]> Git Repo - linux.git/blob - drivers/net/ethernet/sfc/efx.c
Linux 6.14-rc3
[linux.git] / drivers / net / ethernet / sfc / efx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7
8 #include <linux/filter.h>
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/delay.h>
14 #include <linux/notifier.h>
15 #include <linux/ip.h>
16 #include <linux/tcp.h>
17 #include <linux/in.h>
18 #include <linux/ethtool.h>
19 #include <linux/topology.h>
20 #include <linux/gfp.h>
21 #include <linux/interrupt.h>
22 #include "net_driver.h"
23 #include <net/gre.h>
24 #include <net/udp_tunnel.h>
25 #include <net/netdev_queues.h>
26 #include "efx.h"
27 #include "efx_common.h"
28 #include "efx_channels.h"
29 #include "ef100.h"
30 #include "rx_common.h"
31 #include "tx_common.h"
32 #include "nic.h"
33 #include "io.h"
34 #include "selftest.h"
35 #include "sriov.h"
36 #include "efx_devlink.h"
37
38 #include "mcdi_port_common.h"
39 #include "mcdi_pcol.h"
40 #include "workarounds.h"
41
42 /**************************************************************************
43  *
44  * Configurable values
45  *
46  *************************************************************************/
47
48 module_param_named(interrupt_mode, efx_interrupt_mode, uint, 0444);
49 MODULE_PARM_DESC(interrupt_mode,
50                  "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
51
52 module_param(rss_cpus, uint, 0444);
53 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
54
55 /*
56  * Use separate channels for TX and RX events
57  *
58  * Set this to 1 to use separate channels for TX and RX. It allows us
59  * to control interrupt affinity separately for TX and RX.
60  *
61  * This is only used in MSI-X interrupt mode
62  */
63 bool efx_separate_tx_channels;
64 module_param(efx_separate_tx_channels, bool, 0444);
65 MODULE_PARM_DESC(efx_separate_tx_channels,
66                  "Use separate channels for TX and RX");
67
68 /* Initial interrupt moderation settings.  They can be modified after
69  * module load with ethtool.
70  *
71  * The default for RX should strike a balance between increasing the
72  * round-trip latency and reducing overhead.
73  */
74 static unsigned int rx_irq_mod_usec = 60;
75
76 /* Initial interrupt moderation settings.  They can be modified after
77  * module load with ethtool.
78  *
79  * This default is chosen to ensure that a 10G link does not go idle
80  * while a TX queue is stopped after it has become full.  A queue is
81  * restarted when it drops below half full.  The time this takes (assuming
82  * worst case 3 descriptors per packet and 1024 descriptors) is
83  *   512 / 3 * 1.2 = 205 usec.
84  */
85 static unsigned int tx_irq_mod_usec = 150;
86
87 static bool phy_flash_cfg;
88 module_param(phy_flash_cfg, bool, 0644);
89 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
90
91 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
92                          NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
93                          NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
94                          NETIF_MSG_TX_ERR | NETIF_MSG_HW);
95 module_param(debug, uint, 0);
96 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
97
98 /**************************************************************************
99  *
100  * Utility functions and prototypes
101  *
102  *************************************************************************/
103
104 static void efx_remove_port(struct efx_nic *efx);
105 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog);
106 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp);
107 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
108                         u32 flags);
109
110 /**************************************************************************
111  *
112  * Port handling
113  *
114  **************************************************************************/
115
116 static void efx_fini_port(struct efx_nic *efx);
117
118 static int efx_probe_port(struct efx_nic *efx)
119 {
120         int rc;
121
122         netif_dbg(efx, probe, efx->net_dev, "create port\n");
123
124         if (phy_flash_cfg)
125                 efx->phy_mode = PHY_MODE_SPECIAL;
126
127         /* Connect up MAC/PHY operations table */
128         rc = efx->type->probe_port(efx);
129         if (rc)
130                 return rc;
131
132         /* Initialise MAC address to permanent address */
133         eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr);
134
135         return 0;
136 }
137
138 static int efx_init_port(struct efx_nic *efx)
139 {
140         int rc;
141
142         netif_dbg(efx, drv, efx->net_dev, "init port\n");
143
144         mutex_lock(&efx->mac_lock);
145
146         efx->port_initialized = true;
147
148         /* Ensure the PHY advertises the correct flow control settings */
149         rc = efx_mcdi_port_reconfigure(efx);
150         if (rc && rc != -EPERM)
151                 goto fail;
152
153         mutex_unlock(&efx->mac_lock);
154         return 0;
155
156 fail:
157         mutex_unlock(&efx->mac_lock);
158         return rc;
159 }
160
161 static void efx_fini_port(struct efx_nic *efx)
162 {
163         netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
164
165         if (!efx->port_initialized)
166                 return;
167
168         efx->port_initialized = false;
169
170         efx->link_state.up = false;
171         efx_link_status_changed(efx);
172 }
173
174 static void efx_remove_port(struct efx_nic *efx)
175 {
176         netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
177
178         efx->type->remove_port(efx);
179 }
180
181 /**************************************************************************
182  *
183  * NIC handling
184  *
185  **************************************************************************/
186
187 static LIST_HEAD(efx_primary_list);
188 static LIST_HEAD(efx_unassociated_list);
189
190 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
191 {
192         return left->type == right->type &&
193                 left->vpd_sn && right->vpd_sn &&
194                 !strcmp(left->vpd_sn, right->vpd_sn);
195 }
196
197 static void efx_associate(struct efx_nic *efx)
198 {
199         struct efx_nic *other, *next;
200
201         if (efx->primary == efx) {
202                 /* Adding primary function; look for secondaries */
203
204                 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
205                 list_add_tail(&efx->node, &efx_primary_list);
206
207                 list_for_each_entry_safe(other, next, &efx_unassociated_list,
208                                          node) {
209                         if (efx_same_controller(efx, other)) {
210                                 list_del(&other->node);
211                                 netif_dbg(other, probe, other->net_dev,
212                                           "moving to secondary list of %s %s\n",
213                                           pci_name(efx->pci_dev),
214                                           efx->net_dev->name);
215                                 list_add_tail(&other->node,
216                                               &efx->secondary_list);
217                                 other->primary = efx;
218                         }
219                 }
220         } else {
221                 /* Adding secondary function; look for primary */
222
223                 list_for_each_entry(other, &efx_primary_list, node) {
224                         if (efx_same_controller(efx, other)) {
225                                 netif_dbg(efx, probe, efx->net_dev,
226                                           "adding to secondary list of %s %s\n",
227                                           pci_name(other->pci_dev),
228                                           other->net_dev->name);
229                                 list_add_tail(&efx->node,
230                                               &other->secondary_list);
