]> Git Repo - linux.git/blob - drivers/nvme/target/fc.c
Linux 6.14-rc3
[linux.git] / drivers / nvme / target / fc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/blk-mq.h>
9 #include <linux/parser.h>
10 #include <linux/random.h>
11 #include <uapi/scsi/fc/fc_fs.h>
12 #include <uapi/scsi/fc/fc_els.h>
13
14 #include "nvmet.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "../host/fc.h"
18
19
20 /* *************************** Data Structures/Defines ****************** */
21
22
23 #define NVMET_LS_CTX_COUNT              256
24
25 struct nvmet_fc_tgtport;
26 struct nvmet_fc_tgt_assoc;
27
28 struct nvmet_fc_ls_iod {                /* for an LS RQST RCV */
29         struct nvmefc_ls_rsp            *lsrsp;
30         struct nvmefc_tgt_fcp_req       *fcpreq;        /* only if RS */
31
32         struct list_head                ls_rcv_list; /* tgtport->ls_rcv_list */
33
34         struct nvmet_fc_tgtport         *tgtport;
35         struct nvmet_fc_tgt_assoc       *assoc;
36         void                            *hosthandle;
37
38         union nvmefc_ls_requests        *rqstbuf;
39         union nvmefc_ls_responses       *rspbuf;
40         u16                             rqstdatalen;
41         dma_addr_t                      rspdma;
42
43         struct scatterlist              sg[2];
44
45         struct work_struct              work;
46 } __aligned(sizeof(unsigned long long));
47
48 struct nvmet_fc_ls_req_op {             /* for an LS RQST XMT */
49         struct nvmefc_ls_req            ls_req;
50
51         struct nvmet_fc_tgtport         *tgtport;
52         void                            *hosthandle;
53
54         int                             ls_error;
55         struct list_head                lsreq_list; /* tgtport->ls_req_list */
56         bool                            req_queued;
57 };
58
59
60 /* desired maximum for a single sequence - if sg list allows it */
61 #define NVMET_FC_MAX_SEQ_LENGTH         (256 * 1024)
62
63 enum nvmet_fcp_datadir {
64         NVMET_FCP_NODATA,
65         NVMET_FCP_WRITE,
66         NVMET_FCP_READ,
67         NVMET_FCP_ABORTED,
68 };
69
70 struct nvmet_fc_fcp_iod {
71         struct nvmefc_tgt_fcp_req       *fcpreq;
72
73         struct nvme_fc_cmd_iu           cmdiubuf;
74         struct nvme_fc_ersp_iu          rspiubuf;
75         dma_addr_t                      rspdma;
76         struct scatterlist              *next_sg;
77         struct scatterlist              *data_sg;
78         int                             data_sg_cnt;
79         u32                             offset;
80         enum nvmet_fcp_datadir          io_dir;
81         bool                            active;
82         bool                            abort;
83         bool                            aborted;
84         bool                            writedataactive;
85         spinlock_t                      flock;
86
87         struct nvmet_req                req;
88         struct work_struct              defer_work;
89
90         struct nvmet_fc_tgtport         *tgtport;
91         struct nvmet_fc_tgt_queue       *queue;
92
93         struct list_head                fcp_list;       /* tgtport->fcp_list */
94 };
95
96 struct nvmet_fc_tgtport {
97         struct nvmet_fc_target_port     fc_target_port;
98
99         struct list_head                tgt_list; /* nvmet_fc_target_list */
100         struct device                   *dev;   /* dev for dma mapping */
101         struct nvmet_fc_target_template *ops;
102
103         struct nvmet_fc_ls_iod          *iod;
104         spinlock_t                      lock;
105         struct list_head                ls_rcv_list;
106         struct list_head                ls_req_list;
107         struct list_head                ls_busylist;
108         struct list_head                assoc_list;
109         struct list_head                host_list;
110         struct ida                      assoc_cnt;
111         struct nvmet_fc_port_entry      *pe;
112         struct kref                     ref;
113         u32                             max_sg_cnt;
114
115         struct work_struct              put_work;
116 };
117
118 struct nvmet_fc_port_entry {
119         struct nvmet_fc_tgtport         *tgtport;
120         struct nvmet_port               *port;
121         u64                             node_name;
122         u64                             port_name;
123         struct list_head                pe_list;
124 };
125
126 struct nvmet_fc_defer_fcp_req {
127         struct list_head                req_list;
128         struct nvmefc_tgt_fcp_req       *fcp_req;
129 };
130
131 struct nvmet_fc_tgt_queue {
132         bool                            ninetypercent;
133         u16                             qid;
134         u16                             sqsize;
135         u16                             ersp_ratio;
136         __le16                          sqhd;
137         atomic_t                        connected;
138         atomic_t                        sqtail;
139         atomic_t                        zrspcnt;
140         atomic_t                        rsn;
141         spinlock_t                      qlock;
142         struct nvmet_cq                 nvme_cq;
143         struct nvmet_sq                 nvme_sq;
144         struct nvmet_fc_tgt_assoc       *assoc;
145         struct list_head                fod_list;
146         struct list_head                pending_cmd_list;
147         struct list_head                avail_defer_list;
148         struct workqueue_struct         *work_q;
149         struct kref                     ref;
150         /* array of fcp_iods */
151         struct nvmet_fc_fcp_iod         fod[] /* __counted_by(sqsize) */;
152 } __aligned(sizeof(unsigned long long));
153
154 struct nvmet_fc_hostport {
155         struct nvmet_fc_tgtport         *tgtport;
156         void                            *hosthandle;
157         struct list_head                host_list;
158         struct kref                     ref;
159         u8                              invalid;
160 };
161
162 struct nvmet_fc_tgt_assoc {
163         u64                             association_id;
164         u32                             a_id;
165         atomic_t                        terminating;
166         struct nvmet_fc_tgtport         *tgtport;
167         struct nvmet_fc_hostport        *hostport;
168         struct nvmet_fc_ls_iod          *rcv_disconn;
169         struct list_head                a_list;
170         struct nvmet_fc_tgt_queue       *queues[NVMET_NR_QUEUES + 1];
171         struct kref                     ref;
172         struct work_struct              del_work;
173 };
174
175
176 static inline int
177 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
178 {
179         return (iodptr - iodptr->tgtport->iod);
180 }
181
182 static inline int
183 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
184 {
185         return (fodptr - fodptr->queue->fod);
186 }
187
188
189 /*
190  * Association and Connection IDs:
191  *
192  * Association ID will have random number in upper 6 bytes and zero
193  *   in lower 2 bytes
194  *
195  * Connection IDs will be Association ID with QID or'd in lower 2 bytes
196  *
197  * note: Association ID = Connection ID for queue 0
198  */
199 #define BYTES_FOR_QID                   sizeof(u16)
200 #define BYTES_FOR_QID_SHIFT             (BYTES_FOR_QID * 8)
201 #define NVMET_FC_QUEUEID_MASK           ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
202
203 static inline u64
204 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
205 {
206         return (assoc->association_id | qid);
207 }
208
209 static inline u64
210 nvmet_fc_getassociationid(u64 connectionid)
211 {
212         return connectionid & ~NVMET_FC_QUEUEID_MASK;
213 }
214
215 static inline u16
216 nvmet_fc_getqueueid(u64 connectionid)
217 {
218         return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
219 }
220
221 static inline struct nvmet_fc_tgtport *
222 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
223 {
224         return container_of(targetport, struct nvmet_fc_tgtport,
225                                  fc_target_port);
226 }
227
228 static inline struct nvmet_fc_fcp_iod *
229 nvmet_req_to_fod(struct nvmet_req *nvme_req)
230 {
231         return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
232 }
233
234
235 /* *************************** Globals **************************** */
236
237
238 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
239
240 static LIST_HEAD(nvmet_fc_target_list);
241 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
242 static LIST_HEAD(nvmet_fc_portentry_list);
243
244
245 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
246 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
247 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
248 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
249 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
250 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
251 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
252 static void nvmet_fc_put_tgtport_work(struct work_struct *work)
253 {
254         struct nvmet_fc_tgtport *tgtport =
255                 container_of(work, struct nvmet_fc_tgtport, put_work);
256
257         nvmet_fc_tgtport_put(tgtport);
258 }
259 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
260 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
261                                         struct nvmet_fc_fcp_iod *fod);
262 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
263 static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
264                                 struct nvmet_fc_ls_iod *iod);
265
266
267 /* *********************** FC-NVME DMA Handling **************************** */
268
269 /*
270  * The fcloop device passes in a NULL device pointer. Real LLD's will
271  * pass in a valid device pointer. If NULL is passed to the dma mapping
272  * routines, depending on the platform, it may or may not succeed, and
273  * may crash.
274  *
275  * As such:
276  * Wrapper all the dma routines and check the dev pointer.
277  *
278  * If simple mappings (return just a dma address, we'll noop them,
279  * returning a dma address of 0.
280  *
281  * On more complex mappings (dma_map_sg), a pseudo routine fills
282  * in the scatter list, setting all dma addresses to 0.
283  */
284
285 static inline dma_addr_t
286 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
287                 enum dma_data_direction dir)
288 {
289         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
290 }
291
292 static inline int
293 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
294 {
295         return dev ? dma_mapping_error(dev, dma_addr) : 0;
296 }
297
298 static inline void
299 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
300         enum dma_data_direction dir)
301 {
302         if (dev)
303                 dma_unmap_single(dev, addr, size, dir);
304 }
305
306 static inline void
307 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
308                 enum dma_data_direction dir)
309 {
310         if (dev)
311                 dma_sync_single_for_cpu(dev, addr, size, dir);
312 }
313
314 static inline void
315 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
316                 enum dma_data_direction dir)
317 {
318         if (dev)
319                 dma_sync_single_for_device(dev, addr, size, dir);
320 }
321
322 /* pseudo dma_map_sg call */
323 static int
324 fc_map_sg(struct scatterlist *sg, int nents)
325 {
326         struct scatterlist *s;
327         int i;
328
329         WARN_ON(nents == 0 || sg[0].length == 0);
330
331         for_each_sg(sg, s, nents, i) {
332                 s->dma_address = 0L;
333 #ifdef CONFIG_NEED_SG_DMA_LENGTH
334                 s->dma_length = s->length;
335 #endif
336         }
337         return nents;
338 }
339
340 static inline int
341 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
342                 enum dma_data_direction dir)
343 {
344         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
345 }
346
347 static inline void
348 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
349                 enum dma_data_direction dir)
350 {
351         if (dev)
352                 dma_unmap_sg(dev, sg, nents, dir);
353 }
354
355
356 /* ********************** FC-NVME LS XMT Handling ************************* */
357
358
359 static void
360 __nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op *lsop)
361 {
362         struct nvmet_fc_tgtport *tgtport = lsop->tgtport;
363         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
364         unsigned long flags;
365
366         spin_lock_irqsave(&tgtport->lock, flags);
367
368         if (!lsop->req_queued) {
369                 spin_unlock_irqrestore(&tgtport->lock, flags);
370                 goto out_putwork;
371         }
372
373         list_del(&lsop->lsreq_list);
374
375         lsop->req_queued = false;
376
377         spin_unlock_irqrestore(&tgtport->lock, flags);
378
379         fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
380                                   (lsreq->rqstlen + lsreq->rsplen),
381                                   DMA_BIDIRECTIONAL);
382
383 out_putwork:
384         queue_work(nvmet_wq, &tgtport->put_work);
385 }
386
387 static int
388 __nvmet_fc_send_ls_req(struct nvmet_fc_tgtport *tgtport,
389                 struct nvmet_fc_ls_req_op *lsop,
390                 void (*done)(struct nvmefc_ls_req *req, int status))
391 {
392         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
393         unsigned long flags;
394         int ret = 0;
395
396         if (!tgtport->ops->ls_req)
397                 return -EOPNOTSUPP;
398
399         if (!nvmet_fc_tgtport_get(tgtport))
400                 return -ESHUTDOWN;
401
402         lsreq->done = done;
403         lsop->req_queued = false;
404         INIT_LIST_HEAD(&lsop->lsreq_list);
405
406         lsreq->rqstdma = fc_dma_map_single(tgtport->dev, lsreq->rqstaddr,
407                                   lsreq->rqstlen + lsreq->rsplen,
408                                   DMA_BIDIRECTIONAL);
409         if (fc_dma_mapping_error(tgtport->dev, lsreq->rqstdma)) {
410                 ret = -EFAULT;
411                 goto out_puttgtport;
412         }
413         lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
414
415         spin_lock_irqsave(&tgtport->lock, flags);
416
417         list_add_tail(&lsop->lsreq_list, &tgtport->ls_req_list);
418
419         lsop->req_queued = true;
420
421         spin_unlock_irqrestore(&tgtport->lock, flags);
422
423         ret = tgtport->ops->ls_req(&tgtport->fc_target_port, lsop->hosthandle,
424                                    lsreq);
425         if (ret)
426                 goto out_unlink;
427
428         return 0;
429
430 out_unlink:
431         lsop->ls_error = ret;
432         spin_lock_irqsave(&tgtport->lock, flags);
433         lsop->req_queued = false;
434         list_del(&lsop->lsreq_list);
435         spin_unlock_irqrestore(&tgtport->lock, flags);
436         fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
437                                   (lsreq->rqstlen + lsreq->rsplen),
438                                   DMA_BIDIRECTIONAL);
439 out_puttgtport:
440         nvmet_fc_tgtport_put(tgtport);
441
442         return ret;
443 }
444
445 static int
446 nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport *tgtport,
447                 struct nvmet_fc_ls_req_op *lsop,
448                 void (*done)(struct nvmefc_ls_req *req, int status))
449 {
450         /* don't wait for completion */
451
452         return __nvmet_fc_send_ls_req(tgtport, lsop, done);
453 }
454
455 static void
456 nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
457 {
458         struct nvmet_fc_ls_req_op *lsop =
459                 container_of(lsreq, struct nvmet_fc_ls_req_op, ls_req);
460
461         __nvmet_fc_finish_ls_req(lsop);
462
463         /* fc-nvme target doesn't care about success or failure of cmd */
464
465         kfree(lsop);
466 }
467
468 /*
469  * This routine sends a FC-NVME LS to disconnect (aka terminate)
470  * the FC-NVME Association.  Terminating the association also
471  * terminates the FC-NVME connections (per queue, both admin and io
472  * queues) that are part of the association. E.g. things are torn
473  * down, and the related FC-NVME Association ID and Connection IDs
474  * become invalid.
