]> Git Repo - linux.git/blob - drivers/platform/chrome/cros_ec_sensorhub_ring.c
Linux 6.14-rc3
[linux.git] / drivers / platform / chrome / cros_ec_sensorhub_ring.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Chrome OS EC Sensor hub FIFO.
4  *
5  * Copyright 2020 Google LLC
6  */
7
8 #include <linux/delay.h>
9 #include <linux/device.h>
10 #include <linux/iio/iio.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/platform_data/cros_ec_commands.h>
14 #include <linux/platform_data/cros_ec_proto.h>
15 #include <linux/platform_data/cros_ec_sensorhub.h>
16 #include <linux/platform_device.h>
17 #include <linux/sort.h>
18 #include <linux/slab.h>
19
20 #define CREATE_TRACE_POINTS
21 #include "cros_ec_sensorhub_trace.h"
22
23 /* Precision of fixed point for the m values from the filter */
24 #define M_PRECISION BIT(23)
25
26 /* Only activate the filter once we have at least this many elements. */
27 #define TS_HISTORY_THRESHOLD 8
28
29 /*
30  * If we don't have any history entries for this long, empty the filter to
31  * make sure there are no big discontinuities.
32  */
33 #define TS_HISTORY_BORED_US 500000
34
35 /* To measure by how much the filter is overshooting, if it happens. */
36 #define FUTURE_TS_ANALYTICS_COUNT_MAX 100
37
38 static inline int
39 cros_sensorhub_send_sample(struct cros_ec_sensorhub *sensorhub,
40                            struct cros_ec_sensors_ring_sample *sample)
41 {
42         cros_ec_sensorhub_push_data_cb_t cb;
43         int id = sample->sensor_id;
44         struct iio_dev *indio_dev;
45
46         if (id >= sensorhub->sensor_num)
47                 return -EINVAL;
48
49         cb = sensorhub->push_data[id].push_data_cb;
50         if (!cb)
51                 return 0;
52
53         indio_dev = sensorhub->push_data[id].indio_dev;
54
55         if (sample->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
56                 return 0;
57
58         return cb(indio_dev, sample->vector, sample->timestamp);
59 }
60
61 /**
62  * cros_ec_sensorhub_register_push_data() - register the callback to the hub.
63  *
64  * @sensorhub : Sensor Hub object
65  * @sensor_num : The sensor the caller is interested in.
66  * @indio_dev : The iio device to use when a sample arrives.
67  * @cb : The callback to call when a sample arrives.
68  *
69  * The callback cb will be used by cros_ec_sensorhub_ring to distribute events
70  * from the EC.
71  *
72  * Return: 0 when callback is registered.
73  *         EINVAL is the sensor number is invalid or the slot already used.
74  */
75 int cros_ec_sensorhub_register_push_data(struct cros_ec_sensorhub *sensorhub,
76                                          u8 sensor_num,
77                                          struct iio_dev *indio_dev,
78                                          cros_ec_sensorhub_push_data_cb_t cb)
79 {
80         if (sensor_num >= sensorhub->sensor_num)
81                 return -EINVAL;
82         if (sensorhub->push_data[sensor_num].indio_dev)
83                 return -EINVAL;
84
85         sensorhub->push_data[sensor_num].indio_dev = indio_dev;
86         sensorhub->push_data[sensor_num].push_data_cb = cb;
87
88         return 0;
89 }
90 EXPORT_SYMBOL_GPL(cros_ec_sensorhub_register_push_data);
91
92 void cros_ec_sensorhub_unregister_push_data(struct cros_ec_sensorhub *sensorhub,
93                                             u8 sensor_num)
94 {
95         sensorhub->push_data[sensor_num].indio_dev = NULL;
96         sensorhub->push_data[sensor_num].push_data_cb = NULL;
97 }
98 EXPORT_SYMBOL_GPL(cros_ec_sensorhub_unregister_push_data);
99
100 /**
101  * cros_ec_sensorhub_ring_fifo_enable() - Enable or disable interrupt generation
102  *                                        for FIFO events.
103  * @sensorhub: Sensor Hub object
104  * @on: true when events are requested.
105  *
106  * To be called before sleeping or when no one is listening.
107  * Return: 0 on success, or an error when we can not communicate with the EC.
108  *
109  */
110 int cros_ec_sensorhub_ring_fifo_enable(struct cros_ec_sensorhub *sensorhub,
111                                        bool on)
112 {
113         int ret, i;
114
115         mutex_lock(&sensorhub->cmd_lock);
116         if (sensorhub->tight_timestamps)
117                 for (i = 0; i < sensorhub->sensor_num; i++)
118                         sensorhub->batch_state[i].last_len = 0;
119
120         sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INT_ENABLE;
121         sensorhub->params->fifo_int_enable.enable = on;
122
123         sensorhub->msg->outsize = sizeof(struct ec_params_motion_sense);
124         sensorhub->msg->insize = sizeof(struct ec_response_motion_sense);
125
126         ret = cros_ec_cmd_xfer_status(sensorhub->ec->ec_dev, sensorhub->msg);
127         mutex_unlock(&sensorhub->cmd_lock);
128
129         /* We expect to receive a payload of 4 bytes, ignore. */
130         if (ret > 0)
131                 ret = 0;
132
133         return ret;
134 }
135
136 static void cros_ec_sensor_ring_median_swap(s64 *a, s64 *b)
137 {
138         s64 tmp = *a;
139         *a = *b;
140         *b = tmp;
141 }
142
143 /*
144  * cros_ec_sensor_ring_median: Gets median of an array of numbers
145  *
146  * It's implemented using the quickselect algorithm, which achieves an
147  * average time complexity of O(n) the middle element. In the worst case,
148  * the runtime of quickselect could regress to O(n^2). To mitigate this,
149  * algorithms like median-of-medians exist, which can guarantee O(n) even
150  * in the worst case. However, these algorithms come with a higher
151  * overhead and are more complex to implement, making quickselect a
152  * pragmatic choice for our use case.
