assume num is a power of 2. */
1089 if (!is_power_of_2(num)) {
1090 dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num);
1094 /* TODO: allocate each queue chunk individually */
1095 for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) {
1096 queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
1098 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1102 if (!may_reduce_num)
1110 /* Try to get a single page. You are my only hope! */
1111 queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
1112 &dma_addr, GFP_KERNEL | __GFP_ZERO,
1118 vring_init(&vring_split->vring, num, queue, vring_align);
1120 vring_split->queue_dma_addr = dma_addr;
1121 vring_split->queue_size_in_bytes = vring_size(num, vring_align);
1123 vring_split->vring_align = vring_align;
1124 vring_split->may_reduce_num = may_reduce_num;
1129 static struct virtqueue *__vring_new_virtqueue_split(unsigned int index,
1130 struct vring_virtqueue_split *vring_split,
1131 struct virtio_device *vdev,
1134 bool (*notify)(struct virtqueue *),
1135 void (*callback)(struct virtqueue *),
1137 struct device *dma_dev)
1139 struct vring_virtqueue *vq;
1142 vq = kmalloc(sizeof(*vq), GFP_KERNEL);
1146 vq->packed_ring = false;
1147 vq->vq.callback = callback;
1150 vq->vq.index = index;
1151 vq->vq.reset = false;
1152 vq->we_own_ring = false;
1153 vq->notify = notify;
1154 vq->weak_barriers = weak_barriers;
1155 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION
1160 vq->dma_dev = dma_dev;
1161 vq->use_dma_api = vring_use_dma_api(vdev);
1163 vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
1165 vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
1167 if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
1168 vq->weak_barriers = false;
1170 err = vring_alloc_state_extra_split(vring_split);
1176 virtqueue_vring_init_split(vring_split, vq);
1178 virtqueue_init(vq, vring_split->vring.num);
1179 virtqueue_vring_attach_split(vq, vring_split);
1181 spin_lock(&vdev->vqs_list_lock);
1182 list_add_tail(&vq->vq.list, &vdev->vqs);
1183 spin_unlock(&vdev->vqs_list_lock);
1187 static struct virtqueue *vring_create_virtqueue_split(
1190 unsigned int vring_align,
1191 struct virtio_device *vdev,
1193 bool may_reduce_num,
1195 bool (*notify)(struct virtqueue *),
1196 void (*callback)(struct virtqueue *),
1198 struct device *dma_dev)
1200 struct vring_virtqueue_split vring_split = {};
1201 struct virtqueue *vq;
1204 err = vring_alloc_queue_split(&vring_split, vdev, num, vring_align,
1205 may_reduce_num, dma_dev);
1209 vq = __vring_new_virtqueue_split(index, &vring_split, vdev, weak_barriers,
1210 context, notify, callback, name, dma_dev);
1212 vring_free_split(&vring_split, vdev, dma_dev);
1216 to_vvq(vq)->we_own_ring = true;
1221 static int virtqueue_resize_split(struct virtqueue *_vq, u32 num)
1223 struct vring_virtqueue_split vring_split = {};
1224 struct vring_virtqueue *vq = to_vvq(_vq);
1225 struct virtio_device *vdev = _vq->vdev;
1228 err = vring_alloc_queue_split(&vring_split, vdev, num,
1229 vq->split.vring_align,
1230 vq->split.may_reduce_num,
1235 err = vring_alloc_state_extra_split(&vring_split);
1237 goto err_state_extra;
1239 vring_free(&vq->vq);
1241 virtqueue_vring_init_split(&vring_split, vq);
1243 virtqueue_init(vq, vring_split.vring.num);
1244 virtqueue_vring_attach_split(vq, &vring_split);
1249 vring_free_split(&vring_split, vdev, vring_dma_dev(vq));
1251 virtqueue_reinit_split(vq);
1257 * Packed ring specific functions - *_packed().
1259 static bool packed_used_wrap_counter(u16 last_used_idx)
1261 return !!(last_used_idx & (1 << VRING_PACKED_EVENT_F_WRAP_CTR));
1264 static u16 packed_last_used(u16 last_used_idx)
1266 return last_used_idx & ~(-(1 << VRING_PACKED_EVENT_F_WRAP_CTR));
1269 static void vring_unmap_extra_packed(const struct vring_virtqueue *vq,
1270 const struct vring_desc_extra *extra)
1274 flags = extra->flags;
1276 if (flags & VRING_DESC_F_INDIRECT) {
1277 if (!vq->use_dma_api)
1280 dma_unmap_single(vring_dma_dev(vq),
1281 extra->addr, extra->len,
1282 (flags & VRING_DESC_F_WRITE) ?
1283 DMA_FROM_DEVICE : DMA_TO_DEVICE);
1285 if (!vring_need_unmap_buffer(vq, extra))
1288 dma_unmap_page(vring_dma_dev(vq),
1289 extra->addr, extra->len,
1290 (flags & VRING_DESC_F_WRITE) ?
1291 DMA_FROM_DEVICE : DMA_TO_DEVICE);
1295 static struct vring_packed_desc *alloc_indirect_packed(unsigned int total_sg,
1298 struct vring_desc_extra *extra;
1299 struct vring_packed_desc *desc;
1303 * We require lowmem mappings for the descriptors because
1304 * otherwise virt_to_phys will give us bogus addresses in the
1307 gfp &= ~__GFP_HIGHMEM;
1309 size = (sizeof(*desc) + sizeof(*extra)) * total_sg;
1311 desc = kmalloc(size, gfp);
1315 extra = (struct vring_desc_extra *)&desc[total_sg];
1317 for (i = 0; i < total_sg; i++)
1318 extra[i].next = i + 1;
1323 static int virtqueue_add_indirect_packed(struct vring_virtqueue *vq,
1324 struct scatterlist *sgs[],
1325 unsigned int total_sg,
1326 unsigned int out_sgs,
1327 unsigned int in_sgs,
1332 struct vring_desc_extra *extra;
1333 struct vring_packed_desc *desc;
1334 struct scatterlist *sg;
1335 unsigned int i, n, err_idx, len;
1339 head = vq->packed.next_avail_idx;
1340 desc = alloc_indirect_packed(total_sg, gfp);
1344 extra = (struct vring_desc_extra *)&desc[total_sg];
1346 if (unlikely(vq->vq.num_free < 1)) {
1347 pr_debug("Can't add buf len 1 - avail = 0\n");
1355 BUG_ON(id == vq->packed.vring.num);
1357 for (n = 0; n < out_sgs + in_sgs; n++) {
1358 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1359 if (vring_map_one_sg(vq, sg, n < out_sgs ?
1360 DMA_TO_DEVICE : DMA_FROM_DEVICE,
1361 &addr, &len, premapped))
1364 desc[i].flags = cpu_to_le16(n < out_sgs ?
1365 0 : VRING_DESC_F_WRITE);
1366 desc[i].addr = cpu_to_le64(addr);
1367 desc[i].len = cpu_to_le32(len);
1369 if (unlikely(vq->use_dma_api)) {
1370 extra[i].addr = premapped ? DMA_MAPPING_ERROR : addr;
1372 extra[i].flags = n < out_sgs ? 0 : VRING_DESC_F_WRITE;
1379 /* Now that the indirect table is filled in, map it. */
1380 addr = vring_map_single(vq, desc,
1381 total_sg * sizeof(struct vring_packed_desc),
1383 if (vring_mapping_error(vq, addr))
1386 vq->packed.vring.desc[head].addr = cpu_to_le64(addr);
1387 vq->packed.vring.desc[head].len = cpu_to_le32(total_sg *
1388 sizeof(struct vring_packed_desc));
1389 vq->packed.vring.desc[head].id = cpu_to_le16(id);
1391 if (vq->use_dma_api) {
1392 vq->packed.desc_extra[id].addr = addr;
1393 vq->packed.desc_extra[id].len = total_sg *
1394 sizeof(struct vring_packed_desc);
1395 vq->packed.desc_extra[id].flags = VRING_DESC_F_INDIRECT |
1396 vq->packed.avail_used_flags;
1400 * A driver MUST NOT make the first descriptor in the list
1401 * available before all subsequent descriptors comprising
1402 * the list are made available.
