]> Git Repo - linux.git/blob - drivers/net/ethernet/intel/igb/e1000_82575.c
Linux 6.14-rc3
[linux.git] / drivers / net / ethernet / intel / igb / e1000_82575.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 /* e1000_82575
5  * e1000_82576
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/types.h>
11 #include <linux/if_ether.h>
12 #include <linux/i2c.h>
13
14 #include "e1000_mac.h"
15 #include "e1000_82575.h"
16 #include "e1000_i210.h"
17 #include "igb.h"
18
19 static s32  igb_get_invariants_82575(struct e1000_hw *);
20 static s32  igb_acquire_phy_82575(struct e1000_hw *);
21 static void igb_release_phy_82575(struct e1000_hw *);
22 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
23 static void igb_release_nvm_82575(struct e1000_hw *);
24 static s32  igb_check_for_link_82575(struct e1000_hw *);
25 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
26 static s32  igb_init_hw_82575(struct e1000_hw *);
27 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
28 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
29 static s32  igb_reset_hw_82575(struct e1000_hw *);
30 static s32  igb_reset_hw_82580(struct e1000_hw *);
31 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
32 static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
33 static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
34 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
35 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
36 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
37 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
38 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
39 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
40                                                  u16 *);
41 static s32  igb_get_phy_id_82575(struct e1000_hw *);
42 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
43 static bool igb_sgmii_active_82575(struct e1000_hw *);
44 static s32  igb_reset_init_script_82575(struct e1000_hw *);
45 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
46 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
47 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
48 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
49 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
50 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
51 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
52 static const u16 e1000_82580_rxpbs_table[] = {
53         36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
54
55 /* Due to a hw errata, if the host tries to  configure the VFTA register
56  * while performing queries from the BMC or DMA, then the VFTA in some
57  * cases won't be written.
58  */
59
60 /**
61  *  igb_write_vfta_i350 - Write value to VLAN filter table
62  *  @hw: pointer to the HW structure
63  *  @offset: register offset in VLAN filter table
64  *  @value: register value written to VLAN filter table
65  *
66  *  Writes value at the given offset in the register array which stores
67  *  the VLAN filter table.
68  **/
69 static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
70 {
71         struct igb_adapter *adapter = hw->back;
72         int i;
73
74         for (i = 10; i--;)
75                 array_wr32(E1000_VFTA, offset, value);
76
77         wrfl();
78         adapter->shadow_vfta[offset] = value;
79 }
80
81 /**
82  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
83  *  @hw: pointer to the HW structure
84  *
85  *  Called to determine if the I2C pins are being used for I2C or as an
86  *  external MDIO interface since the two options are mutually exclusive.
87  **/
88 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
89 {
90         u32 reg = 0;
91         bool ext_mdio = false;
92
93         switch (hw->mac.type) {
94         case e1000_82575:
95         case e1000_82576:
96                 reg = rd32(E1000_MDIC);
97                 ext_mdio = !!(reg & E1000_MDIC_DEST);
98                 break;
99         case e1000_82580:
100         case e1000_i350:
101         case e1000_i354:
102         case e1000_i210:
103         case e1000_i211:
104                 reg = rd32(E1000_MDICNFG);
105                 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
106                 break;
107         default:
108                 break;
109         }
110         return ext_mdio;
111 }
112
113 /**
114  *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
115  *  @hw: pointer to the HW structure
116  *
117  *  Poll the M88E1112 interfaces to see which interface achieved link.
118  */
119 static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
120 {
121         struct e1000_phy_info *phy = &hw->phy;
122         s32 ret_val;
123         u16 data;
124         u8 port = 0;
125
126         /* Check the copper medium. */
127         ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
128         if (ret_val)
129                 return ret_val;
130
131         ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
132         if (ret_val)
133                 return ret_val;
134
135         if (data & E1000_M88E1112_STATUS_LINK)
136                 port = E1000_MEDIA_PORT_COPPER;
137
138         /* Check the other medium. */
139         ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
140         if (ret_val)
141                 return ret_val;
142
143         ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
144         if (ret_val)
145                 return ret_val;
146
147
148         if (data & E1000_M88E1112_STATUS_LINK)
149                 port = E1000_MEDIA_PORT_OTHER;
150
151         /* Determine if a swap needs to happen. */
152         if (port && (hw->dev_spec._82575.media_port != port)) {
153                 hw->dev_spec._82575.media_port = port;
154                 hw->dev_spec._82575.media_changed = true;
155         }
156
157         if (port == E1000_MEDIA_PORT_COPPER) {
158                 /* reset page to 0 */
159                 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
160                 if (ret_val)
161                         return ret_val;
162                 igb_check_for_link_82575(hw);
163         } else {
164                 igb_check_for_link_82575(hw);
165                 /* reset page to 0 */
166                 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
167                 if (ret_val)
168                         return ret_val;
169         }
170
171         return 0;
172 }
173
174 /**
175  *  igb_init_phy_params_82575 - Init PHY func ptrs.
176  *  @hw: pointer to the HW structure
177  **/
178 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
179 {
180         struct e1000_phy_info *phy = &hw->phy;
181         s32 ret_val = 0;
182         u32 ctrl_ext;
183
184         if (hw->phy.media_type != e1000_media_type_copper) {
185                 phy->type = e1000_phy_none;
186                 goto out;
187         }
188
189         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
190         phy->reset_delay_us     = 100;
191
192         ctrl_ext = rd32(E1000_CTRL_EXT);
193
194         if (igb_sgmii_active_82575(hw)) {
195                 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
196                 ctrl_ext |= E1000_CTRL_I2C_ENA;
197         } else {
198                 phy->ops.reset = igb_phy_hw_reset;
199                 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
200         }
201
202         wr32(E1000_CTRL_EXT, ctrl_ext);
203         igb_reset_mdicnfg_82580(hw);
204
205         if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
206                 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
207                 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
208         } else {
209                 switch (hw->mac.type) {
210                 case e1000_82580:
211                 case e1000_i350:
212                 case e1000_i354:
213                 case e1000_i210:
214                 case e1000_i211:
215                         phy->ops.read_reg = igb_read_phy_reg_82580;
216                         phy->ops.write_reg = igb_write_phy_reg_82580;
217                         break;
218                 default:
219                         phy->ops.read_reg = igb_read_phy_reg_igp;
220                         phy->ops.write_reg = igb_write_phy_reg_igp;
221                 }
222         }
223
224         /* set lan id */
225         hw->bus.func = FIELD_GET(E1000_STATUS_FUNC_MASK, rd32(E1000_STATUS));
226
227         /* Set phy->phy_addr and phy->id. */
228         ret_val = igb_get_phy_id_82575(hw);
229         if (ret_val)
230                 return ret_val;
231
232         /* Verify phy id and set remaining function pointers */
233         switch (phy->id) {
234         case M88E1543_E_PHY_ID:
235         case M88E1512_E_PHY_ID:
236         case I347AT4_E_PHY_ID:
237         case M88E1112_E_PHY_ID:
238         case M88E1111_I_PHY_ID:
239                 phy->type               = e1000_phy_m88;
240                 phy->ops.check_polarity = igb_check_polarity_m88;
241                 phy->ops.get_phy_info   = igb_get_phy_info_m88;
242                 if (phy->id != M88E1111_I_PHY_ID)
243                         phy->ops.get_cable_length =
244                                          igb_get_cable_length_m88_gen2;
245                 else
246                         phy->ops.get_cable_length = igb_get_cable_length_m88;
247                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
248                 /* Check if this PHY is configured for media swap. */
249                 if (phy->id == M88E1112_E_PHY_ID) {
250                         u16 data;
251
252                         ret_val = phy->ops.write_reg(hw,
253                                                      E1000_M88E1112_PAGE_ADDR,
254                                                      2);
255                         if (ret_val)
256                                 goto out;
257
258                         ret_val = phy->ops.read_reg(hw,
259                                                     E1000_M88E1112_MAC_CTRL_1,
260                                                     &data);
261                         if (ret_val)
262                                 goto out;
263
264                         data = FIELD_GET(E1000_M88E1112_MAC_CTRL_1_MODE_MASK,
265                                          data);
266                         if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
267                             data == E1000_M88E1112_AUTO_COPPER_BASEX)
268                                 hw->mac.ops.check_for_link =
269                                                 igb_check_for_link_media_swap;
270                 }
271                 if (phy->id == M88E1512_E_PHY_ID) {
272                         ret_val = igb_initialize_M88E1512_phy(hw);
273                         if (ret_val)
274                                 goto out;
275                 }
276                 if (phy->id == M88E1543_E_PHY_ID) {
277                         ret_val = igb_initialize_M88E1543_phy(hw);
278                         if (ret_val)
279                                 goto out;
280                 }
281                 break;
282         case IGP03E1000_E_PHY_ID:
283                 phy->type = e1000_phy_igp_3;
284                 phy->ops.get_phy_info = igb_get_phy_info_igp;
285                 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
286                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
287                 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
288                 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
289                 break;
290         case I82580_I_PHY_ID:
291         case I350_I_PHY_ID:
292                 phy->type = e1000_phy_82580;
293                 phy->ops.force_speed_duplex =
294                                          igb_phy_force_speed_duplex_82580;
295                 phy->ops.get_cable_length = igb_get_cable_length_82580;
296                 phy->ops.get_phy_info = igb_get_phy_info_82580;
297                 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
298                 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
299                 break;
300         case I210_I_PHY_ID:
301                 phy->type               = e1000_phy_i210;
302                 phy->ops.check_polarity = igb_check_polarity_m88;
303                 phy->ops.get_cfg_done   = igb_get_cfg_done_i210;
304                 phy->ops.get_phy_info   = igb_get_phy_info_m88;
305                 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
306                 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
307                 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
308                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
309                 break;
310         case BCM54616_E_PHY_ID:
311                 phy->type = e1000_phy_bcm54616;
312                 break;
313         default:
314                 ret_val = -E1000_ERR_PHY;
315                 goto out;
316         }
317
318 out:
319         return ret_val;
320 }
321
322 /**
323  *  igb_init_nvm_params_82575 - Init NVM func ptrs.
324  *  @hw: pointer to the HW structure
325  **/
326 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
327 {
328         struct e1000_nvm_info *nvm = &hw->nvm;
329         u32 eecd = rd32(E1000_EECD);
330         u16 size;
331
332         size = FIELD_GET(E1000_EECD_SIZE_EX_MASK, eecd);
333
334         /* Added to a constant, "size" becomes the left-shift value
335          * for setting word_size.
