]> Git Repo - linux.git/blob - drivers/net/wireless/intel/iwlwifi/dvm/calib.c
Linux 6.14-rc3
[linux.git] / drivers / net / wireless / intel / iwlwifi / dvm / calib.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2005-2014 Intel Corporation
4  */
5 #include <linux/slab.h>
6 #include <net/mac80211.h>
7
8 #include "iwl-trans.h"
9
10 #include "dev.h"
11 #include "calib.h"
12 #include "agn.h"
13
14 /*****************************************************************************
15  * INIT calibrations framework
16  *****************************************************************************/
17
18 /* Opaque calibration results */
19 struct iwl_calib_result {
20         struct list_head list;
21         size_t cmd_len;
22         struct iwl_calib_cmd cmd;
23 };
24
25 struct statistics_general_data {
26         u32 beacon_silence_rssi_a;
27         u32 beacon_silence_rssi_b;
28         u32 beacon_silence_rssi_c;
29         u32 beacon_energy_a;
30         u32 beacon_energy_b;
31         u32 beacon_energy_c;
32 };
33
34 int iwl_send_calib_results(struct iwl_priv *priv)
35 {
36         struct iwl_host_cmd hcmd = {
37                 .id = REPLY_PHY_CALIBRATION_CMD,
38         };
39         struct iwl_calib_result *res;
40
41         list_for_each_entry(res, &priv->calib_results, list) {
42                 int ret;
43
44                 hcmd.len[0] = res->cmd_len;
45                 hcmd.data[0] = &res->cmd;
46                 hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
47                 ret = iwl_dvm_send_cmd(priv, &hcmd);
48                 if (ret) {
49                         IWL_ERR(priv, "Error %d on calib cmd %d\n",
50                                 ret, res->cmd.hdr.op_code);
51                         return ret;
52                 }
53         }
54
55         return 0;
56 }
57
58 int iwl_calib_set(struct iwl_priv *priv,
59                   const struct iwl_calib_cmd *cmd, size_t len)
60 {
61         struct iwl_calib_result *res, *tmp;
62
63         if (check_sub_overflow(len, sizeof(*cmd), &len))
64                 return -ENOMEM;
65
66         res = kmalloc(struct_size(res, cmd.data, len), GFP_ATOMIC);
67         if (!res)
68                 return -ENOMEM;
69         res->cmd = *cmd;
70         memcpy(res->cmd.data, cmd->data, len);
71         res->cmd_len = struct_size(cmd, data, len);
72
73         list_for_each_entry(tmp, &priv->calib_results, list) {
74                 if (tmp->cmd.hdr.op_code == res->cmd.hdr.op_code) {
75                         list_replace(&tmp->list, &res->list);
76                         kfree(tmp);
77                         return 0;
78                 }
79         }
80
81         /* wasn't in list already */
82         list_add_tail(&res->list, &priv->calib_results);
83
84         return 0;
85 }
86
87 void iwl_calib_free_results(struct iwl_priv *priv)
88 {
89         struct iwl_calib_result *res, *tmp;
90
91         list_for_each_entry_safe(res, tmp, &priv->calib_results, list) {
92                 list_del(&res->list);
93                 kfree(res);
94         }
95 }
96
97 /*****************************************************************************
98  * RUNTIME calibrations framework
99  *****************************************************************************/
100
101 /* "false alarms" are signals that our DSP tries to lock onto,
102  *   but then determines that they are either noise, or transmissions
103  *   from a distant wireless network (also "noise", really) that get
104  *   "stepped on" by stronger transmissions within our own network.
105  * This algorithm attempts to set a sensitivity level that is high
106  *   enough to receive all of our own network traffic, but not so
107  *   high that our DSP gets too busy trying to lock onto non-network
108  *   activity/noise. */
109 static int iwl_sens_energy_cck(struct iwl_priv *priv,
110                                    u32 norm_fa,
111                                    u32 rx_enable_time,
112                                    struct statistics_general_data *rx_info)
113 {
114         u32 max_nrg_cck = 0;
115         int i = 0;
116         u8 max_silence_rssi = 0;
117         u32 silence_ref = 0;
118         u8 silence_rssi_a = 0;
119         u8 silence_rssi_b = 0;
120         u8 silence_rssi_c = 0;
121         u32 val;
122
123         /* "false_alarms" values below are cross-multiplications to assess the
124          *   numbers of false alarms within the measured period of actual Rx
125          *   (Rx is off when we're txing), vs the min/max expected false alarms
126          *   (some should be expected if rx is sensitive enough) in a
127          *   hypothetical listening period of 200 time units (TU), 204.8 msec:
128          *
129          * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
130          *
131          * */
132         u32 false_alarms = norm_fa * 200 * 1024;
133         u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
134         u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
135         struct iwl_sensitivity_data *data = NULL;
136         const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
137
138         data = &(priv->sensitivity_data);
139
140         data->nrg_auto_corr_silence_diff = 0;
141
142         /* Find max silence rssi among all 3 receivers.
