]> Git Repo - linux.git/blob - drivers/net/wireless/intel/iwlwifi/dvm/eeprom.c
Linux 6.14-rc3
[linux.git] / drivers / net / wireless / intel / iwlwifi / dvm / eeprom.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2005-2014, 2018-2019, 2021, 2024 Intel Corporation
4  */
5 #include <linux/types.h>
6 #include <linux/slab.h>
7 #include <linux/export.h>
8
9 #include "iwl-drv.h"
10 #include "iwl-debug.h"
11 #include "iwl-io.h"
12 #include "iwl-prph.h"
13 #include "iwl-csr.h"
14 #include "agn.h"
15
16 /* EEPROM offset definitions */
17
18 /* indirect access definitions */
19 #define ADDRESS_MSK                 0x0000FFFF
20 #define INDIRECT_TYPE_MSK           0x000F0000
21 #define INDIRECT_HOST               0x00010000
22 #define INDIRECT_GENERAL            0x00020000
23 #define INDIRECT_REGULATORY         0x00030000
24 #define INDIRECT_CALIBRATION        0x00040000
25 #define INDIRECT_PROCESS_ADJST      0x00050000
26 #define INDIRECT_OTHERS             0x00060000
27 #define INDIRECT_TXP_LIMIT          0x00070000
28 #define INDIRECT_TXP_LIMIT_SIZE     0x00080000
29 #define INDIRECT_ADDRESS            0x00100000
30
31 /* corresponding link offsets in EEPROM */
32 #define EEPROM_LINK_HOST             (2*0x64)
33 #define EEPROM_LINK_GENERAL          (2*0x65)
34 #define EEPROM_LINK_REGULATORY       (2*0x66)
35 #define EEPROM_LINK_CALIBRATION      (2*0x67)
36 #define EEPROM_LINK_PROCESS_ADJST    (2*0x68)
37 #define EEPROM_LINK_OTHERS           (2*0x69)
38 #define EEPROM_LINK_TXP_LIMIT        (2*0x6a)
39 #define EEPROM_LINK_TXP_LIMIT_SIZE   (2*0x6b)
40
41 /* General */
42 #define EEPROM_DEVICE_ID                    (2*0x08)    /* 2 bytes */
43 #define EEPROM_SUBSYSTEM_ID                 (2*0x0A)    /* 2 bytes */
44 #define EEPROM_MAC_ADDRESS                  (2*0x15)    /* 6  bytes */
45 #define EEPROM_BOARD_REVISION               (2*0x35)    /* 2  bytes */
46 #define EEPROM_BOARD_PBA_NUMBER             (2*0x3B+1)  /* 9  bytes */
47 #define EEPROM_VERSION                      (2*0x44)    /* 2  bytes */
48 #define EEPROM_SKU_CAP                      (2*0x45)    /* 2  bytes */
49 #define EEPROM_OEM_MODE                     (2*0x46)    /* 2  bytes */
50 #define EEPROM_RADIO_CONFIG                 (2*0x48)    /* 2  bytes */
51 #define EEPROM_NUM_MAC_ADDRESS              (2*0x4C)    /* 2  bytes */
52
53 /* calibration */
54 struct iwl_eeprom_calib_hdr {
55         u8 version;
56         u8 pa_type;
57         __le16 voltage;
58 } __packed;
59
60 #define EEPROM_CALIB_ALL        (INDIRECT_ADDRESS | INDIRECT_CALIBRATION)
61 #define EEPROM_XTAL             ((2*0x128) | EEPROM_CALIB_ALL)
62
63 /* temperature */
64 #define EEPROM_KELVIN_TEMPERATURE       ((2*0x12A) | EEPROM_CALIB_ALL)
65 #define EEPROM_RAW_TEMPERATURE          ((2*0x12B) | EEPROM_CALIB_ALL)
66
67 /* SKU Capabilities (actual values from EEPROM definition) */
68 enum eeprom_sku_bits {
69         EEPROM_SKU_CAP_BAND_24GHZ       = BIT(4),
70         EEPROM_SKU_CAP_BAND_52GHZ       = BIT(5),
71         EEPROM_SKU_CAP_11N_ENABLE       = BIT(6),
72         EEPROM_SKU_CAP_AMT_ENABLE       = BIT(7),
73         EEPROM_SKU_CAP_IPAN_ENABLE      = BIT(8)
74 };
75
76 /* radio config bits (actual values from EEPROM definition) */
77 #define EEPROM_RF_CFG_TYPE_MSK(x)   (x & 0x3)         /* bits 0-1   */
78 #define EEPROM_RF_CFG_STEP_MSK(x)   ((x >> 2)  & 0x3) /* bits 2-3   */
79 #define EEPROM_RF_CFG_DASH_MSK(x)   ((x >> 4)  & 0x3) /* bits 4-5   */
80 #define EEPROM_RF_CFG_PNUM_MSK(x)   ((x >> 6)  & 0x3) /* bits 6-7   */
81 #define EEPROM_RF_CFG_TX_ANT_MSK(x) ((x >> 8)  & 0xF) /* bits 8-11  */
82 #define EEPROM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */
83
84 /*
85  * EEPROM bands
86  * These are the channel numbers from each band in the order
87  * that they are stored in the EEPROM band information. Note
88  * that EEPROM bands aren't the same as mac80211 bands, and
89  * there are even special "ht40 bands" in the EEPROM.