336          */
337         size += NVM_WORD_SIZE_BASE_SHIFT;
338
339         /* Just in case size is out of range, cap it to the largest
340          * EEPROM size supported
341          */
342         if (size > 15)
343                 size = 15;
344
345         nvm->word_size = BIT(size);
346         nvm->opcode_bits = 8;
347         nvm->delay_usec = 1;
348
349         switch (nvm->override) {
350         case e1000_nvm_override_spi_large:
351                 nvm->page_size = 32;
352                 nvm->address_bits = 16;
353                 break;
354         case e1000_nvm_override_spi_small:
355                 nvm->page_size = 8;
356                 nvm->address_bits = 8;
357                 break;
358         default:
359                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
360                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
361                                     16 : 8;
362                 break;
363         }
364         if (nvm->word_size == BIT(15))
365                 nvm->page_size = 128;
366
367         nvm->type = e1000_nvm_eeprom_spi;
368
369         /* NVM Function Pointers */
370         nvm->ops.acquire = igb_acquire_nvm_82575;
371         nvm->ops.release = igb_release_nvm_82575;
372         nvm->ops.write = igb_write_nvm_spi;
373         nvm->ops.validate = igb_validate_nvm_checksum;
374         nvm->ops.update = igb_update_nvm_checksum;
375         if (nvm->word_size < BIT(15))
376                 nvm->ops.read = igb_read_nvm_eerd;
377         else
378                 nvm->ops.read = igb_read_nvm_spi;
379
380         /* override generic family function pointers for specific descendants */
381         switch (hw->mac.type) {
382         case e1000_82580:
383                 nvm->ops.validate = igb_validate_nvm_checksum_82580;
384                 nvm->ops.update = igb_update_nvm_checksum_82580;
385                 break;
386         case e1000_i354:
387         case e1000_i350:
388                 nvm->ops.validate = igb_validate_nvm_checksum_i350;
389                 nvm->ops.update = igb_update_nvm_checksum_i350;
390                 break;
391         default:
392                 break;
393         }
394
395         return 0;
396 }
397
398 /**
399  *  igb_init_mac_params_82575 - Init MAC func ptrs.
400  *  @hw: pointer to the HW structure
401  **/
402 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
403 {
404         struct e1000_mac_info *mac = &hw->mac;
405         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
406
407         /* Set mta register count */
408         mac->mta_reg_count = 128;
409         /* Set uta register count */
410         mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
411         /* Set rar entry count */
412         switch (mac->type) {
413         case e1000_82576:
414                 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
415                 break;
416         case e1000_82580:
417                 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
418                 break;
419         case e1000_i350:
420         case e1000_i354:
421                 mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
422                 break;
423         default:
424                 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
425                 break;
426         }
427         /* reset */
428         if (mac->type >= e1000_82580)
429                 mac->ops.reset_hw = igb_reset_hw_82580;
430         else
431                 mac->ops.reset_hw = igb_reset_hw_82575;
432
433         if (mac->type >= e1000_i210) {
434                 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
435                 mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
436
437         } else {
438                 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
439                 mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
440         }
441
442         if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
443                 mac->ops.write_vfta = igb_write_vfta_i350;
444         else
445                 mac->ops.write_vfta = igb_write_vfta;
446
447         /* Set if part includes ASF firmware */
448         mac->asf_firmware_present = true;
449         /* Set if manageability features are enabled. */
450         mac->arc_subsystem_valid =
451                 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
452                         ? true : false;
453         /* enable EEE on i350 parts and later parts */
454         if (mac->type >= e1000_i350)
455                 dev_spec->eee_disable = false;
456         else
457                 dev_spec->eee_disable = true;
458         /* Allow a single clear of the SW semaphore on I210 and newer */
459         if (mac->type >= e1000_i210)
460                 dev_spec->clear_semaphore_once = true;
461         /* physical interface link setup */
462         mac->ops.setup_physical_interface =
463                 (hw->phy.media_type == e1000_media_type_copper)
464                         ? igb_setup_copper_link_82575
465                         : igb_setup_serdes_link_82575;
466
467         if (mac->type == e1000_82580 || mac->type == e1000_i350) {
468                 switch (hw->device_id) {
469                 /* feature not supported on these id's */
470                 case E1000_DEV_ID_DH89XXCC_SGMII:
471                 case E1000_DEV_ID_DH89XXCC_SERDES:
472                 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
473                 case E1000_DEV_ID_DH89XXCC_SFP:
474                         break;
475                 default:
476                         hw->dev_spec._82575.mas_capable = true;
477                         break;
478                 }
479         }
480         return 0;
481 }
482
483 /**
484  *  igb_set_sfp_media_type_82575 - derives SFP module media type.
485  *  @hw: pointer to the HW structure
486  *
487  *  The media type is chosen based on SFP module.
488  *  compatibility flags retrieved from SFP ID EEPROM.
489  **/
490 static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
491 {
492         s32 ret_val = E1000_ERR_CONFIG;
493         u32 ctrl_ext = 0;
494         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
495         struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
496         u8 tranceiver_type = 0;
497         s32 timeout = 3;
498
499         /* Turn I2C interface ON and power on sfp cage */
500         ctrl_ext = rd32(E1000_CTRL_EXT);
501         ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
502         wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
503
504         wrfl();
505
506         /* Read SFP module data */
507         while (timeout) {
508                 ret_val = igb_read_sfp_data_byte(hw,
509                         E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
510                         &tranceiver_type);
511                 if (ret_val == 0)
512                         break;
513                 msleep(100);
514                 timeout--;
515         }
516         if (ret_val != 0)
517                 goto out;
518
519         ret_val = igb_read_sfp_data_byte(hw,
520                         E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
521                         (u8 *)eth_flags);
522         if (ret_val != 0)
523                 goto out;
524
525         /* Check if there is some SFP module plugged and powered */
526         if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
527             (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
528                 dev_spec->module_plugged = true;
529                 if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
530                         hw->phy.media_type = e1000_media_type_internal_serdes;
531                 } else if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
532                         dev_spec->sgmii_active = true;
533                         hw->phy.media_type = e1000_media_type_internal_serdes;
534                 } else if (eth_flags->e1000_base_t) {
535                         dev_spec->sgmii_active = true;
536                         hw->phy.media_type = e1000_media_type_copper;
537                 } else {
538                         hw->phy.media_type = e1000_media_type_unknown;
539                         hw_dbg("PHY module has not been recognized\n");
540                         goto out;
541                 }
542         } else {
543                 hw->phy.media_type = e1000_media_type_unknown;
544         }
545         ret_val = 0;
546 out:
547         /* Restore I2C interface setting */
548         wr32(E1000_CTRL_EXT, ctrl_ext);
549         return ret_val;
550 }
551
552 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
553 {
554         struct e1000_mac_info *mac = &hw->mac;
555         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
556         s32 ret_val;
557         u32 ctrl_ext = 0;
558         u32 link_mode = 0;
559
560         switch (hw->device_id) {
561         case E1000_DEV_ID_82575EB_COPPER:
562         case E1000_DEV_ID_82575EB_FIBER_SERDES:
563         case E1000_DEV_ID_82575GB_QUAD_COPPER:
564                 mac->type = e1000_82575;
565                 break;
566         case E1000_DEV_ID_82576:
567         case E1000_DEV_ID_82576_NS:
568         case E1000_DEV_ID_82576_NS_SERDES:
569         case E1000_DEV_ID_82576_FIBER:
570         case E1000_DEV_ID_82576_SERDES:
571         case E1000_DEV_ID_82576_QUAD_COPPER:
572         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
573         case E1000_DEV_ID_82576_SERDES_QUAD:
574                 mac->type = e1000_82576;
575                 break;
576         case E1000_DEV_ID_82580_COPPER:
577         case E1000_DEV_ID_82580_FIBER:
578         case E1000_DEV_ID_82580_QUAD_FIBER:
579         case E1000_DEV_ID_82580_SERDES:
580         case E1000_DEV_ID_82580_SGMII:
581         case E1000_DEV_ID_82580_COPPER_DUAL:
582         case E1000_DEV_ID_DH89XXCC_SGMII:
583         case E1000_DEV_ID_DH89XXCC_SERDES:
584         case E1000_DEV_ID_DH89XXCC_BACKPLANE:
585         case E1000_DEV_ID_DH89XXCC_SFP:
586                 mac->type = e1000_82580;
587                 break;
588         case E1000_DEV_ID_I350_COPPER:
589         case E1000_DEV_ID_I350_FIBER:
590         case E1000_DEV_ID_I350_SERDES:
591         case E1000_DEV_ID_I350_SGMII:
592                 mac->type = e1000_i350;
593                 break;
594         case E1000_DEV_ID_I210_COPPER:
595         case E1000_DEV_ID_I210_FIBER:
596         case E1000_DEV_ID_I210_SERDES:
597         case E1000_DEV_ID_I210_SGMII:
598         case E1000_DEV_ID_I210_COPPER_FLASHLESS:
599         case E1000_DEV_ID_I210_SERDES_FLASHLESS:
600                 mac->type = e1000_i210;
601                 break;
602         case E1000_DEV_ID_I211_COPPER:
603                 mac->type = e1000_i211;
604                 break;
605         case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
606         case E1000_DEV_ID_I354_SGMII:
607         case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
608                 mac->type = e1000_i354;
609                 break;
610         default:
611                 return -E1000_ERR_MAC_INIT;
612         }
613
614         /* Set media type */
615         /* The 82575 uses bits 22:23 for link mode. The mode can be changed
616          * based on the EEPROM. We cannot rely upon device ID. There
617          * is no distinguishable difference between fiber and internal
618          * SerDes mode on the 82575. There can be an external PHY attached
619          * on the SGMII interface. For this, we'll set sgmii_active to true.
620          */
621         hw->phy.media_type = e1000_media_type_copper;
622         dev_spec->sgmii_active = false;
623         dev_spec->module_plugged = false;
624
625         ctrl_ext = rd32(E1000_CTRL_EXT);
626
627         link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
628         switch (link_mode) {
629         case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
630                 hw->phy.media_type = e1000_media_type_internal_serdes;
631                 break;
632         case E1000_CTRL_EXT_LINK_MODE_SGMII:
633                 /* Get phy control interface type set (MDIO vs. I2C)*/
634                 if (igb_sgmii_uses_mdio_82575(hw)) {
635                         hw->phy.media_type = e1000_media_type_copper;
636                         dev_spec->sgmii_active = true;
637                         break;
638                 }
639                 fallthrough; /* for I2C based SGMII */
640         case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
641                 /* read media type from SFP EEPROM */
642                 ret_val = igb_set_sfp_media_type_82575(hw);
643                 if ((ret_val != 0) ||
644                     (hw->phy.media_type == e1000_media_type_unknown)) {
645                         /* If media type was not identified then return media
646                          * type defined by the CTRL_EXT settings.
647                          */
648                         hw->phy.media_type = e1000_media_type_internal_serdes;
649
650                         if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
651                                 hw->phy.media_type = e1000_media_type_copper;
652                                 dev_spec->sgmii_active = true;
653                         }
654
655                         break;
656                 }
657
658                 /* change current link mode setting */
659                 ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
660
661                 if (dev_spec->sgmii_active)
662                         ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
663                 else
664                         ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
665
666                 wr32(E1000_CTRL_EXT, ctrl_ext);
667
668                 break;
669         default:
670                 break;
671         }
672
673         /* mac initialization and operations */
674         ret_val = igb_init_mac_params_82575(hw);
675         if (ret_val)
676                 goto out;
677
678         /* NVM initialization */
679         ret_val = igb_init_nvm_params_82575(hw);
680         switch (hw->mac.type) {
681         case e1000_i210:
682         case e1000_i211:
683                 ret_val = igb_init_nvm_params_i210(hw);
684                 break;
685         default:
686                 break;
687         }
688
689         if (ret_val)
690                 goto out;
691
692         /* if part supports SR-IOV then initialize mailbox parameters */
693         switch (mac->type) {
694         case e1000_82576:
695         case e1000_i350:
696                 igb_init_mbx_params_pf(hw);
697                 break;
698         default:
699                 break;
700         }
701
702         /* setup PHY parameters */
703         ret_val = igb_init_phy_params_82575(hw);
704
705 out:
706         return ret_val;
707 }
708
709 /**
710  *  igb_acquire_phy_82575 - Acquire rights to access PHY
711  *  @hw: pointer to the HW structure
712  *
713  *  Acquire access rights to the correct PHY.  This is a
714  *  function pointer entry point called by the api module.