143          * This is background noise, which may include transmissions from other
144          *    networks, measured during silence before our network's beacon */
145         silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
146                             ALL_BAND_FILTER) >> 8);
147         silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
148                             ALL_BAND_FILTER) >> 8);
149         silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
150                             ALL_BAND_FILTER) >> 8);
151
152         val = max(silence_rssi_b, silence_rssi_c);
153         max_silence_rssi = max(silence_rssi_a, (u8) val);
154
155         /* Store silence rssi in 20-beacon history table */
156         data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
157         data->nrg_silence_idx++;
158         if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
159                 data->nrg_silence_idx = 0;
160
161         /* Find max silence rssi across 20 beacon history */
162         for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
163                 val = data->nrg_silence_rssi[i];
164                 silence_ref = max(silence_ref, val);
165         }
166         IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
167                         silence_rssi_a, silence_rssi_b, silence_rssi_c,
168                         silence_ref);
169
170         /* Find max rx energy (min value!) among all 3 receivers,
171          *   measured during beacon frame.
172          * Save it in 10-beacon history table. */
173         i = data->nrg_energy_idx;
174         val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
175         data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
176
177         data->nrg_energy_idx++;
178         if (data->nrg_energy_idx >= 10)
179                 data->nrg_energy_idx = 0;
180
181         /* Find min rx energy (max value) across 10 beacon history.
182          * This is the minimum signal level that we want to receive well.
183          * Add backoff (margin so we don't miss slightly lower energy frames).
184          * This establishes an upper bound (min value) for energy threshold. */
185         max_nrg_cck = data->nrg_value[0];
186         for (i = 1; i < 10; i++)
187                 max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
188         max_nrg_cck += 6;
189
190         IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
191                         rx_info->beacon_energy_a, rx_info->beacon_energy_b,
192                         rx_info->beacon_energy_c, max_nrg_cck - 6);
193
194         /* Count number of consecutive beacons with fewer-than-desired
195          *   false alarms. */
196         if (false_alarms < min_false_alarms)
197                 data->num_in_cck_no_fa++;
198         else
199                 data->num_in_cck_no_fa = 0;
200         IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
201                         data->num_in_cck_no_fa);
202
203         /* If we got too many false alarms this time, reduce sensitivity */
204         if ((false_alarms > max_false_alarms) &&
205                 (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
206                 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
207                      false_alarms, max_false_alarms);
208                 IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
209                 data->nrg_curr_state = IWL_FA_TOO_MANY;
210                 /* Store for "fewer than desired" on later beacon */
211                 data->nrg_silence_ref = silence_ref;
212
213                 /* increase energy threshold (reduce nrg value)
214                  *   to decrease sensitivity */
215                 data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
216         /* Else if we got fewer than desired, increase sensitivity */
217         } else if (false_alarms < min_false_alarms) {
218                 data->nrg_curr_state = IWL_FA_TOO_FEW;
219
220                 /* Compare silence level with silence level for most recent
221                  *   healthy number or too many false alarms */
222                 data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
223                                                    (s32)silence_ref;
224
225                 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
226                          false_alarms, min_false_alarms,
227                          data->nrg_auto_corr_silence_diff);
228
229                 /* Increase value to increase sensitivity, but only if:
230                  * 1a) previous beacon did *not* have *too many* false alarms
231                  * 1b) AND there's a significant difference in Rx levels
232                  *      from a previous beacon with too many, or healthy # FAs
233                  * OR 2) We've seen a lot of beacons (100) with too few
234                  *       false alarms */
235                 if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
236                         ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
237                         (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
238
239                         IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
240                         /* Increase nrg value to increase sensitivity */
241                         val = data->nrg_th_cck + NRG_STEP_CCK;
242                         data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
243                 } else {
244                         IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
245                 }
246
247         /* Else we got a healthy number of false alarms, keep status quo */
248         } else {
249                 IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
250                 data->nrg_curr_state = IWL_FA_GOOD_RANGE;
251
252                 /* Store for use in "fewer than desired" with later beacon */
253                 data->nrg_silence_ref = silence_ref;
254
255                 /* If previous beacon had too many false alarms,
256                  *   give it some extra margin by reducing sensitivity again
257                  *   (but don't go below measured energy of desired Rx) */
258                 if (data->nrg_prev_state == IWL_FA_TOO_MANY) {
259                         IWL_DEBUG_CALIB(priv, "... increasing margin\n");
260                         if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
261                                 data->nrg_th_cck -= NRG_MARGIN;
262                         else
263                                 data->nrg_th_cck = max_nrg_cck;
264                 }
265         }
266
267         /* Make sure the energy threshold does not go above the measured
268          * energy of the desired Rx signals (reduced by backoff margin),
269          * or else we might start missing Rx frames.
