]> Git Repo - linux.git/blob - drivers/ptp/ptp_clock.c
Linux 6.14-rc3
[linux.git] / drivers / ptp / ptp_clock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PTP 1588 clock support
4  *
5  * Copyright (C) 2010 OMICRON electronics GmbH
6  */
7 #include <linux/device.h>
8 #include <linux/err.h>
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/posix-clock.h>
13 #include <linux/pps_kernel.h>
14 #include <linux/slab.h>
15 #include <linux/syscalls.h>
16 #include <linux/uaccess.h>
17 #include <linux/debugfs.h>
18 #include <linux/xarray.h>
19 #include <uapi/linux/sched/types.h>
20
21 #include "ptp_private.h"
22
23 #define PTP_MAX_ALARMS 4
24 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
25 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
26 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
27
28 const struct class ptp_class = {
29         .name = "ptp",
30         .dev_groups = ptp_groups
31 };
32
33 /* private globals */
34
35 static dev_t ptp_devt;
36
37 static DEFINE_XARRAY_ALLOC(ptp_clocks_map);
38
39 /* time stamp event queue operations */
40
41 static inline int queue_free(struct timestamp_event_queue *q)
42 {
43         return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
44 }
45
46 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
47                                        struct ptp_clock_event *src)
48 {
49         struct ptp_extts_event *dst;
50         struct timespec64 offset_ts;
51         unsigned long flags;
52         s64 seconds;
53         u32 remainder;
54
55         if (src->type == PTP_CLOCK_EXTTS) {
56                 seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
57         } else if (src->type == PTP_CLOCK_EXTOFF) {
58                 offset_ts = ns_to_timespec64(src->offset);
59                 seconds = offset_ts.tv_sec;
60                 remainder = offset_ts.tv_nsec;
61         } else {
62                 WARN(1, "%s: unknown type %d\n", __func__, src->type);
63                 return;
64         }
65
66         spin_lock_irqsave(&queue->lock, flags);
67
68         dst = &queue->buf[queue->tail];
69         dst->index = src->index;
70         dst->flags = PTP_EXTTS_EVENT_VALID;
71         dst->t.sec = seconds;
72         dst->t.nsec = remainder;
73         if (src->type == PTP_CLOCK_EXTOFF)
74                 dst->flags |= PTP_EXT_OFFSET;
75
76         /* Both WRITE_ONCE() are paired with READ_ONCE() in queue_cnt() */
77         if (!queue_free(queue))
78                 WRITE_ONCE(queue->head, (queue->head + 1) % PTP_MAX_TIMESTAMPS);
79
80         WRITE_ONCE(queue->tail, (queue->tail + 1) % PTP_MAX_TIMESTAMPS);
81
82         spin_unlock_irqrestore(&queue->lock, flags);
83 }
84
85 /* posix clock implementation */
86
87 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
88 {
89         tp->tv_sec = 0;
90         tp->tv_nsec = 1;
91         return 0;
92 }
93
94 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
95 {
96         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
97
98         if (ptp_clock_freerun(ptp)) {
99                 pr_err("ptp: physical clock is free running\n");
100                 return -EBUSY;
101         }
102
103         return  ptp->info->settime64(ptp->info, tp);
104 }
105
106 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
107 {
108         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
109         int err;
110
111         if (ptp->info->gettimex64)
112                 err = ptp->info->gettimex64(ptp->info, tp, NULL);
113         else
114                 err = ptp->info->gettime64(ptp->info, tp);
115         return err;
116 }
117
118 static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
119 {
120         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
121         struct ptp_clock_info *ops;
122         int err = -EOPNOTSUPP;
123
124         if (ptp_clock_freerun(ptp)) {
125                 pr_err("ptp: physical clock is free running\n");
126                 return -EBUSY;
127         }
128
129         ops = ptp->info;
130
131         if (tx->modes & ADJ_SETOFFSET) {
132                 struct timespec64 ts;
133                 ktime_t kt;
134                 s64 delta;
135
136                 ts.tv_sec  = tx->time.tv_sec;
137                 ts.tv_nsec = tx->time.tv_usec;
138
139                 if (!(tx->modes & ADJ_NANO))
140                         ts.tv_nsec *= 1000;
141
142                 if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
143                         return -EINVAL;
144
145                 kt = timespec64_to_ktime(ts);
146                 delta = ktime_to_ns(kt);
147                 err = ops->adjtime(ops, delta);
148         } else if (tx->modes & ADJ_FREQUENCY) {
149                 long ppb = scaled_ppm_to_ppb(tx->freq);
150                 if (ppb > ops->max_adj || ppb < -ops->max_adj)