715  **/
716 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
717 {
718         u16 mask = E1000_SWFW_PHY0_SM;
719
720         if (hw->bus.func == E1000_FUNC_1)
721                 mask = E1000_SWFW_PHY1_SM;
722         else if (hw->bus.func == E1000_FUNC_2)
723                 mask = E1000_SWFW_PHY2_SM;
724         else if (hw->bus.func == E1000_FUNC_3)
725                 mask = E1000_SWFW_PHY3_SM;
726
727         return hw->mac.ops.acquire_swfw_sync(hw, mask);
728 }
729
730 /**
731  *  igb_release_phy_82575 - Release rights to access PHY
732  *  @hw: pointer to the HW structure
733  *
734  *  A wrapper to release access rights to the correct PHY.  This is a
735  *  function pointer entry point called by the api module.
736  **/
737 static void igb_release_phy_82575(struct e1000_hw *hw)
738 {
739         u16 mask = E1000_SWFW_PHY0_SM;
740
741         if (hw->bus.func == E1000_FUNC_1)
742                 mask = E1000_SWFW_PHY1_SM;
743         else if (hw->bus.func == E1000_FUNC_2)
744                 mask = E1000_SWFW_PHY2_SM;
745         else if (hw->bus.func == E1000_FUNC_3)
746                 mask = E1000_SWFW_PHY3_SM;
747
748         hw->mac.ops.release_swfw_sync(hw, mask);
749 }
750
751 /**
752  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
753  *  @hw: pointer to the HW structure
754  *  @offset: register offset to be read
755  *  @data: pointer to the read data
756  *
757  *  Reads the PHY register at offset using the serial gigabit media independent
758  *  interface and stores the retrieved information in data.
759  **/
760 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
761                                           u16 *data)
762 {
763         s32 ret_val = -E1000_ERR_PARAM;
764
765         if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
766                 hw_dbg("PHY Address %u is out of range\n", offset);
767                 goto out;
768         }
769
770         ret_val = hw->phy.ops.acquire(hw);
771         if (ret_val)
772                 goto out;
773
774         ret_val = igb_read_phy_reg_i2c(hw, offset, data);
775
776         hw->phy.ops.release(hw);
777
778 out:
779         return ret_val;
780 }
781
782 /**
783  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
784  *  @hw: pointer to the HW structure
785  *  @offset: register offset to write to
786  *  @data: data to write at register offset
787  *
788  *  Writes the data to PHY register at the offset using the serial gigabit
789  *  media independent interface.
790  **/
791 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
792                                            u16 data)
793 {
794         s32 ret_val = -E1000_ERR_PARAM;
795
796
797         if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
798                 hw_dbg("PHY Address %d is out of range\n", offset);
799                 goto out;
800         }
801
802         ret_val = hw->phy.ops.acquire(hw);
803         if (ret_val)
804                 goto out;
805
806         ret_val = igb_write_phy_reg_i2c(hw, offset, data);
807
808         hw->phy.ops.release(hw);
809
810 out:
811         return ret_val;
812 }
813
814 /**
815  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
816  *  @hw: pointer to the HW structure
817  *
818  *  Retrieves the PHY address and ID for both PHY's which do and do not use
819  *  sgmi interface.
820  **/
821 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
822 {
823         struct e1000_phy_info *phy = &hw->phy;
824         s32  ret_val = 0;
825         u16 phy_id;
826         u32 ctrl_ext;
827         u32 mdic;
828
829         /* Extra read required for some PHY's on i354 */
830         if (hw->mac.type == e1000_i354)
831                 igb_get_phy_id(hw);
832
833         /* For SGMII PHYs, we try the list of possible addresses until
834          * we find one that works.  For non-SGMII PHYs
835          * (e.g. integrated copper PHYs), an address of 1 should
836          * work.  The result of this function should mean phy->phy_addr
837          * and phy->id are set correctly.
838          */
839         if (!(igb_sgmii_active_82575(hw))) {
840                 phy->addr = 1;
841                 ret_val = igb_get_phy_id(hw);
842                 goto out;
843         }
844
845         if (igb_sgmii_uses_mdio_82575(hw)) {
846                 switch (hw->mac.type) {
847                 case e1000_82575:
848                 case e1000_82576:
849                         mdic = rd32(E1000_MDIC);
850                         mdic &= E1000_MDIC_PHY_MASK;
851                         phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
852                         break;
853                 case e1000_82580:
854                 case e1000_i350:
855                 case e1000_i354:
856                 case e1000_i210:
857                 case e1000_i211:
858                         mdic = rd32(E1000_MDICNFG);
859                         mdic &= E1000_MDICNFG_PHY_MASK;
860                         phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
861                         break;
862                 default:
863                         ret_val = -E1000_ERR_PHY;
864                         goto out;
865                 }
866                 ret_val = igb_get_phy_id(hw);
867                 goto out;
868         }
869
870         /* Power on sgmii phy if it is disabled */
871         ctrl_ext = rd32(E1000_CTRL_EXT);
872         wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
873         wrfl();
874         msleep(300);
875
876         /* The address field in the I2CCMD register is 3 bits and 0 is invalid.
877          * Therefore, we need to test 1-7
878          */
879         for (phy->addr = 1; phy->addr < 8; phy->addr++) {
880                 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
881                 if (ret_val == 0) {
882                         hw_dbg("Vendor ID 0x%08X read at address %u\n",
883                                phy_id, phy->addr);
884                         /* At the time of this writing, The M88 part is
885                          * the only supported SGMII PHY product.
886                          */
887                         if (phy_id == M88_VENDOR)
888                                 break;
889                 } else {
890                         hw_dbg("PHY address %u was unreadable\n", phy->addr);
891                 }
892         }
893
894         /* A valid PHY type couldn't be found. */
895         if (phy->addr == 8) {
896                 phy->addr = 0;
897                 ret_val = -E1000_ERR_PHY;
898                 goto out;
899         } else {
900                 ret_val = igb_get_phy_id(hw);
901         }
902
903         /* restore previous sfp cage power state */
904         wr32(E1000_CTRL_EXT, ctrl_ext);
905
906 out:
907         return ret_val;
908 }
909
910 /**
911  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
912  *  @hw: pointer to the HW structure
913  *
914  *  Resets the PHY using the serial gigabit media independent interface.
915  **/
916 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
917 {
918         struct e1000_phy_info *phy = &hw->phy;
919         s32 ret_val;
920
921         /* This isn't a true "hard" reset, but is the only reset
922          * available to us at this time.
923          */
924
925         hw_dbg("Soft resetting SGMII attached PHY...\n");
926
927         /* SFP documentation requires the following to configure the SPF module
928          * to work on SGMII.  No further documentation is given.
929          */
930         ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
931         if (ret_val)
932                 goto out;
933
934         ret_val = igb_phy_sw_reset(hw);
935         if (ret_val)
936                 goto out;
937
938         if (phy->id == M88E1512_E_PHY_ID)
939                 ret_val = igb_initialize_M88E1512_phy(hw);
940         if (phy->id == M88E1543_E_PHY_ID)
941                 ret_val = igb_initialize_M88E1543_phy(hw);
942 out:
943         return ret_val;
944 }
945
946 /**
947  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
948  *  @hw: pointer to the HW structure
949  *  @active: true to enable LPLU, false to disable
950  *
951  *  Sets the LPLU D0 state according to the active flag.  When
952  *  activating LPLU this function also disables smart speed
953  *  and vice versa.  LPLU will not be activated unless the
954  *  device autonegotiation advertisement meets standards of
955  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
956  *  This is a function pointer entry point only called by
957  *  PHY setup routines.
958  **/
959 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
960 {
961         struct e1000_phy_info *phy = &hw->phy;
962         s32 ret_val;
963         u16 data;
964
965         ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
966         if (ret_val)
967                 goto out;
968
969         if (active) {
970                 data |= IGP02E1000_PM_D0_LPLU;
971                 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
972                                                  data);
973                 if (ret_val)
974                         goto out;
975
976                 /* When LPLU is enabled, we should disable SmartSpeed */
977                 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
978                                                 &data);
979                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
980                 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
981                                                  data);
982                 if (ret_val)
983                         goto out;
984         } else {
985                 data &= ~IGP02E1000_PM_D0_LPLU;
986                 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
987                                                  data);
988                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
989                  * during Dx states where the power conservation is most
990                  * important.  During driver activity we should enable
991                  * SmartSpeed, so performance is maintained.
992                  */
993                 if (phy->smart_speed == e1000_smart_speed_on) {
994                         ret_val = phy->ops.read_reg(hw,
995                                         IGP01E1000_PHY_PORT_CONFIG, &data);
996                         if (ret_val)
997                                 goto out;
998
999                         data |= IGP01E1000_PSCFR_SMART_SPEED;
1000                         ret_val = phy->ops.write_reg(hw,
1001                                         IGP01E1000_PHY_PORT_CONFIG, data);
1002                         if (ret_val)
1003                                 goto out;
1004                 } else if (phy->smart_speed == e1000_smart_speed_off) {
1005                         ret_val = phy->ops.read_reg(hw,
1006                                         IGP01E1000_PHY_PORT_CONFIG, &data);
1007                         if (ret_val)
1008                                 goto out;
1009
1010                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1011                         ret_val = phy->ops.write_reg(hw,
1012                                         IGP01E1000_PHY_PORT_CONFIG, data);
1013                         if (ret_val)
1014                                 goto out;
1015                 }
1016         }
1017
1018 out:
1019         return ret_val;
1020 }
1021
1022 /**
1023  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1024  *  @hw: pointer to the HW structure
1025  *  @active: true to enable LPLU, false to disable
1026  *
1027  *  Sets the LPLU D0 state according to the active flag.  When
1028  *  activating LPLU this function also disables smart speed
1029  *  and vice versa.  LPLU will not be activated unless the
1030  *  device autonegotiation advertisement meets standards of
1031  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1032  *  This is a function pointer entry point only called by
1033  *  PHY setup routines.
1034  **/
1035 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1036 {
1037         struct e1000_phy_info *phy = &hw->phy;
1038         u16 data;
1039
1040         data = rd32(E1000_82580_PHY_POWER_MGMT);
1041
1042         if (active) {
1043                 data |= E1000_82580_PM_D0_LPLU;
1044
1045                 /* When LPLU is enabled, we should disable SmartSpeed */
1046                 data &= ~E1000_82580_PM_SPD;
1047         } else {
1048                 data &= ~E1000_82580_PM_D0_LPLU;
1049
1050                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1051                  * during Dx states where the power conservation is most
1052                  * important.  During driver activity we should enable
1053                  * SmartSpeed, so performance is maintained.
1054                  */
1055                 if (phy->smart_speed == e1000_smart_speed_on)
1056                         data |= E1000_82580_PM_SPD;
1057                 else if (phy->smart_speed == e1000_smart_speed_off)
1058                         data &= ~E1000_82580_PM_SPD; }
1059
1060         wr32(E1000_82580_PHY_POWER_MGMT, data);
1061         return 0;
1062 }
1063
1064 /**
1065  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1066  *  @hw: pointer to the HW structure
1067  *  @active: boolean used to enable/disable lplu
1068  *
1069  *  Success returns 0, Failure returns 1
1070  *
1071  *  The low power link up (lplu) state is set to the power management level D3
1072  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1073  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1074  *  is used during Dx states where the power conservation is most important.