270          * Lower value is higher energy, so we use max()!
271          */
272         data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
273         IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
274
275         data->nrg_prev_state = data->nrg_curr_state;
276
277         /* Auto-correlation CCK algorithm */
278         if (false_alarms > min_false_alarms) {
279
280                 /* increase auto_corr values to decrease sensitivity
281                  * so the DSP won't be disturbed by the noise
282                  */
283                 if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
284                         data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
285                 else {
286                         val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
287                         data->auto_corr_cck =
288                                 min((u32)ranges->auto_corr_max_cck, val);
289                 }
290                 val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
291                 data->auto_corr_cck_mrc =
292                         min((u32)ranges->auto_corr_max_cck_mrc, val);
293         } else if ((false_alarms < min_false_alarms) &&
294            ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
295            (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
296
297                 /* Decrease auto_corr values to increase sensitivity */
298                 val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
299                 data->auto_corr_cck =
300                         max((u32)ranges->auto_corr_min_cck, val);
301                 val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
302                 data->auto_corr_cck_mrc =
303                         max((u32)ranges->auto_corr_min_cck_mrc, val);
304         }
305
306         return 0;
307 }
308
309
310 static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
311                                        u32 norm_fa,
312                                        u32 rx_enable_time)
313 {
314         u32 val;
315         u32 false_alarms = norm_fa * 200 * 1024;
316         u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
317         u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
318         struct iwl_sensitivity_data *data = NULL;
319         const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
320
321         data = &(priv->sensitivity_data);
322
323         /* If we got too many false alarms this time, reduce sensitivity */
324         if (false_alarms > max_false_alarms) {
325
326                 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
327                              false_alarms, max_false_alarms);
328
329                 val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
330                 data->auto_corr_ofdm =
331                         min((u32)ranges->auto_corr_max_ofdm, val);
332
333                 val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
334                 data->auto_corr_ofdm_mrc =
335                         min((u32)ranges->auto_corr_max_ofdm_mrc, val);
336
337                 val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
338                 data->auto_corr_ofdm_x1 =
339                         min((u32)ranges->auto_corr_max_ofdm_x1, val);
340
341                 val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
342                 data->auto_corr_ofdm_mrc_x1 =
343                         min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
344         }
345
346         /* Else if we got fewer than desired, increase sensitivity */
347         else if (false_alarms < min_false_alarms) {
348
349                 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
350                              false_alarms, min_false_alarms);
351
352                 val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
353                 data->auto_corr_ofdm =
354                         max((u32)ranges->auto_corr_min_ofdm, val);
355
356                 val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
357                 data->auto_corr_ofdm_mrc =
358                         max((u32)ranges->auto_corr_min_ofdm_mrc, val);
359
360                 val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
361                 data->auto_corr_ofdm_x1 =
362                         max((u32)ranges->auto_corr_min_ofdm_x1, val);
363
364                 val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
365                 data->auto_corr_ofdm_mrc_x1 =
366                         max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
367         } else {
368                 IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
369                          min_false_alarms, false_alarms, max_false_alarms);
370         }
371         return 0;
372 }
373
374 static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
375                                 struct iwl_sensitivity_data *data,
376                                 __le16 *tbl)
377 {
378         tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
379                                 cpu_to_le16((u16)data->auto_corr_ofdm);
380         tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
381                                 cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
382         tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
383                                 cpu_to_le16((u16)data->auto_corr_ofdm_x1);
384         tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
385                                 cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
386
387         tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
388                                 cpu_to_le16((u16)data->auto_corr_cck);
389         tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
390                                 cpu_to_le16((u16)data->auto_corr_cck_mrc);