90  */
91 static const u8 iwl_eeprom_band_1[14] = { /* 2.4 GHz */
92         1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
93 };
94
95 static const u8 iwl_eeprom_band_2[] = { /* 4915-5080MHz */
96         183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
97 };
98
99 static const u8 iwl_eeprom_band_3[] = { /* 5170-5320MHz */
100         34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
101 };
102
103 static const u8 iwl_eeprom_band_4[] = { /* 5500-5700MHz */
104         100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
105 };
106
107 static const u8 iwl_eeprom_band_5[] = { /* 5725-5825MHz */
108         145, 149, 153, 157, 161, 165
109 };
110
111 static const u8 iwl_eeprom_band_6[] = { /* 2.4 ht40 channel */
112         1, 2, 3, 4, 5, 6, 7
113 };
114
115 static const u8 iwl_eeprom_band_7[] = { /* 5.2 ht40 channel */
116         36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
117 };
118
119 #define IWL_NUM_CHANNELS        (ARRAY_SIZE(iwl_eeprom_band_1) + \
120                                  ARRAY_SIZE(iwl_eeprom_band_2) + \
121                                  ARRAY_SIZE(iwl_eeprom_band_3) + \
122                                  ARRAY_SIZE(iwl_eeprom_band_4) + \
123                                  ARRAY_SIZE(iwl_eeprom_band_5))
124
125 /* rate data (static) */
126 static struct ieee80211_rate iwl_cfg80211_rates[] = {
127         { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
128         { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
129           .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
130         { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
131           .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
132         { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
133           .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
134         { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
135         { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
136         { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
137         { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
138         { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
139         { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
140         { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
141         { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
142 };
143 #define RATES_24_OFFS   0
144 #define N_RATES_24      ARRAY_SIZE(iwl_cfg80211_rates)
145 #define RATES_52_OFFS   4
146 #define N_RATES_52      (N_RATES_24 - RATES_52_OFFS)
147
148 /* EEPROM reading functions */
149
150 static u16 iwl_eeprom_query16(const u8 *eeprom, size_t eeprom_size, int offset)
151 {
152         if (WARN_ON(offset + sizeof(u16) > eeprom_size))
153                 return 0;
154         return le16_to_cpup((__le16 *)(eeprom + offset));
155 }
156
157 static u32 eeprom_indirect_address(const u8 *eeprom, size_t eeprom_size,
158                                    u32 address)
159 {
160         u16 offset = 0;
161
162         if ((address & INDIRECT_ADDRESS) == 0)
163                 return address;
164
165         switch (address & INDIRECT_TYPE_MSK) {
166         case INDIRECT_HOST:
167                 offset = iwl_eeprom_query16(eeprom, eeprom_size,
168                                             EEPROM_LINK_HOST);
169                 break;
170         case INDIRECT_GENERAL:
171                 offset = iwl_eeprom_query16(eeprom, eeprom_size,
172                                             EEPROM_LINK_GENERAL);
173                 break;
174         case INDIRECT_REGULATORY:
175                 offset = iwl_eeprom_query16(eeprom, eeprom_size,
176                                             EEPROM_LINK_REGULATORY);
177                 break;
178         case INDIRECT_TXP_LIMIT:
179                 offset = iwl_eeprom_query16(eeprom, eeprom_size,
180                                             EEPROM_LINK_TXP_LIMIT);
181                 break;
182         case INDIRECT_TXP_LIMIT_SIZE:
183                 offset = iwl_eeprom_query16(eeprom, eeprom_size,
184                                             EEPROM_LINK_TXP_LIMIT_SIZE);
185                 break;
186         case INDIRECT_CALIBRATION:
187                 offset = iwl_eeprom_query16(eeprom, eeprom_size,
188                                             EEPROM_LINK_CALIBRATION);
189                 break;
190         case INDIRECT_PROCESS_ADJST:
191                 offset = iwl_eeprom_query16(eeprom, eeprom_size,
192                                             EEPROM_LINK_PROCESS_ADJST);
193                 break;
194         case INDIRECT_OTHERS:
195                 offset = iwl_eeprom_query16(eeprom, eeprom_size,
196                                             EEPROM_LINK_OTHERS);
197                 break;
198         default:
199                 WARN_ON(1);
200                 break;
201         }
202
203         /* translate the offset from words to byte */
204         return (address & ADDRESS_MSK) + (offset << 1);
205 }
206
207 static const u8 *iwl_eeprom_query_addr(const u8 *eeprom, size_t eeprom_size,
208                                        u32 offset)
209 {
210         u32 address = eeprom_indirect_address(eeprom, eeprom_size, offset);
211
212         if (WARN_ON(address >= eeprom_size))
213                 return NULL;
214
215         return &eeprom[address];
216 }
217
218 static int iwl_eeprom_read_calib(const u8 *eeprom, size_t eeprom_size,
219                                  struct iwl_nvm_data *data)
220 {
221         struct iwl_eeprom_calib_hdr *hdr;
222
223         hdr = (void *)iwl_eeprom_query_addr(eeprom, eeprom_size,
224                                             EEPROM_CALIB_ALL);
225         if (!hdr)
226                 return -ENODATA;
227         data->calib_version = hdr->version;
228         data->calib_voltage = hdr->voltage;
229
230         return 0;
231 }
232
233 /**
234  * enum iwl_eeprom_channel_flags - channel flags in EEPROM
235  * @EEPROM_CHANNEL_VALID: channel is usable for this SKU/geo
236  * @EEPROM_CHANNEL_IBSS: usable as an IBSS channel
237  * @EEPROM_CHANNEL_ACTIVE: active scanning allowed
238  * @EEPROM_CHANNEL_RADAR: radar detection required
239  * @EEPROM_CHANNEL_WIDE: 20 MHz channel okay (?)
240  * @EEPROM_CHANNEL_DFS: dynamic freq selection candidate
241  */
242 enum iwl_eeprom_channel_flags {
243         EEPROM_CHANNEL_VALID = BIT(0),
244         EEPROM_CHANNEL_IBSS = BIT(1),
245         EEPROM_CHANNEL_ACTIVE = BIT(3),
246         EEPROM_CHANNEL_RADAR = BIT(4),
247         EEPROM_CHANNEL_WIDE = BIT(5),
248         EEPROM_CHANNEL_DFS = BIT(7),
249 };
250
251 /**
252  * struct iwl_eeprom_channel - EEPROM channel data
253  * @flags: %EEPROM_CHANNEL_* flags
254  * @max_power_avg: max power (in dBm) on this channel, at most 31 dBm
255  */
256 struct iwl_eeprom_channel {
257         u8 flags;
258         s8 max_power_avg;
259 } __packed;
260
261 enum iwl_eeprom_enhanced_txpwr_flags {
262         IWL_EEPROM_ENH_TXP_FL_VALID = BIT(0),
263         IWL_EEPROM_ENH_TXP_FL_BAND_52G = BIT(1),
264         IWL_EEPROM_ENH_TXP_FL_OFDM = BIT(2),
265         IWL_EEPROM_ENH_TXP_FL_40MHZ = BIT(3),
266         IWL_EEPROM_ENH_TXP_FL_HT_AP = BIT(4),
267         IWL_EEPROM_ENH_TXP_FL_RES1 = BIT(5),
268         IWL_EEPROM_ENH_TXP_FL_RES2 = BIT(6),
269         IWL_EEPROM_ENH_TXP_FL_COMMON_TYPE = BIT(7),
270 };
271
272 /**
273  * struct iwl_eeprom_enhanced_txpwr - enhanced regulatory TX power limits
274  * @flags: entry flags
275  * @channel: channel number
276  * @chain_a_max: chain a max power in 1/2 dBm
277  * @chain_b_max: chain b max power in 1/2 dBm
278  * @chain_c_max: chain c max power in 1/2 dBm
279  * @delta_20_in_40: 20-in-40 deltas (hi/lo)
280  * @mimo2_max: mimo2 max power in 1/2 dBm
281  * @mimo3_max: mimo3 max power in 1/2 dBm
282  *
283  * This structure presents the enhanced regulatory tx power limit layout
284  * in an EEPROM image.