1075  *  During driver activity, SmartSpeed should be enabled so performance is
1076  *  maintained.
1077  **/
1078 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1079 {
1080         struct e1000_phy_info *phy = &hw->phy;
1081         u16 data;
1082
1083         data = rd32(E1000_82580_PHY_POWER_MGMT);
1084
1085         if (!active) {
1086                 data &= ~E1000_82580_PM_D3_LPLU;
1087                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1088                  * during Dx states where the power conservation is most
1089                  * important.  During driver activity we should enable
1090                  * SmartSpeed, so performance is maintained.
1091                  */
1092                 if (phy->smart_speed == e1000_smart_speed_on)
1093                         data |= E1000_82580_PM_SPD;
1094                 else if (phy->smart_speed == e1000_smart_speed_off)
1095                         data &= ~E1000_82580_PM_SPD;
1096         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1097                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1098                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1099                 data |= E1000_82580_PM_D3_LPLU;
1100                 /* When LPLU is enabled, we should disable SmartSpeed */
1101                 data &= ~E1000_82580_PM_SPD;
1102         }
1103
1104         wr32(E1000_82580_PHY_POWER_MGMT, data);
1105         return 0;
1106 }
1107
1108 /**
1109  *  igb_acquire_nvm_82575 - Request for access to EEPROM
1110  *  @hw: pointer to the HW structure
1111  *
1112  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1113  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1114  *  Return successful if access grant bit set, else clear the request for
1115  *  EEPROM access and return -E1000_ERR_NVM (-1).
1116  **/
1117 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1118 {
1119         s32 ret_val;
1120
1121         ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1122         if (ret_val)
1123                 goto out;
1124
1125         ret_val = igb_acquire_nvm(hw);
1126
1127         if (ret_val)
1128                 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1129
1130 out:
1131         return ret_val;
1132 }
1133
1134 /**
1135  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1136  *  @hw: pointer to the HW structure
1137  *
1138  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1139  *  then release the semaphores acquired.
1140  **/
1141 static void igb_release_nvm_82575(struct e1000_hw *hw)
1142 {
1143         igb_release_nvm(hw);
1144         hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1145 }
1146
1147 /**
1148  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1149  *  @hw: pointer to the HW structure
1150  *  @mask: specifies which semaphore to acquire
1151  *
1152  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1153  *  will also specify which port we're acquiring the lock for.
1154  **/
1155 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1156 {
1157         u32 swfw_sync;
1158         u32 swmask = mask;
1159         u32 fwmask = mask << 16;
1160         s32 ret_val = 0;
1161         s32 i = 0, timeout = 200;
1162
1163         while (i < timeout) {
1164                 if (igb_get_hw_semaphore(hw)) {
1165                         ret_val = -E1000_ERR_SWFW_SYNC;
1166                         goto out;
1167                 }
1168
1169                 swfw_sync = rd32(E1000_SW_FW_SYNC);
1170                 if (!(swfw_sync & (fwmask | swmask)))
1171                         break;
1172
1173                 /* Firmware currently using resource (fwmask)
1174                  * or other software thread using resource (swmask)
1175                  */
1176                 igb_put_hw_semaphore(hw);
1177                 mdelay(5);
1178                 i++;
1179         }
1180
1181         if (i == timeout) {
1182                 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1183                 ret_val = -E1000_ERR_SWFW_SYNC;
1184                 goto out;
1185         }
1186
1187         swfw_sync |= swmask;
1188         wr32(E1000_SW_FW_SYNC, swfw_sync);
1189
1190         igb_put_hw_semaphore(hw);
1191
1192 out:
1193         return ret_val;
1194 }
1195
1196 /**
1197  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1198  *  @hw: pointer to the HW structure
1199  *  @mask: specifies which semaphore to acquire
1200  *
1201  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1202  *  will also specify which port we're releasing the lock for.
1203  **/
1204 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1205 {
1206         u32 swfw_sync;
1207
1208         while (igb_get_hw_semaphore(hw) != 0)
1209                 ; /* Empty */
1210
1211         swfw_sync = rd32(E1000_SW_FW_SYNC);
1212         swfw_sync &= ~mask;
1213         wr32(E1000_SW_FW_SYNC, swfw_sync);
1214
1215         igb_put_hw_semaphore(hw);
1216 }
1217
1218 /**
1219  *  igb_get_cfg_done_82575 - Read config done bit
1220  *  @hw: pointer to the HW structure
1221  *
1222  *  Read the management control register for the config done bit for
1223  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1224  *  to read the config done bit, so an error is *ONLY* logged and returns
1225  *  0.  If we were to return with error, EEPROM-less silicon
1226  *  would not be able to be reset or change link.
1227  **/
1228 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1229 {
1230         s32 timeout = PHY_CFG_TIMEOUT;
1231         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1232
1233         if (hw->bus.func == 1)
1234                 mask = E1000_NVM_CFG_DONE_PORT_1;
1235         else if (hw->bus.func == E1000_FUNC_2)
1236                 mask = E1000_NVM_CFG_DONE_PORT_2;
1237         else if (hw->bus.func == E1000_FUNC_3)
1238                 mask = E1000_NVM_CFG_DONE_PORT_3;
1239
1240         while (timeout) {
1241                 if (rd32(E1000_EEMNGCTL) & mask)
1242                         break;
1243                 usleep_range(1000, 2000);
1244                 timeout--;
1245         }
1246         if (!timeout)
1247                 hw_dbg("MNG configuration cycle has not completed.\n");
1248
1249         /* If EEPROM is not marked present, init the PHY manually */
1250         if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1251             (hw->phy.type == e1000_phy_igp_3))
1252                 igb_phy_init_script_igp3(hw);
1253
1254         return 0;
1255 }
1256
1257 /**
1258  *  igb_get_link_up_info_82575 - Get link speed/duplex info
1259  *  @hw: pointer to the HW structure
1260  *  @speed: stores the current speed
1261  *  @duplex: stores the current duplex
1262  *
1263  *  This is a wrapper function, if using the serial gigabit media independent
1264  *  interface, use PCS to retrieve the link speed and duplex information.
1265  *  Otherwise, use the generic function to get the link speed and duplex info.
1266  **/
1267 static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1268                                         u16 *duplex)
1269 {
1270         s32 ret_val;
1271
1272         if (hw->phy.media_type != e1000_media_type_copper)
1273                 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1274                                                                duplex);
1275         else
1276                 ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1277                                                                     duplex);
1278
1279         return ret_val;
1280 }
1281
1282 /**
1283  *  igb_check_for_link_82575 - Check for link
1284  *  @hw: pointer to the HW structure
1285  *
1286  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1287  *  use the generic interface for determining link.
1288  **/
1289 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1290 {
1291         s32 ret_val;
1292         u16 speed, duplex;
1293
1294         if (hw->phy.media_type != e1000_media_type_copper) {
1295                 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1296                                                              &duplex);
1297                 /* Use this flag to determine if link needs to be checked or
1298                  * not.  If  we have link clear the flag so that we do not
1299                  * continue to check for link.
1300                  */
1301                 hw->mac.get_link_status = !hw->mac.serdes_has_link;
1302
1303                 /* Configure Flow Control now that Auto-Neg has completed.
1304                  * First, we need to restore the desired flow control
1305                  * settings because we may have had to re-autoneg with a
1306                  * different link partner.
1307                  */
1308                 ret_val = igb_config_fc_after_link_up(hw);
1309                 if (ret_val)
1310                         hw_dbg("Error configuring flow control\n");
1311         } else {
1312                 ret_val = igb_check_for_copper_link(hw);
1313         }
1314
1315         return ret_val;
1316 }
1317
1318 /**
1319  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1320  *  @hw: pointer to the HW structure
1321  **/
1322 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1323 {
1324         u32 reg;
1325
1326
1327         if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1328             !igb_sgmii_active_82575(hw))
1329                 return;
1330
1331         /* Enable PCS to turn on link */
1332         reg = rd32(E1000_PCS_CFG0);
1333         reg |= E1000_PCS_CFG_PCS_EN;
1334         wr32(E1000_PCS_CFG0, reg);
1335
1336         /* Power up the laser */
1337         reg = rd32(E1000_CTRL_EXT);
1338         reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1339         wr32(E1000_CTRL_EXT, reg);
1340
1341         /* flush the write to verify completion */
1342         wrfl();
1343         usleep_range(1000, 2000);
1344 }
1345
1346 /**
1347  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1348  *  @hw: pointer to the HW structure
1349  *  @speed: stores the current speed
1350  *  @duplex: stores the current duplex
1351  *
1352  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1353  *  duplex, then store the values in the pointers provided.
1354  **/
1355 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1356                                                 u16 *duplex)
1357 {
1358         struct e1000_mac_info *mac = &hw->mac;
1359         u32 pcs, status;
1360
1361         /* Set up defaults for the return values of this function */
1362         mac->serdes_has_link = false;
1363         *speed = 0;
1364         *duplex = 0;
1365
1366         /* Read the PCS Status register for link state. For non-copper mode,
1367          * the status register is not accurate. The PCS status register is
1368          * used instead.
1369          */
1370         pcs = rd32(E1000_PCS_LSTAT);
1371
1372         /* The link up bit determines when link is up on autoneg. The sync ok
1373          * gets set once both sides sync up and agree upon link. Stable link
1374          * can be determined by checking for both link up and link sync ok
1375          */
1376         if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1377                 mac->serdes_has_link = true;
1378
1379                 /* Detect and store PCS speed */
1380                 if (pcs & E1000_PCS_LSTS_SPEED_1000)
1381                         *speed = SPEED_1000;
1382                 else if (pcs & E1000_PCS_LSTS_SPEED_100)
1383                         *speed = SPEED_100;
1384                 else
1385                         *speed = SPEED_10;
1386
1387                 /* Detect and store PCS duplex */
1388                 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1389                         *duplex = FULL_DUPLEX;
1390                 else
1391                         *duplex = HALF_DUPLEX;
1392
1393         /* Check if it is an I354 2.5Gb backplane connection. */
1394                 if (mac->type == e1000_i354) {
1395                         status = rd32(E1000_STATUS);
1396                         if ((status & E1000_STATUS_2P5_SKU) &&
1397                             !(status & E1000_STATUS_2P5_SKU_OVER)) {
1398                                 *speed = SPEED_2500;
1399                                 *duplex = FULL_DUPLEX;
1400                                 hw_dbg("2500 Mbs, ");
1401                                 hw_dbg("Full Duplex\n");
1402                         }
1403                 }
1404
1405         }
1406
1407         return 0;
1408 }
1409
1410 /**
1411  *  igb_shutdown_serdes_link_82575 - Remove link during power down
1412  *  @hw: pointer to the HW structure
1413  *
1414  *  In the case of fiber serdes, shut down optics and PCS on driver unload
1415  *  when management pass thru is not enabled.
