]> Git Repo - linux.git/blob - drivers/net/ethernet/intel/ice/devlink/devlink.c
Linux 6.14-rc3
[linux.git] / drivers / net / ethernet / intel / ice / devlink / devlink.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2020, Intel Corporation. */
3
4 #include <linux/vmalloc.h>
5
6 #include "ice.h"
7 #include "ice_lib.h"
8 #include "devlink.h"
9 #include "port.h"
10 #include "ice_eswitch.h"
11 #include "ice_fw_update.h"
12 #include "ice_dcb_lib.h"
13 #include "ice_sf_eth.h"
14
15 /* context for devlink info version reporting */
16 struct ice_info_ctx {
17         char buf[128];
18         struct ice_orom_info pending_orom;
19         struct ice_nvm_info pending_nvm;
20         struct ice_netlist_info pending_netlist;
21         struct ice_hw_dev_caps dev_caps;
22 };
23
24 /* The following functions are used to format specific strings for various
25  * devlink info versions. The ctx parameter is used to provide the storage
26  * buffer, as well as any ancillary information calculated when the info
27  * request was made.
28  *
29  * If a version does not exist, for example when attempting to get the
30  * inactive version of flash when there is no pending update, the function
31  * should leave the buffer in the ctx structure empty.
32  */
33
34 static void ice_info_get_dsn(struct ice_pf *pf, struct ice_info_ctx *ctx)
35 {
36         u8 dsn[8];
37
38         /* Copy the DSN into an array in Big Endian format */
39         put_unaligned_be64(pci_get_dsn(pf->pdev), dsn);
40
41         snprintf(ctx->buf, sizeof(ctx->buf), "%8phD", dsn);
42 }
43
44 static void ice_info_pba(struct ice_pf *pf, struct ice_info_ctx *ctx)
45 {
46         struct ice_hw *hw = &pf->hw;
47         int status;
48
49         status = ice_read_pba_string(hw, (u8 *)ctx->buf, sizeof(ctx->buf));
50         if (status)
51                 /* We failed to locate the PBA, so just skip this entry */
52                 dev_dbg(ice_pf_to_dev(pf), "Failed to read Product Board Assembly string, status %d\n",
53                         status);
54 }
55
56 static void ice_info_fw_mgmt(struct ice_pf *pf, struct ice_info_ctx *ctx)
57 {
58         struct ice_hw *hw = &pf->hw;
59
60         snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
61                  hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch);
62 }
63
64 static void ice_info_fw_api(struct ice_pf *pf, struct ice_info_ctx *ctx)
65 {
66         struct ice_hw *hw = &pf->hw;
67
68         snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", hw->api_maj_ver,
69                  hw->api_min_ver, hw->api_patch);
70 }
71
72 static void ice_info_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
73 {
74         struct ice_hw *hw = &pf->hw;
75
76         snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", hw->fw_build);
77 }
78
79 static void ice_info_orom_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
80 {
81         struct ice_orom_info *orom = &pf->hw.flash.orom;
82
83         snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
84                  orom->major, orom->build, orom->patch);
85 }
86
87 static void
88 ice_info_pending_orom_ver(struct ice_pf __always_unused *pf,
89                           struct ice_info_ctx *ctx)
90 {
91         struct ice_orom_info *orom = &ctx->pending_orom;
92
93         if (ctx->dev_caps.common_cap.nvm_update_pending_orom)
94                 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
95                          orom->major, orom->build, orom->patch);
96 }
97
98 static void ice_info_nvm_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
99 {
100         struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
101
102         snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x", nvm->major, nvm->minor);
103 }
104
105 static void
106 ice_info_pending_nvm_ver(struct ice_pf __always_unused *pf,
107                          struct ice_info_ctx *ctx)
108 {
109         struct ice_nvm_info *nvm = &ctx->pending_nvm;
110
111         if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
112                 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x",
113                          nvm->major, nvm->minor);
114 }
115
116 static void ice_info_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
117 {
118         struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
119
120         snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
121 }
122
123 static void
124 ice_info_pending_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
125 {
126         struct ice_nvm_info *nvm = &ctx->pending_nvm;
127
128         if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
129                 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
130 }
131
132 static void ice_info_ddp_pkg_name(struct ice_pf *pf, struct ice_info_ctx *ctx)
133 {
134         struct ice_hw *hw = &pf->hw;
135
136         snprintf(ctx->buf, sizeof(ctx->buf), "%s", hw->active_pkg_name);
137 }
138
139 static void
140 ice_info_ddp_pkg_version(struct ice_pf *pf, struct ice_info_ctx *ctx)
141 {
142         struct ice_pkg_ver *pkg = &pf->hw.active_pkg_ver;
143
144         snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u.%u",
145                  pkg->major, pkg->minor, pkg->update, pkg->draft);
146 }
147
148 static void
149 ice_info_ddp_pkg_bundle_id(struct ice_pf *pf, struct ice_info_ctx *ctx)
150 {
151         snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", pf->hw.active_track_id);
152 }
153
154 static void ice_info_netlist_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
155 {
156         struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
157
158         /* The netlist version fields are BCD formatted */
159         snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
160                  netlist->major, netlist->minor,
161                  netlist->type >> 16, netlist->type & 0xFFFF,
162                  netlist->rev, netlist->cust_ver);
163 }
164
165 static void ice_info_netlist_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
166 {
167         struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
168
169         snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
170 }
171
172 static void
173 ice_info_pending_netlist_ver(struct ice_pf __always_unused *pf,
174                              struct ice_info_ctx *ctx)
175 {
176         struct ice_netlist_info *netlist = &ctx->pending_netlist;
177
178         /* The netlist version fields are BCD formatted */
179         if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
180                 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
181                          netlist->major, netlist->minor,
182                          netlist->type >> 16, netlist->type & 0xFFFF,
183                          netlist->rev, netlist->cust_ver);
184 }
185
186 static void
187 ice_info_pending_netlist_build(struct ice_pf __always_unused *pf,
188                                struct ice_info_ctx *ctx)
189 {
190         struct ice_netlist_info *netlist = &ctx->pending_netlist;
191
192         if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
193                 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
194 }
195
196 static void ice_info_cgu_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
197 {
198         u32 id, cfg_ver, fw_ver;
199
200         if (!ice_is_feature_supported(pf, ICE_F_CGU))
201                 return;
202         if (ice_aq_get_cgu_info(&pf->hw, &id, &cfg_ver, &fw_ver))
203                 return;
204         snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", id, cfg_ver, fw_ver);
205 }
206
207 static void ice_info_cgu_id(struct ice_pf *pf, struct ice_info_ctx *ctx)
208 {
209         if (!ice_is_feature_supported(pf, ICE_F_CGU))
210                 return;
211         snprintf(ctx->buf, sizeof(ctx->buf), "%u", pf->hw.cgu_part_number);
212 }
213
214 #define fixed(key, getter) { ICE_VERSION_FIXED, key, getter, NULL }
215 #define running(key, getter) { ICE_VERSION_RUNNING, key, getter, NULL }
216 #define stored(key, getter, fallback) { ICE_VERSION_STORED, key, getter, fallback }
217
218 /* The combined() macro inserts both the running entry as well as a stored
219  * entry. The running entry will always report the version from the active
220  * handler. The stored entry will first try the pending handler, and fallback
221  * to the active handler if the pending function does not report a version.
222  * The pending handler should check the status of a pending update for the
223  * relevant flash component. It should only fill in the buffer in the case
224  * where a valid pending version is available. This ensures that the related
225  * stored and running versions remain in sync, and that stored versions are
226  * correctly reported as expected.
227  */
228 #define combined(key, active, pending) \
229         running(key, active), \
230         stored(key, pending, active)
231
232 enum ice_version_type {
233         ICE_VERSION_FIXED,
234         ICE_VERSION_RUNNING,
235         ICE_VERSION_STORED,
236 };
237
238 static const struct ice_devlink_version {
239         enum ice_version_type type;
240         const char *key;
241         void (*getter)(struct ice_pf *pf, struct ice_info_ctx *ctx);
242         void (*fallback)(struct ice_pf *pf, struct ice_info_ctx *ctx);
243 } ice_devlink_versions[] = {
244         fixed(DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, ice_info_pba),
245         running(DEVLINK_INFO_VERSION_GENERIC_FW_MGMT, ice_info_fw_mgmt),
246         running("fw.mgmt.api", ice_info_fw_api),
247         running("fw.mgmt.build", ice_info_fw_build),
248         combined(DEVLINK_INFO_VERSION_GENERIC_FW_UNDI, ice_info_orom_ver, ice_info_pending_orom_ver),
249         combined("fw.psid.api", ice_info_nvm_ver, ice_info_pending_nvm_ver),
250         combined(DEVLINK_INFO_VERSION_GENERIC_FW_BUNDLE_ID, ice_info_eetrack, ice_info_pending_eetrack),
251         running("fw.app.name", ice_info_ddp_pkg_name),
252         running(DEVLINK_INFO_VERSION_GENERIC_FW_APP, ice_info_ddp_pkg_version),
253         running("fw.app.bundle_id", ice_info_ddp_pkg_bundle_id),
254         combined("fw.netlist", ice_info_netlist_ver, ice_info_pending_netlist_ver),
255         combined("fw.netlist.build", ice_info_netlist_build, ice_info_pending_netlist_build),
256         fixed("cgu.id", ice_info_cgu_id),
257         running("fw.cgu", ice_info_cgu_fw_build),
258 };
259
260 /**
261  * ice_devlink_info_get - .info_get devlink handler
262  * @devlink: devlink instance structure
263  * @req: the devlink info request
264  * @extack: extended netdev ack structure
265  *
266  * Callback for the devlink .info_get operation. Reports information about the
267  * device.