285  */
286 struct iwl_eeprom_enhanced_txpwr {
287         u8 flags;
288         u8 channel;
289         s8 chain_a_max;
290         s8 chain_b_max;
291         s8 chain_c_max;
292         u8 delta_20_in_40;
293         s8 mimo2_max;
294         s8 mimo3_max;
295 } __packed;
296
297 static s8 iwl_get_max_txpwr_half_dbm(const struct iwl_nvm_data *data,
298                                      struct iwl_eeprom_enhanced_txpwr *txp)
299 {
300         s8 result = 0; /* (.5 dBm) */
301
302         /* Take the highest tx power from any valid chains */
303         if (data->valid_tx_ant & ANT_A && txp->chain_a_max > result)
304                 result = txp->chain_a_max;
305
306         if (data->valid_tx_ant & ANT_B && txp->chain_b_max > result)
307                 result = txp->chain_b_max;
308
309         if (data->valid_tx_ant & ANT_C && txp->chain_c_max > result)
310                 result = txp->chain_c_max;
311
312         if ((data->valid_tx_ant == ANT_AB ||
313              data->valid_tx_ant == ANT_BC ||
314              data->valid_tx_ant == ANT_AC) && txp->mimo2_max > result)
315                 result = txp->mimo2_max;
316
317         if (data->valid_tx_ant == ANT_ABC && txp->mimo3_max > result)
318                 result = txp->mimo3_max;
319
320         return result;
321 }
322
323 #define EEPROM_TXP_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT)
324 #define EEPROM_TXP_ENTRY_LEN sizeof(struct iwl_eeprom_enhanced_txpwr)
325 #define EEPROM_TXP_SZ_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT_SIZE)
326
327 #define TXP_CHECK_AND_PRINT(x) \
328         ((txp->flags & IWL_EEPROM_ENH_TXP_FL_##x) ? # x " " : "")
329
330 static void
331 iwl_eeprom_enh_txp_read_element(struct iwl_nvm_data *data,
332                                 struct iwl_eeprom_enhanced_txpwr *txp,
333                                 int n_channels, s8 max_txpower_avg)
334 {
335         int ch_idx;
336         enum nl80211_band band;
337
338         band = txp->flags & IWL_EEPROM_ENH_TXP_FL_BAND_52G ?
339                 NL80211_BAND_5GHZ : NL80211_BAND_2GHZ;
340
341         for (ch_idx = 0; ch_idx < n_channels; ch_idx++) {
342                 struct ieee80211_channel *chan = &data->channels[ch_idx];
343
344                 /* update matching channel or from common data only */
345                 if (txp->channel != 0 && chan->hw_value != txp->channel)
346                         continue;
347
348                 /* update matching band only */
349                 if (band != chan->band)
350                         continue;
351
352                 if (chan->max_power < max_txpower_avg &&
353                     !(txp->flags & IWL_EEPROM_ENH_TXP_FL_40MHZ))
354                         chan->max_power = max_txpower_avg;
355         }
356 }
357
358 static void iwl_eeprom_enhanced_txpower(struct device *dev,
359                                         struct iwl_nvm_data *data,
360                                         const u8 *eeprom, size_t eeprom_size,
361                                         int n_channels)
362 {
363         struct iwl_eeprom_enhanced_txpwr *txp_array, *txp;
364         int idx, entries;
365         __le16 *txp_len;
366         s8 max_txp_avg_halfdbm;
367
368         BUILD_BUG_ON(sizeof(struct iwl_eeprom_enhanced_txpwr) != 8);
369
370         /* the length is in 16-bit words, but we want entries */
371         txp_len = (__le16 *)iwl_eeprom_query_addr(eeprom, eeprom_size,
372                                                   EEPROM_TXP_SZ_OFFS);
373         entries = le16_to_cpup(txp_len) * 2 / EEPROM_TXP_ENTRY_LEN;
374
375         txp_array = (void *)iwl_eeprom_query_addr(eeprom, eeprom_size,
376                                                   EEPROM_TXP_OFFS);
377
378         for (idx = 0; idx < entries; idx++) {
379                 txp = &txp_array[idx];
380                 /* skip invalid entries */
381                 if (!(txp->flags & IWL_EEPROM_ENH_TXP_FL_VALID))
382                         continue;
383
384                 IWL_DEBUG_EEPROM(dev, "%s %d:\t %s%s%s%s%s%s%s%s (0x%02x)\n",
385                                  (txp->channel && (txp->flags &
386                                         IWL_EEPROM_ENH_TXP_FL_COMMON_TYPE)) ?
387                                         "Common " : (txp->channel) ?
