]> Git Repo - linux.git/blob - drivers/net/ethernet/intel/e1000e/82571.c
Linux 6.14-rc3
[linux.git] / drivers / net / ethernet / intel / e1000e / 82571.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 /* 82571EB Gigabit Ethernet Controller
5  * 82571EB Gigabit Ethernet Controller (Copper)
6  * 82571EB Gigabit Ethernet Controller (Fiber)
7  * 82571EB Dual Port Gigabit Mezzanine Adapter
8  * 82571EB Quad Port Gigabit Mezzanine Adapter
9  * 82571PT Gigabit PT Quad Port Server ExpressModule
10  * 82572EI Gigabit Ethernet Controller (Copper)
11  * 82572EI Gigabit Ethernet Controller (Fiber)
12  * 82572EI Gigabit Ethernet Controller
13  * 82573V Gigabit Ethernet Controller (Copper)
14  * 82573E Gigabit Ethernet Controller (Copper)
15  * 82573L Gigabit Ethernet Controller
16  * 82574L Gigabit Network Connection
17  * 82583V Gigabit Network Connection
18  */
19
20 #include "e1000.h"
21
22 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
23 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
24 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
25 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
26 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
27                                       u16 words, u16 *data);
28 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
29 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
30 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
31 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
32 static s32 e1000_led_on_82574(struct e1000_hw *hw);
33 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
34 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
35 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
36 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
37 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
38 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
39 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
40
41 /**
42  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
43  *  @hw: pointer to the HW structure
44  **/
45 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
46 {
47         struct e1000_phy_info *phy = &hw->phy;
48         s32 ret_val;
49
50         if (hw->phy.media_type != e1000_media_type_copper) {
51                 phy->type = e1000_phy_none;
52                 return 0;
53         }
54
55         phy->addr = 1;
56         phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
57         phy->reset_delay_us = 100;
58
59         phy->ops.power_up = e1000_power_up_phy_copper;
60         phy->ops.power_down = e1000_power_down_phy_copper_82571;
61
62         switch (hw->mac.type) {
63         case e1000_82571:
64         case e1000_82572:
65                 phy->type = e1000_phy_igp_2;
66                 break;
67         case e1000_82573:
68                 phy->type = e1000_phy_m88;
69                 break;
70         case e1000_82574:
71         case e1000_82583:
72                 phy->type = e1000_phy_bm;
73                 phy->ops.acquire = e1000_get_hw_semaphore_82574;
74                 phy->ops.release = e1000_put_hw_semaphore_82574;
75                 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
76                 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
77                 break;
78         default:
79                 return -E1000_ERR_PHY;
80         }
81
82         /* This can only be done after all function pointers are setup. */
83         ret_val = e1000_get_phy_id_82571(hw);
84         if (ret_val) {
85                 e_dbg("Error getting PHY ID\n");
86                 return ret_val;
87         }
88
89         /* Verify phy id */
90         switch (hw->mac.type) {
91         case e1000_82571:
92         case e1000_82572:
93                 if (phy->id != IGP01E1000_I_PHY_ID)
94                         ret_val = -E1000_ERR_PHY;
95                 break;
96         case e1000_82573:
97                 if (phy->id != M88E1111_I_PHY_ID)
98                         ret_val = -E1000_ERR_PHY;
99                 break;
100         case e1000_82574:
101         case e1000_82583:
102                 if (phy->id != BME1000_E_PHY_ID_R2)
103                         ret_val = -E1000_ERR_PHY;
104                 break;
105         default:
106                 ret_val = -E1000_ERR_PHY;
107                 break;
108         }
109
110         if (ret_val)
111                 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
112
113         return ret_val;
114 }
115
116 /**
117  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
118  *  @hw: pointer to the HW structure
119  **/
120 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
121 {
122         struct e1000_nvm_info *nvm = &hw->nvm;
123         u32 eecd = er32(EECD);
124         u16 size;
125
126         nvm->opcode_bits = 8;
127         nvm->delay_usec = 1;
128         switch (nvm->override) {
129         case e1000_nvm_override_spi_large:
130                 nvm->page_size = 32;
131                 nvm->address_bits = 16;
132                 break;
133         case e1000_nvm_override_spi_small:
134                 nvm->page_size = 8;
135                 nvm->address_bits = 8;
136                 break;
137         default:
138                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
139                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
140                 break;
141         }
142
143         switch (hw->mac.type) {
144         case e1000_82573:
145         case e1000_82574:
146         case e1000_82583:
147                 if (((eecd >> 15) & 0x3) == 0x3) {
148                         nvm->type = e1000_nvm_flash_hw;
149                         nvm->word_size = 2048;
150                         /* Autonomous Flash update bit must be cleared due
151                          * to Flash update issue.