231                                 efx->primary = other;
232                                 return;
233                         }
234                 }
235
236                 netif_dbg(efx, probe, efx->net_dev,
237                           "adding to unassociated list\n");
238                 list_add_tail(&efx->node, &efx_unassociated_list);
239         }
240 }
241
242 static void efx_dissociate(struct efx_nic *efx)
243 {
244         struct efx_nic *other, *next;
245
246         list_del(&efx->node);
247         efx->primary = NULL;
248
249         list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
250                 list_del(&other->node);
251                 netif_dbg(other, probe, other->net_dev,
252                           "moving to unassociated list\n");
253                 list_add_tail(&other->node, &efx_unassociated_list);
254                 other->primary = NULL;
255         }
256 }
257
258 static int efx_probe_nic(struct efx_nic *efx)
259 {
260         int rc;
261
262         netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
263
264         /* Carry out hardware-type specific initialisation */
265         rc = efx->type->probe(efx);
266         if (rc)
267                 return rc;
268
269         do {
270                 if (!efx->max_channels || !efx->max_tx_channels) {
271                         netif_err(efx, drv, efx->net_dev,
272                                   "Insufficient resources to allocate"
273                                   " any channels\n");
274                         rc = -ENOSPC;
275                         goto fail1;
276                 }
277
278                 /* Determine the number of channels and queues by trying
279                  * to hook in MSI-X interrupts.
280                  */
281                 rc = efx_probe_interrupts(efx);
282                 if (rc)
283                         goto fail1;
284
285                 rc = efx_set_channels(efx);
286                 if (rc)
287                         goto fail1;
288
289                 /* dimension_resources can fail with EAGAIN */
290                 rc = efx->type->dimension_resources(efx);
291                 if (rc != 0 && rc != -EAGAIN)
292                         goto fail2;
293
294                 if (rc == -EAGAIN)
295                         /* try again with new max_channels */
296                         efx_remove_interrupts(efx);
297
298         } while (rc == -EAGAIN);
299
300         if (efx->n_channels > 1)
301                 netdev_rss_key_fill(efx->rss_context.rx_hash_key,
302                                     sizeof(efx->rss_context.rx_hash_key));
303         efx_set_default_rx_indir_table(efx, efx->rss_context.rx_indir_table);
304
305         /* Initialise the interrupt moderation settings */
306         efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
307         efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
308                                 true);
309
310         return 0;
311
312 fail2:
313         efx_remove_interrupts(efx);
314 fail1:
315         efx->type->remove(efx);
316         return rc;
317 }
318
319 static void efx_remove_nic(struct efx_nic *efx)
320 {
321         netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
322
323         efx_remove_interrupts(efx);
324         efx->type->remove(efx);
325 }
326
327 /**************************************************************************
328  *
329  * NIC startup/shutdown
330  *
331  *************************************************************************/
332
333 static int efx_probe_all(struct efx_nic *efx)
334 {
335         int rc;
336
337         rc = efx_probe_nic(efx);
338         if (rc) {
339                 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
340                 goto fail1;
341         }
342
343         rc = efx_probe_port(efx);
344         if (rc) {
345                 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
346                 goto fail2;
347         }
348
349         BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
350         if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
351                 rc = -EINVAL;
352                 goto fail3;
353         }
354
355 #ifdef CONFIG_SFC_SRIOV
356         rc = efx->type->vswitching_probe(efx);
357         if (rc) /* not fatal; the PF will still work fine */
358                 netif_warn(efx, probe, efx->net_dev,
359                            "failed to setup vswitching rc=%d;"
360                            " VFs may not function\n", rc);
361 #endif
362
363         rc = efx_probe_filters(efx);
364         if (rc) {
365                 netif_err(efx, probe, efx->net_dev,
366                           "failed to create filter tables\n");
367                 goto fail4;
368         }
369
370         rc = efx_probe_channels(efx);
371         if (rc)
372                 goto fail5;
373
374         efx->state = STATE_NET_DOWN;
375
376         return 0;
377
378  fail5:
379         efx_remove_filters(efx);
380  fail4:
381 #ifdef CONFIG_SFC_SRIOV
382         efx->type->vswitching_remove(efx);
383 #endif
384  fail3:
385         efx_remove_port(efx);
386  fail2:
387         efx_remove_nic(efx);
388  fail1:
389         return rc;
390 }
391
392 static void efx_remove_all(struct efx_nic *efx)
393 {
394         rtnl_lock();
395         efx_xdp_setup_prog(efx, NULL);
396         rtnl_unlock();
397
398         efx_remove_channels(efx);
399         efx_remove_filters(efx);
400 #ifdef CONFIG_SFC_SRIOV
401         efx->type->vswitching_remove(efx);
402 #endif
403         efx_remove_port(efx);
404         efx_remove_nic(efx);
405 }
406
407 /**************************************************************************
408  *
409  * Interrupt moderation
410  *
411  **************************************************************************/
412 unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
413 {
414         if (usecs == 0)
415                 return 0;
416         if (usecs * 1000 < efx->timer_quantum_ns)
417                 return 1; /* never round down to 0 */
418         return usecs * 1000 / efx->timer_quantum_ns;
419 }
420
421 /* Set interrupt moderation parameters */
422 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
423                             unsigned int rx_usecs, bool rx_adaptive,
424                             bool rx_may_override_tx)
425 {
426         struct efx_channel *channel;
427         unsigned int timer_max_us;
428
429         EFX_ASSERT_RESET_SERIALISED(efx);
430
431         timer_max_us = efx->timer_max_ns / 1000;
432
433         if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
434                 return -EINVAL;
435
436         if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
437             !rx_may_override_tx) {
438                 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
439                           "RX and TX IRQ moderation must be equal\n");
440                 return -EINVAL;
441         }
442
443         efx->irq_rx_adaptive = rx_adaptive;
444         efx->irq_rx_moderation_us = rx_usecs;
445         efx_for_each_channel(channel, efx) {
446                 if (efx_channel_has_rx_queue(channel))
447                         channel->irq_moderation_us = rx_usecs;
448                 else if (efx_channel_has_tx_queues(channel))
449                         channel->irq_moderation_us = tx_usecs;
450                 else if (efx_channel_is_xdp_tx(channel))
451                         channel->irq_moderation_us = tx_usecs;
452         }
453
454         return 0;
455 }
456
457 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
458                             unsigned int *rx_usecs, bool *rx_adaptive)
459 {
460         *rx_adaptive = efx->irq_rx_adaptive;
461         *rx_usecs = efx->irq_rx_moderation_us;
462
463         /* If channels are shared between RX and TX, so is IRQ
464          * moderation.  Otherwise, IRQ moderation is the same for all
465          * TX channels and is not adaptive.