388                                         "Channel" : "Common",
389                                  (txp->channel),
390                                  TXP_CHECK_AND_PRINT(VALID),
391                                  TXP_CHECK_AND_PRINT(BAND_52G),
392                                  TXP_CHECK_AND_PRINT(OFDM),
393                                  TXP_CHECK_AND_PRINT(40MHZ),
394                                  TXP_CHECK_AND_PRINT(HT_AP),
395                                  TXP_CHECK_AND_PRINT(RES1),
396                                  TXP_CHECK_AND_PRINT(RES2),
397                                  TXP_CHECK_AND_PRINT(COMMON_TYPE),
398                                  txp->flags);
399                 IWL_DEBUG_EEPROM(dev,
400                                  "\t\t chain_A: %d chain_B: %d chain_C: %d\n",
401                                  txp->chain_a_max, txp->chain_b_max,
402                                  txp->chain_c_max);
403                 IWL_DEBUG_EEPROM(dev,
404                                  "\t\t MIMO2: %d MIMO3: %d High 20_on_40: 0x%02x Low 20_on_40: 0x%02x\n",
405                                  txp->mimo2_max, txp->mimo3_max,
406                                  ((txp->delta_20_in_40 & 0xf0) >> 4),
407                                  (txp->delta_20_in_40 & 0x0f));
408
409                 max_txp_avg_halfdbm = iwl_get_max_txpwr_half_dbm(data, txp);
410
411                 iwl_eeprom_enh_txp_read_element(data, txp, n_channels,
412                                 DIV_ROUND_UP(max_txp_avg_halfdbm, 2));
413
414                 if (max_txp_avg_halfdbm > data->max_tx_pwr_half_dbm)
415                         data->max_tx_pwr_half_dbm = max_txp_avg_halfdbm;
416         }
417 }
418
419 static void iwl_init_band_reference(const struct iwl_cfg *cfg,
420                                     const u8 *eeprom, size_t eeprom_size,
421                                     int eeprom_band, int *eeprom_ch_count,
422                                     const struct iwl_eeprom_channel **ch_info,
423                                     const u8 **eeprom_ch_array)
424 {
425         u32 offset = cfg->eeprom_params->regulatory_bands[eeprom_band - 1];
426
427         offset |= INDIRECT_ADDRESS | INDIRECT_REGULATORY;
428
429         *ch_info = (void *)iwl_eeprom_query_addr(eeprom, eeprom_size, offset);
430
431         switch (eeprom_band) {
432         case 1:         /* 2.4GHz band */
433                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1);
434                 *eeprom_ch_array = iwl_eeprom_band_1;
435                 break;
436         case 2:         /* 4.9GHz band */
437                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2);
438                 *eeprom_ch_array = iwl_eeprom_band_2;
439                 break;
440         case 3:         /* 5.2GHz band */
441                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3);
442                 *eeprom_ch_array = iwl_eeprom_band_3;
443                 break;
444         case 4:         /* 5.5GHz band */
445                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4);
446                 *eeprom_ch_array = iwl_eeprom_band_4;
447                 break;
448         case 5:         /* 5.7GHz band */
449                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5);
450                 *eeprom_ch_array = iwl_eeprom_band_5;
451                 break;
452         case 6:         /* 2.4GHz ht40 channels */
453                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6);
454                 *eeprom_ch_array = iwl_eeprom_band_6;
455                 break;
456         case 7:         /* 5 GHz ht40 channels */
457                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7);
458                 *eeprom_ch_array = iwl_eeprom_band_7;
459                 break;
460         default:
461                 *eeprom_ch_count = 0;
462                 *eeprom_ch_array = NULL;
463                 WARN_ON(1);
464         }
465 }
466
467 #define CHECK_AND_PRINT(x) \
468         ((eeprom_ch->flags & EEPROM_CHANNEL_##x) ? # x " " : "")
469
470 static void iwl_mod_ht40_chan_info(struct device *dev,
471                                    struct iwl_nvm_data *data, int n_channels,
472                                    enum nl80211_band band, u16 channel,
473                                    const struct iwl_eeprom_channel *eeprom_ch,
474                                    u8 clear_ht40_extension_channel)
475 {
476         struct ieee80211_channel *chan = NULL;
477         int i;
478
479         for (i = 0; i < n_channels; i++) {
480                 if (data->channels[i].band != band)
481                         continue;
482                 if (data->channels[i].hw_value != channel)
483                         continue;
484                 chan = &data->channels[i];
485                 break;
486         }
487
488         if (!chan)
489                 return;
490
491         IWL_DEBUG_EEPROM(dev,
492                          "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
493                          channel,
494                          band == NL80211_BAND_5GHZ ? "5.2" : "2.4",
495                          CHECK_AND_PRINT(IBSS),
496                          CHECK_AND_PRINT(ACTIVE),
497                          CHECK_AND_PRINT(RADAR),
498                          CHECK_AND_PRINT(WIDE),
499                          CHECK_AND_PRINT(DFS),
500                          eeprom_ch->flags,
501                          eeprom_ch->max_power_avg,
502                          ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS) &&
503                           !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ? ""
504                                                                       : "not ");
505
506         if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
507                 chan->flags &= ~clear_ht40_extension_channel;
508 }
509
510 #define CHECK_AND_PRINT_I(x)    \
511         ((eeprom_ch_info[ch_idx].flags & EEPROM_CHANNEL_##x) ? # x " " : "")
512
513 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
514                                 struct iwl_nvm_data *data,
515                                 const u8 *eeprom, size_t eeprom_size)
516 {
517         int band, ch_idx;
518         const struct iwl_eeprom_channel *eeprom_ch_info;
519         const u8 *eeprom_ch_array;
520         int eeprom_ch_count;
521         int n_channels = 0;
522
523         /*
524          * Loop through the 5 EEPROM bands and add them to the parse list
525          */
526         for (band = 1; band <= 5; band++) {
527                 struct ieee80211_channel *channel;
528
529                 iwl_init_band_reference(cfg, eeprom, eeprom_size, band,
530                                         &eeprom_ch_count, &eeprom_ch_info,
531                                         &eeprom_ch_array);
532
533                 /* Loop through each band adding each of the channels */
