]> Git Repo - linux.git/blob - drivers/net/ethernet/intel/i40e/i40e_nvm.c
Linux 6.14-rc3
[linux.git] / drivers / net / ethernet / intel / i40e / i40e_nvm.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include <linux/bitfield.h>
5 #include <linux/delay.h>
6 #include "i40e_alloc.h"
7 #include "i40e_prototype.h"
8
9 /**
10  * i40e_init_nvm - Initialize NVM function pointers
11  * @hw: pointer to the HW structure
12  *
13  * Setup the function pointers and the NVM info structure. Should be called
14  * once per NVM initialization, e.g. inside the i40e_init_shared_code().
15  * Please notice that the NVM term is used here (& in all methods covered
16  * in this file) as an equivalent of the FLASH part mapped into the SR.
17  * We are accessing FLASH always thru the Shadow RAM.
18  **/
19 int i40e_init_nvm(struct i40e_hw *hw)
20 {
21         struct i40e_nvm_info *nvm = &hw->nvm;
22         int ret_code = 0;
23         u32 fla, gens;
24         u8 sr_size;
25
26         /* The SR size is stored regardless of the nvm programming mode
27          * as the blank mode may be used in the factory line.
28          */
29         gens = rd32(hw, I40E_GLNVM_GENS);
30         sr_size = FIELD_GET(I40E_GLNVM_GENS_SR_SIZE_MASK, gens);
31         /* Switching to words (sr_size contains power of 2KB) */
32         nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
33
34         /* Check if we are in the normal or blank NVM programming mode */
35         fla = rd32(hw, I40E_GLNVM_FLA);
36         if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
37                 /* Max NVM timeout */
38                 nvm->timeout = I40E_MAX_NVM_TIMEOUT;
39                 nvm->blank_nvm_mode = false;
40         } else { /* Blank programming mode */
41                 nvm->blank_nvm_mode = true;
42                 ret_code = -EIO;
43                 i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
44         }
45
46         return ret_code;
47 }
48
49 /**
50  * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
51  * @hw: pointer to the HW structure
52  * @access: NVM access type (read or write)
53  *
54  * This function will request NVM ownership for reading
55  * via the proper Admin Command.
56  **/
57 int i40e_acquire_nvm(struct i40e_hw *hw,
58                      enum i40e_aq_resource_access_type access)
59 {
60         u64 gtime, timeout;
61         u64 time_left = 0;
62         int ret_code = 0;
63
64         if (hw->nvm.blank_nvm_mode)
65                 goto i40e_i40e_acquire_nvm_exit;
66
67         ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
68                                             0, &time_left, NULL);
69         /* Reading the Global Device Timer */
70         gtime = rd32(hw, I40E_GLVFGEN_TIMER);
71
72         /* Store the timeout */
73         hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
74
75         if (ret_code)
76                 i40e_debug(hw, I40E_DEBUG_NVM,
77                            "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
78                            access, time_left, ret_code, hw->aq.asq_last_status);
79
80         if (ret_code && time_left) {
81                 /* Poll until the current NVM owner timeouts */
82                 timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
83                 while ((gtime < timeout) && time_left) {
84                         usleep_range(10000, 20000);
85                         gtime = rd32(hw, I40E_GLVFGEN_TIMER);
86                         ret_code = i40e_aq_request_resource(hw,
87                                                         I40E_NVM_RESOURCE_ID,
88                                                         access, 0, &time_left,
89                                                         NULL);
90                         if (!ret_code) {
91                                 hw->nvm.hw_semaphore_timeout =
92                                             I40E_MS_TO_GTIME(time_left) + gtime;
93                                 break;
94                         }
95                 }
96                 if (ret_code) {
97                         hw->nvm.hw_semaphore_timeout = 0;
98                         i40e_debug(hw, I40E_DEBUG_NVM,
99                                    "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
100                                    time_left, ret_code, hw->aq.asq_last_status);
101                 }
102         }
103
104 i40e_i40e_acquire_nvm_exit:
105         return ret_code;
106 }
107
108 /**
109  * i40e_release_nvm - Generic request for releasing the NVM ownership
110  * @hw: pointer to the HW structure
111  *
112  * This function will release NVM resource via the proper Admin Command.
113  **/
114 void i40e_release_nvm(struct i40e_hw *hw)
115 {
116         u32 total_delay = 0;
117         int ret_code = 0;
118
119         if (hw->nvm.blank_nvm_mode)
120                 return;
121
122         ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
123
124         /* there are some rare cases when trying to release the resource
125          * results in an admin Q timeout, so handle them correctly
126          */
127         while ((ret_code == -EIO) &&
128                (total_delay < hw->aq.asq_cmd_timeout)) {
129                 usleep_range(1000, 2000);
130                 ret_code = i40e_aq_release_resource(hw,
131                                                     I40E_NVM_RESOURCE_ID,
132                                                     0, NULL);
133                 total_delay++;
134         }
135 }
136
137 /**
138  * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
139  * @hw: pointer to the HW structure
140  *
141  * Polls the SRCTL Shadow RAM register done bit.
142  **/
143 static int i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
144 {
145         int ret_code = -EIO;
146         u32 srctl, wait_cnt;
147
148         /* Poll the I40E_GLNVM_SRCTL until the done bit is set */
149         for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
150                 srctl = rd32(hw, I40E_GLNVM_SRCTL);
151                 if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
152                         ret_code = 0;
153                         break;
154                 }
155                 udelay(5);
156         }
157         if (ret_code == -EIO)
158                 i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
159         return ret_code;
160 }
161
162 /**
163  * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
164  * @hw: pointer to the HW structure
165  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
166  * @data: word read from the Shadow RAM
167  *
168  * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
169  **/
170 static int i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
171                                     u16 *data)
172 {
173         int ret_code = -EIO;
174         u32 sr_reg;
175
176         if (offset >= hw->nvm.sr_size) {
177                 i40e_debug(hw, I40E_DEBUG_NVM,
178                            "NVM read error: offset %d beyond Shadow RAM limit %d\n",
179                            offset, hw->nvm.sr_size);
180                 ret_code = -EINVAL;
181                 goto read_nvm_exit;
182         }
183
184         /* Poll the done bit first */
185         ret_code = i40e_poll_sr_srctl_done_bit(hw);
186         if (!ret_code) {
187                 /* Write the address and start reading */
188                 sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
189                          BIT(I40E_GLNVM_SRCTL_START_SHIFT);
190                 wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
191
192                 /* Poll I40E_GLNVM_SRCTL until the done bit is set */
193                 ret_code = i40e_poll_sr_srctl_done_bit(hw);
194                 if (!ret_code) {
195                         sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
196                         *data = FIELD_GET(I40E_GLNVM_SRDATA_RDDATA_MASK,
197                                           sr_reg);
198                 }
199         }
200         if (ret_code)
201                 i40e_debug(hw, I40E_DEBUG_NVM,
202                            "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
203                            offset);
204
205 read_nvm_exit:
206         return ret_code;
207 }
208
209 /**
210  * i40e_read_nvm_aq - Read Shadow RAM.