152                          */
153                         eecd &= ~E1000_EECD_AUPDEN;
154                         ew32(EECD, eecd);
155                         break;
156                 }
157                 fallthrough;
158         default:
159                 nvm->type = e1000_nvm_eeprom_spi;
160                 size = (u16)FIELD_GET(E1000_EECD_SIZE_EX_MASK, eecd);
161                 /* Added to a constant, "size" becomes the left-shift value
162                  * for setting word_size.
163                  */
164                 size += NVM_WORD_SIZE_BASE_SHIFT;
165
166                 /* EEPROM access above 16k is unsupported */
167                 if (size > 14)
168                         size = 14;
169                 nvm->word_size = BIT(size);
170                 break;
171         }
172
173         /* Function Pointers */
174         switch (hw->mac.type) {
175         case e1000_82574:
176         case e1000_82583:
177                 nvm->ops.acquire = e1000_get_hw_semaphore_82574;
178                 nvm->ops.release = e1000_put_hw_semaphore_82574;
179                 break;
180         default:
181                 break;
182         }
183
184         return 0;
185 }
186
187 /**
188  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
189  *  @hw: pointer to the HW structure
190  **/
191 static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
192 {
193         struct e1000_mac_info *mac = &hw->mac;
194         u32 swsm = 0;
195         u32 swsm2 = 0;
196         bool force_clear_smbi = false;
197
198         /* Set media type and media-dependent function pointers */
199         switch (hw->adapter->pdev->device) {
200         case E1000_DEV_ID_82571EB_FIBER:
201         case E1000_DEV_ID_82572EI_FIBER:
202         case E1000_DEV_ID_82571EB_QUAD_FIBER:
203                 hw->phy.media_type = e1000_media_type_fiber;
204                 mac->ops.setup_physical_interface =
205                     e1000_setup_fiber_serdes_link_82571;
206                 mac->ops.check_for_link = e1000e_check_for_fiber_link;
207                 mac->ops.get_link_up_info =
208                     e1000e_get_speed_and_duplex_fiber_serdes;
209                 break;
210         case E1000_DEV_ID_82571EB_SERDES:
211         case E1000_DEV_ID_82571EB_SERDES_DUAL:
212         case E1000_DEV_ID_82571EB_SERDES_QUAD:
213         case E1000_DEV_ID_82572EI_SERDES:
214                 hw->phy.media_type = e1000_media_type_internal_serdes;
215                 mac->ops.setup_physical_interface =
216                     e1000_setup_fiber_serdes_link_82571;
217                 mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
218                 mac->ops.get_link_up_info =
219                     e1000e_get_speed_and_duplex_fiber_serdes;
220                 break;
221         default:
222                 hw->phy.media_type = e1000_media_type_copper;
223                 mac->ops.setup_physical_interface =
224                     e1000_setup_copper_link_82571;
225                 mac->ops.check_for_link = e1000e_check_for_copper_link;
226                 mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
227                 break;
228         }
229
230         /* Set mta register count */
231         mac->mta_reg_count = 128;
232         /* Set rar entry count */
233         mac->rar_entry_count = E1000_RAR_ENTRIES;
234         /* Adaptive IFS supported */
235         mac->adaptive_ifs = true;
236
237         /* MAC-specific function pointers */
238         switch (hw->mac.type) {
239         case e1000_82573:
240                 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
241                 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
242                 mac->ops.led_on = e1000e_led_on_generic;
243                 mac->ops.blink_led = e1000e_blink_led_generic;
244
245                 /* FWSM register */
246                 mac->has_fwsm = true;
247                 /* ARC supported; valid only if manageability features are
248                  * enabled.