268  *
269  * Return: zero on success or an error code on failure.
270  */
271 static int ice_devlink_info_get(struct devlink *devlink,
272                                 struct devlink_info_req *req,
273                                 struct netlink_ext_ack *extack)
274 {
275         struct ice_pf *pf = devlink_priv(devlink);
276         struct device *dev = ice_pf_to_dev(pf);
277         struct ice_hw *hw = &pf->hw;
278         struct ice_info_ctx *ctx;
279         size_t i;
280         int err;
281
282         err = ice_wait_for_reset(pf, 10 * HZ);
283         if (err) {
284                 NL_SET_ERR_MSG_MOD(extack, "Device is busy resetting");
285                 return err;
286         }
287
288         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
289         if (!ctx)
290                 return -ENOMEM;
291
292         /* discover capabilities first */
293         err = ice_discover_dev_caps(hw, &ctx->dev_caps);
294         if (err) {
295                 dev_dbg(dev, "Failed to discover device capabilities, status %d aq_err %s\n",
296                         err, ice_aq_str(hw->adminq.sq_last_status));
297                 NL_SET_ERR_MSG_MOD(extack, "Unable to discover device capabilities");
298                 goto out_free_ctx;
299         }
300
301         if (ctx->dev_caps.common_cap.nvm_update_pending_orom) {
302                 err = ice_get_inactive_orom_ver(hw, &ctx->pending_orom);
303                 if (err) {
304                         dev_dbg(dev, "Unable to read inactive Option ROM version data, status %d aq_err %s\n",
305                                 err, ice_aq_str(hw->adminq.sq_last_status));
306
307                         /* disable display of pending Option ROM */
308                         ctx->dev_caps.common_cap.nvm_update_pending_orom = false;
309                 }
310         }
311
312         if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) {
313                 err = ice_get_inactive_nvm_ver(hw, &ctx->pending_nvm);
314                 if (err) {
315                         dev_dbg(dev, "Unable to read inactive NVM version data, status %d aq_err %s\n",
316                                 err, ice_aq_str(hw->adminq.sq_last_status));
317
318                         /* disable display of pending Option ROM */
319                         ctx->dev_caps.common_cap.nvm_update_pending_nvm = false;
320                 }
321         }
322
323         if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) {
324                 err = ice_get_inactive_netlist_ver(hw, &ctx->pending_netlist);
325                 if (err) {
326                         dev_dbg(dev, "Unable to read inactive Netlist version data, status %d aq_err %s\n",
327                                 err, ice_aq_str(hw->adminq.sq_last_status));
328
329                         /* disable display of pending Option ROM */
330                         ctx->dev_caps.common_cap.nvm_update_pending_netlist = false;
331                 }
332         }
333
334         ice_info_get_dsn(pf, ctx);
335
336         err = devlink_info_serial_number_put(req, ctx->buf);
337         if (err) {
338                 NL_SET_ERR_MSG_MOD(extack, "Unable to set serial number");
339                 goto out_free_ctx;
340         }
341
342         for (i = 0; i < ARRAY_SIZE(ice_devlink_versions); i++) {
343                 enum ice_version_type type = ice_devlink_versions[i].type;
344                 const char *key = ice_devlink_versions[i].key;
345
346                 memset(ctx->buf, 0, sizeof(ctx->buf));
347
348                 ice_devlink_versions[i].getter(pf, ctx);
349
350                 /* If the default getter doesn't report a version, use the
351                  * fallback function. This is primarily useful in the case of
352                  * "stored" versions that want to report the same value as the
353                  * running version in the normal case of no pending update.
354                  */
355                 if (ctx->buf[0] == '\0' && ice_devlink_versions[i].fallback)
356                         ice_devlink_versions[i].fallback(pf, ctx);
357
358                 /* Do not report missing versions */
359                 if (ctx->buf[0] == '\0')
360                         continue;
361
362                 switch (type) {
363                 case ICE_VERSION_FIXED:
364                         err = devlink_info_version_fixed_put(req, key, ctx->buf);
365                         if (err) {
366                                 NL_SET_ERR_MSG_MOD(extack, "Unable to set fixed version");
367                                 goto out_free_ctx;
368                         }
369                         break;
370                 case ICE_VERSION_RUNNING:
371                         err = devlink_info_version_running_put_ext(req, key,
372                                                                    ctx->buf,
373                                                                    DEVLINK_INFO_VERSION_TYPE_COMPONENT);
374                         if (err) {
375                                 NL_SET_ERR_MSG_MOD(extack, "Unable to set running version");
376                                 goto out_free_ctx;
377                         }
378                         break;
379                 case ICE_VERSION_STORED:
380                         err = devlink_info_version_stored_put_ext(req, key,
381                                                                   ctx->buf,
382                                                                   DEVLINK_INFO_VERSION_TYPE_COMPONENT);
383                         if (err) {
384                                 NL_SET_ERR_MSG_MOD(extack, "Unable to set stored version");
385                                 goto out_free_ctx;
386                         }
387                         break;
388                 }
389         }
390
391 out_free_ctx:
392         kfree(ctx);
393         return err;
394 }
395
396 /**
397  * ice_devlink_reload_empr_start - Start EMP reset to activate new firmware
398  * @pf: pointer to the pf instance
399  * @extack: netlink extended ACK structure
400  *
401  * Allow user to activate new Embedded Management Processor firmware by
402  * issuing device specific EMP reset. Called in response to
403  * a DEVLINK_CMD_RELOAD with the DEVLINK_RELOAD_ACTION_FW_ACTIVATE.
404  *
405  * Note that teardown and rebuild of the driver state happens automatically as
406  * part of an interrupt and watchdog task. This is because all physical
407  * functions on the device must be able to reset when an EMP reset occurs from
408  * any source.
409  */
410 static int
411 ice_devlink_reload_empr_start(struct ice_pf *pf,
412                               struct netlink_ext_ack *extack)
413 {
414         struct device *dev = ice_pf_to_dev(pf);
415         struct ice_hw *hw = &pf->hw;
416         u8 pending;
417         int err;
418
419         err = ice_get_pending_updates(pf, &pending, extack);
420         if (err)
421                 return err;
422
423         /* pending is a bitmask of which flash banks have a pending update,
424          * including the main NVM bank, the Option ROM bank, and the netlist
425          * bank. If any of these bits are set, then there is a pending update
426          * waiting to be activated.
427          */
428         if (!pending) {
429                 NL_SET_ERR_MSG_MOD(extack, "No pending firmware update");
430                 return -ECANCELED;
431         }
432
433         if (pf->fw_emp_reset_disabled) {
434                 NL_SET_ERR_MSG_MOD(extack, "EMP reset is not available. To activate firmware, a reboot or power cycle is needed");
435                 return -ECANCELED;
436         }
437
438         dev_dbg(dev, "Issuing device EMP reset to activate firmware\n");
439
440         err = ice_aq_nvm_update_empr(hw);
441         if (err) {
442                 dev_err(dev, "Failed to trigger EMP device reset to reload firmware, err %d aq_err %s\n",
443                         err, ice_aq_str(hw->adminq.sq_last_status));
444                 NL_SET_ERR_MSG_MOD(extack, "Failed to trigger EMP device reset to reload firmware");
445                 return err;
446         }
447
448         return 0;
449 }
450
451 /**
452  * ice_devlink_reinit_down - unload given PF
453  * @pf: pointer to the PF struct
454  */
455 static void ice_devlink_reinit_down(struct ice_pf *pf)
456 {
457         /* No need to take devl_lock, it's already taken by devlink API */
458         ice_unload(pf);
459         rtnl_lock();
460         ice_vsi_decfg(ice_get_main_vsi(pf));
461         rtnl_unlock();
462         ice_deinit_dev(pf);
463 }
464
465 /**
466  * ice_devlink_reload_down - prepare for reload
467  * @devlink: pointer to the devlink instance to reload
468  * @netns_change: if true, the network namespace is changing
469  * @action: the action to perform
470  * @limit: limits on what reload should do, such as not resetting
471  * @extack: netlink extended ACK structure
472  */
473 static int
474 ice_devlink_reload_down(struct devlink *devlink, bool netns_change,
475                         enum devlink_reload_action action,
476                         enum devlink_reload_limit limit,
477                         struct netlink_ext_ack *extack)
478 {
479         struct ice_pf *pf = devlink_priv(devlink);
480
481         switch (action) {
482         case DEVLINK_RELOAD_ACTION_DRIVER_REINIT:
483                 if (ice_is_eswitch_mode_switchdev(pf)) {
484                         NL_SET_ERR_MSG_MOD(extack,
485                                            "Go to legacy mode before doing reinit");
486                         return -EOPNOTSUPP;
487                 }
488                 if (ice_is_adq_active(pf)) {
489                         NL_SET_ERR_MSG_MOD(extack,
490                                            "Turn off ADQ before doing reinit");
491                         return -EOPNOTSUPP;
492                 }
493                 if (ice_has_vfs(pf)) {
494                         NL_SET_ERR_MSG_MOD(extack,
495                                            "Remove all VFs before doing reinit");
496                         return -EOPNOTSUPP;
497                 }
498                 ice_devlink_reinit_down(pf);
499                 return 0;
500         case DEVLINK_RELOAD_ACTION_FW_ACTIVATE:
501                 return ice_devlink_reload_empr_start(pf, extack);
502         default:
503                 WARN_ON(1);
504                 return -EOPNOTSUPP;
505         }
506 }
507
508 /**
509  * ice_devlink_reload_empr_finish - Wait for EMP reset to finish
510  * @pf: pointer to the pf instance
511  * @extack: netlink extended ACK structure
512  *
513  * Wait for driver to finish rebuilding after EMP reset is completed. This
514  * includes time to wait for both the actual device reset as well as the time
515  * for the driver's rebuild to complete.