153  *
154  * Warning: the input array gets modified!
155  */
156 static s64 cros_ec_sensor_ring_median(s64 *array, size_t length)
157 {
158         int lo = 0;
159         int hi = length - 1;
160
161         while (lo <= hi) {
162                 int mid = lo + (hi - lo) / 2;
163                 int pivot, i;
164
165                 if (array[lo] > array[mid])
166                         cros_ec_sensor_ring_median_swap(&array[lo], &array[mid]);
167                 if (array[lo] > array[hi])
168                         cros_ec_sensor_ring_median_swap(&array[lo], &array[hi]);
169                 if (array[mid] < array[hi])
170                         cros_ec_sensor_ring_median_swap(&array[mid], &array[hi]);
171
172                 pivot = array[hi];
173                 i = lo - 1;
174
175                 for (int j = lo; j < hi; j++)
176                         if (array[j] < pivot)
177                                 cros_ec_sensor_ring_median_swap(&array[++i], &array[j]);
178
179                 /* The pivot's index corresponds to i+1. */
180                 cros_ec_sensor_ring_median_swap(&array[i + 1], &array[hi]);
181                 if (i + 1 == length / 2)
182                         return array[i + 1];
183                 if (i + 1 > length / 2)
184                         hi = i;
185                 else
186                         lo = i + 2;
187         }
188
189         /* Should never reach here. */
190         return -1;
191 }
192
193 /*
194  * IRQ Timestamp Filtering
195  *
196  * Lower down in cros_ec_sensor_ring_process_event(), for each sensor event
197  * we have to calculate it's timestamp in the AP timebase. There are 3 time
198  * points:
199  *   a - EC timebase, sensor event
200  *   b - EC timebase, IRQ
201  *   c - AP timebase, IRQ
202  *   a' - what we want: sensor even in AP timebase
203  *
204  * While a and b are recorded at accurate times (due to the EC real time
205  * nature); c is pretty untrustworthy, even though it's recorded the
206  * first thing in ec_irq_handler(). There is a very good chance we'll get
207  * added latency due to:
208  *   other irqs
209  *   ddrfreq
210  *   cpuidle
211  *
212  * Normally a' = c - b + a, but if we do that naive math any jitter in c
213  * will get coupled in a', which we don't want. We want a function
214  * a' = cros_ec_sensor_ring_ts_filter(a) which will filter out outliers in c.
215  *
216  * Think of a graph of AP time(b) on the y axis vs EC time(c) on the x axis.
217  * The slope of the line won't be exactly 1, there will be some clock drift
218  * between the 2 chips for various reasons (mechanical stress, temperature,
219  * voltage). We need to extrapolate values for a future x, without trusting
220  * recent y values too much.
221  *
222  * We use a median filter for the slope, then another median filter for the
223  * y-intercept to calculate this function:
224  *   dx[n] = x[n-1] - x[n]
225  *   dy[n] = x[n-1] - x[n]
226  *   m[n] = dy[n] / dx[n]
227  *   median_m = median(m[n-k:n])
228  *   error[i] = y[n-i] - median_m * x[n-i]
229  *   median_error = median(error[:k])
230  *   predicted_y = median_m * x + median_error
231  *
232  * Implementation differences from above:
233  * - Redefined y to be actually c - b, this gives us a lot more precision
234  * to do the math. (c-b)/b variations are more obvious than c/b variations.
235  * - Since we don't have floating point, any operations involving slope are
236  * done using fixed point math (*M_PRECISION)
237  * - Since x and y grow with time, we keep zeroing the graph (relative to
238  * the last sample), this way math involving *x[n-i] will not overflow
239  * - EC timestamps are kept in us, it improves the slope calculation precision
240  */
241
242 /**
243  * cros_ec_sensor_ring_ts_filter_update() - Update filter history.
244  *
245  * @state: Filter information.
246  * @b: IRQ timestamp, EC timebase (us)
247  * @c: IRQ timestamp, AP timebase (ns)
248  *
249  * Given a new IRQ timestamp pair (EC and AP timebases), add it to the filter
250  * history.