475  *
476  * The behavior of the fc-nvme target is such that it's
477  * understanding of the association and connections will implicitly
478  * be torn down. The action is implicit as it may be due to a loss of
479  * connectivity with the fc-nvme host, so the target may never get a
480  * response even if it tried.  As such, the action of this routine
481  * is to asynchronously send the LS, ignore any results of the LS, and
482  * continue on with terminating the association. If the fc-nvme host
483  * is present and receives the LS, it too can tear down.
484  */
485 static void
486 nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc *assoc)
487 {
488         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
489         struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
490         struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
491         struct nvmet_fc_ls_req_op *lsop;
492         struct nvmefc_ls_req *lsreq;
493         int ret;
494
495         /*
496          * If ls_req is NULL or no hosthandle, it's an older lldd and no
497          * message is normal. Otherwise, send unless the hostport has
498          * already been invalidated by the lldd.
499          */
500         if (!tgtport->ops->ls_req || assoc->hostport->invalid)
501                 return;
502
503         lsop = kzalloc((sizeof(*lsop) +
504                         sizeof(*discon_rqst) + sizeof(*discon_acc) +
505                         tgtport->ops->lsrqst_priv_sz), GFP_KERNEL);
506         if (!lsop) {
507                 dev_info(tgtport->dev,
508                         "{%d:%d} send Disconnect Association failed: ENOMEM\n",
509                         tgtport->fc_target_port.port_num, assoc->a_id);
510                 return;
511         }
512
513         discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
514         discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
515         lsreq = &lsop->ls_req;
516         if (tgtport->ops->lsrqst_priv_sz)
517                 lsreq->private = (void *)&discon_acc[1];
518         else
519                 lsreq->private = NULL;
520
521         lsop->tgtport = tgtport;
522         lsop->hosthandle = assoc->hostport->hosthandle;
523
524         nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
525                                 assoc->association_id);
526
527         ret = nvmet_fc_send_ls_req_async(tgtport, lsop,
528                                 nvmet_fc_disconnect_assoc_done);
529         if (ret) {
530                 dev_info(tgtport->dev,
531                         "{%d:%d} XMT Disconnect Association failed: %d\n",
532                         tgtport->fc_target_port.port_num, assoc->a_id, ret);
533                 kfree(lsop);
534         }
535 }
536
537
538 /* *********************** FC-NVME Port Management ************************ */
539
540
541 static int
542 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
543 {
544         struct nvmet_fc_ls_iod *iod;
545         int i;
546
547         iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
548                         GFP_KERNEL);
549         if (!iod)
550                 return -ENOMEM;
551
552         tgtport->iod = iod;
553
554         for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
555                 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
556                 iod->tgtport = tgtport;
557                 list_add_tail(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
558
559                 iod->rqstbuf = kzalloc(sizeof(union nvmefc_ls_requests) +
560                                        sizeof(union nvmefc_ls_responses),
561                                        GFP_KERNEL);
562                 if (!iod->rqstbuf)
563                         goto out_fail;
564
565                 iod->rspbuf = (union nvmefc_ls_responses *)&iod->rqstbuf[1];
566
567                 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
568                                                 sizeof(*iod->rspbuf),
569                                                 DMA_TO_DEVICE);
570                 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
571                         goto out_fail;
572         }
573
574         return 0;
575
576 out_fail:
577         kfree(iod->rqstbuf);
578         list_del(&iod->ls_rcv_list);
579         for (iod--, i--; i >= 0; iod--, i--) {
580                 fc_dma_unmap_single(tgtport->dev, iod->rspdma,
581                                 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
582                 kfree(iod->rqstbuf);
583                 list_del(&iod->ls_rcv_list);
584         }
585
586         kfree(iod);
587
588         return -EFAULT;
589 }
590
591 static void
592 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
593 {
594         struct nvmet_fc_ls_iod *iod = tgtport->iod;
595         int i;
596
597         for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
598                 fc_dma_unmap_single(tgtport->dev,
599                                 iod->rspdma, sizeof(*iod->rspbuf),
600                                 DMA_TO_DEVICE);
601                 kfree(iod->rqstbuf);
602                 list_del(&iod->ls_rcv_list);
603         }
604         kfree(tgtport->iod);
605 }
606
607 static struct nvmet_fc_ls_iod *
608 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
609 {
610         struct nvmet_fc_ls_iod *iod;
611         unsigned long flags;
612
613         spin_lock_irqsave(&tgtport->lock, flags);
614         iod = list_first_entry_or_null(&tgtport->ls_rcv_list,
615                                         struct nvmet_fc_ls_iod, ls_rcv_list);
616         if (iod)
617                 list_move_tail(&iod->ls_rcv_list, &tgtport->ls_busylist);
618         spin_unlock_irqrestore(&tgtport->lock, flags);
619         return iod;
620 }
621
622
623 static void
624 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
625                         struct nvmet_fc_ls_iod *iod)
626 {
627         unsigned long flags;
628
629         spin_lock_irqsave(&tgtport->lock, flags);
630         list_move(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
631         spin_unlock_irqrestore(&tgtport->lock, flags);
632 }
633
634 static void
635 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
636                                 struct nvmet_fc_tgt_queue *queue)
637 {
638         struct nvmet_fc_fcp_iod *fod = queue->fod;
639         int i;
640
641         for (i = 0; i < queue->sqsize; fod++, i++) {
642                 INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
643                 fod->tgtport = tgtport;
644                 fod->queue = queue;
645                 fod->active = false;
646                 fod->abort = false;
647                 fod->aborted = false;
648                 fod->fcpreq = NULL;
649                 list_add_tail(&fod->fcp_list, &queue->fod_list);
650                 spin_lock_init(&fod->flock);
651
652                 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
653                                         sizeof(fod->rspiubuf), DMA_TO_DEVICE);
654                 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
655                         list_del(&fod->fcp_list);
656                         for (fod--, i--; i >= 0; fod--, i--) {
657                                 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
658                                                 sizeof(fod->rspiubuf),
659                                                 DMA_TO_DEVICE);
660                                 fod->rspdma = 0L;
661                                 list_del(&fod->fcp_list);
662                         }
663
664                         return;
665                 }
666         }
667 }
668
669 static void
670 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
671                                 struct nvmet_fc_tgt_queue *queue)
672 {
673         struct nvmet_fc_fcp_iod *fod = queue->fod;
674         int i;
675
676         for (i = 0; i < queue->sqsize; fod++, i++) {
677                 if (fod->rspdma)
678                         fc_dma_unmap_single(tgtport->dev, fod->rspdma,
679                                 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
680         }
681 }
682
683 static struct nvmet_fc_fcp_iod *
684 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
685 {
686         struct nvmet_fc_fcp_iod *fod;
687
688         lockdep_assert_held(&queue->qlock);
689
690         fod = list_first_entry_or_null(&queue->fod_list,
691                                         struct nvmet_fc_fcp_iod, fcp_list);
692         if (fod) {
693                 list_del(&fod->fcp_list);
694                 fod->active = true;
695                 /*
696                  * no queue reference is taken, as it was taken by the
697                  * queue lookup just prior to the allocation. The iod
698                  * will "inherit" that reference.
699                  */
700         }
701         return fod;
702 }
703
704
705 static void
706 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
707                        struct nvmet_fc_tgt_queue *queue,
708                        struct nvmefc_tgt_fcp_req *fcpreq)
709 {
710         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
711
712         /*
713          * put all admin cmds on hw queue id 0. All io commands go to
714          * the respective hw queue based on a modulo basis
715          */
716         fcpreq->hwqid = queue->qid ?
717                         ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
718
719         nvmet_fc_handle_fcp_rqst(tgtport, fod);
720 }
721
722 static void
723 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
724 {
725         struct nvmet_fc_fcp_iod *fod =
726                 container_of(work, struct nvmet_fc_fcp_iod, defer_work);
727
728         /* Submit deferred IO for processing */
729         nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
730
731 }
732
733 static void
734 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
735                         struct nvmet_fc_fcp_iod *fod)
736 {
737         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
738         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
739         struct nvmet_fc_defer_fcp_req *deferfcp;
740         unsigned long flags;
741
742         fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
743                                 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
744
745         fcpreq->nvmet_fc_private = NULL;
746
747         fod->active = false;
748         fod->abort = false;
749         fod->aborted = false;
750         fod->writedataactive = false;
751         fod->fcpreq = NULL;
752
753         tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
754
755         /* release the queue lookup reference on the completed IO */
756         nvmet_fc_tgt_q_put(queue);
757
758         spin_lock_irqsave(&queue->qlock, flags);
759         deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
760                                 struct nvmet_fc_defer_fcp_req, req_list);
761         if (!deferfcp) {
762                 list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
763                 spin_unlock_irqrestore(&queue->qlock, flags);
764                 return;
765         }
766
767         /* Re-use the fod for the next pending cmd that was deferred */
768         list_del(&deferfcp->req_list);
769
770         fcpreq = deferfcp->fcp_req;
771
772         /* deferfcp can be reused for another IO at a later date */
773         list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
774
775         spin_unlock_irqrestore(&queue->qlock, flags);
776
777         /* Save NVME CMD IO in fod */
778         memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
779
780         /* Setup new fcpreq to be processed */
781         fcpreq->rspaddr = NULL;
782         fcpreq->rsplen  = 0;
783         fcpreq->nvmet_fc_private = fod;
784         fod->fcpreq = fcpreq;
785         fod->active = true;
786
787         /* inform LLDD IO is now being processed */
788         tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
789
790         /*
791          * Leave the queue lookup get reference taken when
792          * fod was originally allocated.