151                         return -ERANGE;
152                 err = ops->adjfine(ops, tx->freq);
153                 if (!err)
154                         ptp->dialed_frequency = tx->freq;
155         } else if (tx->modes & ADJ_OFFSET) {
156                 if (ops->adjphase) {
157                         s32 max_phase_adj = ops->getmaxphase(ops);
158                         s32 offset = tx->offset;
159
160                         if (!(tx->modes & ADJ_NANO))
161                                 offset *= NSEC_PER_USEC;
162
163                         if (offset > max_phase_adj || offset < -max_phase_adj)
164                                 return -ERANGE;
165
166                         err = ops->adjphase(ops, offset);
167                 }
168         } else if (tx->modes == 0) {
169                 tx->freq = ptp->dialed_frequency;
170                 err = 0;
171         }
172
173         return err;
174 }
175
176 static struct posix_clock_operations ptp_clock_ops = {
177         .owner          = THIS_MODULE,
178         .clock_adjtime  = ptp_clock_adjtime,
179         .clock_gettime  = ptp_clock_gettime,
180         .clock_getres   = ptp_clock_getres,
181         .clock_settime  = ptp_clock_settime,
182         .ioctl          = ptp_ioctl,
183         .open           = ptp_open,
184         .release        = ptp_release,
185         .poll           = ptp_poll,
186         .read           = ptp_read,
187 };
188
189 static void ptp_clock_release(struct device *dev)
190 {
191         struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev);
192         struct timestamp_event_queue *tsevq;
193         unsigned long flags;
194
195         ptp_cleanup_pin_groups(ptp);
196         kfree(ptp->vclock_index);
197         mutex_destroy(&ptp->pincfg_mux);
198         mutex_destroy(&ptp->n_vclocks_mux);
199         /* Delete first entry */
200         spin_lock_irqsave(&ptp->tsevqs_lock, flags);
201         tsevq = list_first_entry(&ptp->tsevqs, struct timestamp_event_queue,
202                                  qlist);
203         list_del(&tsevq->qlist);
204         spin_unlock_irqrestore(&ptp->tsevqs_lock, flags);
205         bitmap_free(tsevq->mask);
206         kfree(tsevq);
207         debugfs_remove(ptp->debugfs_root);
208         xa_erase(&ptp_clocks_map, ptp->index);
209         kfree(ptp);
210 }
211
212 static int ptp_getcycles64(struct ptp_clock_info *info, struct timespec64 *ts)
213 {
214         if (info->getcyclesx64)
215                 return info->getcyclesx64(info, ts, NULL);
216         else
217                 return info->gettime64(info, ts);
218 }
219
220 static int ptp_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *request, int on)
221 {
222         return -EOPNOTSUPP;
223 }
224
225 static void ptp_aux_kworker(struct kthread_work *work)
226 {
227         struct ptp_clock *ptp = container_of(work, struct ptp_clock,
228                                              aux_work.work);
229         struct ptp_clock_info *info = ptp->info;
230         long delay;
231
232         delay = info->do_aux_work(info);
233
234         if (delay >= 0)
235                 kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
236 }
237
238 /* public interface */
239
240 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
241                                      struct device *parent)
242 {
243         struct ptp_clock *ptp;
244         struct timestamp_event_queue *queue = NULL;
245         int err, index, major = MAJOR(ptp_devt);
246         char debugfsname[16];
247         size_t size;
248
249         if (info->n_alarm > PTP_MAX_ALARMS)
250                 return ERR_PTR(-EINVAL);
251
252         /* Initialize a clock structure. */
253         ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
254         if (!ptp) {
255                 err = -ENOMEM;
256                 goto no_memory;
257         }
258
259         err = xa_alloc(&ptp_clocks_map, &index, ptp, xa_limit_31b,
260                        GFP_KERNEL);
261         if (err)
262                 goto no_slot;
263
264         ptp->clock.ops = ptp_clock_ops;
265         ptp->info = info;
266         ptp->devid = MKDEV(major, index);
267         ptp->index = index;
268         INIT_LIST_HEAD(&ptp->tsevqs);
269         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
270         if (!queue) {
271                 err = -ENOMEM;
272                 goto no_memory_queue;
273         }
274         list_add_tail(&queue->qlist, &ptp->tsevqs);
275         spin_lock_init(&ptp->tsevqs_lock);
276         queue->mask = bitmap_alloc(PTP_MAX_CHANNELS, GFP_KERNEL);
277         if (!queue->mask) {
278                 err = -ENOMEM;
279                 goto no_memory_bitmap;
280         }
281         bitmap_set(queue->mask, 0, PTP_MAX_CHANNELS);
282         spin_lock_init(&queue->lock);
