1 // SPDX-License-Identifier: GPL-2.0-only
3 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
4 * Ethernet adapters. Based on earlier sk98lin, e100 and
5 * FreeBSD if_sk drivers.
7 * This driver intentionally does not support all the features
8 * of the original driver such as link fail-over and link management because
9 * those should be done at higher levels.
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/ethtool.h>
23 #include <linux/pci.h>
24 #include <linux/if_vlan.h>
26 #include <linux/delay.h>
27 #include <linux/crc32.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/debugfs.h>
30 #include <linux/sched.h>
31 #include <linux/seq_file.h>
32 #include <linux/mii.h>
33 #include <linux/slab.h>
34 #include <linux/dmi.h>
35 #include <linux/prefetch.h>
40 #define DRV_NAME "skge"
41 #define DRV_VERSION "1.14"
43 #define DEFAULT_TX_RING_SIZE 128
44 #define DEFAULT_RX_RING_SIZE 512
45 #define MAX_TX_RING_SIZE 1024
46 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
47 #define MAX_RX_RING_SIZE 4096
48 #define RX_COPY_THRESHOLD 128
49 #define RX_BUF_SIZE 1536
50 #define PHY_RETRIES 1000
51 #define ETH_JUMBO_MTU 9000
52 #define TX_WATCHDOG (5 * HZ)
56 #define SKGE_EEPROM_MAGIC 0x9933aabb
59 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
61 MODULE_LICENSE("GPL");
62 MODULE_VERSION(DRV_VERSION);
64 static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
65 NETIF_MSG_LINK | NETIF_MSG_IFUP |
68 static int debug = -1; /* defaults above */
69 module_param(debug, int, 0);
70 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
72 static const struct pci_device_id skge_id_table[] = {
73 { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) }, /* 3Com 3C940 */
74 { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) }, /* 3Com 3C940B */
75 #ifdef CONFIG_SKGE_GENESIS
76 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
78 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
79 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* D-Link DGE-530T (rev.B) */
80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) }, /* D-Link DGE-530T */
81 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) }, /* D-Link DGE-530T Rev C1 */
82 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) }, /* Marvell Yukon 88E8001/8003/8010 */
83 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
84 { PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, /* CNet PowerG-2000 */
85 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) }, /* Linksys EG1064 v2 */
86 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
89 MODULE_DEVICE_TABLE(pci, skge_id_table);
91 static int skge_up(struct net_device *dev);
92 static int skge_down(struct net_device *dev);
93 static void skge_phy_reset(struct skge_port *skge);
94 static void skge_tx_clean(struct net_device *dev);
95 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
96 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
97 static void genesis_get_stats(struct skge_port *skge, u64 *data);
98 static void yukon_get_stats(struct skge_port *skge, u64 *data);
99 static void yukon_init(struct skge_hw *hw, int port);
100 static void genesis_mac_init(struct skge_hw *hw, int port);
101 static void genesis_link_up(struct skge_port *skge);
102 static void skge_set_multicast(struct net_device *dev);
103 static irqreturn_t skge_intr(int irq, void *dev_id);
105 /* Avoid conditionals by using array */
106 static const int txqaddr[] = { Q_XA1, Q_XA2 };
107 static const int rxqaddr[] = { Q_R1, Q_R2 };
108 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
109 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
110 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
111 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
113 static inline bool is_genesis(const struct skge_hw *hw)
115 #ifdef CONFIG_SKGE_GENESIS
116 return hw->chip_id == CHIP_ID_GENESIS;
122 static int skge_get_regs_len(struct net_device *dev)
128 * Returns copy of whole control register region
129 * Note: skip RAM address register because accessing it will
132 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
135 const struct skge_port *skge = netdev_priv(dev);
136 const void __iomem *io = skge->hw->regs;
139 memset(p, 0, regs->len);
140 memcpy_fromio(p, io, B3_RAM_ADDR);
142 if (regs->len > B3_RI_WTO_R1) {
143 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
144 regs->len - B3_RI_WTO_R1);
148 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
149 static u32 wol_supported(const struct skge_hw *hw)
154 if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
157 return WAKE_MAGIC | WAKE_PHY;
160 static void skge_wol_init(struct skge_port *skge)
162 struct skge_hw *hw = skge->hw;
163 int port = skge->port;
166 skge_write16(hw, B0_CTST, CS_RST_CLR);
167 skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
170 skge_write8(hw, B0_POWER_CTRL,
171 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
173 /* WA code for COMA mode -- clear PHY reset */
174 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
175 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
176 u32 reg = skge_read32(hw, B2_GP_IO);
179 skge_write32(hw, B2_GP_IO, reg);
182 skge_write32(hw, SK_REG(port, GPHY_CTRL),
184 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
185 GPC_ANEG_1 | GPC_RST_SET);
187 skge_write32(hw, SK_REG(port, GPHY_CTRL),
189 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
190 GPC_ANEG_1 | GPC_RST_CLR);
192 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
194 /* Force to 10/100 skge_reset will re-enable on resume */
195 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
196 (PHY_AN_100FULL | PHY_AN_100HALF |
197 PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
199 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
200 gm_phy_write(hw, port, PHY_MARV_CTRL,
201 PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
202 PHY_CT_RE_CFG | PHY_CT_DUP_MD);
205 /* Set GMAC to no flow control and auto update for speed/duplex */
206 gma_write16(hw, port, GM_GP_CTRL,
207 GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
208 GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
210 /* Set WOL address */
211 memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
212 skge->netdev->dev_addr, ETH_ALEN);
214 /* Turn on appropriate WOL control bits */
215 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
217 if (skge->wol & WAKE_PHY)
218 ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
220 ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
222 if (skge->wol & WAKE_MAGIC)
223 ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
225 ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
227 ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
228 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
231 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
234 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
236 struct skge_port *skge = netdev_priv(dev);
238 wol->supported = wol_supported(skge->hw);
239 wol->wolopts = skge->wol;
242 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
244 struct skge_port *skge = netdev_priv(dev);
245 struct skge_hw *hw = skge->hw;
247 if ((wol->wolopts & ~wol_supported(hw)) ||
248 !device_can_wakeup(&hw->pdev->dev))
251 skge->wol = wol->wolopts;
253 device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
258 /* Determine supported/advertised modes based on hardware.
259 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
261 static u32 skge_supported_modes(const struct skge_hw *hw)
266 supported = (SUPPORTED_10baseT_Half |
267 SUPPORTED_10baseT_Full |
268 SUPPORTED_100baseT_Half |
269 SUPPORTED_100baseT_Full |
270 SUPPORTED_1000baseT_Half |
271 SUPPORTED_1000baseT_Full |
276 supported &= ~(SUPPORTED_10baseT_Half |
277 SUPPORTED_10baseT_Full |
278 SUPPORTED_100baseT_Half |
279 SUPPORTED_100baseT_Full);
281 else if (hw->chip_id == CHIP_ID_YUKON)
282 supported &= ~SUPPORTED_1000baseT_Half;
284 supported = (SUPPORTED_1000baseT_Full |
285 SUPPORTED_1000baseT_Half |
292 static int skge_get_link_ksettings(struct net_device *dev,
293 struct ethtool_link_ksettings *cmd)
295 struct skge_port *skge = netdev_priv(dev);
296 struct skge_hw *hw = skge->hw;
297 u32 supported, advertising;
299 supported = skge_supported_modes(hw);
302 cmd->base.port = PORT_TP;
303 cmd->base.phy_address = hw->phy_addr;
305 cmd->base.port = PORT_FIBRE;
307 advertising = skge->advertising;
308 cmd->base.autoneg = skge->autoneg;
309 cmd->base.speed = skge->speed;
310 cmd->base.duplex = skge->duplex;
312 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
314 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
320 static int skge_set_link_ksettings(struct net_device *dev,
321 const struct ethtool_link_ksettings *cmd)
323 struct skge_port *skge = netdev_priv(dev);
324 const struct skge_hw *hw = skge->hw;
325 u32 supported = skge_supported_modes(hw);
329 ethtool_convert_link_mode_to_legacy_u32(&advertising,
330 cmd->link_modes.advertising);
332 if (cmd->base.autoneg == AUTONEG_ENABLE) {
333 advertising = supported;
338 u32 speed = cmd->base.speed;
342 if (cmd->base.duplex == DUPLEX_FULL)
343 setting = SUPPORTED_1000baseT_Full;
344 else if (cmd->base.duplex == DUPLEX_HALF)
345 setting = SUPPORTED_1000baseT_Half;
350 if (cmd->base.duplex == DUPLEX_FULL)
351 setting = SUPPORTED_100baseT_Full;
352 else if (cmd->base.duplex == DUPLEX_HALF)
353 setting = SUPPORTED_100baseT_Half;
359 if (cmd->base.duplex == DUPLEX_FULL)
360 setting = SUPPORTED_10baseT_Full;
361 else if (cmd->base.duplex == DUPLEX_HALF)
362 setting = SUPPORTED_10baseT_Half;
370 if ((setting & supported) == 0)
374 skge->duplex = cmd->base.duplex;
377 skge->autoneg = cmd->base.autoneg;
378 skge->advertising = advertising;
380 if (netif_running(dev)) {
392 static void skge_get_drvinfo(struct net_device *dev,
393 struct ethtool_drvinfo *info)
395 struct skge_port *skge = netdev_priv(dev);
397 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
398 strscpy(info->version, DRV_VERSION, sizeof(info->version));
399 strscpy(info->bus_info, pci_name(skge->hw->pdev),
400 sizeof(info->bus_info));
403 static const struct skge_stat {
404 char name[ETH_GSTRING_LEN];
408 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
409 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
411 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
412 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
413 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
414 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
415 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
416 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
417 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
418 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
420 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
421 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
422 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
423 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
424 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
425 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
427 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
428 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
429 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
430 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
431 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
434 static int skge_get_sset_count(struct net_device *dev, int sset)
438 return ARRAY_SIZE(skge_stats);
444 static void skge_get_ethtool_stats(struct net_device *dev,
445 struct ethtool_stats *stats, u64 *data)
447 struct skge_port *skge = netdev_priv(dev);
449 if (is_genesis(skge->hw))
450 genesis_get_stats(skge, data);
452 yukon_get_stats(skge, data);
455 /* Use hardware MIB variables for critical path statistics and
456 * transmit feedback not reported at interrupt.
457 * Other errors are accounted for in interrupt handler.