793          */
794
795         queue_work(queue->work_q, &fod->defer_work);
796 }
797
798 static struct nvmet_fc_tgt_queue *
799 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
800                         u16 qid, u16 sqsize)
801 {
802         struct nvmet_fc_tgt_queue *queue;
803         int ret;
804
805         if (qid > NVMET_NR_QUEUES)
806                 return NULL;
807
808         queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
809         if (!queue)
810                 return NULL;
811
812         queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
813                                 assoc->tgtport->fc_target_port.port_num,
814                                 assoc->a_id, qid);
815         if (!queue->work_q)
816                 goto out_free_queue;
817
818         queue->qid = qid;
819         queue->sqsize = sqsize;
820         queue->assoc = assoc;
821         INIT_LIST_HEAD(&queue->fod_list);
822         INIT_LIST_HEAD(&queue->avail_defer_list);
823         INIT_LIST_HEAD(&queue->pending_cmd_list);
824         atomic_set(&queue->connected, 0);
825         atomic_set(&queue->sqtail, 0);
826         atomic_set(&queue->rsn, 1);
827         atomic_set(&queue->zrspcnt, 0);
828         spin_lock_init(&queue->qlock);
829         kref_init(&queue->ref);
830
831         nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
832
833         ret = nvmet_sq_init(&queue->nvme_sq);
834         if (ret)
835                 goto out_fail_iodlist;
836
837         WARN_ON(assoc->queues[qid]);
838         assoc->queues[qid] = queue;
839
840         return queue;
841
842 out_fail_iodlist:
843         nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
844         destroy_workqueue(queue->work_q);
845 out_free_queue:
846         kfree(queue);
847         return NULL;
848 }
849
850
851 static void
852 nvmet_fc_tgt_queue_free(struct kref *ref)
853 {
854         struct nvmet_fc_tgt_queue *queue =
855                 container_of(ref, struct nvmet_fc_tgt_queue, ref);
856
857         nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
858
859         destroy_workqueue(queue->work_q);
860
861         kfree(queue);
862 }
863
864 static void
865 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
866 {
867         kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
868 }
869
870 static int
871 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
872 {
873         return kref_get_unless_zero(&queue->ref);
874 }
875
876
877 static void
878 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
879 {
880         struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
881         struct nvmet_fc_fcp_iod *fod = queue->fod;
882         struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
883         unsigned long flags;
884         int i;
885         bool disconnect;
886
887         disconnect = atomic_xchg(&queue->connected, 0);
888
889         /* if not connected, nothing to do */
890         if (!disconnect)
891                 return;
892
893         spin_lock_irqsave(&queue->qlock, flags);
894         /* abort outstanding io's */
895         for (i = 0; i < queue->sqsize; fod++, i++) {
896                 if (fod->active) {
897                         spin_lock(&fod->flock);
898                         fod->abort = true;
899                         /*
900                          * only call lldd abort routine if waiting for
901                          * writedata. other outstanding ops should finish
902                          * on their own.
903                          */
904                         if (fod->writedataactive) {
905                                 fod->aborted = true;
906                                 spin_unlock(&fod->flock);
907                                 tgtport->ops->fcp_abort(
908                                         &tgtport->fc_target_port, fod->fcpreq);
909                         } else
910                                 spin_unlock(&fod->flock);
911                 }
912         }
913
914         /* Cleanup defer'ed IOs in queue */
915         list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
916                                 req_list) {
917                 list_del(&deferfcp->req_list);
918                 kfree(deferfcp);
919         }
920
921         for (;;) {
922                 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
923                                 struct nvmet_fc_defer_fcp_req, req_list);
924                 if (!deferfcp)
925                         break;
926
927                 list_del(&deferfcp->req_list);
928                 spin_unlock_irqrestore(&queue->qlock, flags);
929
930                 tgtport->ops->defer_rcv(&tgtport->fc_target_port,
931                                 deferfcp->fcp_req);
932
933                 tgtport->ops->fcp_abort(&tgtport->fc_target_port,
934                                 deferfcp->fcp_req);
935
936                 tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
937                                 deferfcp->fcp_req);
938
939                 /* release the queue lookup reference */
940                 nvmet_fc_tgt_q_put(queue);
941
942                 kfree(deferfcp);
943
944                 spin_lock_irqsave(&queue->qlock, flags);
945         }
946         spin_unlock_irqrestore(&queue->qlock, flags);
947
948         flush_workqueue(queue->work_q);
949
950         nvmet_sq_destroy(&queue->nvme_sq);
951
952         nvmet_fc_tgt_q_put(queue);
953 }
954
955 static struct nvmet_fc_tgt_queue *
956 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
957                                 u64 connection_id)
958 {
959         struct nvmet_fc_tgt_assoc *assoc;
960         struct nvmet_fc_tgt_queue *queue;
961         u64 association_id = nvmet_fc_getassociationid(connection_id);
962         u16 qid = nvmet_fc_getqueueid(connection_id);
963
964         if (qid > NVMET_NR_QUEUES)
965                 return NULL;
966
967         rcu_read_lock();
968         list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
969                 if (association_id == assoc->association_id) {
970                         queue = assoc->queues[qid];
971                         if (queue &&
972                             (!atomic_read(&queue->connected) ||
973                              !nvmet_fc_tgt_q_get(queue)))
974                                 queue = NULL;
975                         rcu_read_unlock();
976                         return queue;
977                 }
978         }
979         rcu_read_unlock();
980         return NULL;
981 }
982
983 static void
984 nvmet_fc_hostport_free(struct kref *ref)
985 {
986         struct nvmet_fc_hostport *hostport =
987                 container_of(ref, struct nvmet_fc_hostport, ref);
988         struct nvmet_fc_tgtport *tgtport = hostport->tgtport;
989         unsigned long flags;
990
991         spin_lock_irqsave(&tgtport->lock, flags);
992         list_del(&hostport->host_list);
993         spin_unlock_irqrestore(&tgtport->lock, flags);
994         if (tgtport->ops->host_release && hostport->invalid)
995                 tgtport->ops->host_release(hostport->hosthandle);
996         kfree(hostport);
997         nvmet_fc_tgtport_put(tgtport);
998 }
999
1000 static void
1001 nvmet_fc_hostport_put(struct nvmet_fc_hostport *hostport)
1002 {
1003         kref_put(&hostport->ref, nvmet_fc_hostport_free);
1004 }
1005
1006 static int
1007 nvmet_fc_hostport_get(struct nvmet_fc_hostport *hostport)
1008 {
1009         return kref_get_unless_zero(&hostport->ref);
1010 }
1011
1012 static void
1013 nvmet_fc_free_hostport(struct nvmet_fc_hostport *hostport)
1014 {
1015         /* if LLDD not implemented, leave as NULL */
1016         if (!hostport || !hostport->hosthandle)
1017                 return;
1018
1019         nvmet_fc_hostport_put(hostport);
1020 }
1021
1022 static struct nvmet_fc_hostport *
1023 nvmet_fc_match_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1024 {
1025         struct nvmet_fc_hostport *host;
1026
1027         lockdep_assert_held(&tgtport->lock);
1028
1029         list_for_each_entry(host, &tgtport->host_list, host_list) {
1030                 if (host->hosthandle == hosthandle && !host->invalid) {
1031                         if (nvmet_fc_hostport_get(host))
1032                                 return host;
1033                 }
1034         }
1035
1036         return NULL;
1037 }
1038
1039 static struct nvmet_fc_hostport *
1040 nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1041 {
1042         struct nvmet_fc_hostport *newhost, *match = NULL;
1043         unsigned long flags;
1044
1045         /* if LLDD not implemented, leave as NULL */
1046         if (!hosthandle)
1047                 return NULL;
1048
1049         /*
1050          * take reference for what will be the newly allocated hostport if
1051          * we end up using a new allocation
1052          */
1053         if (!nvmet_fc_tgtport_get(tgtport))
1054                 return ERR_PTR(-EINVAL);
1055
1056         spin_lock_irqsave(&tgtport->lock, flags);
1057         match = nvmet_fc_match_hostport(tgtport, hosthandle);
1058         spin_unlock_irqrestore(&tgtport->lock, flags);
1059
1060         if (match) {
1061                 /* no new allocation - release reference */
1062                 nvmet_fc_tgtport_put(tgtport);
1063                 return match;
1064         }
1065
1066         newhost = kzalloc(sizeof(*newhost), GFP_KERNEL);
1067         if (!newhost) {
1068                 /* no new allocation - release reference */
1069                 nvmet_fc_tgtport_put(tgtport);
1070                 return ERR_PTR(-ENOMEM);
1071         }
1072
1073         spin_lock_irqsave(&tgtport->lock, flags);
1074         match = nvmet_fc_match_hostport(tgtport, hosthandle);
1075         if (match) {
1076                 /* new allocation not needed */
1077                 kfree(newhost);
1078                 newhost = match;
1079         } else {
1080                 newhost->tgtport = tgtport;
1081                 newhost->hosthandle = hosthandle;
1082                 INIT_LIST_HEAD(&newhost->host_list);
1083                 kref_init(&newhost->ref);
1084
1085                 list_add_tail(&newhost->host_list, &tgtport->host_list);
1086         }
1087         spin_unlock_irqrestore(&tgtport->lock, flags);
1088
1089         return newhost;
1090 }
1091
1092 static void
1093 nvmet_fc_delete_assoc(struct nvmet_fc_tgt_assoc *assoc)
1094 {
1095         nvmet_fc_delete_target_assoc(assoc);
1096         nvmet_fc_tgt_a_put(assoc);
1097 }
1098
1099 static void
1100 nvmet_fc_delete_assoc_work(struct work_struct *work)
1101 {
1102         struct nvmet_fc_tgt_assoc *assoc =
1103                 container_of(work, struct nvmet_fc_tgt_assoc, del_work);
1104         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1105
1106         nvmet_fc_delete_assoc(assoc);
1107         nvmet_fc_tgtport_put(tgtport);
1108 }
1109
1110 static void
1111 nvmet_fc_schedule_delete_assoc(struct nvmet_fc_tgt_assoc *assoc)
1112 {
1113         nvmet_fc_tgtport_get(assoc->tgtport);
1114         queue_work(nvmet_wq, &assoc->del_work);
1115 }
1116
1117 static bool
1118 nvmet_fc_assoc_exists(struct nvmet_fc_tgtport *tgtport, u64 association_id)
1119 {
1120         struct nvmet_fc_tgt_assoc *a;
1121         bool found = false;
1122
1123         rcu_read_lock();
1124         list_for_each_entry_rcu(a, &tgtport->assoc_list, a_list) {
1125                 if (association_id == a->association_id) {
1126                         found = true;
1127                         break;
1128                 }
1129         }
1130         rcu_read_unlock();
1131
1132         return found;
1133 }
1134
1135 static struct nvmet_fc_tgt_assoc *
1136 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1137 {
1138         struct nvmet_fc_tgt_assoc *assoc;
1139         unsigned long flags;
1140         bool done;
1141         u64 ran;
1142         int idx;
1143
1144         if (!tgtport->pe)
1145                 return NULL;
1146
1147         assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
1148         if (!assoc)
1149                 return NULL;
1150
1151         idx = ida_alloc(&tgtport->assoc_cnt, GFP_KERNEL);
1152         if (idx < 0)
1153                 goto out_free_assoc;
1154
1155         assoc->hostport = nvmet_fc_alloc_hostport(tgtport, hosthandle);
1156         if (IS_ERR(assoc->hostport))
1157                 goto out_ida;
1158
1159         assoc->tgtport = tgtport;
1160         assoc->a_id = idx;
1161         INIT_LIST_HEAD(&assoc->a_list);
1162         kref_init(&assoc->ref);
1163         INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc_work);
1164         atomic_set(&assoc->terminating, 0);
1165
1166         done = false;
1167         do {
1168                 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
1169                 ran = ran << BYTES_FOR_QID_SHIFT;
1170
1171                 spin_lock_irqsave(&tgtport->lock, flags);
1172                 if (!nvmet_fc_assoc_exists(tgtport, ran)) {
1173                         assoc->association_id = ran;
1174                         list_add_tail_rcu(&assoc->a_list, &tgtport->assoc_list);
1175                         done = true;
1176                 }
1177                 spin_unlock_irqrestore(&tgtport->lock, flags);
1178         } while (!done);
1179
1180         return assoc;
1181
1182 out_ida:
1183         ida_free(&tgtport->assoc_cnt, idx);
1184 out_free_assoc:
1185         kfree(assoc);
1186         return NULL;
1187 }
1188
1189 static void
1190 nvmet_fc_target_assoc_free(struct kref *ref)
1191 {
1192         struct nvmet_fc_tgt_assoc *assoc =