249                  */
250                 mac->arc_subsystem_valid = !!(er32(FWSM) &
251                                               E1000_FWSM_MODE_MASK);
252                 break;
253         case e1000_82574:
254         case e1000_82583:
255                 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
256                 mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
257                 mac->ops.led_on = e1000_led_on_82574;
258                 break;
259         default:
260                 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
261                 mac->ops.led_on = e1000e_led_on_generic;
262                 mac->ops.blink_led = e1000e_blink_led_generic;
263
264                 /* FWSM register */
265                 mac->has_fwsm = true;
266                 break;
267         }
268
269         /* Ensure that the inter-port SWSM.SMBI lock bit is clear before
270          * first NVM or PHY access. This should be done for single-port
271          * devices, and for one port only on dual-port devices so that
272          * for those devices we can still use the SMBI lock to synchronize
273          * inter-port accesses to the PHY & NVM.
274          */
275         switch (hw->mac.type) {
276         case e1000_82571:
277         case e1000_82572:
278                 swsm2 = er32(SWSM2);
279
280                 if (!(swsm2 & E1000_SWSM2_LOCK)) {
281                         /* Only do this for the first interface on this card */
282                         ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
283                         force_clear_smbi = true;
284                 } else {
285                         force_clear_smbi = false;
286                 }
287                 break;
288         default:
289                 force_clear_smbi = true;
290                 break;
291         }
292
293         if (force_clear_smbi) {
294                 /* Make sure SWSM.SMBI is clear */
295                 swsm = er32(SWSM);
296                 if (swsm & E1000_SWSM_SMBI) {
297                         /* This bit should not be set on a first interface, and
298                          * indicates that the bootagent or EFI code has
299                          * improperly left this bit enabled
300                          */
301                         e_dbg("Please update your 82571 Bootagent\n");
302                 }
303                 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
304         }
305
306         /* Initialize device specific counter of SMBI acquisition timeouts. */
307         hw->dev_spec.e82571.smb_counter = 0;
308
309         return 0;
310 }
311
312 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
313 {
314         struct e1000_hw *hw = &adapter->hw;
315         static int global_quad_port_a;  /* global port a indication */
316         struct pci_dev *pdev = adapter->pdev;
317         int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
318         s32 rc;
319
320         rc = e1000_init_mac_params_82571(hw);
321         if (rc)
322                 return rc;
323
324         rc = e1000_init_nvm_params_82571(hw);
325         if (rc)
326                 return rc;
327
328         rc = e1000_init_phy_params_82571(hw);
329         if (rc)
330                 return rc;
331
332         /* tag quad port adapters first, it's used below */
333         switch (pdev->device) {
334         case E1000_DEV_ID_82571EB_QUAD_COPPER:
335         case E1000_DEV_ID_82571EB_QUAD_FIBER:
336         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
337         case E1000_DEV_ID_82571PT_QUAD_COPPER:
338                 adapter->flags |= FLAG_IS_QUAD_PORT;
339                 /* mark the first port */
340                 if (global_quad_port_a == 0)
341                         adapter->flags |= FLAG_IS_QUAD_PORT_A;
342                 /* Reset for multiple quad port adapters */
343                 global_quad_port_a++;
344                 if (global_quad_port_a == 4)
345                         global_quad_port_a = 0;
346                 break;
347         default:
348                 break;
349         }
350
351         switch (adapter->hw.mac.type) {
352         case e1000_82571:
353                 /* these dual ports don't have WoL on port B at all */
354                 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
355                      (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
356                      (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
357                     (is_port_b))
358                         adapter->flags &= ~FLAG_HAS_WOL;
359                 /* quad ports only support WoL on port A */
360                 if (adapter->flags & FLAG_IS_QUAD_PORT &&
361                     (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
362                         adapter->flags &= ~FLAG_HAS_WOL;
363                 /* Does not support WoL on any port */
364                 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
365                         adapter->flags &= ~FLAG_HAS_WOL;
366                 break;
367         case e1000_82573:
368                 if (pdev->device == E1000_DEV_ID_82573L) {
369                         adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
370                         adapter->max_hw_frame_size = DEFAULT_JUMBO;
371                 }
372                 break;
373         default:
374                 break;
375         }
376
377         return 0;
378 }
379
380 /**
381  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
382  *  @hw: pointer to the HW structure
383  *
384  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
385  *  revision in the hardware structure.