459 static struct net_device_stats *skge_get_stats(struct net_device *dev)
461 struct skge_port *skge = netdev_priv(dev);
462 u64 data[ARRAY_SIZE(skge_stats)];
464 if (is_genesis(skge->hw))
465 genesis_get_stats(skge, data);
467 yukon_get_stats(skge, data);
469 dev->stats.tx_bytes = data[0];
470 dev->stats.rx_bytes = data[1];
471 dev->stats.tx_packets = data[2] + data[4] + data[6];
472 dev->stats.rx_packets = data[3] + data[5] + data[7];
473 dev->stats.multicast = data[3] + data[5];
474 dev->stats.collisions = data[10];
475 dev->stats.tx_aborted_errors = data[12];
480 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
486 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
487 ethtool_puts(&data, skge_stats[i].name);
492 static void skge_get_ring_param(struct net_device *dev,
493 struct ethtool_ringparam *p,
494 struct kernel_ethtool_ringparam *kernel_p,
495 struct netlink_ext_ack *extack)
497 struct skge_port *skge = netdev_priv(dev);
499 p->rx_max_pending = MAX_RX_RING_SIZE;
500 p->tx_max_pending = MAX_TX_RING_SIZE;
502 p->rx_pending = skge->rx_ring.count;
503 p->tx_pending = skge->tx_ring.count;
506 static int skge_set_ring_param(struct net_device *dev,
507 struct ethtool_ringparam *p,
508 struct kernel_ethtool_ringparam *kernel_p,
509 struct netlink_ext_ack *extack)
511 struct skge_port *skge = netdev_priv(dev);
514 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
515 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
518 skge->rx_ring.count = p->rx_pending;
519 skge->tx_ring.count = p->tx_pending;
521 if (netif_running(dev)) {
531 static u32 skge_get_msglevel(struct net_device *netdev)
533 struct skge_port *skge = netdev_priv(netdev);
534 return skge->msg_enable;
537 static void skge_set_msglevel(struct net_device *netdev, u32 value)
539 struct skge_port *skge = netdev_priv(netdev);
540 skge->msg_enable = value;
543 static int skge_nway_reset(struct net_device *dev)
545 struct skge_port *skge = netdev_priv(dev);
547 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
550 skge_phy_reset(skge);
554 static void skge_get_pauseparam(struct net_device *dev,
555 struct ethtool_pauseparam *ecmd)
557 struct skge_port *skge = netdev_priv(dev);
559 ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
560 (skge->flow_control == FLOW_MODE_SYM_OR_REM));
561 ecmd->tx_pause = (ecmd->rx_pause ||
562 (skge->flow_control == FLOW_MODE_LOC_SEND));
564 ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
567 static int skge_set_pauseparam(struct net_device *dev,
568 struct ethtool_pauseparam *ecmd)
570 struct skge_port *skge = netdev_priv(dev);
571 struct ethtool_pauseparam old;
574 skge_get_pauseparam(dev, &old);
576 if (ecmd->autoneg != old.autoneg)
577 skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
579 if (ecmd->rx_pause && ecmd->tx_pause)
580 skge->flow_control = FLOW_MODE_SYMMETRIC;
581 else if (ecmd->rx_pause && !ecmd->tx_pause)
582 skge->flow_control = FLOW_MODE_SYM_OR_REM;
583 else if (!ecmd->rx_pause && ecmd->tx_pause)
584 skge->flow_control = FLOW_MODE_LOC_SEND;
586 skge->flow_control = FLOW_MODE_NONE;
589 if (netif_running(dev)) {
601 /* Chip internal frequency for clock calculations */
602 static inline u32 hwkhz(const struct skge_hw *hw)
604 return is_genesis(hw) ? 53125 : 78125;
607 /* Chip HZ to microseconds */
608 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
610 return (ticks * 1000) / hwkhz(hw);
613 /* Microseconds to chip HZ */
614 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
616 return hwkhz(hw) * usec / 1000;
619 static int skge_get_coalesce(struct net_device *dev,
620 struct ethtool_coalesce *ecmd,
621 struct kernel_ethtool_coalesce *kernel_coal,
622 struct netlink_ext_ack *extack)
624 struct skge_port *skge = netdev_priv(dev);
625 struct skge_hw *hw = skge->hw;
626 int port = skge->port;
628 ecmd->rx_coalesce_usecs = 0;
629 ecmd->tx_coalesce_usecs = 0;
631 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
632 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
633 u32 msk = skge_read32(hw, B2_IRQM_MSK);
635 if (msk & rxirqmask[port])
636 ecmd->rx_coalesce_usecs = delay;
637 if (msk & txirqmask[port])
638 ecmd->tx_coalesce_usecs = delay;
644 /* Note: interrupt timer is per board, but can turn on/off per port */
645 static int skge_set_coalesce(struct net_device *dev,
646 struct ethtool_coalesce *ecmd,
647 struct kernel_ethtool_coalesce *kernel_coal,
648 struct netlink_ext_ack *extack)
650 struct skge_port *skge = netdev_priv(dev);
651 struct skge_hw *hw = skge->hw;
652 int port = skge->port;
653 u32 msk = skge_read32(hw, B2_IRQM_MSK);
656 if (ecmd->rx_coalesce_usecs == 0)
657 msk &= ~rxirqmask[port];
658 else if (ecmd->rx_coalesce_usecs < 25 ||
659 ecmd->rx_coalesce_usecs > 33333)
662 msk |= rxirqmask[port];
663 delay = ecmd->rx_coalesce_usecs;
666 if (ecmd->tx_coalesce_usecs == 0)
667 msk &= ~txirqmask[port];
668 else if (ecmd->tx_coalesce_usecs < 25 ||
669 ecmd->tx_coalesce_usecs > 33333)
672 msk |= txirqmask[port];
673 delay = min(delay, ecmd->rx_coalesce_usecs);
676 skge_write32(hw, B2_IRQM_MSK, msk);
678 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
680 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
681 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
686 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
687 static void skge_led(struct skge_port *skge, enum led_mode mode)
689 struct skge_hw *hw = skge->hw;
690 int port = skge->port;
692 spin_lock_bh(&hw->phy_lock);
693 if (is_genesis(hw)) {
696 if (hw->phy_type == SK_PHY_BCOM)
697 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
699 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
700 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
702 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
703 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
704 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
708 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
709 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
711 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
712 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
717 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
718 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
719 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
721 if (hw->phy_type == SK_PHY_BCOM)
722 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
724 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
725 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
726 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
733 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
734 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
735 PHY_M_LED_MO_DUP(MO_LED_OFF) |
736 PHY_M_LED_MO_10(MO_LED_OFF) |
737 PHY_M_LED_MO_100(MO_LED_OFF) |
738 PHY_M_LED_MO_1000(MO_LED_OFF) |
739 PHY_M_LED_MO_RX(MO_LED_OFF));
742 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
743 PHY_M_LED_PULS_DUR(PULS_170MS) |
744 PHY_M_LED_BLINK_RT(BLINK_84MS) |
748 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
749 PHY_M_LED_MO_RX(MO_LED_OFF) |
750 (skge->speed == SPEED_100 ?
751 PHY_M_LED_MO_100(MO_LED_ON) : 0));
754 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
755 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
756 PHY_M_LED_MO_DUP(MO_LED_ON) |
757 PHY_M_LED_MO_10(MO_LED_ON) |
758 PHY_M_LED_MO_100(MO_LED_ON) |
759 PHY_M_LED_MO_1000(MO_LED_ON) |
760 PHY_M_LED_MO_RX(MO_LED_ON));
763 spin_unlock_bh(&hw->phy_lock);
766 /* blink LED's for finding board */
767 static int skge_set_phys_id(struct net_device *dev,
768 enum ethtool_phys_id_state state)
770 struct skge_port *skge = netdev_priv(dev);
773 case ETHTOOL_ID_ACTIVE:
774 return 2; /* cycle on/off twice per second */
777 skge_led(skge, LED_MODE_TST);
781 skge_led(skge, LED_MODE_OFF);
784 case ETHTOOL_ID_INACTIVE:
785 /* back to regular LED state */
786 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
792 static int skge_get_eeprom_len(struct net_device *dev)
794 struct skge_port *skge = netdev_priv(dev);
797 pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, ®2);
798 return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
801 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
805 pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
808 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
809 } while (!(offset & PCI_VPD_ADDR_F));
811 pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
815 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
817 pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
818 pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
819 offset | PCI_VPD_ADDR_F);
822 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
823 } while (offset & PCI_VPD_ADDR_F);
826 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
829 struct skge_port *skge = netdev_priv(dev);
830 struct pci_dev *pdev = skge->hw->pdev;
831 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
832 int length = eeprom->len;
833 u16 offset = eeprom->offset;
838 eeprom->magic = SKGE_EEPROM_MAGIC;
841 u32 val = skge_vpd_read(pdev, cap, offset);
842 int n = min_t(int, length, sizeof(val));
844 memcpy(data, &val, n);
852 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
855 struct skge_port *skge = netdev_priv(dev);
856 struct pci_dev *pdev = skge->hw->pdev;
857 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
858 int length = eeprom->len;
859 u16 offset = eeprom->offset;
864 if (eeprom->magic != SKGE_EEPROM_MAGIC)
869 int n = min_t(int, length, sizeof(val));
872 val = skge_vpd_read(pdev, cap, offset);
873 memcpy(&val, data, n);
875 skge_vpd_write(pdev, cap, offset, val);
884 static const struct ethtool_ops skge_ethtool_ops = {
885 .supported_coalesce_params = ETHTOOL_COALESCE_USECS,
886 .get_drvinfo = skge_get_drvinfo,
887 .get_regs_len = skge_get_regs_len,
888 .get_regs = skge_get_regs,
889 .get_wol = skge_get_wol,
890 .set_wol = skge_set_wol,
891 .get_msglevel = skge_get_msglevel,
892 .set_msglevel = skge_set_msglevel,
893 .nway_reset = skge_nway_reset,
894 .get_link = ethtool_op_get_link,
895 .get_eeprom_len = skge_get_eeprom_len,
896 .get_eeprom = skge_get_eeprom,
897 .set_eeprom = skge_set_eeprom,
898 .get_ringparam = skge_get_ring_param,
899 .set_ringparam = skge_set_ring_param,
900 .get_pauseparam = skge_get_pauseparam,
901 .set_pauseparam = skge_set_pauseparam,
902 .get_coalesce = skge_get_coalesce,
903 .set_coalesce = skge_set_coalesce,
904 .get_strings = skge_get_strings,
905 .set_phys_id = skge_set_phys_id,
906 .get_sset_count = skge_get_sset_count,
907 .get_ethtool_stats = skge_get_ethtool_stats,
908 .get_link_ksettings = skge_get_link_ksettings,
909 .set_link_ksettings = skge_set_link_ksettings,
913 * Allocate ring elements and chain them together
914 * One-to-one association of board descriptors with ring elements
916 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
918 struct skge_tx_desc *d;
919 struct skge_element *e;
922 ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
926 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
928 if (i == ring->count - 1) {
929 e->next = ring->start;
930 d->next_offset = base;
933 d->next_offset = base + (i+1) * sizeof(*d);
936 ring->to_use = ring->to_clean = ring->start;
941 /* Allocate and setup a new buffer for receiving */
942 static int skge_rx_setup(struct skge_port *skge, struct skge_element *e,
943 struct sk_buff *skb, unsigned int bufsize)
945 struct skge_rx_desc *rd = e->desc;
948 map = dma_map_single(&skge->hw->pdev->dev, skb->data, bufsize,
951 if (dma_mapping_error(&skge->hw->pdev->dev, map))
954 rd->dma_lo = lower_32_bits(map);
955 rd->dma_hi = upper_32_bits(map);
957 rd->csum1_start = ETH_HLEN;
958 rd->csum2_start = ETH_HLEN;
964 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
965 dma_unmap_addr_set(e, mapaddr, map);
966 dma_unmap_len_set(e, maplen, bufsize);
970 /* Resume receiving using existing skb,
971 * Note: DMA address is not changed by chip.
972 * MTU not changed while receiver active.
974 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
976 struct skge_rx_desc *rd = e->desc;
979 rd->csum2_start = ETH_HLEN;
983 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
987 /* Free all buffers in receive ring, assumes receiver stopped */
988 static void skge_rx_clean(struct skge_port *skge)
990 struct skge_hw *hw = skge->hw;
991 struct skge_ring *ring = &skge->rx_ring;
992 struct skge_element *e;
996 struct skge_rx_desc *rd = e->desc;
999 dma_unmap_single(&hw->pdev->dev,
1000 dma_unmap_addr(e, mapaddr),
1001 dma_unmap_len(e, maplen),
1003 dev_kfree_skb(e->skb);
1006 } while ((e = e->next) != ring->start);
1010 /* Allocate buffers for receive ring
1011 * For receive: to_clean is next received frame.