1193                 container_of(ref, struct nvmet_fc_tgt_assoc, ref);
1194         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1195         struct nvmet_fc_ls_iod  *oldls;
1196         unsigned long flags;
1197         int i;
1198
1199         for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1200                 if (assoc->queues[i])
1201                         nvmet_fc_delete_target_queue(assoc->queues[i]);
1202         }
1203
1204         /* Send Disconnect now that all i/o has completed */
1205         nvmet_fc_xmt_disconnect_assoc(assoc);
1206
1207         nvmet_fc_free_hostport(assoc->hostport);
1208         spin_lock_irqsave(&tgtport->lock, flags);
1209         oldls = assoc->rcv_disconn;
1210         spin_unlock_irqrestore(&tgtport->lock, flags);
1211         /* if pending Rcv Disconnect Association LS, send rsp now */
1212         if (oldls)
1213                 nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1214         ida_free(&tgtport->assoc_cnt, assoc->a_id);
1215         dev_info(tgtport->dev,
1216                 "{%d:%d} Association freed\n",
1217                 tgtport->fc_target_port.port_num, assoc->a_id);
1218         kfree(assoc);
1219 }
1220
1221 static void
1222 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
1223 {
1224         kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
1225 }
1226
1227 static int
1228 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
1229 {
1230         return kref_get_unless_zero(&assoc->ref);
1231 }
1232
1233 static void
1234 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
1235 {
1236         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1237         unsigned long flags;
1238         int i, terminating;
1239
1240         terminating = atomic_xchg(&assoc->terminating, 1);
1241
1242         /* if already terminating, do nothing */
1243         if (terminating)
1244                 return;
1245
1246         spin_lock_irqsave(&tgtport->lock, flags);
1247         list_del_rcu(&assoc->a_list);
1248         spin_unlock_irqrestore(&tgtport->lock, flags);
1249
1250         synchronize_rcu();
1251
1252         /* ensure all in-flight I/Os have been processed */
1253         for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1254                 if (assoc->queues[i])
1255                         flush_workqueue(assoc->queues[i]->work_q);
1256         }
1257
1258         dev_info(tgtport->dev,
1259                 "{%d:%d} Association deleted\n",
1260                 tgtport->fc_target_port.port_num, assoc->a_id);
1261 }
1262
1263 static struct nvmet_fc_tgt_assoc *
1264 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
1265                                 u64 association_id)
1266 {
1267         struct nvmet_fc_tgt_assoc *assoc;
1268         struct nvmet_fc_tgt_assoc *ret = NULL;
1269
1270         rcu_read_lock();
1271         list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1272                 if (association_id == assoc->association_id) {
1273                         ret = assoc;
1274                         if (!nvmet_fc_tgt_a_get(assoc))
1275                                 ret = NULL;
1276                         break;
1277                 }
1278         }
1279         rcu_read_unlock();
1280
1281         return ret;
1282 }
1283
1284 static void
1285 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
1286                         struct nvmet_fc_port_entry *pe,
1287                         struct nvmet_port *port)
1288 {
1289         lockdep_assert_held(&nvmet_fc_tgtlock);
1290
1291         pe->tgtport = tgtport;
1292         tgtport->pe = pe;
1293
1294         pe->port = port;
1295         port->priv = pe;
1296
1297         pe->node_name = tgtport->fc_target_port.node_name;
1298         pe->port_name = tgtport->fc_target_port.port_name;
1299         INIT_LIST_HEAD(&pe->pe_list);
1300
1301         list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
1302 }
1303
1304 static void
1305 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
1306 {
1307         unsigned long flags;
1308
1309         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1310         if (pe->tgtport)
1311                 pe->tgtport->pe = NULL;
1312         list_del(&pe->pe_list);
1313         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1314 }
1315
1316 /*
1317  * called when a targetport deregisters. Breaks the relationship
1318  * with the nvmet port, but leaves the port_entry in place so that
1319  * re-registration can resume operation.
1320  */
1321 static void
1322 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
1323 {
1324         struct nvmet_fc_port_entry *pe;
1325         unsigned long flags;
1326
1327         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1328         pe = tgtport->pe;
1329         if (pe)
1330                 pe->tgtport = NULL;
1331         tgtport->pe = NULL;
1332         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1333 }
1334
1335 /*
1336  * called when a new targetport is registered. Looks in the
1337  * existing nvmet port_entries to see if the nvmet layer is
1338  * configured for the targetport's wwn's. (the targetport existed,
1339  * nvmet configured, the lldd unregistered the tgtport, and is now
1340  * reregistering the same targetport).  If so, set the nvmet port
1341  * port entry on the targetport.
1342  */
1343 static void
1344 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
1345 {
1346         struct nvmet_fc_port_entry *pe;
1347         unsigned long flags;
1348
1349         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1350         list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
1351                 if (tgtport->fc_target_port.node_name == pe->node_name &&
1352                     tgtport->fc_target_port.port_name == pe->port_name) {
1353                         WARN_ON(pe->tgtport);
1354                         tgtport->pe = pe;
1355                         pe->tgtport = tgtport;
1356                         break;
1357                 }
1358         }
1359         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1360 }
1361
1362 /**
1363  * nvmet_fc_register_targetport - transport entry point called by an
1364  *                              LLDD to register the existence of a local
1365  *                              NVME subystem FC port.
1366  * @pinfo:     pointer to information about the port to be registered
1367  * @template:  LLDD entrypoints and operational parameters for the port
1368  * @dev:       physical hardware device node port corresponds to. Will be
1369  *             used for DMA mappings
1370  * @portptr:   pointer to a local port pointer. Upon success, the routine
1371  *             will allocate a nvme_fc_local_port structure and place its
1372  *             address in the local port pointer. Upon failure, local port
1373  *             pointer will be set to NULL.
1374  *
1375  * Returns:
1376  * a completion status. Must be 0 upon success; a negative errno
1377  * (ex: -ENXIO) upon failure.
1378  */
1379 int
1380 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1381                         struct nvmet_fc_target_template *template,
1382                         struct device *dev,
1383                         struct nvmet_fc_target_port **portptr)
1384 {
1385         struct nvmet_fc_tgtport *newrec;
1386         unsigned long flags;
1387         int ret, idx;
1388
1389         if (!template->xmt_ls_rsp || !template->fcp_op ||
1390             !template->fcp_abort ||
1391             !template->fcp_req_release || !template->targetport_delete ||
1392             !template->max_hw_queues || !template->max_sgl_segments ||
1393             !template->max_dif_sgl_segments || !template->dma_boundary) {
1394                 ret = -EINVAL;
1395                 goto out_regtgt_failed;
1396         }
1397
1398         newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1399                          GFP_KERNEL);
1400         if (!newrec) {
1401                 ret = -ENOMEM;
1402                 goto out_regtgt_failed;
1403         }
1404
1405         idx = ida_alloc(&nvmet_fc_tgtport_cnt, GFP_KERNEL);
1406         if (idx < 0) {
1407                 ret = -ENOSPC;
1408                 goto out_fail_kfree;
1409         }
1410
1411         if (!get_device(dev) && dev) {
1412                 ret = -ENODEV;
1413                 goto out_ida_put;
1414         }
1415
1416         newrec->fc_target_port.node_name = pinfo->node_name;
1417         newrec->fc_target_port.port_name = pinfo->port_name;
1418         if (template->target_priv_sz)
1419                 newrec->fc_target_port.private = &newrec[1];
1420         else
1421                 newrec->fc_target_port.private = NULL;
1422         newrec->fc_target_port.port_id = pinfo->port_id;
1423         newrec->fc_target_port.port_num = idx;
1424         INIT_LIST_HEAD(&newrec->tgt_list);
1425         newrec->dev = dev;
1426         newrec->ops = template;
1427         spin_lock_init(&newrec->lock);
1428         INIT_LIST_HEAD(&newrec->ls_rcv_list);
1429         INIT_LIST_HEAD(&newrec->ls_req_list);
1430         INIT_LIST_HEAD(&newrec->ls_busylist);
1431         INIT_LIST_HEAD(&newrec->assoc_list);
1432         INIT_LIST_HEAD(&newrec->host_list);
1433         kref_init(&newrec->ref);
1434         ida_init(&newrec->assoc_cnt);
1435         newrec->max_sg_cnt = template->max_sgl_segments;
1436         INIT_WORK(&newrec->put_work, nvmet_fc_put_tgtport_work);
1437
1438         ret = nvmet_fc_alloc_ls_iodlist(newrec);
1439         if (ret) {
1440                 ret = -ENOMEM;
1441                 goto out_free_newrec;
1442         }
1443
1444         nvmet_fc_portentry_rebind_tgt(newrec);
1445
1446         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1447         list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1448         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1449
1450         *portptr = &newrec->fc_target_port;
1451         return 0;
1452
1453 out_free_newrec:
1454         put_device(dev);
1455 out_ida_put:
1456         ida_free(&nvmet_fc_tgtport_cnt, idx);
1457 out_fail_kfree:
1458         kfree(newrec);
1459 out_regtgt_failed:
1460         *portptr = NULL;
1461         return ret;
1462 }
1463 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1464
1465
1466 static void
1467 nvmet_fc_free_tgtport(struct kref *ref)
1468 {
1469         struct nvmet_fc_tgtport *tgtport =
1470                 container_of(ref, struct nvmet_fc_tgtport, ref);
1471         struct device *dev = tgtport->dev;
1472         unsigned long flags;
1473
1474         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1475         list_del(&tgtport->tgt_list);
1476         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1477
1478         nvmet_fc_free_ls_iodlist(tgtport);
1479
1480         /* let the LLDD know we've finished tearing it down */
1481         tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1482
1483         ida_free(&nvmet_fc_tgtport_cnt,
1484                         tgtport->fc_target_port.port_num);
1485
1486         ida_destroy(&tgtport->assoc_cnt);
1487
1488         kfree(tgtport);
1489
1490         put_device(dev);
1491 }
1492
1493 static void
1494 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1495 {
1496         kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1497 }
1498
1499 static int
1500 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1501 {
1502         return kref_get_unless_zero(&tgtport->ref);
1503 }
1504
1505 static void
1506 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1507 {
1508         struct nvmet_fc_tgt_assoc *assoc;
1509
1510         rcu_read_lock();
1511         list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1512                 if (!nvmet_fc_tgt_a_get(assoc))
1513                         continue;
1514                 nvmet_fc_schedule_delete_assoc(assoc);
1515                 nvmet_fc_tgt_a_put(assoc);
1516         }
1517         rcu_read_unlock();
1518 }
1519
1520 /**
1521  * nvmet_fc_invalidate_host - transport entry point called by an LLDD
1522  *                       to remove references to a hosthandle for LS's.
1523  *
1524  * The nvmet-fc layer ensures that any references to the hosthandle
1525  * on the targetport are forgotten (set to NULL).  The LLDD will
1526  * typically call this when a login with a remote host port has been
1527  * lost, thus LS's for the remote host port are no longer possible.
1528  *
1529  * If an LS request is outstanding to the targetport/hosthandle (or
1530  * issued concurrently with the call to invalidate the host), the
1531  * LLDD is responsible for terminating/aborting the LS and completing
1532  * the LS request. It is recommended that these terminations/aborts
1533  * occur after calling to invalidate the host handle to avoid additional
1534  * retries by the nvmet-fc transport. The nvmet-fc transport may
1535  * continue to reference host handle while it cleans up outstanding
1536  * NVME associations. The nvmet-fc transport will call the
1537  * ops->host_release() callback to notify the LLDD that all references
1538  * are complete and the related host handle can be recovered.
1539  * Note: if there are no references, the callback may be called before
1540  * the invalidate host call returns.
1541  *
1542  * @target_port: pointer to the (registered) target port that a prior
1543  *              LS was received on and which supplied the transport the
1544  *              hosthandle.
1545  * @hosthandle: the handle (pointer) that represents the host port
1546  *              that no longer has connectivity and that LS's should
1547  *              no longer be directed to.