534                 for (ch_idx = 0; ch_idx < eeprom_ch_count; ch_idx++) {
535                         const struct iwl_eeprom_channel *eeprom_ch;
536
537                         eeprom_ch = &eeprom_ch_info[ch_idx];
538
539                         if (!(eeprom_ch->flags & EEPROM_CHANNEL_VALID)) {
540                                 IWL_DEBUG_EEPROM(dev,
541                                                  "Ch. %d Flags %x [%sGHz] - No traffic\n",
542                                                  eeprom_ch_array[ch_idx],
543                                                  eeprom_ch_info[ch_idx].flags,
544                                                  (band != 1) ? "5.2" : "2.4");
545                                 continue;
546                         }
547
548                         channel = &data->channels[n_channels];
549                         n_channels++;
550
551                         channel->hw_value = eeprom_ch_array[ch_idx];
552                         channel->band = (band == 1) ? NL80211_BAND_2GHZ
553                                                     : NL80211_BAND_5GHZ;
554                         channel->center_freq =
555                                 ieee80211_channel_to_frequency(
556                                         channel->hw_value, channel->band);
557
558                         /* set no-HT40, will enable as appropriate later */
559                         channel->flags = IEEE80211_CHAN_NO_HT40;
560
561                         if (!(eeprom_ch->flags & EEPROM_CHANNEL_IBSS))
562                                 channel->flags |= IEEE80211_CHAN_NO_IR;
563
564                         if (!(eeprom_ch->flags & EEPROM_CHANNEL_ACTIVE))
565                                 channel->flags |= IEEE80211_CHAN_NO_IR;
566
567                         if (eeprom_ch->flags & EEPROM_CHANNEL_RADAR)
568                                 channel->flags |= IEEE80211_CHAN_RADAR;
569
570                         /* Initialize regulatory-based run-time data */
571                         channel->max_power =
572                                 eeprom_ch_info[ch_idx].max_power_avg;
573                         IWL_DEBUG_EEPROM(dev,
574                                          "Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
575                                          channel->hw_value,
576                                          (band != 1) ? "5.2" : "2.4",
577                                          CHECK_AND_PRINT_I(VALID),
578                                          CHECK_AND_PRINT_I(IBSS),
579                                          CHECK_AND_PRINT_I(ACTIVE),
580                                          CHECK_AND_PRINT_I(RADAR),
581                                          CHECK_AND_PRINT_I(WIDE),
582                                          CHECK_AND_PRINT_I(DFS),
583                                          eeprom_ch_info[ch_idx].flags,
584                                          eeprom_ch_info[ch_idx].max_power_avg,
585                                          ((eeprom_ch_info[ch_idx].flags &
586                                                         EEPROM_CHANNEL_IBSS) &&
587                                           !(eeprom_ch_info[ch_idx].flags &
588                                                         EEPROM_CHANNEL_RADAR))
589                                                 ? "" : "not ");
590                 }
591         }
592
593         if (cfg->eeprom_params->enhanced_txpower) {
594                 /*
595                  * for newer device (6000 series and up)
596                  * EEPROM contain enhanced tx power information
597                  * driver need to process addition information
598                  * to determine the max channel tx power limits
599                  */
600                 iwl_eeprom_enhanced_txpower(dev, data, eeprom, eeprom_size,
601                                             n_channels);
602         } else {
603                 /* All others use data from channel map */
604                 int i;
605
606                 data->max_tx_pwr_half_dbm = -128;
607
608                 for (i = 0; i < n_channels; i++)
609                         data->max_tx_pwr_half_dbm =
610                                 max_t(s8, data->max_tx_pwr_half_dbm,
611                                       data->channels[i].max_power * 2);
612         }
613
614         /* Check if we do have HT40 channels */
615         if (cfg->eeprom_params->regulatory_bands[5] ==
616                                 EEPROM_REGULATORY_BAND_NO_HT40 &&
617             cfg->eeprom_params->regulatory_bands[6] ==
618                                 EEPROM_REGULATORY_BAND_NO_HT40)
619                 return n_channels;
620
621         /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
622         for (band = 6; band <= 7; band++) {
623                 enum nl80211_band ieeeband;
624
625                 iwl_init_band_reference(cfg, eeprom, eeprom_size, band,
626                                         &eeprom_ch_count, &eeprom_ch_info,
627                                         &eeprom_ch_array);
628
629                 /* EEPROM band 6 is 2.4, band 7 is 5 GHz */
630                 ieeeband = (band == 6) ? NL80211_BAND_2GHZ
631                                        : NL80211_BAND_5GHZ;
632
633                 /* Loop through each band adding each of the channels */
634                 for (ch_idx = 0; ch_idx < eeprom_ch_count; ch_idx++) {
635                         /* Set up driver's info for lower half */
636                         iwl_mod_ht40_chan_info(dev, data, n_channels, ieeeband,
637                                                eeprom_ch_array[ch_idx],
638                                                &eeprom_ch_info[ch_idx],
639                                                IEEE80211_CHAN_NO_HT40PLUS);
640
641                         /* Set up driver's info for upper half */
642                         iwl_mod_ht40_chan_info(dev, data, n_channels, ieeeband,
643                                                eeprom_ch_array[ch_idx] + 4,
644                                                &eeprom_ch_info[ch_idx],
645                                                IEEE80211_CHAN_NO_HT40MINUS);
646                 }
647         }
648
649         return n_channels;
650 }
651 /*
652  * EEPROM access time values:
653  *
654  * Driver initiates EEPROM read by writing byte address << 1 to CSR_EEPROM_REG.
655  * Driver then polls CSR_EEPROM_REG for CSR_EEPROM_REG_READ_VALID_MSK (0x1).
656  * When polling, wait 10 uSec between polling loops, up to a maximum 5000 uSec.
657  * Driver reads 16-bit value from bits 31-16 of CSR_EEPROM_REG.
658  */
659 #define IWL_EEPROM_ACCESS_TIMEOUT       5000 /* uSec */
660
661 /*
662  * The device's EEPROM semaphore prevents conflicts between driver and uCode
663  * when accessing the EEPROM; each access is a series of pulses to/from the
664  * EEPROM chip, not a single event, so even reads could conflict if they
665  * weren't arbitrated by the semaphore.