466          */
467         if (efx->tx_channel_offset == 0) {
468                 *tx_usecs = *rx_usecs;
469         } else {
470                 struct efx_channel *tx_channel;
471
472                 tx_channel = efx->channel[efx->tx_channel_offset];
473                 *tx_usecs = tx_channel->irq_moderation_us;
474         }
475 }
476
477 /**************************************************************************
478  *
479  * ioctls
480  *
481  *************************************************************************/
482
483 /* Net device ioctl
484  * Context: process, rtnl_lock() held.
485  */
486 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
487 {
488         struct efx_nic *efx = efx_netdev_priv(net_dev);
489         struct mii_ioctl_data *data = if_mii(ifr);
490
491         /* Convert phy_id from older PRTAD/DEVAD format */
492         if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
493             (data->phy_id & 0xfc00) == 0x0400)
494                 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
495
496         return mdio_mii_ioctl(&efx->mdio, data, cmd);
497 }
498
499 /**************************************************************************
500  *
501  * Kernel net device interface
502  *
503  *************************************************************************/
504
505 /* Context: process, rtnl_lock() held. */
506 int efx_net_open(struct net_device *net_dev)
507 {
508         struct efx_nic *efx = efx_netdev_priv(net_dev);
509         int rc;
510
511         netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
512                   raw_smp_processor_id());
513
514         rc = efx_check_disabled(efx);
515         if (rc)
516                 return rc;
517         if (efx->phy_mode & PHY_MODE_SPECIAL)
518                 return -EBUSY;
519         if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
520                 return -EIO;
521
522         /* Notify the kernel of the link state polled during driver load,
523          * before the monitor starts running */
524         efx_link_status_changed(efx);
525
526         efx_start_all(efx);
527         if (efx->state == STATE_DISABLED || efx->reset_pending)
528                 netif_device_detach(efx->net_dev);
529         else
530                 efx->state = STATE_NET_UP;
531
532         return 0;
533 }
534
535 /* Context: process, rtnl_lock() held.
536  * Note that the kernel will ignore our return code; this method
537  * should really be a void.
538  */
539 int efx_net_stop(struct net_device *net_dev)
540 {
541         struct efx_nic *efx = efx_netdev_priv(net_dev);
542
543         netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
544                   raw_smp_processor_id());
545
546         /* Stop the device and flush all the channels */
547         efx_stop_all(efx);
548
549         return 0;
550 }
551
552 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
553 {
554         struct efx_nic *efx = efx_netdev_priv(net_dev);
555
556         if (efx->type->vlan_rx_add_vid)
557                 return efx->type->vlan_rx_add_vid(efx, proto, vid);
558         else
559                 return -EOPNOTSUPP;
560 }
561
562 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
563 {
564         struct efx_nic *efx = efx_netdev_priv(net_dev);
565
566         if (efx->type->vlan_rx_kill_vid)
567                 return efx->type->vlan_rx_kill_vid(efx, proto, vid);
568         else
569                 return -EOPNOTSUPP;
570 }
571
572 static int efx_hwtstamp_set(struct net_device *net_dev,
573                             struct kernel_hwtstamp_config *config,
574                             struct netlink_ext_ack *extack)
575 {
576         struct efx_nic *efx = efx_netdev_priv(net_dev);
577
578         return efx_ptp_set_ts_config(efx, config, extack);
579 }
580
581 static int efx_hwtstamp_get(struct net_device *net_dev,
582                             struct kernel_hwtstamp_config *config)
583 {
584         struct efx_nic *efx = efx_netdev_priv(net_dev);
585
586         return efx_ptp_get_ts_config(efx, config);
587 }
588
589 static const struct net_device_ops efx_netdev_ops = {
590         .ndo_open               = efx_net_open,
591         .ndo_stop               = efx_net_stop,
592         .ndo_get_stats64        = efx_net_stats,
593         .ndo_tx_timeout         = efx_watchdog,
594         .ndo_start_xmit         = efx_hard_start_xmit,
595         .ndo_validate_addr      = eth_validate_addr,
596         .ndo_eth_ioctl          = efx_ioctl,
597         .ndo_change_mtu         = efx_change_mtu,
598         .ndo_set_mac_address    = efx_set_mac_address,
599         .ndo_set_rx_mode        = efx_set_rx_mode,
600         .ndo_set_features       = efx_set_features,
601         .ndo_features_check     = efx_features_check,
602         .ndo_vlan_rx_add_vid    = efx_vlan_rx_add_vid,
603         .ndo_vlan_rx_kill_vid   = efx_vlan_rx_kill_vid,
604         .ndo_hwtstamp_set       = efx_hwtstamp_set,
605         .ndo_hwtstamp_get       = efx_hwtstamp_get,
606 #ifdef CONFIG_SFC_SRIOV
607         .ndo_set_vf_mac         = efx_sriov_set_vf_mac,
608         .ndo_set_vf_vlan        = efx_sriov_set_vf_vlan,
609         .ndo_set_vf_spoofchk    = efx_sriov_set_vf_spoofchk,
610         .ndo_get_vf_config      = efx_sriov_get_vf_config,
611         .ndo_set_vf_link_state  = efx_sriov_set_vf_link_state,
612 #endif
613         .ndo_get_phys_port_id   = efx_get_phys_port_id,
614         .ndo_get_phys_port_name = efx_get_phys_port_name,
615 #ifdef CONFIG_RFS_ACCEL
616         .ndo_rx_flow_steer      = efx_filter_rfs,
617 #endif
618         .ndo_xdp_xmit           = efx_xdp_xmit,
619         .ndo_bpf                = efx_xdp
620 };
621
622 static void efx_get_queue_stats_rx(struct net_device *net_dev, int idx,
623                                    struct netdev_queue_stats_rx *stats)
624 {
625         struct efx_nic *efx = efx_netdev_priv(net_dev);
626         struct efx_rx_queue *rx_queue;
627         struct efx_channel *channel;
628
629         channel = efx_get_channel(efx, idx);
630         rx_queue = efx_channel_get_rx_queue(channel);
631         /* Count only packets since last time datapath was started */
632         stats->packets = rx_queue->rx_packets - rx_queue->old_rx_packets;
633         stats->bytes = rx_queue->rx_bytes - rx_queue->old_rx_bytes;
634         stats->hw_drops = efx_get_queue_stat_rx_hw_drops(channel) -
635                           channel->old_n_rx_hw_drops;
636         stats->hw_drop_overruns = channel->n_rx_nodesc_trunc -
637                                   channel->old_n_rx_hw_drop_overruns;