516  */
517 static int
518 ice_devlink_reload_empr_finish(struct ice_pf *pf,
519                                struct netlink_ext_ack *extack)
520 {
521         int err;
522
523         err = ice_wait_for_reset(pf, 60 * HZ);
524         if (err) {
525                 NL_SET_ERR_MSG_MOD(extack, "Device still resetting after 1 minute");
526                 return err;
527         }
528
529         return 0;
530 }
531
532 /**
533  * ice_get_tx_topo_user_sel - Read user's choice from flash
534  * @pf: pointer to pf structure
535  * @layers: value read from flash will be saved here
536  *
537  * Reads user's preference for Tx Scheduler Topology Tree from PFA TLV.
538  *
539  * Return: zero when read was successful, negative values otherwise.
540  */
541 static int ice_get_tx_topo_user_sel(struct ice_pf *pf, uint8_t *layers)
542 {
543         struct ice_aqc_nvm_tx_topo_user_sel usr_sel = {};
544         struct ice_hw *hw = &pf->hw;
545         int err;
546
547         err = ice_acquire_nvm(hw, ICE_RES_READ);
548         if (err)
549                 return err;
550
551         err = ice_aq_read_nvm(hw, ICE_AQC_NVM_TX_TOPO_MOD_ID, 0,
552                               sizeof(usr_sel), &usr_sel, true, true, NULL);
553         if (err)
554                 goto exit_release_res;
555
556         if (usr_sel.data & ICE_AQC_NVM_TX_TOPO_USER_SEL)
557                 *layers = ICE_SCHED_5_LAYERS;
558         else
559                 *layers = ICE_SCHED_9_LAYERS;
560
561 exit_release_res:
562         ice_release_nvm(hw);
563
564         return err;
565 }
566
567 /**
568  * ice_update_tx_topo_user_sel - Save user's preference in flash
569  * @pf: pointer to pf structure
570  * @layers: value to be saved in flash
571  *
572  * Variable "layers" defines user's preference about number of layers in Tx
573  * Scheduler Topology Tree. This choice should be stored in PFA TLV field
574  * and be picked up by driver, next time during init.
575  *
576  * Return: zero when save was successful, negative values otherwise.
577  */
578 static int ice_update_tx_topo_user_sel(struct ice_pf *pf, int layers)
579 {
580         struct ice_aqc_nvm_tx_topo_user_sel usr_sel = {};
581         struct ice_hw *hw = &pf->hw;
582         int err;
583
584         err = ice_acquire_nvm(hw, ICE_RES_WRITE);
585         if (err)
586                 return err;
587
588         err = ice_aq_read_nvm(hw, ICE_AQC_NVM_TX_TOPO_MOD_ID, 0,
589                               sizeof(usr_sel), &usr_sel, true, true, NULL);
590         if (err)
591                 goto exit_release_res;
592
593         if (layers == ICE_SCHED_5_LAYERS)
594                 usr_sel.data |= ICE_AQC_NVM_TX_TOPO_USER_SEL;
595         else
596                 usr_sel.data &= ~ICE_AQC_NVM_TX_TOPO_USER_SEL;
597
598         err = ice_write_one_nvm_block(pf, ICE_AQC_NVM_TX_TOPO_MOD_ID, 2,
599                                       sizeof(usr_sel.data), &usr_sel.data,
600                                       true, NULL, NULL);
601 exit_release_res:
602         ice_release_nvm(hw);
603
604         return err;
605 }
606
607 /**
608  * ice_devlink_tx_sched_layers_get - Get tx_scheduling_layers parameter
609  * @devlink: pointer to the devlink instance
610  * @id: the parameter ID to set
611  * @ctx: context to store the parameter value
612  *
613  * Return: zero on success and negative value on failure.
614  */
615 static int ice_devlink_tx_sched_layers_get(struct devlink *devlink, u32 id,
616                                            struct devlink_param_gset_ctx *ctx)
617 {
618         struct ice_pf *pf = devlink_priv(devlink);
619         int err;
620
621         err = ice_get_tx_topo_user_sel(pf, &ctx->val.vu8);
622         if (err)
623                 return err;
624
625         return 0;
626 }
627
628 /**
629  * ice_devlink_tx_sched_layers_set - Set tx_scheduling_layers parameter
630  * @devlink: pointer to the devlink instance
631  * @id: the parameter ID to set
632  * @ctx: context to get the parameter value
633  * @extack: netlink extended ACK structure
634  *
635  * Return: zero on success and negative value on failure.
636  */
637 static int ice_devlink_tx_sched_layers_set(struct devlink *devlink, u32 id,
638                                            struct devlink_param_gset_ctx *ctx,
639                                            struct netlink_ext_ack *extack)
640 {
641         struct ice_pf *pf = devlink_priv(devlink);
642         int err;
643
644         err = ice_update_tx_topo_user_sel(pf, ctx->val.vu8);
645         if (err)
646                 return err;
647
648         NL_SET_ERR_MSG_MOD(extack,
649                            "Tx scheduling layers have been changed on this device. You must do the PCI slot powercycle for the change to take effect.");
650
651         return 0;
652 }
653
654 /**
655  * ice_devlink_tx_sched_layers_validate - Validate passed tx_scheduling_layers
656  *                                        parameter value
657  * @devlink: unused pointer to devlink instance
658  * @id: the parameter ID to validate
659  * @val: value to validate
660  * @extack: netlink extended ACK structure
661  *
662  * Supported values are:
663  * - 5 - five layers Tx Scheduler Topology Tree
664  * - 9 - nine layers Tx Scheduler Topology Tree
665  *
666  * Return: zero when passed parameter value is supported. Negative value on
667  * error.
668  */
669 static int ice_devlink_tx_sched_layers_validate(struct devlink *devlink, u32 id,
670                                                 union devlink_param_value val,
671                                                 struct netlink_ext_ack *extack)
672 {
673         if (val.vu8 != ICE_SCHED_5_LAYERS && val.vu8 != ICE_SCHED_9_LAYERS) {
674                 NL_SET_ERR_MSG_MOD(extack,
675                                    "Wrong number of tx scheduler layers provided.");
676                 return -EINVAL;
677         }
678
679         return 0;
680 }
681
682 /**
683  * ice_tear_down_devlink_rate_tree - removes devlink-rate exported tree
684  * @pf: pf struct
685  *
686  * This function tears down tree exported during VF's creation.
687  */
688 void ice_tear_down_devlink_rate_tree(struct ice_pf *pf)
689 {
690         struct devlink *devlink;
691         struct ice_vf *vf;
692         unsigned int bkt;
693
694         devlink = priv_to_devlink(pf);
695
696         devl_lock(devlink);
697         mutex_lock(&pf->vfs.table_lock);
698         ice_for_each_vf(pf, bkt, vf) {
699                 if (vf->devlink_port.devlink_rate)
700                         devl_rate_leaf_destroy(&vf->devlink_port);
701         }
702         mutex_unlock(&pf->vfs.table_lock);
703
704         devl_rate_nodes_destroy(devlink);
705         devl_unlock(devlink);
706 }
707
708 /**
709  * ice_enable_custom_tx - try to enable custom Tx feature
710  * @pf: pf struct
711  *
712  * This function tries to enable custom Tx feature,
713  * it's not possible to enable it, if DCB or ADQ is active.
714  */
715 static bool ice_enable_custom_tx(struct ice_pf *pf)
716 {
717         struct ice_port_info *pi = ice_get_main_vsi(pf)->port_info;
718         struct device *dev = ice_pf_to_dev(pf);
719
720         if (pi->is_custom_tx_enabled)
721                 /* already enabled, return true */
722                 return true;
723
724         if (ice_is_adq_active(pf)) {
725                 dev_err(dev, "ADQ active, can't modify Tx scheduler tree\n");
726                 return false;
727         }
728
729         if (ice_is_dcb_active(pf)) {
730                 dev_err(dev, "DCB active, can't modify Tx scheduler tree\n");
731                 return false;
732         }
733
734         pi->is_custom_tx_enabled = true;
735
736         return true;
737 }
738
739 /**
740  * ice_traverse_tx_tree - traverse Tx scheduler tree
741  * @devlink: devlink struct
742  * @node: current node, used for recursion
743  * @tc_node: tc_node struct, that is treated as a root
744  * @pf: pf struct
745  *
746  * This function traverses Tx scheduler tree and exports
747  * entire structure to the devlink-rate.