666  */
667 #define IWL_EEPROM_SEM_TIMEOUT          10   /* microseconds */
668 #define IWL_EEPROM_SEM_RETRY_LIMIT      1000 /* number of attempts (not time) */
669
670
671 static int iwl_eeprom_acquire_semaphore(struct iwl_trans *trans)
672 {
673         u16 count;
674         int ret;
675
676         for (count = 0; count < IWL_EEPROM_SEM_RETRY_LIMIT; count++) {
677                 /* Request semaphore */
678                 iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
679                             CSR_HW_IF_CONFIG_REG_EEPROM_OWN_SEM);
680
681                 /* See if we got it */
682                 ret = iwl_poll_bit(trans, CSR_HW_IF_CONFIG_REG,
683                                 CSR_HW_IF_CONFIG_REG_EEPROM_OWN_SEM,
684                                 CSR_HW_IF_CONFIG_REG_EEPROM_OWN_SEM,
685                                 IWL_EEPROM_SEM_TIMEOUT);
686                 if (ret >= 0) {
687                         IWL_DEBUG_EEPROM(trans->dev,
688                                          "Acquired semaphore after %d tries.\n",
689                                          count+1);
690                         return ret;
691                 }
692         }
693
694         return ret;
695 }
696
697 static void iwl_eeprom_release_semaphore(struct iwl_trans *trans)
698 {
699         iwl_clear_bit(trans, CSR_HW_IF_CONFIG_REG,
700                       CSR_HW_IF_CONFIG_REG_EEPROM_OWN_SEM);
701 }
702
703 static int iwl_eeprom_verify_signature(struct iwl_trans *trans, bool nvm_is_otp)
704 {
705         u32 gp = iwl_read32(trans, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK;
706
707         IWL_DEBUG_EEPROM(trans->dev, "EEPROM signature=0x%08x\n", gp);
708
709         switch (gp) {
710         case CSR_EEPROM_GP_BAD_SIG_EEP_GOOD_SIG_OTP:
711                 if (!nvm_is_otp) {
712                         IWL_ERR(trans, "EEPROM with bad signature: 0x%08x\n",
713                                 gp);
714                         return -ENOENT;
715                 }
716                 return 0;
717         case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
718         case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
719                 if (nvm_is_otp) {
720                         IWL_ERR(trans, "OTP with bad signature: 0x%08x\n", gp);
721                         return -ENOENT;
722                 }
723                 return 0;
724         case CSR_EEPROM_GP_BAD_SIGNATURE_BOTH_EEP_AND_OTP:
725         default:
726                 IWL_ERR(trans,
727                         "bad EEPROM/OTP signature, type=%s, EEPROM_GP=0x%08x\n",
728                         nvm_is_otp ? "OTP" : "EEPROM", gp);
729                 return -ENOENT;
730         }
731 }
732
733 /******************************************************************************
734  *
735  * OTP related functions
736  *
737 ******************************************************************************/
738
739 static void iwl_set_otp_access_absolute(struct iwl_trans *trans)
740 {
741         iwl_read32(trans, CSR_OTP_GP_REG);
742
743         iwl_clear_bit(trans, CSR_OTP_GP_REG,
744                       CSR_OTP_GP_REG_OTP_ACCESS_MODE);
745 }
746
747 static int iwl_nvm_is_otp(struct iwl_trans *trans)
748 {
749         u32 otpgp;
750
751         /* OTP only valid for CP/PP and after */
752         switch (trans->hw_rev & CSR_HW_REV_TYPE_MSK) {
753         case CSR_HW_REV_TYPE_NONE:
754                 IWL_ERR(trans, "Unknown hardware type\n");
755                 return -EIO;
756         case CSR_HW_REV_TYPE_5300:
757         case CSR_HW_REV_TYPE_5350:
758         case CSR_HW_REV_TYPE_5100:
759         case CSR_HW_REV_TYPE_5150:
760                 return 0;
761         default:
762                 otpgp = iwl_read32(trans, CSR_OTP_GP_REG);
763                 if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT)
764                         return 1;
765                 return 0;
766         }
767 }
768
769 static int iwl_init_otp_access(struct iwl_trans *trans)
770 {
771         int ret;
772
773         ret = iwl_finish_nic_init(trans);
774         if (ret)
775                 return ret;
776
777         iwl_set_bits_prph(trans, APMG_PS_CTRL_REG,
778                           APMG_PS_CTRL_VAL_RESET_REQ);
779         udelay(5);
780         iwl_clear_bits_prph(trans, APMG_PS_CTRL_REG,
781                             APMG_PS_CTRL_VAL_RESET_REQ);
782
783         /*
784          * CSR auto clock gate disable bit -
785          * this is only applicable for HW with OTP shadow RAM
786          */
787         if (trans->trans_cfg->base_params->shadow_ram_support)
788                 iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG,
789                             CSR_RESET_LINK_PWR_MGMT_DISABLED);
790
791         return 0;
792 }
793
794 static int iwl_read_otp_word(struct iwl_trans *trans, u16 addr,
795                              __le16 *eeprom_data)
796 {
797         int ret = 0;
798         u32 r;
799         u32 otpgp;
800
801         iwl_write32(trans, CSR_EEPROM_REG,
802                     CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
803         ret = iwl_poll_bit(trans, CSR_EEPROM_REG,
804                                  CSR_EEPROM_REG_READ_VALID_MSK,
805                                  CSR_EEPROM_REG_READ_VALID_MSK,
806                                  IWL_EEPROM_ACCESS_TIMEOUT);
807         if (ret < 0) {
808                 IWL_ERR(trans, "Time out reading OTP[%d]\n", addr);
809                 return ret;
810         }
811         r = iwl_read32(trans, CSR_EEPROM_REG);
812         /* check for ECC errors: */
813         otpgp = iwl_read32(trans, CSR_OTP_GP_REG);
814         if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) {
815                 /* stop in this case */
816                 /* set the uncorrectable OTP ECC bit for acknowledgment */
817                 iwl_set_bit(trans, CSR_OTP_GP_REG,
818                             CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
819                 IWL_ERR(trans, "Uncorrectable OTP ECC error, abort OTP read\n");
820                 return -EINVAL;
821         }
822         if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) {
823                 /* continue in this case */
824                 /* set the correctable OTP ECC bit for acknowledgment */
825                 iwl_set_bit(trans, CSR_OTP_GP_REG,
826                             CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK);
827                 IWL_ERR(trans, "Correctable OTP ECC error, continue read\n");
828         }
829         *eeprom_data = cpu_to_le16(r >> 16);
830         return 0;
831 }
832
833 /*
834  * iwl_is_otp_empty: check for empty OTP
835  */
836 static bool iwl_is_otp_empty(struct iwl_trans *trans)
837 {
838         u16 next_link_addr = 0;
839         __le16 link_value;
840         bool is_empty = false;
841
842         /* locate the beginning of OTP link list */
843         if (!iwl_read_otp_word(trans, next_link_addr, &link_value)) {
844                 if (!link_value) {
845                         IWL_ERR(trans, "OTP is empty\n");
846                         is_empty = true;
847                 }
848         } else {
849                 IWL_ERR(trans, "Unable to read first block of OTP list.\n");
850                 is_empty = true;
851         }
852
853         return is_empty;
854 }
855
856
857 /*
858  * iwl_find_otp_image: find EEPROM image in OTP
859  *   finding the OTP block that contains the EEPROM image.