386  **/
387 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
388 {
389         struct e1000_phy_info *phy = &hw->phy;
390         s32 ret_val;
391         u16 phy_id = 0;
392
393         switch (hw->mac.type) {
394         case e1000_82571:
395         case e1000_82572:
396                 /* The 82571 firmware may still be configuring the PHY.
397                  * In this case, we cannot access the PHY until the
398                  * configuration is done.  So we explicitly set the
399                  * PHY ID.
400                  */
401                 phy->id = IGP01E1000_I_PHY_ID;
402                 break;
403         case e1000_82573:
404                 return e1000e_get_phy_id(hw);
405         case e1000_82574:
406         case e1000_82583:
407                 ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
408                 if (ret_val)
409                         return ret_val;
410
411                 phy->id = (u32)(phy_id << 16);
412                 usleep_range(20, 40);
413                 ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
414                 if (ret_val)
415                         return ret_val;
416
417                 phy->id |= (u32)(phy_id);
418                 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
419                 break;
420         default:
421                 return -E1000_ERR_PHY;
422         }
423
424         return 0;
425 }
426
427 /**
428  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
429  *  @hw: pointer to the HW structure
430  *
431  *  Acquire the HW semaphore to access the PHY or NVM
432  **/
433 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
434 {
435         u32 swsm;
436         s32 sw_timeout = hw->nvm.word_size + 1;
437         s32 fw_timeout = hw->nvm.word_size + 1;
438         s32 i = 0;
439
440         /* If we have timedout 3 times on trying to acquire
441          * the inter-port SMBI semaphore, there is old code
442          * operating on the other port, and it is not
443          * releasing SMBI. Modify the number of times that
444          * we try for the semaphore to interwork with this
445          * older code.
446          */
447         if (hw->dev_spec.e82571.smb_counter > 2)
448                 sw_timeout = 1;
449
450         /* Get the SW semaphore */
451         while (i < sw_timeout) {
452                 swsm = er32(SWSM);
453                 if (!(swsm & E1000_SWSM_SMBI))
454                         break;
455
456                 usleep_range(50, 100);
457                 i++;
458         }
459
460         if (i == sw_timeout) {
461                 e_dbg("Driver can't access device - SMBI bit is set.\n");
462                 hw->dev_spec.e82571.smb_counter++;
463         }
464         /* Get the FW semaphore. */
465         for (i = 0; i < fw_timeout; i++) {
466                 swsm = er32(SWSM);
467                 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
468
469                 /* Semaphore acquired if bit latched */
470                 if (er32(SWSM) & E1000_SWSM_SWESMBI)
471                         break;
472
473                 usleep_range(50, 100);
474         }
475
476         if (i == fw_timeout) {
477                 /* Release semaphores */
478                 e1000_put_hw_semaphore_82571(hw);
479                 e_dbg("Driver can't access the NVM\n");
480                 return -E1000_ERR_NVM;
481         }
482
483         return 0;
484 }
485
486 /**
487  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
488  *  @hw: pointer to the HW structure
489  *
490  *  Release hardware semaphore used to access the PHY or NVM
491  **/
492 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
493 {
494         u32 swsm;
495
496         swsm = er32(SWSM);
497         swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
498         ew32(SWSM, swsm);
499 }
500
501 /**
502  *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
503  *  @hw: pointer to the HW structure
504  *
505  *  Acquire the HW semaphore during reset.
506  *
507  **/
508 static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
509 {
510         u32 extcnf_ctrl;
511         s32 i = 0;
512
513         extcnf_ctrl = er32(EXTCNF_CTRL);
514         do {
515                 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
516                 ew32(EXTCNF_CTRL, extcnf_ctrl);
517                 extcnf_ctrl = er32(EXTCNF_CTRL);
518
519                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
520                         break;
521
522                 usleep_range(2000, 4000);
523                 i++;
524         } while (i < MDIO_OWNERSHIP_TIMEOUT);
525
526         if (i == MDIO_OWNERSHIP_TIMEOUT) {
527                 /* Release semaphores */
528                 e1000_put_hw_semaphore_82573(hw);
529                 e_dbg("Driver can't access the PHY\n");
530                 return -E1000_ERR_PHY;
531         }
532
533         return 0;
534 }
535
536 /**
537  *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
538  *  @hw: pointer to the HW structure
539  *
540  *  Release hardware semaphore used during reset.