211  * @hw: pointer to the HW structure.
212  * @module_pointer: module pointer location in words from the NVM beginning
213  * @offset: offset in words from module start
214  * @words: number of words to read
215  * @data: buffer with words to read to the Shadow RAM
216  * @last_command: tells the AdminQ that this is the last command
217  *
218  * Reads a 16 bit words buffer to the Shadow RAM using the admin command.
219  **/
220 static int i40e_read_nvm_aq(struct i40e_hw *hw,
221                             u8 module_pointer, u32 offset,
222                             u16 words, void *data,
223                             bool last_command)
224 {
225         struct i40e_asq_cmd_details cmd_details;
226         int ret_code = -EIO;
227
228         memset(&cmd_details, 0, sizeof(cmd_details));
229         cmd_details.wb_desc = &hw->nvm_wb_desc;
230
231         /* Here we are checking the SR limit only for the flat memory model.
232          * We cannot do it for the module-based model, as we did not acquire
233          * the NVM resource yet (we cannot get the module pointer value).
234          * Firmware will check the module-based model.
235          */
236         if ((offset + words) > hw->nvm.sr_size)
237                 i40e_debug(hw, I40E_DEBUG_NVM,
238                            "NVM read error: offset %d beyond Shadow RAM limit %d\n",
239                            (offset + words), hw->nvm.sr_size);
240         else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
241                 /* We can read only up to 4KB (one sector), in one AQ write */
242                 i40e_debug(hw, I40E_DEBUG_NVM,
243                            "NVM read fail error: tried to read %d words, limit is %d.\n",
244                            words, I40E_SR_SECTOR_SIZE_IN_WORDS);
245         else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
246                  != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
247                 /* A single read cannot spread over two sectors */
248                 i40e_debug(hw, I40E_DEBUG_NVM,
249                            "NVM read error: cannot spread over two sectors in a single read offset=%d words=%d\n",
250                            offset, words);
251         else
252                 ret_code = i40e_aq_read_nvm(hw, module_pointer,
253                                             2 * offset,  /*bytes*/
254                                             2 * words,   /*bytes*/
255                                             data, last_command, &cmd_details);
256
257         return ret_code;
258 }
259
260 /**
261  * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
262  * @hw: pointer to the HW structure
263  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
264  * @data: word read from the Shadow RAM
265  *
266  * Reads one 16 bit word from the Shadow RAM using the AdminQ
267  **/
268 static int i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
269                                  u16 *data)
270 {
271         int ret_code = -EIO;
272
273         ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
274         *data = le16_to_cpu(*(__le16 *)data);
275
276         return ret_code;
277 }
278
279 /**
280  * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking
281  * @hw: pointer to the HW structure
282  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
283  * @data: word read from the Shadow RAM
284  *
285  * Reads one 16 bit word from the Shadow RAM.
286  *
287  * Do not use this function except in cases where the nvm lock is already
288  * taken via i40e_acquire_nvm().
289  **/
290 static int __i40e_read_nvm_word(struct i40e_hw *hw,
291                                 u16 offset, u16 *data)
292 {
293         if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps))
294                 return i40e_read_nvm_word_aq(hw, offset, data);
295
296         return i40e_read_nvm_word_srctl(hw, offset, data);
297 }
298
299 /**
300  * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary
301  * @hw: pointer to the HW structure
302  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
303  * @data: word read from the Shadow RAM
304  *
305  * Reads one 16 bit word from the Shadow RAM.
306  **/
307 int i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
308                        u16 *data)
309 {
310         int ret_code = 0;
311
312         if (test_bit(I40E_HW_CAP_NVM_READ_REQUIRES_LOCK, hw->caps))
313                 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
314         if (ret_code)
315                 return ret_code;
316
317         ret_code = __i40e_read_nvm_word(hw, offset, data);
318
319         if (test_bit(I40E_HW_CAP_NVM_READ_REQUIRES_LOCK, hw->caps))
320                 i40e_release_nvm(hw);
321
322         return ret_code;
323 }
324
325 /**
326  * i40e_read_nvm_module_data - Reads NVM Buffer to specified memory location
327  * @hw: Pointer to the HW structure
328  * @module_ptr: Pointer to module in words with respect to NVM beginning
329  * @module_offset: Offset in words from module start
330  * @data_offset: Offset in words from reading data area start
331  * @words_data_size: Words to read from NVM
332  * @data_ptr: Pointer to memory location where resulting buffer will be stored
333  **/
334 int i40e_read_nvm_module_data(struct i40e_hw *hw,
335                               u8 module_ptr,
336                               u16 module_offset,
337                               u16 data_offset,
338                               u16 words_data_size,
339                               u16 *data_ptr)
340 {
341         u16 specific_ptr = 0;
342         u16 ptr_value = 0;
343         u32 offset = 0;
344         int status;
345
346         if (module_ptr != 0) {
347                 status = i40e_read_nvm_word(hw, module_ptr, &ptr_value);
348                 if (status) {
349                         i40e_debug(hw, I40E_DEBUG_ALL,
350                                    "Reading nvm word failed.Error code: %d.\n",
351                                    status);
352                         return -EIO;
353                 }
354         }
355 #define I40E_NVM_INVALID_PTR_VAL 0x7FFF
356 #define I40E_NVM_INVALID_VAL 0xFFFF
357
358         /* Pointer not initialized */
359         if (ptr_value == I40E_NVM_INVALID_PTR_VAL ||
360             ptr_value == I40E_NVM_INVALID_VAL) {
361                 i40e_debug(hw, I40E_DEBUG_ALL, "Pointer not initialized.\n");
362                 return -EINVAL;
363         }
364
365         /* Check whether the module is in SR mapped area or outside */
366         if (ptr_value & I40E_PTR_TYPE) {
367                 /* Pointer points outside of the Shared RAM mapped area */
368                 i40e_debug(hw, I40E_DEBUG_ALL,
369                            "Reading nvm data failed. Pointer points outside of the Shared RAM mapped area.\n");
370
371                 return -EINVAL;
372         } else {
373                 /* Read from the Shadow RAM */
374
375                 status = i40e_read_nvm_word(hw, ptr_value + module_offset,
376                                             &specific_ptr);
377                 if (status) {
378                         i40e_debug(hw, I40E_DEBUG_ALL,
379                                    "Reading nvm word failed.Error code: %d.\n",
380                                    status);
381                         return -EIO;
382                 }
383
384                 offset = ptr_value + module_offset + specific_ptr +
385                         data_offset;
386
387                 status = i40e_read_nvm_buffer(hw, offset, &words_data_size,
388                                               data_ptr);
389                 if (status) {
390                         i40e_debug(hw, I40E_DEBUG_ALL,
391                                    "Reading nvm buffer failed.Error code: %d.\n",
392                                    status);
393                 }
394         }
395
396         return status;
397 }
398
399 /**
400  * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
401  * @hw: pointer to the HW structure
402  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
403  * @words: (in) number of words to read; (out) number of words actually read
404  * @data: words read from the Shadow RAM
405  *
406  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
407  * method. The buffer read is preceded by the NVM ownership take
408  * and followed by the release.