251  */
252 static void
253 cros_ec_sensor_ring_ts_filter_update(struct cros_ec_sensors_ts_filter_state
254                                      *state,
255                                      s64 b, s64 c)
256 {
257         s64 x, y;
258         s64 dx, dy;
259         s64 m; /* stored as *M_PRECISION */
260         s64 *m_history_copy = state->temp_buf;
261         s64 *error = state->temp_buf;
262         int i;
263
264         /* we trust b the most, that'll be our independent variable */
265         x = b;
266         /* y is the offset between AP and EC times, in ns */
267         y = c - b * 1000;
268
269         dx = (state->x_history[0] + state->x_offset) - x;
270         if (dx == 0)
271                 return; /* we already have this irq in the history */
272         dy = (state->y_history[0] + state->y_offset) - y;
273         m = div64_s64(dy * M_PRECISION, dx);
274
275         /* Empty filter if we haven't seen any action in a while. */
276         if (-dx > TS_HISTORY_BORED_US)
277                 state->history_len = 0;
278
279         /* Move everything over, also update offset to all absolute coords .*/
280         for (i = state->history_len - 1; i >= 1; i--) {
281                 state->x_history[i] = state->x_history[i - 1] + dx;
282                 state->y_history[i] = state->y_history[i - 1] + dy;
283
284                 state->m_history[i] = state->m_history[i - 1];
285                 /*
286                  * Also use the same loop to copy m_history for future
287                  * median extraction.
288                  */
289                 m_history_copy[i] = state->m_history[i - 1];
290         }
291
292         /* Store the x and y, but remember offset is actually last sample. */
293         state->x_offset = x;
294         state->y_offset = y;
295         state->x_history[0] = 0;
296         state->y_history[0] = 0;
297
298         state->m_history[0] = m;
299         m_history_copy[0] = m;
300
301         if (state->history_len < CROS_EC_SENSORHUB_TS_HISTORY_SIZE)
302                 state->history_len++;
303
304         /* Precalculate things for the filter. */
305         if (state->history_len > TS_HISTORY_THRESHOLD) {
306                 state->median_m =
307                     cros_ec_sensor_ring_median(m_history_copy,
308                                                state->history_len - 1);
309
310                 /*
311                  * Calculate y-intercepts as if m_median is the slope and
312                  * points in the history are on the line. median_error will
313                  * still be in the offset coordinate system.
314                  */
315                 for (i = 0; i < state->history_len; i++)
316                         error[i] = state->y_history[i] -
317                                 div_s64(state->median_m * state->x_history[i],
318                                         M_PRECISION);
319                 state->median_error =
320                         cros_ec_sensor_ring_median(error, state->history_len);
321         } else {
322                 state->median_m = 0;
323                 state->median_error = 0;
324         }
325         trace_cros_ec_sensorhub_filter(state, dx, dy);
326 }
327
328 /**
329  * cros_ec_sensor_ring_ts_filter() - Translate EC timebase timestamp to AP
330  *                                   timebase
331  *
332  * @state: filter information.
333  * @x: any ec timestamp (us):
334  *
335  * cros_ec_sensor_ring_ts_filter(a) => a' event timestamp, AP timebase
336  * cros_ec_sensor_ring_ts_filter(b) => calculated timestamp when the EC IRQ
337  *                           should have happened on the AP, with low jitter
338  *
339  * Note: The filter will only activate once state->history_len goes
340  * over TS_HISTORY_THRESHOLD. Otherwise it'll just do the naive c - b + a
341  * transform.
342  *
343  * How to derive the formula, starting from:
344  *   f(x) = median_m * x + median_error
345  * That's the calculated AP - EC offset (at the x point in time)
346  * Undo the coordinate system transform:
347  *   f(x) = median_m * (x - x_offset) + median_error + y_offset
348  * Remember to undo the "y = c - b * 1000" modification:
349  *   f(x) = median_m * (x - x_offset) + median_error + y_offset + x * 1000
350  *
351  * Return: timestamp in AP timebase (ns)
352  */
353 static s64
354 cros_ec_sensor_ring_ts_filter(struct cros_ec_sensors_ts_filter_state *state,
355                               s64 x)
356 {
357         return div_s64(state->median_m * (x - state->x_offset), M_PRECISION)
358                + state->median_error + state->y_offset + x * 1000;
359 }
360
361 /*
362  * Since a and b were originally 32 bit values from the EC,
363  * they overflow relatively often, casting is not enough, so we need to
364  * add an offset.
365  */
366 static void
367 cros_ec_sensor_ring_fix_overflow(s64 *ts,
368                                  const s64 overflow_period,
369                                  struct cros_ec_sensors_ec_overflow_state
370                                  *state)
371 {
372         s64 adjust;
373
374         *ts += state->offset;
375         if (abs(state->last - *ts) > (overflow_period / 2)) {
376                 adjust = state->last > *ts ? overflow_period : -overflow_period;
377                 state->offset += adjust;
378                 *ts += adjust;
379         }
380         state->last = *ts;
381 }
382
383 static void
384 cros_ec_sensor_ring_check_for_past_timestamp(struct cros_ec_sensorhub
385                                              *sensorhub,
386                                              struct cros_ec_sensors_ring_sample
387                                              *sample)
388 {
389         const u8 sensor_id = sample->sensor_id;
390
391         /* If this event is earlier than one we saw before... */
392         if (sensorhub->batch_state[sensor_id].newest_sensor_event >
393             sample->timestamp)
394                 /* mark it for spreading. */
395                 sample->timestamp =
396                         sensorhub->batch_state[sensor_id].last_ts;
397         else
398                 sensorhub->batch_state[sensor_id].newest_sensor_event =
399                         sample->timestamp;
400 }
401
402 /**
403  * cros_ec_sensor_ring_process_event() - Process one EC FIFO event
404  *
405  * @sensorhub: Sensor Hub object.
