1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021, Intel Corporation. */
4 #include <linux/delay.h>
5 #include <linux/iopoll.h>
6 #include "ice_common.h"
7 #include "ice_ptp_hw.h"
8 #include "ice_ptp_consts.h"
9 #include "ice_cgu_regs.h"
11 static struct dpll_pin_frequency ice_cgu_pin_freq_common[] = {
12 DPLL_PIN_FREQUENCY_1PPS,
13 DPLL_PIN_FREQUENCY_10MHZ,
16 static struct dpll_pin_frequency ice_cgu_pin_freq_1_hz[] = {
17 DPLL_PIN_FREQUENCY_1PPS,
20 static struct dpll_pin_frequency ice_cgu_pin_freq_10_mhz[] = {
21 DPLL_PIN_FREQUENCY_10MHZ,
24 static const struct ice_cgu_pin_desc ice_e810t_sfp_cgu_inputs[] = {
25 { "CVL-SDP22", ZL_REF0P, DPLL_PIN_TYPE_INT_OSCILLATOR,
26 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
27 { "CVL-SDP20", ZL_REF0N, DPLL_PIN_TYPE_INT_OSCILLATOR,
28 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
29 { "C827_0-RCLKA", ZL_REF1P, DPLL_PIN_TYPE_MUX, 0, },
30 { "C827_0-RCLKB", ZL_REF1N, DPLL_PIN_TYPE_MUX, 0, },
31 { "SMA1", ZL_REF3P, DPLL_PIN_TYPE_EXT,
32 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
33 { "SMA2/U.FL2", ZL_REF3N, DPLL_PIN_TYPE_EXT,
34 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
35 { "GNSS-1PPS", ZL_REF4P, DPLL_PIN_TYPE_GNSS,
36 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
39 static const struct ice_cgu_pin_desc ice_e810t_qsfp_cgu_inputs[] = {
40 { "CVL-SDP22", ZL_REF0P, DPLL_PIN_TYPE_INT_OSCILLATOR,
41 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
42 { "CVL-SDP20", ZL_REF0N, DPLL_PIN_TYPE_INT_OSCILLATOR,
43 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
44 { "C827_0-RCLKA", ZL_REF1P, DPLL_PIN_TYPE_MUX, },
45 { "C827_0-RCLKB", ZL_REF1N, DPLL_PIN_TYPE_MUX, },
46 { "C827_1-RCLKA", ZL_REF2P, DPLL_PIN_TYPE_MUX, },
47 { "C827_1-RCLKB", ZL_REF2N, DPLL_PIN_TYPE_MUX, },
48 { "SMA1", ZL_REF3P, DPLL_PIN_TYPE_EXT,
49 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
50 { "SMA2/U.FL2", ZL_REF3N, DPLL_PIN_TYPE_EXT,
51 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
52 { "GNSS-1PPS", ZL_REF4P, DPLL_PIN_TYPE_GNSS,
53 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
56 static const struct ice_cgu_pin_desc ice_e810t_sfp_cgu_outputs[] = {
57 { "REF-SMA1", ZL_OUT0, DPLL_PIN_TYPE_EXT,
58 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
59 { "REF-SMA2/U.FL2", ZL_OUT1, DPLL_PIN_TYPE_EXT,
60 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
61 { "PHY-CLK", ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, },
62 { "MAC-CLK", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, },
63 { "CVL-SDP21", ZL_OUT4, DPLL_PIN_TYPE_EXT,
64 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
65 { "CVL-SDP23", ZL_OUT5, DPLL_PIN_TYPE_EXT,
66 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
69 static const struct ice_cgu_pin_desc ice_e810t_qsfp_cgu_outputs[] = {
70 { "REF-SMA1", ZL_OUT0, DPLL_PIN_TYPE_EXT,
71 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
72 { "REF-SMA2/U.FL2", ZL_OUT1, DPLL_PIN_TYPE_EXT,
73 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
74 { "PHY-CLK", ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
75 { "PHY2-CLK", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
76 { "MAC-CLK", ZL_OUT4, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
77 { "CVL-SDP21", ZL_OUT5, DPLL_PIN_TYPE_EXT,
78 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
79 { "CVL-SDP23", ZL_OUT6, DPLL_PIN_TYPE_EXT,
80 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
83 static const struct ice_cgu_pin_desc ice_e823_si_cgu_inputs[] = {
84 { "NONE", SI_REF0P, 0, 0 },
85 { "NONE", SI_REF0N, 0, 0 },
86 { "SYNCE0_DP", SI_REF1P, DPLL_PIN_TYPE_MUX, 0 },
87 { "SYNCE0_DN", SI_REF1N, DPLL_PIN_TYPE_MUX, 0 },
88 { "EXT_CLK_SYNC", SI_REF2P, DPLL_PIN_TYPE_EXT,
89 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
90 { "NONE", SI_REF2N, 0, 0 },
91 { "EXT_PPS_OUT", SI_REF3, DPLL_PIN_TYPE_EXT,
92 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
93 { "INT_PPS_OUT", SI_REF4, DPLL_PIN_TYPE_EXT,
94 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
97 static const struct ice_cgu_pin_desc ice_e823_si_cgu_outputs[] = {
98 { "1588-TIME_SYNC", SI_OUT0, DPLL_PIN_TYPE_EXT,
99 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
100 { "PHY-CLK", SI_OUT1, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
101 { "10MHZ-SMA2", SI_OUT2, DPLL_PIN_TYPE_EXT,
102 ARRAY_SIZE(ice_cgu_pin_freq_10_mhz), ice_cgu_pin_freq_10_mhz },
103 { "PPS-SMA1", SI_OUT3, DPLL_PIN_TYPE_EXT,
104 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
107 static const struct ice_cgu_pin_desc ice_e823_zl_cgu_inputs[] = {
108 { "NONE", ZL_REF0P, 0, 0 },
109 { "INT_PPS_OUT", ZL_REF0N, DPLL_PIN_TYPE_EXT,
110 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
111 { "SYNCE0_DP", ZL_REF1P, DPLL_PIN_TYPE_MUX, 0 },
112 { "SYNCE0_DN", ZL_REF1N, DPLL_PIN_TYPE_MUX, 0 },
113 { "NONE", ZL_REF2P, 0, 0 },
114 { "NONE", ZL_REF2N, 0, 0 },
115 { "EXT_CLK_SYNC", ZL_REF3P, DPLL_PIN_TYPE_EXT,
116 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
117 { "NONE", ZL_REF3N, 0, 0 },
118 { "EXT_PPS_OUT", ZL_REF4P, DPLL_PIN_TYPE_EXT,
119 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
120 { "OCXO", ZL_REF4N, DPLL_PIN_TYPE_INT_OSCILLATOR, 0 },
123 static const struct ice_cgu_pin_desc ice_e823_zl_cgu_outputs[] = {
124 { "PPS-SMA1", ZL_OUT0, DPLL_PIN_TYPE_EXT,
125 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
126 { "10MHZ-SMA2", ZL_OUT1, DPLL_PIN_TYPE_EXT,
127 ARRAY_SIZE(ice_cgu_pin_freq_10_mhz), ice_cgu_pin_freq_10_mhz },
128 { "PHY-CLK", ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
129 { "1588-TIME_REF", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
130 { "CPK-TIME_SYNC", ZL_OUT4, DPLL_PIN_TYPE_EXT,
131 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
132 { "NONE", ZL_OUT5, 0, 0 },
135 /* Low level functions for interacting with and managing the device clock used
136 * for the Precision Time Protocol.
138 * The ice hardware represents the current time using three registers:
140 * GLTSYN_TIME_H GLTSYN_TIME_L GLTSYN_TIME_R
141 * +---------------+ +---------------+ +---------------+
142 * | 32 bits | | 32 bits | | 32 bits |
143 * +---------------+ +---------------+ +---------------+
145 * The registers are incremented every clock tick using a 40bit increment
146 * value defined over two registers:
148 * GLTSYN_INCVAL_H GLTSYN_INCVAL_L
149 * +---------------+ +---------------+
150 * | 8 bit s | | 32 bits |
151 * +---------------+ +---------------+
153 * The increment value is added to the GLSTYN_TIME_R and GLSTYN_TIME_L
154 * registers every clock source tick. Depending on the specific device
155 * configuration, the clock source frequency could be one of a number of
158 * For E810 devices, the increment frequency is 812.5 MHz
160 * For E822 devices the clock can be derived from different sources, and the
161 * increment has an effective frequency of one of the following:
169 * The hardware captures timestamps in the PHY for incoming packets, and for
170 * outgoing packets on request. To support this, the PHY maintains a timer
171 * that matches the lower 64 bits of the global source timer.
173 * In order to ensure that the PHY timers and the source timer are equivalent,
174 * shadow registers are used to prepare the desired initial values. A special
175 * sync command is issued to trigger copying from the shadow registers into
176 * the appropriate source and PHY registers simultaneously.
178 * The driver supports devices which have different PHYs with subtly different
179 * mechanisms to program and control the timers. We divide the devices into
180 * families named after the first major device, E810 and similar devices, and
181 * E822 and similar devices.
183 * - E822 based devices have additional support for fine grained Vernier
184 * calibration which requires significant setup
185 * - The layout of timestamp data in the PHY register blocks is different
186 * - The way timer synchronization commands are issued is different.
188 * To support this, very low level functions have an e810 or e822 suffix
189 * indicating what type of device they work on. Higher level abstractions for
190 * tasks that can be done on both devices do not have the suffix and will
191 * correctly look up the appropriate low level function when running.
193 * Functions which only make sense on a single device family may not have
194 * a suitable generic implementation
198 * ice_get_ptp_src_clock_index - determine source clock index
199 * @hw: pointer to HW struct
201 * Determine the source clock index currently in use, based on device
202 * capabilities reported during initialization.
204 u8 ice_get_ptp_src_clock_index(struct ice_hw *hw)
206 return hw->func_caps.ts_func_info.tmr_index_assoc;
210 * ice_ptp_read_src_incval - Read source timer increment value
211 * @hw: pointer to HW struct
213 * Read the increment value of the source timer and return it.
215 static u64 ice_ptp_read_src_incval(struct ice_hw *hw)
220 tmr_idx = ice_get_ptp_src_clock_index(hw);
222 lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
223 hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
225 return ((u64)(hi & INCVAL_HIGH_M) << 32) | lo;
229 * ice_read_cgu_reg_e82x - Read a CGU register
230 * @hw: pointer to the HW struct
231 * @addr: Register address to read
232 * @val: storage for register value read
234 * Read the contents of a register of the Clock Generation Unit. Only
235 * applicable to E822 devices.
237 * Return: 0 on success, other error codes when failed to read from CGU
239 static int ice_read_cgu_reg_e82x(struct ice_hw *hw, u32 addr, u32 *val)
241 struct ice_sbq_msg_input cgu_msg = {
242 .opcode = ice_sbq_msg_rd,
248 err = ice_sbq_rw_reg(hw, &cgu_msg, ICE_AQ_FLAG_RD);
250 ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n",
261 * ice_write_cgu_reg_e82x - Write a CGU register
262 * @hw: pointer to the HW struct
263 * @addr: Register address to write
264 * @val: value to write into the register
266 * Write the specified value to a register of the Clock Generation Unit. Only
267 * applicable to E822 devices.
269 * Return: 0 on success, other error codes when failed to write to CGU
271 static int ice_write_cgu_reg_e82x(struct ice_hw *hw, u32 addr, u32 val)
273 struct ice_sbq_msg_input cgu_msg = {
274 .opcode = ice_sbq_msg_wr,
276 .msg_addr_low = addr,
281 err = ice_sbq_rw_reg(hw, &cgu_msg, ICE_AQ_FLAG_RD);
283 ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n",
292 * ice_clk_freq_str - Convert time_ref_freq to string
293 * @clk_freq: Clock frequency
295 * Return: specified TIME_REF clock frequency converted to a string
297 static const char *ice_clk_freq_str(enum ice_time_ref_freq clk_freq)
300 case ICE_TIME_REF_FREQ_25_000:
302 case ICE_TIME_REF_FREQ_122_880:
304 case ICE_TIME_REF_FREQ_125_000:
306 case ICE_TIME_REF_FREQ_153_600:
308 case ICE_TIME_REF_FREQ_156_250:
310 case ICE_TIME_REF_FREQ_245_760:
318 * ice_clk_src_str - Convert time_ref_src to string
319 * @clk_src: Clock source
321 * Return: specified clock source converted to its string name
323 static const char *ice_clk_src_str(enum ice_clk_src clk_src)
326 case ICE_CLK_SRC_TCXO:
328 case ICE_CLK_SRC_TIME_REF:
336 * ice_cfg_cgu_pll_e82x - Configure the Clock Generation Unit
337 * @hw: pointer to the HW struct
338 * @clk_freq: Clock frequency to program
339 * @clk_src: Clock source to select (TIME_REF, or TCXO)
341 * Configure the Clock Generation Unit with the desired clock frequency and
342 * time reference, enabling the PLL which drives the PTP hardware clock.
346 * * %-EINVAL - input parameters are incorrect
347 * * %-EBUSY - failed to lock TS PLL
348 * * %other - CGU read/write failure
350 static int ice_cfg_cgu_pll_e82x(struct ice_hw *hw,
351 enum ice_time_ref_freq clk_freq,
352 enum ice_clk_src clk_src)
354 union tspll_ro_bwm_lf bwm_lf;
355 union nac_cgu_dword19 dw19;
356 union nac_cgu_dword22 dw22;
357 union nac_cgu_dword24 dw24;
358 union nac_cgu_dword9 dw9;
361 if (clk_freq >= NUM_ICE_TIME_REF_FREQ) {
362 dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n",
367 if (clk_src >= NUM_ICE_CLK_SRC) {
368 dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n",
373 if (clk_src == ICE_CLK_SRC_TCXO &&
374 clk_freq != ICE_TIME_REF_FREQ_25_000) {
375 dev_warn(ice_hw_to_dev(hw),
376 "TCXO only supports 25 MHz frequency\n");
380 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD9, &dw9.val);
384 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD24, &dw24.val);
388 err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
392 /* Log the current clock configuration */
393 ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
394 str_enabled_disabled(dw24.ts_pll_enable),
395 ice_clk_src_str(dw24.time_ref_sel),
396 ice_clk_freq_str(dw9.time_ref_freq_sel),
397 bwm_lf.plllock_true_lock_cri ? "locked" : "unlocked");
399 /* Disable the PLL before changing the clock source or frequency */
400 if (dw24.ts_pll_enable) {
401 dw24.ts_pll_enable = 0;
403 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
408 /* Set the frequency */
409 dw9.time_ref_freq_sel = clk_freq;
410 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD9, dw9.val);
414 /* Configure the TS PLL feedback divisor */
415 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD19, &dw19.val);
419 dw19.tspll_fbdiv_intgr = e822_cgu_params[clk_freq].feedback_div;
420 dw19.tspll_ndivratio = 1;
422 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD19, dw19.val);
426 /* Configure the TS PLL post divisor */
427 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD22, &dw22.val);
431 dw22.time1588clk_div = e822_cgu_params[clk_freq].post_pll_div;
432 dw22.time1588clk_sel_div2 = 0;
434 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD22, dw22.val);
438 /* Configure the TS PLL pre divisor and clock source */
439 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD24, &dw24.val);
443 dw24.ref1588_ck_div = e822_cgu_params[clk_freq].refclk_pre_div;
444 dw24.tspll_fbdiv_frac = e822_cgu_params[clk_freq].frac_n_div;
445 dw24.time_ref_sel = clk_src;
447 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
451 /* Finally, enable the PLL */
452 dw24.ts_pll_enable = 1;
454 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
458 /* Wait to verify if the PLL locks */
459 usleep_range(1000, 5000);
461 err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
465 if (!bwm_lf.plllock_true_lock_cri) {
466 dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n");
470 /* Log the current clock configuration */
471 ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
472 str_enabled_disabled(dw24.ts_pll_enable),
473 ice_clk_src_str(dw24.time_ref_sel),
474 ice_clk_freq_str(dw9.time_ref_freq_sel),
475 bwm_lf.plllock_true_lock_cri ? "locked" : "unlocked");
481 * ice_cfg_cgu_pll_e825c - Configure the Clock Generation Unit for E825-C
482 * @hw: pointer to the HW struct
483 * @clk_freq: Clock frequency to program
484 * @clk_src: Clock source to select (TIME_REF, or TCXO)
486 * Configure the Clock Generation Unit with the desired clock frequency and
487 * time reference, enabling the PLL which drives the PTP hardware clock.
491 * * %-EINVAL - input parameters are incorrect
492 * * %-EBUSY - failed to lock TS PLL
493 * * %other - CGU read/write failure
495 static int ice_cfg_cgu_pll_e825c(struct ice_hw *hw,
496 enum ice_time_ref_freq clk_freq,
497 enum ice_clk_src clk_src)
499 union tspll_ro_lock_e825c ro_lock;
500 union nac_cgu_dword16_e825c dw16;
501 union nac_cgu_dword23_e825c dw23;
502 union nac_cgu_dword19 dw19;
503 union nac_cgu_dword22 dw22;
504 union nac_cgu_dword24 dw24;
505 union nac_cgu_dword9 dw9;
508 if (clk_freq >= NUM_ICE_TIME_REF_FREQ) {
509 dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n",
514 if (clk_src >= NUM_ICE_CLK_SRC) {
515 dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n",
520 if (clk_src == ICE_CLK_SRC_TCXO &&
521 clk_freq != ICE_TIME_REF_FREQ_156_250) {
522 dev_warn(ice_hw_to_dev(hw),
523 "TCXO only supports 156.25 MHz frequency\n");
527 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD9, &dw9.val);
531 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD24, &dw24.val);
535 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD16_E825C, &dw16.val);
539 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, &dw23.val);
543 err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_LOCK_E825C, &ro_lock.val);
547 /* Log the current clock configuration */
548 ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
549 str_enabled_disabled(dw24.ts_pll_enable),
550 ice_clk_src_str(dw23.time_ref_sel),
551 ice_clk_freq_str(dw9.time_ref_freq_sel),
552 ro_lock.plllock_true_lock_cri ? "locked" : "unlocked");
554 /* Disable the PLL before changing the clock source or frequency */
555 if (dw23.ts_pll_enable) {
556 dw23.ts_pll_enable = 0;
558 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C,
564 /* Set the frequency */
565 dw9.time_ref_freq_sel = clk_freq;
567 /* Enable the correct receiver */
568 if (clk_src == ICE_CLK_SRC_TCXO) {
570 dw9.clk_eref0_en = 1;
573 dw9.clk_eref0_en = 0;
575 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD9, dw9.val);
579 /* Choose the referenced frequency */
580 dw16.tspll_ck_refclkfreq =
581 e825c_cgu_params[clk_freq].tspll_ck_refclkfreq;
582 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD16_E825C, dw16.val);
586 /* Configure the TS PLL feedback divisor */
587 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD19, &dw19.val);
591 dw19.tspll_fbdiv_intgr =
592 e825c_cgu_params[clk_freq].tspll_fbdiv_intgr;
593 dw19.tspll_ndivratio =
594 e825c_cgu_params[clk_freq].tspll_ndivratio;
596 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD19, dw19.val);
600 /* Configure the TS PLL post divisor */
601 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD22, &dw22.val);
605 /* These two are constant for E825C */
606 dw22.time1588clk_div = 5;
607 dw22.time1588clk_sel_div2 = 0;
609 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD22, dw22.val);
613 /* Configure the TS PLL pre divisor and clock source */
614 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, &dw23.val);
618 dw23.ref1588_ck_div =
619 e825c_cgu_params[clk_freq].ref1588_ck_div;
620 dw23.time_ref_sel = clk_src;
622 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, dw23.val);
626 dw24.tspll_fbdiv_frac =
627 e825c_cgu_params[clk_freq].tspll_fbdiv_frac;
629 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
633 /* Finally, enable the PLL */
634 dw23.ts_pll_enable = 1;
636 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, dw23.val);
640 /* Wait to verify if the PLL locks */
641 usleep_range(1000, 5000);
643 err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_LOCK_E825C, &ro_lock.val);
647 if (!ro_lock.plllock_true_lock_cri) {
648 dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n");
652 /* Log the current clock configuration */
653 ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
654 str_enabled_disabled(dw24.ts_pll_enable),
655 ice_clk_src_str(dw23.time_ref_sel),
656 ice_clk_freq_str(dw9.time_ref_freq_sel),
657 ro_lock.plllock_true_lock_cri ? "locked" : "unlocked");
662 #define ICE_ONE_PPS_OUT_AMP_MAX 3
665 * ice_cgu_cfg_pps_out - Configure 1PPS output from CGU
666 * @hw: pointer to the HW struct
667 * @enable: true to enable 1PPS output, false to disable it
669 * Return: 0 on success, other negative error code when CGU read/write failed
671 int ice_cgu_cfg_pps_out(struct ice_hw *hw, bool enable)
673 union nac_cgu_dword9 dw9;
676 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD9, &dw9.val);
680 dw9.one_pps_out_en = enable;
681 dw9.one_pps_out_amp = enable * ICE_ONE_PPS_OUT_AMP_MAX;
682 return ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD9, dw9.val);
686 * ice_cfg_cgu_pll_dis_sticky_bits_e82x - disable TS PLL sticky bits
687 * @hw: pointer to the HW struct
689 * Configure the Clock Generation Unit TS PLL sticky bits so they don't latch on
690 * losing TS PLL lock, but always show current state.
692 * Return: 0 on success, other error codes when failed to read/write CGU
694 static int ice_cfg_cgu_pll_dis_sticky_bits_e82x(struct ice_hw *hw)
696 union tspll_cntr_bist_settings cntr_bist;
699 err = ice_read_cgu_reg_e82x(hw, TSPLL_CNTR_BIST_SETTINGS,
704 /* Disable sticky lock detection so lock err reported is accurate */
705 cntr_bist.i_plllock_sel_0 = 0;
706 cntr_bist.i_plllock_sel_1 = 0;
708 return ice_write_cgu_reg_e82x(hw, TSPLL_CNTR_BIST_SETTINGS,
713 * ice_cfg_cgu_pll_dis_sticky_bits_e825c - disable TS PLL sticky bits for E825-C
714 * @hw: pointer to the HW struct
716 * Configure the Clock Generation Unit TS PLL sticky bits so they don't latch on
717 * losing TS PLL lock, but always show current state.
719 * Return: 0 on success, other error codes when failed to read/write CGU
721 static int ice_cfg_cgu_pll_dis_sticky_bits_e825c(struct ice_hw *hw)
723 union tspll_bw_tdc_e825c bw_tdc;
726 err = ice_read_cgu_reg_e82x(hw, TSPLL_BW_TDC_E825C, &bw_tdc.val);
730 bw_tdc.i_plllock_sel_1_0 = 0;
732 return ice_write_cgu_reg_e82x(hw, TSPLL_BW_TDC_E825C, bw_tdc.val);
736 * ice_init_cgu_e82x - Initialize CGU with settings from firmware
737 * @hw: pointer to the HW structure
739 * Initialize the Clock Generation Unit of the E822 device.