409  **/
410 static int i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
411                                       u16 *words, u16 *data)
412 {
413         int ret_code = 0;
414         u16 index, word;
415
416         /* Loop thru the selected region */
417         for (word = 0; word < *words; word++) {
418                 index = offset + word;
419                 ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
420                 if (ret_code)
421                         break;
422         }
423
424         /* Update the number of words read from the Shadow RAM */
425         *words = word;
426
427         return ret_code;
428 }
429
430 /**
431  * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
432  * @hw: pointer to the HW structure
433  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
434  * @words: (in) number of words to read; (out) number of words actually read
435  * @data: words read from the Shadow RAM
436  *
437  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
438  * method. The buffer read is preceded by the NVM ownership take
439  * and followed by the release.
440  **/
441 static int i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
442                                    u16 *words, u16 *data)
443 {
444         bool last_cmd = false;
445         u16 words_read = 0;
446         u16 read_size;
447         int ret_code;
448         u16 i = 0;
449
450         do {
451                 /* Calculate number of bytes we should read in this step.
452                  * FVL AQ do not allow to read more than one page at a time or
453                  * to cross page boundaries.
454                  */
455                 if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
456                         read_size = min(*words,
457                                         (u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
458                                       (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
459                 else
460                         read_size = min((*words - words_read),
461                                         I40E_SR_SECTOR_SIZE_IN_WORDS);
462
463                 /* Check if this is last command, if so set proper flag */
464                 if ((words_read + read_size) >= *words)
465                         last_cmd = true;
466
467                 ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
468                                             data + words_read, last_cmd);
469                 if (ret_code)
470                         goto read_nvm_buffer_aq_exit;
471
472                 /* Increment counter for words already read and move offset to
473                  * new read location
474                  */
475                 words_read += read_size;
476                 offset += read_size;
477         } while (words_read < *words);
478
479         for (i = 0; i < *words; i++)
480                 data[i] = le16_to_cpu(((__le16 *)data)[i]);
481
482 read_nvm_buffer_aq_exit:
483         *words = words_read;
484         return ret_code;
485 }
486
487 /**
488  * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock
489  * @hw: pointer to the HW structure
490  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
491  * @words: (in) number of words to read; (out) number of words actually read
492  * @data: words read from the Shadow RAM
493  *
494  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
495  * method.
496  **/
497 static int __i40e_read_nvm_buffer(struct i40e_hw *hw,
498                                   u16 offset, u16 *words,
499                                   u16 *data)
500 {
501         if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps))
502                 return i40e_read_nvm_buffer_aq(hw, offset, words, data);
503
504         return i40e_read_nvm_buffer_srctl(hw, offset, words, data);
505 }
506
507 /**
508  * i40e_read_nvm_buffer - Reads Shadow RAM buffer and acquire lock if necessary
509  * @hw: pointer to the HW structure
510  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
511  * @words: (in) number of words to read; (out) number of words actually read
512  * @data: words read from the Shadow RAM
513  *
514  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
515  * method. The buffer read is preceded by the NVM ownership take
516  * and followed by the release.
517  **/
518 int i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset,
519                          u16 *words, u16 *data)
520 {
521         int ret_code = 0;
522
523         if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps)) {
524                 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
525                 if (!ret_code) {
526                         ret_code = i40e_read_nvm_buffer_aq(hw, offset, words,
527                                                            data);
528                         i40e_release_nvm(hw);
529                 }
530         } else {
531                 ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data);
532         }
533
534         return ret_code;
535 }
536
537 /**
538  * i40e_write_nvm_aq - Writes Shadow RAM.
539  * @hw: pointer to the HW structure.
540  * @module_pointer: module pointer location in words from the NVM beginning
541  * @offset: offset in words from module start
542  * @words: number of words to write
543  * @data: buffer with words to write to the Shadow RAM
544  * @last_command: tells the AdminQ that this is the last command
545  *
546  * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
547  **/
548 static int i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
549                              u32 offset, u16 words, void *data,
550                              bool last_command)
551 {
552         struct i40e_asq_cmd_details cmd_details;
553         int ret_code = -EIO;
554
555         memset(&cmd_details, 0, sizeof(cmd_details));
556         cmd_details.wb_desc = &hw->nvm_wb_desc;
557
558         /* Here we are checking the SR limit only for the flat memory model.
559          * We cannot do it for the module-based model, as we did not acquire
560          * the NVM resource yet (we cannot get the module pointer value).
561          * Firmware will check the module-based model.
562          */
563         if ((offset + words) > hw->nvm.sr_size)
564                 i40e_debug(hw, I40E_DEBUG_NVM,
565                            "NVM write error: offset %d beyond Shadow RAM limit %d\n",
566                            (offset + words), hw->nvm.sr_size);
567         else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
568                 /* We can write only up to 4KB (one sector), in one AQ write */
569                 i40e_debug(hw, I40E_DEBUG_NVM,
570                            "NVM write fail error: tried to write %d words, limit is %d.\n",
571                            words, I40E_SR_SECTOR_SIZE_IN_WORDS);
572         else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
573                  != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
574                 /* A single write cannot spread over two sectors */
575                 i40e_debug(hw, I40E_DEBUG_NVM,
576                            "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
577                            offset, words);
578         else
579                 ret_code = i40e_aq_update_nvm(hw, module_pointer,
580                                               2 * offset,  /*bytes*/
581                                               2 * words,   /*bytes*/
582                                               data, last_command, 0,
583                                               &cmd_details);
584
585         return ret_code;
586 }
587
588 /**
589  * i40e_calc_nvm_checksum - Calculates and returns the checksum
590  * @hw: pointer to hardware structure
591  * @checksum: pointer to the checksum
592  *
593  * This function calculates SW Checksum that covers the whole 64kB shadow RAM
594  * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
595  * is customer specific and unknown. Therefore, this function skips all maximum
596  * possible size of VPD (1kB).