748  */
749 static void ice_traverse_tx_tree(struct devlink *devlink, struct ice_sched_node *node,
750                                  struct ice_sched_node *tc_node, struct ice_pf *pf)
751 {
752         struct devlink_rate *rate_node = NULL;
753         struct ice_dynamic_port *sf;
754         struct ice_vf *vf;
755         int i;
756
757         if (node->rate_node)
758                 /* already added, skip to the next */
759                 goto traverse_children;
760
761         if (node->parent == tc_node) {
762                 /* create root node */
763                 rate_node = devl_rate_node_create(devlink, node, node->name, NULL);
764         } else if (node->vsi_handle &&
765                    pf->vsi[node->vsi_handle]->type == ICE_VSI_VF &&
766                    pf->vsi[node->vsi_handle]->vf) {
767                 vf = pf->vsi[node->vsi_handle]->vf;
768                 if (!vf->devlink_port.devlink_rate)
769                         /* leaf nodes doesn't have children
770                          * so we don't set rate_node
771                          */
772                         devl_rate_leaf_create(&vf->devlink_port, node,
773                                               node->parent->rate_node);
774         } else if (node->vsi_handle &&
775                    pf->vsi[node->vsi_handle]->type == ICE_VSI_SF &&
776                    pf->vsi[node->vsi_handle]->sf) {
777                 sf = pf->vsi[node->vsi_handle]->sf;
778                 if (!sf->devlink_port.devlink_rate)
779                         /* leaf nodes doesn't have children
780                          * so we don't set rate_node
781                          */
782                         devl_rate_leaf_create(&sf->devlink_port, node,
783                                               node->parent->rate_node);
784         } else if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF &&
785                    node->parent->rate_node) {
786                 rate_node = devl_rate_node_create(devlink, node, node->name,
787                                                   node->parent->rate_node);
788         }
789
790         if (rate_node && !IS_ERR(rate_node))
791                 node->rate_node = rate_node;
792
793 traverse_children:
794         for (i = 0; i < node->num_children; i++)
795                 ice_traverse_tx_tree(devlink, node->children[i], tc_node, pf);
796 }
797
798 /**
799  * ice_devlink_rate_init_tx_topology - export Tx scheduler tree to devlink rate
800  * @devlink: devlink struct
801  * @vsi: main vsi struct
802  *
803  * This function finds a root node, then calls ice_traverse_tx tree, which
804  * traverses the tree and exports it's contents to devlink rate.
805  */
806 int ice_devlink_rate_init_tx_topology(struct devlink *devlink, struct ice_vsi *vsi)
807 {
808         struct ice_port_info *pi = vsi->port_info;
809         struct ice_sched_node *tc_node;
810         struct ice_pf *pf = vsi->back;
811         int i;
812
813         tc_node = pi->root->children[0];
814         mutex_lock(&pi->sched_lock);
815         for (i = 0; i < tc_node->num_children; i++)
816                 ice_traverse_tx_tree(devlink, tc_node->children[i], tc_node, pf);
817         mutex_unlock(&pi->sched_lock);
818
819         return 0;
820 }
821
822 static void ice_clear_rate_nodes(struct ice_sched_node *node)
823 {
824         node->rate_node = NULL;
825
826         for (int i = 0; i < node->num_children; i++)
827                 ice_clear_rate_nodes(node->children[i]);
828 }
829
830 /**
831  * ice_devlink_rate_clear_tx_topology - clear node->rate_node
832  * @vsi: main vsi struct
833  *
834  * Clear rate_node to cleanup creation of Tx topology.
835  *
836  */
837 void ice_devlink_rate_clear_tx_topology(struct ice_vsi *vsi)
838 {
839         struct ice_port_info *pi = vsi->port_info;
840
841         mutex_lock(&pi->sched_lock);
842         ice_clear_rate_nodes(pi->root->children[0]);
843         mutex_unlock(&pi->sched_lock);
844 }
845
846 /**
847  * ice_set_object_tx_share - sets node scheduling parameter
848  * @pi: devlink struct instance
849  * @node: node struct instance
850  * @bw: bandwidth in bytes per second
851  * @extack: extended netdev ack structure
852  *
853  * This function sets ICE_MIN_BW scheduling BW limit.
854  */
855 static int ice_set_object_tx_share(struct ice_port_info *pi, struct ice_sched_node *node,
856                                    u64 bw, struct netlink_ext_ack *extack)
857 {
858         int status;
859
860         mutex_lock(&pi->sched_lock);
861         /* converts bytes per second to kilo bits per second */
862         node->tx_share = div_u64(bw, 125);
863         status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, node->tx_share);
864         mutex_unlock(&pi->sched_lock);
865
866         if (status)
867                 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_share");
868
869         return status;
870 }
871
872 /**
873  * ice_set_object_tx_max - sets node scheduling parameter
874  * @pi: devlink struct instance
875  * @node: node struct instance
876  * @bw: bandwidth in bytes per second
877  * @extack: extended netdev ack structure
878  *
879  * This function sets ICE_MAX_BW scheduling BW limit.
880  */
881 static int ice_set_object_tx_max(struct ice_port_info *pi, struct ice_sched_node *node,
882                                  u64 bw, struct netlink_ext_ack *extack)
883 {
884         int status;
885
886         mutex_lock(&pi->sched_lock);
887         /* converts bytes per second value to kilo bits per second */
888         node->tx_max = div_u64(bw, 125);
889         status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, node->tx_max);
890         mutex_unlock(&pi->sched_lock);
891
892         if (status)
893                 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_max");
894
895         return status;
896 }
897
898 /**
899  * ice_set_object_tx_priority - sets node scheduling parameter
900  * @pi: devlink struct instance
901  * @node: node struct instance
902  * @priority: value representing priority for strict priority arbitration
903  * @extack: extended netdev ack structure
904  *
905  * This function sets priority of node among siblings.
906  */
907 static int ice_set_object_tx_priority(struct ice_port_info *pi, struct ice_sched_node *node,
908                                       u32 priority, struct netlink_ext_ack *extack)
909 {
910         int status;
911
912         if (priority >= 8) {
913                 NL_SET_ERR_MSG_MOD(extack, "Priority should be less than 8");
914                 return -EINVAL;
915         }
916
917         mutex_lock(&pi->sched_lock);
918         node->tx_priority = priority;
919         status = ice_sched_set_node_priority(pi, node, node->tx_priority);
920         mutex_unlock(&pi->sched_lock);
921
922         if (status)
923                 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_priority");
924
925         return status;
926 }
927
928 /**
929  * ice_set_object_tx_weight - sets node scheduling parameter
930  * @pi: devlink struct instance
931  * @node: node struct instance
932  * @weight: value represeting relative weight for WFQ arbitration
933  * @extack: extended netdev ack structure
934  *
935  * This function sets node weight for WFQ algorithm.