638 }
639
640 static void efx_get_queue_stats_tx(struct net_device *net_dev, int idx,
641                                    struct netdev_queue_stats_tx *stats)
642 {
643         struct efx_nic *efx = efx_netdev_priv(net_dev);
644         struct efx_tx_queue *tx_queue;
645         struct efx_channel *channel;
646
647         channel = efx_get_tx_channel(efx, idx);
648         stats->packets = 0;
649         stats->bytes = 0;
650         stats->hw_gso_packets = 0;
651         stats->hw_gso_wire_packets = 0;
652         efx_for_each_channel_tx_queue(tx_queue, channel) {
653                 stats->packets += tx_queue->complete_packets -
654                                   tx_queue->old_complete_packets;
655                 stats->bytes += tx_queue->complete_bytes -
656                                 tx_queue->old_complete_bytes;
657                 /* Note that, unlike stats->packets and stats->bytes,
658                  * these count TXes enqueued, rather than completed,
659                  * which may not be what users expect.
660                  */
661                 stats->hw_gso_packets += tx_queue->tso_bursts -
662                                          tx_queue->old_tso_bursts;
663                 stats->hw_gso_wire_packets += tx_queue->tso_packets -
664                                               tx_queue->old_tso_packets;
665         }
666 }
667
668 static void efx_get_base_stats(struct net_device *net_dev,
669                                struct netdev_queue_stats_rx *rx,
670                                struct netdev_queue_stats_tx *tx)
671 {
672         struct efx_nic *efx = efx_netdev_priv(net_dev);
673         struct efx_tx_queue *tx_queue;
674         struct efx_rx_queue *rx_queue;
675         struct efx_channel *channel;
676
677         rx->packets = 0;
678         rx->bytes = 0;
679         rx->hw_drops = 0;
680         rx->hw_drop_overruns = 0;
681         tx->packets = 0;
682         tx->bytes = 0;
683         tx->hw_gso_packets = 0;
684         tx->hw_gso_wire_packets = 0;
685
686         /* Count all packets on non-core queues, and packets before last
687          * datapath start on core queues.
688          */
689         efx_for_each_channel(channel, efx) {
690                 rx_queue = efx_channel_get_rx_queue(channel);
691                 if (channel->channel >= net_dev->real_num_rx_queues) {
692                         rx->packets += rx_queue->rx_packets;
693                         rx->bytes += rx_queue->rx_bytes;
694                         rx->hw_drops += efx_get_queue_stat_rx_hw_drops(channel);
695                         rx->hw_drop_overruns += channel->n_rx_nodesc_trunc;
696                 } else {
697                         rx->packets += rx_queue->old_rx_packets;
698                         rx->bytes += rx_queue->old_rx_bytes;
699                         rx->hw_drops += channel->old_n_rx_hw_drops;
700                         rx->hw_drop_overruns += channel->old_n_rx_hw_drop_overruns;
701                 }
702                 efx_for_each_channel_tx_queue(tx_queue, channel) {
703                         if (channel->channel < efx->tx_channel_offset ||
704                             channel->channel >= efx->tx_channel_offset +
705                                                 net_dev->real_num_tx_queues) {
706                                 tx->packets += tx_queue->complete_packets;
707                                 tx->bytes += tx_queue->complete_bytes;
708                                 tx->hw_gso_packets += tx_queue->tso_bursts;
709                                 tx->hw_gso_wire_packets += tx_queue->tso_packets;
710                         } else {
711                                 tx->packets += tx_queue->old_complete_packets;
712                                 tx->bytes += tx_queue->old_complete_bytes;
713                                 tx->hw_gso_packets += tx_queue->old_tso_bursts;
714                                 tx->hw_gso_wire_packets += tx_queue->old_tso_packets;
715                         }
716                         /* Include XDP TX in device-wide stats */
717                         tx->packets += tx_queue->complete_xdp_packets;
718                         tx->bytes += tx_queue->complete_xdp_bytes;
719                 }
720         }
721 }
722
723 static const struct netdev_stat_ops efx_stat_ops = {
724         .get_queue_stats_rx     = efx_get_queue_stats_rx,
725         .get_queue_stats_tx     = efx_get_queue_stats_tx,
726         .get_base_stats         = efx_get_base_stats,
727 };
728
729 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog)
730 {
731         struct bpf_prog *old_prog;
732
733         if (efx->xdp_rxq_info_failed) {
734                 netif_err(efx, drv, efx->net_dev,
735                           "Unable to bind XDP program due to previous failure of rxq_info\n");
736                 return -EINVAL;
737         }
738
739         if (prog && efx->net_dev->mtu > efx_xdp_max_mtu(efx)) {
740                 netif_err(efx, drv, efx->net_dev,
741                           "Unable to configure XDP with MTU of %d (max: %d)\n",
742                           efx->net_dev->mtu, efx_xdp_max_mtu(efx));
743                 return -EINVAL;
744         }
745
746         old_prog = rtnl_dereference(efx->xdp_prog);
747         rcu_assign_pointer(efx->xdp_prog, prog);
748         /* Release the reference that was originally passed by the caller. */
749         if (old_prog)
750                 bpf_prog_put(old_prog);
751
752         return 0;
753 }
754
755 /* Context: process, rtnl_lock() held. */
756 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp)
757 {
758         struct efx_nic *efx = efx_netdev_priv(dev);
759
760         switch (xdp->command) {
761         case XDP_SETUP_PROG:
762                 return efx_xdp_setup_prog(efx, xdp->prog);
763         default:
764                 return -EINVAL;
765         }
766 }
767
768 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
769                         u32 flags)
770 {
771         struct efx_nic *efx = efx_netdev_priv(dev);
772
773         if (!netif_running(dev))
774                 return -EINVAL;
775
776         return efx_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH);
777 }
778
779 static void efx_update_name(struct efx_nic *efx)
780 {
781         strcpy(efx->name, efx->net_dev->name);
782         efx_mtd_rename(efx);
783         efx_set_channel_names(efx);
784 }
785
786 static int efx_netdev_event(struct notifier_block *this,
787                             unsigned long event, void *ptr)