741 * Return: 0 on success, other error codes when failed to read/write/cfg CGU
743 static int ice_init_cgu_e82x(struct ice_hw *hw)
745 struct ice_ts_func_info *ts_info = &hw->func_caps.ts_func_info;
748 /* Disable sticky lock detection so lock err reported is accurate */
749 if (ice_is_e825c(hw))
750 err = ice_cfg_cgu_pll_dis_sticky_bits_e825c(hw);
752 err = ice_cfg_cgu_pll_dis_sticky_bits_e82x(hw);
756 /* Configure the CGU PLL using the parameters from the function
759 if (ice_is_e825c(hw))
760 err = ice_cfg_cgu_pll_e825c(hw, ts_info->time_ref,
761 (enum ice_clk_src)ts_info->clk_src);
763 err = ice_cfg_cgu_pll_e82x(hw, ts_info->time_ref,
764 (enum ice_clk_src)ts_info->clk_src);
770 * ice_ptp_tmr_cmd_to_src_reg - Convert to source timer command value
771 * @hw: pointer to HW struct
772 * @cmd: Timer command
774 * Return: the source timer command register value for the given PTP timer
777 static u32 ice_ptp_tmr_cmd_to_src_reg(struct ice_hw *hw,
778 enum ice_ptp_tmr_cmd cmd)
780 u32 cmd_val, tmr_idx;
783 case ICE_PTP_INIT_TIME:
784 cmd_val = GLTSYN_CMD_INIT_TIME;
786 case ICE_PTP_INIT_INCVAL:
787 cmd_val = GLTSYN_CMD_INIT_INCVAL;
789 case ICE_PTP_ADJ_TIME:
790 cmd_val = GLTSYN_CMD_ADJ_TIME;
792 case ICE_PTP_ADJ_TIME_AT_TIME:
793 cmd_val = GLTSYN_CMD_ADJ_INIT_TIME;
796 case ICE_PTP_READ_TIME:
797 cmd_val = GLTSYN_CMD_READ_TIME;
800 dev_warn(ice_hw_to_dev(hw),
801 "Ignoring unrecognized timer command %u\n", cmd);
805 tmr_idx = ice_get_ptp_src_clock_index(hw);
807 return tmr_idx << SEL_CPK_SRC | cmd_val;
811 * ice_ptp_tmr_cmd_to_port_reg- Convert to port timer command value
812 * @hw: pointer to HW struct
813 * @cmd: Timer command
815 * Note that some hardware families use a different command register value for
816 * the PHY ports, while other hardware families use the same register values
817 * as the source timer.
819 * Return: the PHY port timer command register value for the given PTP timer
822 static u32 ice_ptp_tmr_cmd_to_port_reg(struct ice_hw *hw,
823 enum ice_ptp_tmr_cmd cmd)
825 u32 cmd_val, tmr_idx;
827 /* Certain hardware families share the same register values for the
828 * port register and source timer register.
830 switch (ice_get_phy_model(hw)) {
832 return ice_ptp_tmr_cmd_to_src_reg(hw, cmd) & TS_CMD_MASK_E810;
838 case ICE_PTP_INIT_TIME:
839 cmd_val = PHY_CMD_INIT_TIME;
841 case ICE_PTP_INIT_INCVAL:
842 cmd_val = PHY_CMD_INIT_INCVAL;
844 case ICE_PTP_ADJ_TIME:
845 cmd_val = PHY_CMD_ADJ_TIME;
847 case ICE_PTP_ADJ_TIME_AT_TIME:
848 cmd_val = PHY_CMD_ADJ_TIME_AT_TIME;
850 case ICE_PTP_READ_TIME:
851 cmd_val = PHY_CMD_READ_TIME;
857 dev_warn(ice_hw_to_dev(hw),
858 "Ignoring unrecognized timer command %u\n", cmd);
862 tmr_idx = ice_get_ptp_src_clock_index(hw);
864 return tmr_idx << SEL_PHY_SRC | cmd_val;
868 * ice_ptp_src_cmd - Prepare source timer for a timer command
869 * @hw: pointer to HW structure
870 * @cmd: Timer command
872 * Prepare the source timer for an upcoming timer sync command.
874 void ice_ptp_src_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
876 u32 cmd_val = ice_ptp_tmr_cmd_to_src_reg(hw, cmd);
878 wr32(hw, GLTSYN_CMD, cmd_val);
882 * ice_ptp_exec_tmr_cmd - Execute all prepared timer commands
883 * @hw: pointer to HW struct
885 * Write the SYNC_EXEC_CMD bit to the GLTSYN_CMD_SYNC register, and flush the
886 * write immediately. This triggers the hardware to begin executing all of the
887 * source and PHY timer commands synchronously.
889 static void ice_ptp_exec_tmr_cmd(struct ice_hw *hw)
891 struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
893 guard(spinlock)(&pf->adapter->ptp_gltsyn_time_lock);
894 wr32(hw, GLTSYN_CMD_SYNC, SYNC_EXEC_CMD);
898 /* 56G PHY device functions
900 * The following functions operate on devices with the ETH 56G PHY.
904 * ice_ptp_get_dest_dev_e825 - get destination PHY for given port number
905 * @hw: pointer to the HW struct
906 * @port: destination port
908 * Return: destination sideband queue PHY device.
910 static enum ice_sbq_msg_dev ice_ptp_get_dest_dev_e825(struct ice_hw *hw,
913 /* On a single complex E825, PHY 0 is always destination device phy_0
914 * and PHY 1 is phy_0_peer.
916 if (port >= hw->ptp.ports_per_phy)
923 * ice_write_phy_eth56g - Write a PHY port register
924 * @hw: pointer to the HW struct
925 * @port: destination port
926 * @addr: PHY register address
927 * @val: Value to write
929 * Return: 0 on success, other error codes when failed to write to PHY
931 static int ice_write_phy_eth56g(struct ice_hw *hw, u8 port, u32 addr, u32 val)
933 struct ice_sbq_msg_input msg = {
934 .dest_dev = ice_ptp_get_dest_dev_e825(hw, port),
935 .opcode = ice_sbq_msg_wr,
936 .msg_addr_low = lower_16_bits(addr),
937 .msg_addr_high = upper_16_bits(addr),
942 err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
944 ice_debug(hw, ICE_DBG_PTP, "PTP failed to send msg to phy %d\n",
951 * ice_read_phy_eth56g - Read a PHY port register
952 * @hw: pointer to the HW struct
953 * @port: destination port
954 * @addr: PHY register address
955 * @val: Value to write
957 * Return: 0 on success, other error codes when failed to read from PHY
959 static int ice_read_phy_eth56g(struct ice_hw *hw, u8 port, u32 addr, u32 *val)
961 struct ice_sbq_msg_input msg = {
962 .dest_dev = ice_ptp_get_dest_dev_e825(hw, port),
963 .opcode = ice_sbq_msg_rd,
964 .msg_addr_low = lower_16_bits(addr),
965 .msg_addr_high = upper_16_bits(addr)
969 err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
971 ice_debug(hw, ICE_DBG_PTP, "PTP failed to send msg to phy %d\n",
980 * ice_phy_res_address_eth56g - Calculate a PHY port register address
981 * @hw: pointer to the HW struct
982 * @lane: Lane number to be written
983 * @res_type: resource type (register/memory)
984 * @offset: Offset from PHY port register base
985 * @addr: The result address
989 * * %EINVAL - invalid port number or resource type
991 static int ice_phy_res_address_eth56g(struct ice_hw *hw, u8 lane,
992 enum eth56g_res_type res_type,
996 if (res_type >= NUM_ETH56G_PHY_RES)
999 /* Lanes 4..7 are in fact 0..3 on a second PHY */
1000 lane %= hw->ptp.ports_per_phy;
1001 *addr = eth56g_phy_res[res_type].base[0] +
1002 lane * eth56g_phy_res[res_type].step + offset;
1008 * ice_write_port_eth56g - Write a PHY port register
1009 * @hw: pointer to the HW struct
1010 * @offset: PHY register offset
1011 * @port: Port number
1012 * @val: Value to write
1013 * @res_type: resource type (register/memory)
1017 * * %EINVAL - invalid port number or resource type
1018 * * %other - failed to write to PHY
1020 static int ice_write_port_eth56g(struct ice_hw *hw, u8 port, u32 offset,
1021 u32 val, enum eth56g_res_type res_type)
1026 if (port >= hw->ptp.num_lports)
1029 err = ice_phy_res_address_eth56g(hw, port, res_type, offset, &addr);
1033 return ice_write_phy_eth56g(hw, port, addr, val);
1037 * ice_read_port_eth56g - Read a PHY port register
1038 * @hw: pointer to the HW struct
1039 * @offset: PHY register offset
1040 * @port: Port number
1041 * @val: Value to write
1042 * @res_type: resource type (register/memory)
1046 * * %EINVAL - invalid port number or resource type
1047 * * %other - failed to read from PHY
1049 static int ice_read_port_eth56g(struct ice_hw *hw, u8 port, u32 offset,
1050 u32 *val, enum eth56g_res_type res_type)
1055 if (port >= hw->ptp.num_lports)
1058 err = ice_phy_res_address_eth56g(hw, port, res_type, offset, &addr);
1062 return ice_read_phy_eth56g(hw, port, addr, val);
1066 * ice_write_ptp_reg_eth56g - Write a PHY port register
1067 * @hw: pointer to the HW struct
1068 * @port: Port number to be written
1069 * @offset: Offset from PHY port register base
1070 * @val: Value to write
1074 * * %EINVAL - invalid port number or resource type
1075 * * %other - failed to write to PHY
1077 static int ice_write_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1080 return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_PTP);
1084 * ice_write_mac_reg_eth56g - Write a MAC PHY port register
1086 * @hw: pointer to the HW struct
1087 * @port: Port number to be written
1088 * @offset: Offset from PHY port register base
1089 * @val: Value to write
1093 * * %EINVAL - invalid port number or resource type
1094 * * %other - failed to write to PHY
1096 static int ice_write_mac_reg_eth56g(struct ice_hw *hw, u8 port, u32 offset,
1099 return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_MAC);
1103 * ice_write_xpcs_reg_eth56g - Write a PHY port register
1104 * @hw: pointer to the HW struct
1105 * @port: Port number to be written
1106 * @offset: Offset from PHY port register base
1107 * @val: Value to write
1111 * * %EINVAL - invalid port number or resource type
1112 * * %other - failed to write to PHY
1114 static int ice_write_xpcs_reg_eth56g(struct ice_hw *hw, u8 port, u32 offset,
1117 return ice_write_port_eth56g(hw, port, offset, val,
1118 ETH56G_PHY_REG_XPCS);
1122 * ice_read_ptp_reg_eth56g - Read a PHY port register
1123 * @hw: pointer to the HW struct
1124 * @port: Port number to be read
1125 * @offset: Offset from PHY port register base
1126 * @val: Pointer to the value to read (out param)
1130 * * %EINVAL - invalid port number or resource type
1131 * * %other - failed to read from PHY
1133 static int ice_read_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1136 return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_PTP);
1140 * ice_read_mac_reg_eth56g - Read a PHY port register
1141 * @hw: pointer to the HW struct
1142 * @port: Port number to be read
1143 * @offset: Offset from PHY port register base
1144 * @val: Pointer to the value to read (out param)
1148 * * %EINVAL - invalid port number or resource type
1149 * * %other - failed to read from PHY
1151 static int ice_read_mac_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1154 return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_MAC);
1158 * ice_read_gpcs_reg_eth56g - Read a PHY port register
1159 * @hw: pointer to the HW struct
1160 * @port: Port number to be read
1161 * @offset: Offset from PHY port register base
1162 * @val: Pointer to the value to read (out param)
1166 * * %EINVAL - invalid port number or resource type
1167 * * %other - failed to read from PHY
1169 static int ice_read_gpcs_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1172 return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_GPCS);
1176 * ice_read_port_mem_eth56g - Read a PHY port memory location
1177 * @hw: pointer to the HW struct
1178 * @port: Port number to be read
1179 * @offset: Offset from PHY port register base
1180 * @val: Pointer to the value to read (out param)
1184 * * %EINVAL - invalid port number or resource type
1185 * * %other - failed to read from PHY
1187 static int ice_read_port_mem_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1190 return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_MEM_PTP);
1194 * ice_write_port_mem_eth56g - Write a PHY port memory location
1195 * @hw: pointer to the HW struct
1196 * @port: Port number to be read
1197 * @offset: Offset from PHY port register base
1198 * @val: Pointer to the value to read (out param)
1202 * * %EINVAL - invalid port number or resource type
1203 * * %other - failed to write to PHY
1205 static int ice_write_port_mem_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1208 return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_MEM_PTP);
1212 * ice_write_quad_ptp_reg_eth56g - Write a PHY quad register
1213 * @hw: pointer to the HW struct
1214 * @offset: PHY register offset
1215 * @port: Port number
1216 * @val: Value to write
1220 * * %EIO - invalid port number or resource type
1221 * * %other - failed to write to PHY
1223 static int ice_write_quad_ptp_reg_eth56g(struct ice_hw *hw, u8 port,
1224 u32 offset, u32 val)
1228 if (port >= hw->ptp.num_lports)
1231 addr = eth56g_phy_res[ETH56G_PHY_REG_PTP].base[0] + offset;
1233 return ice_write_phy_eth56g(hw, port, addr, val);
1237 * ice_read_quad_ptp_reg_eth56g - Read a PHY quad register
1238 * @hw: pointer to the HW struct
1239 * @offset: PHY register offset
1240 * @port: Port number
1241 * @val: Value to read
1245 * * %EIO - invalid port number or resource type
1246 * * %other - failed to read from PHY
1248 static int ice_read_quad_ptp_reg_eth56g(struct ice_hw *hw, u8 port,
1249 u32 offset, u32 *val)
1253 if (port >= hw->ptp.num_lports)
1256 addr = eth56g_phy_res[ETH56G_PHY_REG_PTP].base[0] + offset;
1258 return ice_read_phy_eth56g(hw, port, addr, val);
1262 * ice_is_64b_phy_reg_eth56g - Check if this is a 64bit PHY register
1263 * @low_addr: the low address to check
1264 * @high_addr: on return, contains the high address of the 64bit register
1266 * Write the appropriate high register offset to use.
1268 * Return: true if the provided low address is one of the known 64bit PHY values
1269 * represented as two 32bit registers, false otherwise.
1271 static bool ice_is_64b_phy_reg_eth56g(u16 low_addr, u16 *high_addr)
1274 case PHY_REG_TX_TIMER_INC_PRE_L:
1275 *high_addr = PHY_REG_TX_TIMER_INC_PRE_U;
1277 case PHY_REG_RX_TIMER_INC_PRE_L:
1278 *high_addr = PHY_REG_RX_TIMER_INC_PRE_U;
1280 case PHY_REG_TX_CAPTURE_L:
1281 *high_addr = PHY_REG_TX_CAPTURE_U;
1283 case PHY_REG_RX_CAPTURE_L:
1284 *high_addr = PHY_REG_RX_CAPTURE_U;
1286 case PHY_REG_TOTAL_TX_OFFSET_L:
1287 *high_addr = PHY_REG_TOTAL_TX_OFFSET_U;
1289 case PHY_REG_TOTAL_RX_OFFSET_L:
1290 *high_addr = PHY_REG_TOTAL_RX_OFFSET_U;
1292 case PHY_REG_TX_MEMORY_STATUS_L:
1293 *high_addr = PHY_REG_TX_MEMORY_STATUS_U;
1301 * ice_is_40b_phy_reg_eth56g - Check if this is a 40bit PHY register
1302 * @low_addr: the low address to check
1303 * @high_addr: on return, contains the high address of the 40bit value
1305 * Write the appropriate high register offset to use.
1307 * Return: true if the provided low address is one of the known 40bit PHY
1308 * values split into two registers with the lower 8 bits in the low register and
1309 * the upper 32 bits in the high register, false otherwise.
1311 static bool ice_is_40b_phy_reg_eth56g(u16 low_addr, u16 *high_addr)
1314 case PHY_REG_TIMETUS_L:
1315 *high_addr = PHY_REG_TIMETUS_U;
1317 case PHY_PCS_REF_TUS_L:
1318 *high_addr = PHY_PCS_REF_TUS_U;
1320 case PHY_PCS_REF_INC_L:
1321 *high_addr = PHY_PCS_REF_INC_U;
1329 * ice_read_64b_phy_reg_eth56g - Read a 64bit value from PHY registers
1330 * @hw: pointer to the HW struct
1331 * @port: PHY port to read from
1332 * @low_addr: offset of the lower register to read from
1333 * @val: on return, the contents of the 64bit value from the PHY registers
1334 * @res_type: resource type
1336 * Check if the caller has specified a known 40 bit register offset and read
1337 * the two registers associated with a 40bit value and return it in the val
1342 * * %EINVAL - not a 64 bit register
1343 * * %other - failed to read from PHY
1345 static int ice_read_64b_phy_reg_eth56g(struct ice_hw *hw, u8 port, u16 low_addr,
1346 u64 *val, enum eth56g_res_type res_type)
1352 if (!ice_is_64b_phy_reg_eth56g(low_addr, &high_addr))
1355 err = ice_read_port_eth56g(hw, port, low_addr, &lo, res_type);
1357 ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register %#08x\n, err %d",
1362 err = ice_read_port_eth56g(hw, port, high_addr, &hi, res_type);
1364 ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register %#08x\n, err %d",
1369 *val = ((u64)hi << 32) | lo;
1375 * ice_read_64b_ptp_reg_eth56g - Read a 64bit value from PHY registers
1376 * @hw: pointer to the HW struct
1377 * @port: PHY port to read from
1378 * @low_addr: offset of the lower register to read from
1379 * @val: on return, the contents of the 64bit value from the PHY registers
1381 * Check if the caller has specified a known 40 bit register offset and read
1382 * the two registers associated with a 40bit value and return it in the val
1387 * * %EINVAL - not a 64 bit register
1388 * * %other - failed to read from PHY
1390 static int ice_read_64b_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 low_addr,
1393 return ice_read_64b_phy_reg_eth56g(hw, port, low_addr, val,
1394 ETH56G_PHY_REG_PTP);
1398 * ice_write_40b_phy_reg_eth56g - Write a 40b value to the PHY
1399 * @hw: pointer to the HW struct
1400 * @port: port to write to
1401 * @low_addr: offset of the low register
1402 * @val: 40b value to write
1403 * @res_type: resource type
1405 * Check if the caller has specified a known 40 bit register offset and write
1406 * provided 40b value to the two associated registers by splitting it up into
1407 * two chunks, the lower 8 bits and the upper 32 bits.
1411 * * %EINVAL - not a 40 bit register
1412 * * %other - failed to write to PHY
1414 static int ice_write_40b_phy_reg_eth56g(struct ice_hw *hw, u8 port,
1415 u16 low_addr, u64 val,
1416 enum eth56g_res_type res_type)
1422 if (!ice_is_40b_phy_reg_eth56g(low_addr, &high_addr))
1425 lo = FIELD_GET(P_REG_40B_LOW_M, val);
1426 hi = (u32)(val >> P_REG_40B_HIGH_S);
1428 err = ice_write_port_eth56g(hw, port, low_addr, lo, res_type);
1430 ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
1435 err = ice_write_port_eth56g(hw, port, high_addr, hi, res_type);
1437 ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
1446 * ice_write_40b_ptp_reg_eth56g - Write a 40b value to the PHY
1447 * @hw: pointer to the HW struct
1448 * @port: port to write to
1449 * @low_addr: offset of the low register
1450 * @val: 40b value to write
1452 * Check if the caller has specified a known 40 bit register offset and write
1453 * provided 40b value to the two associated registers by splitting it up into
1454 * two chunks, the lower 8 bits and the upper 32 bits.
1458 * * %EINVAL - not a 40 bit register
1459 * * %other - failed to write to PHY
1461 static int ice_write_40b_ptp_reg_eth56g(struct ice_hw *hw, u8 port,
1462 u16 low_addr, u64 val)
1464 return ice_write_40b_phy_reg_eth56g(hw, port, low_addr, val,
1465 ETH56G_PHY_REG_PTP);
1469 * ice_write_64b_phy_reg_eth56g - Write a 64bit value to PHY registers
1470 * @hw: pointer to the HW struct
1471 * @port: PHY port to read from
1472 * @low_addr: offset of the lower register to read from
1473 * @val: the contents of the 64bit value to write to PHY
1474 * @res_type: resource type
1476 * Check if the caller has specified a known 64 bit register offset and write
1477 * the 64bit value to the two associated 32bit PHY registers.
1481 * * %EINVAL - not a 64 bit register
1482 * * %other - failed to write to PHY
1484 static int ice_write_64b_phy_reg_eth56g(struct ice_hw *hw, u8 port,
1485 u16 low_addr, u64 val,
1486 enum eth56g_res_type res_type)
1492 if (!ice_is_64b_phy_reg_eth56g(low_addr, &high_addr))
1495 lo = lower_32_bits(val);
1496 hi = upper_32_bits(val);
1498 err = ice_write_port_eth56g(hw, port, low_addr, lo, res_type);
1500 ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
1505 err = ice_write_port_eth56g(hw, port, high_addr, hi, res_type);
1507 ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
1516 * ice_write_64b_ptp_reg_eth56g - Write a 64bit value to PHY registers
1517 * @hw: pointer to the HW struct
1518 * @port: PHY port to read from
1519 * @low_addr: offset of the lower register to read from
1520 * @val: the contents of the 64bit value to write to PHY
1522 * Check if the caller has specified a known 64 bit register offset and write
1523 * the 64bit value to the two associated 32bit PHY registers.
1527 * * %EINVAL - not a 64 bit register
1528 * * %other - failed to write to PHY
1530 static int ice_write_64b_ptp_reg_eth56g(struct ice_hw *hw, u8 port,
1531 u16 low_addr, u64 val)
1533 return ice_write_64b_phy_reg_eth56g(hw, port, low_addr, val,
1534 ETH56G_PHY_REG_PTP);
1538 * ice_read_ptp_tstamp_eth56g - Read a PHY timestamp out of the port memory
1539 * @hw: pointer to the HW struct
1540 * @port: the port to read from
1541 * @idx: the timestamp index to read
1542 * @tstamp: on return, the 40bit timestamp value
1544 * Read a 40bit timestamp value out of the two associated entries in the
1545 * port memory block of the internal PHYs of the 56G devices.
1549 * * %other - failed to read from PHY
1551 static int ice_read_ptp_tstamp_eth56g(struct ice_hw *hw, u8 port, u8 idx,
1554 u16 lo_addr, hi_addr;
1558 lo_addr = (u16)PHY_TSTAMP_L(idx);
1559 hi_addr = (u16)PHY_TSTAMP_U(idx);
1561 err = ice_read_port_mem_eth56g(hw, port, lo_addr, &lo);
1563 ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
1568 err = ice_read_port_mem_eth56g(hw, port, hi_addr, &hi);
1570 ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
1575 /* For 56G based internal PHYs, the timestamp is reported with the
1576 * lower 8 bits in the low register, and the upper 32 bits in the high
1579 *tstamp = FIELD_PREP(TS_PHY_HIGH_M, hi) |
1580 FIELD_PREP(TS_PHY_LOW_M, lo);
1586 * ice_clear_ptp_tstamp_eth56g - Clear a timestamp from the quad block
1587 * @hw: pointer to the HW struct
1588 * @port: the quad to read from
1589 * @idx: the timestamp index to reset
1591 * Read and then forcibly clear the timestamp index to ensure the valid bit is
1592 * cleared and the timestamp status bit is reset in the PHY port memory of
1593 * internal PHYs of the 56G devices.