1416  **/
1417 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1418 {
1419         u32 reg;
1420
1421         if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1422             igb_sgmii_active_82575(hw))
1423                 return;
1424
1425         if (!igb_enable_mng_pass_thru(hw)) {
1426                 /* Disable PCS to turn off link */
1427                 reg = rd32(E1000_PCS_CFG0);
1428                 reg &= ~E1000_PCS_CFG_PCS_EN;
1429                 wr32(E1000_PCS_CFG0, reg);
1430
1431                 /* shutdown the laser */
1432                 reg = rd32(E1000_CTRL_EXT);
1433                 reg |= E1000_CTRL_EXT_SDP3_DATA;
1434                 wr32(E1000_CTRL_EXT, reg);
1435
1436                 /* flush the write to verify completion */
1437                 wrfl();
1438                 usleep_range(1000, 2000);
1439         }
1440 }
1441
1442 /**
1443  *  igb_reset_hw_82575 - Reset hardware
1444  *  @hw: pointer to the HW structure
1445  *
1446  *  This resets the hardware into a known state.  This is a
1447  *  function pointer entry point called by the api module.
1448  **/
1449 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1450 {
1451         u32 ctrl;
1452         s32 ret_val;
1453
1454         /* Prevent the PCI-E bus from sticking if there is no TLP connection
1455          * on the last TLP read/write transaction when MAC is reset.
1456          */
1457         ret_val = igb_disable_pcie_master(hw);
1458         if (ret_val)
1459                 hw_dbg("PCI-E Master disable polling has failed.\n");
1460
1461         /* set the completion timeout for interface */
1462         ret_val = igb_set_pcie_completion_timeout(hw);
1463         if (ret_val)
1464                 hw_dbg("PCI-E Set completion timeout has failed.\n");
1465
1466         hw_dbg("Masking off all interrupts\n");
1467         wr32(E1000_IMC, 0xffffffff);
1468
1469         wr32(E1000_RCTL, 0);
1470         wr32(E1000_TCTL, E1000_TCTL_PSP);
1471         wrfl();
1472
1473         usleep_range(10000, 20000);
1474
1475         ctrl = rd32(E1000_CTRL);
1476
1477         hw_dbg("Issuing a global reset to MAC\n");
1478         wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1479
1480         ret_val = igb_get_auto_rd_done(hw);
1481         if (ret_val) {
1482                 /* When auto config read does not complete, do not
1483                  * return with an error. This can happen in situations
1484                  * where there is no eeprom and prevents getting link.
1485                  */
1486                 hw_dbg("Auto Read Done did not complete\n");
1487         }
1488
1489         /* If EEPROM is not present, run manual init scripts */
1490         if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1491                 igb_reset_init_script_82575(hw);
1492
1493         /* Clear any pending interrupt events. */
1494         wr32(E1000_IMC, 0xffffffff);
1495         rd32(E1000_ICR);
1496
1497         /* Install any alternate MAC address into RAR0 */
1498         ret_val = igb_check_alt_mac_addr(hw);
1499
1500         return ret_val;
1501 }
1502
1503 /**
1504  *  igb_init_hw_82575 - Initialize hardware
1505  *  @hw: pointer to the HW structure
1506  *
1507  *  This inits the hardware readying it for operation.
1508  **/
1509 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1510 {
1511         struct e1000_mac_info *mac = &hw->mac;
1512         s32 ret_val;
1513         u16 i, rar_count = mac->rar_entry_count;
1514
1515         if ((hw->mac.type >= e1000_i210) &&
1516             !(igb_get_flash_presence_i210(hw))) {
1517                 ret_val = igb_pll_workaround_i210(hw);
1518                 if (ret_val)
1519                         return ret_val;
1520         }
1521
1522         /* Initialize identification LED */
1523         ret_val = igb_id_led_init(hw);
1524         if (ret_val) {
1525                 hw_dbg("Error initializing identification LED\n");
1526                 /* This is not fatal and we should not stop init due to this */
1527         }
1528
1529         /* Disabling VLAN filtering */
1530         hw_dbg("Initializing the IEEE VLAN\n");
1531         igb_clear_vfta(hw);
1532
1533         /* Setup the receive address */
1534         igb_init_rx_addrs(hw, rar_count);
1535
1536         /* Zero out the Multicast HASH table */
1537         hw_dbg("Zeroing the MTA\n");
1538         for (i = 0; i < mac->mta_reg_count; i++)
1539                 array_wr32(E1000_MTA, i, 0);
1540
1541         /* Zero out the Unicast HASH table */
1542         hw_dbg("Zeroing the UTA\n");
1543         for (i = 0; i < mac->uta_reg_count; i++)
1544                 array_wr32(E1000_UTA, i, 0);
1545
1546         /* Setup link and flow control */
1547         ret_val = igb_setup_link(hw);
1548
1549         /* Clear all of the statistics registers (clear on read).  It is
1550          * important that we do this after we have tried to establish link
1551          * because the symbol error count will increment wildly if there
1552          * is no link.
1553          */
1554         igb_clear_hw_cntrs_82575(hw);
1555         return ret_val;
1556 }
1557
1558 /**
1559  *  igb_setup_copper_link_82575 - Configure copper link settings
1560  *  @hw: pointer to the HW structure
1561  *
1562  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1563  *  for link, once link is established calls to configure collision distance
1564  *  and flow control are called.
1565  **/
1566 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1567 {
1568         u32 ctrl;
1569         s32  ret_val;
1570         u32 phpm_reg;
1571
1572         ctrl = rd32(E1000_CTRL);
1573         ctrl |= E1000_CTRL_SLU;
1574         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1575         wr32(E1000_CTRL, ctrl);
1576
1577         /* Clear Go Link Disconnect bit on supported devices */
1578         switch (hw->mac.type) {
1579         case e1000_82580:
1580         case e1000_i350:
1581         case e1000_i210:
1582         case e1000_i211:
1583                 phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1584                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1585                 wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1586                 break;
1587         default:
1588                 break;
1589         }
1590
1591         ret_val = igb_setup_serdes_link_82575(hw);
1592         if (ret_val)
1593                 goto out;
1594
1595         if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1596                 /* allow time for SFP cage time to power up phy */
1597                 msleep(300);
1598
1599                 ret_val = hw->phy.ops.reset(hw);
1600                 if (ret_val) {
1601                         hw_dbg("Error resetting the PHY.\n");
1602                         goto out;
1603                 }
1604         }
1605         switch (hw->phy.type) {
1606         case e1000_phy_i210:
1607         case e1000_phy_m88:
1608                 switch (hw->phy.id) {
1609                 case I347AT4_E_PHY_ID:
1610                 case M88E1112_E_PHY_ID:
1611                 case M88E1543_E_PHY_ID:
1612                 case M88E1512_E_PHY_ID:
1613                 case I210_I_PHY_ID:
1614                         ret_val = igb_copper_link_setup_m88_gen2(hw);
1615                         break;
1616                 default:
1617                         ret_val = igb_copper_link_setup_m88(hw);
1618                         break;
1619                 }
1620                 break;
1621         case e1000_phy_igp_3:
1622                 ret_val = igb_copper_link_setup_igp(hw);
1623                 break;
1624         case e1000_phy_82580:
1625                 ret_val = igb_copper_link_setup_82580(hw);
1626                 break;
1627         case e1000_phy_bcm54616:
1628                 ret_val = 0;
1629                 break;
1630         default:
1631                 ret_val = -E1000_ERR_PHY;
1632                 break;
1633         }
1634
1635         if (ret_val)
1636                 goto out;
1637
1638         ret_val = igb_setup_copper_link(hw);
1639 out:
1640         return ret_val;
1641 }
1642
1643 /**
1644  *  igb_setup_serdes_link_82575 - Setup link for serdes
1645  *  @hw: pointer to the HW structure
1646  *
1647  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1648  *  used on copper connections where the serialized gigabit media independent
1649  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1650  *  for auto-negotiation or forces speed/duplex.
1651  **/
1652 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1653 {
1654         u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1655         bool pcs_autoneg;
1656         s32 ret_val = 0;
1657         u16 data;
1658
1659         if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1660             !igb_sgmii_active_82575(hw))
1661                 return ret_val;
1662
1663
1664         /* On the 82575, SerDes loopback mode persists until it is
1665          * explicitly turned off or a power cycle is performed.  A read to
1666          * the register does not indicate its status.  Therefore, we ensure
1667          * loopback mode is disabled during initialization.
1668          */
1669         wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1670
1671         /* power on the sfp cage if present and turn on I2C */
1672         ctrl_ext = rd32(E1000_CTRL_EXT);
1673         ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1674         ctrl_ext |= E1000_CTRL_I2C_ENA;
1675         wr32(E1000_CTRL_EXT, ctrl_ext);
1676
1677         ctrl_reg = rd32(E1000_CTRL);
1678         ctrl_reg |= E1000_CTRL_SLU;
1679
1680         if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1681                 /* set both sw defined pins */
1682                 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1683
1684                 /* Set switch control to serdes energy detect */
1685                 reg = rd32(E1000_CONNSW);
1686                 reg |= E1000_CONNSW_ENRGSRC;
1687                 wr32(E1000_CONNSW, reg);
1688         }
1689
1690         reg = rd32(E1000_PCS_LCTL);
1691
1692         /* default pcs_autoneg to the same setting as mac autoneg */
1693         pcs_autoneg = hw->mac.autoneg;
1694
1695         switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1696         case E1000_CTRL_EXT_LINK_MODE_SGMII:
1697                 /* sgmii mode lets the phy handle forcing speed/duplex */
1698                 pcs_autoneg = true;
1699                 /* autoneg time out should be disabled for SGMII mode */
1700                 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1701                 break;
1702         case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1703                 /* disable PCS autoneg and support parallel detect only */
1704                 pcs_autoneg = false;
1705                 fallthrough;
1706         default:
1707                 if (hw->mac.type == e1000_82575 ||
1708                     hw->mac.type == e1000_82576) {
1709                         ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1710                         if (ret_val) {
1711                                 hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1712                                 return ret_val;
1713                         }
1714
1715                         if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1716                                 pcs_autoneg = false;
1717                 }
1718
1719                 /* non-SGMII modes only supports a speed of 1000/Full for the
1720                  * link so it is best to just force the MAC and let the pcs
1721                  * link either autoneg or be forced to 1000/Full
1722                  */
1723                 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1724                                 E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1725
1726                 /* set speed of 1000/Full if speed/duplex is forced */
1727                 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1728                 break;
1729         }
1730
1731         wr32(E1000_CTRL, ctrl_reg);
1732
1733         /* New SerDes mode allows for forcing speed or autonegotiating speed
1734          * at 1gb. Autoneg should be default set by most drivers. This is the
1735          * mode that will be compatible with older link partners and switches.
1736          * However, both are supported by the hardware and some drivers/tools.