1404 virtio_wmb(vq->weak_barriers);
1405 vq->packed.vring.desc[head].flags = cpu_to_le16(VRING_DESC_F_INDIRECT |
1406 vq->packed.avail_used_flags);
1408 /* We're using some buffers from the free list. */
1409 vq->vq.num_free -= 1;
1411 /* Update free pointer */
1413 if (n >= vq->packed.vring.num) {
1415 vq->packed.avail_wrap_counter ^= 1;
1416 vq->packed.avail_used_flags ^=
1417 1 << VRING_PACKED_DESC_F_AVAIL |
1418 1 << VRING_PACKED_DESC_F_USED;
1420 vq->packed.next_avail_idx = n;
1421 vq->free_head = vq->packed.desc_extra[id].next;
1423 /* Store token and indirect buffer state. */
1424 vq->packed.desc_state[id].num = 1;
1425 vq->packed.desc_state[id].data = data;
1426 vq->packed.desc_state[id].indir_desc = desc;
1427 vq->packed.desc_state[id].last = id;
1431 pr_debug("Added buffer head %i to %p\n", head, vq);
1439 for (i = 0; i < err_idx; i++)
1440 vring_unmap_extra_packed(vq, &extra[i]);
1448 static inline int virtqueue_add_packed(struct virtqueue *_vq,
1449 struct scatterlist *sgs[],
1450 unsigned int total_sg,
1451 unsigned int out_sgs,
1452 unsigned int in_sgs,
1458 struct vring_virtqueue *vq = to_vvq(_vq);
1459 struct vring_packed_desc *desc;
1460 struct scatterlist *sg;
1461 unsigned int i, n, c, descs_used, err_idx, len;
1462 __le16 head_flags, flags;
1463 u16 head, id, prev, curr, avail_used_flags;
1468 BUG_ON(data == NULL);
1469 BUG_ON(ctx && vq->indirect);
1471 if (unlikely(vq->broken)) {
1476 LAST_ADD_TIME_UPDATE(vq);
1478 BUG_ON(total_sg == 0);
1480 if (virtqueue_use_indirect(vq, total_sg)) {
1481 err = virtqueue_add_indirect_packed(vq, sgs, total_sg, out_sgs,
1482 in_sgs, data, premapped, gfp);
1483 if (err != -ENOMEM) {
1488 /* fall back on direct */
1491 head = vq->packed.next_avail_idx;
1492 avail_used_flags = vq->packed.avail_used_flags;
1494 WARN_ON_ONCE(total_sg > vq->packed.vring.num && !vq->indirect);
1496 desc = vq->packed.vring.desc;
1498 descs_used = total_sg;
1500 if (unlikely(vq->vq.num_free < descs_used)) {
1501 pr_debug("Can't add buf len %i - avail = %i\n",
1502 descs_used, vq->vq.num_free);
1508 BUG_ON(id == vq->packed.vring.num);
1512 for (n = 0; n < out_sgs + in_sgs; n++) {
1513 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1516 if (vring_map_one_sg(vq, sg, n < out_sgs ?
1517 DMA_TO_DEVICE : DMA_FROM_DEVICE,
1518 &addr, &len, premapped))
1521 flags = cpu_to_le16(vq->packed.avail_used_flags |
1522 (++c == total_sg ? 0 : VRING_DESC_F_NEXT) |
1523 (n < out_sgs ? 0 : VRING_DESC_F_WRITE));
1527 desc[i].flags = flags;
1529 desc[i].addr = cpu_to_le64(addr);
1530 desc[i].len = cpu_to_le32(len);
1531 desc[i].id = cpu_to_le16(id);
1533 if (unlikely(vq->use_dma_api)) {
1534 vq->packed.desc_extra[curr].addr = premapped ?
1535 DMA_MAPPING_ERROR : addr;
1536 vq->packed.desc_extra[curr].len = len;
1537 vq->packed.desc_extra[curr].flags =
1541 curr = vq->packed.desc_extra[curr].next;
1543 if ((unlikely(++i >= vq->packed.vring.num))) {
1545 vq->packed.avail_used_flags ^=
1546 1 << VRING_PACKED_DESC_F_AVAIL |
1547 1 << VRING_PACKED_DESC_F_USED;
1553 vq->packed.avail_wrap_counter ^= 1;
1555 /* We're using some buffers from the free list. */
1556 vq->vq.num_free -= descs_used;
1558 /* Update free pointer */
1559 vq->packed.next_avail_idx = i;
1560 vq->free_head = curr;
1563 vq->packed.desc_state[id].num = descs_used;
1564 vq->packed.desc_state[id].data = data;
1565 vq->packed.desc_state[id].indir_desc = ctx;
1566 vq->packed.desc_state[id].last = prev;
1569 * A driver MUST NOT make the first descriptor in the list
1570 * available before all subsequent descriptors comprising
1571 * the list are made available.
1573 virtio_wmb(vq->weak_barriers);
1574 vq->packed.vring.desc[head].flags = head_flags;
1575 vq->num_added += descs_used;
1577 pr_debug("Added buffer head %i to %p\n", head, vq);
1585 curr = vq->free_head;
1587 vq->packed.avail_used_flags = avail_used_flags;
1589 for (n = 0; n < total_sg; n++) {
1592 vring_unmap_extra_packed(vq, &vq->packed.desc_extra[curr]);
1593 curr = vq->packed.desc_extra[curr].next;
1595 if (i >= vq->packed.vring.num)
1603 static bool virtqueue_kick_prepare_packed(struct virtqueue *_vq)
1605 struct vring_virtqueue *vq = to_vvq(_vq);
1606 u16 new, old, off_wrap, flags, wrap_counter, event_idx;
1619 * We need to expose the new flags value before checking notification
1622 virtio_mb(vq->weak_barriers);
1624 old = vq->packed.next_avail_idx - vq->num_added;
1625 new = vq->packed.next_avail_idx;
1628 snapshot.u32 = *(u32 *)vq->packed.vring.device;
1629 flags = le16_to_cpu(snapshot.flags);
1631 LAST_ADD_TIME_CHECK(vq);
1632 LAST_ADD_TIME_INVALID(vq);
1634 if (flags != VRING_PACKED_EVENT_FLAG_DESC) {
1635 needs_kick = (flags != VRING_PACKED_EVENT_FLAG_DISABLE);
1639 off_wrap = le16_to_cpu(snapshot.off_wrap);
1641 wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1642 event_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1643 if (wrap_counter != vq->packed.avail_wrap_counter)
1644 event_idx -= vq->packed.vring.num;
1646 needs_kick = vring_need_event(event_idx, new, old);
1652 static void detach_buf_packed(struct vring_virtqueue *vq,
1653 unsigned int id, void **ctx)
1655 struct vring_desc_state_packed *state = NULL;
1656 struct vring_packed_desc *desc;
1657 unsigned int i, curr;
1659 state = &vq->packed.desc_state[id];
1661 /* Clear data ptr. */
1664 vq->packed.desc_extra[state->last].next = vq->free_head;
1666 vq->vq.num_free += state->num;
1668 if (unlikely(vq->use_dma_api)) {
1670 for (i = 0; i < state->num; i++) {
1671 vring_unmap_extra_packed(vq,
1672 &vq->packed.desc_extra[curr]);
1673 curr = vq->packed.desc_extra[curr].next;