406  * @fifo_info: FIFO information from the EC (includes b point, EC timebase).
407  * @fifo_timestamp: EC IRQ, kernel timebase (aka c).
408  * @current_timestamp: calculated event timestamp, kernel timebase (aka a').
409  * @in: incoming FIFO event from EC (includes a point, EC timebase).
410  * @out: outgoing event to user space (includes a').
411  *
412  * Process one EC event, add it in the ring if necessary.
413  *
414  * Return: true if out event has been populated.
415  */
416 static bool
417 cros_ec_sensor_ring_process_event(struct cros_ec_sensorhub *sensorhub,
418                                 const struct ec_response_motion_sense_fifo_info
419                                 *fifo_info,
420                                 const ktime_t fifo_timestamp,
421                                 ktime_t *current_timestamp,
422                                 struct ec_response_motion_sensor_data *in,
423                                 struct cros_ec_sensors_ring_sample *out)
424 {
425         const s64 now = cros_ec_get_time_ns();
426         int axis, async_flags;
427
428         /* Do not populate the filter based on asynchronous events. */
429         async_flags = in->flags &
430                 (MOTIONSENSE_SENSOR_FLAG_ODR | MOTIONSENSE_SENSOR_FLAG_FLUSH);
431
432         if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP && !async_flags) {
433                 s64 a = in->timestamp;
434                 s64 b = fifo_info->timestamp;
435                 s64 c = fifo_timestamp;
436
437                 cros_ec_sensor_ring_fix_overflow(&a, 1LL << 32,
438                                           &sensorhub->overflow_a);
439                 cros_ec_sensor_ring_fix_overflow(&b, 1LL << 32,
440                                           &sensorhub->overflow_b);
441
442                 if (sensorhub->tight_timestamps) {
443                         cros_ec_sensor_ring_ts_filter_update(
444                                         &sensorhub->filter, b, c);
445                         *current_timestamp = cros_ec_sensor_ring_ts_filter(
446                                         &sensorhub->filter, a);
447                 } else {
448                         s64 new_timestamp;
449
450                         /*
451                          * Disable filtering since we might add more jitter
452                          * if b is in a random point in time.
453                          */
454                         new_timestamp = c - b * 1000 + a * 1000;
455                         /*
456                          * The timestamp can be stale if we had to use the fifo
457                          * info timestamp.
458                          */
459                         if (new_timestamp - *current_timestamp > 0)
460                                 *current_timestamp = new_timestamp;
461                 }
462                 trace_cros_ec_sensorhub_timestamp(in->timestamp,
463                                                   fifo_info->timestamp,
464                                                   fifo_timestamp,
465                                                   *current_timestamp,
466                                                   now);
467         }
468
469         if (in->flags & MOTIONSENSE_SENSOR_FLAG_ODR) {
470                 if (sensorhub->tight_timestamps) {
471                         sensorhub->batch_state[in->sensor_num].last_len = 0;
472                         sensorhub->batch_state[in->sensor_num].penul_len = 0;
473                 }
474                 /*
475                  * ODR change is only useful for the sensor_ring, it does not
476                  * convey information to clients.
477                  */
478                 return false;
479         }
480
481         if (in->flags & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
482                 out->sensor_id = in->sensor_num;
483                 out->timestamp = *current_timestamp;
484                 out->flag = in->flags;
485                 if (sensorhub->tight_timestamps)
486                         sensorhub->batch_state[out->sensor_id].last_len = 0;
487                 /*
488                  * No other payload information provided with
489                  * flush ack.
490                  */
491                 return true;
492         }
493
494         if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP)
495                 /* If we just have a timestamp, skip this entry. */
496                 return false;
497
498         /* Regular sample */
499         out->sensor_id = in->sensor_num;
500         trace_cros_ec_sensorhub_data(in->sensor_num,
501                                      fifo_info->timestamp,
502                                      fifo_timestamp,
503                                      *current_timestamp,
504                                      now);
505
506         if (*current_timestamp - now > 0) {
507                 /*
508                  * This fix is needed to overcome the timestamp filter putting
509                  * events in the future.
510                  */
511                 sensorhub->future_timestamp_total_ns +=
512                         *current_timestamp - now;
513                 if (++sensorhub->future_timestamp_count ==
514                                 FUTURE_TS_ANALYTICS_COUNT_MAX) {
515                         s64 avg = div_s64(sensorhub->future_timestamp_total_ns,
516                                         sensorhub->future_timestamp_count);
517                         dev_warn_ratelimited(sensorhub->dev,
518                                              "100 timestamps in the future, %lldns shaved on average\n",
519                                              avg);
520                         sensorhub->future_timestamp_count = 0;
521                         sensorhub->future_timestamp_total_ns = 0;
522                 }
523                 out->timestamp = now;
524         } else {
525                 out->timestamp = *current_timestamp;
526         }
527
528         out->flag = in->flags;
529         for (axis = 0; axis < 3; axis++)
530                 out->vector[axis] = in->data[axis];
531
532         if (sensorhub->tight_timestamps)
533                 cros_ec_sensor_ring_check_for_past_timestamp(sensorhub, out);
534         return true;
535 }
536
537 /*
538  * cros_ec_sensor_ring_spread_add: Calculate proper timestamps then add to
539  *                                 ringbuffer.