283         mutex_init(&ptp->pincfg_mux);
284         mutex_init(&ptp->n_vclocks_mux);
285         init_waitqueue_head(&ptp->tsev_wq);
286
287         if (ptp->info->getcycles64 || ptp->info->getcyclesx64) {
288                 ptp->has_cycles = true;
289                 if (!ptp->info->getcycles64 && ptp->info->getcyclesx64)
290                         ptp->info->getcycles64 = ptp_getcycles64;
291         } else {
292                 /* Free running cycle counter not supported, use time. */
293                 ptp->info->getcycles64 = ptp_getcycles64;
294
295                 if (ptp->info->gettimex64)
296                         ptp->info->getcyclesx64 = ptp->info->gettimex64;
297
298                 if (ptp->info->getcrosststamp)
299                         ptp->info->getcrosscycles = ptp->info->getcrosststamp;
300         }
301
302         if (!ptp->info->enable)
303                 ptp->info->enable = ptp_enable;
304
305         if (ptp->info->do_aux_work) {
306                 kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
307                 ptp->kworker = kthread_run_worker(0, "ptp%d", ptp->index);
308                 if (IS_ERR(ptp->kworker)) {
309                         err = PTR_ERR(ptp->kworker);
310                         pr_err("failed to create ptp aux_worker %d\n", err);
311                         goto kworker_err;
312                 }
313         }
314
315         /* PTP virtual clock is being registered under physical clock */
316         if (parent && parent->class && parent->class->name &&
317             strcmp(parent->class->name, "ptp") == 0)
318                 ptp->is_virtual_clock = true;
319
320         if (!ptp->is_virtual_clock) {
321                 ptp->max_vclocks = PTP_DEFAULT_MAX_VCLOCKS;
322
323                 size = sizeof(int) * ptp->max_vclocks;
324                 ptp->vclock_index = kzalloc(size, GFP_KERNEL);
325                 if (!ptp->vclock_index) {
326                         err = -ENOMEM;
327                         goto no_mem_for_vclocks;
328                 }
329         }
330
331         err = ptp_populate_pin_groups(ptp);
332         if (err)
333                 goto no_pin_groups;
334
335         /* Register a new PPS source. */
336         if (info->pps) {
337                 struct pps_source_info pps;
338                 memset(&pps, 0, sizeof(pps));
339                 snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
340                 pps.mode = PTP_PPS_MODE;
341                 pps.owner = info->owner;
342                 ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
343                 if (IS_ERR(ptp->pps_source)) {
344                         err = PTR_ERR(ptp->pps_source);
345                         pr_err("failed to register pps source\n");
346                         goto no_pps;
347                 }
348                 ptp->pps_source->lookup_cookie = ptp;
349         }
350
351         /* Initialize a new device of our class in our clock structure. */
352         device_initialize(&ptp->dev);
353         ptp->dev.devt = ptp->devid;
354         ptp->dev.class = &ptp_class;
355         ptp->dev.parent = parent;
356         ptp->dev.groups = ptp->pin_attr_groups;
357         ptp->dev.release = ptp_clock_release;
358         dev_set_drvdata(&ptp->dev, ptp);
359         dev_set_name(&ptp->dev, "ptp%d", ptp->index);
360
361         /* Create a posix clock and link it to the device. */
362         err = posix_clock_register(&ptp->clock, &ptp->dev);
363         if (err) {
364                 if (ptp->pps_source)
365                         pps_unregister_source(ptp->pps_source);
366
367                 if (ptp->kworker)
368                         kthread_destroy_worker(ptp->kworker);
369
370                 put_device(&ptp->dev);
371
372                 pr_err("failed to create posix clock\n");
373                 return ERR_PTR(err);
374         }
375
376         /* Debugfs initialization */
377         snprintf(debugfsname, sizeof(debugfsname), "ptp%d", ptp->index);
378         ptp->debugfs_root = debugfs_create_dir(debugfsname, NULL);
379
380         return ptp;
381
382 no_pps:
383         ptp_cleanup_pin_groups(ptp);
384 no_pin_groups:
385         kfree(ptp->vclock_index);
386 no_mem_for_vclocks:
387         if (ptp->kworker)
388                 kthread_destroy_worker(ptp->kworker);
389 kworker_err:
390         mutex_destroy(&ptp->pincfg_mux);
391         mutex_destroy(&ptp->n_vclocks_mux);
392         bitmap_free(queue->mask);
393 no_memory_bitmap:
394         list_del(&queue->qlist);
395         kfree(queue);
396 no_memory_queue:
397         xa_erase(&ptp_clocks_map, index);
398 no_slot:
399         kfree(ptp);
400 no_memory:
401         return ERR_PTR(err);
402 }
403 EXPORT_SYMBOL(ptp_clock_register);
404
405 static int unregister_vclock(struct device *dev, void *data)