1548  */
1549 void
1550 nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port,
1551                         void *hosthandle)
1552 {
1553         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1554         struct nvmet_fc_tgt_assoc *assoc, *next;
1555         unsigned long flags;
1556         bool noassoc = true;
1557
1558         spin_lock_irqsave(&tgtport->lock, flags);
1559         list_for_each_entry_safe(assoc, next,
1560                                 &tgtport->assoc_list, a_list) {
1561                 if (assoc->hostport->hosthandle != hosthandle)
1562                         continue;
1563                 if (!nvmet_fc_tgt_a_get(assoc))
1564                         continue;
1565                 assoc->hostport->invalid = 1;
1566                 noassoc = false;
1567                 nvmet_fc_schedule_delete_assoc(assoc);
1568                 nvmet_fc_tgt_a_put(assoc);
1569         }
1570         spin_unlock_irqrestore(&tgtport->lock, flags);
1571
1572         /* if there's nothing to wait for - call the callback */
1573         if (noassoc && tgtport->ops->host_release)
1574                 tgtport->ops->host_release(hosthandle);
1575 }
1576 EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host);
1577
1578 /*
1579  * nvmet layer has called to terminate an association
1580  */
1581 static void
1582 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1583 {
1584         struct nvmet_fc_tgtport *tgtport, *next;
1585         struct nvmet_fc_tgt_assoc *assoc;
1586         struct nvmet_fc_tgt_queue *queue;
1587         unsigned long flags;
1588         bool found_ctrl = false;
1589
1590         /* this is a bit ugly, but don't want to make locks layered */
1591         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1592         list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1593                         tgt_list) {
1594                 if (!nvmet_fc_tgtport_get(tgtport))
1595                         continue;
1596                 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1597
1598                 rcu_read_lock();
1599                 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1600                         queue = assoc->queues[0];
1601                         if (queue && queue->nvme_sq.ctrl == ctrl) {
1602                                 if (nvmet_fc_tgt_a_get(assoc))
1603                                         found_ctrl = true;
1604                                 break;
1605                         }
1606                 }
1607                 rcu_read_unlock();
1608
1609                 nvmet_fc_tgtport_put(tgtport);
1610
1611                 if (found_ctrl) {
1612                         nvmet_fc_schedule_delete_assoc(assoc);
1613                         nvmet_fc_tgt_a_put(assoc);
1614                         return;
1615                 }
1616
1617                 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1618         }
1619         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1620 }
1621
1622 /**
1623  * nvmet_fc_unregister_targetport - transport entry point called by an
1624  *                              LLDD to deregister/remove a previously
1625  *                              registered a local NVME subsystem FC port.
1626  * @target_port: pointer to the (registered) target port that is to be
1627  *               deregistered.
1628  *
1629  * Returns:
1630  * a completion status. Must be 0 upon success; a negative errno
1631  * (ex: -ENXIO) upon failure.
1632  */
1633 int
1634 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1635 {
1636         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1637
1638         nvmet_fc_portentry_unbind_tgt(tgtport);
1639
1640         /* terminate any outstanding associations */
1641         __nvmet_fc_free_assocs(tgtport);
1642
1643         flush_workqueue(nvmet_wq);
1644
1645         /*
1646          * should terminate LS's as well. However, LS's will be generated
1647          * at the tail end of association termination, so they likely don't
1648          * exist yet. And even if they did, it's worthwhile to just let
1649          * them finish and targetport ref counting will clean things up.
1650          */
1651
1652         nvmet_fc_tgtport_put(tgtport);
1653
1654         return 0;
1655 }
1656 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1657
1658
1659 /* ********************** FC-NVME LS RCV Handling ************************* */
1660
1661
1662 static void
1663 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1664                         struct nvmet_fc_ls_iod *iod)
1665 {
1666         struct fcnvme_ls_cr_assoc_rqst *rqst = &iod->rqstbuf->rq_cr_assoc;
1667         struct fcnvme_ls_cr_assoc_acc *acc = &iod->rspbuf->rsp_cr_assoc;
1668         struct nvmet_fc_tgt_queue *queue;
1669         int ret = 0;
1670
1671         memset(acc, 0, sizeof(*acc));
1672
1673         /*
1674          * FC-NVME spec changes. There are initiators sending different
1675          * lengths as padding sizes for Create Association Cmd descriptor
1676          * was incorrect.
1677          * Accept anything of "minimum" length. Assume format per 1.15
1678          * spec (with HOSTID reduced to 16 bytes), ignore how long the
1679          * trailing pad length is.
1680          */
1681         if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1682                 ret = VERR_CR_ASSOC_LEN;
1683         else if (be32_to_cpu(rqst->desc_list_len) <
1684                         FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1685                 ret = VERR_CR_ASSOC_RQST_LEN;
1686         else if (rqst->assoc_cmd.desc_tag !=
1687                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1688                 ret = VERR_CR_ASSOC_CMD;
1689         else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1690                         FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1691                 ret = VERR_CR_ASSOC_CMD_LEN;
1692         else if (!rqst->assoc_cmd.ersp_ratio ||
1693                  (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1694                                 be16_to_cpu(rqst->assoc_cmd.sqsize)))
1695                 ret = VERR_ERSP_RATIO;
1696
1697         else {
1698                 /* new association w/ admin queue */
1699                 iod->assoc = nvmet_fc_alloc_target_assoc(
1700                                                 tgtport, iod->hosthandle);
1701                 if (!iod->assoc)
1702                         ret = VERR_ASSOC_ALLOC_FAIL;
1703                 else {
1704                         queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1705                                         be16_to_cpu(rqst->assoc_cmd.sqsize));
1706                         if (!queue) {
1707                                 ret = VERR_QUEUE_ALLOC_FAIL;
1708                                 nvmet_fc_tgt_a_put(iod->assoc);
1709                         }
1710                 }
1711         }
1712
1713         if (ret) {
1714                 dev_err(tgtport->dev,
1715                         "Create Association LS failed: %s\n",
1716                         validation_errors[ret]);
1717                 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1718                                 sizeof(*acc), rqst->w0.ls_cmd,
1719                                 FCNVME_RJT_RC_LOGIC,
1720                                 FCNVME_RJT_EXP_NONE, 0);
1721                 return;
1722         }
1723
1724         queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1725         atomic_set(&queue->connected, 1);
1726         queue->sqhd = 0;        /* best place to init value */
1727
1728         dev_info(tgtport->dev,
1729                 "{%d:%d} Association created\n",
1730                 tgtport->fc_target_port.port_num, iod->assoc->a_id);
1731
1732         /* format a response */
1733
1734         iod->lsrsp->rsplen = sizeof(*acc);
1735
1736         nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1737                         fcnvme_lsdesc_len(
1738                                 sizeof(struct fcnvme_ls_cr_assoc_acc)),
1739                         FCNVME_LS_CREATE_ASSOCIATION);
1740         acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1741         acc->associd.desc_len =
1742                         fcnvme_lsdesc_len(
1743                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1744         acc->associd.association_id =
1745                         cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1746         acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1747         acc->connectid.desc_len =
1748                         fcnvme_lsdesc_len(
1749                                 sizeof(struct fcnvme_lsdesc_conn_id));
1750         acc->connectid.connection_id = acc->associd.association_id;
1751 }
1752
1753 static void
1754 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1755                         struct nvmet_fc_ls_iod *iod)
1756 {
1757         struct fcnvme_ls_cr_conn_rqst *rqst = &iod->rqstbuf->rq_cr_conn;
1758         struct fcnvme_ls_cr_conn_acc *acc = &iod->rspbuf->rsp_cr_conn;
1759         struct nvmet_fc_tgt_queue *queue;
1760         int ret = 0;
1761
1762         memset(acc, 0, sizeof(*acc));
1763
1764         if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1765                 ret = VERR_CR_CONN_LEN;
1766         else if (rqst->desc_list_len !=
1767                         fcnvme_lsdesc_len(
1768                                 sizeof(struct fcnvme_ls_cr_conn_rqst)))
1769                 ret = VERR_CR_CONN_RQST_LEN;
1770         else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1771                 ret = VERR_ASSOC_ID;
1772         else if (rqst->associd.desc_len !=
1773                         fcnvme_lsdesc_len(
1774                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1775                 ret = VERR_ASSOC_ID_LEN;
1776         else if (rqst->connect_cmd.desc_tag !=
1777                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1778                 ret = VERR_CR_CONN_CMD;
1779         else if (rqst->connect_cmd.desc_len !=
1780                         fcnvme_lsdesc_len(
1781                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1782                 ret = VERR_CR_CONN_CMD_LEN;
1783         else if (!rqst->connect_cmd.ersp_ratio ||
1784                  (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1785                                 be16_to_cpu(rqst->connect_cmd.sqsize)))
1786                 ret = VERR_ERSP_RATIO;
1787
1788         else {
1789                 /* new io queue */
1790                 iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1791                                 be64_to_cpu(rqst->associd.association_id));
1792                 if (!iod->assoc)
1793                         ret = VERR_NO_ASSOC;
1794                 else {
1795                         queue = nvmet_fc_alloc_target_queue(iod->assoc,
1796                                         be16_to_cpu(rqst->connect_cmd.qid),
1797                                         be16_to_cpu(rqst->connect_cmd.sqsize));
1798                         if (!queue)
1799                                 ret = VERR_QUEUE_ALLOC_FAIL;
1800
1801                         /* release get taken in nvmet_fc_find_target_assoc */
1802                         nvmet_fc_tgt_a_put(iod->assoc);
1803                 }
1804         }
1805
1806         if (ret) {
1807                 dev_err(tgtport->dev,
1808                         "Create Connection LS failed: %s\n",
1809                         validation_errors[ret]);
1810                 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1811                                 sizeof(*acc), rqst->w0.ls_cmd,
1812                                 (ret == VERR_NO_ASSOC) ?
1813                                         FCNVME_RJT_RC_INV_ASSOC :
1814                                         FCNVME_RJT_RC_LOGIC,
1815                                 FCNVME_RJT_EXP_NONE, 0);
1816                 return;
1817         }
1818
1819         queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1820         atomic_set(&queue->connected, 1);
1821         queue->sqhd = 0;        /* best place to init value */
1822
1823         /* format a response */
1824
1825         iod->lsrsp->rsplen = sizeof(*acc);
1826
1827         nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1828                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1829                         FCNVME_LS_CREATE_CONNECTION);
1830         acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1831         acc->connectid.desc_len =
1832                         fcnvme_lsdesc_len(
1833                                 sizeof(struct fcnvme_lsdesc_conn_id));
1834         acc->connectid.connection_id =
1835                         cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1836                                 be16_to_cpu(rqst->connect_cmd.qid)));
1837 }
1838
1839 /*
1840  * Returns true if the LS response is to be transmit
1841  * Returns false if the LS response is to be delayed
1842  */
1843 static int
1844 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1845                         struct nvmet_fc_ls_iod *iod)
1846 {
1847         struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1848                                                 &iod->rqstbuf->rq_dis_assoc;
1849         struct fcnvme_ls_disconnect_assoc_acc *acc =
1850                                                 &iod->rspbuf->rsp_dis_assoc;
1851         struct nvmet_fc_tgt_assoc *assoc = NULL;
1852         struct nvmet_fc_ls_iod *oldls = NULL;
1853         unsigned long flags;
1854         int ret = 0;
1855
1856         memset(acc, 0, sizeof(*acc));
1857
1858         ret = nvmefc_vldt_lsreq_discon_assoc(iod->rqstdatalen, rqst);
1859         if (!ret) {
1860                 /* match an active association - takes an assoc ref if !NULL */
1861                 assoc = nvmet_fc_find_target_assoc(tgtport,
1862                                 be64_to_cpu(rqst->associd.association_id));
1863                 iod->assoc = assoc;
1864                 if (!assoc)
1865                         ret = VERR_NO_ASSOC;
1866         }
1867
1868         if (ret || !assoc) {
1869                 dev_err(tgtport->dev,
1870                         "Disconnect LS failed: %s\n",
1871                         validation_errors[ret]);
1872                 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1873                                 sizeof(*acc), rqst->w0.ls_cmd,
1874                                 (ret == VERR_NO_ASSOC) ?
1875                                         FCNVME_RJT_RC_INV_ASSOC :
1876                                         FCNVME_RJT_RC_LOGIC,
1877                                 FCNVME_RJT_EXP_NONE, 0);
1878                 return true;
1879         }
1880
1881         /* format a response */
1882
1883         iod->lsrsp->rsplen = sizeof(*acc);
1884
1885         nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1886                         fcnvme_lsdesc_len(
1887                                 sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1888                         FCNVME_LS_DISCONNECT_ASSOC);
1889
1890         /*
1891          * The rules for LS response says the response cannot
1892          * go back until ABTS's have been sent for all outstanding
1893          * I/O and a Disconnect Association LS has been sent.