1678 struct vring_desc_extra *extra;
1681 /* Free the indirect table, if any, now that it's unmapped. */
1682 desc = state->indir_desc;
1686 if (vq->use_dma_api) {
1687 len = vq->packed.desc_extra[id].len;
1688 num = len / sizeof(struct vring_packed_desc);
1690 extra = (struct vring_desc_extra *)&desc[num];
1692 for (i = 0; i < num; i++)
1693 vring_unmap_extra_packed(vq, &extra[i]);
1696 state->indir_desc = NULL;
1698 *ctx = state->indir_desc;
1702 static inline bool is_used_desc_packed(const struct vring_virtqueue *vq,
1703 u16 idx, bool used_wrap_counter)
1708 flags = le16_to_cpu(vq->packed.vring.desc[idx].flags);
1709 avail = !!(flags & (1 << VRING_PACKED_DESC_F_AVAIL));
1710 used = !!(flags & (1 << VRING_PACKED_DESC_F_USED));
1712 return avail == used && used == used_wrap_counter;
1715 static bool more_used_packed(const struct vring_virtqueue *vq)
1719 bool used_wrap_counter;
1721 last_used_idx = READ_ONCE(vq->last_used_idx);
1722 last_used = packed_last_used(last_used_idx);
1723 used_wrap_counter = packed_used_wrap_counter(last_used_idx);
1724 return is_used_desc_packed(vq, last_used, used_wrap_counter);
1727 static void *virtqueue_get_buf_ctx_packed(struct virtqueue *_vq,
1731 struct vring_virtqueue *vq = to_vvq(_vq);
1732 u16 last_used, id, last_used_idx;
1733 bool used_wrap_counter;
1738 if (unlikely(vq->broken)) {
1743 if (!more_used_packed(vq)) {
1744 pr_debug("No more buffers in queue\n");
1749 /* Only get used elements after they have been exposed by host. */
1750 virtio_rmb(vq->weak_barriers);
1752 last_used_idx = READ_ONCE(vq->last_used_idx);
1753 used_wrap_counter = packed_used_wrap_counter(last_used_idx);
1754 last_used = packed_last_used(last_used_idx);
1755 id = le16_to_cpu(vq->packed.vring.desc[last_used].id);
1756 *len = le32_to_cpu(vq->packed.vring.desc[last_used].len);
1758 if (unlikely(id >= vq->packed.vring.num)) {
1759 BAD_RING(vq, "id %u out of range\n", id);
1762 if (unlikely(!vq->packed.desc_state[id].data)) {
1763 BAD_RING(vq, "id %u is not a head!\n", id);
1767 /* detach_buf_packed clears data, so grab it now. */
1768 ret = vq->packed.desc_state[id].data;
1769 detach_buf_packed(vq, id, ctx);
1771 last_used += vq->packed.desc_state[id].num;
1772 if (unlikely(last_used >= vq->packed.vring.num)) {
1773 last_used -= vq->packed.vring.num;
1774 used_wrap_counter ^= 1;
1777 last_used = (last_used | (used_wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR));
1778 WRITE_ONCE(vq->last_used_idx, last_used);
1781 * If we expect an interrupt for the next entry, tell host
1782 * by writing event index and flush out the write before
1783 * the read in the next get_buf call.
1785 if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DESC)
1786 virtio_store_mb(vq->weak_barriers,
1787 &vq->packed.vring.driver->off_wrap,
1788 cpu_to_le16(vq->last_used_idx));
1790 LAST_ADD_TIME_INVALID(vq);
1796 static void virtqueue_disable_cb_packed(struct virtqueue *_vq)
1798 struct vring_virtqueue *vq = to_vvq(_vq);
1800 if (vq->packed.event_flags_shadow != VRING_PACKED_EVENT_FLAG_DISABLE) {
1801 vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1804 * If device triggered an event already it won't trigger one again:
1805 * no need to disable.
1807 if (vq->event_triggered)
1810 vq->packed.vring.driver->flags =
1811 cpu_to_le16(vq->packed.event_flags_shadow);
1815 static unsigned int virtqueue_enable_cb_prepare_packed(struct virtqueue *_vq)
1817 struct vring_virtqueue *vq = to_vvq(_vq);
1822 * We optimistically turn back on interrupts, then check if there was
1827 vq->packed.vring.driver->off_wrap =
1828 cpu_to_le16(vq->last_used_idx);
1830 * We need to update event offset and event wrap
1831 * counter first before updating event flags.
1833 virtio_wmb(vq->weak_barriers);
1836 if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1837 vq->packed.event_flags_shadow = vq->event ?
1838 VRING_PACKED_EVENT_FLAG_DESC :
1839 VRING_PACKED_EVENT_FLAG_ENABLE;
1840 vq->packed.vring.driver->flags =
1841 cpu_to_le16(vq->packed.event_flags_shadow);
1845 return vq->last_used_idx;
1848 static bool virtqueue_poll_packed(struct virtqueue *_vq, u16 off_wrap)
1850 struct vring_virtqueue *vq = to_vvq(_vq);
1854 wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1855 used_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1857 return is_used_desc_packed(vq, used_idx, wrap_counter);
1860 static bool virtqueue_enable_cb_delayed_packed(struct virtqueue *_vq)
1862 struct vring_virtqueue *vq = to_vvq(_vq);
1863 u16 used_idx, wrap_counter, last_used_idx;
1869 * We optimistically turn back on interrupts, then check if there was
1874 /* TODO: tune this threshold */
1875 bufs = (vq->packed.vring.num - vq->vq.num_free) * 3 / 4;
1876 last_used_idx = READ_ONCE(vq->last_used_idx);
1877 wrap_counter = packed_used_wrap_counter(last_used_idx);
1879 used_idx = packed_last_used(last_used_idx) + bufs;
1880 if (used_idx >= vq->packed.vring.num) {
1881 used_idx -= vq->packed.vring.num;
1885 vq->packed.vring.driver->off_wrap = cpu_to_le16(used_idx |
1886 (wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR));
1889 * We need to update event offset and event wrap
1890 * counter first before updating event flags.
1892 virtio_wmb(vq->weak_barriers);
1895 if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1896 vq->packed.event_flags_shadow = vq->event ?
1897 VRING_PACKED_EVENT_FLAG_DESC :
1898 VRING_PACKED_EVENT_FLAG_ENABLE;
1899 vq->packed.vring.driver->flags =
1900 cpu_to_le16(vq->packed.event_flags_shadow);
1904 * We need to update event suppression structure first
1905 * before re-checking for more used buffers.