1595 * To directly clear the contents of the timestamp block entirely, discarding
1596 * all timestamp data at once, software should instead use
1597 * ice_ptp_reset_ts_memory_quad_eth56g().
1599 * This function should only be called on an idx whose bit is set according to
1600 * ice_get_phy_tx_tstamp_ready().
1604 * * %other - failed to write to PHY
1606 static int ice_clear_ptp_tstamp_eth56g(struct ice_hw *hw, u8 port, u8 idx)
1612 /* Read the timestamp register to ensure the timestamp status bit is
1615 err = ice_read_ptp_tstamp_eth56g(hw, port, idx, &unused_tstamp);
1617 ice_debug(hw, ICE_DBG_PTP, "Failed to read the PHY timestamp register for port %u, idx %u, err %d\n",
1621 lo_addr = (u16)PHY_TSTAMP_L(idx);
1623 err = ice_write_port_mem_eth56g(hw, port, lo_addr, 0);
1625 ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register for port %u, idx %u, err %d\n",
1634 * ice_ptp_reset_ts_memory_eth56g - Clear all timestamps from the port block
1635 * @hw: pointer to the HW struct
1637 static void ice_ptp_reset_ts_memory_eth56g(struct ice_hw *hw)
1641 for (port = 0; port < hw->ptp.num_lports; port++) {
1642 ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_L,
1644 ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_U,
1650 * ice_ptp_prep_port_time_eth56g - Prepare one PHY port with initial time
1651 * @hw: pointer to the HW struct
1652 * @port: port number
1653 * @time: time to initialize the PHY port clocks to
1655 * Write a new initial time value into registers of a specific PHY port.
1659 * * %other - failed to write to PHY
1661 static int ice_ptp_prep_port_time_eth56g(struct ice_hw *hw, u8 port,
1667 err = ice_write_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_L,
1673 return ice_write_64b_ptp_reg_eth56g(hw, port,
1674 PHY_REG_RX_TIMER_INC_PRE_L, time);
1678 * ice_ptp_prep_phy_time_eth56g - Prepare PHY port with initial time
1679 * @hw: pointer to the HW struct
1680 * @time: Time to initialize the PHY port clocks to
1682 * Program the PHY port registers with a new initial time value. The port
1683 * clock will be initialized once the driver issues an ICE_PTP_INIT_TIME sync
1684 * command. The time value is the upper 32 bits of the PHY timer, usually in
1685 * units of nominal nanoseconds.
1689 * * %other - failed to write to PHY
1691 static int ice_ptp_prep_phy_time_eth56g(struct ice_hw *hw, u32 time)
1696 /* The time represents the upper 32 bits of the PHY timer, so we need
1697 * to shift to account for this when programming.
1699 phy_time = (u64)time << 32;
1701 for (port = 0; port < hw->ptp.num_lports; port++) {
1704 err = ice_ptp_prep_port_time_eth56g(hw, port, phy_time);
1706 ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n",
1716 * ice_ptp_prep_port_adj_eth56g - Prepare a single port for time adjust
1717 * @hw: pointer to HW struct
1718 * @port: Port number to be programmed
1719 * @time: time in cycles to adjust the port clocks
1721 * Program the port for an atomic adjustment by writing the Tx and Rx timer
1722 * registers. The atomic adjustment won't be completed until the driver issues
1723 * an ICE_PTP_ADJ_TIME command.
1725 * Note that time is not in units of nanoseconds. It is in clock time
1726 * including the lower sub-nanosecond portion of the port timer.
1728 * Negative adjustments are supported using 2s complement arithmetic.
1732 * * %other - failed to write to PHY
1734 static int ice_ptp_prep_port_adj_eth56g(struct ice_hw *hw, u8 port, s64 time)
1739 l_time = lower_32_bits(time);
1740 u_time = upper_32_bits(time);
1743 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_L,
1748 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_U,
1754 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TIMER_INC_PRE_L,
1759 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TIMER_INC_PRE_U,
1767 ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n",
1773 * ice_ptp_prep_phy_adj_eth56g - Prep PHY ports for a time adjustment
1774 * @hw: pointer to HW struct
1775 * @adj: adjustment in nanoseconds
1777 * Prepare the PHY ports for an atomic time adjustment by programming the PHY
1778 * Tx and Rx port registers. The actual adjustment is completed by issuing an
1779 * ICE_PTP_ADJ_TIME or ICE_PTP_ADJ_TIME_AT_TIME sync command.
1783 * * %other - failed to write to PHY
1785 static int ice_ptp_prep_phy_adj_eth56g(struct ice_hw *hw, s32 adj)
1790 /* The port clock supports adjustment of the sub-nanosecond portion of
1791 * the clock (lowest 32 bits). We shift the provided adjustment in
1792 * nanoseconds by 32 to calculate the appropriate adjustment to program
1793 * into the PHY ports.
1795 cycles = (s64)adj << 32;
1797 for (port = 0; port < hw->ptp.num_lports; port++) {
1800 err = ice_ptp_prep_port_adj_eth56g(hw, port, cycles);
1809 * ice_ptp_prep_phy_incval_eth56g - Prepare PHY ports for time adjustment
1810 * @hw: pointer to HW struct
1811 * @incval: new increment value to prepare
1813 * Prepare each of the PHY ports for a new increment value by programming the
1814 * port's TIMETUS registers. The new increment value will be updated after
1815 * issuing an ICE_PTP_INIT_INCVAL command.
1819 * * %other - failed to write to PHY
1821 static int ice_ptp_prep_phy_incval_eth56g(struct ice_hw *hw, u64 incval)
1825 for (port = 0; port < hw->ptp.num_lports; port++) {
1828 err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_REG_TIMETUS_L,
1831 ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n",
1841 * ice_ptp_read_port_capture_eth56g - Read a port's local time capture
1842 * @hw: pointer to HW struct
1843 * @port: Port number to read
1844 * @tx_ts: on return, the Tx port time capture
1845 * @rx_ts: on return, the Rx port time capture
1847 * Read the port's Tx and Rx local time capture values.
1851 * * %other - failed to read from PHY
1853 static int ice_ptp_read_port_capture_eth56g(struct ice_hw *hw, u8 port,
1854 u64 *tx_ts, u64 *rx_ts)
1859 err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_CAPTURE_L,
1862 ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n",
1867 ice_debug(hw, ICE_DBG_PTP, "tx_init = %#016llx\n", *tx_ts);
1870 err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_RX_CAPTURE_L,
1873 ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n",
1878 ice_debug(hw, ICE_DBG_PTP, "rx_init = %#016llx\n", *rx_ts);
1884 * ice_ptp_write_port_cmd_eth56g - Prepare a single PHY port for a timer command
1885 * @hw: pointer to HW struct
1886 * @port: Port to which cmd has to be sent
1887 * @cmd: Command to be sent to the port
1889 * Prepare the requested port for an upcoming timer sync command.
1893 * * %other - failed to write to PHY
1895 static int ice_ptp_write_port_cmd_eth56g(struct ice_hw *hw, u8 port,
1896 enum ice_ptp_tmr_cmd cmd)
1898 u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd);
1902 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TMR_CMD, val);
1904 ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n",
1910 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TMR_CMD, val);
1912 ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n",
1921 * ice_phy_get_speed_eth56g - Get link speed based on PHY link type
1922 * @li: pointer to link information struct
1924 * Return: simplified ETH56G PHY speed
1926 static enum ice_eth56g_link_spd
1927 ice_phy_get_speed_eth56g(struct ice_link_status *li)
1929 u16 speed = ice_get_link_speed_based_on_phy_type(li->phy_type_low,
1933 case ICE_AQ_LINK_SPEED_1000MB:
1934 return ICE_ETH56G_LNK_SPD_1G;
1935 case ICE_AQ_LINK_SPEED_2500MB:
1936 return ICE_ETH56G_LNK_SPD_2_5G;
1937 case ICE_AQ_LINK_SPEED_10GB:
1938 return ICE_ETH56G_LNK_SPD_10G;
1939 case ICE_AQ_LINK_SPEED_25GB:
1940 return ICE_ETH56G_LNK_SPD_25G;
1941 case ICE_AQ_LINK_SPEED_40GB:
1942 return ICE_ETH56G_LNK_SPD_40G;
1943 case ICE_AQ_LINK_SPEED_50GB:
1944 switch (li->phy_type_low) {
1945 case ICE_PHY_TYPE_LOW_50GBASE_SR:
1946 case ICE_PHY_TYPE_LOW_50GBASE_FR:
1947 case ICE_PHY_TYPE_LOW_50GBASE_LR:
1948 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
1949 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
1950 case ICE_PHY_TYPE_LOW_50G_AUI1:
1951 return ICE_ETH56G_LNK_SPD_50G;
1953 return ICE_ETH56G_LNK_SPD_50G2;
1955 case ICE_AQ_LINK_SPEED_100GB:
1956 if (li->phy_type_high ||
1957 li->phy_type_low == ICE_PHY_TYPE_LOW_100GBASE_SR2)
1958 return ICE_ETH56G_LNK_SPD_100G2;
1960 return ICE_ETH56G_LNK_SPD_100G;
1962 return ICE_ETH56G_LNK_SPD_1G;
1967 * ice_phy_cfg_parpcs_eth56g - Configure TUs per PAR/PCS clock cycle
1968 * @hw: pointer to the HW struct
1969 * @port: port to configure
1971 * Configure the number of TUs for the PAR and PCS clocks used as part of the
1972 * timestamp calibration process.
1976 * * %other - PHY read/write failed
1978 static int ice_phy_cfg_parpcs_eth56g(struct ice_hw *hw, u8 port)
1983 err = ice_write_xpcs_reg_eth56g(hw, port, PHY_VENDOR_TXLANE_THRESH,
1984 ICE_ETH56G_NOMINAL_THRESH4);
1986 ice_debug(hw, ICE_DBG_PTP, "Failed to read VENDOR_TXLANE_THRESH, status: %d",
1991 switch (ice_phy_get_speed_eth56g(&hw->port_info->phy.link_info)) {
1992 case ICE_ETH56G_LNK_SPD_1G:
1993 case ICE_ETH56G_LNK_SPD_2_5G:
1994 err = ice_read_quad_ptp_reg_eth56g(hw, port,
1995 PHY_GPCS_CONFIG_REG0, &val);
1997 ice_debug(hw, ICE_DBG_PTP, "Failed to read PHY_GPCS_CONFIG_REG0, status: %d",
2002 val &= ~PHY_GPCS_CONFIG_REG0_TX_THR_M;
2003 val |= FIELD_PREP(PHY_GPCS_CONFIG_REG0_TX_THR_M,
2004 ICE_ETH56G_NOMINAL_TX_THRESH);
2006 err = ice_write_quad_ptp_reg_eth56g(hw, port,
2007 PHY_GPCS_CONFIG_REG0, val);
2009 ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_GPCS_CONFIG_REG0, status: %d",
2018 err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_PCS_REF_TUS_L,
2019 ICE_ETH56G_NOMINAL_PCS_REF_TUS);
2021 ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_PCS_REF_TUS, status: %d",
2026 err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_PCS_REF_INC_L,
2027 ICE_ETH56G_NOMINAL_PCS_REF_INC);
2029 ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_PCS_REF_INC, status: %d",
2038 * ice_phy_cfg_ptp_1step_eth56g - Configure 1-step PTP settings
2039 * @hw: Pointer to the HW struct
2040 * @port: Port to configure
2044 * * %other - PHY read/write failed
2046 int ice_phy_cfg_ptp_1step_eth56g(struct ice_hw *hw, u8 port)
2048 u8 quad_lane = port % ICE_PORTS_PER_QUAD;
2049 u32 addr, val, peer_delay;
2050 bool enable, sfd_ena;
2053 enable = hw->ptp.phy.eth56g.onestep_ena;
2054 peer_delay = hw->ptp.phy.eth56g.peer_delay;
2055 sfd_ena = hw->ptp.phy.eth56g.sfd_ena;
2057 addr = PHY_PTP_1STEP_CONFIG;
2058 err = ice_read_quad_ptp_reg_eth56g(hw, port, addr, &val);
2063 val |= BIT(quad_lane);
2065 val &= ~BIT(quad_lane);
2067 val &= ~(PHY_PTP_1STEP_T1S_UP64_M | PHY_PTP_1STEP_T1S_DELTA_M);
2069 err = ice_write_quad_ptp_reg_eth56g(hw, port, addr, val);
2073 addr = PHY_PTP_1STEP_PEER_DELAY(quad_lane);
2074 val = FIELD_PREP(PHY_PTP_1STEP_PD_DELAY_M, peer_delay);
2076 val |= PHY_PTP_1STEP_PD_ADD_PD_M;
2077 val |= PHY_PTP_1STEP_PD_DLY_V_M;
2078 err = ice_write_quad_ptp_reg_eth56g(hw, port, addr, val);
2082 val &= ~PHY_PTP_1STEP_PD_DLY_V_M;
2083 err = ice_write_quad_ptp_reg_eth56g(hw, port, addr, val);
2087 addr = PHY_MAC_XIF_MODE;
2088 err = ice_read_mac_reg_eth56g(hw, port, addr, &val);
2092 val &= ~(PHY_MAC_XIF_1STEP_ENA_M | PHY_MAC_XIF_TS_BIN_MODE_M |
2093 PHY_MAC_XIF_TS_SFD_ENA_M | PHY_MAC_XIF_GMII_TS_SEL_M);
2095 switch (ice_phy_get_speed_eth56g(&hw->port_info->phy.link_info)) {
2096 case ICE_ETH56G_LNK_SPD_1G:
2097 case ICE_ETH56G_LNK_SPD_2_5G:
2098 val |= PHY_MAC_XIF_GMII_TS_SEL_M;
2104 val |= FIELD_PREP(PHY_MAC_XIF_1STEP_ENA_M, enable) |
2105 FIELD_PREP(PHY_MAC_XIF_TS_BIN_MODE_M, enable) |
2106 FIELD_PREP(PHY_MAC_XIF_TS_SFD_ENA_M, sfd_ena);
2108 return ice_write_mac_reg_eth56g(hw, port, addr, val);
2112 * mul_u32_u32_fx_q9 - Multiply two u32 fixed point Q9 values
2113 * @a: multiplier value
2114 * @b: multiplicand value
2116 * Return: result of multiplication
2118 static u32 mul_u32_u32_fx_q9(u32 a, u32 b)
2120 return (u32)(((u64)a * b) >> ICE_ETH56G_MAC_CFG_FRAC_W);
2124 * add_u32_u32_fx - Add two u32 fixed point values and discard overflow
2128 * Return: result of addition
2130 static u32 add_u32_u32_fx(u32 a, u32 b)
2132 return lower_32_bits(((u64)a + b));
2136 * ice_ptp_calc_bitslip_eth56g - Calculate bitslip value
2137 * @hw: pointer to the HW struct
2138 * @port: port to configure
2139 * @bs: bitslip multiplier
2140 * @fc: FC-FEC enabled
2141 * @rs: RS-FEC enabled
2144 * Return: calculated bitslip value
2146 static u32 ice_ptp_calc_bitslip_eth56g(struct ice_hw *hw, u8 port, u32 bs,
2148 enum ice_eth56g_link_spd spd)
2156 if (spd == ICE_ETH56G_LNK_SPD_1G || spd == ICE_ETH56G_LNK_SPD_2_5G) {
2157 err = ice_read_gpcs_reg_eth56g(hw, port, PHY_GPCS_BITSLIP,
2160 u8 quad_lane = port % ICE_PORTS_PER_QUAD;
2163 addr = PHY_REG_SD_BIT_SLIP(quad_lane);
2164 err = ice_read_quad_ptp_reg_eth56g(hw, port, addr, &bitslip);
2169 if (spd == ICE_ETH56G_LNK_SPD_1G && !bitslip) {
2170 /* Bitslip register value of 0 corresponds to 10 so substitute
2171 * it for calculations
2174 } else if (spd == ICE_ETH56G_LNK_SPD_10G ||
2175 spd == ICE_ETH56G_LNK_SPD_25G) {
2177 bitslip = bitslip * 2 + 32;
2179 bitslip = (u32)((s32)bitslip * -1 + 20);
2182 bitslip <<= ICE_ETH56G_MAC_CFG_FRAC_W;
2183 return mul_u32_u32_fx_q9(bitslip, bs);
2187 * ice_ptp_calc_deskew_eth56g - Calculate deskew value
2188 * @hw: pointer to the HW struct
2189 * @port: port to configure
2190 * @ds: deskew multiplier
2191 * @rs: RS-FEC enabled
2194 * Return: calculated deskew value
2196 static u32 ice_ptp_calc_deskew_eth56g(struct ice_hw *hw, u8 port, u32 ds,
2197 bool rs, enum ice_eth56g_link_spd spd)
2199 u32 deskew_i, deskew_f;
2205 read_poll_timeout(ice_read_ptp_reg_eth56g, err,
2206 FIELD_GET(PHY_REG_DESKEW_0_VALID, deskew_i), 500,
2207 50 * USEC_PER_MSEC, false, hw, port, PHY_REG_DESKEW_0,
2212 deskew_f = FIELD_GET(PHY_REG_DESKEW_0_RLEVEL_FRAC, deskew_i);
2213 deskew_i = FIELD_GET(PHY_REG_DESKEW_0_RLEVEL, deskew_i);
2215 if (rs && spd == ICE_ETH56G_LNK_SPD_50G2)
2216 ds = 0x633; /* 3.1 */
2217 else if (rs && spd == ICE_ETH56G_LNK_SPD_100G)
2218 ds = 0x31b; /* 1.552 */
2220 deskew_i = FIELD_PREP(ICE_ETH56G_MAC_CFG_RX_OFFSET_INT, deskew_i);
2221 /* Shift 3 fractional bits to the end of the integer part */
2222 deskew_f <<= ICE_ETH56G_MAC_CFG_FRAC_W - PHY_REG_DESKEW_0_RLEVEL_FRAC_W;
2223 return mul_u32_u32_fx_q9(deskew_i | deskew_f, ds);
2227 * ice_phy_set_offsets_eth56g - Set Tx/Rx offset values
2228 * @hw: pointer to the HW struct
2229 * @port: port to configure
2231 * @cfg: structure to store output values
2232 * @fc: FC-FEC enabled
2233 * @rs: RS-FEC enabled
2237 * * %other - failed to write to PHY
2239 static int ice_phy_set_offsets_eth56g(struct ice_hw *hw, u8 port,
2240 enum ice_eth56g_link_spd spd,
2241 const struct ice_eth56g_mac_reg_cfg *cfg,
2244 u32 rx_offset, tx_offset, bs_ds;
2247 onestep = hw->ptp.phy.eth56g.onestep_ena;
2248 sfd = hw->ptp.phy.eth56g.sfd_ena;
2249 bs_ds = cfg->rx_offset.bs_ds;
2252 rx_offset = cfg->rx_offset.fc;
2254 rx_offset = cfg->rx_offset.rs;
2256 rx_offset = cfg->rx_offset.no_fec;
2258 rx_offset = add_u32_u32_fx(rx_offset, cfg->rx_offset.serdes);
2260 rx_offset = add_u32_u32_fx(rx_offset, cfg->rx_offset.sfd);
2262 if (spd < ICE_ETH56G_LNK_SPD_40G)
2263 bs_ds = ice_ptp_calc_bitslip_eth56g(hw, port, bs_ds, fc, rs,
2266 bs_ds = ice_ptp_calc_deskew_eth56g(hw, port, bs_ds, rs, spd);
2267 rx_offset = add_u32_u32_fx(rx_offset, bs_ds);
2268 rx_offset &= ICE_ETH56G_MAC_CFG_RX_OFFSET_INT |
2269 ICE_ETH56G_MAC_CFG_RX_OFFSET_FRAC;
2272 tx_offset = cfg->tx_offset.fc;
2274 tx_offset = cfg->tx_offset.rs;
2276 tx_offset = cfg->tx_offset.no_fec;
2277 tx_offset += cfg->tx_offset.serdes + cfg->tx_offset.sfd * sfd +
2278 cfg->tx_offset.onestep * onestep;
2280 ice_write_mac_reg_eth56g(hw, port, PHY_MAC_RX_OFFSET, rx_offset);
2281 return ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TX_OFFSET, tx_offset);
2285 * ice_phy_cfg_mac_eth56g - Configure MAC for PTP
2286 * @hw: Pointer to the HW struct
2287 * @port: Port to configure
2291 * * %other - failed to write to PHY
2293 static int ice_phy_cfg_mac_eth56g(struct ice_hw *hw, u8 port)
2295 const struct ice_eth56g_mac_reg_cfg *cfg;
2296 enum ice_eth56g_link_spd spd;
2297 struct ice_link_status *li;
2304 onestep = hw->ptp.phy.eth56g.onestep_ena;
2305 li = &hw->port_info->phy.link_info;
2306 spd = ice_phy_get_speed_eth56g(li);
2307 if (!!(li->an_info & ICE_AQ_FEC_EN)) {
2308 if (spd == ICE_ETH56G_LNK_SPD_10G) {
2311 fc = !!(li->fec_info & ICE_AQ_LINK_25G_KR_FEC_EN);
2312 rs = !!(li->fec_info & ~ICE_AQ_LINK_25G_KR_FEC_EN);
2315 cfg = ð56g_mac_cfg[spd];
2317 err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_RX_MODULO, 0);
2321 err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TX_MODULO, 0);
2325 val = FIELD_PREP(PHY_MAC_TSU_CFG_TX_MODE_M,
2326 cfg->tx_mode.def + rs * cfg->tx_mode.rs) |
2327 FIELD_PREP(PHY_MAC_TSU_CFG_TX_MII_MK_DLY_M, cfg->tx_mk_dly) |
2328 FIELD_PREP(PHY_MAC_TSU_CFG_TX_MII_CW_DLY_M,
2329 cfg->tx_cw_dly.def +
2330 onestep * cfg->tx_cw_dly.onestep) |
2331 FIELD_PREP(PHY_MAC_TSU_CFG_RX_MODE_M,
2332 cfg->rx_mode.def + rs * cfg->rx_mode.rs) |
2333 FIELD_PREP(PHY_MAC_TSU_CFG_RX_MII_MK_DLY_M,
2334 cfg->rx_mk_dly.def + rs * cfg->rx_mk_dly.rs) |
2335 FIELD_PREP(PHY_MAC_TSU_CFG_RX_MII_CW_DLY_M,
2336 cfg->rx_cw_dly.def + rs * cfg->rx_cw_dly.rs) |
2337 FIELD_PREP(PHY_MAC_TSU_CFG_BLKS_PER_CLK_M, cfg->blks_per_clk);
2338 err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TSU_CONFIG, val);
2342 err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_BLOCKTIME,
2347 err = ice_phy_set_offsets_eth56g(hw, port, spd, cfg, fc, rs);
2351 if (spd == ICE_ETH56G_LNK_SPD_25G && !rs)
2356 return ice_write_mac_reg_eth56g(hw, port, PHY_MAC_MARKERTIME, val);
2360 * ice_phy_cfg_intr_eth56g - Configure TX timestamp interrupt
2361 * @hw: pointer to the HW struct
2362 * @port: the timestamp port
2363 * @ena: enable or disable interrupt
2364 * @threshold: interrupt threshold
2366 * Configure TX timestamp interrupt for the specified port
2370 * * %other - PHY read/write failed
2372 int ice_phy_cfg_intr_eth56g(struct ice_hw *hw, u8 port, bool ena, u8 threshold)
2377 err = ice_read_ptp_reg_eth56g(hw, port, PHY_REG_TS_INT_CONFIG, &val);
2382 val |= PHY_TS_INT_CONFIG_ENA_M;
2383 val &= ~PHY_TS_INT_CONFIG_THRESHOLD_M;
2384 val |= FIELD_PREP(PHY_TS_INT_CONFIG_THRESHOLD_M, threshold);
2386 val &= ~PHY_TS_INT_CONFIG_ENA_M;
2389 return ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TS_INT_CONFIG, val);
2393 * ice_read_phy_and_phc_time_eth56g - Simultaneously capture PHC and PHY time
2394 * @hw: pointer to the HW struct
2395 * @port: the PHY port to read
2396 * @phy_time: on return, the 64bit PHY timer value
2397 * @phc_time: on return, the lower 64bits of PHC time
2399 * Issue a ICE_PTP_READ_TIME timer command to simultaneously capture the PHY
2400 * and PHC timer values.