1013 static int skge_rx_fill(struct net_device *dev)
1015 struct skge_port *skge = netdev_priv(dev);
1016 struct skge_ring *ring = &skge->rx_ring;
1017 struct skge_element *e;
1021 struct sk_buff *skb;
1023 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1028 skb_reserve(skb, NET_IP_ALIGN);
1029 if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) {
1033 } while ((e = e->next) != ring->start);
1035 ring->to_clean = ring->start;
1039 static const char *skge_pause(enum pause_status status)
1042 case FLOW_STAT_NONE:
1044 case FLOW_STAT_REM_SEND:
1046 case FLOW_STAT_LOC_SEND:
1048 case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
1051 return "indeterminated";
1056 static void skge_link_up(struct skge_port *skge)
1058 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1059 LED_BLK_OFF|LED_SYNC_OFF|LED_REG_ON);
1061 netif_carrier_on(skge->netdev);
1062 netif_wake_queue(skge->netdev);
1064 netif_info(skge, link, skge->netdev,
1065 "Link is up at %d Mbps, %s duplex, flow control %s\n",
1067 skge->duplex == DUPLEX_FULL ? "full" : "half",
1068 skge_pause(skge->flow_status));
1071 static void skge_link_down(struct skge_port *skge)
1073 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
1074 netif_carrier_off(skge->netdev);
1075 netif_stop_queue(skge->netdev);
1077 netif_info(skge, link, skge->netdev, "Link is down\n");
1080 static void xm_link_down(struct skge_hw *hw, int port)
1082 struct net_device *dev = hw->dev[port];
1083 struct skge_port *skge = netdev_priv(dev);
1085 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1087 if (netif_carrier_ok(dev))
1088 skge_link_down(skge);
1091 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1095 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1096 *val = xm_read16(hw, port, XM_PHY_DATA);
1098 if (hw->phy_type == SK_PHY_XMAC)
1101 for (i = 0; i < PHY_RETRIES; i++) {
1102 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1109 *val = xm_read16(hw, port, XM_PHY_DATA);
1114 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1117 if (__xm_phy_read(hw, port, reg, &v))
1118 pr_warn("%s: phy read timed out\n", hw->dev[port]->name);
1122 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1126 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1127 for (i = 0; i < PHY_RETRIES; i++) {
1128 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1135 xm_write16(hw, port, XM_PHY_DATA, val);
1136 for (i = 0; i < PHY_RETRIES; i++) {
1137 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1144 static void genesis_init(struct skge_hw *hw)
1146 /* set blink source counter */
1147 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1148 skge_write8(hw, B2_BSC_CTRL, BSC_START);
1150 /* configure mac arbiter */
1151 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1153 /* configure mac arbiter timeout values */
1154 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1155 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1156 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1157 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1159 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1160 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1161 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1162 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1164 /* configure packet arbiter timeout */
1165 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1166 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1167 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1168 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1169 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1172 static void genesis_reset(struct skge_hw *hw, int port)
1174 static const u8 zero[8] = { 0 };
1177 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1179 /* reset the statistics module */
1180 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1181 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1182 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
1183 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
1184 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
1186 /* disable Broadcom PHY IRQ */
1187 if (hw->phy_type == SK_PHY_BCOM)
1188 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1190 xm_outhash(hw, port, XM_HSM, zero);
1192 /* Flush TX and RX fifo */
1193 reg = xm_read32(hw, port, XM_MODE);
1194 xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1195 xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1198 /* Convert mode to MII values */
1199 static const u16 phy_pause_map[] = {
1200 [FLOW_MODE_NONE] = 0,
1201 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
1202 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1203 [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1206 /* special defines for FIBER (88E1011S only) */
1207 static const u16 fiber_pause_map[] = {
1208 [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
1209 [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
1210 [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
1211 [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
1215 /* Check status of Broadcom phy link */
1216 static void bcom_check_link(struct skge_hw *hw, int port)
1218 struct net_device *dev = hw->dev[port];
1219 struct skge_port *skge = netdev_priv(dev);
1222 /* read twice because of latch */
1223 xm_phy_read(hw, port, PHY_BCOM_STAT);
1224 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1226 if ((status & PHY_ST_LSYNC) == 0) {
1227 xm_link_down(hw, port);
1231 if (skge->autoneg == AUTONEG_ENABLE) {
1234 if (!(status & PHY_ST_AN_OVER))
1237 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1238 if (lpa & PHY_B_AN_RF) {
1239 netdev_notice(dev, "remote fault\n");
1243 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1245 /* Check Duplex mismatch */
1246 switch (aux & PHY_B_AS_AN_RES_MSK) {
1247 case PHY_B_RES_1000FD:
1248 skge->duplex = DUPLEX_FULL;
1250 case PHY_B_RES_1000HD:
1251 skge->duplex = DUPLEX_HALF;
1254 netdev_notice(dev, "duplex mismatch\n");
1258 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1259 switch (aux & PHY_B_AS_PAUSE_MSK) {
1260 case PHY_B_AS_PAUSE_MSK:
1261 skge->flow_status = FLOW_STAT_SYMMETRIC;
1264 skge->flow_status = FLOW_STAT_REM_SEND;
1267 skge->flow_status = FLOW_STAT_LOC_SEND;
1270 skge->flow_status = FLOW_STAT_NONE;
1272 skge->speed = SPEED_1000;
1275 if (!netif_carrier_ok(dev))
1276 genesis_link_up(skge);
1279 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1280 * Phy on for 100 or 10Mbit operation
1282 static void bcom_phy_init(struct skge_port *skge)
1284 struct skge_hw *hw = skge->hw;
1285 int port = skge->port;
1287 u16 id1, r, ext, ctl;
1289 /* magic workaround patterns for Broadcom */
1290 static const struct {
1294 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1295 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1296 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1297 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1299 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1300 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1303 /* read Id from external PHY (all have the same address) */
1304 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1306 /* Optimize MDIO transfer by suppressing preamble. */
1307 r = xm_read16(hw, port, XM_MMU_CMD);
1309 xm_write16(hw, port, XM_MMU_CMD, r);
1312 case PHY_BCOM_ID1_C0:
1314 * Workaround BCOM Errata for the C0 type.
1315 * Write magic patterns to reserved registers.
1317 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1318 xm_phy_write(hw, port,
1319 C0hack[i].reg, C0hack[i].val);
1322 case PHY_BCOM_ID1_A1:
1324 * Workaround BCOM Errata for the A1 type.
1325 * Write magic patterns to reserved registers.
1327 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1328 xm_phy_write(hw, port,
1329 A1hack[i].reg, A1hack[i].val);
1334 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1335 * Disable Power Management after reset.
1337 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1338 r |= PHY_B_AC_DIS_PM;
1339 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1342 xm_read16(hw, port, XM_ISRC);
1344 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1345 ctl = PHY_CT_SP1000; /* always 1000mbit */
1347 if (skge->autoneg == AUTONEG_ENABLE) {
1349 * Workaround BCOM Errata #1 for the C5 type.
1350 * 1000Base-T Link Acquisition Failure in Slave Mode
1351 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1353 u16 adv = PHY_B_1000C_RD;
1354 if (skge->advertising & ADVERTISED_1000baseT_Half)
1355 adv |= PHY_B_1000C_AHD;
1356 if (skge->advertising & ADVERTISED_1000baseT_Full)
1357 adv |= PHY_B_1000C_AFD;
1358 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1360 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1362 if (skge->duplex == DUPLEX_FULL)
1363 ctl |= PHY_CT_DUP_MD;
1364 /* Force to slave */
1365 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1368 /* Set autonegotiation pause parameters */
1369 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1370 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1372 /* Handle Jumbo frames */
1373 if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1374 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1375 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1377 ext |= PHY_B_PEC_HIGH_LA;
1381 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1382 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1384 /* Use link status change interrupt */
1385 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1388 static void xm_phy_init(struct skge_port *skge)
1390 struct skge_hw *hw = skge->hw;
1391 int port = skge->port;
1394 if (skge->autoneg == AUTONEG_ENABLE) {
1395 if (skge->advertising & ADVERTISED_1000baseT_Half)
1396 ctrl |= PHY_X_AN_HD;
1397 if (skge->advertising & ADVERTISED_1000baseT_Full)
1398 ctrl |= PHY_X_AN_FD;
1400 ctrl |= fiber_pause_map[skge->flow_control];
1402 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1404 /* Restart Auto-negotiation */
1405 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1407 /* Set DuplexMode in Config register */
1408 if (skge->duplex == DUPLEX_FULL)
1409 ctrl |= PHY_CT_DUP_MD;
1411 * Do NOT enable Auto-negotiation here. This would hold
1412 * the link down because no IDLEs are transmitted
1416 xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1418 /* Poll PHY for status changes */
1419 mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1422 static int xm_check_link(struct net_device *dev)
1424 struct skge_port *skge = netdev_priv(dev);
1425 struct skge_hw *hw = skge->hw;
1426 int port = skge->port;
1429 /* read twice because of latch */
1430 xm_phy_read(hw, port, PHY_XMAC_STAT);
1431 status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1433 if ((status & PHY_ST_LSYNC) == 0) {
1434 xm_link_down(hw, port);
1438 if (skge->autoneg == AUTONEG_ENABLE) {
1441 if (!(status & PHY_ST_AN_OVER))
1444 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1445 if (lpa & PHY_B_AN_RF) {
1446 netdev_notice(dev, "remote fault\n");
1450 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1452 /* Check Duplex mismatch */
1453 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1455 skge->duplex = DUPLEX_FULL;
1458 skge->duplex = DUPLEX_HALF;
1461 netdev_notice(dev, "duplex mismatch\n");
1465 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1466 if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1467 skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1468 (lpa & PHY_X_P_SYM_MD))
1469 skge->flow_status = FLOW_STAT_SYMMETRIC;
1470 else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1471 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1472 /* Enable PAUSE receive, disable PAUSE transmit */
1473 skge->flow_status = FLOW_STAT_REM_SEND;
1474 else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1475 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1476 /* Disable PAUSE receive, enable PAUSE transmit */
1477 skge->flow_status = FLOW_STAT_LOC_SEND;
1479 skge->flow_status = FLOW_STAT_NONE;
1481 skge->speed = SPEED_1000;
1484 if (!netif_carrier_ok(dev))
1485 genesis_link_up(skge);
1489 /* Poll to check for link coming up.
1491 * Since internal PHY is wired to a level triggered pin, can't
1492 * get an interrupt when carrier is detected, need to poll for
1495 static void xm_link_timer(struct timer_list *t)
1497 struct skge_port *skge = from_timer(skge, t, link_timer);
1498 struct net_device *dev = skge->netdev;
1499 struct skge_hw *hw = skge->hw;
1500 int port = skge->port;
1502 unsigned long flags;
1504 if (!netif_running(dev))
1507 spin_lock_irqsave(&hw->phy_lock, flags);
1510 * Verify that the link by checking GPIO register three times.
1511 * This pin has the signal from the link_sync pin connected to it.