788 {
789         struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
790
791         if ((net_dev->netdev_ops == &efx_netdev_ops) &&
792             event == NETDEV_CHANGENAME)
793                 efx_update_name(efx_netdev_priv(net_dev));
794
795         return NOTIFY_DONE;
796 }
797
798 static struct notifier_block efx_netdev_notifier = {
799         .notifier_call = efx_netdev_event,
800 };
801
802 static ssize_t phy_type_show(struct device *dev,
803                              struct device_attribute *attr, char *buf)
804 {
805         struct efx_nic *efx = dev_get_drvdata(dev);
806         return sprintf(buf, "%d\n", efx->phy_type);
807 }
808 static DEVICE_ATTR_RO(phy_type);
809
810 static int efx_register_netdev(struct efx_nic *efx)
811 {
812         struct net_device *net_dev = efx->net_dev;
813         struct efx_channel *channel;
814         int rc;
815
816         net_dev->watchdog_timeo = 5 * HZ;
817         net_dev->irq = efx->pci_dev->irq;
818         net_dev->netdev_ops = &efx_netdev_ops;
819         net_dev->stat_ops = &efx_stat_ops;
820         if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
821                 net_dev->priv_flags |= IFF_UNICAST_FLT;
822         net_dev->ethtool_ops = &efx_ethtool_ops;
823         netif_set_tso_max_segs(net_dev, EFX_TSO_MAX_SEGS);
824         net_dev->min_mtu = EFX_MIN_MTU;
825         net_dev->max_mtu = EFX_MAX_MTU;
826
827         rtnl_lock();
828
829         /* Enable resets to be scheduled and check whether any were
830          * already requested.  If so, the NIC is probably hosed so we
831          * abort.
832          */
833         if (efx->reset_pending) {
834                 pci_err(efx->pci_dev, "aborting probe due to scheduled reset\n");
835                 rc = -EIO;
836                 goto fail_locked;
837         }
838
839         rc = dev_alloc_name(net_dev, net_dev->name);
840         if (rc < 0)
841                 goto fail_locked;
842         efx_update_name(efx);
843
844         /* Always start with carrier off; PHY events will detect the link */
845         netif_carrier_off(net_dev);
846
847         rc = register_netdevice(net_dev);
848         if (rc)
849                 goto fail_locked;
850
851         efx_for_each_channel(channel, efx) {
852                 struct efx_tx_queue *tx_queue;
853                 efx_for_each_channel_tx_queue(tx_queue, channel)
854                         efx_init_tx_queue_core_txq(tx_queue);
855         }
856
857         efx_associate(efx);
858
859         efx->state = STATE_NET_DOWN;
860
861         rtnl_unlock();
862
863         rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
864         if (rc) {
865                 netif_err(efx, drv, efx->net_dev,
866                           "failed to init net dev attributes\n");
867                 goto fail_registered;
868         }
869
870         efx_init_mcdi_logging(efx);
871
872         return 0;
873
874 fail_registered:
875         rtnl_lock();
876         efx_dissociate(efx);
877         unregister_netdevice(net_dev);
878 fail_locked:
879         efx->state = STATE_UNINIT;
880         rtnl_unlock();
881         netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
882         return rc;
883 }
884
885 static void efx_unregister_netdev(struct efx_nic *efx)
886 {
887         if (!efx->net_dev)
888                 return;
889
890         if (WARN_ON(efx_netdev_priv(efx->net_dev) != efx))
891                 return;
892
893         if (efx_dev_registered(efx)) {
894                 strscpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
895                 efx_fini_mcdi_logging(efx);
896                 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
897                 unregister_netdev(efx->net_dev);
898         }
899 }
900
901 /**************************************************************************
902  *
903  * List of NICs we support
904  *
905  **************************************************************************/
906
907 /* PCI device ID table */
908 static const struct pci_device_id efx_pci_table[] = {
909         {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
910          .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
911         {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
912          .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
913         {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
914          .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
915         {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923),  /* SFC9140 VF */
916          .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
917         {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03),  /* SFC9220 PF */
918          .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
919         {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03),  /* SFC9220 VF */
920          .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
921         {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03),  /* SFC9250 PF */
922          .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
923         {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03),  /* SFC9250 VF */
924          .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
925         {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0c03),  /* X4 PF (FF/LL) */
926          .driver_data = (unsigned long)&efx_x4_nic_type},
927         {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x2c03),  /* X4 PF (FF only) */
928          .driver_data = (unsigned long)&efx_x4_nic_type},
929         {0}                     /* end of list */
930 };
931
932 /**************************************************************************
933  *
934  * Data housekeeping
935  *
936  **************************************************************************/
937
938 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
939 {
940         u64 n_rx_nodesc_trunc = 0;
941         struct efx_channel *channel;
942
943         efx_for_each_channel(channel, efx)
944                 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
945         stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
946         stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
947 }
948
949 /**************************************************************************
950  *
951  * PCI interface
952  *
953  **************************************************************************/
954
955 /* Main body of final NIC shutdown code
956  * This is called only at module unload (or hotplug removal).