597  **/
598 static int i40e_calc_nvm_checksum(struct i40e_hw *hw,
599                                   u16 *checksum)
600 {
601         struct i40e_virt_mem vmem;
602         u16 pcie_alt_module = 0;
603         u16 checksum_local = 0;
604         u16 vpd_module = 0;
605         int ret_code;
606         u16 *data;
607         u16 i = 0;
608
609         ret_code = i40e_allocate_virt_mem(hw, &vmem,
610                                     I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
611         if (ret_code)
612                 goto i40e_calc_nvm_checksum_exit;
613         data = (u16 *)vmem.va;
614
615         /* read pointer to VPD area */
616         ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
617         if (ret_code) {
618                 ret_code = -EIO;
619                 goto i40e_calc_nvm_checksum_exit;
620         }
621
622         /* read pointer to PCIe Alt Auto-load module */
623         ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
624                                         &pcie_alt_module);
625         if (ret_code) {
626                 ret_code = -EIO;
627                 goto i40e_calc_nvm_checksum_exit;
628         }
629
630         /* Calculate SW checksum that covers the whole 64kB shadow RAM
631          * except the VPD and PCIe ALT Auto-load modules
632          */
633         for (i = 0; i < hw->nvm.sr_size; i++) {
634                 /* Read SR page */
635                 if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
636                         u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
637
638                         ret_code = __i40e_read_nvm_buffer(hw, i, &words, data);
639                         if (ret_code) {
640                                 ret_code = -EIO;
641                                 goto i40e_calc_nvm_checksum_exit;
642                         }
643                 }
644
645                 /* Skip Checksum word */
646                 if (i == I40E_SR_SW_CHECKSUM_WORD)
647                         continue;
648                 /* Skip VPD module (convert byte size to word count) */
649                 if ((i >= (u32)vpd_module) &&
650                     (i < ((u32)vpd_module +
651                      (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
652                         continue;
653                 }
654                 /* Skip PCIe ALT module (convert byte size to word count) */
655                 if ((i >= (u32)pcie_alt_module) &&
656                     (i < ((u32)pcie_alt_module +
657                      (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
658                         continue;
659                 }
660
661                 checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
662         }
663
664         *checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
665
666 i40e_calc_nvm_checksum_exit:
667         i40e_free_virt_mem(hw, &vmem);
668         return ret_code;
669 }
670
671 /**
672  * i40e_update_nvm_checksum - Updates the NVM checksum
673  * @hw: pointer to hardware structure
674  *
675  * NVM ownership must be acquired before calling this function and released
676  * on ARQ completion event reception by caller.
677  * This function will commit SR to NVM.
678  **/
679 int i40e_update_nvm_checksum(struct i40e_hw *hw)
680 {
681         __le16 le_sum;
682         int ret_code;
683         u16 checksum;
684
685         ret_code = i40e_calc_nvm_checksum(hw, &checksum);
686         if (!ret_code) {
687                 le_sum = cpu_to_le16(checksum);
688                 ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
689                                              1, &le_sum, true);
690         }
691
692         return ret_code;
693 }
694
695 /**
696  * i40e_validate_nvm_checksum - Validate EEPROM checksum
697  * @hw: pointer to hardware structure
698  * @checksum: calculated checksum
699  *
700  * Performs checksum calculation and validates the NVM SW checksum. If the
701  * caller does not need checksum, the value can be NULL.
702  **/
703 int i40e_validate_nvm_checksum(struct i40e_hw *hw,
704                                u16 *checksum)
705 {
706         u16 checksum_local = 0;
707         u16 checksum_sr = 0;
708         int ret_code = 0;
709
710         /* We must acquire the NVM lock in order to correctly synchronize the
711          * NVM accesses across multiple PFs. Without doing so it is possible
712          * for one of the PFs to read invalid data potentially indicating that
713          * the checksum is invalid.
714          */
715         ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
716         if (ret_code)
717                 return ret_code;
718         ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
719         __i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
720         i40e_release_nvm(hw);
721         if (ret_code)
722                 return ret_code;
723
724         /* Verify read checksum from EEPROM is the same as
725          * calculated checksum
726          */
727         if (checksum_local != checksum_sr)
728                 ret_code = -EIO;
729
730         /* If the user cares, return the calculated checksum */
731         if (checksum)
732                 *checksum = checksum_local;
733
734         return ret_code;
735 }
736
737 static u8 i40e_nvmupd_get_module(u32 val)
738 {
739         return (u8)(val & I40E_NVM_MOD_PNT_MASK);
740 }
741 static inline u8 i40e_nvmupd_get_transaction(u32 val)
742 {
743         return FIELD_GET(I40E_NVM_TRANS_MASK, val);
744 }
745
746 static inline u8 i40e_nvmupd_get_preservation_flags(u32 val)
747 {
748         return FIELD_GET(I40E_NVM_PRESERVATION_FLAGS_MASK, val);
749 }
750
751 static const char * const i40e_nvm_update_state_str[] = {
752         "I40E_NVMUPD_INVALID",
753         "I40E_NVMUPD_READ_CON",
754         "I40E_NVMUPD_READ_SNT",
755         "I40E_NVMUPD_READ_LCB",
756         "I40E_NVMUPD_READ_SA",
757         "I40E_NVMUPD_WRITE_ERA",
758         "I40E_NVMUPD_WRITE_CON",
759         "I40E_NVMUPD_WRITE_SNT",
760         "I40E_NVMUPD_WRITE_LCB",
761         "I40E_NVMUPD_WRITE_SA",
762         "I40E_NVMUPD_CSUM_CON",
763         "I40E_NVMUPD_CSUM_SA",
764         "I40E_NVMUPD_CSUM_LCB",
765         "I40E_NVMUPD_STATUS",
766         "I40E_NVMUPD_EXEC_AQ",
767         "I40E_NVMUPD_GET_AQ_RESULT",
768         "I40E_NVMUPD_GET_AQ_EVENT",
769 };
770
771 /**
772  * i40e_nvmupd_validate_command - Validate given command
773  * @hw: pointer to hardware structure
774  * @cmd: pointer to nvm update command buffer
775  * @perrno: pointer to return error code
776  *
777  * Return one of the valid command types or I40E_NVMUPD_INVALID
778  **/
779 static enum i40e_nvmupd_cmd
780 i40e_nvmupd_validate_command(struct i40e_hw *hw, struct i40e_nvm_access *cmd,
781                              int *perrno)
782 {
783         enum i40e_nvmupd_cmd upd_cmd;
784         u8 module, transaction;
785
786         /* anything that doesn't match a recognized case is an error */
787         upd_cmd = I40E_NVMUPD_INVALID;
788
789         transaction = i40e_nvmupd_get_transaction(cmd->config);
790         module = i40e_nvmupd_get_module(cmd->config);
791
792         /* limits on data size */
793         if (cmd->data_size < 1 || cmd->data_size > I40E_NVMUPD_MAX_DATA) {
794                 i40e_debug(hw, I40E_DEBUG_NVM,
795                            "%s data_size %d\n", __func__, cmd->data_size);
796                 *perrno = -EFAULT;
797                 return I40E_NVMUPD_INVALID;
798         }
799
800         switch (cmd->command) {
801         case I40E_NVM_READ:
802                 switch (transaction) {