860  *   the last valid block on the link list (the block _before_ the last block)
861  *   is the block we should read and used to configure the device.
862  *   If all the available OTP blocks are full, the last block will be the block
863  *   we should read and used to configure the device.
864  *   only perform this operation if shadow RAM is disabled
865  */
866 static int iwl_find_otp_image(struct iwl_trans *trans,
867                                         u16 *validblockaddr)
868 {
869         u16 next_link_addr = 0, valid_addr;
870         __le16 link_value = 0;
871         int usedblocks = 0;
872
873         /* set addressing mode to absolute to traverse the link list */
874         iwl_set_otp_access_absolute(trans);
875
876         /* checking for empty OTP or error */
877         if (iwl_is_otp_empty(trans))
878                 return -EINVAL;
879
880         /*
881          * start traverse link list
882          * until reach the max number of OTP blocks
883          * different devices have different number of OTP blocks
884          */
885         do {
886                 /* save current valid block address
887                  * check for more block on the link list
888                  */
889                 valid_addr = next_link_addr;
890                 next_link_addr = le16_to_cpu(link_value) * sizeof(u16);
891                 IWL_DEBUG_EEPROM(trans->dev, "OTP blocks %d addr 0x%x\n",
892                                  usedblocks, next_link_addr);
893                 if (iwl_read_otp_word(trans, next_link_addr, &link_value))
894                         return -EINVAL;
895                 if (!link_value) {
896                         /*
897                          * reach the end of link list, return success and
898                          * set address point to the starting address
899                          * of the image
900                          */
901                         *validblockaddr = valid_addr;
902                         /* skip first 2 bytes (link list pointer) */
903                         *validblockaddr += 2;
904                         return 0;
905                 }
906                 /* more in the link list, continue */
907                 usedblocks++;
908         } while (usedblocks <= trans->trans_cfg->base_params->max_ll_items);
909
910         /* OTP has no valid blocks */
911         IWL_DEBUG_EEPROM(trans->dev, "OTP has no valid blocks\n");
912         return -EINVAL;
913 }
914
915 /*
916  * iwl_read_eeprom - read EEPROM contents
917  *
918  * Load the EEPROM contents from adapter and return it
919  * and its size.
920  *
921  * NOTE:  This routine uses the non-debug IO access functions.
922  */
923 int iwl_read_eeprom(struct iwl_trans *trans, u8 **eeprom, size_t *eeprom_size)
924 {
925         __le16 *e;
926         u32 gp = iwl_read32(trans, CSR_EEPROM_GP);
927         int sz;
928         int ret;
929         u16 addr;
930         u16 validblockaddr = 0;
931         u16 cache_addr = 0;
932         int nvm_is_otp;
933
934         if (!eeprom || !eeprom_size)
935                 return -EINVAL;
936
937         nvm_is_otp = iwl_nvm_is_otp(trans);
938         if (nvm_is_otp < 0)
939                 return nvm_is_otp;
940
941         sz = trans->trans_cfg->base_params->eeprom_size;
942         IWL_DEBUG_EEPROM(trans->dev, "NVM size = %d\n", sz);
943
944         e = kmalloc(sz, GFP_KERNEL);
945         if (!e)
946                 return -ENOMEM;
947
948         ret = iwl_eeprom_verify_signature(trans, nvm_is_otp);
949         if (ret < 0) {
950                 IWL_ERR(trans, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
951                 goto err_free;
952         }
953
954         /* Make sure driver (instead of uCode) is allowed to read EEPROM */
955         ret = iwl_eeprom_acquire_semaphore(trans);
956         if (ret < 0) {
957                 IWL_ERR(trans, "Failed to acquire EEPROM semaphore.\n");
958                 goto err_free;
959         }
960
961         if (nvm_is_otp) {
962                 ret = iwl_init_otp_access(trans);
963                 if (ret) {
964                         IWL_ERR(trans, "Failed to initialize OTP access.\n");
965                         goto err_unlock;
966                 }
967
968                 iwl_write32(trans, CSR_EEPROM_GP,
969                             iwl_read32(trans, CSR_EEPROM_GP) &
970                             ~CSR_EEPROM_GP_IF_OWNER_MSK);
971
972                 iwl_set_bit(trans, CSR_OTP_GP_REG,
973                             CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK |
974                             CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
975                 /* traversing the linked list if no shadow ram supported */
976                 if (!trans->trans_cfg->base_params->shadow_ram_support) {
977                         ret = iwl_find_otp_image(trans, &validblockaddr);
978                         if (ret)
979                                 goto err_unlock;
980                 }
981                 for (addr = validblockaddr; addr < validblockaddr + sz;
982                      addr += sizeof(u16)) {
983                         __le16 eeprom_data;
984
985                         ret = iwl_read_otp_word(trans, addr, &eeprom_data);
986                         if (ret)
987                                 goto err_unlock;
988                         e[cache_addr / 2] = eeprom_data;
989                         cache_addr += sizeof(u16);
990                 }
991         } else {
992                 /* eeprom is an array of 16bit values */
993                 for (addr = 0; addr < sz; addr += sizeof(u16)) {
994                         u32 r;
995
996                         iwl_write32(trans, CSR_EEPROM_REG,
997                                     CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
998
999                         ret = iwl_poll_bit(trans, CSR_EEPROM_REG,
1000                                            CSR_EEPROM_REG_READ_VALID_MSK,
1001                                            CSR_EEPROM_REG_READ_VALID_MSK,
1002                                            IWL_EEPROM_ACCESS_TIMEOUT);
1003                         if (ret < 0) {
1004                                 IWL_ERR(trans,
1005                                         "Time out reading EEPROM[%d]\n", addr);