936  */
937 static int ice_set_object_tx_weight(struct ice_port_info *pi, struct ice_sched_node *node,
938                                     u32 weight, struct netlink_ext_ack *extack)
939 {
940         int status;
941
942         if (weight > 200 || weight < 1) {
943                 NL_SET_ERR_MSG_MOD(extack, "Weight must be between 1 and 200");
944                 return -EINVAL;
945         }
946
947         mutex_lock(&pi->sched_lock);
948         node->tx_weight = weight;
949         status = ice_sched_set_node_weight(pi, node, node->tx_weight);
950         mutex_unlock(&pi->sched_lock);
951
952         if (status)
953                 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_weight");
954
955         return status;
956 }
957
958 /**
959  * ice_get_pi_from_dev_rate - get port info from devlink_rate
960  * @rate_node: devlink struct instance
961  *
962  * This function returns corresponding port_info struct of devlink_rate
963  */
964 static struct ice_port_info *ice_get_pi_from_dev_rate(struct devlink_rate *rate_node)
965 {
966         struct ice_pf *pf = devlink_priv(rate_node->devlink);
967
968         return ice_get_main_vsi(pf)->port_info;
969 }
970
971 static int ice_devlink_rate_node_new(struct devlink_rate *rate_node, void **priv,
972                                      struct netlink_ext_ack *extack)
973 {
974         struct ice_sched_node *node;
975         struct ice_port_info *pi;
976
977         pi = ice_get_pi_from_dev_rate(rate_node);
978
979         if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
980                 return -EBUSY;
981
982         /* preallocate memory for ice_sched_node */
983         node = devm_kzalloc(ice_hw_to_dev(pi->hw), sizeof(*node), GFP_KERNEL);
984         if (!node)
985                 return -ENOMEM;
986
987         *priv = node;
988
989         return 0;
990 }
991
992 static int ice_devlink_rate_node_del(struct devlink_rate *rate_node, void *priv,
993                                      struct netlink_ext_ack *extack)
994 {
995         struct ice_sched_node *node, *tc_node;
996         struct ice_port_info *pi;
997
998         pi = ice_get_pi_from_dev_rate(rate_node);
999         tc_node = pi->root->children[0];
1000         node = priv;
1001
1002         if (!rate_node->parent || !node || tc_node == node || !extack)
1003                 return 0;
1004
1005         if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1006                 return -EBUSY;
1007
1008         /* can't allow to delete a node with children */
1009         if (node->num_children)
1010                 return -EINVAL;
1011
1012         mutex_lock(&pi->sched_lock);
1013         ice_free_sched_node(pi, node);
1014         mutex_unlock(&pi->sched_lock);
1015
1016         return 0;
1017 }
1018
1019 static int ice_devlink_rate_leaf_tx_max_set(struct devlink_rate *rate_leaf, void *priv,
1020                                             u64 tx_max, struct netlink_ext_ack *extack)
1021 {
1022         struct ice_sched_node *node = priv;
1023
1024         if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1025                 return -EBUSY;
1026
1027         if (!node)
1028                 return 0;
1029
1030         return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_leaf),
1031                                      node, tx_max, extack);
1032 }
1033
1034 static int ice_devlink_rate_leaf_tx_share_set(struct devlink_rate *rate_leaf, void *priv,
1035                                               u64 tx_share, struct netlink_ext_ack *extack)
1036 {
1037         struct ice_sched_node *node = priv;
1038
1039         if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1040                 return -EBUSY;
1041
1042         if (!node)
1043                 return 0;
1044
1045         return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_leaf), node,
1046                                        tx_share, extack);
1047 }
1048
1049 static int ice_devlink_rate_leaf_tx_priority_set(struct devlink_rate *rate_leaf, void *priv,
1050                                                  u32 tx_priority, struct netlink_ext_ack *extack)
1051 {
1052         struct ice_sched_node *node = priv;
1053
1054         if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1055                 return -EBUSY;
1056
1057         if (!node)
1058                 return 0;
1059
1060         return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_leaf), node,
1061                                           tx_priority, extack);
1062 }
1063
1064 static int ice_devlink_rate_leaf_tx_weight_set(struct devlink_rate *rate_leaf, void *priv,
1065                                                u32 tx_weight, struct netlink_ext_ack *extack)
1066 {
1067         struct ice_sched_node *node = priv;
1068
1069         if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1070                 return -EBUSY;
1071
1072         if (!node)
1073                 return 0;
1074
1075         return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_leaf), node,
1076                                         tx_weight, extack);
1077 }
1078
1079 static int ice_devlink_rate_node_tx_max_set(struct devlink_rate *rate_node, void *priv,
1080                                             u64 tx_max, struct netlink_ext_ack *extack)
1081 {
1082         struct ice_sched_node *node = priv;
1083
1084         if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1085                 return -EBUSY;
1086
1087         if (!node)
1088                 return 0;
1089
1090         return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_node),
1091                                      node, tx_max, extack);
1092 }
1093
1094 static int ice_devlink_rate_node_tx_share_set(struct devlink_rate *rate_node, void *priv,
1095                                               u64 tx_share, struct netlink_ext_ack *extack)
1096 {
1097         struct ice_sched_node *node = priv;
1098
1099         if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1100                 return -EBUSY;
1101
1102         if (!node)
1103                 return 0;
1104
1105         return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_node),
1106                                        node, tx_share, extack);
1107 }
1108
1109 static int ice_devlink_rate_node_tx_priority_set(struct devlink_rate *rate_node, void *priv,
1110                                                  u32 tx_priority, struct netlink_ext_ack *extack)
1111 {
1112         struct ice_sched_node *node = priv;
1113
1114         if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1115                 return -EBUSY;
1116
1117         if (!node)
1118                 return 0;
1119
1120         return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_node),
1121                                           node, tx_priority, extack);
1122 }
1123
1124 static int ice_devlink_rate_node_tx_weight_set(struct devlink_rate *rate_node, void *priv,
1125                                                u32 tx_weight, struct netlink_ext_ack *extack)
1126 {
1127         struct ice_sched_node *node = priv;
1128
1129         if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1130                 return -EBUSY;
1131
1132         if (!node)
1133                 return 0;
1134
1135         return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_node),
1136                                         node, tx_weight, extack);
1137 }
1138
1139 static int ice_devlink_set_parent(struct devlink_rate *devlink_rate,
1140                                   struct devlink_rate *parent,
1141                                   void *priv, void *parent_priv,
1142                                   struct netlink_ext_ack *extack)
1143 {
1144         struct ice_port_info *pi = ice_get_pi_from_dev_rate(devlink_rate);
1145         struct ice_sched_node *tc_node, *node, *parent_node;
1146         u16 num_nodes_added;
1147         u32 first_node_teid;
1148         u32 node_teid;
1149         int status;
1150
1151         tc_node = pi->root->children[0];
1152         node = priv;
1153
1154         if (!extack)
1155                 return 0;
1156
1157         if (!ice_enable_custom_tx(devlink_priv(devlink_rate->devlink)))
1158                 return -EBUSY;
1159
1160         if (!parent) {
1161                 if (!node || tc_node == node || node->num_children)
1162                         return -EINVAL;
1163
1164                 mutex_lock(&pi->sched_lock);
1165                 ice_free_sched_node(pi, node);
1166                 mutex_unlock(&pi->sched_lock);
1167
1168                 return 0;
1169         }
1170
1171         parent_node = parent_priv;
1172
1173         /* if the node doesn't exist, create it */
1174         if (!node->parent) {
1175                 mutex_lock(&pi->sched_lock);
1176                 status = ice_sched_add_elems(pi, tc_node, parent_node,
1177                                              parent_node->tx_sched_layer + 1,
1178                                              1, &num_nodes_added, &first_node_teid,
1179                                              &node);
1180                 mutex_unlock(&pi->sched_lock);
1181
1182                 if (status) {
1183                         NL_SET_ERR_MSG_MOD(extack, "Can't add a new node");
1184                         return status;
1185                 }
1186
1187                 if (devlink_rate->tx_share)
1188                         ice_set_object_tx_share(pi, node, devlink_rate->tx_share, extack);
1189                 if (devlink_rate->tx_max)
1190                         ice_set_object_tx_max(pi, node, devlink_rate->tx_max, extack);
1191                 if (devlink_rate->tx_priority)
1192                         ice_set_object_tx_priority(pi, node, devlink_rate->tx_priority, extack);
1193                 if (devlink_rate->tx_weight)
1194                         ice_set_object_tx_weight(pi, node, devlink_rate->tx_weight, extack);
1195         } else {
1196                 node_teid = le32_to_cpu(node->info.node_teid);
1197                 mutex_lock(&pi->sched_lock);
1198                 status = ice_sched_move_nodes(pi, parent_node, 1, &node_teid);
1199                 mutex_unlock(&pi->sched_lock);
1200
1201                 if (status)
1202                         NL_SET_ERR_MSG_MOD(extack, "Can't move existing node to a new parent");
1203         }
1204
1205         return status;
1206 }
1207
1208 /**
1209  * ice_devlink_reinit_up - do reinit of the given PF
1210  * @pf: pointer to the PF struct
1211  */
1212 static int ice_devlink_reinit_up(struct ice_pf *pf)
1213 {
1214         struct ice_vsi *vsi = ice_get_main_vsi(pf);
1215         int err;
1216
1217         err = ice_init_hw(&pf->hw);
1218         if (err) {
1219                 dev_err(ice_pf_to_dev(pf), "ice_init_hw failed: %d\n", err);
1220                 return err;
1221         }
1222
1223         err = ice_init_dev(pf);