540  *
541  * This is the new spreading code, assumes every sample's timestamp
542  * precedes the sample. Run if tight_timestamps == true.
543  *
544  * Sometimes the EC receives only one interrupt (hence timestamp) for
545  * a batch of samples. Only the first sample will have the correct
546  * timestamp. So we must interpolate the other samples.
547  * We use the previous batch timestamp and our current batch timestamp
548  * as a way to calculate period, then spread the samples evenly.
549  *
550  * s0 int, 0ms
551  * s1 int, 10ms
552  * s2 int, 20ms
553  * 30ms point goes by, no interrupt, previous one is still asserted
554  * downloading s2 and s3
555  * s3 sample, 20ms (incorrect timestamp)
556  * s4 int, 40ms
557  *
558  * The batches are [(s0), (s1), (s2, s3), (s4)]. Since the 3rd batch
559  * has 2 samples in them, we adjust the timestamp of s3.
560  * s2 - s1 = 10ms, so s3 must be s2 + 10ms => 20ms. If s1 would have
561  * been part of a bigger batch things would have gotten a little
562  * more complicated.
563  *
564  * Note: we also assume another sensor sample doesn't break up a batch
565  * in 2 or more partitions. Example, there can't ever be a sync sensor
566  * in between S2 and S3. This simplifies the following code.
567  */
568 static void
569 cros_ec_sensor_ring_spread_add(struct cros_ec_sensorhub *sensorhub,
570                                unsigned long sensor_mask,
571                                struct cros_ec_sensors_ring_sample *last_out)
572 {
573         struct cros_ec_sensors_ring_sample *batch_start, *next_batch_start;
574         int id;
575
576         for_each_set_bit(id, &sensor_mask, sensorhub->sensor_num) {
577                 for (batch_start = sensorhub->ring; batch_start < last_out;
578                      batch_start = next_batch_start) {
579                         /*
580                          * For each batch (where all samples have the same
581                          * timestamp).
582                          */
583                         int batch_len, sample_idx;
584                         struct cros_ec_sensors_ring_sample *batch_end =
585                                 batch_start;
586                         struct cros_ec_sensors_ring_sample *s;
587                         s64 batch_timestamp = batch_start->timestamp;
588                         s64 sample_period;
589
590                         /*
591                          * Skip over batches that start with the sensor types
592                          * we're not looking at right now.
593                          */
594                         if (batch_start->sensor_id != id) {
595                                 next_batch_start = batch_start + 1;
596                                 continue;
597                         }
598
599                         /*
600                          * Do not start a batch
601                          * from a flush, as it happens asynchronously to the
602                          * regular flow of events.
603                          */
604                         if (batch_start->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
605                                 cros_sensorhub_send_sample(sensorhub,
606                                                            batch_start);
607                                 next_batch_start = batch_start + 1;
608                                 continue;
609                         }
610
611                         if (batch_start->timestamp <=
612                             sensorhub->batch_state[id].last_ts) {
613                                 batch_timestamp =
614                                         sensorhub->batch_state[id].last_ts;
615                                 batch_len = sensorhub->batch_state[id].last_len;
616
617                                 sample_idx = batch_len;
618
619                                 sensorhub->batch_state[id].last_ts =
620                                   sensorhub->batch_state[id].penul_ts;
621                                 sensorhub->batch_state[id].last_len =
622                                   sensorhub->batch_state[id].penul_len;
623                         } else {
624                                 /*
625                                  * Push first sample in the batch to the,
626                                  * kfifo, it's guaranteed to be correct, the
627                                  * rest will follow later on.
628                                  */
629                                 sample_idx = 1;
630                                 batch_len = 1;
631                                 cros_sensorhub_send_sample(sensorhub,
632                                                            batch_start);
633                                 batch_start++;
634                         }
635
636                         /* Find all samples have the same timestamp. */
637                         for (s = batch_start; s < last_out; s++) {
638                                 if (s->sensor_id != id)
639                                         /*
640                                          * Skip over other sensor types that
641                                          * are interleaved, don't count them.
642                                          */
643                                         continue;
644                                 if (s->timestamp != batch_timestamp)
645                                         /* we discovered the next batch */
646                                         break;
647                                 if (s->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
648                                         /* break on flush packets */
649                                         break;
650                                 batch_end = s;
651                                 batch_len++;
652                         }
653
654                         if (batch_len == 1)
655                                 goto done_with_this_batch;
656
657                         /* Can we calculate period? */
658                         if (sensorhub->batch_state[id].last_len == 0) {
659                                 dev_warn(sensorhub->dev, "Sensor %d: lost %d samples when spreading\n",
660                                          id, batch_len - 1);
661                                 goto done_with_this_batch;
662                                 /*
663                                  * Note: we're dropping the rest of the samples
664                                  * in this batch since we have no idea where
665                                  * they're supposed to go without a period
666                                  * calculation.