1894          * So... save off the Disconnect LS to send the response
1895          * later. If there was a prior LS already saved, replace
1896          * it with the newer one and send a can't perform reject
1897          * on the older one.
1898          */
1899         spin_lock_irqsave(&tgtport->lock, flags);
1900         oldls = assoc->rcv_disconn;
1901         assoc->rcv_disconn = iod;
1902         spin_unlock_irqrestore(&tgtport->lock, flags);
1903
1904         if (oldls) {
1905                 dev_info(tgtport->dev,
1906                         "{%d:%d} Multiple Disconnect Association LS's "
1907                         "received\n",
1908                         tgtport->fc_target_port.port_num, assoc->a_id);
1909                 /* overwrite good response with bogus failure */
1910                 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1911                                                 sizeof(*iod->rspbuf),
1912                                                 /* ok to use rqst, LS is same */
1913                                                 rqst->w0.ls_cmd,
1914                                                 FCNVME_RJT_RC_UNAB,
1915                                                 FCNVME_RJT_EXP_NONE, 0);
1916                 nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1917         }
1918
1919         nvmet_fc_schedule_delete_assoc(assoc);
1920         nvmet_fc_tgt_a_put(assoc);
1921
1922         return false;
1923 }
1924
1925
1926 /* *********************** NVME Ctrl Routines **************************** */
1927
1928
1929 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1930
1931 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1932
1933 static void
1934 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1935 {
1936         struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private;
1937         struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1938
1939         fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1940                                 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1941         nvmet_fc_free_ls_iod(tgtport, iod);
1942         nvmet_fc_tgtport_put(tgtport);
1943 }
1944
1945 static void
1946 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1947                                 struct nvmet_fc_ls_iod *iod)
1948 {
1949         int ret;
1950
1951         fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1952                                   sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1953
1954         ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp);
1955         if (ret)
1956                 nvmet_fc_xmt_ls_rsp_done(iod->lsrsp);
1957 }
1958
1959 /*
1960  * Actual processing routine for received FC-NVME LS Requests from the LLD
1961  */
1962 static void
1963 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1964                         struct nvmet_fc_ls_iod *iod)
1965 {
1966         struct fcnvme_ls_rqst_w0 *w0 = &iod->rqstbuf->rq_cr_assoc.w0;
1967         bool sendrsp = true;
1968
1969         iod->lsrsp->nvme_fc_private = iod;
1970         iod->lsrsp->rspbuf = iod->rspbuf;
1971         iod->lsrsp->rspdma = iod->rspdma;
1972         iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done;
1973         /* Be preventative. handlers will later set to valid length */
1974         iod->lsrsp->rsplen = 0;
1975
1976         iod->assoc = NULL;
1977
1978         /*
1979          * handlers:
1980          *   parse request input, execute the request, and format the
1981          *   LS response
1982          */
1983         switch (w0->ls_cmd) {
1984         case FCNVME_LS_CREATE_ASSOCIATION:
1985                 /* Creates Association and initial Admin Queue/Connection */
1986                 nvmet_fc_ls_create_association(tgtport, iod);
1987                 break;
1988         case FCNVME_LS_CREATE_CONNECTION:
1989                 /* Creates an IO Queue/Connection */
1990                 nvmet_fc_ls_create_connection(tgtport, iod);
1991                 break;
1992         case FCNVME_LS_DISCONNECT_ASSOC:
1993                 /* Terminate a Queue/Connection or the Association */
1994                 sendrsp = nvmet_fc_ls_disconnect(tgtport, iod);
1995                 break;
1996         default:
1997                 iod->lsrsp->rsplen = nvme_fc_format_rjt(iod->rspbuf,
1998                                 sizeof(*iod->rspbuf), w0->ls_cmd,
1999                                 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
2000         }
2001
2002         if (sendrsp)
2003                 nvmet_fc_xmt_ls_rsp(tgtport, iod);
2004 }
2005
2006 /*
2007  * Actual processing routine for received FC-NVME LS Requests from the LLD
2008  */
2009 static void
2010 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
2011 {
2012         struct nvmet_fc_ls_iod *iod =
2013                 container_of(work, struct nvmet_fc_ls_iod, work);
2014         struct nvmet_fc_tgtport *tgtport = iod->tgtport;
2015
2016         nvmet_fc_handle_ls_rqst(tgtport, iod);
2017 }
2018
2019
2020 /**
2021  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
2022  *                       upon the reception of a NVME LS request.
2023  *
2024  * The nvmet-fc layer will copy payload to an internal structure for
2025  * processing.  As such, upon completion of the routine, the LLDD may
2026  * immediately free/reuse the LS request buffer passed in the call.
2027  *
2028  * If this routine returns error, the LLDD should abort the exchange.
2029  *
2030  * @target_port: pointer to the (registered) target port the LS was
2031  *              received on.
2032  * @hosthandle: pointer to the host specific data, gets stored in iod.
2033  * @lsrsp:      pointer to a lsrsp structure to be used to reference
2034  *              the exchange corresponding to the LS.
2035  * @lsreqbuf:   pointer to the buffer containing the LS Request
2036  * @lsreqbuf_len: length, in bytes, of the received LS request
2037  */
2038 int
2039 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
2040                         void *hosthandle,
2041                         struct nvmefc_ls_rsp *lsrsp,
2042                         void *lsreqbuf, u32 lsreqbuf_len)
2043 {
2044         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2045         struct nvmet_fc_ls_iod *iod;
2046         struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
2047
2048         if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
2049                 dev_info(tgtport->dev,
2050                         "RCV %s LS failed: payload too large (%d)\n",
2051                         (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2052                                 nvmefc_ls_names[w0->ls_cmd] : "",
2053                         lsreqbuf_len);
2054                 return -E2BIG;
2055         }
2056
2057         if (!nvmet_fc_tgtport_get(tgtport)) {
2058                 dev_info(tgtport->dev,
2059                         "RCV %s LS failed: target deleting\n",
2060                         (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2061                                 nvmefc_ls_names[w0->ls_cmd] : "");
2062                 return -ESHUTDOWN;
2063         }
2064
2065         iod = nvmet_fc_alloc_ls_iod(tgtport);
2066         if (!iod) {
2067                 dev_info(tgtport->dev,
2068                         "RCV %s LS failed: context allocation failed\n",
2069                         (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2070                                 nvmefc_ls_names[w0->ls_cmd] : "");
2071                 nvmet_fc_tgtport_put(tgtport);
2072                 return -ENOENT;
2073         }
2074
2075         iod->lsrsp = lsrsp;
2076         iod->fcpreq = NULL;
2077         memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
2078         iod->rqstdatalen = lsreqbuf_len;
2079         iod->hosthandle = hosthandle;
2080
2081         queue_work(nvmet_wq, &iod->work);
2082
2083         return 0;
2084 }
2085 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
2086
2087
2088 /*
2089  * **********************
2090  * Start of FCP handling
2091  * **********************
2092  */
2093
2094 static int
2095 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2096 {
2097         struct scatterlist *sg;
2098         unsigned int nent;
2099
2100         sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
2101         if (!sg)
2102                 goto out;
2103
2104         fod->data_sg = sg;
2105         fod->data_sg_cnt = nent;
2106         fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
2107                                 ((fod->io_dir == NVMET_FCP_WRITE) ?
2108                                         DMA_FROM_DEVICE : DMA_TO_DEVICE));
2109                                 /* note: write from initiator perspective */
2110         fod->next_sg = fod->data_sg;
2111
2112         return 0;
2113
2114 out:
2115         return NVME_SC_INTERNAL;
2116 }
2117
2118 static void
2119 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2120 {
2121         if (!fod->data_sg || !fod->data_sg_cnt)
2122                 return;
2123
2124         fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
2125                                 ((fod->io_dir == NVMET_FCP_WRITE) ?
2126                                         DMA_FROM_DEVICE : DMA_TO_DEVICE));
2127         sgl_free(fod->data_sg);
2128         fod->data_sg = NULL;
2129         fod->data_sg_cnt = 0;
2130 }
2131
2132
2133 static bool
2134 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
2135 {
2136         u32 sqtail, used;
2137
2138         /* egad, this is ugly. And sqtail is just a best guess */
2139         sqtail = atomic_read(&q->sqtail) % q->sqsize;
2140
2141         used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
2142         return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
2143 }
2144
2145 /*
2146  * Prep RSP payload.
2147  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
2148  */
2149 static void
2150 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2151                                 struct nvmet_fc_fcp_iod *fod)
2152 {
2153         struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
2154         struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2155         struct nvme_completion *cqe = &ersp->cqe;
2156         u32 *cqewd = (u32 *)cqe;
2157         bool send_ersp = false;
2158         u32 rsn, rspcnt, xfr_length;
2159
2160         if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
2161                 xfr_length = fod->req.transfer_len;
2162         else
2163                 xfr_length = fod->offset;
2164
2165         /*
2166          * check to see if we can send a 0's rsp.
2167          *   Note: to send a 0's response, the NVME-FC host transport will
2168          *   recreate the CQE. The host transport knows: sq id, SQHD (last
2169          *   seen in an ersp), and command_id. Thus it will create a
2170          *   zero-filled CQE with those known fields filled in. Transport
2171          *   must send an ersp for any condition where the cqe won't match
2172          *   this.
2173          *
2174          * Here are the FC-NVME mandated cases where we must send an ersp:
2175          *  every N responses, where N=ersp_ratio
2176          *  force fabric commands to send ersp's (not in FC-NVME but good
2177          *    practice)
2178          *  normal cmds: any time status is non-zero, or status is zero
2179          *     but words 0 or 1 are non-zero.
2180          *  the SQ is 90% or more full
2181          *  the cmd is a fused command
2182          *  transferred data length not equal to cmd iu length
2183          */
2184         rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
2185         if (!(rspcnt % fod->queue->ersp_ratio) ||
2186             nvme_is_fabrics((struct nvme_command *) sqe) ||
2187             xfr_length != fod->req.transfer_len ||
2188             (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
2189             (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
2190             queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
2191                 send_ersp = true;
2192
2193         /* re-set the fields */
2194         fod->fcpreq->rspaddr = ersp;
2195         fod->fcpreq->rspdma = fod->rspdma;
2196
2197         if (!send_ersp) {
2198                 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
2199                 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
2200         } else {
2201                 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
2202                 rsn = atomic_inc_return(&fod->queue->rsn);
2203                 ersp->rsn = cpu_to_be32(rsn);
2204                 ersp->xfrd_len = cpu_to_be32(xfr_length);
2205                 fod->fcpreq->rsplen = sizeof(*ersp);
2206         }
2207
2208         fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
2209                                   sizeof(fod->rspiubuf), DMA_TO_DEVICE);
2210 }
2211
2212 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
2213
2214 static void
2215 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
2216                                 struct nvmet_fc_fcp_iod *fod)
2217 {
2218         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2219
2220         /* data no longer needed */
2221         nvmet_fc_free_tgt_pgs(fod);
2222
2223         /*
2224          * if an ABTS was received or we issued the fcp_abort early
2225          * don't call abort routine again.
2226          */
2227         /* no need to take lock - lock was taken earlier to get here */
2228         if (!fod->aborted)
2229                 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
2230
2231         nvmet_fc_free_fcp_iod(fod->queue, fod);
2232 }
2233
2234 static void
2235 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2236                                 struct nvmet_fc_fcp_iod *fod)
2237 {
2238         int ret;
2239
2240         fod->fcpreq->op = NVMET_FCOP_RSP;
2241         fod->fcpreq->timeout = 0;
2242
2243         nvmet_fc_prep_fcp_rsp(tgtport, fod);
2244
2245         ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2246         if (ret)
2247                 nvmet_fc_abort_op(tgtport, fod);
2248 }
2249
2250 static void
2251 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
2252                                 struct nvmet_fc_fcp_iod *fod, u8 op)
2253 {
2254         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2255         struct scatterlist *sg = fod->next_sg;
2256         unsigned long flags;
2257         u32 remaininglen = fod->req.transfer_len - fod->offset;
2258         u32 tlen = 0;
2259         int ret;
2260
2261         fcpreq->op = op;
2262         fcpreq->offset = fod->offset;
2263         fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
2264
2265         /*
2266          * for next sequence:
2267          *  break at a sg element boundary
2268          *  attempt to keep sequence length capped at
2269          *    NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
2270          *    be longer if a single sg element is larger
2271          *    than that amount. This is done to avoid creating
2272          *    a new sg list to use for the tgtport api.