391
392         tbl[HD_MIN_ENERGY_CCK_DET_INDEX] =
393                                 cpu_to_le16((u16)data->nrg_th_cck);
394         tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] =
395                                 cpu_to_le16((u16)data->nrg_th_ofdm);
396
397         tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
398                                 cpu_to_le16(data->barker_corr_th_min);
399         tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
400                                 cpu_to_le16(data->barker_corr_th_min_mrc);
401         tbl[HD_OFDM_ENERGY_TH_IN_INDEX] =
402                                 cpu_to_le16(data->nrg_th_cca);
403
404         IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
405                         data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
406                         data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
407                         data->nrg_th_ofdm);
408
409         IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
410                         data->auto_corr_cck, data->auto_corr_cck_mrc,
411                         data->nrg_th_cck);
412 }
413
414 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
415 static int iwl_sensitivity_write(struct iwl_priv *priv)
416 {
417         struct iwl_sensitivity_cmd cmd;
418         struct iwl_sensitivity_data *data = NULL;
419         struct iwl_host_cmd cmd_out = {
420                 .id = SENSITIVITY_CMD,
421                 .len = { sizeof(struct iwl_sensitivity_cmd), },
422                 .flags = CMD_ASYNC,
423                 .data = { &cmd, },
424         };
425
426         data = &(priv->sensitivity_data);
427
428         memset(&cmd, 0, sizeof(cmd));
429
430         iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
431
432         /* Update uCode's "work" table, and copy it to DSP */
433         cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
434
435         /* Don't send command to uCode if nothing has changed */
436         if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
437                     sizeof(u16)*HD_TABLE_SIZE)) {
438                 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
439                 return 0;
440         }
441
442         /* Copy table for comparison next time */
443         memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
444                sizeof(u16)*HD_TABLE_SIZE);
445
446         return iwl_dvm_send_cmd(priv, &cmd_out);
447 }
448
449 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
450 static int iwl_enhance_sensitivity_write(struct iwl_priv *priv)
451 {
452         struct iwl_enhance_sensitivity_cmd cmd;
453         struct iwl_sensitivity_data *data = NULL;
454         struct iwl_host_cmd cmd_out = {
455                 .id = SENSITIVITY_CMD,
456                 .len = { sizeof(struct iwl_enhance_sensitivity_cmd), },
457                 .flags = CMD_ASYNC,
458                 .data = { &cmd, },
459         };
460
461         data = &(priv->sensitivity_data);
462
463         memset(&cmd, 0, sizeof(cmd));
464
465         iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]);
466
467         if (priv->lib->hd_v2) {
468                 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
469                         HD_INA_NON_SQUARE_DET_OFDM_DATA_V2;
470                 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
471                         HD_INA_NON_SQUARE_DET_CCK_DATA_V2;
472                 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
473                         HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2;
474                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
475                         HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
476                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
477                         HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
478                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
479                         HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2;
480                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
481                         HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2;
482                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
483                         HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
484                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
485                         HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
486                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
487                         HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2;
488                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
489                         HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2;
490         } else {
491                 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
492                         HD_INA_NON_SQUARE_DET_OFDM_DATA_V1;
493                 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
494                         HD_INA_NON_SQUARE_DET_CCK_DATA_V1;
495                 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
496                         HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1;
497                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
498                         HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
499                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
500                         HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
501                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
502                         HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1;
503                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