667                                  */
668                         }
669
670                         sample_period = div_s64(batch_timestamp -
671                                 sensorhub->batch_state[id].last_ts,
672                                 sensorhub->batch_state[id].last_len);
673                         dev_dbg(sensorhub->dev,
674                                 "Adjusting %d samples, sensor %d last_batch @%lld (%d samples) batch_timestamp=%lld => period=%lld\n",
675                                 batch_len, id,
676                                 sensorhub->batch_state[id].last_ts,
677                                 sensorhub->batch_state[id].last_len,
678                                 batch_timestamp,
679                                 sample_period);
680
681                         /*
682                          * Adjust timestamps of the samples then push them to
683                          * kfifo.
684                          */
685                         for (s = batch_start; s <= batch_end; s++) {
686                                 if (s->sensor_id != id)
687                                         /*
688                                          * Skip over other sensor types that
689                                          * are interleaved, don't change them.
690                                          */
691                                         continue;
692
693                                 s->timestamp = batch_timestamp +
694                                         sample_period * sample_idx;
695                                 sample_idx++;
696
697                                 cros_sensorhub_send_sample(sensorhub, s);
698                         }
699
700 done_with_this_batch:
701                         sensorhub->batch_state[id].penul_ts =
702                                 sensorhub->batch_state[id].last_ts;
703                         sensorhub->batch_state[id].penul_len =
704                                 sensorhub->batch_state[id].last_len;
705
706                         sensorhub->batch_state[id].last_ts =
707                                 batch_timestamp;
708                         sensorhub->batch_state[id].last_len = batch_len;
709
710                         next_batch_start = batch_end + 1;
711                 }
712         }
713 }
714
715 /*
716  * cros_ec_sensor_ring_spread_add_legacy: Calculate proper timestamps then
717  * add to ringbuffer (legacy).
718  *
719  * Note: This assumes we're running old firmware, where timestamp
720  * is inserted after its sample(s)e. There can be several samples between
721  * timestamps, so several samples can have the same timestamp.
722  *
723  *                        timestamp | count
724  *                        -----------------
725  *          1st sample --> TS1      | 1
726  *                         TS2      | 2
727  *                         TS2      | 3
728  *                         TS3      | 4
729  *           last_out -->
730  *
731  *
732  * We spread time for the samples using period p = (current - TS1)/4.
733  * between TS1 and TS2: [TS1+p/4, TS1+2p/4, TS1+3p/4, current_timestamp].
734  *
735  */
736 static void
737 cros_ec_sensor_ring_spread_add_legacy(struct cros_ec_sensorhub *sensorhub,
738                                       unsigned long sensor_mask,
739                                       s64 current_timestamp,
740                                       struct cros_ec_sensors_ring_sample
741                                       *last_out)
742 {
743         struct cros_ec_sensors_ring_sample *out;
744         int i;
745
746         for_each_set_bit(i, &sensor_mask, sensorhub->sensor_num) {
747                 s64 timestamp;
748                 int count = 0;
749                 s64 time_period;
750
751                 for (out = sensorhub->ring; out < last_out; out++) {
752                         if (out->sensor_id != i)
753                                 continue;
754
755                         /* Timestamp to start with */
756                         timestamp = out->timestamp;
757                         out++;
758                         count = 1;
759                         break;
760                 }
761                 for (; out < last_out; out++) {
762                         /* Find last sample. */
763                         if (out->sensor_id != i)
764                                 continue;
765                         count++;
766                 }
767                 if (count == 0)
768                         continue;
769
770                 /* Spread uniformly between the first and last samples. */
771                 time_period = div_s64(current_timestamp - timestamp, count);
772
773                 for (out = sensorhub->ring; out < last_out; out++) {
774                         if (out->sensor_id != i)
775                                 continue;
776                         timestamp += time_period;
777                         out->timestamp = timestamp;
778                 }
779         }
780
781         /* Push the event into the kfifo */
782         for (out = sensorhub->ring; out < last_out; out++)
783                 cros_sensorhub_send_sample(sensorhub, out);
784 }
785
786 /**
787  * cros_ec_sensorhub_ring_handler() - The trigger handler function
788  *
789  * @sensorhub: Sensor Hub object.
790  *
791  * Called by the notifier, process the EC sensor FIFO queue.
792  */
793 static void cros_ec_sensorhub_ring_handler(struct cros_ec_sensorhub *sensorhub)
794 {
795         struct ec_response_motion_sense_fifo_info *fifo_info =
796                 sensorhub->fifo_info;
797         struct cros_ec_dev *ec = sensorhub->ec;
798         ktime_t fifo_timestamp, current_timestamp;
799         int i, j, number_data, ret;
800         unsigned long sensor_mask = 0;
801         struct ec_response_motion_sensor_data *in;
802         struct cros_ec_sensors_ring_sample *out, *last_out;
803
804         mutex_lock(&sensorhub->cmd_lock);
805
806         /* Get FIFO information if there are lost vectors. */
807         if (fifo_info->total_lost) {
808                 int fifo_info_length =
809                         sizeof(struct ec_response_motion_sense_fifo_info) +
810                         sizeof(u16) * sensorhub->sensor_num;
811
812                 /* Need to retrieve the number of lost vectors per sensor */
813                 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO;
814                 sensorhub->msg->outsize = 1;
815                 sensorhub->msg->insize = fifo_info_length;
816
817                 if (cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg) < 0)
818                         goto error;
819
820                 memcpy(fifo_info, &sensorhub->resp->fifo_info,
821                        fifo_info_length);
822
823                 /*
824                  * Update collection time, will not be as precise as the
825                  * non-error case.