1513 for (i = 0; i < 3; i++) {
1514 if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1518 /* Re-enable interrupt to detect link down */
1519 if (xm_check_link(dev)) {
1520 u16 msk = xm_read16(hw, port, XM_IMSK);
1521 msk &= ~XM_IS_INP_ASS;
1522 xm_write16(hw, port, XM_IMSK, msk);
1523 xm_read16(hw, port, XM_ISRC);
1526 mod_timer(&skge->link_timer,
1527 round_jiffies(jiffies + LINK_HZ));
1529 spin_unlock_irqrestore(&hw->phy_lock, flags);
1532 static void genesis_mac_init(struct skge_hw *hw, int port)
1534 struct net_device *dev = hw->dev[port];
1535 struct skge_port *skge = netdev_priv(dev);
1536 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1539 static const u8 zero[6] = { 0 };
1541 for (i = 0; i < 10; i++) {
1542 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1544 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1549 netdev_warn(dev, "genesis reset failed\n");
1552 /* Unreset the XMAC. */
1553 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1556 * Perform additional initialization for external PHYs,
1557 * namely for the 1000baseTX cards that use the XMAC's
1560 if (hw->phy_type != SK_PHY_XMAC) {
1561 /* Take external Phy out of reset */
1562 r = skge_read32(hw, B2_GP_IO);
1564 r |= GP_DIR_0|GP_IO_0;
1566 r |= GP_DIR_2|GP_IO_2;
1568 skge_write32(hw, B2_GP_IO, r);
1570 /* Enable GMII interface */
1571 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1575 switch (hw->phy_type) {
1580 bcom_phy_init(skge);
1581 bcom_check_link(hw, port);
1584 /* Set Station Address */
1585 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1587 /* We don't use match addresses so clear */
1588 for (i = 1; i < 16; i++)
1589 xm_outaddr(hw, port, XM_EXM(i), zero);
1591 /* Clear MIB counters */
1592 xm_write16(hw, port, XM_STAT_CMD,
1593 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1594 /* Clear two times according to Errata #3 */
1595 xm_write16(hw, port, XM_STAT_CMD,
1596 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1598 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1599 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1601 /* We don't need the FCS appended to the packet. */
1602 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1604 r |= XM_RX_BIG_PK_OK;
1606 if (skge->duplex == DUPLEX_HALF) {
1608 * If in manual half duplex mode the other side might be in
1609 * full duplex mode, so ignore if a carrier extension is not seen
1610 * on frames received
1612 r |= XM_RX_DIS_CEXT;
1614 xm_write16(hw, port, XM_RX_CMD, r);
1616 /* We want short frames padded to 60 bytes. */
1617 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1619 /* Increase threshold for jumbo frames on dual port */
1620 if (hw->ports > 1 && jumbo)
1621 xm_write16(hw, port, XM_TX_THR, 1020);
1623 xm_write16(hw, port, XM_TX_THR, 512);
1626 * Enable the reception of all error frames. This is
1627 * a necessary evil due to the design of the XMAC. The
1628 * XMAC's receive FIFO is only 8K in size, however jumbo
1629 * frames can be up to 9000 bytes in length. When bad
1630 * frame filtering is enabled, the XMAC's RX FIFO operates
1631 * in 'store and forward' mode. For this to work, the
1632 * entire frame has to fit into the FIFO, but that means
1633 * that jumbo frames larger than 8192 bytes will be
1634 * truncated. Disabling all bad frame filtering causes
1635 * the RX FIFO to operate in streaming mode, in which
1636 * case the XMAC will start transferring frames out of the
1637 * RX FIFO as soon as the FIFO threshold is reached.
1639 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1643 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1644 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1645 * and 'Octets Rx OK Hi Cnt Ov'.
1647 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1650 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1651 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1652 * and 'Octets Tx OK Hi Cnt Ov'.
1654 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1656 /* Configure MAC arbiter */
1657 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1659 /* configure timeout values */
1660 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1661 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1662 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1663 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1665 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1666 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1667 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1668 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1670 /* Configure Rx MAC FIFO */
1671 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1672 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1673 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1675 /* Configure Tx MAC FIFO */
1676 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1677 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1678 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1681 /* Enable frame flushing if jumbo frames used */
1682 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1684 /* enable timeout timers if normal frames */
1685 skge_write16(hw, B3_PA_CTRL,
1686 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1690 static void genesis_stop(struct skge_port *skge)
1692 struct skge_hw *hw = skge->hw;
1693 int port = skge->port;
1694 unsigned retries = 1000;
1697 /* Disable Tx and Rx */
1698 cmd = xm_read16(hw, port, XM_MMU_CMD);
1699 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1700 xm_write16(hw, port, XM_MMU_CMD, cmd);
1702 genesis_reset(hw, port);
1704 /* Clear Tx packet arbiter timeout IRQ */
1705 skge_write16(hw, B3_PA_CTRL,
1706 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1709 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1711 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1712 if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1714 } while (--retries > 0);
1716 /* For external PHYs there must be special handling */
1717 if (hw->phy_type != SK_PHY_XMAC) {
1718 u32 reg = skge_read32(hw, B2_GP_IO);
1726 skge_write32(hw, B2_GP_IO, reg);
1727 skge_read32(hw, B2_GP_IO);
1730 xm_write16(hw, port, XM_MMU_CMD,
1731 xm_read16(hw, port, XM_MMU_CMD)
1732 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1734 xm_read16(hw, port, XM_MMU_CMD);
1738 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1740 struct skge_hw *hw = skge->hw;
1741 int port = skge->port;
1743 unsigned long timeout = jiffies + HZ;
1745 xm_write16(hw, port,
1746 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1748 /* wait for update to complete */
1749 while (xm_read16(hw, port, XM_STAT_CMD)
1750 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1751 if (time_after(jiffies, timeout))
1756 /* special case for 64 bit octet counter */
1757 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1758 | xm_read32(hw, port, XM_TXO_OK_LO);
1759 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1760 | xm_read32(hw, port, XM_RXO_OK_LO);
1762 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1763 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1766 static void genesis_mac_intr(struct skge_hw *hw, int port)
1768 struct net_device *dev = hw->dev[port];
1769 struct skge_port *skge = netdev_priv(dev);
1770 u16 status = xm_read16(hw, port, XM_ISRC);
1772 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1773 "mac interrupt status 0x%x\n", status);
1775 if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1776 xm_link_down(hw, port);
1777 mod_timer(&skge->link_timer, jiffies + 1);
1780 if (status & XM_IS_TXF_UR) {
1781 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1782 ++dev->stats.tx_fifo_errors;
1786 static void genesis_link_up(struct skge_port *skge)
1788 struct skge_hw *hw = skge->hw;
1789 int port = skge->port;
1793 cmd = xm_read16(hw, port, XM_MMU_CMD);
1796 * enabling pause frame reception is required for 1000BT
1797 * because the XMAC is not reset if the link is going down
1799 if (skge->flow_status == FLOW_STAT_NONE ||
1800 skge->flow_status == FLOW_STAT_LOC_SEND)
1801 /* Disable Pause Frame Reception */
1802 cmd |= XM_MMU_IGN_PF;
1804 /* Enable Pause Frame Reception */
1805 cmd &= ~XM_MMU_IGN_PF;
1807 xm_write16(hw, port, XM_MMU_CMD, cmd);
1809 mode = xm_read32(hw, port, XM_MODE);
1810 if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1811 skge->flow_status == FLOW_STAT_LOC_SEND) {
1813 * Configure Pause Frame Generation
1814 * Use internal and external Pause Frame Generation.
1815 * Sending pause frames is edge triggered.
1816 * Send a Pause frame with the maximum pause time if
1817 * internal oder external FIFO full condition occurs.
1818 * Send a zero pause time frame to re-start transmission.
1820 /* XM_PAUSE_DA = '010000C28001' (default) */
1821 /* XM_MAC_PTIME = 0xffff (maximum) */
1822 /* remember this value is defined in big endian (!) */
1823 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1825 mode |= XM_PAUSE_MODE;
1826 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1829 * disable pause frame generation is required for 1000BT
1830 * because the XMAC is not reset if the link is going down
1832 /* Disable Pause Mode in Mode Register */
1833 mode &= ~XM_PAUSE_MODE;
1835 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1838 xm_write32(hw, port, XM_MODE, mode);
1840 /* Turn on detection of Tx underrun */
1841 msk = xm_read16(hw, port, XM_IMSK);
1842 msk &= ~XM_IS_TXF_UR;
1843 xm_write16(hw, port, XM_IMSK, msk);
1845 xm_read16(hw, port, XM_ISRC);
1847 /* get MMU Command Reg. */
1848 cmd = xm_read16(hw, port, XM_MMU_CMD);
1849 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1850 cmd |= XM_MMU_GMII_FD;
1853 * Workaround BCOM Errata (#10523) for all BCom Phys
1854 * Enable Power Management after link up
1856 if (hw->phy_type == SK_PHY_BCOM) {
1857 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1858 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1859 & ~PHY_B_AC_DIS_PM);
1860 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1864 xm_write16(hw, port, XM_MMU_CMD,
1865 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1870 static inline void bcom_phy_intr(struct skge_port *skge)
1872 struct skge_hw *hw = skge->hw;
1873 int port = skge->port;
1876 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1877 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1878 "phy interrupt status 0x%x\n", isrc);
1880 if (isrc & PHY_B_IS_PSE)
1881 pr_err("%s: uncorrectable pair swap error\n",
1882 hw->dev[port]->name);
1884 /* Workaround BCom Errata:
1885 * enable and disable loopback mode if "NO HCD" occurs.
1887 if (isrc & PHY_B_IS_NO_HDCL) {
1888 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1889 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1890 ctrl | PHY_CT_LOOP);
1891 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1892 ctrl & ~PHY_CT_LOOP);
1895 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1896 bcom_check_link(hw, port);
1900 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1904 gma_write16(hw, port, GM_SMI_DATA, val);
1905 gma_write16(hw, port, GM_SMI_CTRL,
1906 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1907 for (i = 0; i < PHY_RETRIES; i++) {
1910 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1914 pr_warn("%s: phy write timeout\n", hw->dev[port]->name);
1918 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1922 gma_write16(hw, port, GM_SMI_CTRL,
1923 GM_SMI_CT_PHY_AD(hw->phy_addr)
1924 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1926 for (i = 0; i < PHY_RETRIES; i++) {
1928 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1934 *val = gma_read16(hw, port, GM_SMI_DATA);
1938 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1941 if (__gm_phy_read(hw, port, reg, &v))
1942 pr_warn("%s: phy read timeout\n", hw->dev[port]->name);
1946 /* Marvell Phy Initialization */
1947 static void yukon_init(struct skge_hw *hw, int port)
1949 struct skge_port *skge = netdev_priv(hw->dev[port]);
1950 u16 ctrl, ct1000, adv;
1952 if (skge->autoneg == AUTONEG_ENABLE) {
1953 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1955 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1956 PHY_M_EC_MAC_S_MSK);
1957 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1959 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1961 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1964 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1965 if (skge->autoneg == AUTONEG_DISABLE)
1966 ctrl &= ~PHY_CT_ANE;
1968 ctrl |= PHY_CT_RESET;
1969 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1975 if (skge->autoneg == AUTONEG_ENABLE) {
1977 if (skge->advertising & ADVERTISED_1000baseT_Full)
1978 ct1000 |= PHY_M_1000C_AFD;
1979 if (skge->advertising & ADVERTISED_1000baseT_Half)
1980 ct1000 |= PHY_M_1000C_AHD;
1981 if (skge->advertising & ADVERTISED_100baseT_Full)
1982 adv |= PHY_M_AN_100_FD;
1983 if (skge->advertising & ADVERTISED_100baseT_Half)
1984 adv |= PHY_M_AN_100_HD;
1985 if (skge->advertising & ADVERTISED_10baseT_Full)
1986 adv |= PHY_M_AN_10_FD;
1987 if (skge->advertising & ADVERTISED_10baseT_Half)
1988 adv |= PHY_M_AN_10_HD;
1990 /* Set Flow-control capabilities */
1991 adv |= phy_pause_map[skge->flow_control];