1907 virtio_mb(vq->weak_barriers);
1909 last_used_idx = READ_ONCE(vq->last_used_idx);
1910 wrap_counter = packed_used_wrap_counter(last_used_idx);
1911 used_idx = packed_last_used(last_used_idx);
1912 if (is_used_desc_packed(vq, used_idx, wrap_counter)) {
1921 static void *virtqueue_detach_unused_buf_packed(struct virtqueue *_vq)
1923 struct vring_virtqueue *vq = to_vvq(_vq);
1929 for (i = 0; i < vq->packed.vring.num; i++) {
1930 if (!vq->packed.desc_state[i].data)
1932 /* detach_buf clears data, so grab it now. */
1933 buf = vq->packed.desc_state[i].data;
1934 detach_buf_packed(vq, i, NULL);
1938 /* That should have freed everything. */
1939 BUG_ON(vq->vq.num_free != vq->packed.vring.num);
1945 static struct vring_desc_extra *vring_alloc_desc_extra(unsigned int num)
1947 struct vring_desc_extra *desc_extra;
1950 desc_extra = kmalloc_array(num, sizeof(struct vring_desc_extra),
1955 memset(desc_extra, 0, num * sizeof(struct vring_desc_extra));
1957 for (i = 0; i < num - 1; i++)
1958 desc_extra[i].next = i + 1;
1963 static void vring_free_packed(struct vring_virtqueue_packed *vring_packed,
1964 struct virtio_device *vdev,
1965 struct device *dma_dev)
1967 if (vring_packed->vring.desc)
1968 vring_free_queue(vdev, vring_packed->ring_size_in_bytes,
1969 vring_packed->vring.desc,
1970 vring_packed->ring_dma_addr,
1973 if (vring_packed->vring.driver)
1974 vring_free_queue(vdev, vring_packed->event_size_in_bytes,
1975 vring_packed->vring.driver,
1976 vring_packed->driver_event_dma_addr,
1979 if (vring_packed->vring.device)
1980 vring_free_queue(vdev, vring_packed->event_size_in_bytes,
1981 vring_packed->vring.device,
1982 vring_packed->device_event_dma_addr,
1985 kfree(vring_packed->desc_state);
1986 kfree(vring_packed->desc_extra);
1989 static int vring_alloc_queue_packed(struct vring_virtqueue_packed *vring_packed,
1990 struct virtio_device *vdev,
1991 u32 num, struct device *dma_dev)
1993 struct vring_packed_desc *ring;
1994 struct vring_packed_desc_event *driver, *device;
1995 dma_addr_t ring_dma_addr, driver_event_dma_addr, device_event_dma_addr;
1996 size_t ring_size_in_bytes, event_size_in_bytes;
1998 ring_size_in_bytes = num * sizeof(struct vring_packed_desc);
2000 ring = vring_alloc_queue(vdev, ring_size_in_bytes,
2002 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
2007 vring_packed->vring.desc = ring;
2008 vring_packed->ring_dma_addr = ring_dma_addr;
2009 vring_packed->ring_size_in_bytes = ring_size_in_bytes;
2011 event_size_in_bytes = sizeof(struct vring_packed_desc_event);
2013 driver = vring_alloc_queue(vdev, event_size_in_bytes,
2014 &driver_event_dma_addr,
2015 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
2020 vring_packed->vring.driver = driver;
2021 vring_packed->event_size_in_bytes = event_size_in_bytes;
2022 vring_packed->driver_event_dma_addr = driver_event_dma_addr;
2024 device = vring_alloc_queue(vdev, event_size_in_bytes,
2025 &device_event_dma_addr,
2026 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
2031 vring_packed->vring.device = device;
2032 vring_packed->device_event_dma_addr = device_event_dma_addr;
2034 vring_packed->vring.num = num;
2039 vring_free_packed(vring_packed, vdev, dma_dev);
2043 static int vring_alloc_state_extra_packed(struct vring_virtqueue_packed *vring_packed)
2045 struct vring_desc_state_packed *state;
2046 struct vring_desc_extra *extra;
2047 u32 num = vring_packed->vring.num;
2049 state = kmalloc_array(num, sizeof(struct vring_desc_state_packed), GFP_KERNEL);
2051 goto err_desc_state;
2053 memset(state, 0, num * sizeof(struct vring_desc_state_packed));
2055 extra = vring_alloc_desc_extra(num);
2057 goto err_desc_extra;
2059 vring_packed->desc_state = state;
2060 vring_packed->desc_extra = extra;
2070 static void virtqueue_vring_init_packed(struct vring_virtqueue_packed *vring_packed,
2073 vring_packed->next_avail_idx = 0;
2074 vring_packed->avail_wrap_counter = 1;
2075 vring_packed->event_flags_shadow = 0;
2076 vring_packed->avail_used_flags = 1 << VRING_PACKED_DESC_F_AVAIL;
2078 /* No callback? Tell other side not to bother us. */
2080 vring_packed->event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
2081 vring_packed->vring.driver->flags =
2082 cpu_to_le16(vring_packed->event_flags_shadow);
2086 static void virtqueue_vring_attach_packed(struct vring_virtqueue *vq,
2087 struct vring_virtqueue_packed *vring_packed)
2089 vq->packed = *vring_packed;
2091 /* Put everything in free lists. */
2095 static void virtqueue_reinit_packed(struct vring_virtqueue *vq)
2097 memset(vq->packed.vring.device, 0, vq->packed.event_size_in_bytes);
2098 memset(vq->packed.vring.driver, 0, vq->packed.event_size_in_bytes);
2100 /* we need to reset the desc.flags. For more, see is_used_desc_packed() */
2101 memset(vq->packed.vring.desc, 0, vq->packed.ring_size_in_bytes);
2103 virtqueue_init(vq, vq->packed.vring.num);
2104 virtqueue_vring_init_packed(&vq->packed, !!vq->vq.callback);
2107 static struct virtqueue *__vring_new_virtqueue_packed(unsigned int index,
2108 struct vring_virtqueue_packed *vring_packed,
2109 struct virtio_device *vdev,
2112 bool (*notify)(struct virtqueue *),
2113 void (*callback)(struct virtqueue *),
2115 struct device *dma_dev)
2117 struct vring_virtqueue *vq;
2120 vq = kmalloc(sizeof(*vq), GFP_KERNEL);
2124 vq->vq.callback = callback;
2127 vq->vq.index = index;
2128 vq->vq.reset = false;
2129 vq->we_own_ring = false;
2130 vq->notify = notify;
2131 vq->weak_barriers = weak_barriers;
2132 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION
2137 vq->packed_ring = true;
2138 vq->dma_dev = dma_dev;
2139 vq->use_dma_api = vring_use_dma_api(vdev);
2141 vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
2143 vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
2145 if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
2146 vq->weak_barriers = false;
2148 err = vring_alloc_state_extra_packed(vring_packed);
2154 virtqueue_vring_init_packed(vring_packed, !!callback);
2156 virtqueue_init(vq, vring_packed->vring.num);
2157 virtqueue_vring_attach_packed(vq, vring_packed);
2159 spin_lock(&vdev->vqs_list_lock);
2160 list_add_tail(&vq->vq.list, &vdev->vqs);
2161 spin_unlock(&vdev->vqs_list_lock);
2165 static struct virtqueue *vring_create_virtqueue_packed(
2168 unsigned int vring_align,
2169 struct virtio_device *vdev,
2171 bool may_reduce_num,
2173 bool (*notify)(struct virtqueue *),
2174 void (*callback)(struct virtqueue *),
2176 struct device *dma_dev)
2178 struct vring_virtqueue_packed vring_packed = {};
2179 struct virtqueue *vq;
2181 if (vring_alloc_queue_packed(&vring_packed, vdev, num, dma_dev))
2184 vq = __vring_new_virtqueue_packed(index, &vring_packed, vdev, weak_barriers,
2185 context, notify, callback, name, dma_dev);
2187 vring_free_packed(&vring_packed, vdev, dma_dev);
2191 to_vvq(vq)->we_own_ring = true;
2196 static int virtqueue_resize_packed(struct virtqueue *_vq, u32 num)
2198 struct vring_virtqueue_packed vring_packed = {};
2199 struct vring_virtqueue *vq = to_vvq(_vq);
2200 struct virtio_device *vdev = _vq->vdev;
2203 if (vring_alloc_queue_packed(&vring_packed, vdev, num, vring_dma_dev(vq)))
2206 err = vring_alloc_state_extra_packed(&vring_packed);
2208 goto err_state_extra;
2210 vring_free(&vq->vq);
2212 virtqueue_vring_init_packed(&vring_packed, !!vq->vq.callback);
2214 virtqueue_init(vq, vring_packed.vring.num);
2215 virtqueue_vring_attach_packed(vq, &vring_packed);
2220 vring_free_packed(&vring_packed, vdev, vring_dma_dev(vq));
2222 virtqueue_reinit_packed(vq);
2226 static int virtqueue_disable_and_recycle(struct virtqueue *_vq,
2227 void (*recycle)(struct virtqueue *vq, void *buf))
2229 struct vring_virtqueue *vq = to_vvq(_vq);
2230 struct virtio_device *vdev = vq->vq.vdev;
2234 if (!vq->we_own_ring)
2237 if (!vdev->config->disable_vq_and_reset)
2240 if (!vdev->config->enable_vq_after_reset)
2243 err = vdev->config->disable_vq_and_reset(_vq);
2247 while ((buf = virtqueue_detach_unused_buf(_vq)) != NULL)
2253 static int virtqueue_enable_after_reset(struct virtqueue *_vq)
2255 struct vring_virtqueue *vq = to_vvq(_vq);
2256 struct virtio_device *vdev = vq->vq.vdev;
2258 if (vdev->config->enable_vq_after_reset(_vq))
2265 * Generic functions and exported symbols.
2268 static inline int virtqueue_add(struct virtqueue *_vq,
2269 struct scatterlist *sgs[],
2270 unsigned int total_sg,
2271 unsigned int out_sgs,
2272 unsigned int in_sgs,
2278 struct vring_virtqueue *vq = to_vvq(_vq);
2280 return vq->packed_ring ? virtqueue_add_packed(_vq, sgs, total_sg,
2281 out_sgs, in_sgs, data, ctx, premapped, gfp) :
2282 virtqueue_add_split(_vq, sgs, total_sg,
2283 out_sgs, in_sgs, data, ctx, premapped, gfp);
2287 * virtqueue_add_sgs - expose buffers to other end
2288 * @_vq: the struct virtqueue we're talking about.