957  */
958 static void efx_pci_remove_main(struct efx_nic *efx)
959 {
960         /* Flush reset_work. It can no longer be scheduled since we
961          * are not READY.
962          */
963         WARN_ON(efx_net_active(efx->state));
964         efx_flush_reset_workqueue(efx);
965
966         efx_disable_interrupts(efx);
967         efx_clear_interrupt_affinity(efx);
968         efx_nic_fini_interrupt(efx);
969         efx_fini_port(efx);
970         efx->type->fini(efx);
971         efx_fini_napi(efx);
972         efx_remove_all(efx);
973 }
974
975 /* Final NIC shutdown
976  * This is called only at module unload (or hotplug removal).  A PF can call
977  * this on its VFs to ensure they are unbound first.
978  */
979 static void efx_pci_remove(struct pci_dev *pci_dev)
980 {
981         struct efx_probe_data *probe_data;
982         struct efx_nic *efx;
983
984         efx = pci_get_drvdata(pci_dev);
985         if (!efx)
986                 return;
987
988         /* Mark the NIC as fini, then stop the interface */
989         rtnl_lock();
990         efx_dissociate(efx);
991         dev_close(efx->net_dev);
992         efx_disable_interrupts(efx);
993         efx->state = STATE_UNINIT;
994         rtnl_unlock();
995
996         if (efx->type->sriov_fini)
997                 efx->type->sriov_fini(efx);
998
999         efx_fini_devlink_lock(efx);
1000         efx_unregister_netdev(efx);
1001
1002         efx_mtd_remove(efx);
1003
1004         efx_pci_remove_main(efx);
1005
1006         efx_fini_io(efx);
1007         pci_dbg(efx->pci_dev, "shutdown successful\n");
1008
1009         efx_fini_devlink_and_unlock(efx);
1010         efx_fini_struct(efx);
1011         free_netdev(efx->net_dev);
1012         probe_data = container_of(efx, struct efx_probe_data, efx);
1013         kfree(probe_data);
1014 };
1015
1016 /* NIC VPD information
1017  * Called during probe to display the part number of the
1018  * installed NIC.
1019  */
1020 static void efx_probe_vpd_strings(struct efx_nic *efx)
1021 {
1022         struct pci_dev *dev = efx->pci_dev;
1023         unsigned int vpd_size, kw_len;
1024         u8 *vpd_data;
1025         int start;
1026
1027         vpd_data = pci_vpd_alloc(dev, &vpd_size);
1028         if (IS_ERR(vpd_data)) {
1029                 pci_warn(dev, "Unable to read VPD\n");
1030                 return;
1031         }
1032
1033         start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
1034                                              PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
1035         if (start < 0)
1036                 pci_err(dev, "Part number not found or incomplete\n");
1037         else
1038                 pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start);
1039
1040         start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
1041                                              PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len);
1042         if (start < 0)
1043                 pci_err(dev, "Serial number not found or incomplete\n");
1044         else
1045                 efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL);
1046
1047         kfree(vpd_data);
1048 }
1049
1050
1051 /* Main body of NIC initialisation
1052  * This is called at module load (or hotplug insertion, theoretically).
1053  */
1054 static int efx_pci_probe_main(struct efx_nic *efx)
1055 {
1056         int rc;
1057
1058         /* Do start-of-day initialisation */
1059         rc = efx_probe_all(efx);
1060         if (rc)
1061                 goto fail1;
1062
1063         efx_init_napi(efx);
1064
1065         down_write(&efx->filter_sem);
1066         rc = efx->type->init(efx);
1067         up_write(&efx->filter_sem);
1068         if (rc) {
1069                 pci_err(efx->pci_dev, "failed to initialise NIC\n");
1070                 goto fail3;
1071         }
1072
1073         rc = efx_init_port(efx);
1074         if (rc) {
1075                 netif_err(efx, probe, efx->net_dev,
1076                           "failed to initialise port\n");
1077                 goto fail4;
1078         }
1079
1080         rc = efx_nic_init_interrupt(efx);
1081         if (rc)
1082                 goto fail5;
1083
1084         efx_set_interrupt_affinity(efx);
1085         rc = efx_enable_interrupts(efx);
1086         if (rc)
1087                 goto fail6;
1088
1089         return 0;
1090
1091  fail6:
1092         efx_clear_interrupt_affinity(efx);
1093         efx_nic_fini_interrupt(efx);
1094  fail5:
1095         efx_fini_port(efx);
1096  fail4:
1097         efx->type->fini(efx);
1098  fail3:
1099         efx_fini_napi(efx);
1100         efx_remove_all(efx);
1101  fail1:
1102         return rc;
1103 }
1104
1105 static int efx_pci_probe_post_io(struct efx_nic *efx)
1106 {
1107         struct net_device *net_dev = efx->net_dev;
1108         int rc = efx_pci_probe_main(efx);
1109
1110         if (rc)
1111                 return rc;
1112
1113         if (efx->type->sriov_init) {
1114                 rc = efx->type->sriov_init(efx);
1115                 if (rc)
1116                         pci_err(efx->pci_dev, "SR-IOV can't be enabled rc %d\n",
1117                                 rc);
1118         }
1119
1120         /* Determine netdevice features */
1121         net_dev->features |= efx->type->offload_features;
1122
1123         /* Add TSO features */
1124         if (efx->type->tso_versions && efx->type->tso_versions(efx))
1125                 net_dev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1126
1127         /* Mask for features that also apply to VLAN devices */
1128         net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
1129                                    NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
1130                                    NETIF_F_RXCSUM);
1131
1132         /* Determine user configurable features */
1133         net_dev->hw_features |= net_dev->features & ~efx->fixed_features;
1134
1135         /* Disable receiving frames with bad FCS, by default. */
1136         net_dev->features &= ~NETIF_F_RXALL;
1137
1138         /* Disable VLAN filtering by default.  It may be enforced if
1139          * the feature is fixed (i.e. VLAN filters are required to
1140          * receive VLAN tagged packets due to vPort restrictions).