504                         HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1;
505                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
506                         HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
507                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
508                         HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
509                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
510                         HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1;
511                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
512                         HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1;
513         }
514
515         /* Update uCode's "work" table, and copy it to DSP */
516         cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
517
518         /* Don't send command to uCode if nothing has changed */
519         if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]),
520                     sizeof(u16)*HD_TABLE_SIZE) &&
521             !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX],
522                     &(priv->enhance_sensitivity_tbl[0]),
523                     sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) {
524                 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
525                 return 0;
526         }
527
528         /* Copy table for comparison next time */
529         memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]),
530                sizeof(u16)*HD_TABLE_SIZE);
531         memcpy(&(priv->enhance_sensitivity_tbl[0]),
532                &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]),
533                sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES);
534
535         return iwl_dvm_send_cmd(priv, &cmd_out);
536 }
537
538 void iwl_init_sensitivity(struct iwl_priv *priv)
539 {
540         int ret = 0;
541         int i;
542         struct iwl_sensitivity_data *data = NULL;
543         const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
544
545         if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
546                 return;
547
548         IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
549
550         /* Clear driver's sensitivity algo data */
551         data = &(priv->sensitivity_data);
552
553         if (ranges == NULL)
554                 return;
555
556         memset(data, 0, sizeof(struct iwl_sensitivity_data));
557
558         data->num_in_cck_no_fa = 0;
559         data->nrg_curr_state = IWL_FA_TOO_MANY;
560         data->nrg_prev_state = IWL_FA_TOO_MANY;
561         data->nrg_silence_ref = 0;
562         data->nrg_silence_idx = 0;
563         data->nrg_energy_idx = 0;
564
565         for (i = 0; i < 10; i++)
566                 data->nrg_value[i] = 0;
567
568         for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
569                 data->nrg_silence_rssi[i] = 0;
570
571         data->auto_corr_ofdm =  ranges->auto_corr_min_ofdm;
572         data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
573         data->auto_corr_ofdm_x1  = ranges->auto_corr_min_ofdm_x1;
574         data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
575         data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
576         data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
577         data->nrg_th_cck = ranges->nrg_th_cck;
578         data->nrg_th_ofdm = ranges->nrg_th_ofdm;
579         data->barker_corr_th_min = ranges->barker_corr_th_min;
580         data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
581         data->nrg_th_cca = ranges->nrg_th_cca;
582
583         data->last_bad_plcp_cnt_ofdm = 0;
584         data->last_fa_cnt_ofdm = 0;
585         data->last_bad_plcp_cnt_cck = 0;
586         data->last_fa_cnt_cck = 0;
587
588         if (priv->fw->enhance_sensitivity_table)
589                 ret |= iwl_enhance_sensitivity_write(priv);
590         else
591                 ret |= iwl_sensitivity_write(priv);
592         IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
593 }
594
595 void iwl_sensitivity_calibration(struct iwl_priv *priv)
596 {
597         u32 rx_enable_time;
598         u32 fa_cck;
599         u32 fa_ofdm;
600         u32 bad_plcp_cck;
601         u32 bad_plcp_ofdm;
602         u32 norm_fa_ofdm;
603         u32 norm_fa_cck;
604         struct iwl_sensitivity_data *data = NULL;
605         struct statistics_rx_non_phy *rx_info;
606         struct statistics_rx_phy *ofdm, *cck;
607         struct statistics_general_data statis;
608
609         if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
610                 return;
611
612         data = &(priv->sensitivity_data);
613
614         if (!iwl_is_any_associated(priv)) {
615                 IWL_DEBUG_CALIB(priv, "<< - not associated\n");
616                 return;
617         }
618
619         spin_lock_bh(&priv->statistics.lock);
620         rx_info = &priv->statistics.rx_non_phy;
621         ofdm = &priv->statistics.rx_ofdm;
622         cck = &priv->statistics.rx_cck;
623         if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
624                 IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
625                 spin_unlock_bh(&priv->statistics.lock);
626                 return;
627         }
628
629         /* Extract Statistics: */
630         rx_enable_time = le32_to_cpu(rx_info->channel_load);
631         fa_cck = le32_to_cpu(cck->false_alarm_cnt);
632         fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
633         bad_plcp_cck = le32_to_cpu(cck->plcp_err);
634         bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
635
636         statis.beacon_silence_rssi_a =
637                         le32_to_cpu(rx_info->beacon_silence_rssi_a);
638         statis.beacon_silence_rssi_b =
639                         le32_to_cpu(rx_info->beacon_silence_rssi_b);