1224         if (err)
1225                 goto unroll_hw_init;
1226
1227         vsi->flags = ICE_VSI_FLAG_INIT;
1228
1229         rtnl_lock();
1230         err = ice_vsi_cfg(vsi);
1231         rtnl_unlock();
1232         if (err)
1233                 goto err_vsi_cfg;
1234
1235         /* No need to take devl_lock, it's already taken by devlink API */
1236         err = ice_load(pf);
1237         if (err)
1238                 goto err_load;
1239
1240         return 0;
1241
1242 err_load:
1243         rtnl_lock();
1244         ice_vsi_decfg(vsi);
1245         rtnl_unlock();
1246 err_vsi_cfg:
1247         ice_deinit_dev(pf);
1248 unroll_hw_init:
1249         ice_deinit_hw(&pf->hw);
1250         return err;
1251 }
1252
1253 /**
1254  * ice_devlink_reload_up - do reload up after reinit
1255  * @devlink: pointer to the devlink instance reloading
1256  * @action: the action requested
1257  * @limit: limits imposed by userspace, such as not resetting
1258  * @actions_performed: on return, indicate what actions actually performed
1259  * @extack: netlink extended ACK structure
1260  */
1261 static int
1262 ice_devlink_reload_up(struct devlink *devlink,
1263                       enum devlink_reload_action action,
1264                       enum devlink_reload_limit limit,
1265                       u32 *actions_performed,
1266                       struct netlink_ext_ack *extack)
1267 {
1268         struct ice_pf *pf = devlink_priv(devlink);
1269
1270         switch (action) {
1271         case DEVLINK_RELOAD_ACTION_DRIVER_REINIT:
1272                 *actions_performed = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT);
1273                 return ice_devlink_reinit_up(pf);
1274         case DEVLINK_RELOAD_ACTION_FW_ACTIVATE:
1275                 *actions_performed = BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE);
1276                 return ice_devlink_reload_empr_finish(pf, extack);
1277         default:
1278                 WARN_ON(1);
1279                 return -EOPNOTSUPP;
1280         }
1281 }
1282
1283 static const struct devlink_ops ice_devlink_ops = {
1284         .supported_flash_update_params = DEVLINK_SUPPORT_FLASH_UPDATE_OVERWRITE_MASK,
1285         .reload_actions = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT) |
1286                           BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE),
1287         .reload_down = ice_devlink_reload_down,
1288         .reload_up = ice_devlink_reload_up,
1289         .eswitch_mode_get = ice_eswitch_mode_get,
1290         .eswitch_mode_set = ice_eswitch_mode_set,
1291         .info_get = ice_devlink_info_get,
1292         .flash_update = ice_devlink_flash_update,
1293
1294         .rate_node_new = ice_devlink_rate_node_new,
1295         .rate_node_del = ice_devlink_rate_node_del,
1296
1297         .rate_leaf_tx_max_set = ice_devlink_rate_leaf_tx_max_set,
1298         .rate_leaf_tx_share_set = ice_devlink_rate_leaf_tx_share_set,
1299         .rate_leaf_tx_priority_set = ice_devlink_rate_leaf_tx_priority_set,
1300         .rate_leaf_tx_weight_set = ice_devlink_rate_leaf_tx_weight_set,
1301
1302         .rate_node_tx_max_set = ice_devlink_rate_node_tx_max_set,
1303         .rate_node_tx_share_set = ice_devlink_rate_node_tx_share_set,
1304         .rate_node_tx_priority_set = ice_devlink_rate_node_tx_priority_set,
1305         .rate_node_tx_weight_set = ice_devlink_rate_node_tx_weight_set,
1306
1307         .rate_leaf_parent_set = ice_devlink_set_parent,
1308         .rate_node_parent_set = ice_devlink_set_parent,
1309
1310         .port_new = ice_devlink_port_new,
1311 };
1312
1313 static const struct devlink_ops ice_sf_devlink_ops;
1314
1315 static int
1316 ice_devlink_enable_roce_get(struct devlink *devlink, u32 id,
1317                             struct devlink_param_gset_ctx *ctx)
1318 {
1319         struct ice_pf *pf = devlink_priv(devlink);
1320
1321         ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2 ? true : false;
1322
1323         return 0;
1324 }
1325
1326 static int ice_devlink_enable_roce_set(struct devlink *devlink, u32 id,
1327                                        struct devlink_param_gset_ctx *ctx,
1328                                        struct netlink_ext_ack *extack)
1329 {
1330         struct ice_pf *pf = devlink_priv(devlink);
1331         bool roce_ena = ctx->val.vbool;
1332         int ret;
1333
1334         if (!roce_ena) {
1335                 ice_unplug_aux_dev(pf);
1336                 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
1337                 return 0;
1338         }
1339
1340         pf->rdma_mode |= IIDC_RDMA_PROTOCOL_ROCEV2;
1341         ret = ice_plug_aux_dev(pf);
1342         if (ret)
1343                 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
1344
1345         return ret;
1346 }
1347
1348 static int
1349 ice_devlink_enable_roce_validate(struct devlink *devlink, u32 id,
1350                                  union devlink_param_value val,
1351                                  struct netlink_ext_ack *extack)
1352 {
1353         struct ice_pf *pf = devlink_priv(devlink);
1354
1355         if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1356                 return -EOPNOTSUPP;
1357
1358         if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP) {
1359                 NL_SET_ERR_MSG_MOD(extack, "iWARP is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
1360                 return -EOPNOTSUPP;
1361         }
1362
1363         return 0;
1364 }
1365
1366 static int
1367 ice_devlink_enable_iw_get(struct devlink *devlink, u32 id,
1368                           struct devlink_param_gset_ctx *ctx)
1369 {
1370         struct ice_pf *pf = devlink_priv(devlink);
1371
1372         ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP;
1373
1374         return 0;
1375 }
1376
1377 static int ice_devlink_enable_iw_set(struct devlink *devlink, u32 id,
1378                                      struct devlink_param_gset_ctx *ctx,
1379                                      struct netlink_ext_ack *extack)
1380 {
1381         struct ice_pf *pf = devlink_priv(devlink);
1382         bool iw_ena = ctx->val.vbool;
1383         int ret;
1384
1385         if (!iw_ena) {
1386                 ice_unplug_aux_dev(pf);
1387                 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP;
1388                 return 0;
1389         }
1390
1391         pf->rdma_mode |= IIDC_RDMA_PROTOCOL_IWARP;
1392         ret = ice_plug_aux_dev(pf);
1393         if (ret)
1394                 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP;
1395
1396         return ret;
1397 }
1398
1399 static int
1400 ice_devlink_enable_iw_validate(struct devlink *devlink, u32 id,
1401                                union devlink_param_value val,
1402                                struct netlink_ext_ack *extack)
1403 {
1404         struct ice_pf *pf = devlink_priv(devlink);
1405
1406         if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1407                 return -EOPNOTSUPP;
1408
1409         if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2) {
1410                 NL_SET_ERR_MSG_MOD(extack, "RoCEv2 is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
1411                 return -EOPNOTSUPP;
1412         }
1413
1414         return 0;
1415 }
1416
1417 #define DEVLINK_LOCAL_FWD_DISABLED_STR "disabled"
1418 #define DEVLINK_LOCAL_FWD_ENABLED_STR "enabled"
1419 #define DEVLINK_LOCAL_FWD_PRIORITIZED_STR "prioritized"
1420
1421 /**
1422  * ice_devlink_local_fwd_mode_to_str - Get string for local_fwd mode.
1423  * @mode: local forwarding for mode used in port_info struct.
1424  *
1425  * Return: Mode respective string or "Invalid".
1426  */
1427 static const char *
1428 ice_devlink_local_fwd_mode_to_str(enum ice_local_fwd_mode mode)
1429 {
1430         switch (mode) {
1431         case ICE_LOCAL_FWD_MODE_ENABLED:
1432                 return DEVLINK_LOCAL_FWD_ENABLED_STR;
1433         case ICE_LOCAL_FWD_MODE_PRIORITIZED:
1434                 return DEVLINK_LOCAL_FWD_PRIORITIZED_STR;
1435         case ICE_LOCAL_FWD_MODE_DISABLED:
1436                 return DEVLINK_LOCAL_FWD_DISABLED_STR;
1437         }
1438
1439         return "Invalid";
1440 }
1441
1442 /**
1443  * ice_devlink_local_fwd_str_to_mode - Get local_fwd mode from string name.
1444  * @mode_str: local forwarding mode string.
1445  *
1446  * Return: Mode value or negative number if invalid.
1447  */
1448 static int ice_devlink_local_fwd_str_to_mode(const char *mode_str)
1449 {
1450         if (!strcmp(mode_str, DEVLINK_LOCAL_FWD_ENABLED_STR))
1451                 return ICE_LOCAL_FWD_MODE_ENABLED;
1452         else if (!strcmp(mode_str, DEVLINK_LOCAL_FWD_PRIORITIZED_STR))
1453                 return ICE_LOCAL_FWD_MODE_PRIORITIZED;
1454         else if (!strcmp(mode_str, DEVLINK_LOCAL_FWD_DISABLED_STR))
1455                 return ICE_LOCAL_FWD_MODE_DISABLED;
1456
1457         return -EINVAL;
1458 }
1459
1460 /**
1461  * ice_devlink_local_fwd_get - Get local_fwd parameter.
1462  * @devlink: Pointer to the devlink instance.
1463  * @id: The parameter ID to set.
1464  * @ctx: Context to store the parameter value.
1465  *
1466  * Return: Zero.
1467  */
1468 static int ice_devlink_local_fwd_get(struct devlink *devlink, u32 id,
1469                                      struct devlink_param_gset_ctx *ctx)
1470 {
1471         struct ice_pf *pf = devlink_priv(devlink);
1472         struct ice_port_info *pi;
1473         const char *mode_str;
1474
1475         pi = pf->hw.port_info;
1476         mode_str = ice_devlink_local_fwd_mode_to_str(pi->local_fwd_mode);
1477         snprintf(ctx->val.vstr, sizeof(ctx->val.vstr), "%s", mode_str);
1478
1479         return 0;
1480 }
1481
1482 /**
1483  * ice_devlink_local_fwd_set - Set local_fwd parameter.
1484  * @devlink: Pointer to the devlink instance.
1485  * @id: The parameter ID to set.
1486  * @ctx: Context to get the parameter value.
1487  * @extack: Netlink extended ACK structure.
1488  *
1489  * Return: Zero.
1490  */
1491 static int ice_devlink_local_fwd_set(struct devlink *devlink, u32 id,
1492                                      struct devlink_param_gset_ctx *ctx,
1493                                      struct netlink_ext_ack *extack)
1494 {
1495         int new_local_fwd_mode = ice_devlink_local_fwd_str_to_mode(ctx->val.vstr);
1496         struct ice_pf *pf = devlink_priv(devlink);
1497         struct device *dev = ice_pf_to_dev(pf);
1498         struct ice_port_info *pi;
1499
1500         pi = pf->hw.port_info;
1501         if (pi->local_fwd_mode != new_local_fwd_mode) {
1502                 pi->local_fwd_mode = new_local_fwd_mode;
1503                 dev_info(dev, "Setting local_fwd to %s\n", ctx->val.vstr);
1504                 ice_schedule_reset(pf, ICE_RESET_CORER);
1505         }
1506
1507         return 0;
1508 }
1509
1510 /**
1511  * ice_devlink_local_fwd_validate - Validate passed local_fwd parameter value.