1141          */
1142         net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
1143         net_dev->features |= efx->fixed_features;
1144
1145         net_dev->xdp_features = NETDEV_XDP_ACT_BASIC |
1146                                 NETDEV_XDP_ACT_REDIRECT |
1147                                 NETDEV_XDP_ACT_NDO_XMIT;
1148
1149         /* devlink creation, registration and lock */
1150         rc = efx_probe_devlink_and_lock(efx);
1151         if (rc)
1152                 pci_err(efx->pci_dev, "devlink registration failed");
1153
1154         rc = efx_register_netdev(efx);
1155         efx_probe_devlink_unlock(efx);
1156         if (!rc)
1157                 return 0;
1158
1159         efx_pci_remove_main(efx);
1160         return rc;
1161 }
1162
1163 /* NIC initialisation
1164  *
1165  * This is called at module load (or hotplug insertion,
1166  * theoretically).  It sets up PCI mappings, resets the NIC,
1167  * sets up and registers the network devices with the kernel and hooks
1168  * the interrupt service routine.  It does not prepare the device for
1169  * transmission; this is left to the first time one of the network
1170  * interfaces is brought up (i.e. efx_net_open).
1171  */
1172 static int efx_pci_probe(struct pci_dev *pci_dev,
1173                          const struct pci_device_id *entry)
1174 {
1175         struct efx_probe_data *probe_data, **probe_ptr;
1176         struct net_device *net_dev;
1177         struct efx_nic *efx;
1178         int rc;
1179
1180         /* Allocate probe data and struct efx_nic */
1181         probe_data = kzalloc(sizeof(*probe_data), GFP_KERNEL);
1182         if (!probe_data)
1183                 return -ENOMEM;
1184         probe_data->pci_dev = pci_dev;
1185         efx = &probe_data->efx;
1186
1187         /* Allocate and initialise a struct net_device */
1188         net_dev = alloc_etherdev_mq(sizeof(probe_data), EFX_MAX_CORE_TX_QUEUES);
1189         if (!net_dev) {
1190                 rc = -ENOMEM;
1191                 goto fail0;
1192         }
1193         probe_ptr = netdev_priv(net_dev);
1194         *probe_ptr = probe_data;
1195         efx->net_dev = net_dev;
1196         efx->type = (const struct efx_nic_type *) entry->driver_data;
1197         efx->fixed_features |= NETIF_F_HIGHDMA;
1198
1199         pci_set_drvdata(pci_dev, efx);
1200         SET_NETDEV_DEV(net_dev, &pci_dev->dev);
1201         rc = efx_init_struct(efx, pci_dev);
1202         if (rc)
1203                 goto fail1;
1204         efx->mdio.dev = net_dev;
1205
1206         pci_info(pci_dev, "Solarflare NIC detected\n");
1207
1208         if (!efx->type->is_vf)
1209                 efx_probe_vpd_strings(efx);
1210
1211         /* Set up basic I/O (BAR mappings etc) */
1212         rc = efx_init_io(efx, efx->type->mem_bar(efx), efx->type->max_dma_mask,
1213                          efx->type->mem_map_size(efx));
1214         if (rc)
1215                 goto fail2;
1216
1217         rc = efx_pci_probe_post_io(efx);
1218         if (rc) {
1219                 /* On failure, retry once immediately.
1220                  * If we aborted probe due to a scheduled reset, dismiss it.
1221                  */
1222                 efx->reset_pending = 0;
1223                 rc = efx_pci_probe_post_io(efx);
1224                 if (rc) {
1225                         /* On another failure, retry once more
1226                          * after a 50-305ms delay.
1227                          */
1228                         unsigned char r;
1229
1230                         get_random_bytes(&r, 1);
1231                         msleep((unsigned int)r + 50);
1232                         efx->reset_pending = 0;
1233                         rc = efx_pci_probe_post_io(efx);
1234                 }
1235         }
1236         if (rc)
1237                 goto fail3;
1238
1239         netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
1240
1241         /* Try to create MTDs, but allow this to fail */
1242         rtnl_lock();
1243         rc = efx_mtd_probe(efx);
1244         rtnl_unlock();
1245         if (rc && rc != -EPERM)
1246                 netif_warn(efx, probe, efx->net_dev,
1247                            "failed to create MTDs (%d)\n", rc);
1248
1249         if (efx->type->udp_tnl_push_ports)
1250                 efx->type->udp_tnl_push_ports(efx);
1251
1252         return 0;
1253
1254  fail3:
1255         efx_fini_io(efx);
1256  fail2:
1257         efx_fini_struct(efx);
1258  fail1:
1259         WARN_ON(rc > 0);
1260         netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
1261         free_netdev(net_dev);
1262  fail0:
1263         kfree(probe_data);
1264         return rc;
1265 }
1266
1267 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
1268  * enabled on success
1269  */
1270 #ifdef CONFIG_SFC_SRIOV
1271 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
1272 {
1273         int rc;
1274         struct efx_nic *efx = pci_get_drvdata(dev);
1275
1276         if (efx->type->sriov_configure) {
1277                 rc = efx->type->sriov_configure(efx, num_vfs);
1278                 if (rc)
1279                         return rc;
1280                 else
1281                         return num_vfs;
1282         } else
1283                 return -EOPNOTSUPP;
1284 }
1285 #endif
1286
1287 static int efx_pm_freeze(struct device *dev)
1288 {
1289         struct efx_nic *efx = dev_get_drvdata(dev);
1290
1291         rtnl_lock();
1292
1293         if (efx_net_active(efx->state)) {
1294                 efx_device_detach_sync(efx);
1295
1296                 efx_stop_all(efx);
1297                 efx_disable_interrupts(efx);