803                 case I40E_NVM_CON:
804                         upd_cmd = I40E_NVMUPD_READ_CON;
805                         break;
806                 case I40E_NVM_SNT:
807                         upd_cmd = I40E_NVMUPD_READ_SNT;
808                         break;
809                 case I40E_NVM_LCB:
810                         upd_cmd = I40E_NVMUPD_READ_LCB;
811                         break;
812                 case I40E_NVM_SA:
813                         upd_cmd = I40E_NVMUPD_READ_SA;
814                         break;
815                 case I40E_NVM_EXEC:
816                         if (module == 0xf)
817                                 upd_cmd = I40E_NVMUPD_STATUS;
818                         else if (module == 0)
819                                 upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
820                         break;
821                 case I40E_NVM_AQE:
822                         upd_cmd = I40E_NVMUPD_GET_AQ_EVENT;
823                         break;
824                 }
825                 break;
826
827         case I40E_NVM_WRITE:
828                 switch (transaction) {
829                 case I40E_NVM_CON:
830                         upd_cmd = I40E_NVMUPD_WRITE_CON;
831                         break;
832                 case I40E_NVM_SNT:
833                         upd_cmd = I40E_NVMUPD_WRITE_SNT;
834                         break;
835                 case I40E_NVM_LCB:
836                         upd_cmd = I40E_NVMUPD_WRITE_LCB;
837                         break;
838                 case I40E_NVM_SA:
839                         upd_cmd = I40E_NVMUPD_WRITE_SA;
840                         break;
841                 case I40E_NVM_ERA:
842                         upd_cmd = I40E_NVMUPD_WRITE_ERA;
843                         break;
844                 case I40E_NVM_CSUM:
845                         upd_cmd = I40E_NVMUPD_CSUM_CON;
846                         break;
847                 case (I40E_NVM_CSUM | I40E_NVM_SA):
848                         upd_cmd = I40E_NVMUPD_CSUM_SA;
849                         break;
850                 case (I40E_NVM_CSUM | I40E_NVM_LCB):
851                         upd_cmd = I40E_NVMUPD_CSUM_LCB;
852                         break;
853                 case I40E_NVM_EXEC:
854                         if (module == 0)
855                                 upd_cmd = I40E_NVMUPD_EXEC_AQ;
856                         break;
857                 }
858                 break;
859         }
860
861         return upd_cmd;
862 }
863
864 /**
865  * i40e_nvmupd_nvm_erase - Erase an NVM module
866  * @hw: pointer to hardware structure
867  * @cmd: pointer to nvm update command buffer
868  * @perrno: pointer to return error code
869  *
870  * module, offset, data_size and data are in cmd structure
871  **/
872 static int i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
873                                  struct i40e_nvm_access *cmd,
874                                  int *perrno)
875 {
876         struct i40e_asq_cmd_details cmd_details;
877         u8 module, transaction;
878         int status = 0;
879         bool last;
880
881         transaction = i40e_nvmupd_get_transaction(cmd->config);
882         module = i40e_nvmupd_get_module(cmd->config);
883         last = (transaction & I40E_NVM_LCB);
884
885         memset(&cmd_details, 0, sizeof(cmd_details));
886         cmd_details.wb_desc = &hw->nvm_wb_desc;
887
888         status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
889                                    last, &cmd_details);
890         if (status) {
891                 i40e_debug(hw, I40E_DEBUG_NVM,
892                            "%s mod 0x%x  off 0x%x len 0x%x\n",
893                            __func__, module, cmd->offset, cmd->data_size);
894                 i40e_debug(hw, I40E_DEBUG_NVM,
895                            "%s status %d aq %d\n",
896                            __func__, status, hw->aq.asq_last_status);
897                 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
898         }
899
900         return status;
901 }
902
903 /**
904  * i40e_nvmupd_nvm_write - Write NVM
905  * @hw: pointer to hardware structure
906  * @cmd: pointer to nvm update command buffer
907  * @bytes: pointer to the data buffer
908  * @perrno: pointer to return error code
909  *
910  * module, offset, data_size and data are in cmd structure
911  **/
912 static int i40e_nvmupd_nvm_write(struct i40e_hw *hw,
913                                  struct i40e_nvm_access *cmd,
914                                  u8 *bytes, int *perrno)
915 {
916         struct i40e_asq_cmd_details cmd_details;
917         u8 module, transaction;
918         u8 preservation_flags;
919         int status = 0;
920         bool last;
921
922         transaction = i40e_nvmupd_get_transaction(cmd->config);
923         module = i40e_nvmupd_get_module(cmd->config);
924         last = (transaction & I40E_NVM_LCB);
925         preservation_flags = i40e_nvmupd_get_preservation_flags(cmd->config);
926
927         memset(&cmd_details, 0, sizeof(cmd_details));
928         cmd_details.wb_desc = &hw->nvm_wb_desc;
929
930         status = i40e_aq_update_nvm(hw, module, cmd->offset,
931                                     (u16)cmd->data_size, bytes, last,
932                                     preservation_flags, &cmd_details);
933         if (status) {
934                 i40e_debug(hw, I40E_DEBUG_NVM,
935                            "%s mod 0x%x off 0x%x len 0x%x\n",
936                            __func__, module, cmd->offset, cmd->data_size);
937                 i40e_debug(hw, I40E_DEBUG_NVM,
938                            "%s status %d aq %d\n",
939                            __func__, status, hw->aq.asq_last_status);
940                 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
941         }
942
943         return status;
944 }
945
946 /**
947  * i40e_nvmupd_nvm_read - Read NVM
948  * @hw: pointer to hardware structure
949  * @cmd: pointer to nvm update command buffer
950  * @bytes: pointer to the data buffer
951  * @perrno: pointer to return error code
952  *
953  * cmd structure contains identifiers and data buffer
954  **/
955 static int i40e_nvmupd_nvm_read(struct i40e_hw *hw,
956                                 struct i40e_nvm_access *cmd,
957                                 u8 *bytes, int *perrno)
958 {
959         struct i40e_asq_cmd_details cmd_details;
960         u8 module, transaction;
961         int status;
962         bool last;
963
964         transaction = i40e_nvmupd_get_transaction(cmd->config);
965         module = i40e_nvmupd_get_module(cmd->config);
966         last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
967
968         memset(&cmd_details, 0, sizeof(cmd_details));
969         cmd_details.wb_desc = &hw->nvm_wb_desc;
970
971         status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
972                                   bytes, last, &cmd_details);
973         if (status) {
974                 i40e_debug(hw, I40E_DEBUG_NVM,
975                            "%s mod 0x%x  off 0x%x  len 0x%x\n",
976                            __func__, module, cmd->offset, cmd->data_size);
977                 i40e_debug(hw, I40E_DEBUG_NVM,
978                            "%s status %d aq %d\n",
979                            __func__, status, hw->aq.asq_last_status);
980                 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
981         }
982
983         return status;
984 }
985
986 /**
987  * i40e_nvmupd_exec_aq - Run an AQ command
988  * @hw: pointer to hardware structure
989  * @cmd: pointer to nvm update command buffer