640         statis.beacon_silence_rssi_c =
641                         le32_to_cpu(rx_info->beacon_silence_rssi_c);
642         statis.beacon_energy_a =
643                         le32_to_cpu(rx_info->beacon_energy_a);
644         statis.beacon_energy_b =
645                         le32_to_cpu(rx_info->beacon_energy_b);
646         statis.beacon_energy_c =
647                         le32_to_cpu(rx_info->beacon_energy_c);
648
649         spin_unlock_bh(&priv->statistics.lock);
650
651         IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
652
653         if (!rx_enable_time) {
654                 IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
655                 return;
656         }
657
658         /* These statistics increase monotonically, and do not reset
659          *   at each beacon.  Calculate difference from last value, or just
660          *   use the new statistics value if it has reset or wrapped around. */
661         if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
662                 data->last_bad_plcp_cnt_cck = bad_plcp_cck;
663         else {
664                 bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
665                 data->last_bad_plcp_cnt_cck += bad_plcp_cck;
666         }
667
668         if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
669                 data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
670         else {
671                 bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
672                 data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
673         }
674
675         if (data->last_fa_cnt_ofdm > fa_ofdm)
676                 data->last_fa_cnt_ofdm = fa_ofdm;
677         else {
678                 fa_ofdm -= data->last_fa_cnt_ofdm;
679                 data->last_fa_cnt_ofdm += fa_ofdm;
680         }
681
682         if (data->last_fa_cnt_cck > fa_cck)
683                 data->last_fa_cnt_cck = fa_cck;
684         else {
685                 fa_cck -= data->last_fa_cnt_cck;
686                 data->last_fa_cnt_cck += fa_cck;
687         }
688
689         /* Total aborted signal locks */
690         norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
691         norm_fa_cck = fa_cck + bad_plcp_cck;
692
693         IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck,
694                         bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
695
696         iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
697         iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
698         if (priv->fw->enhance_sensitivity_table)
699                 iwl_enhance_sensitivity_write(priv);
700         else
701                 iwl_sensitivity_write(priv);
702 }
703
704 static inline u8 find_first_chain(u8 mask)
705 {
706         if (mask & ANT_A)
707                 return CHAIN_A;
708         if (mask & ANT_B)
709                 return CHAIN_B;
710         return CHAIN_C;
711 }
712
713 /*
714  * Run disconnected antenna algorithm to find out which antennas are
715  * disconnected.
716  */
717 static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig,
718                                      struct iwl_chain_noise_data *data)
719 {
720         u32 active_chains = 0;
721         u32 max_average_sig;
722         u16 max_average_sig_antenna_i;
723         u8 num_tx_chains;
724         u8 first_chain;
725         u16 i = 0;
726
727         average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS;
728         average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS;
729         average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS;
730
731         if (average_sig[0] >= average_sig[1]) {
732                 max_average_sig = average_sig[0];
733                 max_average_sig_antenna_i = 0;
734                 active_chains = (1 << max_average_sig_antenna_i);
735         } else {
736                 max_average_sig = average_sig[1];
737                 max_average_sig_antenna_i = 1;
738                 active_chains = (1 << max_average_sig_antenna_i);
739         }
740
741         if (average_sig[2] >= max_average_sig) {
742                 max_average_sig = average_sig[2];
743                 max_average_sig_antenna_i = 2;
744                 active_chains = (1 << max_average_sig_antenna_i);
745         }
746
747         IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
748                      average_sig[0], average_sig[1], average_sig[2]);
749         IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
750                      max_average_sig, max_average_sig_antenna_i);
751
752         /* Compare signal strengths for all 3 receivers. */
753         for (i = 0; i < NUM_RX_CHAINS; i++) {
754                 if (i != max_average_sig_antenna_i) {
755                         s32 rssi_delta = (max_average_sig - average_sig[i]);
756
757                         /* If signal is very weak, compared with
758                          * strongest, mark it as disconnected. */
759                         if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
760                                 data->disconn_array[i] = 1;
761                         else
762                                 active_chains |= (1 << i);
763                         IWL_DEBUG_CALIB(priv, "i = %d  rssiDelta = %d  "
764                              "disconn_array[i] = %d\n",
765                              i, rssi_delta, data->disconn_array[i]);
766                 }
767         }
768
769         /*
770          * The above algorithm sometimes fails when the ucode
771          * reports 0 for all chains. It's not clear why that
772          * happens to start with, but it is then causing trouble
773          * because this can make us enable more chains than the
774          * hardware really has.
775          *
776          * To be safe, simply mask out any chains that we know
777          * are not on the device.