2404 * * %other - PHY read/write failed
2406 static int ice_read_phy_and_phc_time_eth56g(struct ice_hw *hw, u8 port,
2407 u64 *phy_time, u64 *phc_time)
2409 u64 tx_time, rx_time;
2414 tmr_idx = ice_get_ptp_src_clock_index(hw);
2416 /* Prepare the PHC timer for a ICE_PTP_READ_TIME capture command */
2417 ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
2419 /* Prepare the PHY timer for a ICE_PTP_READ_TIME capture command */
2420 err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_READ_TIME);
2424 /* Issue the sync to start the ICE_PTP_READ_TIME capture */
2425 ice_ptp_exec_tmr_cmd(hw);
2427 /* Read the captured PHC time from the shadow time registers */
2428 zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx));
2429 lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx));
2430 *phc_time = (u64)lo << 32 | zo;
2432 /* Read the captured PHY time from the PHY shadow registers */
2433 err = ice_ptp_read_port_capture_eth56g(hw, port, &tx_time, &rx_time);
2437 /* If the PHY Tx and Rx timers don't match, log a warning message.
2438 * Note that this should not happen in normal circumstances since the
2439 * driver always programs them together.
2441 if (tx_time != rx_time)
2442 dev_warn(ice_hw_to_dev(hw), "PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n",
2443 port, tx_time, rx_time);
2445 *phy_time = tx_time;
2451 * ice_sync_phy_timer_eth56g - Synchronize the PHY timer with PHC timer
2452 * @hw: pointer to the HW struct
2453 * @port: the PHY port to synchronize
2455 * Perform an adjustment to ensure that the PHY and PHC timers are in sync.
2456 * This is done by issuing a ICE_PTP_READ_TIME command which triggers a
2457 * simultaneous read of the PHY timer and PHC timer. Then we use the
2458 * difference to calculate an appropriate 2s complement addition to add
2459 * to the PHY timer in order to ensure it reads the same value as the
2460 * primary PHC timer.
2464 * * %-EBUSY- failed to acquire PTP semaphore
2465 * * %other - PHY read/write failed
2467 static int ice_sync_phy_timer_eth56g(struct ice_hw *hw, u8 port)
2469 u64 phc_time, phy_time, difference;
2472 if (!ice_ptp_lock(hw)) {
2473 ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n");
2477 err = ice_read_phy_and_phc_time_eth56g(hw, port, &phy_time, &phc_time);
2481 /* Calculate the amount required to add to the port time in order for
2482 * it to match the PHC time.
2484 * Note that the port adjustment is done using 2s complement
2485 * arithmetic. This is convenient since it means that we can simply
2486 * calculate the difference between the PHC time and the port time,
2487 * and it will be interpreted correctly.
2490 ice_ptp_src_cmd(hw, ICE_PTP_NOP);
2491 difference = phc_time - phy_time;
2493 err = ice_ptp_prep_port_adj_eth56g(hw, port, (s64)difference);
2497 err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_ADJ_TIME);
2501 /* Issue the sync to activate the time adjustment */
2502 ice_ptp_exec_tmr_cmd(hw);
2504 /* Re-capture the timer values to flush the command registers and
2505 * verify that the time was properly adjusted.
2507 err = ice_read_phy_and_phc_time_eth56g(hw, port, &phy_time, &phc_time);
2511 dev_info(ice_hw_to_dev(hw),
2512 "Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n",
2513 port, phy_time, phc_time);
2521 * ice_stop_phy_timer_eth56g - Stop the PHY clock timer
2522 * @hw: pointer to the HW struct
2523 * @port: the PHY port to stop
2524 * @soft_reset: if true, hold the SOFT_RESET bit of PHY_REG_PS
2526 * Stop the clock of a PHY port. This must be done as part of the flow to
2527 * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
2528 * initialized or when link speed changes.
2532 * * %other - failed to write to PHY
2534 int ice_stop_phy_timer_eth56g(struct ice_hw *hw, u8 port, bool soft_reset)
2538 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_OFFSET_READY, 0);
2542 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_OFFSET_READY, 0);
2546 ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port);
2552 * ice_start_phy_timer_eth56g - Start the PHY clock timer
2553 * @hw: pointer to the HW struct
2554 * @port: the PHY port to start
2556 * Start the clock of a PHY port. This must be done as part of the flow to
2557 * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
2558 * initialized or when link speed changes.
2562 * * %other - PHY read/write failed
2564 int ice_start_phy_timer_eth56g(struct ice_hw *hw, u8 port)
2571 tmr_idx = ice_get_ptp_src_clock_index(hw);
2573 err = ice_stop_phy_timer_eth56g(hw, port, false);
2577 ice_ptp_src_cmd(hw, ICE_PTP_NOP);
2579 err = ice_phy_cfg_parpcs_eth56g(hw, port);
2583 err = ice_phy_cfg_ptp_1step_eth56g(hw, port);
2587 err = ice_phy_cfg_mac_eth56g(hw, port);
2591 lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
2592 hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
2593 incval = (u64)hi << 32 | lo;
2595 err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_REG_TIMETUS_L, incval);
2599 err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL);
2603 ice_ptp_exec_tmr_cmd(hw);
2605 err = ice_sync_phy_timer_eth56g(hw, port);
2609 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_OFFSET_READY, 1);
2613 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_OFFSET_READY, 1);
2617 ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port);
2623 * ice_sb_access_ena_eth56g - Enable SB devices (PHY and others) access
2624 * @hw: pointer to HW struct
2625 * @enable: Enable or disable access
2627 * Enable sideband devices (PHY and others) access.
2629 static void ice_sb_access_ena_eth56g(struct ice_hw *hw, bool enable)
2631 u32 val = rd32(hw, PF_SB_REM_DEV_CTL);
2634 val |= BIT(eth56g_phy_0) | BIT(cgu) | BIT(eth56g_phy_1);
2636 val &= ~(BIT(eth56g_phy_0) | BIT(cgu) | BIT(eth56g_phy_1));
2638 wr32(hw, PF_SB_REM_DEV_CTL, val);
2642 * ice_ptp_init_phc_eth56g - Perform E82X specific PHC initialization
2643 * @hw: pointer to HW struct
2645 * Perform PHC initialization steps specific to E82X devices.
2649 * * %other - failed to initialize CGU
2651 static int ice_ptp_init_phc_eth56g(struct ice_hw *hw)
2653 ice_sb_access_ena_eth56g(hw, true);
2654 /* Initialize the Clock Generation Unit */
2655 return ice_init_cgu_e82x(hw);
2659 * ice_ptp_read_tx_hwtstamp_status_eth56g - Get TX timestamp status
2660 * @hw: pointer to the HW struct
2661 * @ts_status: the timestamp mask pointer
2663 * Read the PHY Tx timestamp status mask indicating which ports have Tx
2664 * timestamps available.
2668 * * %other - failed to read from PHY
2670 int ice_ptp_read_tx_hwtstamp_status_eth56g(struct ice_hw *hw, u32 *ts_status)
2672 const struct ice_eth56g_params *params = &hw->ptp.phy.eth56g;
2676 mask = (1 << hw->ptp.ports_per_phy) - 1;
2679 for (phy = 0; phy < params->num_phys; phy++) {
2682 err = ice_read_phy_eth56g(hw, phy, PHY_PTP_INT_STATUS, &status);
2686 *ts_status |= (status & mask) << (phy * hw->ptp.ports_per_phy);
2689 ice_debug(hw, ICE_DBG_PTP, "PHY interrupt err: %x\n", *ts_status);
2695 * ice_get_phy_tx_tstamp_ready_eth56g - Read the Tx memory status register
2696 * @hw: pointer to the HW struct
2697 * @port: the PHY port to read from
2698 * @tstamp_ready: contents of the Tx memory status register
2700 * Read the PHY_REG_TX_MEMORY_STATUS register indicating which timestamps in
2701 * the PHY are ready. A set bit means the corresponding timestamp is valid and
2702 * ready to be captured from the PHY timestamp block.
2706 * * %other - failed to read from PHY
2708 static int ice_get_phy_tx_tstamp_ready_eth56g(struct ice_hw *hw, u8 port,
2713 err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_L,
2716 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS for port %u, err %d\n",
2725 * ice_ptp_init_phy_e825 - initialize PHY parameters
2726 * @hw: pointer to the HW struct
2728 static void ice_ptp_init_phy_e825(struct ice_hw *hw)
2730 struct ice_ptp_hw *ptp = &hw->ptp;
2731 struct ice_eth56g_params *params;
2735 ptp->phy_model = ICE_PHY_ETH56G;
2736 params = &ptp->phy.eth56g;
2737 params->onestep_ena = false;
2738 params->peer_delay = 0;
2739 params->sfd_ena = false;
2740 params->num_phys = 2;
2741 ptp->ports_per_phy = 4;
2742 ptp->num_lports = params->num_phys * ptp->ports_per_phy;
2744 ice_sb_access_ena_eth56g(hw, true);
2745 err = ice_read_phy_eth56g(hw, hw->pf_id, PHY_REG_REVISION, &phy_rev);
2746 if (err || phy_rev != PHY_REVISION_ETH56G)
2747 ptp->phy_model = ICE_PHY_UNSUP;
2750 /* E822 family functions
2752 * The following functions operate on the E822 family of devices.
2756 * ice_fill_phy_msg_e82x - Fill message data for a PHY register access
2757 * @hw: pointer to the HW struct
2758 * @msg: the PHY message buffer to fill in
2759 * @port: the port to access
2760 * @offset: the register offset
2762 static void ice_fill_phy_msg_e82x(struct ice_hw *hw,
2763 struct ice_sbq_msg_input *msg, u8 port,
2766 int phy_port, quadtype;
2768 phy_port = port % hw->ptp.ports_per_phy;
2769 quadtype = ICE_GET_QUAD_NUM(port) %
2770 ICE_GET_QUAD_NUM(hw->ptp.ports_per_phy);
2772 if (quadtype == 0) {
2773 msg->msg_addr_low = P_Q0_L(P_0_BASE + offset, phy_port);
2774 msg->msg_addr_high = P_Q0_H(P_0_BASE + offset, phy_port);
2776 msg->msg_addr_low = P_Q1_L(P_4_BASE + offset, phy_port);
2777 msg->msg_addr_high = P_Q1_H(P_4_BASE + offset, phy_port);
2780 msg->dest_dev = rmn_0;
2784 * ice_is_64b_phy_reg_e82x - Check if this is a 64bit PHY register
2785 * @low_addr: the low address to check
2786 * @high_addr: on return, contains the high address of the 64bit register
2788 * Checks if the provided low address is one of the known 64bit PHY values
2789 * represented as two 32bit registers. If it is, return the appropriate high
2790 * register offset to use.
2792 static bool ice_is_64b_phy_reg_e82x(u16 low_addr, u16 *high_addr)
2795 case P_REG_PAR_PCS_TX_OFFSET_L:
2796 *high_addr = P_REG_PAR_PCS_TX_OFFSET_U;
2798 case P_REG_PAR_PCS_RX_OFFSET_L:
2799 *high_addr = P_REG_PAR_PCS_RX_OFFSET_U;
2801 case P_REG_PAR_TX_TIME_L:
2802 *high_addr = P_REG_PAR_TX_TIME_U;
2804 case P_REG_PAR_RX_TIME_L:
2805 *high_addr = P_REG_PAR_RX_TIME_U;
2807 case P_REG_TOTAL_TX_OFFSET_L:
2808 *high_addr = P_REG_TOTAL_TX_OFFSET_U;
2810 case P_REG_TOTAL_RX_OFFSET_L:
2811 *high_addr = P_REG_TOTAL_RX_OFFSET_U;
2813 case P_REG_UIX66_10G_40G_L:
2814 *high_addr = P_REG_UIX66_10G_40G_U;
2816 case P_REG_UIX66_25G_100G_L:
2817 *high_addr = P_REG_UIX66_25G_100G_U;
2819 case P_REG_TX_CAPTURE_L:
2820 *high_addr = P_REG_TX_CAPTURE_U;
2822 case P_REG_RX_CAPTURE_L:
2823 *high_addr = P_REG_RX_CAPTURE_U;
2825 case P_REG_TX_TIMER_INC_PRE_L:
2826 *high_addr = P_REG_TX_TIMER_INC_PRE_U;
2828 case P_REG_RX_TIMER_INC_PRE_L:
2829 *high_addr = P_REG_RX_TIMER_INC_PRE_U;
2837 * ice_is_40b_phy_reg_e82x - Check if this is a 40bit PHY register
2838 * @low_addr: the low address to check
2839 * @high_addr: on return, contains the high address of the 40bit value
2841 * Checks if the provided low address is one of the known 40bit PHY values
2842 * split into two registers with the lower 8 bits in the low register and the
2843 * upper 32 bits in the high register. If it is, return the appropriate high
2844 * register offset to use.
2846 static bool ice_is_40b_phy_reg_e82x(u16 low_addr, u16 *high_addr)
2849 case P_REG_TIMETUS_L:
2850 *high_addr = P_REG_TIMETUS_U;
2852 case P_REG_PAR_RX_TUS_L:
2853 *high_addr = P_REG_PAR_RX_TUS_U;
2855 case P_REG_PAR_TX_TUS_L:
2856 *high_addr = P_REG_PAR_TX_TUS_U;
2858 case P_REG_PCS_RX_TUS_L:
2859 *high_addr = P_REG_PCS_RX_TUS_U;
2861 case P_REG_PCS_TX_TUS_L:
2862 *high_addr = P_REG_PCS_TX_TUS_U;
2864 case P_REG_DESK_PAR_RX_TUS_L:
2865 *high_addr = P_REG_DESK_PAR_RX_TUS_U;
2867 case P_REG_DESK_PAR_TX_TUS_L:
2868 *high_addr = P_REG_DESK_PAR_TX_TUS_U;
2870 case P_REG_DESK_PCS_RX_TUS_L:
2871 *high_addr = P_REG_DESK_PCS_RX_TUS_U;
2873 case P_REG_DESK_PCS_TX_TUS_L:
2874 *high_addr = P_REG_DESK_PCS_TX_TUS_U;
2882 * ice_read_phy_reg_e82x - Read a PHY register
2883 * @hw: pointer to the HW struct
2884 * @port: PHY port to read from
2885 * @offset: PHY register offset to read
2886 * @val: on return, the contents read from the PHY
2888 * Read a PHY register for the given port over the device sideband queue.
2891 ice_read_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 offset, u32 *val)
2893 struct ice_sbq_msg_input msg = {0};
2896 ice_fill_phy_msg_e82x(hw, &msg, port, offset);
2897 msg.opcode = ice_sbq_msg_rd;
2899 err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
2901 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
2912 * ice_read_64b_phy_reg_e82x - Read a 64bit value from PHY registers
2913 * @hw: pointer to the HW struct
2914 * @port: PHY port to read from
2915 * @low_addr: offset of the lower register to read from
2916 * @val: on return, the contents of the 64bit value from the PHY registers
2918 * Reads the two registers associated with a 64bit value and returns it in the
2919 * val pointer. The offset always specifies the lower register offset to use.
2920 * The high offset is looked up. This function only operates on registers
2921 * known to be two parts of a 64bit value.
2924 ice_read_64b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 *val)
2930 /* Only operate on registers known to be split into two 32bit
2933 if (!ice_is_64b_phy_reg_e82x(low_addr, &high_addr)) {
2934 ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
2939 err = ice_read_phy_reg_e82x(hw, port, low_addr, &low);
2941 ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register 0x%08x\n, err %d",
2946 err = ice_read_phy_reg_e82x(hw, port, high_addr, &high);
2948 ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register 0x%08x\n, err %d",
2953 *val = (u64)high << 32 | low;
2959 * ice_write_phy_reg_e82x - Write a PHY register
2960 * @hw: pointer to the HW struct
2961 * @port: PHY port to write to
2962 * @offset: PHY register offset to write
2963 * @val: The value to write to the register
2965 * Write a PHY register for the given port over the device sideband queue.
2968 ice_write_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 offset, u32 val)
2970 struct ice_sbq_msg_input msg = {0};
2973 ice_fill_phy_msg_e82x(hw, &msg, port, offset);
2974 msg.opcode = ice_sbq_msg_wr;
2977 err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
2979 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
2988 * ice_write_40b_phy_reg_e82x - Write a 40b value to the PHY
2989 * @hw: pointer to the HW struct
2990 * @port: port to write to
2991 * @low_addr: offset of the low register
2992 * @val: 40b value to write
2994 * Write the provided 40b value to the two associated registers by splitting
2995 * it up into two chunks, the lower 8 bits and the upper 32 bits.
2998 ice_write_40b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
3004 /* Only operate on registers known to be split into a lower 8 bit
3005 * register and an upper 32 bit register.
3007 if (!ice_is_40b_phy_reg_e82x(low_addr, &high_addr)) {
3008 ice_debug(hw, ICE_DBG_PTP, "Invalid 40b register addr 0x%08x\n",
3012 low = FIELD_GET(P_REG_40B_LOW_M, val);
3013 high = (u32)(val >> P_REG_40B_HIGH_S);
3015 err = ice_write_phy_reg_e82x(hw, port, low_addr, low);
3017 ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
3022 err = ice_write_phy_reg_e82x(hw, port, high_addr, high);
3024 ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
3033 * ice_write_64b_phy_reg_e82x - Write a 64bit value to PHY registers
3034 * @hw: pointer to the HW struct
3035 * @port: PHY port to read from
3036 * @low_addr: offset of the lower register to read from
3037 * @val: the contents of the 64bit value to write to PHY
3039 * Write the 64bit value to the two associated 32bit PHY registers. The offset
3040 * is always specified as the lower register, and the high address is looked
3041 * up. This function only operates on registers known to be two parts of
3045 ice_write_64b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
3051 /* Only operate on registers known to be split into two 32bit
3054 if (!ice_is_64b_phy_reg_e82x(low_addr, &high_addr)) {
3055 ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
3060 low = lower_32_bits(val);
3061 high = upper_32_bits(val);
3063 err = ice_write_phy_reg_e82x(hw, port, low_addr, low);
3065 ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
3070 err = ice_write_phy_reg_e82x(hw, port, high_addr, high);
3072 ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
3081 * ice_fill_quad_msg_e82x - Fill message data for quad register access
3082 * @hw: pointer to the HW struct
3083 * @msg: the PHY message buffer to fill in
3084 * @quad: the quad to access
3085 * @offset: the register offset
3087 * Fill a message buffer for accessing a register in a quad shared between
3092 * * %-EINVAL - invalid quad number
3094 static int ice_fill_quad_msg_e82x(struct ice_hw *hw,
3095 struct ice_sbq_msg_input *msg, u8 quad,
3100 if (quad >= ICE_GET_QUAD_NUM(hw->ptp.num_lports))
3103 msg->dest_dev = rmn_0;
3105 if (!(quad % ICE_GET_QUAD_NUM(hw->ptp.ports_per_phy)))
3106 addr = Q_0_BASE + offset;
3108 addr = Q_1_BASE + offset;
3110 msg->msg_addr_low = lower_16_bits(addr);
3111 msg->msg_addr_high = upper_16_bits(addr);
3117 * ice_read_quad_reg_e82x - Read a PHY quad register
3118 * @hw: pointer to the HW struct
3119 * @quad: quad to read from
3120 * @offset: quad register offset to read
3121 * @val: on return, the contents read from the quad
3123 * Read a quad register over the device sideband queue. Quad registers are
3124 * shared between multiple PHYs.
3127 ice_read_quad_reg_e82x(struct ice_hw *hw, u8 quad, u16 offset, u32 *val)
3129 struct ice_sbq_msg_input msg = {0};
3132 err = ice_fill_quad_msg_e82x(hw, &msg, quad, offset);
3136 msg.opcode = ice_sbq_msg_rd;
3138 err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
3140 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
3151 * ice_write_quad_reg_e82x - Write a PHY quad register
3152 * @hw: pointer to the HW struct
3153 * @quad: quad to write to
3154 * @offset: quad register offset to write
3155 * @val: The value to write to the register
3157 * Write a quad register over the device sideband queue. Quad registers are
3158 * shared between multiple PHYs.
3161 ice_write_quad_reg_e82x(struct ice_hw *hw, u8 quad, u16 offset, u32 val)
3163 struct ice_sbq_msg_input msg = {0};
3166 err = ice_fill_quad_msg_e82x(hw, &msg, quad, offset);
3170 msg.opcode = ice_sbq_msg_wr;
3173 err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
3175 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
3184 * ice_read_phy_tstamp_e82x - Read a PHY timestamp out of the quad block
3185 * @hw: pointer to the HW struct
3186 * @quad: the quad to read from
3187 * @idx: the timestamp index to read
3188 * @tstamp: on return, the 40bit timestamp value
3190 * Read a 40bit timestamp value out of the two associated registers in the
3191 * quad memory block that is shared between the internal PHYs of the E822
3192 * family of devices.