990  * @bytes: pointer to the data buffer
991  * @perrno: pointer to return error code
992  *
993  * cmd structure contains identifiers and data buffer
994  **/
995 static int i40e_nvmupd_exec_aq(struct i40e_hw *hw,
996                                struct i40e_nvm_access *cmd,
997                                u8 *bytes, int *perrno)
998 {
999         struct i40e_asq_cmd_details cmd_details;
1000         struct i40e_aq_desc *aq_desc;
1001         u32 buff_size = 0;
1002         u8 *buff = NULL;
1003         u32 aq_desc_len;
1004         u32 aq_data_len;
1005         int status;
1006
1007         i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1008         if (cmd->offset == 0xffff)
1009                 return 0;
1010
1011         memset(&cmd_details, 0, sizeof(cmd_details));
1012         cmd_details.wb_desc = &hw->nvm_wb_desc;
1013
1014         aq_desc_len = sizeof(struct i40e_aq_desc);
1015         memset(&hw->nvm_wb_desc, 0, aq_desc_len);
1016
1017         /* get the aq descriptor */
1018         if (cmd->data_size < aq_desc_len) {
1019                 i40e_debug(hw, I40E_DEBUG_NVM,
1020                            "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1021                            cmd->data_size, aq_desc_len);
1022                 *perrno = -EINVAL;
1023                 return -EINVAL;
1024         }
1025         aq_desc = (struct i40e_aq_desc *)bytes;
1026
1027         /* if data buffer needed, make sure it's ready */
1028         aq_data_len = cmd->data_size - aq_desc_len;
1029         buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1030         if (buff_size) {
1031                 if (!hw->nvm_buff.va) {
1032                         status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1033                                                         hw->aq.asq_buf_size);
1034                         if (status)
1035                                 i40e_debug(hw, I40E_DEBUG_NVM,
1036                                            "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1037                                            status);
1038                 }
1039
1040                 if (hw->nvm_buff.va) {
1041                         buff = hw->nvm_buff.va;
1042                         memcpy(buff, &bytes[aq_desc_len], aq_data_len);
1043                 }
1044         }
1045
1046         if (cmd->offset)
1047                 memset(&hw->nvm_aq_event_desc, 0, aq_desc_len);
1048
1049         /* and away we go! */
1050         status = i40e_asq_send_command(hw, aq_desc, buff,
1051                                        buff_size, &cmd_details);
1052         if (status) {
1053                 i40e_debug(hw, I40E_DEBUG_NVM,
1054                            "%s err %pe aq_err %s\n",
1055                            __func__, ERR_PTR(status),
1056                            i40e_aq_str(hw, hw->aq.asq_last_status));
1057                 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1058                 return status;
1059         }
1060
1061         /* should we wait for a followup event? */
1062         if (cmd->offset) {
1063                 hw->nvm_wait_opcode = cmd->offset;
1064                 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1065         }
1066
1067         return status;
1068 }
1069
1070 /**
1071  * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1072  * @hw: pointer to hardware structure
1073  * @cmd: pointer to nvm update command buffer
1074  * @bytes: pointer to the data buffer
1075  * @perrno: pointer to return error code
1076  *
1077  * cmd structure contains identifiers and data buffer
1078  **/
1079 static int i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1080                                      struct i40e_nvm_access *cmd,
1081                                      u8 *bytes, int *perrno)
1082 {
1083         u32 aq_total_len;
1084         u32 aq_desc_len;
1085         int remainder;
1086         u8 *buff;
1087
1088         i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1089
1090         aq_desc_len = sizeof(struct i40e_aq_desc);
1091         aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1092
1093         /* check offset range */
1094         if (cmd->offset > aq_total_len) {
1095                 i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1096                            __func__, cmd->offset, aq_total_len);
1097                 *perrno = -EINVAL;
1098                 return -EINVAL;
1099         }
1100
1101         /* check copylength range */
1102         if (cmd->data_size > (aq_total_len - cmd->offset)) {
1103                 int new_len = aq_total_len - cmd->offset;
1104
1105                 i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1106                            __func__, cmd->data_size, new_len);
1107                 cmd->data_size = new_len;
1108         }
1109
1110         remainder = cmd->data_size;
1111         if (cmd->offset < aq_desc_len) {
1112                 u32 len = aq_desc_len - cmd->offset;
1113
1114                 len = min(len, cmd->data_size);
1115                 i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1116                            __func__, cmd->offset, cmd->offset + len);
1117
1118                 buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1119                 memcpy(bytes, buff, len);
1120
1121                 bytes += len;
1122                 remainder -= len;
1123                 buff = hw->nvm_buff.va;
1124         } else {
1125                 buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1126         }
1127
1128         if (remainder > 0) {
1129                 int start_byte = buff - (u8 *)hw->nvm_buff.va;
1130
1131                 i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1132                            __func__, start_byte, start_byte + remainder);
1133                 memcpy(bytes, buff, remainder);
1134         }
1135
1136         return 0;
1137 }
1138
1139 /**
1140  * i40e_nvmupd_get_aq_event - Get the Admin Queue event from previous exec_aq
1141  * @hw: pointer to hardware structure
1142  * @cmd: pointer to nvm update command buffer
1143  * @bytes: pointer to the data buffer
1144  * @perrno: pointer to return error code
1145  *
1146  * cmd structure contains identifiers and data buffer
1147  **/
1148 static int i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
1149                                     struct i40e_nvm_access *cmd,
1150                                     u8 *bytes, int *perrno)
1151 {
1152         u32 aq_total_len;
1153         u32 aq_desc_len;
1154
1155         i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1156
1157         aq_desc_len = sizeof(struct i40e_aq_desc);
1158         aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_aq_event_desc.datalen);
1159
1160         /* check copylength range */
1161         if (cmd->data_size > aq_total_len) {
1162                 i40e_debug(hw, I40E_DEBUG_NVM,
1163                            "%s: copy length %d too big, trimming to %d\n",
1164                            __func__, cmd->data_size, aq_total_len);
1165                 cmd->data_size = aq_total_len;
1166         }
1167
1168         memcpy(bytes, &hw->nvm_aq_event_desc, cmd->data_size);
1169
1170         return 0;
1171 }
1172
1173 /**
1174  * i40e_nvmupd_state_init - Handle NVM update state Init
1175  * @hw: pointer to hardware structure
1176  * @cmd: pointer to nvm update command buffer
1177  * @bytes: pointer to the data buffer
1178  * @perrno: pointer to return error code
1179  *
1180  * Process legitimate commands of the Init state and conditionally set next
1181  * state. Reject all other commands.