1512  * @devlink: Unused pointer to devlink instance.
1513  * @id: The parameter ID to validate.
1514  * @val: Value to validate.
1515  * @extack: Netlink extended ACK structure.
1516  *
1517  * Supported values are:
1518  * "enabled" - local_fwd is enabled, "disabled" - local_fwd is disabled
1519  * "prioritized" - local_fwd traffic is prioritized in scheduling.
1520  *
1521  * Return: Zero when passed parameter value is supported. Negative value on
1522  * error.
1523  */
1524 static int ice_devlink_local_fwd_validate(struct devlink *devlink, u32 id,
1525                                           union devlink_param_value val,
1526                                           struct netlink_ext_ack *extack)
1527 {
1528         if (ice_devlink_local_fwd_str_to_mode(val.vstr) < 0) {
1529                 NL_SET_ERR_MSG_MOD(extack, "Error: Requested value is not supported.");
1530                 return -EINVAL;
1531         }
1532
1533         return 0;
1534 }
1535
1536 enum ice_param_id {
1537         ICE_DEVLINK_PARAM_ID_BASE = DEVLINK_PARAM_GENERIC_ID_MAX,
1538         ICE_DEVLINK_PARAM_ID_TX_SCHED_LAYERS,
1539         ICE_DEVLINK_PARAM_ID_LOCAL_FWD,
1540 };
1541
1542 static const struct devlink_param ice_dvl_rdma_params[] = {
1543         DEVLINK_PARAM_GENERIC(ENABLE_ROCE, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1544                               ice_devlink_enable_roce_get,
1545                               ice_devlink_enable_roce_set,
1546                               ice_devlink_enable_roce_validate),
1547         DEVLINK_PARAM_GENERIC(ENABLE_IWARP, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1548                               ice_devlink_enable_iw_get,
1549                               ice_devlink_enable_iw_set,
1550                               ice_devlink_enable_iw_validate),
1551 };
1552
1553 static const struct devlink_param ice_dvl_sched_params[] = {
1554         DEVLINK_PARAM_DRIVER(ICE_DEVLINK_PARAM_ID_TX_SCHED_LAYERS,
1555                              "tx_scheduling_layers",
1556                              DEVLINK_PARAM_TYPE_U8,
1557                              BIT(DEVLINK_PARAM_CMODE_PERMANENT),
1558                              ice_devlink_tx_sched_layers_get,
1559                              ice_devlink_tx_sched_layers_set,
1560                              ice_devlink_tx_sched_layers_validate),
1561         DEVLINK_PARAM_DRIVER(ICE_DEVLINK_PARAM_ID_LOCAL_FWD,
1562                              "local_forwarding", DEVLINK_PARAM_TYPE_STRING,
1563                              BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1564                              ice_devlink_local_fwd_get,
1565                              ice_devlink_local_fwd_set,
1566                              ice_devlink_local_fwd_validate),
1567 };
1568
1569 static void ice_devlink_free(void *devlink_ptr)
1570 {
1571         devlink_free((struct devlink *)devlink_ptr);
1572 }
1573
1574 /**
1575  * ice_allocate_pf - Allocate devlink and return PF structure pointer
1576  * @dev: the device to allocate for
1577  *
1578  * Allocate a devlink instance for this device and return the private area as
1579  * the PF structure. The devlink memory is kept track of through devres by
1580  * adding an action to remove it when unwinding.
1581  */
1582 struct ice_pf *ice_allocate_pf(struct device *dev)
1583 {
1584         struct devlink *devlink;
1585
1586         devlink = devlink_alloc(&ice_devlink_ops, sizeof(struct ice_pf), dev);
1587         if (!devlink)
1588                 return NULL;
1589
1590         /* Add an action to teardown the devlink when unwinding the driver */
1591         if (devm_add_action_or_reset(dev, ice_devlink_free, devlink))
1592                 return NULL;
1593
1594         return devlink_priv(devlink);
1595 }
1596
1597 /**
1598  * ice_allocate_sf - Allocate devlink and return SF structure pointer
1599  * @dev: the device to allocate for
1600  * @pf: pointer to the PF structure
1601  *
1602  * Allocate a devlink instance for SF.
1603  *
1604  * Return: ice_sf_priv pointer to allocated memory or ERR_PTR in case of error
1605  */
1606 struct ice_sf_priv *ice_allocate_sf(struct device *dev, struct ice_pf *pf)
1607 {
1608         struct devlink *devlink;
1609         int err;
1610
1611         devlink = devlink_alloc(&ice_sf_devlink_ops, sizeof(struct ice_sf_priv),
1612                                 dev);
1613         if (!devlink)
1614                 return ERR_PTR(-ENOMEM);
1615
1616         err = devl_nested_devlink_set(priv_to_devlink(pf), devlink);
1617         if (err) {
1618                 devlink_free(devlink);
1619                 return ERR_PTR(err);
1620         }
1621
1622         return devlink_priv(devlink);
1623 }
1624
1625 /**
1626  * ice_devlink_register - Register devlink interface for this PF
1627  * @pf: the PF to register the devlink for.
1628  *
1629  * Register the devlink instance associated with this physical function.
1630  *
1631  * Return: zero on success or an error code on failure.
1632  */
1633 void ice_devlink_register(struct ice_pf *pf)
1634 {
1635         struct devlink *devlink = priv_to_devlink(pf);
1636
1637         devl_register(devlink);
1638 }
1639
1640 /**
1641  * ice_devlink_unregister - Unregister devlink resources for this PF.
1642  * @pf: the PF structure to cleanup
1643  *
1644  * Releases resources used by devlink and cleans up associated memory.
1645  */
1646 void ice_devlink_unregister(struct ice_pf *pf)
1647 {
1648         devl_unregister(priv_to_devlink(pf));
1649 }
1650
1651 int ice_devlink_register_params(struct ice_pf *pf)
1652 {
1653         struct devlink *devlink = priv_to_devlink(pf);
1654         struct ice_hw *hw = &pf->hw;
1655         int status;
1656
1657         status = devl_params_register(devlink, ice_dvl_rdma_params,
1658                                       ARRAY_SIZE(ice_dvl_rdma_params));
1659         if (status)
1660                 return status;
1661
1662         if (hw->func_caps.common_cap.tx_sched_topo_comp_mode_en)
1663                 status = devl_params_register(devlink, ice_dvl_sched_params,
1664                                               ARRAY_SIZE(ice_dvl_sched_params));
1665
1666         return status;
1667 }
1668
1669 void ice_devlink_unregister_params(struct ice_pf *pf)
1670 {
1671         struct devlink *devlink = priv_to_devlink(pf);
1672         struct ice_hw *hw = &pf->hw;
1673
1674         devl_params_unregister(devlink, ice_dvl_rdma_params,
1675                                ARRAY_SIZE(ice_dvl_rdma_params));
1676
1677         if (hw->func_caps.common_cap.tx_sched_topo_comp_mode_en)
1678                 devl_params_unregister(devlink, ice_dvl_sched_params,
1679                                        ARRAY_SIZE(ice_dvl_sched_params));
1680 }
1681
1682 #define ICE_DEVLINK_READ_BLK_SIZE (1024 * 1024)
1683
1684 static const struct devlink_region_ops ice_nvm_region_ops;
1685 static const struct devlink_region_ops ice_sram_region_ops;
1686
1687 /**
1688  * ice_devlink_nvm_snapshot - Capture a snapshot of the NVM flash contents
1689  * @devlink: the devlink instance
1690  * @ops: the devlink region to snapshot
1691  * @extack: extended ACK response structure
1692  * @data: on exit points to snapshot data buffer
1693  *
1694  * This function is called in response to a DEVLINK_CMD_REGION_NEW for either
1695  * the nvm-flash or shadow-ram region.
1696  *
1697  * It captures a snapshot of the NVM or Shadow RAM flash contents. This
1698  * snapshot can then later be viewed via the DEVLINK_CMD_REGION_READ netlink
1699  * interface.
1700  *
1701  * @returns zero on success, and updates the data pointer. Returns a non-zero
1702  * error code on failure.