1737          */
1738         reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1739                 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1740
1741         if (pcs_autoneg) {
1742                 /* Set PCS register for autoneg */
1743                 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1744                        E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1745
1746                 /* Disable force flow control for autoneg */
1747                 reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1748
1749                 /* Configure flow control advertisement for autoneg */
1750                 anadv_reg = rd32(E1000_PCS_ANADV);
1751                 anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1752                 switch (hw->fc.requested_mode) {
1753                 case e1000_fc_full:
1754                 case e1000_fc_rx_pause:
1755                         anadv_reg |= E1000_TXCW_ASM_DIR;
1756                         anadv_reg |= E1000_TXCW_PAUSE;
1757                         break;
1758                 case e1000_fc_tx_pause:
1759                         anadv_reg |= E1000_TXCW_ASM_DIR;
1760                         break;
1761                 default:
1762                         break;
1763                 }
1764                 wr32(E1000_PCS_ANADV, anadv_reg);
1765
1766                 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1767         } else {
1768                 /* Set PCS register for forced link */
1769                 reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1770
1771                 /* Force flow control for forced link */
1772                 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1773
1774                 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1775         }
1776
1777         wr32(E1000_PCS_LCTL, reg);
1778
1779         if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1780                 igb_force_mac_fc(hw);
1781
1782         return ret_val;
1783 }
1784
1785 /**
1786  *  igb_sgmii_active_82575 - Return sgmii state
1787  *  @hw: pointer to the HW structure
1788  *
1789  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1790  *  which can be enabled for use in the embedded applications.  Simply
1791  *  return the current state of the sgmii interface.
1792  **/
1793 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1794 {
1795         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1796         return dev_spec->sgmii_active;
1797 }
1798
1799 /**
1800  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1801  *  @hw: pointer to the HW structure
1802  *
1803  *  Inits recommended HW defaults after a reset when there is no EEPROM
1804  *  detected. This is only for the 82575.
1805  **/
1806 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1807 {
1808         if (hw->mac.type == e1000_82575) {
1809                 hw_dbg("Running reset init script for 82575\n");
1810                 /* SerDes configuration via SERDESCTRL */
1811                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1812                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1813                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1814                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1815
1816                 /* CCM configuration via CCMCTL register */
1817                 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1818                 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1819
1820                 /* PCIe lanes configuration */
1821                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1822                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1823                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1824                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1825
1826                 /* PCIe PLL Configuration */
1827                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1828                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1829                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1830         }
1831
1832         return 0;
1833 }
1834
1835 /**
1836  *  igb_read_mac_addr_82575 - Read device MAC address
1837  *  @hw: pointer to the HW structure
1838  **/
1839 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1840 {
1841         s32 ret_val = 0;
1842
1843         /* If there's an alternate MAC address place it in RAR0
1844          * so that it will override the Si installed default perm
1845          * address.
1846          */
1847         ret_val = igb_check_alt_mac_addr(hw);
1848         if (ret_val)
1849                 goto out;
1850
1851         ret_val = igb_read_mac_addr(hw);
1852
1853 out:
1854         return ret_val;
1855 }
1856
1857 /**
1858  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1859  * @hw: pointer to the HW structure
1860  *
1861  * In the case of a PHY power down to save power, or to turn off link during a
1862  * driver unload, or wake on lan is not enabled, remove the link.
1863  **/
1864 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1865 {
1866         /* If the management interface is not enabled, then power down */
1867         if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1868                 igb_power_down_phy_copper(hw);
1869 }
1870
1871 /**
1872  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1873  *  @hw: pointer to the HW structure
1874  *
1875  *  Clears the hardware counters by reading the counter registers.
1876  **/
1877 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1878 {
1879         igb_clear_hw_cntrs_base(hw);
1880
1881         rd32(E1000_PRC64);
1882         rd32(E1000_PRC127);
1883         rd32(E1000_PRC255);
1884         rd32(E1000_PRC511);
1885         rd32(E1000_PRC1023);
1886         rd32(E1000_PRC1522);
1887         rd32(E1000_PTC64);
1888         rd32(E1000_PTC127);
1889         rd32(E1000_PTC255);
1890         rd32(E1000_PTC511);
1891         rd32(E1000_PTC1023);
1892         rd32(E1000_PTC1522);
1893
1894         rd32(E1000_ALGNERRC);
1895         rd32(E1000_RXERRC);
1896         rd32(E1000_TNCRS);
1897         rd32(E1000_CEXTERR);
1898         rd32(E1000_TSCTC);
1899         rd32(E1000_TSCTFC);
1900
1901         rd32(E1000_MGTPRC);
1902         rd32(E1000_MGTPDC);
1903         rd32(E1000_MGTPTC);
1904
1905         rd32(E1000_IAC);
1906         rd32(E1000_ICRXOC);
1907
1908         rd32(E1000_ICRXPTC);
1909         rd32(E1000_ICRXATC);
1910         rd32(E1000_ICTXPTC);
1911         rd32(E1000_ICTXATC);
1912         rd32(E1000_ICTXQEC);
1913         rd32(E1000_ICTXQMTC);
1914         rd32(E1000_ICRXDMTC);
1915
1916         rd32(E1000_CBTMPC);
1917         rd32(E1000_HTDPMC);
1918         rd32(E1000_CBRMPC);
1919         rd32(E1000_RPTHC);
1920         rd32(E1000_HGPTC);
1921         rd32(E1000_HTCBDPC);
1922         rd32(E1000_HGORCL);
1923         rd32(E1000_HGORCH);
1924         rd32(E1000_HGOTCL);
1925         rd32(E1000_HGOTCH);
1926         rd32(E1000_LENERRS);
1927
1928         /* This register should not be read in copper configurations */
1929         if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1930             igb_sgmii_active_82575(hw))
1931                 rd32(E1000_SCVPC);
1932 }
1933
1934 /**
1935  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1936  *  @hw: pointer to the HW structure
1937  *
1938  *  After rx enable if manageability is enabled then there is likely some
1939  *  bad data at the start of the fifo and possibly in the DMA fifo. This
1940  *  function clears the fifos and flushes any packets that came in as rx was
1941  *  being enabled.
1942  **/
1943 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1944 {
1945         u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1946         int i, ms_wait;
1947
1948         /* disable IPv6 options as per hardware errata */
1949         rfctl = rd32(E1000_RFCTL);
1950         rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1951         wr32(E1000_RFCTL, rfctl);
1952
1953         if (hw->mac.type != e1000_82575 ||
1954             !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1955                 return;
1956
1957         /* Disable all RX queues */
1958         for (i = 0; i < 4; i++) {
1959                 rxdctl[i] = rd32(E1000_RXDCTL(i));
1960                 wr32(E1000_RXDCTL(i),
1961                      rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1962         }
1963         /* Poll all queues to verify they have shut down */
1964         for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1965                 usleep_range(1000, 2000);
1966                 rx_enabled = 0;
1967                 for (i = 0; i < 4; i++)
1968                         rx_enabled |= rd32(E1000_RXDCTL(i));
1969                 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1970                         break;
1971         }
1972
1973         if (ms_wait == 10)
1974                 hw_dbg("Queue disable timed out after 10ms\n");
1975
1976         /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1977          * incoming packets are rejected.  Set enable and wait 2ms so that
1978          * any packet that was coming in as RCTL.EN was set is flushed
1979          */
1980         wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1981
1982         rlpml = rd32(E1000_RLPML);
1983         wr32(E1000_RLPML, 0);
1984
1985         rctl = rd32(E1000_RCTL);
1986         temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1987         temp_rctl |= E1000_RCTL_LPE;
1988
1989         wr32(E1000_RCTL, temp_rctl);
1990         wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1991         wrfl();
1992         usleep_range(2000, 3000);
1993
1994         /* Enable RX queues that were previously enabled and restore our
1995          * previous state
1996          */
1997         for (i = 0; i < 4; i++)
1998                 wr32(E1000_RXDCTL(i), rxdctl[i]);
1999         wr32(E1000_RCTL, rctl);
2000         wrfl();
2001
2002         wr32(E1000_RLPML, rlpml);
2003         wr32(E1000_RFCTL, rfctl);
2004
2005         /* Flush receive errors generated by workaround */
2006         rd32(E1000_ROC);
2007         rd32(E1000_RNBC);
2008         rd32(E1000_MPC);
2009 }
2010
2011 /**
2012  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
2013  *  @hw: pointer to the HW structure
2014  *
2015  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2016  *  however the hardware default for these parts is 500us to 1ms which is less
2017  *  than the 10ms recommended by the pci-e spec.  To address this we need to
2018  *  increase the value to either 10ms to 200ms for capability version 1 config,
2019  *  or 16ms to 55ms for version 2.
2020  **/
2021 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2022 {
2023         u32 gcr = rd32(E1000_GCR);
2024         s32 ret_val = 0;
2025         u16 pcie_devctl2;
2026
2027         /* only take action if timeout value is defaulted to 0 */
2028         if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2029                 goto out;
2030
2031         /* if capabilities version is type 1 we can write the
2032          * timeout of 10ms to 200ms through the GCR register
2033          */
2034         if (!(gcr & E1000_GCR_CAP_VER2)) {
2035                 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2036                 goto out;
2037         }
2038
2039         /* for version 2 capabilities we need to write the config space
2040          * directly in order to set the completion timeout value for
2041          * 16ms to 55ms
2042          */
2043         ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2044                                         &pcie_devctl2);
2045         if (ret_val)
2046                 goto out;
2047
2048         pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2049
2050         ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2051                                          &pcie_devctl2);
2052 out:
2053         /* disable completion timeout resend */
2054         gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2055
2056         wr32(E1000_GCR, gcr);
2057         return ret_val;
2058 }
2059
2060 /**
2061  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2062  *  @hw: pointer to the hardware struct
2063  *  @enable: state to enter, either enabled or disabled
2064  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2065  *
2066  *  enables/disables L2 switch anti-spoofing functionality.
2067  **/
2068 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2069 {
2070         u32 reg_val, reg_offset;
2071
2072         switch (hw->mac.type) {
2073         case e1000_82576:
2074                 reg_offset = E1000_DTXSWC;
2075                 break;
2076         case e1000_i350:
2077         case e1000_i354:
2078                 reg_offset = E1000_TXSWC;
2079                 break;
2080         default:
2081                 return;
2082         }
2083
2084         reg_val = rd32(reg_offset);
2085         if (enable) {
2086                 reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2087                              E1000_DTXSWC_VLAN_SPOOF_MASK);
2088                 /* The PF can spoof - it has to in order to
2089                  * support emulation mode NICs
2090                  */
2091                 reg_val ^= (BIT(pf) | BIT(pf + MAX_NUM_VFS));
2092         } else {
2093                 reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2094                              E1000_DTXSWC_VLAN_SPOOF_MASK);
2095         }
2096         wr32(reg_offset, reg_val);
2097 }
2098
2099 /**
2100  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2101  *  @hw: pointer to the hardware struct
2102  *  @enable: state to enter, either enabled or disabled
2103  *
2104  *  enables/disables L2 switch loopback functionality.
2105  **/
2106 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2107 {
2108         u32 dtxswc;
2109
2110         switch (hw->mac.type) {
2111         case e1000_82576:
2112                 dtxswc = rd32(E1000_DTXSWC);
2113                 if (enable)
2114                         dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2115                 else
2116                         dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2117                 wr32(E1000_DTXSWC, dtxswc);
2118                 break;
2119         case e1000_i354:
2120         case e1000_i350:
2121                 dtxswc = rd32(E1000_TXSWC);
2122                 if (enable)
2123                         dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2124                 else
2125                         dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2126                 wr32(E1000_TXSWC, dtxswc);
2127                 break;
2128         default:
2129                 /* Currently no other hardware supports loopback */
2130                 break;
2131         }
2132
2133 }
2134
2135 /**
2136  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2137  *  @hw: pointer to the hardware struct
2138  *  @enable: state to enter, either enabled or disabled
2139  *
2140  *  enables/disables replication of packets across multiple pools.