1182  **/
1183 static int i40e_nvmupd_state_init(struct i40e_hw *hw,
1184                                   struct i40e_nvm_access *cmd,
1185                                   u8 *bytes, int *perrno)
1186 {
1187         enum i40e_nvmupd_cmd upd_cmd;
1188         int status = 0;
1189
1190         upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1191
1192         switch (upd_cmd) {
1193         case I40E_NVMUPD_READ_SA:
1194                 status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
1195                 if (status) {
1196                         *perrno = i40e_aq_rc_to_posix(status,
1197                                                       hw->aq.asq_last_status);
1198                 } else {
1199                         status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1200                         i40e_release_nvm(hw);
1201                 }
1202                 break;
1203
1204         case I40E_NVMUPD_READ_SNT:
1205                 status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
1206                 if (status) {
1207                         *perrno = i40e_aq_rc_to_posix(status,
1208                                                       hw->aq.asq_last_status);
1209                 } else {
1210                         status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1211                         if (status)
1212                                 i40e_release_nvm(hw);
1213                         else
1214                                 hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
1215                 }
1216                 break;
1217
1218         case I40E_NVMUPD_WRITE_ERA:
1219                 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1220                 if (status) {
1221                         *perrno = i40e_aq_rc_to_posix(status,
1222                                                       hw->aq.asq_last_status);
1223                 } else {
1224                         status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
1225                         if (status) {
1226                                 i40e_release_nvm(hw);
1227                         } else {
1228                                 hw->nvm_release_on_done = true;
1229                                 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase;
1230                                 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1231                         }
1232                 }
1233                 break;
1234
1235         case I40E_NVMUPD_WRITE_SA:
1236                 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1237                 if (status) {
1238                         *perrno = i40e_aq_rc_to_posix(status,
1239                                                       hw->aq.asq_last_status);
1240                 } else {
1241                         status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1242                         if (status) {
1243                                 i40e_release_nvm(hw);
1244                         } else {
1245                                 hw->nvm_release_on_done = true;
1246                                 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1247                                 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1248                         }
1249                 }
1250                 break;
1251
1252         case I40E_NVMUPD_WRITE_SNT:
1253                 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1254                 if (status) {
1255                         *perrno = i40e_aq_rc_to_posix(status,
1256                                                       hw->aq.asq_last_status);
1257                 } else {
1258                         status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1259                         if (status) {
1260                                 i40e_release_nvm(hw);
1261                         } else {
1262                                 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1263                                 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1264                         }
1265                 }
1266                 break;
1267
1268         case I40E_NVMUPD_CSUM_SA:
1269                 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1270                 if (status) {
1271                         *perrno = i40e_aq_rc_to_posix(status,
1272                                                       hw->aq.asq_last_status);
1273                 } else {
1274                         status = i40e_update_nvm_checksum(hw);
1275                         if (status) {
1276                                 *perrno = hw->aq.asq_last_status ?
1277                                    i40e_aq_rc_to_posix(status,
1278                                                        hw->aq.asq_last_status) :
1279                                    -EIO;
1280                                 i40e_release_nvm(hw);
1281                         } else {
1282                                 hw->nvm_release_on_done = true;
1283                                 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1284                                 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1285                         }
1286                 }
1287                 break;
1288
1289         case I40E_NVMUPD_EXEC_AQ:
1290                 status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
1291                 break;
1292
1293         case I40E_NVMUPD_GET_AQ_RESULT:
1294                 status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
1295                 break;
1296
1297         case I40E_NVMUPD_GET_AQ_EVENT:
1298                 status = i40e_nvmupd_get_aq_event(hw, cmd, bytes, perrno);
1299                 break;
1300
1301         default:
1302                 i40e_debug(hw, I40E_DEBUG_NVM,
1303                            "NVMUPD: bad cmd %s in init state\n",
1304                            i40e_nvm_update_state_str[upd_cmd]);
1305                 status = -EIO;
1306                 *perrno = -ESRCH;
1307                 break;
1308         }
1309         return status;
1310 }
1311
1312 /**
1313  * i40e_nvmupd_state_reading - Handle NVM update state Reading
1314  * @hw: pointer to hardware structure
1315  * @cmd: pointer to nvm update command buffer
1316  * @bytes: pointer to the data buffer
1317  * @perrno: pointer to return error code
1318  *
1319  * NVM ownership is already held.  Process legitimate commands and set any
1320  * change in state; reject all other commands.
1321  **/
1322 static int i40e_nvmupd_state_reading(struct i40e_hw *hw,
1323                                      struct i40e_nvm_access *cmd,
1324                                      u8 *bytes, int *perrno)
1325 {
1326         enum i40e_nvmupd_cmd upd_cmd;
1327         int status = 0;
1328
1329         upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1330
1331         switch (upd_cmd) {
1332         case I40E_NVMUPD_READ_SA:
1333         case I40E_NVMUPD_READ_CON:
1334                 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1335                 break;
1336
1337         case I40E_NVMUPD_READ_LCB:
1338                 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1339                 i40e_release_nvm(hw);
1340                 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1341                 break;
1342
1343         default:
1344                 i40e_debug(hw, I40E_DEBUG_NVM,
1345                            "NVMUPD: bad cmd %s in reading state.\n",
1346                            i40e_nvm_update_state_str[upd_cmd]);
1347                 status = -EOPNOTSUPP;
1348                 *perrno = -ESRCH;
1349                 break;
1350         }
1351         return status;
1352 }
1353
1354 /**
1355  * i40e_nvmupd_state_writing - Handle NVM update state Writing
1356  * @hw: pointer to hardware structure
1357  * @cmd: pointer to nvm update command buffer
1358  * @bytes: pointer to the data buffer
1359  * @perrno: pointer to return error code
1360  *
1361  * NVM ownership is already held.  Process legitimate commands and set any
1362  * change in state; reject all other commands
1363  **/
1364 static int i40e_nvmupd_state_writing(struct i40e_hw *hw,
1365                                      struct i40e_nvm_access *cmd,
1366                                      u8 *bytes, int *perrno)
1367 {
1368         enum i40e_nvmupd_cmd upd_cmd;
1369         bool retry_attempt = false;
1370         int status = 0;
1371
1372         upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1373
1374 retry:
1375         switch (upd_cmd) {
1376         case I40E_NVMUPD_WRITE_CON:
1377                 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1378                 if (!status) {
1379                         hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1380                         hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1381                 }
1382                 break;
1383
1384         case I40E_NVMUPD_WRITE_LCB:
1385                 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1386                 if (status) {
1387                         *perrno = hw->aq.asq_last_status ?
1388                                    i40e_aq_rc_to_posix(status,
1389                                                        hw->aq.asq_last_status) :
1390                                    -EIO;
1391                         hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1392                 } else {
1393                         hw->nvm_release_on_done = true;
1394                         hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1395                         hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1396                 }
1397                 break;
1398
1399         case I40E_NVMUPD_CSUM_CON:
1400                 /* Assumes the caller has acquired the nvm */
1401                 status = i40e_update_nvm_checksum(hw);
1402                 if (status) {
1403                         *perrno = hw->aq.asq_last_status ?
1404                                    i40e_aq_rc_to_posix(status,
1405                                                        hw->aq.asq_last_status) :
1406                                    -EIO;
1407                         hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1408                 } else {
1409                         hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1410                         hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1411                 }
1412                 break;
1413
1414         case I40E_NVMUPD_CSUM_LCB:
1415                 /* Assumes the caller has acquired the nvm */
1416                 status = i40e_update_nvm_checksum(hw);
1417                 if (status) {
1418                         *perrno = hw->aq.asq_last_status ?
1419                                    i40e_aq_rc_to_posix(status,
1420                                                        hw->aq.asq_last_status) :
1421                                    -EIO;
1422                         hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1423                 } else {
1424                         hw->nvm_release_on_done = true;
1425                         hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1426                         hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1427                 }
1428                 break;
1429
1430         default:
1431                 i40e_debug(hw, I40E_DEBUG_NVM,
1432                            "NVMUPD: bad cmd %s in writing state.\n",
1433                            i40e_nvm_update_state_str[upd_cmd]);
1434                 status = -EOPNOTSUPP;
1435                 *perrno = -ESRCH;
1436                 break;
1437         }
1438
1439         /* In some circumstances, a multi-write transaction takes longer
1440          * than the default 3 minute timeout on the write semaphore.  If
1441          * the write failed with an EBUSY status, this is likely the problem,
1442          * so here we try to reacquire the semaphore then retry the write.