541  *
542  **/
543 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
544 {
545         u32 extcnf_ctrl;
546
547         extcnf_ctrl = er32(EXTCNF_CTRL);
548         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
549         ew32(EXTCNF_CTRL, extcnf_ctrl);
550 }
551
552 static DEFINE_MUTEX(swflag_mutex);
553
554 /**
555  *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
556  *  @hw: pointer to the HW structure
557  *
558  *  Acquire the HW semaphore to access the PHY or NVM.
559  *
560  **/
561 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
562 {
563         s32 ret_val;
564
565         mutex_lock(&swflag_mutex);
566         ret_val = e1000_get_hw_semaphore_82573(hw);
567         if (ret_val)
568                 mutex_unlock(&swflag_mutex);
569         return ret_val;
570 }
571
572 /**
573  *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
574  *  @hw: pointer to the HW structure
575  *
576  *  Release hardware semaphore used to access the PHY or NVM
577  *
578  **/
579 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
580 {
581         e1000_put_hw_semaphore_82573(hw);
582         mutex_unlock(&swflag_mutex);
583 }
584
585 /**
586  *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
587  *  @hw: pointer to the HW structure
588  *  @active: true to enable LPLU, false to disable
589  *
590  *  Sets the LPLU D0 state according to the active flag.
591  *  LPLU will not be activated unless the
592  *  device autonegotiation advertisement meets standards of
593  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
594  *  This is a function pointer entry point only called by
595  *  PHY setup routines.
596  **/
597 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
598 {
599         u32 data = er32(POEMB);
600
601         if (active)
602                 data |= E1000_PHY_CTRL_D0A_LPLU;
603         else
604                 data &= ~E1000_PHY_CTRL_D0A_LPLU;
605
606         ew32(POEMB, data);
607         return 0;
608 }
609
610 /**
611  *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
612  *  @hw: pointer to the HW structure
613  *  @active: boolean used to enable/disable lplu
614  *
615  *  The low power link up (lplu) state is set to the power management level D3
616  *  when active is true, else clear lplu for D3. LPLU
617  *  is used during Dx states where the power conservation is most important.
618  *  During driver activity, SmartSpeed should be enabled so performance is
619  *  maintained.
620  **/
621 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
622 {
623         u32 data = er32(POEMB);
624
625         if (!active) {
626                 data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
627         } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
628                    (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
629                    (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
630                 data |= E1000_PHY_CTRL_NOND0A_LPLU;
631         }
632
633         ew32(POEMB, data);
634         return 0;
635 }
636
637 /**
638  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
639  *  @hw: pointer to the HW structure
640  *
641  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
642  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
643  *  for EEPROM access grant bit.  If the access grant bit is not set, release
644  *  hardware semaphore.
645  **/
646 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
647 {
648         s32 ret_val;
649
650         ret_val = e1000_get_hw_semaphore_82571(hw);
651         if (ret_val)
652                 return ret_val;
653
654         switch (hw->mac.type) {
655         case e1000_82573:
656                 break;
657         default:
658                 ret_val = e1000e_acquire_nvm(hw);
659                 break;
660         }
661
662         if (ret_val)
663                 e1000_put_hw_semaphore_82571(hw);
664
665         return ret_val;
666 }
667
668 /**
669  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
670  *  @hw: pointer to the HW structure
671  *
672  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
673  **/
674 static void e1000_release_nvm_82571(struct e1000_hw *hw)
675 {
676         e1000e_release_nvm(hw);
677         e1000_put_hw_semaphore_82571(hw);
678 }
679
680 /**
681  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
682  *  @hw: pointer to the HW structure
683  *  @offset: offset within the EEPROM to be written to
684  *  @words: number of words to write
685  *  @data: 16 bit word(s) to be written to the EEPROM
686  *
687  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
688  *
689  *  If e1000e_update_nvm_checksum is not called after this function, the
690  *  EEPROM will most likely contain an invalid checksum.