2141  **/
2142 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2143 {
2144         u32 vt_ctl = rd32(E1000_VT_CTL);
2145
2146         if (enable)
2147                 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2148         else
2149                 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2150
2151         wr32(E1000_VT_CTL, vt_ctl);
2152 }
2153
2154 /**
2155  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2156  *  @hw: pointer to the HW structure
2157  *  @offset: register offset to be read
2158  *  @data: pointer to the read data
2159  *
2160  *  Reads the MDI control register in the PHY at offset and stores the
2161  *  information read to data.
2162  **/
2163 s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2164 {
2165         s32 ret_val;
2166
2167         ret_val = hw->phy.ops.acquire(hw);
2168         if (ret_val)
2169                 goto out;
2170
2171         ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2172
2173         hw->phy.ops.release(hw);
2174
2175 out:
2176         return ret_val;
2177 }
2178
2179 /**
2180  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2181  *  @hw: pointer to the HW structure
2182  *  @offset: register offset to write to
2183  *  @data: data to write to register at offset
2184  *
2185  *  Writes data to MDI control register in the PHY at offset.
2186  **/
2187 s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2188 {
2189         s32 ret_val;
2190
2191
2192         ret_val = hw->phy.ops.acquire(hw);
2193         if (ret_val)
2194                 goto out;
2195
2196         ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2197
2198         hw->phy.ops.release(hw);
2199
2200 out:
2201         return ret_val;
2202 }
2203
2204 /**
2205  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2206  *  @hw: pointer to the HW structure
2207  *
2208  *  This resets the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2209  *  the values found in the EEPROM.  This addresses an issue in which these
2210  *  bits are not restored from EEPROM after reset.
2211  **/
2212 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2213 {
2214         s32 ret_val = 0;
2215         u32 mdicnfg;
2216         u16 nvm_data = 0;
2217
2218         if (hw->mac.type != e1000_82580)
2219                 goto out;
2220         if (!igb_sgmii_active_82575(hw))
2221                 goto out;
2222
2223         ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2224                                    NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2225                                    &nvm_data);
2226         if (ret_val) {
2227                 hw_dbg("NVM Read Error\n");
2228                 goto out;
2229         }
2230
2231         mdicnfg = rd32(E1000_MDICNFG);
2232         if (nvm_data & NVM_WORD24_EXT_MDIO)
2233                 mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2234         if (nvm_data & NVM_WORD24_COM_MDIO)
2235                 mdicnfg |= E1000_MDICNFG_COM_MDIO;
2236         wr32(E1000_MDICNFG, mdicnfg);
2237 out:
2238         return ret_val;
2239 }
2240
2241 /**
2242  *  igb_reset_hw_82580 - Reset hardware
2243  *  @hw: pointer to the HW structure
2244  *
2245  *  This resets function or entire device (all ports, etc.)
2246  *  to a known state.
2247  **/
2248 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2249 {
2250         s32 ret_val = 0;
2251         /* BH SW mailbox bit in SW_FW_SYNC */
2252         u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2253         u32 ctrl;
2254         bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2255
2256         hw->dev_spec._82575.global_device_reset = false;
2257
2258         /* due to hw errata, global device reset doesn't always
2259          * work on 82580
2260          */
2261         if (hw->mac.type == e1000_82580)
2262                 global_device_reset = false;
2263
2264         /* Get current control state. */
2265         ctrl = rd32(E1000_CTRL);
2266
2267         /* Prevent the PCI-E bus from sticking if there is no TLP connection
2268          * on the last TLP read/write transaction when MAC is reset.
2269          */
2270         ret_val = igb_disable_pcie_master(hw);
2271         if (ret_val)
2272                 hw_dbg("PCI-E Master disable polling has failed.\n");
2273
2274         hw_dbg("Masking off all interrupts\n");
2275         wr32(E1000_IMC, 0xffffffff);
2276         wr32(E1000_RCTL, 0);
2277         wr32(E1000_TCTL, E1000_TCTL_PSP);
2278         wrfl();
2279
2280         usleep_range(10000, 11000);
2281
2282         /* Determine whether or not a global dev reset is requested */
2283         if (global_device_reset &&
2284                 hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2285                         global_device_reset = false;
2286
2287         if (global_device_reset &&
2288                 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2289                 ctrl |= E1000_CTRL_DEV_RST;
2290         else
2291                 ctrl |= E1000_CTRL_RST;
2292
2293         wr32(E1000_CTRL, ctrl);
2294         wrfl();
2295
2296         /* Add delay to insure DEV_RST has time to complete */
2297         if (global_device_reset)
2298                 usleep_range(5000, 6000);
2299
2300         ret_val = igb_get_auto_rd_done(hw);
2301         if (ret_val) {
2302                 /* When auto config read does not complete, do not
2303                  * return with an error. This can happen in situations
2304                  * where there is no eeprom and prevents getting link.
2305                  */
2306                 hw_dbg("Auto Read Done did not complete\n");
2307         }
2308
2309         /* clear global device reset status bit */
2310         wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2311
2312         /* Clear any pending interrupt events. */
2313         wr32(E1000_IMC, 0xffffffff);
2314         rd32(E1000_ICR);
2315
2316         ret_val = igb_reset_mdicnfg_82580(hw);
2317         if (ret_val)
2318                 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2319
2320         /* Install any alternate MAC address into RAR0 */
2321         ret_val = igb_check_alt_mac_addr(hw);
2322
2323         /* Release semaphore */
2324         if (global_device_reset)
2325                 hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2326
2327         return ret_val;
2328 }
2329
2330 /**
2331  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2332  *  @data: data received by reading RXPBS register
2333  *
2334  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2335  *  This function converts the retrieved value into the correct table value
2336  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2337  *  0x0 36  72 144   1   2   4   8  16
2338  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2339  */
2340 u16 igb_rxpbs_adjust_82580(u32 data)
2341 {
2342         u16 ret_val = 0;
2343
2344         if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2345                 ret_val = e1000_82580_rxpbs_table[data];
2346
2347         return ret_val;
2348 }
2349
2350 /**
2351  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2352  *  checksum
2353  *  @hw: pointer to the HW structure
2354  *  @offset: offset in words of the checksum protected region
2355  *
2356  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2357  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2358  **/
2359 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2360                                                  u16 offset)
2361 {
2362         s32 ret_val = 0;
2363         u16 checksum = 0;
2364         u16 i, nvm_data;
2365
2366         for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2367                 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2368                 if (ret_val) {
2369                         hw_dbg("NVM Read Error\n");
2370                         goto out;
2371                 }
2372                 checksum += nvm_data;
2373         }
2374
2375         if (checksum != (u16) NVM_SUM) {
2376                 hw_dbg("NVM Checksum Invalid\n");
2377                 ret_val = -E1000_ERR_NVM;
2378                 goto out;
2379         }
2380
2381 out:
2382         return ret_val;
2383 }
2384
2385 /**
2386  *  igb_update_nvm_checksum_with_offset - Update EEPROM
2387  *  checksum
2388  *  @hw: pointer to the HW structure
2389  *  @offset: offset in words of the checksum protected region
2390  *
2391  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2392  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2393  *  value to the EEPROM.
2394  **/
2395 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2396 {
2397         s32 ret_val;
2398         u16 checksum = 0;
2399         u16 i, nvm_data;
2400
2401         for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2402                 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2403                 if (ret_val) {
2404                         hw_dbg("NVM Read Error while updating checksum.\n");
2405                         goto out;
2406                 }
2407                 checksum += nvm_data;
2408         }
2409         checksum = (u16) NVM_SUM - checksum;
2410         ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2411                                 &checksum);
2412         if (ret_val)
2413                 hw_dbg("NVM Write Error while updating checksum.\n");
2414
2415 out:
2416         return ret_val;
2417 }
2418
2419 /**
2420  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2421  *  @hw: pointer to the HW structure
2422  *
2423  *  Calculates the EEPROM section checksum by reading/adding each word of
2424  *  the EEPROM and then verifies that the sum of the EEPROM is
2425  *  equal to 0xBABA.
2426  **/
2427 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2428 {
2429         s32 ret_val = 0;
2430         u16 eeprom_regions_count = 1;
2431         u16 j, nvm_data;
2432         u16 nvm_offset;
2433
2434         ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2435         if (ret_val) {
2436                 hw_dbg("NVM Read Error\n");
2437                 goto out;
2438         }
2439
2440         if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2441                 /* if checksums compatibility bit is set validate checksums
2442                  * for all 4 ports.
2443                  */
2444                 eeprom_regions_count = 4;
2445         }
2446
2447         for (j = 0; j < eeprom_regions_count; j++) {
2448                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2449                 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2450                                                                 nvm_offset);
2451                 if (ret_val != 0)
2452                         goto out;
2453         }
2454
2455 out:
2456         return ret_val;
2457 }
2458
2459 /**
2460  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2461  *  @hw: pointer to the HW structure
2462  *
2463  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2464  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2465  *  checksum and writes the value to the EEPROM.
2466  **/
2467 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2468 {
2469         s32 ret_val;
2470         u16 j, nvm_data;
2471         u16 nvm_offset;
2472
2473         ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2474         if (ret_val) {
2475                 hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2476                 goto out;
2477         }
2478
2479         if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2480                 /* set compatibility bit to validate checksums appropriately */
2481                 nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2482                 ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2483                                         &nvm_data);
2484                 if (ret_val) {
2485                         hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2486                         goto out;
2487                 }
2488         }
2489
2490         for (j = 0; j < 4; j++) {
2491                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2492                 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2493                 if (ret_val)
2494                         goto out;
2495         }
2496
2497 out:
2498         return ret_val;
2499 }
2500
2501 /**
2502  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2503  *  @hw: pointer to the HW structure
2504  *
2505  *  Calculates the EEPROM section checksum by reading/adding each word of
2506  *  the EEPROM and then verifies that the sum of the EEPROM is
2507  *  equal to 0xBABA.
2508  **/
2509 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2510 {
2511         s32 ret_val = 0;
2512         u16 j;
2513         u16 nvm_offset;
2514
2515         for (j = 0; j < 4; j++) {
2516                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2517                 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2518                                                                 nvm_offset);
2519                 if (ret_val != 0)
2520                         goto out;
2521         }
2522
2523 out:
2524         return ret_val;
2525 }
2526
2527 /**
2528  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2529  *  @hw: pointer to the HW structure
2530  *
2531  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2532  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2533  *  checksum and writes the value to the EEPROM.
2534  **/
2535 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2536 {
2537         s32 ret_val = 0;
2538         u16 j;
2539         u16 nvm_offset;
2540
2541         for (j = 0; j < 4; j++) {
2542                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2543                 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2544                 if (ret_val != 0)
2545                         goto out;
2546         }
2547
2548 out:
2549         return ret_val;
2550 }
2551
2552 /**
2553  *  __igb_access_emi_reg - Read/write EMI register
2554  *  @hw: pointer to the HW structure
2555  *  @address: EMI address to program
2556  *  @data: pointer to value to read/write from/to the EMI address
2557  *  @read: boolean flag to indicate read or write
2558  **/
2559 static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2560                                   u16 *data, bool read)
2561 {
2562         s32 ret_val = 0;
2563
2564         ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2565         if (ret_val)
2566                 return ret_val;
2567
2568         if (read)
2569                 ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2570         else
2571                 ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2572
2573         return ret_val;
2574 }
2575
2576 /**
2577  *  igb_read_emi_reg - Read Extended Management Interface register
2578  *  @hw: pointer to the HW structure
2579  *  @addr: EMI address to program
2580  *  @data: value to be read from the EMI address
2581  **/
2582 s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2583 {
2584         return __igb_access_emi_reg(hw, addr, data, true);
2585 }
2586
2587 /**
2588  *  igb_set_eee_i350 - Enable/disable EEE support
2589  *  @hw: pointer to the HW structure
2590  *  @adv1G: boolean flag enabling 1G EEE advertisement
2591  *  @adv100M: boolean flag enabling 100M EEE advertisement
2592  *
2593  *  Enable/disable EEE based on setting in dev_spec structure.