1703  */
1704 static int ice_devlink_nvm_snapshot(struct devlink *devlink,
1705                                     const struct devlink_region_ops *ops,
1706                                     struct netlink_ext_ack *extack, u8 **data)
1707 {
1708         struct ice_pf *pf = devlink_priv(devlink);
1709         struct device *dev = ice_pf_to_dev(pf);
1710         struct ice_hw *hw = &pf->hw;
1711         bool read_shadow_ram;
1712         u8 *nvm_data, *tmp, i;
1713         u32 nvm_size, left;
1714         s8 num_blks;
1715         int status;
1716
1717         if (ops == &ice_nvm_region_ops) {
1718                 read_shadow_ram = false;
1719                 nvm_size = hw->flash.flash_size;
1720         } else if (ops == &ice_sram_region_ops) {
1721                 read_shadow_ram = true;
1722                 nvm_size = hw->flash.sr_words * 2u;
1723         } else {
1724                 NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
1725                 return -EOPNOTSUPP;
1726         }
1727
1728         nvm_data = vzalloc(nvm_size);
1729         if (!nvm_data)
1730                 return -ENOMEM;
1731
1732         num_blks = DIV_ROUND_UP(nvm_size, ICE_DEVLINK_READ_BLK_SIZE);
1733         tmp = nvm_data;
1734         left = nvm_size;
1735
1736         /* Some systems take longer to read the NVM than others which causes the
1737          * FW to reclaim the NVM lock before the entire NVM has been read. Fix
1738          * this by breaking the reads of the NVM into smaller chunks that will
1739          * probably not take as long. This has some overhead since we are
1740          * increasing the number of AQ commands, but it should always work
1741          */
1742         for (i = 0; i < num_blks; i++) {
1743                 u32 read_sz = min_t(u32, ICE_DEVLINK_READ_BLK_SIZE, left);
1744
1745                 status = ice_acquire_nvm(hw, ICE_RES_READ);
1746                 if (status) {
1747                         dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1748                                 status, hw->adminq.sq_last_status);
1749                         NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1750                         vfree(nvm_data);
1751                         return -EIO;
1752                 }
1753
1754                 status = ice_read_flat_nvm(hw, i * ICE_DEVLINK_READ_BLK_SIZE,
1755                                            &read_sz, tmp, read_shadow_ram);
1756                 if (status) {
1757                         dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1758                                 read_sz, status, hw->adminq.sq_last_status);
1759                         NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1760                         ice_release_nvm(hw);
1761                         vfree(nvm_data);
1762                         return -EIO;
1763                 }
1764                 ice_release_nvm(hw);
1765
1766                 tmp += read_sz;
1767                 left -= read_sz;
1768         }
1769
1770         *data = nvm_data;
1771
1772         return 0;
1773 }
1774
1775 /**
1776  * ice_devlink_nvm_read - Read a portion of NVM flash contents
1777  * @devlink: the devlink instance
1778  * @ops: the devlink region to snapshot
1779  * @extack: extended ACK response structure
1780  * @offset: the offset to start at
1781  * @size: the amount to read
1782  * @data: the data buffer to read into
1783  *
1784  * This function is called in response to DEVLINK_CMD_REGION_READ to directly
1785  * read a section of the NVM contents.
1786  *
1787  * It reads from either the nvm-flash or shadow-ram region contents.
1788  *
1789  * @returns zero on success, and updates the data pointer. Returns a non-zero
1790  * error code on failure.
1791  */
1792 static int ice_devlink_nvm_read(struct devlink *devlink,
1793                                 const struct devlink_region_ops *ops,
1794                                 struct netlink_ext_ack *extack,
1795                                 u64 offset, u32 size, u8 *data)
1796 {
1797         struct ice_pf *pf = devlink_priv(devlink);
1798         struct device *dev = ice_pf_to_dev(pf);
1799         struct ice_hw *hw = &pf->hw;
1800         bool read_shadow_ram;
1801         u64 nvm_size;
1802         int status;
1803
1804         if (ops == &ice_nvm_region_ops) {
1805                 read_shadow_ram = false;
1806                 nvm_size = hw->flash.flash_size;
1807         } else if (ops == &ice_sram_region_ops) {
1808                 read_shadow_ram = true;
1809                 nvm_size = hw->flash.sr_words * 2u;
1810         } else {
1811                 NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
1812                 return -EOPNOTSUPP;
1813         }
1814
1815         if (offset + size >= nvm_size) {
1816                 NL_SET_ERR_MSG_MOD(extack, "Cannot read beyond the region size");
1817                 return -ERANGE;
1818         }
1819
1820         status = ice_acquire_nvm(hw, ICE_RES_READ);
1821         if (status) {
1822                 dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1823                         status, hw->adminq.sq_last_status);
1824                 NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1825                 return -EIO;
1826         }
1827
1828         status = ice_read_flat_nvm(hw, (u32)offset, &size, data,
1829                                    read_shadow_ram);
1830         if (status) {
1831                 dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1832                         size, status, hw->adminq.sq_last_status);
1833                 NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1834                 ice_release_nvm(hw);
1835                 return -EIO;
1836         }
1837         ice_release_nvm(hw);
1838
1839         return 0;
1840 }
1841
1842 /**
1843  * ice_devlink_devcaps_snapshot - Capture snapshot of device capabilities
1844  * @devlink: the devlink instance
1845  * @ops: the devlink region being snapshotted
1846  * @extack: extended ACK response structure
1847  * @data: on exit points to snapshot data buffer
1848  *
1849  * This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for
1850  * the device-caps devlink region. It captures a snapshot of the device
1851  * capabilities reported by firmware.
1852  *
1853  * @returns zero on success, and updates the data pointer. Returns a non-zero
1854  * error code on failure.
1855  */
1856 static int
1857 ice_devlink_devcaps_snapshot(struct devlink *devlink,
1858                              const struct devlink_region_ops *ops,
1859                              struct netlink_ext_ack *extack, u8 **data)
1860 {
1861         struct ice_pf *pf = devlink_priv(devlink);
1862         struct device *dev = ice_pf_to_dev(pf);
1863         struct ice_hw *hw = &pf->hw;
1864         void *devcaps;
1865         int status;
1866
1867         devcaps = vzalloc(ICE_AQ_MAX_BUF_LEN);
1868         if (!devcaps)
1869                 return -ENOMEM;
1870
1871         status = ice_aq_list_caps(hw, devcaps, ICE_AQ_MAX_BUF_LEN, NULL,
1872                                   ice_aqc_opc_list_dev_caps, NULL);
1873         if (status) {
1874                 dev_dbg(dev, "ice_aq_list_caps: failed to read device capabilities, err %d aq_err %d\n",
1875                         status, hw->adminq.sq_last_status);
1876                 NL_SET_ERR_MSG_MOD(extack, "Failed to read device capabilities");
1877                 vfree(devcaps);
1878                 return status;
1879         }
1880
1881         *data = (u8 *)devcaps;
1882
1883         return 0;
1884 }
1885
1886 static const struct devlink_region_ops ice_nvm_region_ops = {
1887         .name = "nvm-flash",
1888         .destructor = vfree,
1889         .snapshot = ice_devlink_nvm_snapshot,
1890         .read = ice_devlink_nvm_read,
1891 };
1892
1893 static const struct devlink_region_ops ice_sram_region_ops = {
1894         .name = "shadow-ram",
1895         .destructor = vfree,
1896         .snapshot = ice_devlink_nvm_snapshot,
1897         .read = ice_devlink_nvm_read,
1898 };
1899
1900 static const struct devlink_region_ops ice_devcaps_region_ops = {
1901         .name = "device-caps",
1902         .destructor = vfree,
1903         .snapshot = ice_devlink_devcaps_snapshot,
1904 };
1905
1906 /**
1907  * ice_devlink_init_regions - Initialize devlink regions
1908  * @pf: the PF device structure
1909  *
1910  * Create devlink regions used to enable access to dump the contents of the
1911  * flash memory on the device.
1912  */
1913 void ice_devlink_init_regions(struct ice_pf *pf)
1914 {
1915         struct devlink *devlink = priv_to_devlink(pf);
1916         struct device *dev = ice_pf_to_dev(pf);
1917         u64 nvm_size, sram_size;
1918
1919         nvm_size = pf->hw.flash.flash_size;
1920         pf->nvm_region = devl_region_create(devlink, &ice_nvm_region_ops, 1,
1921                                             nvm_size);
1922         if (IS_ERR(pf->nvm_region)) {
1923                 dev_err(dev, "failed to create NVM devlink region, err %ld\n",
1924                         PTR_ERR(pf->nvm_region));
1925                 pf->nvm_region = NULL;
1926         }
1927
1928         sram_size = pf->hw.flash.sr_words * 2u;
1929         pf->sram_region = devl_region_create(devlink, &ice_sram_region_ops,
1930                                              1, sram_size);
1931         if (IS_ERR(pf->sram_region)) {
1932                 dev_err(dev, "failed to create shadow-ram devlink region, err %ld\n",
1933                         PTR_ERR(pf->sram_region));
1934                 pf->sram_region = NULL;
1935         }
1936
1937         pf->devcaps_region = devl_region_create(devlink,
1938                                                 &ice_devcaps_region_ops, 10,
1939                                                 ICE_AQ_MAX_BUF_LEN);
1940         if (IS_ERR(pf->devcaps_region)) {
1941                 dev_err(dev, "failed to create device-caps devlink region, err %ld\n",
1942                         PTR_ERR(pf->devcaps_region));
1943                 pf->devcaps_region = NULL;
1944         }
1945 }
1946
1947 /**
1948  * ice_devlink_destroy_regions - Destroy devlink regions
1949  * @pf: the PF device structure
1950  *
1951  * Remove previously created regions for this PF.
1952  */
1953 void ice_devlink_destroy_regions(struct ice_pf *pf)
1954 {
1955         if (pf->nvm_region)
1956                 devl_region_destroy(pf->nvm_region);
1957
1958         if (pf->sram_region)
1959                 devl_region_destroy(pf->sram_region);
1960
1961         if (pf->devcaps_region)
1962                 devl_region_destroy(pf->devcaps_region);
1963 }
This page took 0.144581 seconds and 4 git commands to generate.