1993 if (skge->advertising & ADVERTISED_1000baseT_Full)
1994 adv |= PHY_M_AN_1000X_AFD;
1995 if (skge->advertising & ADVERTISED_1000baseT_Half)
1996 adv |= PHY_M_AN_1000X_AHD;
1998 adv |= fiber_pause_map[skge->flow_control];
2001 /* Restart Auto-negotiation */
2002 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
2004 /* forced speed/duplex settings */
2005 ct1000 = PHY_M_1000C_MSE;
2007 if (skge->duplex == DUPLEX_FULL)
2008 ctrl |= PHY_CT_DUP_MD;
2010 switch (skge->speed) {
2012 ctrl |= PHY_CT_SP1000;
2015 ctrl |= PHY_CT_SP100;
2019 ctrl |= PHY_CT_RESET;
2022 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2024 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2025 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2027 /* Enable phy interrupt on autonegotiation complete (or link up) */
2028 if (skge->autoneg == AUTONEG_ENABLE)
2029 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2031 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2034 static void yukon_reset(struct skge_hw *hw, int port)
2036 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2037 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
2038 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2039 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2040 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2042 gma_write16(hw, port, GM_RX_CTRL,
2043 gma_read16(hw, port, GM_RX_CTRL)
2044 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2047 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2048 static int is_yukon_lite_a0(struct skge_hw *hw)
2053 if (hw->chip_id != CHIP_ID_YUKON)
2056 reg = skge_read32(hw, B2_FAR);
2057 skge_write8(hw, B2_FAR + 3, 0xff);
2058 ret = (skge_read8(hw, B2_FAR + 3) != 0);
2059 skge_write32(hw, B2_FAR, reg);
2063 static void yukon_mac_init(struct skge_hw *hw, int port)
2065 struct skge_port *skge = netdev_priv(hw->dev[port]);
2068 const u8 *addr = hw->dev[port]->dev_addr;
2070 /* WA code for COMA mode -- set PHY reset */
2071 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2072 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2073 reg = skge_read32(hw, B2_GP_IO);
2074 reg |= GP_DIR_9 | GP_IO_9;
2075 skge_write32(hw, B2_GP_IO, reg);
2079 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2080 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2082 /* WA code for COMA mode -- clear PHY reset */
2083 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2084 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2085 reg = skge_read32(hw, B2_GP_IO);
2088 skge_write32(hw, B2_GP_IO, reg);
2091 /* Set hardware config mode */
2092 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2093 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2094 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2096 /* Clear GMC reset */
2097 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2098 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2099 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2101 if (skge->autoneg == AUTONEG_DISABLE) {
2102 reg = GM_GPCR_AU_ALL_DIS;
2103 gma_write16(hw, port, GM_GP_CTRL,
2104 gma_read16(hw, port, GM_GP_CTRL) | reg);
2106 switch (skge->speed) {
2108 reg &= ~GM_GPCR_SPEED_100;
2109 reg |= GM_GPCR_SPEED_1000;
2112 reg &= ~GM_GPCR_SPEED_1000;
2113 reg |= GM_GPCR_SPEED_100;
2116 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2120 if (skge->duplex == DUPLEX_FULL)
2121 reg |= GM_GPCR_DUP_FULL;
2123 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2125 switch (skge->flow_control) {
2126 case FLOW_MODE_NONE:
2127 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2128 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2130 case FLOW_MODE_LOC_SEND:
2131 /* disable Rx flow-control */
2132 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2134 case FLOW_MODE_SYMMETRIC:
2135 case FLOW_MODE_SYM_OR_REM:
2136 /* enable Tx & Rx flow-control */
2140 gma_write16(hw, port, GM_GP_CTRL, reg);
2141 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2143 yukon_init(hw, port);
2146 reg = gma_read16(hw, port, GM_PHY_ADDR);
2147 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2149 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2150 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2151 gma_write16(hw, port, GM_PHY_ADDR, reg);
2153 /* transmit control */
2154 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2156 /* receive control reg: unicast + multicast + no FCS */
2157 gma_write16(hw, port, GM_RX_CTRL,
2158 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2160 /* transmit flow control */
2161 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2163 /* transmit parameter */
2164 gma_write16(hw, port, GM_TX_PARAM,
2165 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2166 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2167 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2169 /* configure the Serial Mode Register */
2170 reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2172 | IPG_DATA_VAL(IPG_DATA_DEF);
2174 if (hw->dev[port]->mtu > ETH_DATA_LEN)
2175 reg |= GM_SMOD_JUMBO_ENA;
2177 gma_write16(hw, port, GM_SERIAL_MODE, reg);
2179 /* physical address: used for pause frames */
2180 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2181 /* virtual address for data */
2182 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2184 /* enable interrupt mask for counter overflows */
2185 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2186 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2187 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2189 /* Initialize Mac Fifo */
2191 /* Configure Rx MAC FIFO */
2192 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2193 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2195 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2196 if (is_yukon_lite_a0(hw))
2197 reg &= ~GMF_RX_F_FL_ON;
2199 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2200 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2202 * because Pause Packet Truncation in GMAC is not working
2203 * we have to increase the Flush Threshold to 64 bytes
2204 * in order to flush pause packets in Rx FIFO on Yukon-1
2206 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2208 /* Configure Tx MAC FIFO */
2209 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2210 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2213 /* Go into power down mode */
2214 static void yukon_suspend(struct skge_hw *hw, int port)
2218 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2219 ctrl |= PHY_M_PC_POL_R_DIS;
2220 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2222 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2223 ctrl |= PHY_CT_RESET;
2224 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2226 /* switch IEEE compatible power down mode on */
2227 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2228 ctrl |= PHY_CT_PDOWN;
2229 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2232 static void yukon_stop(struct skge_port *skge)
2234 struct skge_hw *hw = skge->hw;
2235 int port = skge->port;
2237 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2238 yukon_reset(hw, port);
2240 gma_write16(hw, port, GM_GP_CTRL,
2241 gma_read16(hw, port, GM_GP_CTRL)
2242 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2243 gma_read16(hw, port, GM_GP_CTRL);
2245 yukon_suspend(hw, port);
2247 /* set GPHY Control reset */
2248 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2249 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2252 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2254 struct skge_hw *hw = skge->hw;
2255 int port = skge->port;
2258 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2259 | gma_read32(hw, port, GM_TXO_OK_LO);
2260 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2261 | gma_read32(hw, port, GM_RXO_OK_LO);
2263 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2264 data[i] = gma_read32(hw, port,
2265 skge_stats[i].gma_offset);
2268 static void yukon_mac_intr(struct skge_hw *hw, int port)
2270 struct net_device *dev = hw->dev[port];
2271 struct skge_port *skge = netdev_priv(dev);
2272 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2274 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2275 "mac interrupt status 0x%x\n", status);
2277 if (status & GM_IS_RX_FF_OR) {
2278 ++dev->stats.rx_fifo_errors;
2279 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2282 if (status & GM_IS_TX_FF_UR) {
2283 ++dev->stats.tx_fifo_errors;
2284 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2289 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2291 switch (aux & PHY_M_PS_SPEED_MSK) {
2292 case PHY_M_PS_SPEED_1000:
2294 case PHY_M_PS_SPEED_100:
2301 static void yukon_link_up(struct skge_port *skge)
2303 struct skge_hw *hw = skge->hw;
2304 int port = skge->port;
2307 /* Enable Transmit FIFO Underrun */
2308 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2310 reg = gma_read16(hw, port, GM_GP_CTRL);
2311 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2312 reg |= GM_GPCR_DUP_FULL;
2315 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2316 gma_write16(hw, port, GM_GP_CTRL, reg);
2318 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2322 static void yukon_link_down(struct skge_port *skge)
2324 struct skge_hw *hw = skge->hw;
2325 int port = skge->port;
2328 ctrl = gma_read16(hw, port, GM_GP_CTRL);
2329 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2330 gma_write16(hw, port, GM_GP_CTRL, ctrl);
2332 if (skge->flow_status == FLOW_STAT_REM_SEND) {
2333 ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2334 ctrl |= PHY_M_AN_ASP;
2335 /* restore Asymmetric Pause bit */
2336 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2339 skge_link_down(skge);
2341 yukon_init(hw, port);
2344 static void yukon_phy_intr(struct skge_port *skge)
2346 struct skge_hw *hw = skge->hw;
2347 int port = skge->port;
2348 const char *reason = NULL;
2349 u16 istatus, phystat;
2351 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2352 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2354 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2355 "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2357 if (istatus & PHY_M_IS_AN_COMPL) {
2358 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2360 reason = "remote fault";
2364 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2365 reason = "master/slave fault";
2369 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2370 reason = "speed/duplex";
2374 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2375 ? DUPLEX_FULL : DUPLEX_HALF;
2376 skge->speed = yukon_speed(hw, phystat);
2378 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2379 switch (phystat & PHY_M_PS_PAUSE_MSK) {
2380 case PHY_M_PS_PAUSE_MSK:
2381 skge->flow_status = FLOW_STAT_SYMMETRIC;
2383 case PHY_M_PS_RX_P_EN:
2384 skge->flow_status = FLOW_STAT_REM_SEND;
2386 case PHY_M_PS_TX_P_EN:
2387 skge->flow_status = FLOW_STAT_LOC_SEND;
2390 skge->flow_status = FLOW_STAT_NONE;
2393 if (skge->flow_status == FLOW_STAT_NONE ||
2394 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2395 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2397 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2398 yukon_link_up(skge);
2402 if (istatus & PHY_M_IS_LSP_CHANGE)
2403 skge->speed = yukon_speed(hw, phystat);
2405 if (istatus & PHY_M_IS_DUP_CHANGE)
2406 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2407 if (istatus & PHY_M_IS_LST_CHANGE) {
2408 if (phystat & PHY_M_PS_LINK_UP)
2409 yukon_link_up(skge);
2411 yukon_link_down(skge);
2415 pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2417 /* XXX restart autonegotiation? */
2420 static void skge_phy_reset(struct skge_port *skge)
2422 struct skge_hw *hw = skge->hw;
2423 int port = skge->port;
2424 struct net_device *dev = hw->dev[port];
2426 netif_stop_queue(skge->netdev);
2427 netif_carrier_off(skge->netdev);
2429 spin_lock_bh(&hw->phy_lock);
2430 if (is_genesis(hw)) {
2431 genesis_reset(hw, port);
2432 genesis_mac_init(hw, port);
2434 yukon_reset(hw, port);
2435 yukon_init(hw, port);
2437 spin_unlock_bh(&hw->phy_lock);
2439 skge_set_multicast(dev);
2442 /* Basic MII support */
2443 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2445 struct mii_ioctl_data *data = if_mii(ifr);
2446 struct skge_port *skge = netdev_priv(dev);
2447 struct skge_hw *hw = skge->hw;
2448 int err = -EOPNOTSUPP;
2450 if (!netif_running(dev))
2451 return -ENODEV; /* Phy still in reset */
2455 data->phy_id = hw->phy_addr;
2460 spin_lock_bh(&hw->phy_lock);
2463 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2465 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2466 spin_unlock_bh(&hw->phy_lock);
2467 data->val_out = val;
2472 spin_lock_bh(&hw->phy_lock);
2474 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2477 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2479 spin_unlock_bh(&hw->phy_lock);
2485 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2491 end = start + len - 1;
2493 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2494 skge_write32(hw, RB_ADDR(q, RB_START), start);
2495 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2496 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2497 skge_write32(hw, RB_ADDR(q, RB_END), end);