3195 ice_read_phy_tstamp_e82x(struct ice_hw *hw, u8 quad, u8 idx, u64 *tstamp)
3197 u16 lo_addr, hi_addr;
3201 lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx);
3202 hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx);
3204 err = ice_read_quad_reg_e82x(hw, quad, lo_addr, &lo);
3206 ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
3211 err = ice_read_quad_reg_e82x(hw, quad, hi_addr, &hi);
3213 ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
3218 /* For E822 based internal PHYs, the timestamp is reported with the
3219 * lower 8 bits in the low register, and the upper 32 bits in the high
3222 *tstamp = FIELD_PREP(TS_PHY_HIGH_M, hi) | FIELD_PREP(TS_PHY_LOW_M, lo);
3228 * ice_clear_phy_tstamp_e82x - Clear a timestamp from the quad block
3229 * @hw: pointer to the HW struct
3230 * @quad: the quad to read from
3231 * @idx: the timestamp index to reset
3233 * Read the timestamp out of the quad to clear its timestamp status bit from
3234 * the PHY quad block that is shared between the internal PHYs of the E822
3237 * Note that unlike E810, software cannot directly write to the quad memory
3238 * bank registers. E822 relies on the ice_get_phy_tx_tstamp_ready() function
3239 * to determine which timestamps are valid. Reading a timestamp auto-clears
3242 * To directly clear the contents of the timestamp block entirely, discarding
3243 * all timestamp data at once, software should instead use
3244 * ice_ptp_reset_ts_memory_quad_e82x().
3246 * This function should only be called on an idx whose bit is set according to
3247 * ice_get_phy_tx_tstamp_ready().
3250 ice_clear_phy_tstamp_e82x(struct ice_hw *hw, u8 quad, u8 idx)
3255 err = ice_read_phy_tstamp_e82x(hw, quad, idx, &unused_tstamp);
3257 ice_debug(hw, ICE_DBG_PTP, "Failed to read the timestamp register for quad %u, idx %u, err %d\n",
3266 * ice_ptp_reset_ts_memory_quad_e82x - Clear all timestamps from the quad block
3267 * @hw: pointer to the HW struct
3268 * @quad: the quad to read from
3270 * Clear all timestamps from the PHY quad block that is shared between the
3271 * internal PHYs on the E822 devices.
3273 void ice_ptp_reset_ts_memory_quad_e82x(struct ice_hw *hw, u8 quad)
3275 ice_write_quad_reg_e82x(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M);
3276 ice_write_quad_reg_e82x(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M);
3280 * ice_ptp_reset_ts_memory_e82x - Clear all timestamps from all quad blocks
3281 * @hw: pointer to the HW struct
3283 static void ice_ptp_reset_ts_memory_e82x(struct ice_hw *hw)
3287 for (quad = 0; quad < ICE_GET_QUAD_NUM(hw->ptp.num_lports); quad++)
3288 ice_ptp_reset_ts_memory_quad_e82x(hw, quad);
3292 * ice_ptp_set_vernier_wl - Set the window length for vernier calibration
3293 * @hw: pointer to the HW struct
3295 * Set the window length used for the vernier port calibration process.
3297 static int ice_ptp_set_vernier_wl(struct ice_hw *hw)
3301 for (port = 0; port < hw->ptp.num_lports; port++) {
3304 err = ice_write_phy_reg_e82x(hw, port, P_REG_WL,
3307 ice_debug(hw, ICE_DBG_PTP, "Failed to set vernier window length for port %u, err %d\n",
3317 * ice_ptp_init_phc_e82x - Perform E822 specific PHC initialization
3318 * @hw: pointer to HW struct
3320 * Perform PHC initialization steps specific to E822 devices.
3322 static int ice_ptp_init_phc_e82x(struct ice_hw *hw)
3327 /* Enable reading switch and PHY registers over the sideband queue */
3328 #define PF_SB_REM_DEV_CTL_SWITCH_READ BIT(1)
3329 #define PF_SB_REM_DEV_CTL_PHY0 BIT(2)
3330 val = rd32(hw, PF_SB_REM_DEV_CTL);
3331 val |= (PF_SB_REM_DEV_CTL_SWITCH_READ | PF_SB_REM_DEV_CTL_PHY0);
3332 wr32(hw, PF_SB_REM_DEV_CTL, val);
3334 /* Initialize the Clock Generation Unit */
3335 err = ice_init_cgu_e82x(hw);
3339 /* Set window length for all the ports */
3340 return ice_ptp_set_vernier_wl(hw);
3344 * ice_ptp_prep_phy_time_e82x - Prepare PHY port with initial time
3345 * @hw: pointer to the HW struct
3346 * @time: Time to initialize the PHY port clocks to
3348 * Program the PHY port registers with a new initial time value. The port
3349 * clock will be initialized once the driver issues an ICE_PTP_INIT_TIME sync
3350 * command. The time value is the upper 32 bits of the PHY timer, usually in
3351 * units of nominal nanoseconds.
3354 ice_ptp_prep_phy_time_e82x(struct ice_hw *hw, u32 time)
3360 /* The time represents the upper 32 bits of the PHY timer, so we need
3361 * to shift to account for this when programming.
3363 phy_time = (u64)time << 32;
3365 for (port = 0; port < hw->ptp.num_lports; port++) {
3367 err = ice_write_64b_phy_reg_e82x(hw, port,
3368 P_REG_TX_TIMER_INC_PRE_L,
3374 err = ice_write_64b_phy_reg_e82x(hw, port,
3375 P_REG_RX_TIMER_INC_PRE_L,
3384 ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n",
3391 * ice_ptp_prep_port_adj_e82x - Prepare a single port for time adjust
3392 * @hw: pointer to HW struct
3393 * @port: Port number to be programmed
3394 * @time: time in cycles to adjust the port Tx and Rx clocks
3396 * Program the port for an atomic adjustment by writing the Tx and Rx timer
3397 * registers. The atomic adjustment won't be completed until the driver issues
3398 * an ICE_PTP_ADJ_TIME command.
3400 * Note that time is not in units of nanoseconds. It is in clock time
3401 * including the lower sub-nanosecond portion of the port timer.
3403 * Negative adjustments are supported using 2s complement arithmetic.
3406 ice_ptp_prep_port_adj_e82x(struct ice_hw *hw, u8 port, s64 time)
3411 l_time = lower_32_bits(time);
3412 u_time = upper_32_bits(time);
3415 err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TIMER_INC_PRE_L,
3420 err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TIMER_INC_PRE_U,
3426 err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TIMER_INC_PRE_L,
3431 err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TIMER_INC_PRE_U,
3439 ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n",
3445 * ice_ptp_prep_phy_adj_e82x - Prep PHY ports for a time adjustment
3446 * @hw: pointer to HW struct
3447 * @adj: adjustment in nanoseconds
3449 * Prepare the PHY ports for an atomic time adjustment by programming the PHY
3450 * Tx and Rx port registers. The actual adjustment is completed by issuing an
3451 * ICE_PTP_ADJ_TIME or ICE_PTP_ADJ_TIME_AT_TIME sync command.
3454 ice_ptp_prep_phy_adj_e82x(struct ice_hw *hw, s32 adj)
3459 /* The port clock supports adjustment of the sub-nanosecond portion of
3460 * the clock. We shift the provided adjustment in nanoseconds to
3461 * calculate the appropriate adjustment to program into the PHY ports.
3464 cycles = (s64)adj << 32;
3466 cycles = -(((s64)-adj) << 32);
3468 for (port = 0; port < hw->ptp.num_lports; port++) {
3471 err = ice_ptp_prep_port_adj_e82x(hw, port, cycles);
3480 * ice_ptp_prep_phy_incval_e82x - Prepare PHY ports for time adjustment
3481 * @hw: pointer to HW struct
3482 * @incval: new increment value to prepare
3484 * Prepare each of the PHY ports for a new increment value by programming the
3485 * port's TIMETUS registers. The new increment value will be updated after
3486 * issuing an ICE_PTP_INIT_INCVAL command.
3489 ice_ptp_prep_phy_incval_e82x(struct ice_hw *hw, u64 incval)
3494 for (port = 0; port < hw->ptp.num_lports; port++) {
3495 err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_TIMETUS_L,
3504 ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n",
3511 * ice_ptp_read_port_capture - Read a port's local time capture
3512 * @hw: pointer to HW struct
3513 * @port: Port number to read
3514 * @tx_ts: on return, the Tx port time capture
3515 * @rx_ts: on return, the Rx port time capture
3517 * Read the port's Tx and Rx local time capture values.
3519 * Note this has no equivalent for the E810 devices.
3522 ice_ptp_read_port_capture(struct ice_hw *hw, u8 port, u64 *tx_ts, u64 *rx_ts)
3527 err = ice_read_64b_phy_reg_e82x(hw, port, P_REG_TX_CAPTURE_L, tx_ts);
3529 ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n",
3534 ice_debug(hw, ICE_DBG_PTP, "tx_init = 0x%016llx\n",
3535 (unsigned long long)*tx_ts);
3538 err = ice_read_64b_phy_reg_e82x(hw, port, P_REG_RX_CAPTURE_L, rx_ts);
3540 ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n",
3545 ice_debug(hw, ICE_DBG_PTP, "rx_init = 0x%016llx\n",
3546 (unsigned long long)*rx_ts);
3552 * ice_ptp_write_port_cmd_e82x - Prepare a single PHY port for a timer command
3553 * @hw: pointer to HW struct
3554 * @port: Port to which cmd has to be sent
3555 * @cmd: Command to be sent to the port
3557 * Prepare the requested port for an upcoming timer sync command.
3559 * Note there is no equivalent of this operation on E810, as that device
3560 * always handles all external PHYs internally.
3564 * * %other - failed to write to PHY
3566 static int ice_ptp_write_port_cmd_e82x(struct ice_hw *hw, u8 port,
3567 enum ice_ptp_tmr_cmd cmd)
3569 u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd);
3573 err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TMR_CMD, val);
3575 ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n",
3581 err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TMR_CMD,
3582 val | TS_CMD_RX_TYPE);
3584 ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n",
3592 /* E822 Vernier calibration functions
3594 * The following functions are used as part of the vernier calibration of
3595 * a port. This calibration increases the precision of the timestamps on the
3600 * ice_phy_get_speed_and_fec_e82x - Get link speed and FEC based on serdes mode
3601 * @hw: pointer to HW struct
3602 * @port: the port to read from
3603 * @link_out: if non-NULL, holds link speed on success
3604 * @fec_out: if non-NULL, holds FEC algorithm on success
3606 * Read the serdes data for the PHY port and extract the link speed and FEC
3610 ice_phy_get_speed_and_fec_e82x(struct ice_hw *hw, u8 port,
3611 enum ice_ptp_link_spd *link_out,
3612 enum ice_ptp_fec_mode *fec_out)
3614 enum ice_ptp_link_spd link;
3615 enum ice_ptp_fec_mode fec;
3619 err = ice_read_phy_reg_e82x(hw, port, P_REG_LINK_SPEED, &serdes);
3621 ice_debug(hw, ICE_DBG_PTP, "Failed to read serdes info\n");
3625 /* Determine the FEC algorithm */
3626 fec = (enum ice_ptp_fec_mode)P_REG_LINK_SPEED_FEC_MODE(serdes);
3628 serdes &= P_REG_LINK_SPEED_SERDES_M;
3630 /* Determine the link speed */
3631 if (fec == ICE_PTP_FEC_MODE_RS_FEC) {
3633 case ICE_PTP_SERDES_25G:
3634 link = ICE_PTP_LNK_SPD_25G_RS;
3636 case ICE_PTP_SERDES_50G:
3637 link = ICE_PTP_LNK_SPD_50G_RS;
3639 case ICE_PTP_SERDES_100G:
3640 link = ICE_PTP_LNK_SPD_100G_RS;
3647 case ICE_PTP_SERDES_1G:
3648 link = ICE_PTP_LNK_SPD_1G;
3650 case ICE_PTP_SERDES_10G:
3651 link = ICE_PTP_LNK_SPD_10G;
3653 case ICE_PTP_SERDES_25G:
3654 link = ICE_PTP_LNK_SPD_25G;
3656 case ICE_PTP_SERDES_40G:
3657 link = ICE_PTP_LNK_SPD_40G;
3659 case ICE_PTP_SERDES_50G:
3660 link = ICE_PTP_LNK_SPD_50G;
3676 * ice_phy_cfg_lane_e82x - Configure PHY quad for single/multi-lane timestamp
3677 * @hw: pointer to HW struct
3678 * @port: to configure the quad for
3680 static void ice_phy_cfg_lane_e82x(struct ice_hw *hw, u8 port)
3682 enum ice_ptp_link_spd link_spd;
3687 err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, NULL);
3689 ice_debug(hw, ICE_DBG_PTP, "Failed to get PHY link speed, err %d\n",
3694 quad = ICE_GET_QUAD_NUM(port);
3696 err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val);
3698 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEM_GLB_CFG, err %d\n",
3703 if (link_spd >= ICE_PTP_LNK_SPD_40G)
3704 val &= ~Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
3706 val |= Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
3708 err = ice_write_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, val);
3710 ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_MEM_GBL_CFG, err %d\n",
3717 * ice_phy_cfg_uix_e82x - Configure Serdes UI to TU conversion for E822
3718 * @hw: pointer to the HW structure
3719 * @port: the port to configure
3721 * Program the conversion ration of Serdes clock "unit intervals" (UIs) to PHC
3722 * hardware clock time units (TUs). That is, determine the number of TUs per
3723 * serdes unit interval, and program the UIX registers with this conversion.
3725 * This conversion is used as part of the calibration process when determining
3726 * the additional error of a timestamp vs the real time of transmission or
3727 * receipt of the packet.
3729 * Hardware uses the number of TUs per 66 UIs, written to the UIX registers
3730 * for the two main serdes clock rates, 10G/40G and 25G/100G serdes clocks.
3732 * To calculate the conversion ratio, we use the following facts:
3734 * a) the clock frequency in Hz (cycles per second)
3735 * b) the number of TUs per cycle (the increment value of the clock)
3736 * c) 1 second per 1 billion nanoseconds
3737 * d) the duration of 66 UIs in nanoseconds
3739 * Given these facts, we can use the following table to work out what ratios
3740 * to multiply in order to get the number of TUs per 66 UIs:
3742 * cycles | 1 second | incval (TUs) | nanoseconds
3743 * -------+--------------+--------------+-------------
3744 * second | 1 billion ns | cycle | 66 UIs
3746 * To perform the multiplication using integers without too much loss of
3747 * precision, we can take use the following equation:
3749 * (freq * incval * 6600 LINE_UI ) / ( 100 * 1 billion)
3751 * We scale up to using 6600 UI instead of 66 in order to avoid fractional
3752 * nanosecond UIs (66 UI at 10G/40G is 6.4 ns)
3754 * The increment value has a maximum expected range of about 34 bits, while
3755 * the frequency value is about 29 bits. Multiplying these values shouldn't
3756 * overflow the 64 bits. However, we must then further multiply them again by
3757 * the Serdes unit interval duration. To avoid overflow here, we split the
3758 * overall divide by 1e11 into a divide by 256 (shift down by 8 bits) and
3759 * a divide by 390,625,000. This does lose some precision, but avoids
3760 * miscalculation due to arithmetic overflow.
3762 static int ice_phy_cfg_uix_e82x(struct ice_hw *hw, u8 port)
3764 u64 cur_freq, clk_incval, tu_per_sec, uix;
3767 cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
3768 clk_incval = ice_ptp_read_src_incval(hw);
3770 /* Calculate TUs per second divided by 256 */
3771 tu_per_sec = (cur_freq * clk_incval) >> 8;
3773 #define LINE_UI_10G_40G 640 /* 6600 UIs is 640 nanoseconds at 10Gb/40Gb */
3774 #define LINE_UI_25G_100G 256 /* 6600 UIs is 256 nanoseconds at 25Gb/100Gb */
3776 /* Program the 10Gb/40Gb conversion ratio */
3777 uix = div_u64(tu_per_sec * LINE_UI_10G_40G, 390625000);
3779 err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_UIX66_10G_40G_L,
3782 ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_10G_40G, err %d\n",
3787 /* Program the 25Gb/100Gb conversion ratio */
3788 uix = div_u64(tu_per_sec * LINE_UI_25G_100G, 390625000);
3790 err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_UIX66_25G_100G_L,
3793 ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_25G_100G, err %d\n",
3802 * ice_phy_cfg_parpcs_e82x - Configure TUs per PAR/PCS clock cycle
3803 * @hw: pointer to the HW struct
3804 * @port: port to configure
3806 * Configure the number of TUs for the PAR and PCS clocks used as part of the
3807 * timestamp calibration process. This depends on the link speed, as the PHY
3808 * uses different markers depending on the speed.
3811 * - Tx/Rx PAR/PCS markers
3814 * - Tx/Rx Reed Solomon gearbox PAR/PCS markers
3817 * - Tx/Rx PAR/PCS markers
3818 * - Rx Deskew PAR/PCS markers
3820 * 50G RS and 100GB RS:
3821 * - Tx/Rx Reed Solomon gearbox PAR/PCS markers
3822 * - Rx Deskew PAR/PCS markers
3823 * - Tx PAR/PCS markers
3825 * To calculate the conversion, we use the PHC clock frequency (cycles per
3826 * second), the increment value (TUs per cycle), and the related PHY clock
3827 * frequency to calculate the TUs per unit of the PHY link clock. The
3828 * following table shows how the units convert:
3830 * cycles | TUs | second
3831 * -------+-------+--------
3832 * second | cycle | cycles
3834 * For each conversion register, look up the appropriate frequency from the
3835 * e822 PAR/PCS table and calculate the TUs per unit of that clock. Program
3836 * this to the appropriate register, preparing hardware to perform timestamp
3837 * calibration to calculate the total Tx or Rx offset to adjust the timestamp
3838 * in order to calibrate for the internal PHY delays.
3840 * Note that the increment value ranges up to ~34 bits, and the clock
3841 * frequency is ~29 bits, so multiplying them together should fit within the
3842 * 64 bit arithmetic.
3844 static int ice_phy_cfg_parpcs_e82x(struct ice_hw *hw, u8 port)
3846 u64 cur_freq, clk_incval, tu_per_sec, phy_tus;
3847 enum ice_ptp_link_spd link_spd;
3848 enum ice_ptp_fec_mode fec_mode;
3851 err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode);
3855 cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
3856 clk_incval = ice_ptp_read_src_incval(hw);
3858 /* Calculate TUs per cycle of the PHC clock */
3859 tu_per_sec = cur_freq * clk_incval;
3861 /* For each PHY conversion register, look up the appropriate link
3862 * speed frequency and determine the TUs per that clock's cycle time.
3863 * Split this into a high and low value and then program the
3864 * appropriate register. If that link speed does not use the
3865 * associated register, write zeros to clear it instead.
3868 /* P_REG_PAR_TX_TUS */
3869 if (e822_vernier[link_spd].tx_par_clk)
3870 phy_tus = div_u64(tu_per_sec,
3871 e822_vernier[link_spd].tx_par_clk);
3875 err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PAR_TX_TUS_L,
3880 /* P_REG_PAR_RX_TUS */
3881 if (e822_vernier[link_spd].rx_par_clk)
3882 phy_tus = div_u64(tu_per_sec,
3883 e822_vernier[link_spd].rx_par_clk);
3887 err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PAR_RX_TUS_L,
3892 /* P_REG_PCS_TX_TUS */
3893 if (e822_vernier[link_spd].tx_pcs_clk)
3894 phy_tus = div_u64(tu_per_sec,
3895 e822_vernier[link_spd].tx_pcs_clk);
3899 err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PCS_TX_TUS_L,
3904 /* P_REG_PCS_RX_TUS */
3905 if (e822_vernier[link_spd].rx_pcs_clk)
3906 phy_tus = div_u64(tu_per_sec,
3907 e822_vernier[link_spd].rx_pcs_clk);
3911 err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PCS_RX_TUS_L,
3916 /* P_REG_DESK_PAR_TX_TUS */
3917 if (e822_vernier[link_spd].tx_desk_rsgb_par)
3918 phy_tus = div_u64(tu_per_sec,
3919 e822_vernier[link_spd].tx_desk_rsgb_par);
3923 err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PAR_TX_TUS_L,
3928 /* P_REG_DESK_PAR_RX_TUS */
3929 if (e822_vernier[link_spd].rx_desk_rsgb_par)
3930 phy_tus = div_u64(tu_per_sec,
3931 e822_vernier[link_spd].rx_desk_rsgb_par);
3935 err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PAR_RX_TUS_L,
3940 /* P_REG_DESK_PCS_TX_TUS */
3941 if (e822_vernier[link_spd].tx_desk_rsgb_pcs)
3942 phy_tus = div_u64(tu_per_sec,
3943 e822_vernier[link_spd].tx_desk_rsgb_pcs);
3947 err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PCS_TX_TUS_L,
3952 /* P_REG_DESK_PCS_RX_TUS */
3953 if (e822_vernier[link_spd].rx_desk_rsgb_pcs)
3954 phy_tus = div_u64(tu_per_sec,
3955 e822_vernier[link_spd].rx_desk_rsgb_pcs);
3959 return ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PCS_RX_TUS_L,
3964 * ice_calc_fixed_tx_offset_e82x - Calculated Fixed Tx offset for a port
3965 * @hw: pointer to the HW struct
3966 * @link_spd: the Link speed to calculate for
3968 * Calculate the fixed offset due to known static latency data.
3971 ice_calc_fixed_tx_offset_e82x(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
3973 u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
3975 cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
3976 clk_incval = ice_ptp_read_src_incval(hw);
3978 /* Calculate TUs per second */
3979 tu_per_sec = cur_freq * clk_incval;
3981 /* Calculate number of TUs to add for the fixed Tx latency. Since the
3982 * latency measurement is in 1/100th of a nanosecond, we need to
3983 * multiply by tu_per_sec and then divide by 1e11. This calculation
3984 * overflows 64 bit integer arithmetic, so break it up into two
3985 * divisions by 1e4 first then by 1e7.
3987 fixed_offset = div_u64(tu_per_sec, 10000);
3988 fixed_offset *= e822_vernier[link_spd].tx_fixed_delay;
3989 fixed_offset = div_u64(fixed_offset, 10000000);
3991 return fixed_offset;
3995 * ice_phy_cfg_tx_offset_e82x - Configure total Tx timestamp offset
3996 * @hw: pointer to the HW struct
3997 * @port: the PHY port to configure
3999 * Program the P_REG_TOTAL_TX_OFFSET register with the total number of TUs to
4000 * adjust Tx timestamps by. This is calculated by combining some known static
4001 * latency along with the Vernier offset computations done by hardware.
4003 * This function will not return successfully until the Tx offset calculations
4004 * have been completed, which requires waiting until at least one packet has
4005 * been transmitted by the device. It is safe to call this function
4006 * periodically until calibration succeeds, as it will only program the offset
4009 * To avoid overflow, when calculating the offset based on the known static
4010 * latency values, we use measurements in 1/100th of a nanosecond, and divide
4011 * the TUs per second up front. This avoids overflow while allowing
4012 * calculation of the adjustment using integer arithmetic.
4014 * Returns zero on success, -EBUSY if the hardware vernier offset
4015 * calibration has not completed, or another error code on failure.