2594  *
2595  **/
2596 s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2597 {
2598         u32 ipcnfg, eeer;
2599
2600         if ((hw->mac.type < e1000_i350) ||
2601             (hw->phy.media_type != e1000_media_type_copper))
2602                 goto out;
2603         ipcnfg = rd32(E1000_IPCNFG);
2604         eeer = rd32(E1000_EEER);
2605
2606         /* enable or disable per user setting */
2607         if (!(hw->dev_spec._82575.eee_disable)) {
2608                 u32 eee_su = rd32(E1000_EEE_SU);
2609
2610                 if (adv100M)
2611                         ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2612                 else
2613                         ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2614
2615                 if (adv1G)
2616                         ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2617                 else
2618                         ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2619
2620                 eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2621                         E1000_EEER_LPI_FC);
2622
2623                 /* This bit should not be set in normal operation. */
2624                 if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2625                         hw_dbg("LPI Clock Stop Bit should not be set!\n");
2626
2627         } else {
2628                 ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2629                         E1000_IPCNFG_EEE_100M_AN);
2630                 eeer &= ~(E1000_EEER_TX_LPI_EN |
2631                         E1000_EEER_RX_LPI_EN |
2632                         E1000_EEER_LPI_FC);
2633         }
2634         wr32(E1000_IPCNFG, ipcnfg);
2635         wr32(E1000_EEER, eeer);
2636         rd32(E1000_IPCNFG);
2637         rd32(E1000_EEER);
2638 out:
2639
2640         return 0;
2641 }
2642
2643 /**
2644  *  igb_set_eee_i354 - Enable/disable EEE support
2645  *  @hw: pointer to the HW structure
2646  *  @adv1G: boolean flag enabling 1G EEE advertisement
2647  *  @adv100M: boolean flag enabling 100M EEE advertisement
2648  *
2649  *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2650  *
2651  **/
2652 s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2653 {
2654         struct e1000_phy_info *phy = &hw->phy;
2655         s32 ret_val = 0;
2656         u16 phy_data;
2657
2658         if ((hw->phy.media_type != e1000_media_type_copper) ||
2659             ((phy->id != M88E1543_E_PHY_ID) &&
2660              (phy->id != M88E1512_E_PHY_ID)))
2661                 goto out;
2662
2663         if (!hw->dev_spec._82575.eee_disable) {
2664                 /* Switch to PHY page 18. */
2665                 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2666                 if (ret_val)
2667                         goto out;
2668
2669                 ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2670                                             &phy_data);
2671                 if (ret_val)
2672                         goto out;
2673
2674                 phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2675                 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2676                                              phy_data);
2677                 if (ret_val)
2678                         goto out;
2679
2680                 /* Return the PHY to page 0. */
2681                 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2682                 if (ret_val)
2683                         goto out;
2684
2685                 /* Turn on EEE advertisement. */
2686                 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2687                                              E1000_EEE_ADV_DEV_I354,
2688                                              &phy_data);
2689                 if (ret_val)
2690                         goto out;
2691
2692                 if (adv100M)
2693                         phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2694                 else
2695                         phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2696
2697                 if (adv1G)
2698                         phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2699                 else
2700                         phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2701
2702                 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2703                                                 E1000_EEE_ADV_DEV_I354,
2704                                                 phy_data);
2705         } else {
2706                 /* Turn off EEE advertisement. */
2707                 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2708                                              E1000_EEE_ADV_DEV_I354,
2709                                              &phy_data);
2710                 if (ret_val)
2711                         goto out;
2712
2713                 phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2714                               E1000_EEE_ADV_1000_SUPPORTED);
2715                 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2716                                               E1000_EEE_ADV_DEV_I354,
2717                                               phy_data);
2718         }
2719
2720 out:
2721         return ret_val;
2722 }
2723
2724 /**
2725  *  igb_get_eee_status_i354 - Get EEE status
2726  *  @hw: pointer to the HW structure
2727  *  @status: EEE status
2728  *
2729  *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2730  *  been received.
2731  **/
2732 s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2733 {
2734         struct e1000_phy_info *phy = &hw->phy;
2735         s32 ret_val = 0;
2736         u16 phy_data;
2737
2738         /* Check if EEE is supported on this device. */
2739         if ((hw->phy.media_type != e1000_media_type_copper) ||
2740             ((phy->id != M88E1543_E_PHY_ID) &&
2741              (phy->id != M88E1512_E_PHY_ID)))
2742                 goto out;
2743
2744         ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2745                                      E1000_PCS_STATUS_DEV_I354,
2746                                      &phy_data);
2747         if (ret_val)
2748                 goto out;
2749
2750         *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2751                               E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2752
2753 out:
2754         return ret_val;
2755 }
2756
2757 #ifdef CONFIG_IGB_HWMON
2758 static const u8 e1000_emc_temp_data[4] = {
2759         E1000_EMC_INTERNAL_DATA,
2760         E1000_EMC_DIODE1_DATA,
2761         E1000_EMC_DIODE2_DATA,
2762         E1000_EMC_DIODE3_DATA
2763 };
2764 static const u8 e1000_emc_therm_limit[4] = {
2765         E1000_EMC_INTERNAL_THERM_LIMIT,
2766         E1000_EMC_DIODE1_THERM_LIMIT,
2767         E1000_EMC_DIODE2_THERM_LIMIT,
2768         E1000_EMC_DIODE3_THERM_LIMIT
2769 };
2770
2771 /**
2772  *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2773  *  @hw: pointer to hardware structure
2774  *
2775  *  Updates the temperatures in mac.thermal_sensor_data
2776  **/
2777 static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2778 {
2779         u16 ets_offset;
2780         u16 ets_cfg;
2781         u16 ets_sensor;
2782         u8  num_sensors;
2783         u8  sensor_index;
2784         u8  sensor_location;
2785         u8  i;
2786         struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2787
2788         if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2789                 return E1000_NOT_IMPLEMENTED;
2790
2791         data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2792
2793         /* Return the internal sensor only if ETS is unsupported */
2794         hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2795         if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2796                 return 0;
2797
2798         hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2799         if (FIELD_GET(NVM_ETS_TYPE_MASK, ets_cfg)
2800             != NVM_ETS_TYPE_EMC)
2801                 return E1000_NOT_IMPLEMENTED;
2802
2803         num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2804         if (num_sensors > E1000_MAX_SENSORS)
2805                 num_sensors = E1000_MAX_SENSORS;
2806
2807         for (i = 1; i < num_sensors; i++) {
2808                 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2809                 sensor_index = FIELD_GET(NVM_ETS_DATA_INDEX_MASK, ets_sensor);
2810                 sensor_location = FIELD_GET(NVM_ETS_DATA_LOC_MASK, ets_sensor);
2811
2812                 if (sensor_location != 0)
2813                         hw->phy.ops.read_i2c_byte(hw,
2814                                         e1000_emc_temp_data[sensor_index],
2815                                         E1000_I2C_THERMAL_SENSOR_ADDR,
2816                                         &data->sensor[i].temp);
2817         }
2818         return 0;
2819 }
2820
2821 /**
2822  *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2823  *  @hw: pointer to hardware structure
2824  *
2825  *  Sets the thermal sensor thresholds according to the NVM map
2826  *  and save off the threshold and location values into mac.thermal_sensor_data
2827  **/
2828 static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2829 {
2830         u16 ets_offset;
2831         u16 ets_cfg;
2832         u16 ets_sensor;
2833         u8  low_thresh_delta;
2834         u8  num_sensors;
2835         u8  sensor_index;
2836         u8  sensor_location;
2837         u8  therm_limit;
2838         u8  i;
2839         struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2840
2841         if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2842                 return E1000_NOT_IMPLEMENTED;
2843
2844         memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2845
2846         data->sensor[0].location = 0x1;
2847         data->sensor[0].caution_thresh =
2848                 (rd32(E1000_THHIGHTC) & 0xFF);
2849         data->sensor[0].max_op_thresh =
2850                 (rd32(E1000_THLOWTC) & 0xFF);
2851
2852         /* Return the internal sensor only if ETS is unsupported */
2853         hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2854         if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2855                 return 0;
2856
2857         hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2858         if (FIELD_GET(NVM_ETS_TYPE_MASK, ets_cfg)
2859             != NVM_ETS_TYPE_EMC)
2860                 return E1000_NOT_IMPLEMENTED;
2861
2862         low_thresh_delta = FIELD_GET(NVM_ETS_LTHRES_DELTA_MASK, ets_cfg);
2863         num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2864
2865         for (i = 1; i <= num_sensors; i++) {
2866                 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2867                 sensor_index = FIELD_GET(NVM_ETS_DATA_INDEX_MASK, ets_sensor);
2868                 sensor_location = FIELD_GET(NVM_ETS_DATA_LOC_MASK, ets_sensor);
2869                 therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2870
2871                 hw->phy.ops.write_i2c_byte(hw,
2872                         e1000_emc_therm_limit[sensor_index],
2873                         E1000_I2C_THERMAL_SENSOR_ADDR,
2874                         therm_limit);
2875
2876                 if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2877                         data->sensor[i].location = sensor_location;
2878                         data->sensor[i].caution_thresh = therm_limit;
2879                         data->sensor[i].max_op_thresh = therm_limit -
2880                                                         low_thresh_delta;
2881                 }
2882         }
2883         return 0;
2884 }
2885
2886 #endif
2887 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2888         .init_hw              = igb_init_hw_82575,
2889         .check_for_link       = igb_check_for_link_82575,
2890         .rar_set              = igb_rar_set,
2891         .read_mac_addr        = igb_read_mac_addr_82575,
2892         .get_speed_and_duplex = igb_get_link_up_info_82575,
2893 #ifdef CONFIG_IGB_HWMON
2894         .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2895         .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2896 #endif
2897 };
2898
2899 static const struct e1000_phy_operations e1000_phy_ops_82575 = {
2900         .acquire              = igb_acquire_phy_82575,
2901         .get_cfg_done         = igb_get_cfg_done_82575,
2902         .release              = igb_release_phy_82575,
2903         .write_i2c_byte       = igb_write_i2c_byte,
2904         .read_i2c_byte        = igb_read_i2c_byte,
2905 };
2906
2907 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2908         .acquire              = igb_acquire_nvm_82575,
2909         .read                 = igb_read_nvm_eerd,
2910         .release              = igb_release_nvm_82575,
2911         .write                = igb_write_nvm_spi,
2912 };
2913
2914 const struct e1000_info e1000_82575_info = {
2915         .get_invariants = igb_get_invariants_82575,
2916         .mac_ops = &e1000_mac_ops_82575,
2917         .phy_ops = &e1000_phy_ops_82575,
2918         .nvm_ops = &e1000_nvm_ops_82575,
2919 };
2920
This page took 0.201142 seconds and 4 git commands to generate.