2499 if (q == Q_R1 || q == Q_R2) {
2500 /* Set thresholds on receive queue's */
2501 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2503 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2506 /* Enable store & forward on Tx queue's because
2507 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2509 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2512 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2515 /* Setup Bus Memory Interface */
2516 static void skge_qset(struct skge_port *skge, u16 q,
2517 const struct skge_element *e)
2519 struct skge_hw *hw = skge->hw;
2520 u32 watermark = 0x600;
2521 u64 base = skge->dma + (e->desc - skge->mem);
2523 /* optimization to reduce window on 32bit/33mhz */
2524 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2527 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2528 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2529 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2530 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2533 static int skge_up(struct net_device *dev)
2535 struct skge_port *skge = netdev_priv(dev);
2536 struct skge_hw *hw = skge->hw;
2537 int port = skge->port;
2538 u32 chunk, ram_addr;
2539 size_t rx_size, tx_size;
2542 if (!is_valid_ether_addr(dev->dev_addr))
2545 netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2547 if (dev->mtu > RX_BUF_SIZE)
2548 skge->rx_buf_size = dev->mtu + ETH_HLEN;
2550 skge->rx_buf_size = RX_BUF_SIZE;
2553 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2554 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2555 skge->mem_size = tx_size + rx_size;
2556 skge->mem = dma_alloc_coherent(&hw->pdev->dev, skge->mem_size,
2557 &skge->dma, GFP_KERNEL);
2561 BUG_ON(skge->dma & 7);
2563 if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) {
2564 dev_err(&hw->pdev->dev, "dma_alloc_coherent region crosses 4G boundary\n");
2569 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2573 err = skge_rx_fill(dev);
2577 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2578 skge->dma + rx_size);
2582 if (hw->ports == 1) {
2583 err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2586 netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2587 hw->pdev->irq, err);
2592 /* Initialize MAC */
2593 netif_carrier_off(dev);
2594 spin_lock_bh(&hw->phy_lock);
2596 genesis_mac_init(hw, port);
2598 yukon_mac_init(hw, port);
2599 spin_unlock_bh(&hw->phy_lock);
2601 /* Configure RAMbuffers - equally between ports and tx/rx */
2602 chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
2603 ram_addr = hw->ram_offset + 2 * chunk * port;
2605 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2606 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2608 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2609 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2610 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2612 /* Start receiver BMU */
2614 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2615 skge_led(skge, LED_MODE_ON);
2617 spin_lock_irq(&hw->hw_lock);
2618 hw->intr_mask |= portmask[port];
2619 skge_write32(hw, B0_IMSK, hw->intr_mask);
2620 skge_read32(hw, B0_IMSK);
2621 spin_unlock_irq(&hw->hw_lock);
2623 napi_enable(&skge->napi);
2625 skge_set_multicast(dev);
2630 kfree(skge->tx_ring.start);
2632 skge_rx_clean(skge);
2633 kfree(skge->rx_ring.start);
2635 dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
2643 static void skge_rx_stop(struct skge_hw *hw, int port)
2645 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2646 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2647 RB_RST_SET|RB_DIS_OP_MD);
2648 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2651 static int skge_down(struct net_device *dev)
2653 struct skge_port *skge = netdev_priv(dev);
2654 struct skge_hw *hw = skge->hw;
2655 int port = skge->port;
2660 netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2662 netif_tx_disable(dev);
2664 if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2665 del_timer_sync(&skge->link_timer);
2667 napi_disable(&skge->napi);
2668 netif_carrier_off(dev);
2670 spin_lock_irq(&hw->hw_lock);
2671 hw->intr_mask &= ~portmask[port];
2672 skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2673 skge_read32(hw, B0_IMSK);
2674 spin_unlock_irq(&hw->hw_lock);
2677 free_irq(hw->pdev->irq, hw);
2679 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
2685 /* Stop transmitter */
2686 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2687 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2688 RB_RST_SET|RB_DIS_OP_MD);
2691 /* Disable Force Sync bit and Enable Alloc bit */
2692 skge_write8(hw, SK_REG(port, TXA_CTRL),
2693 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2695 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2696 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2697 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2699 /* Reset PCI FIFO */
2700 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2701 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2703 /* Reset the RAM Buffer async Tx queue */
2704 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2706 skge_rx_stop(hw, port);
2708 if (is_genesis(hw)) {
2709 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2710 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2712 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2713 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2716 skge_led(skge, LED_MODE_OFF);
2718 netif_tx_lock_bh(dev);
2720 netif_tx_unlock_bh(dev);
2722 skge_rx_clean(skge);
2724 kfree(skge->rx_ring.start);
2725 kfree(skge->tx_ring.start);
2726 dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
2732 static inline int skge_avail(const struct skge_ring *ring)
2735 return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2736 + (ring->to_clean - ring->to_use) - 1;
2739 static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2740 struct net_device *dev)
2742 struct skge_port *skge = netdev_priv(dev);
2743 struct skge_hw *hw = skge->hw;
2744 struct skge_element *e;
2745 struct skge_tx_desc *td;
2750 if (skb_padto(skb, ETH_ZLEN))
2751 return NETDEV_TX_OK;
2753 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2754 return NETDEV_TX_BUSY;
2756 e = skge->tx_ring.to_use;
2758 BUG_ON(td->control & BMU_OWN);
2760 len = skb_headlen(skb);
2761 map = dma_map_single(&hw->pdev->dev, skb->data, len, DMA_TO_DEVICE);
2762 if (dma_mapping_error(&hw->pdev->dev, map))
2765 dma_unmap_addr_set(e, mapaddr, map);
2766 dma_unmap_len_set(e, maplen, len);
2768 td->dma_lo = lower_32_bits(map);
2769 td->dma_hi = upper_32_bits(map);
2771 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2772 const int offset = skb_checksum_start_offset(skb);
2774 /* This seems backwards, but it is what the sk98lin
2775 * does. Looks like hardware is wrong?
2777 if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2778 hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2779 control = BMU_TCP_CHECK;
2781 control = BMU_UDP_CHECK;
2784 td->csum_start = offset;
2785 td->csum_write = offset + skb->csum_offset;
2787 control = BMU_CHECK;
2789 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2790 control |= BMU_EOF | BMU_IRQ_EOF;
2792 struct skge_tx_desc *tf = td;
2794 control |= BMU_STFWD;
2795 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2796 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2798 map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2799 skb_frag_size(frag), DMA_TO_DEVICE);
2800 if (dma_mapping_error(&hw->pdev->dev, map))
2801 goto mapping_unwind;
2806 BUG_ON(tf->control & BMU_OWN);
2808 tf->dma_lo = lower_32_bits(map);
2809 tf->dma_hi = upper_32_bits(map);
2810 dma_unmap_addr_set(e, mapaddr, map);
2811 dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2813 tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2815 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2817 /* Make sure all the descriptors written */
2819 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2822 netdev_sent_queue(dev, skb->len);
2824 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2826 netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2827 "tx queued, slot %td, len %d\n",
2828 e - skge->tx_ring.start, skb->len);
2830 skge->tx_ring.to_use = e->next;
2833 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2834 netdev_dbg(dev, "transmit queue full\n");
2835 netif_stop_queue(dev);
2838 return NETDEV_TX_OK;
2841 e = skge->tx_ring.to_use;
2842 dma_unmap_single(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
2843 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2846 dma_unmap_page(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
2847 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2851 if (net_ratelimit())
2852 dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name);
2853 dev_kfree_skb_any(skb);
2854 return NETDEV_TX_OK;
2858 /* Free resources associated with this reing element */
2859 static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2862 /* skb header vs. fragment */
2863 if (control & BMU_STF)
2864 dma_unmap_single(&pdev->dev, dma_unmap_addr(e, mapaddr),
2865 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2867 dma_unmap_page(&pdev->dev, dma_unmap_addr(e, mapaddr),
2868 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2871 /* Free all buffers in transmit ring */
2872 static void skge_tx_clean(struct net_device *dev)
2874 struct skge_port *skge = netdev_priv(dev);
2875 struct skge_element *e;
2877 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2878 struct skge_tx_desc *td = e->desc;
2880 skge_tx_unmap(skge->hw->pdev, e, td->control);
2882 if (td->control & BMU_EOF)
2883 dev_kfree_skb(e->skb);
2887 netdev_reset_queue(dev);
2888 skge->tx_ring.to_clean = e;
2891 static void skge_tx_timeout(struct net_device *dev, unsigned int txqueue)
2893 struct skge_port *skge = netdev_priv(dev);
2895 netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2897 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2899 netif_wake_queue(dev);
2902 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2906 if (!netif_running(dev)) {
2907 WRITE_ONCE(dev->mtu, new_mtu);
2913 WRITE_ONCE(dev->mtu, new_mtu);
2922 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2924 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2928 crc = ether_crc_le(ETH_ALEN, addr);
2930 filter[bit/8] |= 1 << (bit%8);
2933 static void genesis_set_multicast(struct net_device *dev)
2935 struct skge_port *skge = netdev_priv(dev);
2936 struct skge_hw *hw = skge->hw;
2937 int port = skge->port;
2938 struct netdev_hw_addr *ha;
2942 mode = xm_read32(hw, port, XM_MODE);
2943 mode |= XM_MD_ENA_HASH;
2944 if (dev->flags & IFF_PROMISC)
2945 mode |= XM_MD_ENA_PROM;
2947 mode &= ~XM_MD_ENA_PROM;
2949 if (dev->flags & IFF_ALLMULTI)
2950 memset(filter, 0xff, sizeof(filter));
2952 memset(filter, 0, sizeof(filter));
2954 if (skge->flow_status == FLOW_STAT_REM_SEND ||
2955 skge->flow_status == FLOW_STAT_SYMMETRIC)
2956 genesis_add_filter(filter, pause_mc_addr);
2958 netdev_for_each_mc_addr(ha, dev)
2959 genesis_add_filter(filter, ha->addr);
2962 xm_write32(hw, port, XM_MODE, mode);
2963 xm_outhash(hw, port, XM_HSM, filter);
2966 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2968 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2970 filter[bit / 8] |= 1 << (bit % 8);
2973 static void yukon_set_multicast(struct net_device *dev)
2975 struct skge_port *skge = netdev_priv(dev);
2976 struct skge_hw *hw = skge->hw;
2977 int port = skge->port;
2978 struct netdev_hw_addr *ha;
2979 int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2980 skge->flow_status == FLOW_STAT_SYMMETRIC);
2984 memset(filter, 0, sizeof(filter));
2986 reg = gma_read16(hw, port, GM_RX_CTRL);
2987 reg |= GM_RXCR_UCF_ENA;
2989 if (dev->flags & IFF_PROMISC) /* promiscuous */
2990 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2991 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2992 memset(filter, 0xff, sizeof(filter));
2993 else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2994 reg &= ~GM_RXCR_MCF_ENA;
2996 reg |= GM_RXCR_MCF_ENA;
2999 yukon_add_filter(filter, pause_mc_addr);
3001 netdev_for_each_mc_addr(ha, dev)
3002 yukon_add_filter(filter, ha->addr);
3006 gma_write16(hw, port, GM_MC_ADDR_H1,
3007 (u16)filter[0] | ((u16)filter[1] << 8));
3008 gma_write16(hw, port, GM_MC_ADDR_H2,
3009 (u16)filter[2] | ((u16)filter[3] << 8));
3010 gma_write16(hw, port, GM_MC_ADDR_H3,
3011 (u16)filter[4] | ((u16)filter[5] << 8));
3012 gma_write16(hw, port, GM_MC_ADDR_H4,
3013 (u16)filter[6] | ((u16)filter[7] << 8));
3015 gma_write16(hw, port, GM_RX_CTRL, reg);
3018 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3021 return status >> XMR_FS_LEN_SHIFT;
3023 return status >> GMR_FS_LEN_SHIFT;
3026 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3029 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3031 return (status & GMR_FS_ANY_ERR) ||
3032 (status & GMR_FS_RX_OK) == 0;
3035 static void skge_set_multicast(struct net_device *dev)
3037 struct skge_port *skge = netdev_priv(dev);
3039 if (is_genesis(skge->hw))
3040 genesis_set_multicast(dev);
3042 yukon_set_multicast(dev);
3047 /* Get receive buffer from descriptor.