1443          * We only do one retry, then give up.
1444          */
1445         if (status && hw->aq.asq_last_status == I40E_AQ_RC_EBUSY &&
1446             !retry_attempt) {
1447                 u32 old_asq_status = hw->aq.asq_last_status;
1448                 int old_status = status;
1449                 u32 gtime;
1450
1451                 gtime = rd32(hw, I40E_GLVFGEN_TIMER);
1452                 if (gtime >= hw->nvm.hw_semaphore_timeout) {
1453                         i40e_debug(hw, I40E_DEBUG_ALL,
1454                                    "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
1455                                    gtime, hw->nvm.hw_semaphore_timeout);
1456                         i40e_release_nvm(hw);
1457                         status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1458                         if (status) {
1459                                 i40e_debug(hw, I40E_DEBUG_ALL,
1460                                            "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
1461                                            hw->aq.asq_last_status);
1462                                 status = old_status;
1463                                 hw->aq.asq_last_status = old_asq_status;
1464                         } else {
1465                                 retry_attempt = true;
1466                                 goto retry;
1467                         }
1468                 }
1469         }
1470
1471         return status;
1472 }
1473
1474 /**
1475  * i40e_nvmupd_command - Process an NVM update command
1476  * @hw: pointer to hardware structure
1477  * @cmd: pointer to nvm update command
1478  * @bytes: pointer to the data buffer
1479  * @perrno: pointer to return error code
1480  *
1481  * Dispatches command depending on what update state is current
1482  **/
1483 int i40e_nvmupd_command(struct i40e_hw *hw,
1484                         struct i40e_nvm_access *cmd,
1485                         u8 *bytes, int *perrno)
1486 {
1487         enum i40e_nvmupd_cmd upd_cmd;
1488         int status;
1489
1490         /* assume success */
1491         *perrno = 0;
1492
1493         /* early check for status command and debug msgs */
1494         upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1495
1496         i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n",
1497                    i40e_nvm_update_state_str[upd_cmd],
1498                    hw->nvmupd_state,
1499                    hw->nvm_release_on_done, hw->nvm_wait_opcode,
1500                    cmd->command, cmd->config, cmd->offset, cmd->data_size);
1501
1502         if (upd_cmd == I40E_NVMUPD_INVALID) {
1503                 *perrno = -EFAULT;
1504                 i40e_debug(hw, I40E_DEBUG_NVM,
1505                            "i40e_nvmupd_validate_command returns %d errno %d\n",
1506                            upd_cmd, *perrno);
1507         }
1508
1509         /* a status request returns immediately rather than
1510          * going into the state machine
1511          */
1512         if (upd_cmd == I40E_NVMUPD_STATUS) {
1513                 if (!cmd->data_size) {
1514                         *perrno = -EFAULT;
1515                         return -EINVAL;
1516                 }
1517
1518                 bytes[0] = hw->nvmupd_state;
1519
1520                 if (cmd->data_size >= 4) {
1521                         bytes[1] = 0;
1522                         *((u16 *)&bytes[2]) = hw->nvm_wait_opcode;
1523                 }
1524
1525                 /* Clear error status on read */
1526                 if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR)
1527                         hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1528
1529                 return 0;
1530         }
1531
1532         /* Clear status even it is not read and log */
1533         if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) {
1534                 i40e_debug(hw, I40E_DEBUG_NVM,
1535                            "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n");
1536                 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1537         }
1538
1539         /* Acquire lock to prevent race condition where adminq_task
1540          * can execute after i40e_nvmupd_nvm_read/write but before state
1541          * variables (nvm_wait_opcode, nvm_release_on_done) are updated.
1542          *
1543          * During NVMUpdate, it is observed that lock could be held for
1544          * ~5ms for most commands. However lock is held for ~60ms for
1545          * NVMUPD_CSUM_LCB command.
1546          */
1547         mutex_lock(&hw->aq.arq_mutex);
1548         switch (hw->nvmupd_state) {
1549         case I40E_NVMUPD_STATE_INIT:
1550                 status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
1551                 break;
1552
1553         case I40E_NVMUPD_STATE_READING:
1554                 status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
1555                 break;
1556
1557         case I40E_NVMUPD_STATE_WRITING:
1558                 status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
1559                 break;
1560
1561         case I40E_NVMUPD_STATE_INIT_WAIT:
1562         case I40E_NVMUPD_STATE_WRITE_WAIT:
1563                 /* if we need to stop waiting for an event, clear
1564                  * the wait info and return before doing anything else
1565                  */
1566                 if (cmd->offset == 0xffff) {
1567                         i40e_nvmupd_clear_wait_state(hw);
1568                         status = 0;
1569                         break;
1570                 }
1571
1572                 status = -EBUSY;
1573                 *perrno = -EBUSY;
1574                 break;
1575
1576         default:
1577                 /* invalid state, should never happen */
1578                 i40e_debug(hw, I40E_DEBUG_NVM,
1579                            "NVMUPD: no such state %d\n", hw->nvmupd_state);
1580                 status = -EOPNOTSUPP;
1581                 *perrno = -ESRCH;
1582                 break;
1583         }
1584
1585         mutex_unlock(&hw->aq.arq_mutex);
1586         return status;
1587 }
1588
1589 /**
1590  * i40e_nvmupd_clear_wait_state - clear wait state on hw
1591  * @hw: pointer to the hardware structure
1592  **/
1593 void i40e_nvmupd_clear_wait_state(struct i40e_hw *hw)
1594 {
1595         i40e_debug(hw, I40E_DEBUG_NVM,
1596                    "NVMUPD: clearing wait on opcode 0x%04x\n",
1597                    hw->nvm_wait_opcode);
1598
1599         if (hw->nvm_release_on_done) {
1600                 i40e_release_nvm(hw);
1601                 hw->nvm_release_on_done = false;
1602         }
1603         hw->nvm_wait_opcode = 0;
1604
1605         if (hw->aq.arq_last_status) {
1606                 hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR;
1607                 return;
1608         }
1609
1610         switch (hw->nvmupd_state) {
1611         case I40E_NVMUPD_STATE_INIT_WAIT:
1612                 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1613                 break;
1614
1615         case I40E_NVMUPD_STATE_WRITE_WAIT:
1616                 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING;
1617                 break;
1618
1619         default:
1620                 break;
1621         }
1622 }
1623
1624 /**
1625  * i40e_nvmupd_check_wait_event - handle NVM update operation events
1626  * @hw: pointer to the hardware structure
1627  * @opcode: the event that just happened
1628  * @desc: AdminQ descriptor
1629  **/
1630 void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode,
1631                                   struct i40e_aq_desc *desc)
1632 {
1633         u32 aq_desc_len = sizeof(struct i40e_aq_desc);
1634
1635         if (opcode == hw->nvm_wait_opcode) {
1636                 memcpy(&hw->nvm_aq_event_desc, desc, aq_desc_len);
1637                 i40e_nvmupd_clear_wait_state(hw);
1638         }
1639 }
This page took 0.125571 seconds and 4 git commands to generate.