2289 * @sgs: array of terminated scatterlists.
2290 * @out_sgs: the number of scatterlists readable by other side
2291 * @in_sgs: the number of scatterlists which are writable (after readable ones)
2292 * @data: the token identifying the buffer.
2293 * @gfp: how to do memory allocations (if necessary).
2295 * Caller must ensure we don't call this with other virtqueue operations
2296 * at the same time (except where noted).
2298 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2300 int virtqueue_add_sgs(struct virtqueue *_vq,
2301 struct scatterlist *sgs[],
2302 unsigned int out_sgs,
2303 unsigned int in_sgs,
2307 unsigned int i, total_sg = 0;
2309 /* Count them first. */
2310 for (i = 0; i < out_sgs + in_sgs; i++) {
2311 struct scatterlist *sg;
2313 for (sg = sgs[i]; sg; sg = sg_next(sg))
2316 return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs,
2317 data, NULL, false, gfp);
2319 EXPORT_SYMBOL_GPL(virtqueue_add_sgs);
2322 * virtqueue_add_outbuf - expose output buffers to other end
2323 * @vq: the struct virtqueue we're talking about.
2324 * @sg: scatterlist (must be well-formed and terminated!)
2325 * @num: the number of entries in @sg readable by other side
2326 * @data: the token identifying the buffer.
2327 * @gfp: how to do memory allocations (if necessary).
2329 * Caller must ensure we don't call this with other virtqueue operations
2330 * at the same time (except where noted).
2332 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2334 int virtqueue_add_outbuf(struct virtqueue *vq,
2335 struct scatterlist *sg, unsigned int num,
2339 return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, false, gfp);
2341 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf);
2344 * virtqueue_add_outbuf_premapped - expose output buffers to other end
2345 * @vq: the struct virtqueue we're talking about.
2346 * @sg: scatterlist (must be well-formed and terminated!)
2347 * @num: the number of entries in @sg readable by other side
2348 * @data: the token identifying the buffer.
2349 * @gfp: how to do memory allocations (if necessary).
2351 * Caller must ensure we don't call this with other virtqueue operations
2352 * at the same time (except where noted).
2355 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2357 int virtqueue_add_outbuf_premapped(struct virtqueue *vq,
2358 struct scatterlist *sg, unsigned int num,
2362 return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, true, gfp);
2364 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf_premapped);
2367 * virtqueue_add_inbuf - expose input buffers to other end
2368 * @vq: the struct virtqueue we're talking about.
2369 * @sg: scatterlist (must be well-formed and terminated!)
2370 * @num: the number of entries in @sg writable by other side
2371 * @data: the token identifying the buffer.
2372 * @gfp: how to do memory allocations (if necessary).
2374 * Caller must ensure we don't call this with other virtqueue operations
2375 * at the same time (except where noted).
2377 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2379 int virtqueue_add_inbuf(struct virtqueue *vq,
2380 struct scatterlist *sg, unsigned int num,
2384 return virtqueue_add(vq, &sg, num, 0, 1, data, NULL, false, gfp);
2386 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf);
2389 * virtqueue_add_inbuf_ctx - expose input buffers to other end
2390 * @vq: the struct virtqueue we're talking about.
2391 * @sg: scatterlist (must be well-formed and terminated!)
2392 * @num: the number of entries in @sg writable by other side
2393 * @data: the token identifying the buffer.
2394 * @ctx: extra context for the token
2395 * @gfp: how to do memory allocations (if necessary).
2397 * Caller must ensure we don't call this with other virtqueue operations
2398 * at the same time (except where noted).
2400 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2402 int virtqueue_add_inbuf_ctx(struct virtqueue *vq,
2403 struct scatterlist *sg, unsigned int num,
2408 return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, false, gfp);
2410 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_ctx);
2413 * virtqueue_add_inbuf_premapped - expose input buffers to other end
2414 * @vq: the struct virtqueue we're talking about.
2415 * @sg: scatterlist (must be well-formed and terminated!)
2416 * @num: the number of entries in @sg writable by other side
2417 * @data: the token identifying the buffer.
2418 * @ctx: extra context for the token
2419 * @gfp: how to do memory allocations (if necessary).
2421 * Caller must ensure we don't call this with other virtqueue operations
2422 * at the same time (except where noted).
2425 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2427 int virtqueue_add_inbuf_premapped(struct virtqueue *vq,
2428 struct scatterlist *sg, unsigned int num,
2433 return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, true, gfp);
2435 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_premapped);
2438 * virtqueue_dma_dev - get the dma dev
2439 * @_vq: the struct virtqueue we're talking about.
2441 * Returns the dma dev. That can been used for dma api.
2443 struct device *virtqueue_dma_dev(struct virtqueue *_vq)
2445 struct vring_virtqueue *vq = to_vvq(_vq);
2447 if (vq->use_dma_api)
2448 return vring_dma_dev(vq);
2452 EXPORT_SYMBOL_GPL(virtqueue_dma_dev);
2455 * virtqueue_kick_prepare - first half of split virtqueue_kick call.
2456 * @_vq: the struct virtqueue
2458 * Instead of virtqueue_kick(), you can do:
2459 * if (virtqueue_kick_prepare(vq))
2460 * virtqueue_notify(vq);
2462 * This is sometimes useful because the virtqueue_kick_prepare() needs
2463 * to be serialized, but the actual virtqueue_notify() call does not.
2465 bool virtqueue_kick_prepare(struct virtqueue *_vq)
2467 struct vring_virtqueue *vq = to_vvq(_vq);
2469 return vq->packed_ring ? virtqueue_kick_prepare_packed(_vq) :
2470 virtqueue_kick_prepare_split(_vq);
2472 EXPORT_SYMBOL_GPL(virtqueue_kick_prepare);
2475 * virtqueue_notify - second half of split virtqueue_kick call.
2476 * @_vq: the struct virtqueue
2478 * This does not need to be serialized.
2480 * Returns false if host notify failed or queue is broken, otherwise true.
2482 bool virtqueue_notify(struct virtqueue *_vq)
2484 struct vring_virtqueue *vq = to_vvq(_vq);
2486 if (unlikely(vq->broken))
2489 /* Prod other side to tell it about changes. */
2490 if (!vq->notify(_vq)) {
2496 EXPORT_SYMBOL_GPL(virtqueue_notify);
2499 * virtqueue_kick - update after add_buf
2500 * @vq: the struct virtqueue
2502 * After one or more virtqueue_add_* calls, invoke this to kick
2505 * Caller must ensure we don't call this with other virtqueue
2506 * operations at the same time (except where noted).
2508 * Returns false if kick failed, otherwise true.
2510 bool virtqueue_kick(struct virtqueue *vq)
2512 if (virtqueue_kick_prepare(vq))
2513 return virtqueue_notify(vq);
2516 EXPORT_SYMBOL_GPL(virtqueue_kick);
2519 * virtqueue_get_buf_ctx - get the next used buffer
2520 * @_vq: the struct virtqueue we're talking about.
2521 * @len: the length written into the buffer
2522 * @ctx: extra context for the token
2524 * If the device wrote data into the buffer, @len will be set to the
2525 * amount written. This means you don't need to clear the buffer
2526 * beforehand to ensure there's no data leakage in the case of short
2529 * Caller must ensure we don't call this with other virtqueue
2530 * operations at the same time (except where noted).
2532 * Returns NULL if there are no used buffers, or the "data" token
2533 * handed to virtqueue_add_*().