1006                                 goto err_unlock;
1007                         }
1008                         r = iwl_read32(trans, CSR_EEPROM_REG);
1009                         e[addr / 2] = cpu_to_le16(r >> 16);
1010                 }
1011         }
1012
1013         IWL_DEBUG_EEPROM(trans->dev, "NVM Type: %s\n",
1014                          nvm_is_otp ? "OTP" : "EEPROM");
1015
1016         iwl_eeprom_release_semaphore(trans);
1017
1018         *eeprom_size = sz;
1019         *eeprom = (u8 *)e;
1020         return 0;
1021
1022  err_unlock:
1023         iwl_eeprom_release_semaphore(trans);
1024  err_free:
1025         kfree(e);
1026
1027         return ret;
1028 }
1029
1030 static void iwl_init_sbands(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1031                             struct iwl_nvm_data *data,
1032                             const u8 *eeprom, size_t eeprom_size)
1033 {
1034         struct device *dev = trans->dev;
1035         int n_channels = iwl_init_channel_map(dev, cfg, data,
1036                                               eeprom, eeprom_size);
1037         int n_used = 0;
1038         struct ieee80211_supported_band *sband;
1039
1040         sband = &data->bands[NL80211_BAND_2GHZ];
1041         sband->band = NL80211_BAND_2GHZ;
1042         sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
1043         sband->n_bitrates = N_RATES_24;
1044         n_used += iwl_init_sband_channels(data, sband, n_channels,
1045                                           NL80211_BAND_2GHZ);
1046         iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1047                              data->valid_tx_ant, data->valid_rx_ant);
1048
1049         sband = &data->bands[NL80211_BAND_5GHZ];
1050         sband->band = NL80211_BAND_5GHZ;
1051         sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1052         sband->n_bitrates = N_RATES_52;
1053         n_used += iwl_init_sband_channels(data, sband, n_channels,
1054                                           NL80211_BAND_5GHZ);
1055         iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1056                              data->valid_tx_ant, data->valid_rx_ant);
1057
1058         if (n_channels != n_used)
1059                 IWL_ERR_DEV(dev, "EEPROM: used only %d of %d channels\n",
1060                             n_used, n_channels);
1061 }
1062
1063 /* EEPROM data functions */
1064 struct iwl_nvm_data *
1065 iwl_parse_eeprom_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1066                       const u8 *eeprom, size_t eeprom_size)
1067 {
1068         struct iwl_nvm_data *data;
1069         struct device *dev = trans->dev;
1070         const void *tmp;
1071         u16 radio_cfg, sku;
1072
1073         if (WARN_ON(!cfg || !cfg->eeprom_params))
1074                 return NULL;
1075
1076         data = kzalloc(struct_size(data, channels, IWL_NUM_CHANNELS),
1077                        GFP_KERNEL);
1078         if (!data)
1079                 return NULL;
1080
1081         /* get MAC address(es) */
1082         tmp = iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_MAC_ADDRESS);
1083         if (!tmp)
1084                 goto err_free;
1085         memcpy(data->hw_addr, tmp, ETH_ALEN);
1086         data->n_hw_addrs = iwl_eeprom_query16(eeprom, eeprom_size,
1087                                               EEPROM_NUM_MAC_ADDRESS);
1088
1089         if (iwl_eeprom_read_calib(eeprom, eeprom_size, data))
1090                 goto err_free;
1091
1092         tmp = iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_XTAL);
1093         if (!tmp)
1094                 goto err_free;
1095         memcpy(data->xtal_calib, tmp, sizeof(data->xtal_calib));
1096
1097         tmp = iwl_eeprom_query_addr(eeprom, eeprom_size,
1098                                     EEPROM_RAW_TEMPERATURE);
1099         if (!tmp)
1100                 goto err_free;
1101         data->raw_temperature = *(__le16 *)tmp;
1102
1103         tmp = iwl_eeprom_query_addr(eeprom, eeprom_size,
1104                                     EEPROM_KELVIN_TEMPERATURE);
1105         if (!tmp)
1106                 goto err_free;
1107         data->kelvin_temperature = *(__le16 *)tmp;
1108         data->kelvin_voltage = *((__le16 *)tmp + 1);
1109
1110         radio_cfg =
1111                 iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_RADIO_CONFIG);
1112         data->radio_cfg_dash = EEPROM_RF_CFG_DASH_MSK(radio_cfg);
1113         data->radio_cfg_pnum = EEPROM_RF_CFG_PNUM_MSK(radio_cfg);
1114         data->radio_cfg_step = EEPROM_RF_CFG_STEP_MSK(radio_cfg);
1115         data->radio_cfg_type = EEPROM_RF_CFG_TYPE_MSK(radio_cfg);
1116         data->valid_rx_ant = EEPROM_RF_CFG_RX_ANT_MSK(radio_cfg);
1117         data->valid_tx_ant = EEPROM_RF_CFG_TX_ANT_MSK(radio_cfg);
1118
1119         sku = iwl_eeprom_query16(eeprom, eeprom_size,
1120                                  EEPROM_SKU_CAP);
1121         data->sku_cap_11n_enable = sku & EEPROM_SKU_CAP_11N_ENABLE;
1122         data->sku_cap_amt_enable = sku & EEPROM_SKU_CAP_AMT_ENABLE;
1123         data->sku_cap_band_24ghz_enable = sku & EEPROM_SKU_CAP_BAND_24GHZ;
1124         data->sku_cap_band_52ghz_enable = sku & EEPROM_SKU_CAP_BAND_52GHZ;
1125         data->sku_cap_ipan_enable = sku & EEPROM_SKU_CAP_IPAN_ENABLE;
1126         if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1127                 data->sku_cap_11n_enable = false;
1128
1129         data->nvm_version = iwl_eeprom_query16(eeprom, eeprom_size,
1130                                                EEPROM_VERSION);
1131
1132         /* check overrides (some devices have wrong EEPROM) */
1133         if (cfg->valid_tx_ant)
1134                 data->valid_tx_ant = cfg->valid_tx_ant;
1135         if (cfg->valid_rx_ant)
1136                 data->valid_rx_ant = cfg->valid_rx_ant;
1137
1138         if (!data->valid_tx_ant || !data->valid_rx_ant) {
1139                 IWL_ERR_DEV(dev, "invalid antennas (0x%x, 0x%x)\n",
1140                             data->valid_tx_ant, data->valid_rx_ant);
1141                 goto err_free;
1142         }
1143
1144         iwl_init_sbands(trans, cfg, data, eeprom, eeprom_size);
1145
1146         return data;
1147  err_free:
1148         kfree(data);
1149         return NULL;
1150 }
This page took 0.101983 seconds and 4 git commands to generate.