4017 int ice_phy_cfg_tx_offset_e82x(struct ice_hw *hw, u8 port)
4019 enum ice_ptp_link_spd link_spd;
4020 enum ice_ptp_fec_mode fec_mode;
4021 u64 total_offset, val;
4025 /* Nothing to do if we've already programmed the offset */
4026 err = ice_read_phy_reg_e82x(hw, port, P_REG_TX_OR, ®);
4028 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OR for port %u, err %d\n",
4036 err = ice_read_phy_reg_e82x(hw, port, P_REG_TX_OV_STATUS, ®);
4038 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OV_STATUS for port %u, err %d\n",
4043 if (!(reg & P_REG_TX_OV_STATUS_OV_M))
4046 err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode);
4050 total_offset = ice_calc_fixed_tx_offset_e82x(hw, link_spd);
4052 /* Read the first Vernier offset from the PHY register and add it to
4055 if (link_spd == ICE_PTP_LNK_SPD_1G ||
4056 link_spd == ICE_PTP_LNK_SPD_10G ||
4057 link_spd == ICE_PTP_LNK_SPD_25G ||
4058 link_spd == ICE_PTP_LNK_SPD_25G_RS ||
4059 link_spd == ICE_PTP_LNK_SPD_40G ||
4060 link_spd == ICE_PTP_LNK_SPD_50G) {
4061 err = ice_read_64b_phy_reg_e82x(hw, port,
4062 P_REG_PAR_PCS_TX_OFFSET_L,
4067 total_offset += val;
4070 /* For Tx, we only need to use the second Vernier offset for
4071 * multi-lane link speeds with RS-FEC. The lanes will always be
4074 if (link_spd == ICE_PTP_LNK_SPD_50G_RS ||
4075 link_spd == ICE_PTP_LNK_SPD_100G_RS) {
4076 err = ice_read_64b_phy_reg_e82x(hw, port,
4077 P_REG_PAR_TX_TIME_L,
4082 total_offset += val;
4085 /* Now that the total offset has been calculated, program it to the
4086 * PHY and indicate that the Tx offset is ready. After this,
4087 * timestamps will be enabled.
4089 err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_TOTAL_TX_OFFSET_L,
4094 err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 1);
4098 dev_info(ice_hw_to_dev(hw), "Port=%d Tx vernier offset calibration complete\n",
4105 * ice_phy_calc_pmd_adj_e82x - Calculate PMD adjustment for Rx
4106 * @hw: pointer to the HW struct
4107 * @port: the PHY port to adjust for
4108 * @link_spd: the current link speed of the PHY
4109 * @fec_mode: the current FEC mode of the PHY
4110 * @pmd_adj: on return, the amount to adjust the Rx total offset by
4112 * Calculates the adjustment to Rx timestamps due to PMD alignment in the PHY.
4113 * This varies by link speed and FEC mode. The value calculated accounts for
4114 * various delays caused when receiving a packet.
4117 ice_phy_calc_pmd_adj_e82x(struct ice_hw *hw, u8 port,
4118 enum ice_ptp_link_spd link_spd,
4119 enum ice_ptp_fec_mode fec_mode, u64 *pmd_adj)
4121 u64 cur_freq, clk_incval, tu_per_sec, mult, adj;
4126 err = ice_read_phy_reg_e82x(hw, port, P_REG_PMD_ALIGNMENT, &val);
4128 ice_debug(hw, ICE_DBG_PTP, "Failed to read PMD alignment, err %d\n",
4133 pmd_align = (u8)val;
4135 cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
4136 clk_incval = ice_ptp_read_src_incval(hw);
4138 /* Calculate TUs per second */
4139 tu_per_sec = cur_freq * clk_incval;
4141 /* The PMD alignment adjustment measurement depends on the link speed,
4142 * and whether FEC is enabled. For each link speed, the alignment
4143 * adjustment is calculated by dividing a value by the length of
4144 * a Time Unit in nanoseconds.
4146 * 1G: align == 4 ? 10 * 0.8 : (align + 6 % 10) * 0.8
4147 * 10G: align == 65 ? 0 : (align * 0.1 * 32/33)
4148 * 10G w/FEC: align * 0.1 * 32/33
4149 * 25G: align == 65 ? 0 : (align * 0.4 * 32/33)
4150 * 25G w/FEC: align * 0.4 * 32/33
4151 * 40G: align == 65 ? 0 : (align * 0.1 * 32/33)
4152 * 40G w/FEC: align * 0.1 * 32/33
4153 * 50G: align == 65 ? 0 : (align * 0.4 * 32/33)
4154 * 50G w/FEC: align * 0.8 * 32/33
4156 * For RS-FEC, if align is < 17 then we must also add 1.6 * 32/33.
4158 * To allow for calculating this value using integer arithmetic, we
4159 * instead start with the number of TUs per second, (inverse of the
4160 * length of a Time Unit in nanoseconds), multiply by a value based
4161 * on the PMD alignment register, and then divide by the right value
4162 * calculated based on the table above. To avoid integer overflow this
4163 * division is broken up into a step of dividing by 125 first.
4165 if (link_spd == ICE_PTP_LNK_SPD_1G) {
4169 mult = (pmd_align + 6) % 10;
4170 } else if (link_spd == ICE_PTP_LNK_SPD_10G ||
4171 link_spd == ICE_PTP_LNK_SPD_25G ||
4172 link_spd == ICE_PTP_LNK_SPD_40G ||
4173 link_spd == ICE_PTP_LNK_SPD_50G) {
4174 /* If Clause 74 FEC, always calculate PMD adjust */
4175 if (pmd_align != 65 || fec_mode == ICE_PTP_FEC_MODE_CLAUSE74)
4179 } else if (link_spd == ICE_PTP_LNK_SPD_25G_RS ||
4180 link_spd == ICE_PTP_LNK_SPD_50G_RS ||
4181 link_spd == ICE_PTP_LNK_SPD_100G_RS) {
4183 mult = pmd_align + 40;
4187 ice_debug(hw, ICE_DBG_PTP, "Unknown link speed %d, skipping PMD adjustment\n",
4192 /* In some cases, there's no need to adjust for the PMD alignment */
4198 /* Calculate the adjustment by multiplying TUs per second by the
4199 * appropriate multiplier and divisor. To avoid overflow, we first
4200 * divide by 125, and then handle remaining divisor based on the link
4201 * speed pmd_adj_divisor value.
4203 adj = div_u64(tu_per_sec, 125);
4205 adj = div_u64(adj, e822_vernier[link_spd].pmd_adj_divisor);
4207 /* Finally, for 25G-RS and 50G-RS, a further adjustment for the Rx
4208 * cycle count is necessary.
4210 if (link_spd == ICE_PTP_LNK_SPD_25G_RS) {
4214 err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_40_TO_160_CNT,
4217 ice_debug(hw, ICE_DBG_PTP, "Failed to read 25G-RS Rx cycle count, err %d\n",
4222 rx_cycle = val & P_REG_RX_40_TO_160_CNT_RXCYC_M;
4224 mult = (4 - rx_cycle) * 40;
4226 cycle_adj = div_u64(tu_per_sec, 125);
4228 cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
4232 } else if (link_spd == ICE_PTP_LNK_SPD_50G_RS) {
4236 err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_80_TO_160_CNT,
4239 ice_debug(hw, ICE_DBG_PTP, "Failed to read 50G-RS Rx cycle count, err %d\n",
4244 rx_cycle = val & P_REG_RX_80_TO_160_CNT_RXCYC_M;
4246 mult = rx_cycle * 40;
4248 cycle_adj = div_u64(tu_per_sec, 125);
4250 cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
4256 /* Return the calculated adjustment */
4263 * ice_calc_fixed_rx_offset_e82x - Calculated the fixed Rx offset for a port
4264 * @hw: pointer to HW struct
4265 * @link_spd: The Link speed to calculate for
4267 * Determine the fixed Rx latency for a given link speed.
4270 ice_calc_fixed_rx_offset_e82x(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
4272 u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
4274 cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
4275 clk_incval = ice_ptp_read_src_incval(hw);
4277 /* Calculate TUs per second */
4278 tu_per_sec = cur_freq * clk_incval;
4280 /* Calculate number of TUs to add for the fixed Rx latency. Since the
4281 * latency measurement is in 1/100th of a nanosecond, we need to
4282 * multiply by tu_per_sec and then divide by 1e11. This calculation
4283 * overflows 64 bit integer arithmetic, so break it up into two
4284 * divisions by 1e4 first then by 1e7.
4286 fixed_offset = div_u64(tu_per_sec, 10000);
4287 fixed_offset *= e822_vernier[link_spd].rx_fixed_delay;
4288 fixed_offset = div_u64(fixed_offset, 10000000);
4290 return fixed_offset;
4294 * ice_phy_cfg_rx_offset_e82x - Configure total Rx timestamp offset
4295 * @hw: pointer to the HW struct
4296 * @port: the PHY port to configure
4298 * Program the P_REG_TOTAL_RX_OFFSET register with the number of Time Units to
4299 * adjust Rx timestamps by. This combines calculations from the Vernier offset
4300 * measurements taken in hardware with some data about known fixed delay as
4301 * well as adjusting for multi-lane alignment delay.
4303 * This function will not return successfully until the Rx offset calculations
4304 * have been completed, which requires waiting until at least one packet has
4305 * been received by the device. It is safe to call this function periodically
4306 * until calibration succeeds, as it will only program the offset once.
4308 * This function must be called only after the offset registers are valid,
4309 * i.e. after the Vernier calibration wait has passed, to ensure that the PHY
4310 * has measured the offset.
4312 * To avoid overflow, when calculating the offset based on the known static
4313 * latency values, we use measurements in 1/100th of a nanosecond, and divide
4314 * the TUs per second up front. This avoids overflow while allowing
4315 * calculation of the adjustment using integer arithmetic.
4317 * Returns zero on success, -EBUSY if the hardware vernier offset
4318 * calibration has not completed, or another error code on failure.
4320 int ice_phy_cfg_rx_offset_e82x(struct ice_hw *hw, u8 port)
4322 enum ice_ptp_link_spd link_spd;
4323 enum ice_ptp_fec_mode fec_mode;
4324 u64 total_offset, pmd, val;
4328 /* Nothing to do if we've already programmed the offset */
4329 err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_OR, ®);
4331 ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OR for port %u, err %d\n",
4339 err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_OV_STATUS, ®);
4341 ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OV_STATUS for port %u, err %d\n",
4346 if (!(reg & P_REG_RX_OV_STATUS_OV_M))
4349 err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode);
4353 total_offset = ice_calc_fixed_rx_offset_e82x(hw, link_spd);
4355 /* Read the first Vernier offset from the PHY register and add it to
4358 err = ice_read_64b_phy_reg_e82x(hw, port,
4359 P_REG_PAR_PCS_RX_OFFSET_L,
4364 total_offset += val;
4366 /* For Rx, all multi-lane link speeds include a second Vernier
4367 * calibration, because the lanes might not be aligned.
4369 if (link_spd == ICE_PTP_LNK_SPD_40G ||
4370 link_spd == ICE_PTP_LNK_SPD_50G ||
4371 link_spd == ICE_PTP_LNK_SPD_50G_RS ||
4372 link_spd == ICE_PTP_LNK_SPD_100G_RS) {
4373 err = ice_read_64b_phy_reg_e82x(hw, port,
4374 P_REG_PAR_RX_TIME_L,
4379 total_offset += val;
4382 /* In addition, Rx must account for the PMD alignment */
4383 err = ice_phy_calc_pmd_adj_e82x(hw, port, link_spd, fec_mode, &pmd);
4387 /* For RS-FEC, this adjustment adds delay, but for other modes, it
4390 if (fec_mode == ICE_PTP_FEC_MODE_RS_FEC)
4391 total_offset += pmd;
4393 total_offset -= pmd;
4395 /* Now that the total offset has been calculated, program it to the
4396 * PHY and indicate that the Rx offset is ready. After this,
4397 * timestamps will be enabled.
4399 err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_TOTAL_RX_OFFSET_L,
4404 err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 1);
4408 dev_info(ice_hw_to_dev(hw), "Port=%d Rx vernier offset calibration complete\n",
4415 * ice_ptp_clear_phy_offset_ready_e82x - Clear PHY TX_/RX_OFFSET_READY registers
4416 * @hw: pointer to the HW struct
4418 * Clear PHY TX_/RX_OFFSET_READY registers, effectively marking all transmitted
4419 * and received timestamps as invalid.
4421 * Return: 0 on success, other error codes when failed to write to PHY
4423 int ice_ptp_clear_phy_offset_ready_e82x(struct ice_hw *hw)
4427 for (port = 0; port < hw->ptp.num_lports; port++) {
4430 err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 0);
4432 dev_warn(ice_hw_to_dev(hw),
4433 "Failed to clear PHY TX_OFFSET_READY register\n");
4437 err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 0);
4439 dev_warn(ice_hw_to_dev(hw),
4440 "Failed to clear PHY RX_OFFSET_READY register\n");
4449 * ice_read_phy_and_phc_time_e82x - Simultaneously capture PHC and PHY time
4450 * @hw: pointer to the HW struct
4451 * @port: the PHY port to read
4452 * @phy_time: on return, the 64bit PHY timer value
4453 * @phc_time: on return, the lower 64bits of PHC time
4455 * Issue a ICE_PTP_READ_TIME timer command to simultaneously capture the PHY
4456 * and PHC timer values.
4459 ice_read_phy_and_phc_time_e82x(struct ice_hw *hw, u8 port, u64 *phy_time,
4462 u64 tx_time, rx_time;
4467 tmr_idx = ice_get_ptp_src_clock_index(hw);
4469 /* Prepare the PHC timer for a ICE_PTP_READ_TIME capture command */
4470 ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
4472 /* Prepare the PHY timer for a ICE_PTP_READ_TIME capture command */
4473 err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_READ_TIME);
4477 /* Issue the sync to start the ICE_PTP_READ_TIME capture */
4478 ice_ptp_exec_tmr_cmd(hw);
4480 /* Read the captured PHC time from the shadow time registers */
4481 zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx));
4482 lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx));
4483 *phc_time = (u64)lo << 32 | zo;
4485 /* Read the captured PHY time from the PHY shadow registers */
4486 err = ice_ptp_read_port_capture(hw, port, &tx_time, &rx_time);
4490 /* If the PHY Tx and Rx timers don't match, log a warning message.
4491 * Note that this should not happen in normal circumstances since the
4492 * driver always programs them together.
4494 if (tx_time != rx_time)
4495 dev_warn(ice_hw_to_dev(hw),
4496 "PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n",
4497 port, (unsigned long long)tx_time,
4498 (unsigned long long)rx_time);
4500 *phy_time = tx_time;
4506 * ice_sync_phy_timer_e82x - Synchronize the PHY timer with PHC timer
4507 * @hw: pointer to the HW struct
4508 * @port: the PHY port to synchronize
4510 * Perform an adjustment to ensure that the PHY and PHC timers are in sync.
4511 * This is done by issuing a ICE_PTP_READ_TIME command which triggers a
4512 * simultaneous read of the PHY timer and PHC timer. Then we use the
4513 * difference to calculate an appropriate 2s complement addition to add
4514 * to the PHY timer in order to ensure it reads the same value as the
4515 * primary PHC timer.
4517 static int ice_sync_phy_timer_e82x(struct ice_hw *hw, u8 port)
4519 u64 phc_time, phy_time, difference;
4522 if (!ice_ptp_lock(hw)) {
4523 ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n");
4527 err = ice_read_phy_and_phc_time_e82x(hw, port, &phy_time, &phc_time);
4531 /* Calculate the amount required to add to the port time in order for
4532 * it to match the PHC time.
4534 * Note that the port adjustment is done using 2s complement
4535 * arithmetic. This is convenient since it means that we can simply
4536 * calculate the difference between the PHC time and the port time,
4537 * and it will be interpreted correctly.
4539 difference = phc_time - phy_time;
4541 err = ice_ptp_prep_port_adj_e82x(hw, port, (s64)difference);
4545 err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_ADJ_TIME);
4549 /* Do not perform any action on the main timer */
4550 ice_ptp_src_cmd(hw, ICE_PTP_NOP);
4552 /* Issue the sync to activate the time adjustment */
4553 ice_ptp_exec_tmr_cmd(hw);
4555 /* Re-capture the timer values to flush the command registers and
4556 * verify that the time was properly adjusted.
4558 err = ice_read_phy_and_phc_time_e82x(hw, port, &phy_time, &phc_time);
4562 dev_info(ice_hw_to_dev(hw),
4563 "Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n",
4564 port, (unsigned long long)phy_time,
4565 (unsigned long long)phc_time);
4577 * ice_stop_phy_timer_e82x - Stop the PHY clock timer
4578 * @hw: pointer to the HW struct
4579 * @port: the PHY port to stop
4580 * @soft_reset: if true, hold the SOFT_RESET bit of P_REG_PS
4582 * Stop the clock of a PHY port. This must be done as part of the flow to
4583 * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
4584 * initialized or when link speed changes.
4587 ice_stop_phy_timer_e82x(struct ice_hw *hw, u8 port, bool soft_reset)
4592 err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 0);
4596 err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 0);
4600 err = ice_read_phy_reg_e82x(hw, port, P_REG_PS, &val);
4604 val &= ~P_REG_PS_START_M;
4605 err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4609 val &= ~P_REG_PS_ENA_CLK_M;
4610 err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4615 val |= P_REG_PS_SFT_RESET_M;
4616 err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4621 ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port);
4627 * ice_start_phy_timer_e82x - Start the PHY clock timer
4628 * @hw: pointer to the HW struct
4629 * @port: the PHY port to start
4631 * Start the clock of a PHY port. This must be done as part of the flow to
4632 * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
4633 * initialized or when link speed changes.
4635 * Hardware will take Vernier measurements on Tx or Rx of packets.
4637 int ice_start_phy_timer_e82x(struct ice_hw *hw, u8 port)
4644 tmr_idx = ice_get_ptp_src_clock_index(hw);
4646 err = ice_stop_phy_timer_e82x(hw, port, false);
4650 ice_phy_cfg_lane_e82x(hw, port);
4652 err = ice_phy_cfg_uix_e82x(hw, port);
4656 err = ice_phy_cfg_parpcs_e82x(hw, port);
4660 lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
4661 hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
4662 incval = (u64)hi << 32 | lo;
4664 err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_TIMETUS_L, incval);
4668 err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL);
4672 /* Do not perform any action on the main timer */
4673 ice_ptp_src_cmd(hw, ICE_PTP_NOP);
4675 ice_ptp_exec_tmr_cmd(hw);
4677 err = ice_read_phy_reg_e82x(hw, port, P_REG_PS, &val);
4681 val |= P_REG_PS_SFT_RESET_M;
4682 err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4686 val |= P_REG_PS_START_M;
4687 err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4691 val &= ~P_REG_PS_SFT_RESET_M;
4692 err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4696 err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL);
4700 ice_ptp_exec_tmr_cmd(hw);
4702 val |= P_REG_PS_ENA_CLK_M;
4703 err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4707 val |= P_REG_PS_LOAD_OFFSET_M;
4708 err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4712 ice_ptp_exec_tmr_cmd(hw);
4714 err = ice_sync_phy_timer_e82x(hw, port);
4718 ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port);
4724 * ice_get_phy_tx_tstamp_ready_e82x - Read Tx memory status register
4725 * @hw: pointer to the HW struct
4726 * @quad: the timestamp quad to read from
4727 * @tstamp_ready: contents of the Tx memory status register
4729 * Read the Q_REG_TX_MEMORY_STATUS register indicating which timestamps in
4730 * the PHY are ready. A set bit means the corresponding timestamp is valid and
4731 * ready to be captured from the PHY timestamp block.
4734 ice_get_phy_tx_tstamp_ready_e82x(struct ice_hw *hw, u8 quad, u64 *tstamp_ready)
4739 err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEMORY_STATUS_U, &hi);
4741 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_U for quad %u, err %d\n",
4746 err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEMORY_STATUS_L, &lo);
4748 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_L for quad %u, err %d\n",
4753 *tstamp_ready = (u64)hi << 32 | (u64)lo;
4759 * ice_phy_cfg_intr_e82x - Configure TX timestamp interrupt
4760 * @hw: pointer to the HW struct
4761 * @quad: the timestamp quad
4762 * @ena: enable or disable interrupt
4763 * @threshold: interrupt threshold
4765 * Configure TX timestamp interrupt for the specified quad
4767 * Return: 0 on success, other error codes when failed to read/write quad
4770 int ice_phy_cfg_intr_e82x(struct ice_hw *hw, u8 quad, bool ena, u8 threshold)
4775 err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val);
4779 val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
4781 val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
4782 val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
4783 val |= FIELD_PREP(Q_REG_TX_MEM_GBL_CFG_INTR_THR_M, threshold);
4786 return ice_write_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, val);
4790 * ice_ptp_init_phy_e82x - initialize PHY parameters
4791 * @ptp: pointer to the PTP HW struct
4793 static void ice_ptp_init_phy_e82x(struct ice_ptp_hw *ptp)
4795 ptp->phy_model = ICE_PHY_E82X;
4796 ptp->num_lports = 8;
4797 ptp->ports_per_phy = 8;
4802 * The following functions operate on the E810 series devices which use
4803 * a separate external PHY.
4807 * ice_read_phy_reg_e810 - Read register from external PHY on E810
4808 * @hw: pointer to the HW struct
4809 * @addr: the address to read from
4810 * @val: On return, the value read from the PHY
4812 * Read a register from the external PHY on the E810 device.
4814 static int ice_read_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 *val)
4816 struct ice_sbq_msg_input msg = {0};
4819 msg.msg_addr_low = lower_16_bits(addr);
4820 msg.msg_addr_high = upper_16_bits(addr);
4821 msg.opcode = ice_sbq_msg_rd;
4822 msg.dest_dev = rmn_0;
4824 err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
4826 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
4837 * ice_write_phy_reg_e810 - Write register on external PHY on E810
4838 * @hw: pointer to the HW struct
4839 * @addr: the address to writem to
4840 * @val: the value to write to the PHY
4842 * Write a value to a register of the external PHY on the E810 device.