3048 * Handles copy of small buffers and reallocation failures
3050 static struct sk_buff *skge_rx_get(struct net_device *dev,
3051 struct skge_element *e,
3052 u32 control, u32 status, u16 csum)
3054 struct skge_port *skge = netdev_priv(dev);
3055 struct sk_buff *skb;
3056 u16 len = control & BMU_BBC;
3058 netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3059 "rx slot %td status 0x%x len %d\n",
3060 e - skge->rx_ring.start, status, len);
3062 if (len > skge->rx_buf_size)
3065 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3068 if (bad_phy_status(skge->hw, status))
3071 if (phy_length(skge->hw, status) != len)
3074 if (len < RX_COPY_THRESHOLD) {
3075 skb = netdev_alloc_skb_ip_align(dev, len);
3079 dma_sync_single_for_cpu(&skge->hw->pdev->dev,
3080 dma_unmap_addr(e, mapaddr),
3081 dma_unmap_len(e, maplen),
3083 skb_copy_from_linear_data(e->skb, skb->data, len);
3084 dma_sync_single_for_device(&skge->hw->pdev->dev,
3085 dma_unmap_addr(e, mapaddr),
3086 dma_unmap_len(e, maplen),
3088 skge_rx_reuse(e, skge->rx_buf_size);
3090 struct skge_element ee;
3091 struct sk_buff *nskb;
3093 nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3100 prefetch(skb->data);
3102 if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) {
3103 dev_kfree_skb(nskb);
3107 dma_unmap_single(&skge->hw->pdev->dev,
3108 dma_unmap_addr(&ee, mapaddr),
3109 dma_unmap_len(&ee, maplen), DMA_FROM_DEVICE);
3114 if (dev->features & NETIF_F_RXCSUM) {
3115 skb->csum = le16_to_cpu(csum);
3116 skb->ip_summed = CHECKSUM_COMPLETE;
3119 skb->protocol = eth_type_trans(skb, dev);
3124 netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3125 "rx err, slot %td control 0x%x status 0x%x\n",
3126 e - skge->rx_ring.start, control, status);
3128 if (is_genesis(skge->hw)) {
3129 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3130 dev->stats.rx_length_errors++;
3131 if (status & XMR_FS_FRA_ERR)
3132 dev->stats.rx_frame_errors++;
3133 if (status & XMR_FS_FCS_ERR)
3134 dev->stats.rx_crc_errors++;
3136 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3137 dev->stats.rx_length_errors++;
3138 if (status & GMR_FS_FRAGMENT)
3139 dev->stats.rx_frame_errors++;
3140 if (status & GMR_FS_CRC_ERR)
3141 dev->stats.rx_crc_errors++;
3145 skge_rx_reuse(e, skge->rx_buf_size);
3149 /* Free all buffers in Tx ring which are no longer owned by device */
3150 static void skge_tx_done(struct net_device *dev)
3152 struct skge_port *skge = netdev_priv(dev);
3153 struct skge_ring *ring = &skge->tx_ring;
3154 struct skge_element *e;
3155 unsigned int bytes_compl = 0, pkts_compl = 0;
3157 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3159 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3160 u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3162 if (control & BMU_OWN)
3165 skge_tx_unmap(skge->hw->pdev, e, control);
3167 if (control & BMU_EOF) {
3168 netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3169 "tx done slot %td\n",
3170 e - skge->tx_ring.start);
3173 bytes_compl += e->skb->len;
3175 dev_consume_skb_any(e->skb);
3178 netdev_completed_queue(dev, pkts_compl, bytes_compl);
3179 skge->tx_ring.to_clean = e;
3181 /* Can run lockless until we need to synchronize to restart queue. */
3184 if (unlikely(netif_queue_stopped(dev) &&
3185 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3187 if (unlikely(netif_queue_stopped(dev) &&
3188 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3189 netif_wake_queue(dev);
3192 netif_tx_unlock(dev);
3196 static int skge_poll(struct napi_struct *napi, int budget)
3198 struct skge_port *skge = container_of(napi, struct skge_port, napi);
3199 struct net_device *dev = skge->netdev;
3200 struct skge_hw *hw = skge->hw;
3201 struct skge_ring *ring = &skge->rx_ring;
3202 struct skge_element *e;
3207 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3209 for (e = ring->to_clean; prefetch(e->next), work_done < budget; e = e->next) {
3210 struct skge_rx_desc *rd = e->desc;
3211 struct sk_buff *skb;
3215 control = rd->control;
3216 if (control & BMU_OWN)
3219 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3221 napi_gro_receive(napi, skb);
3227 /* restart receiver */
3229 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3231 if (work_done < budget && napi_complete_done(napi, work_done)) {
3232 unsigned long flags;
3234 spin_lock_irqsave(&hw->hw_lock, flags);
3235 hw->intr_mask |= napimask[skge->port];
3236 skge_write32(hw, B0_IMSK, hw->intr_mask);
3237 skge_read32(hw, B0_IMSK);
3238 spin_unlock_irqrestore(&hw->hw_lock, flags);
3244 /* Parity errors seem to happen when Genesis is connected to a switch
3245 * with no other ports present. Heartbeat error??
3247 static void skge_mac_parity(struct skge_hw *hw, int port)
3249 struct net_device *dev = hw->dev[port];
3251 ++dev->stats.tx_heartbeat_errors;
3254 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3257 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3258 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3259 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3260 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3263 static void skge_mac_intr(struct skge_hw *hw, int port)
3266 genesis_mac_intr(hw, port);
3268 yukon_mac_intr(hw, port);
3271 /* Handle device specific framing and timeout interrupts */
3272 static void skge_error_irq(struct skge_hw *hw)
3274 struct pci_dev *pdev = hw->pdev;
3275 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3277 if (is_genesis(hw)) {
3278 /* clear xmac errors */
3279 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3280 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3281 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3282 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3284 /* Timestamp (unused) overflow */
3285 if (hwstatus & IS_IRQ_TIST_OV)
3286 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3289 if (hwstatus & IS_RAM_RD_PAR) {
3290 dev_err(&pdev->dev, "Ram read data parity error\n");
3291 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3294 if (hwstatus & IS_RAM_WR_PAR) {
3295 dev_err(&pdev->dev, "Ram write data parity error\n");
3296 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3299 if (hwstatus & IS_M1_PAR_ERR)
3300 skge_mac_parity(hw, 0);
3302 if (hwstatus & IS_M2_PAR_ERR)
3303 skge_mac_parity(hw, 1);
3305 if (hwstatus & IS_R1_PAR_ERR) {
3306 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3308 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3311 if (hwstatus & IS_R2_PAR_ERR) {
3312 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3314 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3317 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3318 u16 pci_status, pci_cmd;
3320 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3321 pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3323 dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3324 pci_cmd, pci_status);
3326 /* Write the error bits back to clear them. */
3327 pci_status &= PCI_STATUS_ERROR_BITS;
3328 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3329 pci_write_config_word(pdev, PCI_COMMAND,
3330 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3331 pci_write_config_word(pdev, PCI_STATUS, pci_status);
3332 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3334 /* if error still set then just ignore it */
3335 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3336 if (hwstatus & IS_IRQ_STAT) {
3337 dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3338 hw->intr_mask &= ~IS_HW_ERR;
3344 * Interrupt from PHY are handled in tasklet (softirq)
3345 * because accessing phy registers requires spin wait which might
3346 * cause excess interrupt latency.
3348 static void skge_extirq(struct tasklet_struct *t)
3350 struct skge_hw *hw = from_tasklet(hw, t, phy_task);
3353 for (port = 0; port < hw->ports; port++) {
3354 struct net_device *dev = hw->dev[port];
3356 if (netif_running(dev)) {
3357 struct skge_port *skge = netdev_priv(dev);
3359 spin_lock(&hw->phy_lock);
3360 if (!is_genesis(hw))
3361 yukon_phy_intr(skge);
3362 else if (hw->phy_type == SK_PHY_BCOM)
3363 bcom_phy_intr(skge);
3364 spin_unlock(&hw->phy_lock);
3368 spin_lock_irq(&hw->hw_lock);
3369 hw->intr_mask |= IS_EXT_REG;
3370 skge_write32(hw, B0_IMSK, hw->intr_mask);
3371 skge_read32(hw, B0_IMSK);
3372 spin_unlock_irq(&hw->hw_lock);
3375 static irqreturn_t skge_intr(int irq, void *dev_id)
3377 struct skge_hw *hw = dev_id;
3381 spin_lock(&hw->hw_lock);
3382 /* Reading this register masks IRQ */
3383 status = skge_read32(hw, B0_SP_ISRC);
3384 if (status == 0 || status == ~0)
3388 status &= hw->intr_mask;
3389 if (status & IS_EXT_REG) {
3390 hw->intr_mask &= ~IS_EXT_REG;
3391 tasklet_schedule(&hw->phy_task);
3394 if (status & (IS_XA1_F|IS_R1_F)) {
3395 struct skge_port *skge = netdev_priv(hw->dev[0]);
3396 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3397 napi_schedule(&skge->napi);
3400 if (status & IS_PA_TO_TX1)
3401 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3403 if (status & IS_PA_TO_RX1) {
3404 ++hw->dev[0]->stats.rx_over_errors;
3405 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3409 if (status & IS_MAC1)
3410 skge_mac_intr(hw, 0);
3413 struct skge_port *skge = netdev_priv(hw->dev[1]);
3415 if (status & (IS_XA2_F|IS_R2_F)) {
3416 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3417 napi_schedule(&skge->napi);
3420 if (status & IS_PA_TO_RX2) {
3421 ++hw->dev[1]->stats.rx_over_errors;
3422 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3425 if (status & IS_PA_TO_TX2)
3426 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3428 if (status & IS_MAC2)
3429 skge_mac_intr(hw, 1);
3432 if (status & IS_HW_ERR)
3435 skge_write32(hw, B0_IMSK, hw->intr_mask);
3436 skge_read32(hw, B0_IMSK);
3437 spin_unlock(&hw->hw_lock);
3439 return IRQ_RETVAL(handled);
3442 #ifdef CONFIG_NET_POLL_CONTROLLER
3443 static void skge_netpoll(struct net_device *dev)
3445 struct skge_port *skge = netdev_priv(dev);
3447 disable_irq(dev->irq);
3448 skge_intr(dev->irq, skge->hw);
3449 enable_irq(dev->irq);
3453 static int skge_set_mac_address(struct net_device *dev, void *p)
3455 struct skge_port *skge = netdev_priv(dev);
3456 struct skge_hw *hw = skge->hw;
3457 unsigned port = skge->port;
3458 const struct sockaddr *addr = p;
3461 if (!is_valid_ether_addr(addr->sa_data))
3462 return -EADDRNOTAVAIL;
3464 eth_hw_addr_set(dev, addr->sa_data);
3466 if (!netif_running(dev)) {
3467 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3468 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3471 spin_lock_bh(&hw->phy_lock);
3472 ctrl = gma_read16(hw, port, GM_GP_CTRL);
3473 gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3475 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3476 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3479 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3481 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3482 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3485 gma_write16(hw, port, GM_GP_CTRL, ctrl);
3486 spin_unlock_bh(&hw->phy_lock);
3492 static const struct {
3496 { CHIP_ID_GENESIS, "Genesis" },
3497 { CHIP_ID_YUKON, "Yukon" },
3498 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
3499 { CHIP_ID_YUKON_LP, "Yukon-LP"},
3502 static const char *skge_board_name(const struct skge_hw *hw)
3505 static char buf[16];
3507 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3508 if (skge_chips[i].id == hw->chip_id)
3509 return skge_chips[i].name;
3511 snprintf(buf, sizeof(buf), "chipid 0x%x", hw->chip_id);
3517 * Setup the board data structure, but don't bring up
3520 static int skge_reset(struct skge_hw *hw)
3523 u16 ctst, pci_status;
3524 u8 t8, mac_cfg, pmd_type;
3527 ctst = skge_read16(hw, B0_CTST);
3530 skge_write8(hw, B0_CTST, CS_RST_SET);
3531 skge_write8(hw, B0_CTST, CS_RST_CLR);
3533 /* clear PCI errors, if any */
3534 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3535 skge_write8(hw, B2_TST_CTRL2, 0);
3537 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3538 pci_write_config_word(hw->pdev, PCI_STATUS,
3539 pci_status | PCI_STATUS_ERROR_BITS);
3540 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3541 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3543 /* restore CLK_RUN bits (for Yukon-Lite) */
3544 skge_write16(hw, B0_CTST,
3545 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3547 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3548 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3549 pmd_type = skge_read8(hw, B2_PMD_TYP);
3550 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3552 switch (hw->chip_id) {
3553 case CHIP_ID_GENESIS:
3554 #ifdef CONFIG_SKGE_GENESIS
3555 switch (hw->phy_type) {
3557 hw->phy_addr = PHY_ADDR_XMAC;
3560 hw->phy_addr = PHY_ADDR_BCOM;
3563 dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3569 dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3574 case CHIP_ID_YUKON_LITE:
3575 case CHIP_ID_YUKON_LP:
3576 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3579 hw->phy_addr = PHY_ADDR_MARV;