1298
1299                 efx->state = efx_freeze(efx->state);
1300         }
1301
1302         rtnl_unlock();
1303
1304         return 0;
1305 }
1306
1307 static void efx_pci_shutdown(struct pci_dev *pci_dev)
1308 {
1309         struct efx_nic *efx = pci_get_drvdata(pci_dev);
1310
1311         if (!efx)
1312                 return;
1313
1314         efx_pm_freeze(&pci_dev->dev);
1315         pci_disable_device(pci_dev);
1316 }
1317
1318 static int efx_pm_thaw(struct device *dev)
1319 {
1320         int rc;
1321         struct efx_nic *efx = dev_get_drvdata(dev);
1322
1323         rtnl_lock();
1324
1325         if (efx_frozen(efx->state)) {
1326                 rc = efx_enable_interrupts(efx);
1327                 if (rc)
1328                         goto fail;
1329
1330                 mutex_lock(&efx->mac_lock);
1331                 efx_mcdi_port_reconfigure(efx);
1332                 mutex_unlock(&efx->mac_lock);
1333
1334                 efx_start_all(efx);
1335
1336                 efx_device_attach_if_not_resetting(efx);
1337
1338                 efx->state = efx_thaw(efx->state);
1339
1340                 efx->type->resume_wol(efx);
1341         }
1342
1343         rtnl_unlock();
1344
1345         /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
1346         efx_queue_reset_work(efx);
1347
1348         return 0;
1349
1350 fail:
1351         rtnl_unlock();
1352
1353         return rc;
1354 }
1355
1356 static int efx_pm_poweroff(struct device *dev)
1357 {
1358         struct pci_dev *pci_dev = to_pci_dev(dev);
1359         struct efx_nic *efx = pci_get_drvdata(pci_dev);
1360
1361         efx->type->fini(efx);
1362
1363         efx->reset_pending = 0;
1364
1365         pci_save_state(pci_dev);
1366         return pci_set_power_state(pci_dev, PCI_D3hot);
1367 }
1368
1369 /* Used for both resume and restore */
1370 static int efx_pm_resume(struct device *dev)
1371 {
1372         struct pci_dev *pci_dev = to_pci_dev(dev);
1373         struct efx_nic *efx = pci_get_drvdata(pci_dev);
1374         int rc;
1375
1376         rc = pci_set_power_state(pci_dev, PCI_D0);
1377         if (rc)
1378                 return rc;
1379         pci_restore_state(pci_dev);
1380         rc = pci_enable_device(pci_dev);
1381         if (rc)
1382                 return rc;
1383         pci_set_master(efx->pci_dev);
1384         rc = efx->type->reset(efx, RESET_TYPE_ALL);
1385         if (rc)
1386                 return rc;
1387         down_write(&efx->filter_sem);
1388         rc = efx->type->init(efx);
1389         up_write(&efx->filter_sem);
1390         if (rc)
1391                 return rc;
1392         rc = efx_pm_thaw(dev);
1393         return rc;
1394 }
1395
1396 static int efx_pm_suspend(struct device *dev)
1397 {
1398         int rc;
1399
1400         efx_pm_freeze(dev);
1401         rc = efx_pm_poweroff(dev);
1402         if (rc)
1403                 efx_pm_resume(dev);
1404         return rc;
1405 }
1406
1407 static const struct dev_pm_ops efx_pm_ops = {
1408         .suspend        = efx_pm_suspend,
1409         .resume         = efx_pm_resume,
1410         .freeze         = efx_pm_freeze,
1411         .thaw           = efx_pm_thaw,
1412         .poweroff       = efx_pm_poweroff,
1413         .restore        = efx_pm_resume,
1414 };
1415
1416 static struct pci_driver efx_pci_driver = {
1417         .name           = KBUILD_MODNAME,
1418         .id_table       = efx_pci_table,
1419         .probe          = efx_pci_probe,
1420         .remove         = efx_pci_remove,
1421         .driver.pm      = &efx_pm_ops,
1422         .shutdown       = efx_pci_shutdown,
1423         .err_handler    = &efx_err_handlers,
1424 #ifdef CONFIG_SFC_SRIOV
1425         .sriov_configure = efx_pci_sriov_configure,
1426 #endif
1427 };
1428
1429 /**************************************************************************
1430  *
1431  * Kernel module interface
1432  *
1433  *************************************************************************/
1434
1435 static int __init efx_init_module(void)
1436 {
1437         int rc;
1438
1439         printk(KERN_INFO "Solarflare NET driver\n");
1440
1441         rc = register_netdevice_notifier(&efx_netdev_notifier);
1442         if (rc)
1443                 goto err_notifier;
1444
1445         rc = efx_create_reset_workqueue();
1446         if (rc)
1447                 goto err_reset;
1448
1449         rc = pci_register_driver(&efx_pci_driver);
1450         if (rc < 0)
1451                 goto err_pci;
1452
1453         rc = pci_register_driver(&ef100_pci_driver);
1454         if (rc < 0)
1455                 goto err_pci_ef100;
1456
1457         return 0;
1458
1459  err_pci_ef100:
1460         pci_unregister_driver(&efx_pci_driver);
1461  err_pci:
1462         efx_destroy_reset_workqueue();
1463  err_reset:
1464         unregister_netdevice_notifier(&efx_netdev_notifier);
1465  err_notifier:
1466         return rc;
1467 }
1468
1469 static void __exit efx_exit_module(void)
1470 {
1471         printk(KERN_INFO "Solarflare NET driver unloading\n");
1472
1473         pci_unregister_driver(&ef100_pci_driver);
1474         pci_unregister_driver(&efx_pci_driver);
1475         efx_destroy_reset_workqueue();
1476         unregister_netdevice_notifier(&efx_netdev_notifier);
1477
1478 }
1479
1480 module_init(efx_init_module);
1481 module_exit(efx_exit_module);
1482
1483 MODULE_AUTHOR("Solarflare Communications and "
1484               "Michael Brown <[email protected]>");
1485 MODULE_DESCRIPTION("Solarflare network driver");
1486 MODULE_LICENSE("GPL");
1487 MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 0.115366 seconds and 4 git commands to generate.