4844 static int ice_write_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 val)
4846 struct ice_sbq_msg_input msg = {0};
4849 msg.msg_addr_low = lower_16_bits(addr);
4850 msg.msg_addr_high = upper_16_bits(addr);
4851 msg.opcode = ice_sbq_msg_wr;
4852 msg.dest_dev = rmn_0;
4855 err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
4857 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
4866 * ice_read_phy_tstamp_ll_e810 - Read a PHY timestamp registers through the FW
4867 * @hw: pointer to the HW struct
4868 * @idx: the timestamp index to read
4869 * @hi: 8 bit timestamp high value
4870 * @lo: 32 bit timestamp low value
4872 * Read a 8bit timestamp high value and 32 bit timestamp low value out of the
4873 * timestamp block of the external PHY on the E810 device using the low latency
4877 ice_read_phy_tstamp_ll_e810(struct ice_hw *hw, u8 idx, u8 *hi, u32 *lo)
4879 struct ice_e810_params *params = &hw->ptp.phy.e810;
4880 unsigned long flags;
4884 spin_lock_irqsave(¶ms->atqbal_wq.lock, flags);
4886 /* Wait for any pending in-progress low latency interrupt */
4887 err = wait_event_interruptible_locked_irq(params->atqbal_wq,
4888 !(params->atqbal_flags &
4889 ATQBAL_FLAGS_INTR_IN_PROGRESS));
4891 spin_unlock_irqrestore(¶ms->atqbal_wq.lock, flags);
4895 /* Write TS index to read to the PF register so the FW can read it */
4896 val = FIELD_PREP(REG_LL_PROXY_H_TS_IDX, idx) | REG_LL_PROXY_H_EXEC;
4897 wr32(hw, REG_LL_PROXY_H, val);
4899 /* Read the register repeatedly until the FW provides us the TS */
4900 err = read_poll_timeout_atomic(rd32, val,
4901 !FIELD_GET(REG_LL_PROXY_H_EXEC, val), 10,
4902 REG_LL_PROXY_H_TIMEOUT_US, false, hw,
4905 ice_debug(hw, ICE_DBG_PTP, "Failed to read PTP timestamp using low latency read\n");
4906 spin_unlock_irqrestore(¶ms->atqbal_wq.lock, flags);
4910 /* High 8 bit value of the TS is on the bits 16:23 */
4911 *hi = FIELD_GET(REG_LL_PROXY_H_TS_HIGH, val);
4913 /* Read the low 32 bit value and set the TS valid bit */
4914 *lo = rd32(hw, REG_LL_PROXY_L) | TS_VALID;
4916 spin_unlock_irqrestore(¶ms->atqbal_wq.lock, flags);
4922 * ice_read_phy_tstamp_sbq_e810 - Read a PHY timestamp registers through the sbq
4923 * @hw: pointer to the HW struct
4924 * @lport: the lport to read from
4925 * @idx: the timestamp index to read
4926 * @hi: 8 bit timestamp high value
4927 * @lo: 32 bit timestamp low value
4929 * Read a 8bit timestamp high value and 32 bit timestamp low value out of the
4930 * timestamp block of the external PHY on the E810 device using sideband queue.
4933 ice_read_phy_tstamp_sbq_e810(struct ice_hw *hw, u8 lport, u8 idx, u8 *hi,
4936 u32 hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
4937 u32 lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
4941 err = ice_read_phy_reg_e810(hw, lo_addr, &lo_val);
4943 ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
4948 err = ice_read_phy_reg_e810(hw, hi_addr, &hi_val);
4950 ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
4962 * ice_read_phy_tstamp_e810 - Read a PHY timestamp out of the external PHY
4963 * @hw: pointer to the HW struct
4964 * @lport: the lport to read from
4965 * @idx: the timestamp index to read
4966 * @tstamp: on return, the 40bit timestamp value
4968 * Read a 40bit timestamp value out of the timestamp block of the external PHY
4969 * on the E810 device.
4972 ice_read_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx, u64 *tstamp)
4978 if (hw->dev_caps.ts_dev_info.ts_ll_read)
4979 err = ice_read_phy_tstamp_ll_e810(hw, idx, &hi, &lo);
4981 err = ice_read_phy_tstamp_sbq_e810(hw, lport, idx, &hi, &lo);
4986 /* For E810 devices, the timestamp is reported with the lower 32 bits
4987 * in the low register, and the upper 8 bits in the high register.
4989 *tstamp = ((u64)hi) << TS_HIGH_S | ((u64)lo & TS_LOW_M);
4995 * ice_clear_phy_tstamp_e810 - Clear a timestamp from the external PHY
4996 * @hw: pointer to the HW struct
4997 * @lport: the lport to read from
4998 * @idx: the timestamp index to reset
5000 * Read the timestamp and then forcibly overwrite its value to clear the valid
5001 * bit from the timestamp block of the external PHY on the E810 device.
5003 * This function should only be called on an idx whose bit is set according to
5004 * ice_get_phy_tx_tstamp_ready().
5006 static int ice_clear_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx)
5008 u32 lo_addr, hi_addr;
5012 err = ice_read_phy_tstamp_e810(hw, lport, idx, &unused_tstamp);
5014 ice_debug(hw, ICE_DBG_PTP, "Failed to read the timestamp register for lport %u, idx %u, err %d\n",
5019 lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
5020 hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
5022 err = ice_write_phy_reg_e810(hw, lo_addr, 0);
5024 ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register for lport %u, idx %u, err %d\n",
5029 err = ice_write_phy_reg_e810(hw, hi_addr, 0);
5031 ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register for lport %u, idx %u, err %d\n",
5040 * ice_ptp_init_phc_e810 - Perform E810 specific PHC initialization
5041 * @hw: pointer to HW struct
5043 * Perform E810-specific PTP hardware clock initialization steps.
5045 * Return: 0 on success, other error codes when failed to initialize TimeSync
5047 static int ice_ptp_init_phc_e810(struct ice_hw *hw)
5052 /* Ensure synchronization delay is zero */
5053 wr32(hw, GLTSYN_SYNC_DLAY, 0);
5055 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5056 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_ENA(tmr_idx),
5057 GLTSYN_ENA_TSYN_ENA_M);
5059 ice_debug(hw, ICE_DBG_PTP, "PTP failed in ena_phy_time_syn %d\n",
5066 * ice_ptp_prep_phy_time_e810 - Prepare PHY port with initial time
5067 * @hw: Board private structure
5068 * @time: Time to initialize the PHY port clock to
5070 * Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the
5071 * initial clock time. The time will not actually be programmed until the
5072 * driver issues an ICE_PTP_INIT_TIME command.
5074 * The time value is the upper 32 bits of the PHY timer, usually in units of
5075 * nominal nanoseconds.
5077 static int ice_ptp_prep_phy_time_e810(struct ice_hw *hw, u32 time)
5082 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5083 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_0(tmr_idx), 0);
5085 ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_0, err %d\n",
5090 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_L(tmr_idx), time);
5092 ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_L, err %d\n",
5101 * ice_ptp_prep_phy_adj_ll_e810 - Prep PHY ports for a time adjustment
5102 * @hw: pointer to HW struct
5103 * @adj: adjustment value to program
5105 * Use the low latency firmware interface to program PHY time adjustment to
5108 * Return: 0 on success, -EBUSY on timeout
5110 static int ice_ptp_prep_phy_adj_ll_e810(struct ice_hw *hw, s32 adj)
5112 const u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5113 struct ice_e810_params *params = &hw->ptp.phy.e810;
5117 spin_lock_irq(¶ms->atqbal_wq.lock);
5119 /* Wait for any pending in-progress low latency interrupt */
5120 err = wait_event_interruptible_locked_irq(params->atqbal_wq,
5121 !(params->atqbal_flags &
5122 ATQBAL_FLAGS_INTR_IN_PROGRESS));
5124 spin_unlock_irq(¶ms->atqbal_wq.lock);
5128 wr32(hw, REG_LL_PROXY_L, adj);
5129 val = FIELD_PREP(REG_LL_PROXY_H_PHY_TMR_CMD_M, REG_LL_PROXY_H_PHY_TMR_CMD_ADJ) |
5130 FIELD_PREP(REG_LL_PROXY_H_PHY_TMR_IDX_M, tmr_idx) | REG_LL_PROXY_H_EXEC;
5131 wr32(hw, REG_LL_PROXY_H, val);
5133 /* Read the register repeatedly until the FW indicates completion */
5134 err = read_poll_timeout_atomic(rd32, val,
5135 !FIELD_GET(REG_LL_PROXY_H_EXEC, val),
5136 10, REG_LL_PROXY_H_TIMEOUT_US, false, hw,
5139 ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY timer adjustment using low latency interface\n");
5140 spin_unlock_irq(¶ms->atqbal_wq.lock);
5144 spin_unlock_irq(¶ms->atqbal_wq.lock);
5150 * ice_ptp_prep_phy_adj_e810 - Prep PHY port for a time adjustment
5151 * @hw: pointer to HW struct
5152 * @adj: adjustment value to program
5154 * Prepare the PHY port for an atomic adjustment by programming the PHY
5155 * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual adjustment
5156 * is completed by issuing an ICE_PTP_ADJ_TIME sync command.
5158 * The adjustment value only contains the portion used for the upper 32bits of
5159 * the PHY timer, usually in units of nominal nanoseconds. Negative
5160 * adjustments are supported using 2s complement arithmetic.
5162 static int ice_ptp_prep_phy_adj_e810(struct ice_hw *hw, s32 adj)
5167 if (hw->dev_caps.ts_dev_info.ll_phy_tmr_update)
5168 return ice_ptp_prep_phy_adj_ll_e810(hw, adj);
5170 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5172 /* Adjustments are represented as signed 2's complement values in
5173 * nanoseconds. Sub-nanosecond adjustment is not supported.
5175 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), 0);
5177 ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_L, err %d\n",
5182 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), adj);
5184 ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_H, err %d\n",
5193 * ice_ptp_prep_phy_incval_ll_e810 - Prep PHY ports increment value change
5194 * @hw: pointer to HW struct
5195 * @incval: The new 40bit increment value to prepare
5197 * Use the low latency firmware interface to program PHY time increment value
5198 * for all PHY ports.
5200 * Return: 0 on success, -EBUSY on timeout
5202 static int ice_ptp_prep_phy_incval_ll_e810(struct ice_hw *hw, u64 incval)
5204 const u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5205 struct ice_e810_params *params = &hw->ptp.phy.e810;
5209 spin_lock_irq(¶ms->atqbal_wq.lock);
5211 /* Wait for any pending in-progress low latency interrupt */
5212 err = wait_event_interruptible_locked_irq(params->atqbal_wq,
5213 !(params->atqbal_flags &
5214 ATQBAL_FLAGS_INTR_IN_PROGRESS));
5216 spin_unlock_irq(¶ms->atqbal_wq.lock);
5220 wr32(hw, REG_LL_PROXY_L, lower_32_bits(incval));
5221 val = FIELD_PREP(REG_LL_PROXY_H_PHY_TMR_CMD_M, REG_LL_PROXY_H_PHY_TMR_CMD_FREQ) |
5222 FIELD_PREP(REG_LL_PROXY_H_TS_HIGH, (u8)upper_32_bits(incval)) |
5223 FIELD_PREP(REG_LL_PROXY_H_PHY_TMR_IDX_M, tmr_idx) | REG_LL_PROXY_H_EXEC;
5224 wr32(hw, REG_LL_PROXY_H, val);
5226 /* Read the register repeatedly until the FW indicates completion */
5227 err = read_poll_timeout_atomic(rd32, val,
5228 !FIELD_GET(REG_LL_PROXY_H_EXEC, val),
5229 10, REG_LL_PROXY_H_TIMEOUT_US, false, hw,
5232 ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY timer increment using low latency interface\n");
5233 spin_unlock_irq(¶ms->atqbal_wq.lock);
5237 spin_unlock_irq(¶ms->atqbal_wq.lock);
5243 * ice_ptp_prep_phy_incval_e810 - Prep PHY port increment value change
5244 * @hw: pointer to HW struct
5245 * @incval: The new 40bit increment value to prepare
5247 * Prepare the PHY port for a new increment value by programming the PHY
5248 * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual change is
5249 * completed by issuing an ICE_PTP_INIT_INCVAL command.
5251 static int ice_ptp_prep_phy_incval_e810(struct ice_hw *hw, u64 incval)
5257 if (hw->dev_caps.ts_dev_info.ll_phy_tmr_update)
5258 return ice_ptp_prep_phy_incval_ll_e810(hw, incval);
5260 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5261 low = lower_32_bits(incval);
5262 high = upper_32_bits(incval);
5264 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), low);
5266 ice_debug(hw, ICE_DBG_PTP, "Failed to write incval to PHY SHADJ_L, err %d\n",
5271 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), high);
5273 ice_debug(hw, ICE_DBG_PTP, "Failed to write incval PHY SHADJ_H, err %d\n",
5282 * ice_ptp_port_cmd_e810 - Prepare all external PHYs for a timer command
5283 * @hw: pointer to HW struct
5284 * @cmd: Command to be sent to the port
5286 * Prepare the external PHYs connected to this device for a timer sync
5289 static int ice_ptp_port_cmd_e810(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
5291 u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd);
5293 return ice_write_phy_reg_e810(hw, E810_ETH_GLTSYN_CMD, val);
5297 * ice_get_phy_tx_tstamp_ready_e810 - Read Tx memory status register
5298 * @hw: pointer to the HW struct
5299 * @port: the PHY port to read
5300 * @tstamp_ready: contents of the Tx memory status register
5302 * E810 devices do not use a Tx memory status register. Instead simply
5303 * indicate that all timestamps are currently ready.
5306 ice_get_phy_tx_tstamp_ready_e810(struct ice_hw *hw, u8 port, u64 *tstamp_ready)
5308 *tstamp_ready = 0xFFFFFFFFFFFFFFFF;
5312 /* E810 SMA functions
5314 * The following functions operate specifically on E810 hardware and are used
5315 * to access the extended GPIOs available.
5319 * ice_get_pca9575_handle
5320 * @hw: pointer to the hw struct
5321 * @pca9575_handle: GPIO controller's handle
5323 * Find and return the GPIO controller's handle in the netlist.
5324 * When found - the value will be cached in the hw structure and following calls
5325 * will return cached value
5328 ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle)
5330 struct ice_aqc_get_link_topo *cmd;
5331 struct ice_aq_desc desc;
5335 /* If handle was read previously return cached value */
5336 if (hw->io_expander_handle) {
5337 *pca9575_handle = hw->io_expander_handle;
5341 /* If handle was not detected read it from the netlist */
5342 cmd = &desc.params.get_link_topo;
5343 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
5345 /* Set node type to GPIO controller */
5346 cmd->addr.topo_params.node_type_ctx =
5347 (ICE_AQC_LINK_TOPO_NODE_TYPE_M &
5348 ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL);
5350 #define SW_PCA9575_SFP_TOPO_IDX 2
5351 #define SW_PCA9575_QSFP_TOPO_IDX 1
5353 /* Check if the SW IO expander controlling SMA exists in the netlist. */
5354 if (hw->device_id == ICE_DEV_ID_E810C_SFP)
5355 idx = SW_PCA9575_SFP_TOPO_IDX;
5356 else if (hw->device_id == ICE_DEV_ID_E810C_QSFP)
5357 idx = SW_PCA9575_QSFP_TOPO_IDX;
5361 cmd->addr.topo_params.index = idx;
5363 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5367 /* Verify if we found the right IO expander type */
5368 if (desc.params.get_link_topo.node_part_num !=
5369 ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575)
5372 /* If present save the handle and return it */
5373 hw->io_expander_handle =
5374 le16_to_cpu(desc.params.get_link_topo.addr.handle);
5375 *pca9575_handle = hw->io_expander_handle;
5382 * @hw: pointer to the hw struct
5383 * @data: pointer to data to be read from the GPIO controller
5385 * Read the SMA controller state. It is connected to pins 3-7 of Port 1 of the
5386 * PCA9575 expander, so only bits 3-7 in data are valid.
5388 int ice_read_sma_ctrl(struct ice_hw *hw, u8 *data)
5394 status = ice_get_pca9575_handle(hw, &handle);
5400 for (i = ICE_SMA_MIN_BIT; i <= ICE_SMA_MAX_BIT; i++) {
5403 status = ice_aq_get_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
5407 *data |= (u8)(!pin) << i;
5414 * ice_write_sma_ctrl
5415 * @hw: pointer to the hw struct
5416 * @data: data to be written to the GPIO controller
5418 * Write the data to the SMA controller. It is connected to pins 3-7 of Port 1
5419 * of the PCA9575 expander, so only bits 3-7 in data are valid.
5421 int ice_write_sma_ctrl(struct ice_hw *hw, u8 data)
5427 status = ice_get_pca9575_handle(hw, &handle);
5431 for (i = ICE_SMA_MIN_BIT; i <= ICE_SMA_MAX_BIT; i++) {
5434 pin = !(data & (1 << i));
5435 status = ice_aq_set_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
5445 * ice_read_pca9575_reg
5446 * @hw: pointer to the hw struct
5447 * @offset: GPIO controller register offset
5448 * @data: pointer to data to be read from the GPIO controller
5450 * Read the register from the GPIO controller
5452 int ice_read_pca9575_reg(struct ice_hw *hw, u8 offset, u8 *data)
5454 struct ice_aqc_link_topo_addr link_topo;
5459 memset(&link_topo, 0, sizeof(link_topo));
5461 err = ice_get_pca9575_handle(hw, &handle);
5465 link_topo.handle = cpu_to_le16(handle);
5466 link_topo.topo_params.node_type_ctx =
5467 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M,
5468 ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED);
5470 addr = cpu_to_le16((u16)offset);
5472 return ice_aq_read_i2c(hw, link_topo, 0, addr, 1, data, NULL);
5476 * ice_ptp_read_sdp_ac - read SDP available connections section from NVM
5477 * @hw: pointer to the HW struct
5478 * @entries: returns the SDP available connections section from NVM
5479 * @num_entries: returns the number of valid entries
5481 * Return: 0 on success, negative error code if NVM read failed or section does
5482 * not exist or is corrupted
5484 int ice_ptp_read_sdp_ac(struct ice_hw *hw, __le16 *entries, uint *num_entries)
5490 err = ice_acquire_nvm(hw, ICE_RES_READ);
5494 /* Read the offset of SDP_AC */
5495 offset = ICE_AQC_NVM_SDP_AC_PTR_OFFSET;
5496 err = ice_aq_read_nvm(hw, 0, offset, sizeof(data), &data, false, true,
5501 /* Check if section exist */
5502 offset = FIELD_GET(ICE_AQC_NVM_SDP_AC_PTR_M, le16_to_cpu(data));
5503 if (offset == ICE_AQC_NVM_SDP_AC_PTR_INVAL) {
5508 if (offset & ICE_AQC_NVM_SDP_AC_PTR_TYPE_M) {
5509 offset &= ICE_AQC_NVM_SDP_AC_PTR_M;
5510 offset *= ICE_AQC_NVM_SECTOR_UNIT;
5512 offset *= sizeof(data);
5515 /* Skip reading section length and read the number of valid entries */
5516 offset += sizeof(data);
5517 err = ice_aq_read_nvm(hw, 0, offset, sizeof(data), &data, false, true,
5521 *num_entries = le16_to_cpu(data);
5523 /* Read SDP configuration section */
5524 offset += sizeof(data);
5525 err = ice_aq_read_nvm(hw, 0, offset, *num_entries * sizeof(data),
5526 entries, false, true, NULL);
5530 dev_dbg(ice_hw_to_dev(hw), "Failed to configure SDP connection section\n");
5531 ice_release_nvm(hw);
5536 * ice_ptp_init_phy_e810 - initialize PHY parameters
5537 * @ptp: pointer to the PTP HW struct
5539 static void ice_ptp_init_phy_e810(struct ice_ptp_hw *ptp)
5541 ptp->phy_model = ICE_PHY_E810;
5542 ptp->num_lports = 8;
5543 ptp->ports_per_phy = 4;
5545 init_waitqueue_head(&ptp->phy.e810.atqbal_wq);
5548 /* Device agnostic functions
5550 * The following functions implement shared behavior common to both E822 and
5551 * E810 devices, possibly calling a device specific implementation where
5556 * ice_ptp_lock - Acquire PTP global semaphore register lock
5557 * @hw: pointer to the HW struct
5559 * Acquire the global PTP hardware semaphore lock. Returns true if the lock
5560 * was acquired, false otherwise.
5562 * The PFTSYN_SEM register sets the busy bit on read, returning the previous
5563 * value. If software sees the busy bit cleared, this means that this function
5564 * acquired the lock (and the busy bit is now set). If software sees the busy
5565 * bit set, it means that another function acquired the lock.
5567 * Software must clear the busy bit with a write to release the lock for other
5568 * functions when done.
5570 bool ice_ptp_lock(struct ice_hw *hw)
5575 #define MAX_TRIES 15
5577 for (i = 0; i < MAX_TRIES; i++) {
5578 hw_lock = rd32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
5579 hw_lock = hw_lock & PFTSYN_SEM_BUSY_M;
5581 /* Somebody is holding the lock */
5582 usleep_range(5000, 6000);
5593 * ice_ptp_unlock - Release PTP global semaphore register lock
5594 * @hw: pointer to the HW struct
5596 * Release the global PTP hardware semaphore lock. This is done by writing to
5597 * the PFTSYN_SEM register.
5599 void ice_ptp_unlock(struct ice_hw *hw)
5601 wr32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), 0);
5605 * ice_ptp_init_hw - Initialize hw based on device type
5606 * @hw: pointer to the HW structure
5608 * Determine the PHY model for the device, and initialize hw
5609 * for use by other functions.
5611 void ice_ptp_init_hw(struct ice_hw *hw)
5613 struct ice_ptp_hw *ptp = &hw->ptp;
5615 if (ice_is_e822(hw) || ice_is_e823(hw))
5616 ice_ptp_init_phy_e82x(ptp);
5617 else if (ice_is_e810(hw))
5618 ice_ptp_init_phy_e810(ptp);
5619 else if (ice_is_e825c(hw))
5620 ice_ptp_init_phy_e825(hw);
5622 ptp->phy_model = ICE_PHY_UNSUP;
5626 * ice_ptp_write_port_cmd - Prepare a single PHY port for a timer command
5627 * @hw: pointer to HW struct
5628 * @port: Port to which cmd has to be sent
5629 * @cmd: Command to be sent to the port
5631 * Prepare one port for the upcoming timer sync command. Do not use this for
5632 * programming only a single port, instead use ice_ptp_one_port_cmd() to
5633 * ensure non-modified ports get properly initialized to ICE_PTP_NOP.
5637 * %-EBUSY - PHY type not supported
5638 * * %other - failed to write port command
5640 static int ice_ptp_write_port_cmd(struct ice_hw *hw, u8 port,
5641 enum ice_ptp_tmr_cmd cmd)
5643 switch (ice_get_phy_model(hw)) {
5644 case ICE_PHY_ETH56G:
5645 return ice_ptp_write_port_cmd_eth56g(hw, port, cmd);
5647 return ice_ptp_write_port_cmd_e82x(hw, port, cmd);
5654 * ice_ptp_one_port_cmd - Program one PHY port for a timer command
5655 * @hw: pointer to HW struct
5656 * @configured_port: the port that should execute the command
5657 * @configured_cmd: the command to be executed on the configured port
5659 * Prepare one port for executing a timer command, while preparing all other
5660 * ports to ICE_PTP_NOP. This allows executing a command on a single port
5661 * while ensuring all other ports do not execute stale commands.
5665 * * %other - failed to write port command
5667 int ice_ptp_one_port_cmd(struct ice_hw *hw, u8 configured_port,
5668 enum ice_ptp_tmr_cmd configured_cmd)
5672 for (port = 0; port < hw->ptp.num_lports; port++) {
5675 /* Program the configured port with the configured command,
5676 * program all other ports with ICE_PTP_NOP.