3583 dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3588 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3589 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3590 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3592 /* read the adapters RAM size */
3593 t8 = skge_read8(hw, B2_E_0);
3594 if (is_genesis(hw)) {
3596 /* special case: 4 x 64k x 36, offset = 0x80000 */
3597 hw->ram_size = 0x100000;
3598 hw->ram_offset = 0x80000;
3600 hw->ram_size = t8 * 512;
3602 hw->ram_size = 0x20000;
3604 hw->ram_size = t8 * 4096;
3606 hw->intr_mask = IS_HW_ERR;
3608 /* Use PHY IRQ for all but fiber based Genesis board */
3609 if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3610 hw->intr_mask |= IS_EXT_REG;
3615 /* switch power to VCC (WA for VAUX problem) */
3616 skge_write8(hw, B0_POWER_CTRL,
3617 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3619 /* avoid boards with stuck Hardware error bits */
3620 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3621 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3622 dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3623 hw->intr_mask &= ~IS_HW_ERR;
3626 /* Clear PHY COMA */
3627 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3628 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, ®);
3629 reg &= ~PCI_PHY_COMA;
3630 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3631 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3634 for (i = 0; i < hw->ports; i++) {
3635 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3636 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3640 /* turn off hardware timer (unused) */
3641 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3642 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3643 skge_write8(hw, B0_LED, LED_STAT_ON);
3645 /* enable the Tx Arbiters */
3646 for (i = 0; i < hw->ports; i++)
3647 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3649 /* Initialize ram interface */
3650 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3652 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3653 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3654 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3655 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3656 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3657 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3658 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3659 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3660 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3661 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3662 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3663 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3665 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3667 /* Set interrupt moderation for Transmit only
3668 * Receive interrupts avoided by NAPI
3670 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3671 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3672 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3674 /* Leave irq disabled until first port is brought up. */
3675 skge_write32(hw, B0_IMSK, 0);
3677 for (i = 0; i < hw->ports; i++) {
3679 genesis_reset(hw, i);
3688 #ifdef CONFIG_SKGE_DEBUG
3690 static struct dentry *skge_debug;
3692 static int skge_debug_show(struct seq_file *seq, void *v)
3694 struct net_device *dev = seq->private;
3695 const struct skge_port *skge = netdev_priv(dev);
3696 const struct skge_hw *hw = skge->hw;
3697 const struct skge_element *e;
3699 if (!netif_running(dev))
3702 seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3703 skge_read32(hw, B0_IMSK));
3705 seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3706 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3707 const struct skge_tx_desc *t = e->desc;
3708 seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3709 t->control, t->dma_hi, t->dma_lo, t->status,
3710 t->csum_offs, t->csum_write, t->csum_start);
3713 seq_puts(seq, "\nRx Ring:\n");
3714 for (e = skge->rx_ring.to_clean; ; e = e->next) {
3715 const struct skge_rx_desc *r = e->desc;
3717 if (r->control & BMU_OWN)
3720 seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3721 r->control, r->dma_hi, r->dma_lo, r->status,
3722 r->timestamp, r->csum1, r->csum1_start);
3727 DEFINE_SHOW_ATTRIBUTE(skge_debug);
3730 * Use network device events to create/remove/rename
3731 * debugfs file entries
3733 static int skge_device_event(struct notifier_block *unused,
3734 unsigned long event, void *ptr)
3736 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3737 struct skge_port *skge;
3739 if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3742 skge = netdev_priv(dev);
3744 case NETDEV_CHANGENAME:
3745 debugfs_change_name(skge->debugfs, "%s", dev->name);
3748 case NETDEV_GOING_DOWN:
3749 debugfs_remove(skge->debugfs);
3750 skge->debugfs = NULL;
3754 skge->debugfs = debugfs_create_file(dev->name, 0444, skge_debug,
3755 dev, &skge_debug_fops);
3763 static struct notifier_block skge_notifier = {
3764 .notifier_call = skge_device_event,
3768 static __init void skge_debug_init(void)
3770 skge_debug = debugfs_create_dir("skge", NULL);
3772 register_netdevice_notifier(&skge_notifier);
3775 static __exit void skge_debug_cleanup(void)
3778 unregister_netdevice_notifier(&skge_notifier);
3779 debugfs_remove(skge_debug);
3785 #define skge_debug_init()
3786 #define skge_debug_cleanup()
3789 static const struct net_device_ops skge_netdev_ops = {
3790 .ndo_open = skge_up,
3791 .ndo_stop = skge_down,
3792 .ndo_start_xmit = skge_xmit_frame,
3793 .ndo_eth_ioctl = skge_ioctl,
3794 .ndo_get_stats = skge_get_stats,
3795 .ndo_tx_timeout = skge_tx_timeout,
3796 .ndo_change_mtu = skge_change_mtu,
3797 .ndo_validate_addr = eth_validate_addr,
3798 .ndo_set_rx_mode = skge_set_multicast,
3799 .ndo_set_mac_address = skge_set_mac_address,
3800 #ifdef CONFIG_NET_POLL_CONTROLLER
3801 .ndo_poll_controller = skge_netpoll,
3806 /* Initialize network device */
3807 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3810 struct skge_port *skge;
3811 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3817 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3818 dev->netdev_ops = &skge_netdev_ops;
3819 dev->ethtool_ops = &skge_ethtool_ops;
3820 dev->watchdog_timeo = TX_WATCHDOG;
3821 dev->irq = hw->pdev->irq;
3823 /* MTU range: 60 - 9000 */
3824 dev->min_mtu = ETH_ZLEN;
3825 dev->max_mtu = ETH_JUMBO_MTU;
3828 dev->features |= NETIF_F_HIGHDMA;
3830 skge = netdev_priv(dev);
3831 netif_napi_add(dev, &skge->napi, skge_poll);
3834 skge->msg_enable = netif_msg_init(debug, default_msg);
3836 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3837 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3839 /* Auto speed and flow control */
3840 skge->autoneg = AUTONEG_ENABLE;
3841 skge->flow_control = FLOW_MODE_SYM_OR_REM;
3844 skge->advertising = skge_supported_modes(hw);
3846 if (device_can_wakeup(&hw->pdev->dev)) {
3847 skge->wol = wol_supported(hw) & WAKE_MAGIC;
3848 device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3851 hw->dev[port] = dev;
3855 /* Only used for Genesis XMAC */
3857 timer_setup(&skge->link_timer, xm_link_timer, 0);
3859 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3861 dev->features |= dev->hw_features;
3864 /* read the mac address */
3865 memcpy_fromio(addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3866 eth_hw_addr_set(dev, addr);
3871 static void skge_show_addr(struct net_device *dev)
3873 const struct skge_port *skge = netdev_priv(dev);
3875 netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3878 static int only_32bit_dma;
3880 static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3882 struct net_device *dev, *dev1;
3884 int err, using_dac = 0;
3886 err = pci_enable_device(pdev);
3888 dev_err(&pdev->dev, "cannot enable PCI device\n");
3892 err = pci_request_regions(pdev, DRV_NAME);
3894 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3895 goto err_out_disable_pdev;
3898 pci_set_master(pdev);
3900 if (!only_32bit_dma && !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3902 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
3903 } else if (!(err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
3905 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
3909 dev_err(&pdev->dev, "no usable DMA configuration\n");
3910 goto err_out_free_regions;
3914 /* byte swap descriptors in hardware */
3918 pci_read_config_dword(pdev, PCI_DEV_REG2, ®);
3919 reg |= PCI_REV_DESC;
3920 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3925 /* space for skge@pci:0000:04:00.0 */
3926 hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3927 + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3929 goto err_out_free_regions;
3931 sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3934 spin_lock_init(&hw->hw_lock);
3935 spin_lock_init(&hw->phy_lock);
3936 tasklet_setup(&hw->phy_task, skge_extirq);
3938 hw->regs = ioremap(pci_resource_start(pdev, 0), 0x4000);
3940 dev_err(&pdev->dev, "cannot map device registers\n");
3941 goto err_out_free_hw;
3944 err = skge_reset(hw);
3946 goto err_out_iounmap;
3948 pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3950 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3951 skge_board_name(hw), hw->chip_rev);
3953 dev = skge_devinit(hw, 0, using_dac);
3956 goto err_out_led_off;
3959 /* Some motherboards are broken and has zero in ROM. */
3960 if (!is_valid_ether_addr(dev->dev_addr))
3961 dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3963 err = register_netdev(dev);
3965 dev_err(&pdev->dev, "cannot register net device\n");
3966 goto err_out_free_netdev;
3969 skge_show_addr(dev);
3971 if (hw->ports > 1) {
3972 dev1 = skge_devinit(hw, 1, using_dac);
3975 goto err_out_unregister;
3978 err = register_netdev(dev1);
3980 dev_err(&pdev->dev, "cannot register second net device\n");
3981 goto err_out_free_dev1;
3984 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
3987 dev_err(&pdev->dev, "cannot assign irq %d\n",
3989 goto err_out_unregister_dev1;
3992 skge_show_addr(dev1);
3994 pci_set_drvdata(pdev, hw);
3998 err_out_unregister_dev1:
3999 unregister_netdev(dev1);
4003 unregister_netdev(dev);
4004 err_out_free_netdev:
4007 skge_write16(hw, B0_LED, LED_STAT_OFF);
4012 err_out_free_regions:
4013 pci_release_regions(pdev);
4014 err_out_disable_pdev:
4015 pci_disable_device(pdev);
4020 static void skge_remove(struct pci_dev *pdev)
4022 struct skge_hw *hw = pci_get_drvdata(pdev);
4023 struct net_device *dev0, *dev1;
4030 unregister_netdev(dev1);
4032 unregister_netdev(dev0);
4034 tasklet_kill(&hw->phy_task);
4036 spin_lock_irq(&hw->hw_lock);
4039 if (hw->ports > 1) {
4040 skge_write32(hw, B0_IMSK, 0);
4041 skge_read32(hw, B0_IMSK);
4043 spin_unlock_irq(&hw->hw_lock);
4045 skge_write16(hw, B0_LED, LED_STAT_OFF);
4046 skge_write8(hw, B0_CTST, CS_RST_SET);
4049 free_irq(pdev->irq, hw);
4050 pci_release_regions(pdev);
4051 pci_disable_device(pdev);
4060 #ifdef CONFIG_PM_SLEEP
4061 static int skge_suspend(struct device *dev)
4063 struct skge_hw *hw = dev_get_drvdata(dev);
4069 for (i = 0; i < hw->ports; i++) {
4070 struct net_device *dev = hw->dev[i];
4071 struct skge_port *skge = netdev_priv(dev);
4073 if (netif_running(dev))
4077 skge_wol_init(skge);
4080 skge_write32(hw, B0_IMSK, 0);
4085 static int skge_resume(struct device *dev)
4087 struct skge_hw *hw = dev_get_drvdata(dev);
4093 err = skge_reset(hw);
4097 for (i = 0; i < hw->ports; i++) {
4098 struct net_device *dev = hw->dev[i];
4100 if (netif_running(dev)) {
4104 netdev_err(dev, "could not up: %d\n", err);
4114 static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4115 #define SKGE_PM_OPS (&skge_pm_ops)
4119 #define SKGE_PM_OPS NULL
4120 #endif /* CONFIG_PM_SLEEP */
4122 static void skge_shutdown(struct pci_dev *pdev)
4124 struct skge_hw *hw = pci_get_drvdata(pdev);
4130 for (i = 0; i < hw->ports; i++) {
4131 struct net_device *dev = hw->dev[i];
4132 struct skge_port *skge = netdev_priv(dev);
4135 skge_wol_init(skge);
4138 pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4139 pci_set_power_state(pdev, PCI_D3hot);
4142 static struct pci_driver skge_driver = {
4144 .id_table = skge_id_table,
4145 .probe = skge_probe,
4146 .remove = skge_remove,
4147 .shutdown = skge_shutdown,
4148 .driver.pm = SKGE_PM_OPS,
4151 static const struct dmi_system_id skge_32bit_dma_boards[] = {
4153 .ident = "Gigabyte nForce boards",
4155 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4156 DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4160 .ident = "ASUS P5NSLI",
4162 DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
4163 DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
4167 .ident = "FUJITSU SIEMENS A8NE-FM",
4169 DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
4170 DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM")
4176 static int __init skge_init_module(void)
4178 if (dmi_check_system(skge_32bit_dma_boards))
4181 return pci_register_driver(&skge_driver);
4184 static void __exit skge_cleanup_module(void)
4186 pci_unregister_driver(&skge_driver);
4187 skge_debug_cleanup();
4190 module_init(skge_init_module);
4191 module_exit(skge_cleanup_module);