2535 void *virtqueue_get_buf_ctx(struct virtqueue *_vq, unsigned int *len,
2538 struct vring_virtqueue *vq = to_vvq(_vq);
2540 return vq->packed_ring ? virtqueue_get_buf_ctx_packed(_vq, len, ctx) :
2541 virtqueue_get_buf_ctx_split(_vq, len, ctx);
2543 EXPORT_SYMBOL_GPL(virtqueue_get_buf_ctx);
2545 void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len)
2547 return virtqueue_get_buf_ctx(_vq, len, NULL);
2549 EXPORT_SYMBOL_GPL(virtqueue_get_buf);
2551 * virtqueue_disable_cb - disable callbacks
2552 * @_vq: the struct virtqueue we're talking about.
2554 * Note that this is not necessarily synchronous, hence unreliable and only
2555 * useful as an optimization.
2557 * Unlike other operations, this need not be serialized.
2559 void virtqueue_disable_cb(struct virtqueue *_vq)
2561 struct vring_virtqueue *vq = to_vvq(_vq);
2563 if (vq->packed_ring)
2564 virtqueue_disable_cb_packed(_vq);
2566 virtqueue_disable_cb_split(_vq);
2568 EXPORT_SYMBOL_GPL(virtqueue_disable_cb);
2571 * virtqueue_enable_cb_prepare - restart callbacks after disable_cb
2572 * @_vq: the struct virtqueue we're talking about.
2574 * This re-enables callbacks; it returns current queue state
2575 * in an opaque unsigned value. This value should be later tested by
2576 * virtqueue_poll, to detect a possible race between the driver checking for
2577 * more work, and enabling callbacks.
2579 * Caller must ensure we don't call this with other virtqueue
2580 * operations at the same time (except where noted).
2582 unsigned int virtqueue_enable_cb_prepare(struct virtqueue *_vq)
2584 struct vring_virtqueue *vq = to_vvq(_vq);
2586 if (vq->event_triggered)
2587 vq->event_triggered = false;
2589 return vq->packed_ring ? virtqueue_enable_cb_prepare_packed(_vq) :
2590 virtqueue_enable_cb_prepare_split(_vq);
2592 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare);
2595 * virtqueue_poll - query pending used buffers
2596 * @_vq: the struct virtqueue we're talking about.
2597 * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare).
2599 * Returns "true" if there are pending used buffers in the queue.
2601 * This does not need to be serialized.
2603 bool virtqueue_poll(struct virtqueue *_vq, unsigned int last_used_idx)
2605 struct vring_virtqueue *vq = to_vvq(_vq);
2607 if (unlikely(vq->broken))
2610 virtio_mb(vq->weak_barriers);
2611 return vq->packed_ring ? virtqueue_poll_packed(_vq, last_used_idx) :
2612 virtqueue_poll_split(_vq, last_used_idx);
2614 EXPORT_SYMBOL_GPL(virtqueue_poll);
2617 * virtqueue_enable_cb - restart callbacks after disable_cb.
2618 * @_vq: the struct virtqueue we're talking about.
2620 * This re-enables callbacks; it returns "false" if there are pending
2621 * buffers in the queue, to detect a possible race between the driver
2622 * checking for more work, and enabling callbacks.
2624 * Caller must ensure we don't call this with other virtqueue
2625 * operations at the same time (except where noted).
2627 bool virtqueue_enable_cb(struct virtqueue *_vq)
2629 unsigned int last_used_idx = virtqueue_enable_cb_prepare(_vq);
2631 return !virtqueue_poll(_vq, last_used_idx);
2633 EXPORT_SYMBOL_GPL(virtqueue_enable_cb);
2636 * virtqueue_enable_cb_delayed - restart callbacks after disable_cb.
2637 * @_vq: the struct virtqueue we're talking about.
2639 * This re-enables callbacks but hints to the other side to delay
2640 * interrupts until most of the available buffers have been processed;
2641 * it returns "false" if there are many pending buffers in the queue,
2642 * to detect a possible race between the driver checking for more work,
2643 * and enabling callbacks.
2645 * Caller must ensure we don't call this with other virtqueue
2646 * operations at the same time (except where noted).
2648 bool virtqueue_enable_cb_delayed(struct virtqueue *_vq)
2650 struct vring_virtqueue *vq = to_vvq(_vq);
2652 if (vq->event_triggered)
2653 vq->event_triggered = false;
2655 return vq->packed_ring ? virtqueue_enable_cb_delayed_packed(_vq) :
2656 virtqueue_enable_cb_delayed_split(_vq);
2658 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed);
2661 * virtqueue_detach_unused_buf - detach first unused buffer
2662 * @_vq: the struct virtqueue we're talking about.
2664 * Returns NULL or the "data" token handed to virtqueue_add_*().
2665 * This is not valid on an active queue; it is useful for device
2666 * shutdown or the reset queue.
2668 void *virtqueue_detach_unused_buf(struct virtqueue *_vq)
2670 struct vring_virtqueue *vq = to_vvq(_vq);
2672 return vq->packed_ring ? virtqueue_detach_unused_buf_packed(_vq) :
2673 virtqueue_detach_unused_buf_split(_vq);
2675 EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf);
2677 static inline bool more_used(const struct vring_virtqueue *vq)
2679 return vq->packed_ring ? more_used_packed(vq) : more_used_split(vq);
2683 * vring_interrupt - notify a virtqueue on an interrupt
2684 * @irq: the IRQ number (ignored)
2685 * @_vq: the struct virtqueue to notify
2687 * Calls the callback function of @_vq to process the virtqueue
2690 irqreturn_t vring_interrupt(int irq, void *_vq)
2692 struct vring_virtqueue *vq = to_vvq(_vq);
2694 if (!more_used(vq)) {
2695 pr_debug("virtqueue interrupt with no work for %p\n", vq);
2699 if (unlikely(vq->broken)) {
2700 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION
2701 dev_warn_once(&vq->vq.vdev->dev,
2702 "virtio vring IRQ raised before DRIVER_OK");
2709 /* Just a hint for performance: so it's ok that this can be racy! */
2711 data_race(vq->event_triggered = true);
2713 pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback);
2714 if (vq->vq.callback)
2715 vq->vq.callback(&vq->vq);
2719 EXPORT_SYMBOL_GPL(vring_interrupt);
2721 struct virtqueue *vring_create_virtqueue(
2724 unsigned int vring_align,
2725 struct virtio_device *vdev,
2727 bool may_reduce_num,
2729 bool (*notify)(struct virtqueue *),
2730 void (*callback)(struct virtqueue *),
2734 if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2735 return vring_create_virtqueue_packed(index, num, vring_align,
2736 vdev, weak_barriers, may_reduce_num,
2737 context, notify, callback, name, vdev->dev.parent);
2739 return vring_create_virtqueue_split(index, num, vring_align,
2740 vdev, weak_barriers, may_reduce_num,
2741 context, notify, callback, name, vdev->dev.parent);
2743 EXPORT_SYMBOL_GPL(vring_create_virtqueue);
2745 struct virtqueue *vring_create_virtqueue_dma(
2748 unsigned int vring_align,
2749 struct virtio_device *vdev,
2751 bool may_reduce_num,
2753 bool (*notify)(struct virtqueue *),
2754 void (*callback)(struct virtqueue *),
2756 struct device *dma_dev)
2759 if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2760 return vring_create_virtqueue_packed(index, num, vring_align,
2761 vdev, weak_barriers, may_reduce_num,
2762 context, notify, callback, name, dma_dev);
2764 return vring_create_virtqueue_split(index, num, vring_align,
2765 vdev, weak_barriers, may_reduce_num,
2766 context, notify, callback, name, dma_dev);
2768 EXPORT_SYMBOL_GPL(vring_create_virtqueue_dma);
2771 * virtqueue_resize - resize the vring of vq
2772 * @_vq: the struct virtqueue we're talking about.
2773 * @num: new ring num
2774 * @recycle: callback to recycle unused buffers
2775 * @recycle_done: callback to be invoked when recycle for all unused buffers done
2777 * When it is really necessary to create a new vring, it will set the current vq
2778 * into the reset state. Then call the passed callback to recycle the buffer
2779 * that is no longer used. Only after the new vring is successfully created, the
2780 * old vring will be released.
2782 * Caller must ensure we don't call this with other virtqueue operations
2783 * at the same time (except where noted).