5678 if (port == configured_port)
5679 err = ice_ptp_write_port_cmd(hw, port, configured_cmd);
5681 err = ice_ptp_write_port_cmd(hw, port, ICE_PTP_NOP);
5691 * ice_ptp_port_cmd - Prepare PHY ports for a timer sync command
5692 * @hw: pointer to HW struct
5693 * @cmd: the timer command to setup
5695 * Prepare all PHY ports on this device for the requested timer command. For
5696 * some families this can be done in one shot, but for other families each
5697 * port must be configured individually.
5701 * * %other - failed to write port command
5703 static int ice_ptp_port_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
5707 /* PHY models which can program all ports simultaneously */
5708 switch (ice_get_phy_model(hw)) {
5710 return ice_ptp_port_cmd_e810(hw, cmd);
5715 /* PHY models which require programming each port separately */
5716 for (port = 0; port < hw->ptp.num_lports; port++) {
5719 err = ice_ptp_write_port_cmd(hw, port, cmd);
5728 * ice_ptp_tmr_cmd - Prepare and trigger a timer sync command
5729 * @hw: pointer to HW struct
5730 * @cmd: the command to issue
5732 * Prepare the source timer and PHY timers and then trigger the requested
5733 * command. This causes the shadow registers previously written in preparation
5734 * for the command to be synchronously applied to both the source and PHY
5737 static int ice_ptp_tmr_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
5741 /* First, prepare the source timer */
5742 ice_ptp_src_cmd(hw, cmd);
5744 /* Next, prepare the ports */
5745 err = ice_ptp_port_cmd(hw, cmd);
5747 ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY ports for timer command %u, err %d\n",
5752 /* Write the sync command register to drive both source and PHY timer
5753 * commands synchronously
5755 ice_ptp_exec_tmr_cmd(hw);
5761 * ice_ptp_init_time - Initialize device time to provided value
5762 * @hw: pointer to HW struct
5763 * @time: 64bits of time (GLTSYN_TIME_L and GLTSYN_TIME_H)
5765 * Initialize the device to the specified time provided. This requires a three
5768 * 1) write the new init time to the source timer shadow registers
5769 * 2) write the new init time to the PHY timer shadow registers
5770 * 3) issue an init_time timer command to synchronously switch both the source
5771 * and port timers to the new init time value at the next clock cycle.
5773 int ice_ptp_init_time(struct ice_hw *hw, u64 time)
5778 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5781 wr32(hw, GLTSYN_SHTIME_L(tmr_idx), lower_32_bits(time));
5782 wr32(hw, GLTSYN_SHTIME_H(tmr_idx), upper_32_bits(time));
5783 wr32(hw, GLTSYN_SHTIME_0(tmr_idx), 0);
5786 /* Fill Rx and Tx ports and send msg to PHY */
5787 switch (ice_get_phy_model(hw)) {
5788 case ICE_PHY_ETH56G:
5789 err = ice_ptp_prep_phy_time_eth56g(hw,
5790 (u32)(time & 0xFFFFFFFF));
5793 err = ice_ptp_prep_phy_time_e810(hw, time & 0xFFFFFFFF);
5796 err = ice_ptp_prep_phy_time_e82x(hw, time & 0xFFFFFFFF);
5805 return ice_ptp_tmr_cmd(hw, ICE_PTP_INIT_TIME);
5809 * ice_ptp_write_incval - Program PHC with new increment value
5810 * @hw: pointer to HW struct
5811 * @incval: Source timer increment value per clock cycle
5813 * Program the PHC with a new increment value. This requires a three-step
5816 * 1) Write the increment value to the source timer shadow registers
5817 * 2) Write the increment value to the PHY timer shadow registers
5818 * 3) Issue an ICE_PTP_INIT_INCVAL timer command to synchronously switch both
5819 * the source and port timers to the new increment value at the next clock
5822 int ice_ptp_write_incval(struct ice_hw *hw, u64 incval)
5827 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5830 wr32(hw, GLTSYN_SHADJ_L(tmr_idx), lower_32_bits(incval));
5831 wr32(hw, GLTSYN_SHADJ_H(tmr_idx), upper_32_bits(incval));
5833 switch (ice_get_phy_model(hw)) {
5834 case ICE_PHY_ETH56G:
5835 err = ice_ptp_prep_phy_incval_eth56g(hw, incval);
5838 err = ice_ptp_prep_phy_incval_e810(hw, incval);
5841 err = ice_ptp_prep_phy_incval_e82x(hw, incval);
5850 return ice_ptp_tmr_cmd(hw, ICE_PTP_INIT_INCVAL);
5854 * ice_ptp_write_incval_locked - Program new incval while holding semaphore
5855 * @hw: pointer to HW struct
5856 * @incval: Source timer increment value per clock cycle
5858 * Program a new PHC incval while holding the PTP semaphore.
5860 int ice_ptp_write_incval_locked(struct ice_hw *hw, u64 incval)
5864 if (!ice_ptp_lock(hw))
5867 err = ice_ptp_write_incval(hw, incval);
5875 * ice_ptp_adj_clock - Adjust PHC clock time atomically
5876 * @hw: pointer to HW struct
5877 * @adj: Adjustment in nanoseconds
5879 * Perform an atomic adjustment of the PHC time by the specified number of
5880 * nanoseconds. This requires a three-step process:
5882 * 1) Write the adjustment to the source timer shadow registers
5883 * 2) Write the adjustment to the PHY timer shadow registers
5884 * 3) Issue an ICE_PTP_ADJ_TIME timer command to synchronously apply the
5885 * adjustment to both the source and port timers at the next clock cycle.
5887 int ice_ptp_adj_clock(struct ice_hw *hw, s32 adj)
5892 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5894 /* Write the desired clock adjustment into the GLTSYN_SHADJ register.
5895 * For an ICE_PTP_ADJ_TIME command, this set of registers represents
5896 * the value to add to the clock time. It supports subtraction by
5897 * interpreting the value as a 2's complement integer.
5899 wr32(hw, GLTSYN_SHADJ_L(tmr_idx), 0);
5900 wr32(hw, GLTSYN_SHADJ_H(tmr_idx), adj);
5902 switch (ice_get_phy_model(hw)) {
5903 case ICE_PHY_ETH56G:
5904 err = ice_ptp_prep_phy_adj_eth56g(hw, adj);
5907 err = ice_ptp_prep_phy_adj_e810(hw, adj);
5910 err = ice_ptp_prep_phy_adj_e82x(hw, adj);
5919 return ice_ptp_tmr_cmd(hw, ICE_PTP_ADJ_TIME);
5923 * ice_read_phy_tstamp - Read a PHY timestamp from the timestamo block
5924 * @hw: pointer to the HW struct
5925 * @block: the block to read from
5926 * @idx: the timestamp index to read
5927 * @tstamp: on return, the 40bit timestamp value
5929 * Read a 40bit timestamp value out of the timestamp block. For E822 devices,
5930 * the block is the quad to read from. For E810 devices, the block is the
5931 * logical port to read from.
5933 int ice_read_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx, u64 *tstamp)
5935 switch (ice_get_phy_model(hw)) {
5936 case ICE_PHY_ETH56G:
5937 return ice_read_ptp_tstamp_eth56g(hw, block, idx, tstamp);
5939 return ice_read_phy_tstamp_e810(hw, block, idx, tstamp);
5941 return ice_read_phy_tstamp_e82x(hw, block, idx, tstamp);
5948 * ice_clear_phy_tstamp - Clear a timestamp from the timestamp block
5949 * @hw: pointer to the HW struct
5950 * @block: the block to read from
5951 * @idx: the timestamp index to reset
5953 * Clear a timestamp from the timestamp block, discarding its value without
5954 * returning it. This resets the memory status bit for the timestamp index
5955 * allowing it to be reused for another timestamp in the future.
5957 * For E822 devices, the block number is the PHY quad to clear from. For E810
5958 * devices, the block number is the logical port to clear from.
5960 * This function must only be called on a timestamp index whose valid bit is
5961 * set according to ice_get_phy_tx_tstamp_ready().
5963 int ice_clear_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx)
5965 switch (ice_get_phy_model(hw)) {
5966 case ICE_PHY_ETH56G:
5967 return ice_clear_ptp_tstamp_eth56g(hw, block, idx);
5969 return ice_clear_phy_tstamp_e810(hw, block, idx);
5971 return ice_clear_phy_tstamp_e82x(hw, block, idx);
5978 * ice_get_pf_c827_idx - find and return the C827 index for the current pf
5979 * @hw: pointer to the hw struct
5980 * @idx: index of the found C827 PHY
5983 * * negative - failure
5985 static int ice_get_pf_c827_idx(struct ice_hw *hw, u8 *idx)
5987 struct ice_aqc_get_link_topo cmd;
5988 u8 node_part_number;
5993 if (hw->mac_type != ICE_MAC_E810)
5996 if (hw->device_id != ICE_DEV_ID_E810C_QSFP) {
6001 memset(&cmd, 0, sizeof(cmd));
6003 ctx = ICE_AQC_LINK_TOPO_NODE_TYPE_PHY << ICE_AQC_LINK_TOPO_NODE_TYPE_S;
6004 ctx |= ICE_AQC_LINK_TOPO_NODE_CTX_PORT << ICE_AQC_LINK_TOPO_NODE_CTX_S;
6005 cmd.addr.topo_params.node_type_ctx = ctx;
6007 status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
6009 if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
6012 if (node_handle == E810C_QSFP_C827_0_HANDLE)
6014 else if (node_handle == E810C_QSFP_C827_1_HANDLE)
6023 * ice_ptp_reset_ts_memory - Reset timestamp memory for all blocks
6024 * @hw: pointer to the HW struct
6026 void ice_ptp_reset_ts_memory(struct ice_hw *hw)
6028 switch (ice_get_phy_model(hw)) {
6029 case ICE_PHY_ETH56G:
6030 ice_ptp_reset_ts_memory_eth56g(hw);
6033 ice_ptp_reset_ts_memory_e82x(hw);
6042 * ice_ptp_init_phc - Initialize PTP hardware clock
6043 * @hw: pointer to the HW struct
6045 * Perform the steps required to initialize the PTP hardware clock.
6047 int ice_ptp_init_phc(struct ice_hw *hw)
6049 u8 src_idx = hw->func_caps.ts_func_info.tmr_index_owned;
6051 /* Enable source clocks */
6052 wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M);
6054 /* Clear event err indications for auxiliary pins */
6055 (void)rd32(hw, GLTSYN_STAT(src_idx));
6057 switch (ice_get_phy_model(hw)) {
6058 case ICE_PHY_ETH56G:
6059 return ice_ptp_init_phc_eth56g(hw);
6061 return ice_ptp_init_phc_e810(hw);
6063 return ice_ptp_init_phc_e82x(hw);
6070 * ice_get_phy_tx_tstamp_ready - Read PHY Tx memory status indication
6071 * @hw: pointer to the HW struct
6072 * @block: the timestamp block to check
6073 * @tstamp_ready: storage for the PHY Tx memory status information
6075 * Check the PHY for Tx timestamp memory status. This reports a 64 bit value
6076 * which indicates which timestamps in the block may be captured. A set bit
6077 * means the timestamp can be read. An unset bit means the timestamp is not
6078 * ready and software should avoid reading the register.
6080 int ice_get_phy_tx_tstamp_ready(struct ice_hw *hw, u8 block, u64 *tstamp_ready)
6082 switch (ice_get_phy_model(hw)) {
6083 case ICE_PHY_ETH56G:
6084 return ice_get_phy_tx_tstamp_ready_eth56g(hw, block,
6087 return ice_get_phy_tx_tstamp_ready_e810(hw, block,
6090 return ice_get_phy_tx_tstamp_ready_e82x(hw, block,
6099 * ice_cgu_get_pin_desc_e823 - get pin description array
6100 * @hw: pointer to the hw struct
6101 * @input: if request is done against input or output pin
6102 * @size: number of inputs/outputs
6104 * Return: pointer to pin description array associated to given hw.
6106 static const struct ice_cgu_pin_desc *
6107 ice_cgu_get_pin_desc_e823(struct ice_hw *hw, bool input, int *size)
6109 static const struct ice_cgu_pin_desc *t;
6111 if (hw->cgu_part_number ==
6112 ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032) {
6114 t = ice_e823_zl_cgu_inputs;
6115 *size = ARRAY_SIZE(ice_e823_zl_cgu_inputs);
6117 t = ice_e823_zl_cgu_outputs;
6118 *size = ARRAY_SIZE(ice_e823_zl_cgu_outputs);
6120 } else if (hw->cgu_part_number ==
6121 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384) {
6123 t = ice_e823_si_cgu_inputs;
6124 *size = ARRAY_SIZE(ice_e823_si_cgu_inputs);
6126 t = ice_e823_si_cgu_outputs;
6127 *size = ARRAY_SIZE(ice_e823_si_cgu_outputs);
6138 * ice_cgu_get_pin_desc - get pin description array
6139 * @hw: pointer to the hw struct
6140 * @input: if request is done against input or output pins
6141 * @size: size of array returned by function
6143 * Return: pointer to pin description array associated to given hw.
6145 static const struct ice_cgu_pin_desc *
6146 ice_cgu_get_pin_desc(struct ice_hw *hw, bool input, int *size)
6148 const struct ice_cgu_pin_desc *t = NULL;
6150 switch (hw->device_id) {
6151 case ICE_DEV_ID_E810C_SFP:
6153 t = ice_e810t_sfp_cgu_inputs;
6154 *size = ARRAY_SIZE(ice_e810t_sfp_cgu_inputs);
6156 t = ice_e810t_sfp_cgu_outputs;
6157 *size = ARRAY_SIZE(ice_e810t_sfp_cgu_outputs);
6160 case ICE_DEV_ID_E810C_QSFP:
6162 t = ice_e810t_qsfp_cgu_inputs;
6163 *size = ARRAY_SIZE(ice_e810t_qsfp_cgu_inputs);
6165 t = ice_e810t_qsfp_cgu_outputs;
6166 *size = ARRAY_SIZE(ice_e810t_qsfp_cgu_outputs);
6169 case ICE_DEV_ID_E823L_10G_BASE_T:
6170 case ICE_DEV_ID_E823L_1GBE:
6171 case ICE_DEV_ID_E823L_BACKPLANE:
6172 case ICE_DEV_ID_E823L_QSFP:
6173 case ICE_DEV_ID_E823L_SFP:
6174 case ICE_DEV_ID_E823C_10G_BASE_T:
6175 case ICE_DEV_ID_E823C_BACKPLANE:
6176 case ICE_DEV_ID_E823C_QSFP:
6177 case ICE_DEV_ID_E823C_SFP:
6178 case ICE_DEV_ID_E823C_SGMII:
6179 t = ice_cgu_get_pin_desc_e823(hw, input, size);
6189 * ice_cgu_get_num_pins - get pin description array size
6190 * @hw: pointer to the hw struct
6191 * @input: if request is done against input or output pins
6193 * Return: size of pin description array for given hw.
6195 int ice_cgu_get_num_pins(struct ice_hw *hw, bool input)
6197 const struct ice_cgu_pin_desc *t;
6200 t = ice_cgu_get_pin_desc(hw, input, &size);
6208 * ice_cgu_get_pin_type - get pin's type
6209 * @hw: pointer to the hw struct
6211 * @input: if request is done against input or output pin
6213 * Return: type of a pin.
6215 enum dpll_pin_type ice_cgu_get_pin_type(struct ice_hw *hw, u8 pin, bool input)
6217 const struct ice_cgu_pin_desc *t;
6220 t = ice_cgu_get_pin_desc(hw, input, &t_size);
6232 * ice_cgu_get_pin_freq_supp - get pin's supported frequency
6233 * @hw: pointer to the hw struct
6235 * @input: if request is done against input or output pin
6236 * @num: output number of supported frequencies
6238 * Get frequency supported number and array of supported frequencies.
6240 * Return: array of supported frequencies for given pin.
6242 struct dpll_pin_frequency *
6243 ice_cgu_get_pin_freq_supp(struct ice_hw *hw, u8 pin, bool input, u8 *num)
6245 const struct ice_cgu_pin_desc *t;
6249 t = ice_cgu_get_pin_desc(hw, input, &t_size);
6254 *num = t[pin].freq_supp_num;
6256 return t[pin].freq_supp;
6260 * ice_cgu_get_pin_name - get pin's name
6261 * @hw: pointer to the hw struct
6263 * @input: if request is done against input or output pin
6266 * * null terminated char array with name
6267 * * NULL in case of failure
6269 const char *ice_cgu_get_pin_name(struct ice_hw *hw, u8 pin, bool input)
6271 const struct ice_cgu_pin_desc *t;
6274 t = ice_cgu_get_pin_desc(hw, input, &t_size);
6286 * ice_get_cgu_state - get the state of the DPLL
6287 * @hw: pointer to the hw struct
6288 * @dpll_idx: Index of internal DPLL unit
6289 * @last_dpll_state: last known state of DPLL
6290 * @pin: pointer to a buffer for returning currently active pin
6291 * @ref_state: reference clock state
6292 * @eec_mode: eec mode of the DPLL
6293 * @phase_offset: pointer to a buffer for returning phase offset
6294 * @dpll_state: state of the DPLL (output)
6296 * This function will read the state of the DPLL(dpll_idx). Non-null
6297 * 'pin', 'ref_state', 'eec_mode' and 'phase_offset' parameters are used to
6298 * retrieve currently active pin, state, mode and phase_offset respectively.
6300 * Return: state of the DPLL
6302 int ice_get_cgu_state(struct ice_hw *hw, u8 dpll_idx,
6303 enum dpll_lock_status last_dpll_state, u8 *pin,
6304 u8 *ref_state, u8 *eec_mode, s64 *phase_offset,
6305 enum dpll_lock_status *dpll_state)
6307 u8 hw_ref_state, hw_dpll_state, hw_eec_mode, hw_config;
6308 s64 hw_phase_offset;
6311 status = ice_aq_get_cgu_dpll_status(hw, dpll_idx, &hw_ref_state,
6312 &hw_dpll_state, &hw_config,
6313 &hw_phase_offset, &hw_eec_mode);
6318 /* current ref pin in dpll_state_refsel_status_X register */
6319 *pin = hw_config & ICE_AQC_GET_CGU_DPLL_CONFIG_CLK_REF_SEL;
6321 *phase_offset = hw_phase_offset;
6323 *ref_state = hw_ref_state;
6325 *eec_mode = hw_eec_mode;
6329 /* According to ZL DPLL documentation, once state reach LOCKED_HO_ACQ
6330 * it would never return to FREERUN. This aligns to ITU-T G.781
6331 * Recommendation. We cannot report HOLDOVER as HO memory is cleared
6332 * while switching to another reference.
6333 * Only for situations where previous state was either: "LOCKED without
6334 * HO_ACQ" or "HOLDOVER" we actually back to FREERUN.
6336 if (hw_dpll_state & ICE_AQC_GET_CGU_DPLL_STATUS_STATE_LOCK) {
6337 if (hw_dpll_state & ICE_AQC_GET_CGU_DPLL_STATUS_STATE_HO_READY)
6338 *dpll_state = DPLL_LOCK_STATUS_LOCKED_HO_ACQ;
6340 *dpll_state = DPLL_LOCK_STATUS_LOCKED;
6341 } else if (last_dpll_state == DPLL_LOCK_STATUS_LOCKED_HO_ACQ ||
6342 last_dpll_state == DPLL_LOCK_STATUS_HOLDOVER) {
6343 *dpll_state = DPLL_LOCK_STATUS_HOLDOVER;
6345 *dpll_state = DPLL_LOCK_STATUS_UNLOCKED;
6352 * ice_get_cgu_rclk_pin_info - get info on available recovered clock pins
6353 * @hw: pointer to the hw struct
6354 * @base_idx: returns index of first recovered clock pin on device
6355 * @pin_num: returns number of recovered clock pins available on device
6357 * Based on hw provide caller info about recovery clock pins available on the
6361 * * 0 - success, information is valid
6362 * * negative - failure, information is not valid
6364 int ice_get_cgu_rclk_pin_info(struct ice_hw *hw, u8 *base_idx, u8 *pin_num)
6369 switch (hw->device_id) {
6370 case ICE_DEV_ID_E810C_SFP:
6371 case ICE_DEV_ID_E810C_QSFP:
6373 ret = ice_get_pf_c827_idx(hw, &phy_idx);
6376 *base_idx = E810T_CGU_INPUT_C827(phy_idx, ICE_RCLKA_PIN);
6377 *pin_num = ICE_E810_RCLK_PINS_NUM;
6380 case ICE_DEV_ID_E823L_10G_BASE_T:
6381 case ICE_DEV_ID_E823L_1GBE:
6382 case ICE_DEV_ID_E823L_BACKPLANE:
6383 case ICE_DEV_ID_E823L_QSFP:
6384 case ICE_DEV_ID_E823L_SFP:
6385 case ICE_DEV_ID_E823C_10G_BASE_T:
6386 case ICE_DEV_ID_E823C_BACKPLANE:
6387 case ICE_DEV_ID_E823C_QSFP:
6388 case ICE_DEV_ID_E823C_SFP:
6389 case ICE_DEV_ID_E823C_SGMII:
6390 *pin_num = ICE_E82X_RCLK_PINS_NUM;
6392 if (hw->cgu_part_number ==
6393 ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032)
6394 *base_idx = ZL_REF1P;
6395 else if (hw->cgu_part_number ==
6396 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384)
6397 *base_idx = SI_REF1P;
6411 * ice_cgu_get_output_pin_state_caps - get output pin state capabilities
6412 * @hw: pointer to the hw struct
6413 * @pin_id: id of a pin
6414 * @caps: capabilities to modify
6417 * * 0 - success, state capabilities were modified
6418 * * negative - failure, capabilities were not modified
6420 int ice_cgu_get_output_pin_state_caps(struct ice_hw *hw, u8 pin_id,
6421 unsigned long *caps)
6423 bool can_change = true;
6425 switch (hw->device_id) {
6426 case ICE_DEV_ID_E810C_SFP:
6427 if (pin_id == ZL_OUT2 || pin_id == ZL_OUT3)
6430 case ICE_DEV_ID_E810C_QSFP:
6431 if (pin_id == ZL_OUT2 || pin_id == ZL_OUT3 || pin_id == ZL_OUT4)
6434 case ICE_DEV_ID_E823L_10G_BASE_T:
6435 case ICE_DEV_ID_E823L_1GBE:
6436 case ICE_DEV_ID_E823L_BACKPLANE:
6437 case ICE_DEV_ID_E823L_QSFP:
6438 case ICE_DEV_ID_E823L_SFP:
6439 case ICE_DEV_ID_E823C_10G_BASE_T:
6440 case ICE_DEV_ID_E823C_BACKPLANE:
6441 case ICE_DEV_ID_E823C_QSFP:
6442 case ICE_DEV_ID_E823C_SFP:
6443 case ICE_DEV_ID_E823C_SGMII:
6444 if (hw->cgu_part_number ==
6445 ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032 &&
6448 else if (hw->cgu_part_number ==
6449 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384 &&
6457 *caps |= DPLL_PIN_CAPABILITIES_STATE_CAN_CHANGE;
6459 *caps &= ~DPLL_PIN_CAPABILITIES_STATE_CAN_CHANGE;