406 {
407         struct ptp_clock *ptp = dev_get_drvdata(dev);
408
409         ptp_vclock_unregister(info_to_vclock(ptp->info));
410         return 0;
411 }
412
413 int ptp_clock_unregister(struct ptp_clock *ptp)
414 {
415         if (ptp_vclock_in_use(ptp)) {
416                 device_for_each_child(&ptp->dev, NULL, unregister_vclock);
417         }
418
419         ptp->defunct = 1;
420         wake_up_interruptible(&ptp->tsev_wq);
421
422         if (ptp->kworker) {
423                 kthread_cancel_delayed_work_sync(&ptp->aux_work);
424                 kthread_destroy_worker(ptp->kworker);
425         }
426
427         /* Release the clock's resources. */
428         if (ptp->pps_source)
429                 pps_unregister_source(ptp->pps_source);
430
431         posix_clock_unregister(&ptp->clock);
432
433         return 0;
434 }
435 EXPORT_SYMBOL(ptp_clock_unregister);
436
437 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
438 {
439         struct timestamp_event_queue *tsevq;
440         struct pps_event_time evt;
441         unsigned long flags;
442
443         switch (event->type) {
444
445         case PTP_CLOCK_ALARM:
446                 break;
447
448         case PTP_CLOCK_EXTTS:
449         case PTP_CLOCK_EXTOFF:
450                 /* Enqueue timestamp on selected queues */
451                 spin_lock_irqsave(&ptp->tsevqs_lock, flags);
452                 list_for_each_entry(tsevq, &ptp->tsevqs, qlist) {
453                         if (test_bit((unsigned int)event->index, tsevq->mask))
454                                 enqueue_external_timestamp(tsevq, event);
455                 }
456                 spin_unlock_irqrestore(&ptp->tsevqs_lock, flags);
457                 wake_up_interruptible(&ptp->tsev_wq);
458                 break;
459
460         case PTP_CLOCK_PPS:
461                 pps_get_ts(&evt);
462                 pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
463                 break;
464
465         case PTP_CLOCK_PPSUSR:
466                 pps_event(ptp->pps_source, &event->pps_times,
467                           PTP_PPS_EVENT, NULL);
468                 break;
469         }
470 }
471 EXPORT_SYMBOL(ptp_clock_event);
472
473 int ptp_clock_index(struct ptp_clock *ptp)
474 {
475         return ptp->index;
476 }
477 EXPORT_SYMBOL(ptp_clock_index);
478
479 int ptp_find_pin(struct ptp_clock *ptp,
480                  enum ptp_pin_function func, unsigned int chan)
481 {
482         struct ptp_pin_desc *pin = NULL;
483         int i;
484
485         for (i = 0; i < ptp->info->n_pins; i++) {
486                 if (ptp->info->pin_config[i].func == func &&
487                     ptp->info->pin_config[i].chan == chan) {
488                         pin = &ptp->info->pin_config[i];
489                         break;
490                 }
491         }
492
493         return pin ? i : -1;
494 }
495 EXPORT_SYMBOL(ptp_find_pin);
496
497 int ptp_find_pin_unlocked(struct ptp_clock *ptp,
498                           enum ptp_pin_function func, unsigned int chan)
499 {
500         int result;
501
502         mutex_lock(&ptp->pincfg_mux);
503
504         result = ptp_find_pin(ptp, func, chan);
505
506         mutex_unlock(&ptp->pincfg_mux);
507
508         return result;
509 }
510 EXPORT_SYMBOL(ptp_find_pin_unlocked);
511
512 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
513 {
514         return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
515 }
516 EXPORT_SYMBOL(ptp_schedule_worker);
517
518 void ptp_cancel_worker_sync(struct ptp_clock *ptp)
519 {
520         kthread_cancel_delayed_work_sync(&ptp->aux_work);
521 }
522 EXPORT_SYMBOL(ptp_cancel_worker_sync);
523
524 /* module operations */
525
526 static void __exit ptp_exit(void)
527 {
528         class_unregister(&ptp_class);
529         unregister_chrdev_region(ptp_devt, MINORMASK + 1);
530         xa_destroy(&ptp_clocks_map);
531 }
532
533 static int __init ptp_init(void)
534 {
535         int err;
536
537         err = class_register(&ptp_class);
538         if (err) {
539                 pr_err("ptp: failed to allocate class\n");
540                 return err;
541         }
542
543         err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
544         if (err < 0) {
545                 pr_err("ptp: failed to allocate device region\n");
546                 goto no_region;
547         }
548
549         pr_info("PTP clock support registered\n");
550         return 0;
551
552 no_region:
553         class_unregister(&ptp_class);
554         return err;
555 }
556
557 subsys_initcall(ptp_init);
558 module_exit(ptp_exit);
559
560 MODULE_AUTHOR("Richard Cochran <[email protected]>");
561 MODULE_DESCRIPTION("PTP clocks support");
562 MODULE_LICENSE("GPL");
This page took 0.093101 seconds and 4 git commands to generate.