778          */
779         active_chains &= priv->nvm_data->valid_rx_ant;
780
781         num_tx_chains = 0;
782         for (i = 0; i < NUM_RX_CHAINS; i++) {
783                 /* loops on all the bits of
784                  * priv->hw_setting.valid_tx_ant */
785                 u8 ant_msk = (1 << i);
786                 if (!(priv->nvm_data->valid_tx_ant & ant_msk))
787                         continue;
788
789                 num_tx_chains++;
790                 if (data->disconn_array[i] == 0)
791                         /* there is a Tx antenna connected */
792                         break;
793                 if (num_tx_chains == priv->hw_params.tx_chains_num &&
794                     data->disconn_array[i]) {
795                         /*
796                          * If all chains are disconnected
797                          * connect the first valid tx chain
798                          */
799                         first_chain =
800                                 find_first_chain(priv->nvm_data->valid_tx_ant);
801                         data->disconn_array[first_chain] = 0;
802                         active_chains |= BIT(first_chain);
803                         IWL_DEBUG_CALIB(priv,
804                                         "All Tx chains are disconnected W/A - declare %d as connected\n",
805                                         first_chain);
806                         break;
807                 }
808         }
809
810         if (active_chains != priv->nvm_data->valid_rx_ant &&
811             active_chains != priv->chain_noise_data.active_chains)
812                 IWL_DEBUG_CALIB(priv,
813                                 "Detected that not all antennas are connected! "
814                                 "Connected: %#x, valid: %#x.\n",
815                                 active_chains,
816                                 priv->nvm_data->valid_rx_ant);
817
818         /* Save for use within RXON, TX, SCAN commands, etc. */
819         data->active_chains = active_chains;
820         IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
821                         active_chains);
822 }
823
824 static void iwlagn_gain_computation(struct iwl_priv *priv,
825                                     u32 average_noise[NUM_RX_CHAINS],
826                                     u8 default_chain)
827 {
828         int i;
829         s32 delta_g;
830         struct iwl_chain_noise_data *data = &priv->chain_noise_data;
831
832         /*
833          * Find Gain Code for the chains based on "default chain"
834          */
835         for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) {
836                 if ((data->disconn_array[i])) {
837                         data->delta_gain_code[i] = 0;
838                         continue;
839                 }
840
841                 delta_g = (priv->lib->chain_noise_scale *
842                         ((s32)average_noise[default_chain] -
843                         (s32)average_noise[i])) / 1500;
844
845                 /* bound gain by 2 bits value max, 3rd bit is sign */
846                 data->delta_gain_code[i] =
847                         min(abs(delta_g), CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
848
849                 if (delta_g < 0)
850                         /*
851                          * set negative sign ...
852                          * note to Intel developers:  This is uCode API format,
853                          *   not the format of any internal device registers.
854                          *   Do not change this format for e.g. 6050 or similar
855                          *   devices.  Change format only if more resolution
856                          *   (i.e. more than 2 bits magnitude) is needed.
857                          */
858                         data->delta_gain_code[i] |= (1 << 2);
859         }
860
861         IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d  ANT_C = %d\n",
862                         data->delta_gain_code[1], data->delta_gain_code[2]);
863
864         if (!data->radio_write) {
865                 struct iwl_calib_chain_noise_gain_cmd cmd;
866
867                 memset(&cmd, 0, sizeof(cmd));
868
869                 iwl_set_calib_hdr(&cmd.hdr,
870                         priv->phy_calib_chain_noise_gain_cmd);
871                 cmd.delta_gain_1 = data->delta_gain_code[1];
872                 cmd.delta_gain_2 = data->delta_gain_code[2];
873                 iwl_dvm_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD,
874                         CMD_ASYNC, sizeof(cmd), &cmd);
875
876                 data->radio_write = 1;
877                 data->state = IWL_CHAIN_NOISE_CALIBRATED;
878         }
879 }
880
881 /*
882  * Accumulate 16 beacons of signal and noise statistics for each of
883  *   3 receivers/antennas/rx-chains, then figure out:
884  * 1)  Which antennas are connected.
885  * 2)  Differential rx gain settings to balance the 3 receivers.
886  */
887 void iwl_chain_noise_calibration(struct iwl_priv *priv)
888 {
889         struct iwl_chain_noise_data *data = NULL;
890
891         u32 chain_noise_a;
892         u32 chain_noise_b;
893         u32 chain_noise_c;
894         u32 chain_sig_a;
895         u32 chain_sig_b;
896         u32 chain_sig_c;
897         u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
898         u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
899         u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
900         u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
901         u16 i = 0;
902         u16 rxon_chnum = INITIALIZATION_VALUE;
903         u16 stat_chnum = INITIALIZATION_VALUE;
904         u8 rxon_band24;
905         u8 stat_band24;
906         struct statistics_rx_non_phy *rx_info;
907
908         /*
909          * MULTI-FIXME:
910          * When we support multiple interfaces on different channels,
911          * this must be modified/fixed.
912          */
913         struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
914
915         if (priv->calib_disabled & IWL_CHAIN_NOISE_CALIB_DISABLED)
916                 return;
917
918         data = &(priv->chain_noise_data);
919
920         /*
921          * Accumulate just the first "chain_noise_num_beacons" after
922          * the first association, then we're done forever.