2785 * Returns zero or a negative error.
2787 * -ENOMEM: Failed to allocate a new ring, fall back to the original ring size.
2788 * vq can still work normally
2789 * -EBUSY: Failed to sync with device, vq may not work properly
2790 * -ENOENT: Transport or device not supported
2791 * -E2BIG/-EINVAL: num error
2792 * -EPERM: Operation not permitted
2795 int virtqueue_resize(struct virtqueue *_vq, u32 num,
2796 void (*recycle)(struct virtqueue *vq, void *buf),
2797 void (*recycle_done)(struct virtqueue *vq))
2799 struct vring_virtqueue *vq = to_vvq(_vq);
2802 if (num > vq->vq.num_max)
2808 if ((vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num) == num)
2811 err = virtqueue_disable_and_recycle(_vq, recycle);
2817 if (vq->packed_ring)
2818 err = virtqueue_resize_packed(_vq, num);
2820 err = virtqueue_resize_split(_vq, num);
2822 return virtqueue_enable_after_reset(_vq);
2824 EXPORT_SYMBOL_GPL(virtqueue_resize);
2827 * virtqueue_reset - detach and recycle all unused buffers
2828 * @_vq: the struct virtqueue we're talking about.
2829 * @recycle: callback to recycle unused buffers
2830 * @recycle_done: callback to be invoked when recycle for all unused buffers done
2832 * Caller must ensure we don't call this with other virtqueue operations
2833 * at the same time (except where noted).
2835 * Returns zero or a negative error.
2837 * -EBUSY: Failed to sync with device, vq may not work properly
2838 * -ENOENT: Transport or device not supported
2839 * -EPERM: Operation not permitted
2841 int virtqueue_reset(struct virtqueue *_vq,
2842 void (*recycle)(struct virtqueue *vq, void *buf),
2843 void (*recycle_done)(struct virtqueue *vq))
2845 struct vring_virtqueue *vq = to_vvq(_vq);
2848 err = virtqueue_disable_and_recycle(_vq, recycle);
2854 if (vq->packed_ring)
2855 virtqueue_reinit_packed(vq);
2857 virtqueue_reinit_split(vq);
2859 return virtqueue_enable_after_reset(_vq);
2861 EXPORT_SYMBOL_GPL(virtqueue_reset);
2863 struct virtqueue *vring_new_virtqueue(unsigned int index,
2865 unsigned int vring_align,
2866 struct virtio_device *vdev,
2870 bool (*notify)(struct virtqueue *vq),
2871 void (*callback)(struct virtqueue *vq),
2874 struct vring_virtqueue_split vring_split = {};
2876 if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED)) {
2877 struct vring_virtqueue_packed vring_packed = {};
2879 vring_packed.vring.num = num;
2880 vring_packed.vring.desc = pages;
2881 return __vring_new_virtqueue_packed(index, &vring_packed,
2882 vdev, weak_barriers,
2883 context, notify, callback,
2884 name, vdev->dev.parent);
2887 vring_init(&vring_split.vring, num, pages, vring_align);
2888 return __vring_new_virtqueue_split(index, &vring_split, vdev, weak_barriers,
2889 context, notify, callback, name,
2892 EXPORT_SYMBOL_GPL(vring_new_virtqueue);
2894 static void vring_free(struct virtqueue *_vq)
2896 struct vring_virtqueue *vq = to_vvq(_vq);
2898 if (vq->we_own_ring) {
2899 if (vq->packed_ring) {
2900 vring_free_queue(vq->vq.vdev,
2901 vq->packed.ring_size_in_bytes,
2902 vq->packed.vring.desc,
2903 vq->packed.ring_dma_addr,
2906 vring_free_queue(vq->vq.vdev,
2907 vq->packed.event_size_in_bytes,
2908 vq->packed.vring.driver,
2909 vq->packed.driver_event_dma_addr,
2912 vring_free_queue(vq->vq.vdev,
2913 vq->packed.event_size_in_bytes,
2914 vq->packed.vring.device,
2915 vq->packed.device_event_dma_addr,
2918 kfree(vq->packed.desc_state);
2919 kfree(vq->packed.desc_extra);
2921 vring_free_queue(vq->vq.vdev,
2922 vq->split.queue_size_in_bytes,
2923 vq->split.vring.desc,
2924 vq->split.queue_dma_addr,
2928 if (!vq->packed_ring) {
2929 kfree(vq->split.desc_state);
2930 kfree(vq->split.desc_extra);
2934 void vring_del_virtqueue(struct virtqueue *_vq)
2936 struct vring_virtqueue *vq = to_vvq(_vq);
2938 spin_lock(&vq->vq.vdev->vqs_list_lock);
2939 list_del(&_vq->list);
2940 spin_unlock(&vq->vq.vdev->vqs_list_lock);
2946 EXPORT_SYMBOL_GPL(vring_del_virtqueue);
2948 u32 vring_notification_data(struct virtqueue *_vq)
2950 struct vring_virtqueue *vq = to_vvq(_vq);
2953 if (vq->packed_ring)
2954 next = (vq->packed.next_avail_idx &
2955 ~(-(1 << VRING_PACKED_EVENT_F_WRAP_CTR))) |
2956 vq->packed.avail_wrap_counter <<
2957 VRING_PACKED_EVENT_F_WRAP_CTR;
2959 next = vq->split.avail_idx_shadow;
2961 return next << 16 | _vq->index;
2963 EXPORT_SYMBOL_GPL(vring_notification_data);
2965 /* Manipulates transport-specific feature bits. */
2966 void vring_transport_features(struct virtio_device *vdev)
2970 for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) {
2972 case VIRTIO_RING_F_INDIRECT_DESC:
2974 case VIRTIO_RING_F_EVENT_IDX:
2976 case VIRTIO_F_VERSION_1:
2978 case VIRTIO_F_ACCESS_PLATFORM:
2980 case VIRTIO_F_RING_PACKED:
2982 case VIRTIO_F_ORDER_PLATFORM:
2984 case VIRTIO_F_NOTIFICATION_DATA:
2987 /* We don't understand this bit. */
2988 __virtio_clear_bit(vdev, i);
2992 EXPORT_SYMBOL_GPL(vring_transport_features);
2995 * virtqueue_get_vring_size - return the size of the virtqueue's vring
2996 * @_vq: the struct virtqueue containing the vring of interest.
2998 * Returns the size of the vring. This is mainly used for boasting to
2999 * userspace. Unlike other operations, this need not be serialized.
3001 unsigned int virtqueue_get_vring_size(const struct virtqueue *_vq)
3004 const struct vring_virtqueue *vq = to_vvq(_vq);
3006 return vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num;
3008 EXPORT_SYMBOL_GPL(virtqueue_get_vring_size);
3011 * This function should only be called by the core, not directly by the driver.
3013 void __virtqueue_break(struct virtqueue *_vq)
3015 struct vring_virtqueue *vq = to_vvq(_vq);
3017 /* Pairs with READ_ONCE() in virtqueue_is_broken(). */
3018 WRITE_ONCE(vq->broken, true);
3020 EXPORT_SYMBOL_GPL(__virtqueue_break);
3023 * This function should only be called by the core, not directly by the driver.
3025 void __virtqueue_unbreak(struct virtqueue *_vq)
3027 struct vring_virtqueue *vq = to_vvq(_vq);
3029 /* Pairs with READ_ONCE() in virtqueue_is_broken(). */
3030 WRITE_ONCE(vq->broken, false);
3032 EXPORT_SYMBOL_GPL(__virtqueue_unbreak);
3034 bool virtqueue_is_broken(const struct virtqueue *_vq)
3036 const struct vring_virtqueue *vq = to_vvq(_vq);
3038 return READ_ONCE(vq->broken);
3040 EXPORT_SYMBOL_GPL(virtqueue_is_broken);
3043 * This should prevent the device from being used, allowing drivers to
3044 * recover. You may need to grab appropriate locks to flush.