826                  */
827                 fifo_timestamp = cros_ec_get_time_ns();
828         } else {
829                 fifo_timestamp = sensorhub->fifo_timestamp[
830                         CROS_EC_SENSOR_NEW_TS];
831         }
832
833         if (fifo_info->count > sensorhub->fifo_size ||
834             fifo_info->size != sensorhub->fifo_size) {
835                 dev_warn(sensorhub->dev,
836                          "Mismatch EC data: count %d, size %d - expected %d\n",
837                          fifo_info->count, fifo_info->size,
838                          sensorhub->fifo_size);
839                 goto error;
840         }
841
842         /* Copy elements in the main fifo */
843         current_timestamp = sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS];
844         out = sensorhub->ring;
845         for (i = 0; i < fifo_info->count; i += number_data) {
846                 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_READ;
847                 sensorhub->params->fifo_read.max_data_vector =
848                         fifo_info->count - i;
849                 sensorhub->msg->outsize =
850                         sizeof(struct ec_params_motion_sense);
851                 sensorhub->msg->insize =
852                         sizeof(sensorhub->resp->fifo_read) +
853                         sensorhub->params->fifo_read.max_data_vector *
854                           sizeof(struct ec_response_motion_sensor_data);
855                 ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg);
856                 if (ret < 0) {
857                         dev_warn(sensorhub->dev, "Fifo error: %d\n", ret);
858                         break;
859                 }
860                 number_data = sensorhub->resp->fifo_read.number_data;
861                 if (number_data == 0) {
862                         dev_dbg(sensorhub->dev, "Unexpected empty FIFO\n");
863                         break;
864                 }
865                 if (number_data > fifo_info->count - i) {
866                         dev_warn(sensorhub->dev,
867                                  "Invalid EC data: too many entry received: %d, expected %d\n",
868                                  number_data, fifo_info->count - i);
869                         break;
870                 }
871                 if (out + number_data >
872                     sensorhub->ring + fifo_info->count) {
873                         dev_warn(sensorhub->dev,
874                                  "Too many samples: %d (%zd data) to %d entries for expected %d entries\n",
875                                  i, out - sensorhub->ring, i + number_data,
876                                  fifo_info->count);
877                         break;
878                 }
879
880                 for (in = sensorhub->resp->fifo_read.data, j = 0;
881                      j < number_data; j++, in++) {
882                         if (cros_ec_sensor_ring_process_event(
883                                                 sensorhub, fifo_info,
884                                                 fifo_timestamp,
885                                                 &current_timestamp,
886                                                 in, out)) {
887                                 sensor_mask |= BIT(in->sensor_num);
888                                 out++;
889                         }
890                 }
891         }
892         mutex_unlock(&sensorhub->cmd_lock);
893         last_out = out;
894
895         if (out == sensorhub->ring)
896                 /* Unexpected empty FIFO. */
897                 goto ring_handler_end;
898
899         /*
900          * Check if current_timestamp is ahead of the last sample. Normally,
901          * the EC appends a timestamp after the last sample, but if the AP
902          * is slow to respond to the IRQ, the EC may have added new samples.
903          * Use the FIFO info timestamp as last timestamp then.
904          */
905         if (!sensorhub->tight_timestamps &&
906             (last_out - 1)->timestamp == current_timestamp)
907                 current_timestamp = fifo_timestamp;
908
909         /* Warn on lost samples. */
910         if (fifo_info->total_lost)
911                 for (i = 0; i < sensorhub->sensor_num; i++) {
912                         if (fifo_info->lost[i]) {
913                                 dev_warn_ratelimited(sensorhub->dev,
914                                                      "Sensor %d: lost: %d out of %d\n",
915                                                      i, fifo_info->lost[i],
916                                                      fifo_info->total_lost);
917                                 if (sensorhub->tight_timestamps)
918                                         sensorhub->batch_state[i].last_len = 0;
919                         }
920                 }
921
922         /*
923          * Spread samples in case of batching, then add them to the
924          * ringbuffer.