923          */
924         if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
925                 if (data->state == IWL_CHAIN_NOISE_ALIVE)
926                         IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
927                 return;
928         }
929
930         spin_lock_bh(&priv->statistics.lock);
931
932         rx_info = &priv->statistics.rx_non_phy;
933
934         if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
935                 IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
936                 spin_unlock_bh(&priv->statistics.lock);
937                 return;
938         }
939
940         rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
941         rxon_chnum = le16_to_cpu(ctx->staging.channel);
942         stat_band24 =
943                 !!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
944         stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16;
945
946         /* Make sure we accumulate data for just the associated channel
947          *   (even if scanning). */
948         if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
949                 IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
950                                 rxon_chnum, rxon_band24);
951                 spin_unlock_bh(&priv->statistics.lock);
952                 return;
953         }
954
955         /*
956          *  Accumulate beacon statistics values across
957          * "chain_noise_num_beacons"
958          */
959         chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
960                                 IN_BAND_FILTER;
961         chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
962                                 IN_BAND_FILTER;
963         chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
964                                 IN_BAND_FILTER;
965
966         chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
967         chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
968         chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
969
970         spin_unlock_bh(&priv->statistics.lock);
971
972         data->beacon_count++;
973
974         data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
975         data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
976         data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
977
978         data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
979         data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
980         data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
981
982         IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
983                         rxon_chnum, rxon_band24, data->beacon_count);
984         IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
985                         chain_sig_a, chain_sig_b, chain_sig_c);
986         IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
987                         chain_noise_a, chain_noise_b, chain_noise_c);
988
989         /* If this is the "chain_noise_num_beacons", determine:
990          * 1)  Disconnected antennas (using signal strengths)
991          * 2)  Differential gain (using silence noise) to balance receivers */
992         if (data->beacon_count != IWL_CAL_NUM_BEACONS)
993                 return;
994
995         /* Analyze signal for disconnected antenna */
996         if (priv->lib->bt_params &&
997             priv->lib->bt_params->advanced_bt_coexist) {
998                 /* Disable disconnected antenna algorithm for advanced
999                    bt coex, assuming valid antennas are connected */
1000                 data->active_chains = priv->nvm_data->valid_rx_ant;
1001                 for (i = 0; i < NUM_RX_CHAINS; i++)
1002                         if (!(data->active_chains & (1<<i)))
1003                                 data->disconn_array[i] = 1;
1004         } else
1005                 iwl_find_disconn_antenna(priv, average_sig, data);
1006
1007         /* Analyze noise for rx balance */
1008         average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS;
1009         average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS;
1010         average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS;
1011
1012         for (i = 0; i < NUM_RX_CHAINS; i++) {
1013                 if (!(data->disconn_array[i]) &&
1014                    (average_noise[i] <= min_average_noise)) {
1015                         /* This means that chain i is active and has
1016                          * lower noise values so far: */
1017                         min_average_noise = average_noise[i];
1018                         min_average_noise_antenna_i = i;
1019                 }
1020         }
1021
1022         IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
1023                         average_noise[0], average_noise[1],
1024                         average_noise[2]);
1025
1026         IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
1027                         min_average_noise, min_average_noise_antenna_i);
1028
1029         iwlagn_gain_computation(
1030                 priv, average_noise,
1031                 find_first_chain(priv->nvm_data->valid_rx_ant));
1032
1033         /* Some power changes may have been made during the calibration.
1034          * Update and commit the RXON
1035          */
1036         iwl_update_chain_flags(priv);
1037
1038         data->state = IWL_CHAIN_NOISE_DONE;
1039         iwl_power_update_mode(priv, false);
1040 }
1041
1042 void iwl_reset_run_time_calib(struct iwl_priv *priv)
1043 {
1044         int i;
1045         memset(&(priv->sensitivity_data), 0,
1046                sizeof(struct iwl_sensitivity_data));
1047         memset(&(priv->chain_noise_data), 0,
1048                sizeof(struct iwl_chain_noise_data));
1049         for (i = 0; i < NUM_RX_CHAINS; i++)
1050                 priv->chain_noise_data.delta_gain_code[i] =
1051                                 CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
1052
1053         /* Ask for statistics now, the uCode will send notification
1054          * periodically after association */
1055         iwl_send_statistics_request(priv, CMD_ASYNC, true);
1056 }
This page took 0.097346 seconds and 4 git commands to generate.