3046 void virtio_break_device(struct virtio_device *dev)
3048 struct virtqueue *_vq;
3050 spin_lock(&dev->vqs_list_lock);
3051 list_for_each_entry(_vq, &dev->vqs, list) {
3052 struct vring_virtqueue *vq = to_vvq(_vq);
3054 /* Pairs with READ_ONCE() in virtqueue_is_broken(). */
3055 WRITE_ONCE(vq->broken, true);
3057 spin_unlock(&dev->vqs_list_lock);
3059 EXPORT_SYMBOL_GPL(virtio_break_device);
3062 * This should allow the device to be used by the driver. You may
3063 * need to grab appropriate locks to flush the write to
3064 * vq->broken. This should only be used in some specific case e.g
3065 * (probing and restoring). This function should only be called by the
3066 * core, not directly by the driver.
3068 void __virtio_unbreak_device(struct virtio_device *dev)
3070 struct virtqueue *_vq;
3072 spin_lock(&dev->vqs_list_lock);
3073 list_for_each_entry(_vq, &dev->vqs, list) {
3074 struct vring_virtqueue *vq = to_vvq(_vq);
3076 /* Pairs with READ_ONCE() in virtqueue_is_broken(). */
3077 WRITE_ONCE(vq->broken, false);
3079 spin_unlock(&dev->vqs_list_lock);
3081 EXPORT_SYMBOL_GPL(__virtio_unbreak_device);
3083 dma_addr_t virtqueue_get_desc_addr(const struct virtqueue *_vq)
3085 const struct vring_virtqueue *vq = to_vvq(_vq);
3087 BUG_ON(!vq->we_own_ring);
3089 if (vq->packed_ring)
3090 return vq->packed.ring_dma_addr;
3092 return vq->split.queue_dma_addr;
3094 EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr);
3096 dma_addr_t virtqueue_get_avail_addr(const struct virtqueue *_vq)
3098 const struct vring_virtqueue *vq = to_vvq(_vq);
3100 BUG_ON(!vq->we_own_ring);
3102 if (vq->packed_ring)
3103 return vq->packed.driver_event_dma_addr;
3105 return vq->split.queue_dma_addr +
3106 ((char *)vq->split.vring.avail - (char *)vq->split.vring.desc);
3108 EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr);
3110 dma_addr_t virtqueue_get_used_addr(const struct virtqueue *_vq)
3112 const struct vring_virtqueue *vq = to_vvq(_vq);
3114 BUG_ON(!vq->we_own_ring);
3116 if (vq->packed_ring)
3117 return vq->packed.device_event_dma_addr;
3119 return vq->split.queue_dma_addr +
3120 ((char *)vq->split.vring.used - (char *)vq->split.vring.desc);
3122 EXPORT_SYMBOL_GPL(virtqueue_get_used_addr);
3124 /* Only available for split ring */
3125 const struct vring *virtqueue_get_vring(const struct virtqueue *vq)
3127 return &to_vvq(vq)->split.vring;
3129 EXPORT_SYMBOL_GPL(virtqueue_get_vring);
3132 * virtqueue_dma_map_single_attrs - map DMA for _vq
3133 * @_vq: the struct virtqueue we're talking about.
3134 * @ptr: the pointer of the buffer to do dma
3135 * @size: the size of the buffer to do dma
3136 * @dir: DMA direction
3139 * The caller calls this to do dma mapping in advance. The DMA address can be
3140 * passed to this _vq when it is in pre-mapped mode.
3142 * return DMA address. Caller should check that by virtqueue_dma_mapping_error().
3144 dma_addr_t virtqueue_dma_map_single_attrs(struct virtqueue *_vq, void *ptr,
3146 enum dma_data_direction dir,
3147 unsigned long attrs)
3149 struct vring_virtqueue *vq = to_vvq(_vq);
3151 if (!vq->use_dma_api) {
3152 kmsan_handle_dma(virt_to_page(ptr), offset_in_page(ptr), size, dir);
3153 return (dma_addr_t)virt_to_phys(ptr);
3156 return dma_map_single_attrs(vring_dma_dev(vq), ptr, size, dir, attrs);
3158 EXPORT_SYMBOL_GPL(virtqueue_dma_map_single_attrs);
3161 * virtqueue_dma_unmap_single_attrs - unmap DMA for _vq
3162 * @_vq: the struct virtqueue we're talking about.
3163 * @addr: the dma address to unmap
3164 * @size: the size of the buffer
3165 * @dir: DMA direction
3168 * Unmap the address that is mapped by the virtqueue_dma_map_* APIs.
3171 void virtqueue_dma_unmap_single_attrs(struct virtqueue *_vq, dma_addr_t addr,
3172 size_t size, enum dma_data_direction dir,
3173 unsigned long attrs)
3175 struct vring_virtqueue *vq = to_vvq(_vq);
3177 if (!vq->use_dma_api)
3180 dma_unmap_single_attrs(vring_dma_dev(vq), addr, size, dir, attrs);
3182 EXPORT_SYMBOL_GPL(virtqueue_dma_unmap_single_attrs);
3185 * virtqueue_dma_mapping_error - check dma address
3186 * @_vq: the struct virtqueue we're talking about.
3187 * @addr: DMA address
3189 * Returns 0 means dma valid. Other means invalid dma address.
3191 int virtqueue_dma_mapping_error(struct virtqueue *_vq, dma_addr_t addr)
3193 struct vring_virtqueue *vq = to_vvq(_vq);
3195 if (!vq->use_dma_api)
3198 return dma_mapping_error(vring_dma_dev(vq), addr);
3200 EXPORT_SYMBOL_GPL(virtqueue_dma_mapping_error);
3203 * virtqueue_dma_need_sync - check a dma address needs sync
3204 * @_vq: the struct virtqueue we're talking about.
3205 * @addr: DMA address
3207 * Check if the dma address mapped by the virtqueue_dma_map_* APIs needs to be
3212 bool virtqueue_dma_need_sync(struct virtqueue *_vq, dma_addr_t addr)
3214 struct vring_virtqueue *vq = to_vvq(_vq);
3216 if (!vq->use_dma_api)
3219 return dma_need_sync(vring_dma_dev(vq), addr);
3221 EXPORT_SYMBOL_GPL(virtqueue_dma_need_sync);
3224 * virtqueue_dma_sync_single_range_for_cpu - dma sync for cpu
3225 * @_vq: the struct virtqueue we're talking about.
3226 * @addr: DMA address
3227 * @offset: DMA address offset
3228 * @size: buf size for sync
3229 * @dir: DMA direction
3231 * Before calling this function, use virtqueue_dma_need_sync() to confirm that
3232 * the DMA address really needs to be synchronized
3235 void virtqueue_dma_sync_single_range_for_cpu(struct virtqueue *_vq,
3237 unsigned long offset, size_t size,
3238 enum dma_data_direction dir)
3240 struct vring_virtqueue *vq = to_vvq(_vq);
3241 struct device *dev = vring_dma_dev(vq);
3243 if (!vq->use_dma_api)
3246 dma_sync_single_range_for_cpu(dev, addr, offset, size, dir);
3248 EXPORT_SYMBOL_GPL(virtqueue_dma_sync_single_range_for_cpu);
3251 * virtqueue_dma_sync_single_range_for_device - dma sync for device
3252 * @_vq: the struct virtqueue we're talking about.
3253 * @addr: DMA address
3254 * @offset: DMA address offset
3255 * @size: buf size for sync
3256 * @dir: DMA direction
3258 * Before calling this function, use virtqueue_dma_need_sync() to confirm that
3259 * the DMA address really needs to be synchronized
3261 void virtqueue_dma_sync_single_range_for_device(struct virtqueue *_vq,
3263 unsigned long offset, size_t size,
3264 enum dma_data_direction dir)
3266 struct vring_virtqueue *vq = to_vvq(_vq);
3267 struct device *dev = vring_dma_dev(vq);
3269 if (!vq->use_dma_api)
3272 dma_sync_single_range_for_device(dev, addr, offset, size, dir);
3274 EXPORT_SYMBOL_GPL(virtqueue_dma_sync_single_range_for_device);
3276 MODULE_DESCRIPTION("Virtio ring implementation");
3277 MODULE_LICENSE("GPL");