2273          */
2274         fcpreq->sg = sg;
2275         fcpreq->sg_cnt = 0;
2276         while (tlen < remaininglen &&
2277                fcpreq->sg_cnt < tgtport->max_sg_cnt &&
2278                tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
2279                 fcpreq->sg_cnt++;
2280                 tlen += sg_dma_len(sg);
2281                 sg = sg_next(sg);
2282         }
2283         if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
2284                 fcpreq->sg_cnt++;
2285                 tlen += min_t(u32, sg_dma_len(sg), remaininglen);
2286                 sg = sg_next(sg);
2287         }
2288         if (tlen < remaininglen)
2289                 fod->next_sg = sg;
2290         else
2291                 fod->next_sg = NULL;
2292
2293         fcpreq->transfer_length = tlen;
2294         fcpreq->transferred_length = 0;
2295         fcpreq->fcp_error = 0;
2296         fcpreq->rsplen = 0;
2297
2298         /*
2299          * If the last READDATA request: check if LLDD supports
2300          * combined xfr with response.
2301          */
2302         if ((op == NVMET_FCOP_READDATA) &&
2303             ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
2304             (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
2305                 fcpreq->op = NVMET_FCOP_READDATA_RSP;
2306                 nvmet_fc_prep_fcp_rsp(tgtport, fod);
2307         }
2308
2309         ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2310         if (ret) {
2311                 /*
2312                  * should be ok to set w/o lock as its in the thread of
2313                  * execution (not an async timer routine) and doesn't
2314                  * contend with any clearing action
2315                  */
2316                 fod->abort = true;
2317
2318                 if (op == NVMET_FCOP_WRITEDATA) {
2319                         spin_lock_irqsave(&fod->flock, flags);
2320                         fod->writedataactive = false;
2321                         spin_unlock_irqrestore(&fod->flock, flags);
2322                         nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2323                 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
2324                         fcpreq->fcp_error = ret;
2325                         fcpreq->transferred_length = 0;
2326                         nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
2327                 }
2328         }
2329 }
2330
2331 static inline bool
2332 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
2333 {
2334         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2335         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2336
2337         /* if in the middle of an io and we need to tear down */
2338         if (abort) {
2339                 if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
2340                         nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2341                         return true;
2342                 }
2343
2344                 nvmet_fc_abort_op(tgtport, fod);
2345                 return true;
2346         }
2347
2348         return false;
2349 }
2350
2351 /*
2352  * actual done handler for FCP operations when completed by the lldd
2353  */
2354 static void
2355 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
2356 {
2357         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2358         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2359         unsigned long flags;
2360         bool abort;
2361
2362         spin_lock_irqsave(&fod->flock, flags);
2363         abort = fod->abort;
2364         fod->writedataactive = false;
2365         spin_unlock_irqrestore(&fod->flock, flags);
2366
2367         switch (fcpreq->op) {
2368
2369         case NVMET_FCOP_WRITEDATA:
2370                 if (__nvmet_fc_fod_op_abort(fod, abort))
2371                         return;
2372                 if (fcpreq->fcp_error ||
2373                     fcpreq->transferred_length != fcpreq->transfer_length) {
2374                         spin_lock_irqsave(&fod->flock, flags);
2375                         fod->abort = true;
2376                         spin_unlock_irqrestore(&fod->flock, flags);
2377
2378                         nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2379                         return;
2380                 }
2381
2382                 fod->offset += fcpreq->transferred_length;
2383                 if (fod->offset != fod->req.transfer_len) {
2384                         spin_lock_irqsave(&fod->flock, flags);
2385                         fod->writedataactive = true;
2386                         spin_unlock_irqrestore(&fod->flock, flags);
2387
2388                         /* transfer the next chunk */
2389                         nvmet_fc_transfer_fcp_data(tgtport, fod,
2390                                                 NVMET_FCOP_WRITEDATA);
2391                         return;
2392                 }
2393
2394                 /* data transfer complete, resume with nvmet layer */
2395                 fod->req.execute(&fod->req);
2396                 break;
2397
2398         case NVMET_FCOP_READDATA:
2399         case NVMET_FCOP_READDATA_RSP:
2400                 if (__nvmet_fc_fod_op_abort(fod, abort))
2401                         return;
2402                 if (fcpreq->fcp_error ||
2403                     fcpreq->transferred_length != fcpreq->transfer_length) {
2404                         nvmet_fc_abort_op(tgtport, fod);
2405                         return;
2406                 }
2407
2408                 /* success */
2409
2410                 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2411                         /* data no longer needed */
2412                         nvmet_fc_free_tgt_pgs(fod);
2413                         nvmet_fc_free_fcp_iod(fod->queue, fod);
2414                         return;
2415                 }
2416
2417                 fod->offset += fcpreq->transferred_length;
2418                 if (fod->offset != fod->req.transfer_len) {
2419                         /* transfer the next chunk */
2420                         nvmet_fc_transfer_fcp_data(tgtport, fod,
2421                                                 NVMET_FCOP_READDATA);
2422                         return;
2423                 }
2424
2425                 /* data transfer complete, send response */
2426
2427                 /* data no longer needed */
2428                 nvmet_fc_free_tgt_pgs(fod);
2429
2430                 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2431
2432                 break;
2433
2434         case NVMET_FCOP_RSP:
2435                 if (__nvmet_fc_fod_op_abort(fod, abort))
2436                         return;
2437                 nvmet_fc_free_fcp_iod(fod->queue, fod);
2438                 break;
2439
2440         default:
2441                 break;
2442         }
2443 }
2444
2445 static void
2446 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2447 {
2448         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2449
2450         nvmet_fc_fod_op_done(fod);
2451 }
2452
2453 /*
2454  * actual completion handler after execution by the nvmet layer
2455  */
2456 static void
2457 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2458                         struct nvmet_fc_fcp_iod *fod, int status)
2459 {
2460         struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2461         struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2462         unsigned long flags;
2463         bool abort;
2464
2465         spin_lock_irqsave(&fod->flock, flags);
2466         abort = fod->abort;
2467         spin_unlock_irqrestore(&fod->flock, flags);
2468
2469         /* if we have a CQE, snoop the last sq_head value */
2470         if (!status)
2471                 fod->queue->sqhd = cqe->sq_head;
2472
2473         if (abort) {
2474                 nvmet_fc_abort_op(tgtport, fod);
2475                 return;
2476         }
2477
2478         /* if an error handling the cmd post initial parsing */
2479         if (status) {
2480                 /* fudge up a failed CQE status for our transport error */
2481                 memset(cqe, 0, sizeof(*cqe));
2482                 cqe->sq_head = fod->queue->sqhd;        /* echo last cqe sqhd */
2483                 cqe->sq_id = cpu_to_le16(fod->queue->qid);
2484                 cqe->command_id = sqe->command_id;
2485                 cqe->status = cpu_to_le16(status);
2486         } else {
2487
2488                 /*
2489                  * try to push the data even if the SQE status is non-zero.
2490                  * There may be a status where data still was intended to
2491                  * be moved
2492                  */
2493                 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2494                         /* push the data over before sending rsp */
2495                         nvmet_fc_transfer_fcp_data(tgtport, fod,
2496                                                 NVMET_FCOP_READDATA);
2497                         return;
2498                 }
2499
2500                 /* writes & no data - fall thru */
2501         }
2502
2503         /* data no longer needed */
2504         nvmet_fc_free_tgt_pgs(fod);
2505
2506         nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2507 }
2508
2509
2510 static void
2511 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2512 {
2513         struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2514         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2515
2516         __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2517 }
2518
2519
2520 /*
2521  * Actual processing routine for received FC-NVME I/O Requests from the LLD
2522  */
2523 static void
2524 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2525                         struct nvmet_fc_fcp_iod *fod)
2526 {
2527         struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2528         u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2529         int ret;
2530
2531         /*
2532          * Fused commands are currently not supported in the linux
2533          * implementation.
2534          *
2535          * As such, the implementation of the FC transport does not
2536          * look at the fused commands and order delivery to the upper
2537          * layer until we have both based on csn.
2538          */
2539
2540         fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2541
2542         if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2543                 fod->io_dir = NVMET_FCP_WRITE;
2544                 if (!nvme_is_write(&cmdiu->sqe))
2545                         goto transport_error;
2546         } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2547                 fod->io_dir = NVMET_FCP_READ;
2548                 if (nvme_is_write(&cmdiu->sqe))
2549                         goto transport_error;
2550         } else {
2551                 fod->io_dir = NVMET_FCP_NODATA;
2552                 if (xfrlen)
2553                         goto transport_error;
2554         }
2555
2556         fod->req.cmd = &fod->cmdiubuf.sqe;
2557         fod->req.cqe = &fod->rspiubuf.cqe;
2558         if (!tgtport->pe)
2559                 goto transport_error;
2560         fod->req.port = tgtport->pe->port;
2561
2562         /* clear any response payload */
2563         memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2564
2565         fod->data_sg = NULL;
2566         fod->data_sg_cnt = 0;
2567
2568         ret = nvmet_req_init(&fod->req,
2569                                 &fod->queue->nvme_cq,
2570                                 &fod->queue->nvme_sq,
2571                                 &nvmet_fc_tgt_fcp_ops);
2572         if (!ret) {
2573                 /* bad SQE content or invalid ctrl state */
2574                 /* nvmet layer has already called op done to send rsp. */
2575                 return;
2576         }
2577
2578         fod->req.transfer_len = xfrlen;
2579
2580         /* keep a running counter of tail position */
2581         atomic_inc(&fod->queue->sqtail);
2582
2583         if (fod->req.transfer_len) {
2584                 ret = nvmet_fc_alloc_tgt_pgs(fod);
2585                 if (ret) {
2586                         nvmet_req_complete(&fod->req, ret);
2587                         return;
2588                 }
2589         }
2590         fod->req.sg = fod->data_sg;
2591         fod->req.sg_cnt = fod->data_sg_cnt;
2592         fod->offset = 0;
2593
2594         if (fod->io_dir == NVMET_FCP_WRITE) {
2595                 /* pull the data over before invoking nvmet layer */
2596                 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2597                 return;
2598         }
2599
2600         /*
2601          * Reads or no data:
2602          *
2603          * can invoke the nvmet_layer now. If read data, cmd completion will
2604          * push the data
2605          */
2606         fod->req.execute(&fod->req);
2607         return;
2608
2609 transport_error:
2610         nvmet_fc_abort_op(tgtport, fod);
2611 }
2612
2613 /**
2614  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2615  *                       upon the reception of a NVME FCP CMD IU.
2616  *
2617  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2618  * layer for processing.
2619  *
2620  * The nvmet_fc layer allocates a local job structure (struct
2621  * nvmet_fc_fcp_iod) from the queue for the io and copies the
2622  * CMD IU buffer to the job structure. As such, on a successful
2623  * completion (returns 0), the LLDD may immediately free/reuse
2624  * the CMD IU buffer passed in the call.
2625  *
2626  * However, in some circumstances, due to the packetized nature of FC
2627  * and the api of the FC LLDD which may issue a hw command to send the
2628  * response, but the LLDD may not get the hw completion for that command
2629  * and upcall the nvmet_fc layer before a new command may be
2630  * asynchronously received - its possible for a command to be received
2631  * before the LLDD and nvmet_fc have recycled the job structure. It gives
2632  * the appearance of more commands received than fits in the sq.
2633  * To alleviate this scenario, a temporary queue is maintained in the
2634  * transport for pending LLDD requests waiting for a queue job structure.
2635  * In these "overrun" cases, a temporary queue element is allocated
2636  * the LLDD request and CMD iu buffer information remembered, and the
2637  * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2638  * structure is freed, it is immediately reallocated for anything on the
2639  * pending request list. The LLDDs defer_rcv() callback is called,
2640  * informing the LLDD that it may reuse the CMD IU buffer, and the io
2641  * is then started normally with the transport.