925          */
926         if (sensorhub->tight_timestamps)
927                 cros_ec_sensor_ring_spread_add(sensorhub, sensor_mask,
928                                                last_out);
929         else
930                 cros_ec_sensor_ring_spread_add_legacy(sensorhub, sensor_mask,
931                                                       current_timestamp,
932                                                       last_out);
933
934 ring_handler_end:
935         sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] = current_timestamp;
936         return;
937
938 error:
939         mutex_unlock(&sensorhub->cmd_lock);
940 }
941
942 static int cros_ec_sensorhub_event(struct notifier_block *nb,
943                                    unsigned long queued_during_suspend,
944                                    void *_notify)
945 {
946         struct cros_ec_sensorhub *sensorhub;
947         struct cros_ec_device *ec_dev;
948
949         sensorhub = container_of(nb, struct cros_ec_sensorhub, notifier);
950         ec_dev = sensorhub->ec->ec_dev;
951
952         if (ec_dev->event_data.event_type != EC_MKBP_EVENT_SENSOR_FIFO)
953                 return NOTIFY_DONE;
954
955         if (ec_dev->event_size != sizeof(ec_dev->event_data.data.sensor_fifo)) {
956                 dev_warn(ec_dev->dev, "Invalid fifo info size\n");
957                 return NOTIFY_DONE;
958         }
959
960         if (queued_during_suspend)
961                 return NOTIFY_OK;
962
963         memcpy(sensorhub->fifo_info, &ec_dev->event_data.data.sensor_fifo.info,
964                sizeof(*sensorhub->fifo_info));
965         sensorhub->fifo_timestamp[CROS_EC_SENSOR_NEW_TS] =
966                 ec_dev->last_event_time;
967         cros_ec_sensorhub_ring_handler(sensorhub);
968
969         return NOTIFY_OK;
970 }
971
972 /**
973  * cros_ec_sensorhub_ring_allocate() - Prepare the FIFO functionality if the EC
974  *                                     supports it.
975  *
976  * @sensorhub : Sensor Hub object.
977  *
978  * Return: 0 on success.
979  */
980 int cros_ec_sensorhub_ring_allocate(struct cros_ec_sensorhub *sensorhub)
981 {
982         int fifo_info_length =
983                 sizeof(struct ec_response_motion_sense_fifo_info) +
984                 sizeof(u16) * sensorhub->sensor_num;
985
986         /* Allocate the array for lost events. */
987         sensorhub->fifo_info = devm_kzalloc(sensorhub->dev, fifo_info_length,
988                                             GFP_KERNEL);
989         if (!sensorhub->fifo_info)
990                 return -ENOMEM;
991
992         /*
993          * Allocate the callback area based on the number of sensors.
994          * Add one for the sensor ring.
995          */
996         sensorhub->push_data = devm_kcalloc(sensorhub->dev,
997                         sensorhub->sensor_num,
998                         sizeof(*sensorhub->push_data),
999                         GFP_KERNEL);
1000         if (!sensorhub->push_data)
1001                 return -ENOMEM;
1002
1003         sensorhub->tight_timestamps = cros_ec_check_features(
1004                         sensorhub->ec,
1005                         EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS);
1006
1007         if (sensorhub->tight_timestamps) {
1008                 sensorhub->batch_state = devm_kcalloc(sensorhub->dev,
1009                                 sensorhub->sensor_num,
1010                                 sizeof(*sensorhub->batch_state),
1011                                 GFP_KERNEL);
1012                 if (!sensorhub->batch_state)
1013                         return -ENOMEM;
1014         }
1015
1016         return 0;
1017 }
1018
1019 /**
1020  * cros_ec_sensorhub_ring_add() - Add the FIFO functionality if the EC
1021  *                                supports it.
1022  *
1023  * @sensorhub : Sensor Hub object.
1024  *
1025  * Return: 0 on success.
1026  */
1027 int cros_ec_sensorhub_ring_add(struct cros_ec_sensorhub *sensorhub)
1028 {
1029         struct cros_ec_dev *ec = sensorhub->ec;
1030         int ret;
1031         int fifo_info_length =
1032                 sizeof(struct ec_response_motion_sense_fifo_info) +
1033                 sizeof(u16) * sensorhub->sensor_num;
1034
1035         /* Retrieve FIFO information */
1036         sensorhub->msg->version = 2;
1037         sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO;
1038         sensorhub->msg->outsize = 1;
1039         sensorhub->msg->insize = fifo_info_length;
1040
1041         ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg);
1042         if (ret < 0)
1043                 return ret;
1044
1045         /*
1046          * Allocate the full fifo. We need to copy the whole FIFO to set
1047          * timestamps properly.
1048          */
1049         sensorhub->fifo_size = sensorhub->resp->fifo_info.size;
1050         sensorhub->ring = devm_kcalloc(sensorhub->dev, sensorhub->fifo_size,
1051                                        sizeof(*sensorhub->ring), GFP_KERNEL);
1052         if (!sensorhub->ring)
1053                 return -ENOMEM;
1054
1055         sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] =
1056                 cros_ec_get_time_ns();
1057
1058         /* Register the notifier that will act as a top half interrupt. */
1059         sensorhub->notifier.notifier_call = cros_ec_sensorhub_event;
1060         ret = blocking_notifier_chain_register(&ec->ec_dev->event_notifier,
1061                                                &sensorhub->notifier);
1062         if (ret < 0)
1063                 return ret;
1064
1065         /* Start collection samples. */
1066         return cros_ec_sensorhub_ring_fifo_enable(sensorhub, true);
1067 }
1068
1069 void cros_ec_sensorhub_ring_remove(void *arg)
1070 {
1071         struct cros_ec_sensorhub *sensorhub = arg;
1072         struct cros_ec_device *ec_dev = sensorhub->ec->ec_dev;
1073
1074         /* Disable the ring, prevent EC interrupt to the AP for nothing. */
1075         cros_ec_sensorhub_ring_fifo_enable(sensorhub, false);
1076         blocking_notifier_chain_unregister(&ec_dev->event_notifier,
1077                                            &sensorhub->notifier);
1078 }
This page took 0.099167 seconds and 4 git commands to generate.