2642  *
2643  * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2644  * the completion as successful but must not reuse the CMD IU buffer
2645  * until the LLDD's defer_rcv() callback has been called for the
2646  * corresponding struct nvmefc_tgt_fcp_req pointer.
2647  *
2648  * If there is any other condition in which an error occurs, the
2649  * transport will return a non-zero status indicating the error.
2650  * In all cases other than -EOVERFLOW, the transport has not accepted the
2651  * request and the LLDD should abort the exchange.
2652  *
2653  * @target_port: pointer to the (registered) target port the FCP CMD IU
2654  *              was received on.
2655  * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2656  *              the exchange corresponding to the FCP Exchange.
2657  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2658  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2659  */
2660 int
2661 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2662                         struct nvmefc_tgt_fcp_req *fcpreq,
2663                         void *cmdiubuf, u32 cmdiubuf_len)
2664 {
2665         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2666         struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2667         struct nvmet_fc_tgt_queue *queue;
2668         struct nvmet_fc_fcp_iod *fod;
2669         struct nvmet_fc_defer_fcp_req *deferfcp;
2670         unsigned long flags;
2671
2672         /* validate iu, so the connection id can be used to find the queue */
2673         if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2674                         (cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
2675                         (cmdiu->fc_id != NVME_CMD_FC_ID) ||
2676                         (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2677                 return -EIO;
2678
2679         queue = nvmet_fc_find_target_queue(tgtport,
2680                                 be64_to_cpu(cmdiu->connection_id));
2681         if (!queue)
2682                 return -ENOTCONN;
2683
2684         /*
2685          * note: reference taken by find_target_queue
2686          * After successful fod allocation, the fod will inherit the
2687          * ownership of that reference and will remove the reference
2688          * when the fod is freed.
2689          */
2690
2691         spin_lock_irqsave(&queue->qlock, flags);
2692
2693         fod = nvmet_fc_alloc_fcp_iod(queue);
2694         if (fod) {
2695                 spin_unlock_irqrestore(&queue->qlock, flags);
2696
2697                 fcpreq->nvmet_fc_private = fod;
2698                 fod->fcpreq = fcpreq;
2699
2700                 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2701
2702                 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2703
2704                 return 0;
2705         }
2706
2707         if (!tgtport->ops->defer_rcv) {
2708                 spin_unlock_irqrestore(&queue->qlock, flags);
2709                 /* release the queue lookup reference */
2710                 nvmet_fc_tgt_q_put(queue);
2711                 return -ENOENT;
2712         }
2713
2714         deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2715                         struct nvmet_fc_defer_fcp_req, req_list);
2716         if (deferfcp) {
2717                 /* Just re-use one that was previously allocated */
2718                 list_del(&deferfcp->req_list);
2719         } else {
2720                 spin_unlock_irqrestore(&queue->qlock, flags);
2721
2722                 /* Now we need to dynamically allocate one */
2723                 deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2724                 if (!deferfcp) {
2725                         /* release the queue lookup reference */
2726                         nvmet_fc_tgt_q_put(queue);
2727                         return -ENOMEM;
2728                 }
2729                 spin_lock_irqsave(&queue->qlock, flags);
2730         }
2731
2732         /* For now, use rspaddr / rsplen to save payload information */
2733         fcpreq->rspaddr = cmdiubuf;
2734         fcpreq->rsplen  = cmdiubuf_len;
2735         deferfcp->fcp_req = fcpreq;
2736
2737         /* defer processing till a fod becomes available */
2738         list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2739
2740         /* NOTE: the queue lookup reference is still valid */
2741
2742         spin_unlock_irqrestore(&queue->qlock, flags);
2743
2744         return -EOVERFLOW;
2745 }
2746 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2747
2748 /**
2749  * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2750  *                       upon the reception of an ABTS for a FCP command
2751  *
2752  * Notify the transport that an ABTS has been received for a FCP command
2753  * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2754  * LLDD believes the command is still being worked on
2755  * (template_ops->fcp_req_release() has not been called).
2756  *
2757  * The transport will wait for any outstanding work (an op to the LLDD,
2758  * which the lldd should complete with error due to the ABTS; or the
2759  * completion from the nvmet layer of the nvme command), then will
2760  * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2761  * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2762  * to the ABTS either after return from this function (assuming any
2763  * outstanding op work has been terminated) or upon the callback being
2764  * called.
2765  *
2766  * @target_port: pointer to the (registered) target port the FCP CMD IU
2767  *              was received on.
2768  * @fcpreq:     pointer to the fcpreq request structure that corresponds
2769  *              to the exchange that received the ABTS.
2770  */
2771 void
2772 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2773                         struct nvmefc_tgt_fcp_req *fcpreq)
2774 {
2775         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2776         struct nvmet_fc_tgt_queue *queue;
2777         unsigned long flags;
2778
2779         if (!fod || fod->fcpreq != fcpreq)
2780                 /* job appears to have already completed, ignore abort */
2781                 return;
2782
2783         queue = fod->queue;
2784
2785         spin_lock_irqsave(&queue->qlock, flags);
2786         if (fod->active) {
2787                 /*
2788                  * mark as abort. The abort handler, invoked upon completion
2789                  * of any work, will detect the aborted status and do the
2790                  * callback.
2791                  */
2792                 spin_lock(&fod->flock);
2793                 fod->abort = true;
2794                 fod->aborted = true;
2795                 spin_unlock(&fod->flock);
2796         }
2797         spin_unlock_irqrestore(&queue->qlock, flags);
2798 }
2799 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2800
2801
2802 struct nvmet_fc_traddr {
2803         u64     nn;
2804         u64     pn;
2805 };
2806
2807 static int
2808 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2809 {
2810         u64 token64;
2811
2812         if (match_u64(sstr, &token64))
2813                 return -EINVAL;
2814         *val = token64;
2815
2816         return 0;
2817 }
2818
2819 /*
2820  * This routine validates and extracts the WWN's from the TRADDR string.
2821  * As kernel parsers need the 0x to determine number base, universally
2822  * build string to parse with 0x prefix before parsing name strings.
2823  */
2824 static int
2825 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2826 {
2827         char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2828         substring_t wwn = { name, &name[sizeof(name)-1] };
2829         int nnoffset, pnoffset;
2830
2831         /* validate if string is one of the 2 allowed formats */
2832         if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2833                         !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2834                         !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2835                                 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2836                 nnoffset = NVME_FC_TRADDR_OXNNLEN;
2837                 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2838                                                 NVME_FC_TRADDR_OXNNLEN;
2839         } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2840                         !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2841                         !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2842                                 "pn-", NVME_FC_TRADDR_NNLEN))) {
2843                 nnoffset = NVME_FC_TRADDR_NNLEN;
2844                 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2845         } else
2846                 goto out_einval;
2847
2848         name[0] = '0';
2849         name[1] = 'x';
2850         name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2851
2852         memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2853         if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2854                 goto out_einval;
2855
2856         memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2857         if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2858                 goto out_einval;
2859
2860         return 0;
2861
2862 out_einval:
2863         pr_warn("%s: bad traddr string\n", __func__);
2864         return -EINVAL;
2865 }
2866
2867 static int
2868 nvmet_fc_add_port(struct nvmet_port *port)
2869 {
2870         struct nvmet_fc_tgtport *tgtport;
2871         struct nvmet_fc_port_entry *pe;
2872         struct nvmet_fc_traddr traddr = { 0L, 0L };
2873         unsigned long flags;
2874         int ret;
2875
2876         /* validate the address info */
2877         if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2878             (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2879                 return -EINVAL;
2880
2881         /* map the traddr address info to a target port */
2882
2883         ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2884                         sizeof(port->disc_addr.traddr));
2885         if (ret)
2886                 return ret;
2887
2888         pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2889         if (!pe)
2890                 return -ENOMEM;
2891
2892         ret = -ENXIO;
2893         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2894         list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2895                 if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2896                     (tgtport->fc_target_port.port_name == traddr.pn)) {
2897                         /* a FC port can only be 1 nvmet port id */
2898                         if (!tgtport->pe) {
2899                                 nvmet_fc_portentry_bind(tgtport, pe, port);
2900                                 ret = 0;
2901                         } else
2902                                 ret = -EALREADY;
2903                         break;
2904                 }
2905         }
2906         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2907
2908         if (ret)
2909                 kfree(pe);
2910
2911         return ret;
2912 }
2913
2914 static void
2915 nvmet_fc_remove_port(struct nvmet_port *port)
2916 {
2917         struct nvmet_fc_port_entry *pe = port->priv;
2918
2919         nvmet_fc_portentry_unbind(pe);
2920
2921         /* terminate any outstanding associations */
2922         __nvmet_fc_free_assocs(pe->tgtport);
2923
2924         kfree(pe);
2925 }
2926
2927 static void
2928 nvmet_fc_discovery_chg(struct nvmet_port *port)
2929 {
2930         struct nvmet_fc_port_entry *pe = port->priv;
2931         struct nvmet_fc_tgtport *tgtport = pe->tgtport;
2932
2933         if (tgtport && tgtport->ops->discovery_event)
2934                 tgtport->ops->discovery_event(&tgtport->fc_target_port);
2935 }
2936
2937 static ssize_t
2938 nvmet_fc_host_traddr(struct nvmet_ctrl *ctrl,
2939                 char *traddr, size_t traddr_size)
2940 {
2941         struct nvmet_sq *sq = ctrl->sqs[0];
2942         struct nvmet_fc_tgt_queue *queue =
2943                 container_of(sq, struct nvmet_fc_tgt_queue, nvme_sq);
2944         struct nvmet_fc_tgtport *tgtport = queue->assoc ? queue->assoc->tgtport : NULL;
2945         struct nvmet_fc_hostport *hostport = queue->assoc ? queue->assoc->hostport : NULL;
2946         u64 wwnn, wwpn;
2947         ssize_t ret = 0;
2948
2949         if (!tgtport || !nvmet_fc_tgtport_get(tgtport))
2950                 return -ENODEV;
2951         if (!hostport || !nvmet_fc_hostport_get(hostport)) {
2952                 ret = -ENODEV;
2953                 goto out_put;
2954         }
2955
2956         if (tgtport->ops->host_traddr) {
2957                 ret = tgtport->ops->host_traddr(hostport->hosthandle, &wwnn, &wwpn);
2958                 if (ret)
2959                         goto out_put_host;
2960                 ret = snprintf(traddr, traddr_size, "nn-0x%llx:pn-0x%llx", wwnn, wwpn);
2961         }
2962 out_put_host:
2963         nvmet_fc_hostport_put(hostport);
2964 out_put:
2965         nvmet_fc_tgtport_put(tgtport);
2966         return ret;
2967 }
2968
2969 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2970         .owner                  = THIS_MODULE,
2971         .type                   = NVMF_TRTYPE_FC,
2972         .msdbd                  = 1,
2973         .add_port               = nvmet_fc_add_port,
2974         .remove_port            = nvmet_fc_remove_port,
2975         .queue_response         = nvmet_fc_fcp_nvme_cmd_done,
2976         .delete_ctrl            = nvmet_fc_delete_ctrl,
2977         .discovery_chg          = nvmet_fc_discovery_chg,
2978         .host_traddr            = nvmet_fc_host_traddr,
2979 };
2980
2981 static int __init nvmet_fc_init_module(void)
2982 {
2983         return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2984 }
2985
2986 static void __exit nvmet_fc_exit_module(void)
2987 {
2988         /* ensure any shutdown operation, e.g. delete ctrls have finished */
2989         flush_workqueue(nvmet_wq);
2990
2991         /* sanity check - all lports should be removed */
2992         if (!list_empty(&nvmet_fc_target_list))
2993                 pr_warn("%s: targetport list not empty\n", __func__);
2994
2995         nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2996
2997         ida_destroy(&nvmet_fc_tgtport_cnt);
2998 }
2999
3000 module_init(nvmet_fc_init_module);
3001 module_exit(nvmet_fc_exit_module);
3002
3003 MODULE_DESCRIPTION("NVMe target FC transport driver");
3004 MODULE_LICENSE("GPL v2");
This page took 0.206921 seconds and 4 git commands to generate.