691  **/
692 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
693                                  u16 *data)
694 {
695         s32 ret_val;
696
697         switch (hw->mac.type) {
698         case e1000_82573:
699         case e1000_82574:
700         case e1000_82583:
701                 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
702                 break;
703         case e1000_82571:
704         case e1000_82572:
705                 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
706                 break;
707         default:
708                 ret_val = -E1000_ERR_NVM;
709                 break;
710         }
711
712         return ret_val;
713 }
714
715 /**
716  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
717  *  @hw: pointer to the HW structure
718  *
719  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
720  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
721  *  value to the EEPROM.
722  **/
723 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
724 {
725         u32 eecd;
726         s32 ret_val;
727         u16 i;
728
729         ret_val = e1000e_update_nvm_checksum_generic(hw);
730         if (ret_val)
731                 return ret_val;
732
733         /* If our nvm is an EEPROM, then we're done
734          * otherwise, commit the checksum to the flash NVM.
735          */
736         if (hw->nvm.type != e1000_nvm_flash_hw)
737                 return 0;
738
739         /* Check for pending operations. */
740         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
741                 usleep_range(1000, 2000);
742                 if (!(er32(EECD) & E1000_EECD_FLUPD))
743                         break;
744         }
745
746         if (i == E1000_FLASH_UPDATES)
747                 return -E1000_ERR_NVM;
748
749         /* Reset the firmware if using STM opcode. */
750         if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
751                 /* The enabling of and the actual reset must be done
752                  * in two write cycles.
753                  */
754                 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
755                 e1e_flush();
756                 ew32(HICR, E1000_HICR_FW_RESET);
757         }
758
759         /* Commit the write to flash */
760         eecd = er32(EECD) | E1000_EECD_FLUPD;
761         ew32(EECD, eecd);
762
763         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
764                 usleep_range(1000, 2000);
765                 if (!(er32(EECD) & E1000_EECD_FLUPD))
766                         break;
767         }
768
769         if (i == E1000_FLASH_UPDATES)
770                 return -E1000_ERR_NVM;
771
772         return 0;
773 }
774
775 /**
776  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
777  *  @hw: pointer to the HW structure
778  *
779  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
780  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
781  **/
782 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
783 {
784         if (hw->nvm.type == e1000_nvm_flash_hw)
785                 e1000_fix_nvm_checksum_82571(hw);
786
787         return e1000e_validate_nvm_checksum_generic(hw);
788 }
789
790 /**
791  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
792  *  @hw: pointer to the HW structure
793  *  @offset: offset within the EEPROM to be written to
794  *  @words: number of words to write
795  *  @data: 16 bit word(s) to be written to the EEPROM
796  *
797  *  After checking for invalid values, poll the EEPROM to ensure the previous
798  *  command has completed before trying to write the next word.  After write
799  *  poll for completion.
800  *
801  *  If e1000e_update_nvm_checksum is not called after this function, the
802  *  EEPROM will most likely contain an invalid checksum.
803  **/
804 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
805                                       u16 words, u16 *data)
806 {
807         struct e1000_nvm_info *nvm = &hw->nvm;
808         u32 i, eewr = 0;
809         s32 ret_val = 0;
810
811         /* A check for invalid values:  offset too large, too many words,
812          * and not enough words.
813          */
814         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
815             (words == 0)) {
816                 e_dbg("nvm parameter(s) out of bounds\n");
817                 return -E1000_ERR_NVM;
818         }
819
820         for (i = 0; i < words; i++) {
821                 eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
822                         ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
823                         E1000_NVM_RW_REG_START);
824
825                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
826                 if (ret_val)
827                         break;
828
829                 ew32(EEWR, eewr);
830
831                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
832                 if (ret_val)
833                         break;
834         }
835
836         return ret_val;
837 }
838
839 /**
840  *  e1000_get_cfg_done_82571 - Poll for configuration done
841  *  @hw: pointer to the HW structure
842  *
843  *  Reads the management control register for the config done bit to be set.
844  **/
845 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
846 {
847         s32 timeout = PHY_CFG_TIMEOUT;
848
849         while (timeout) {
850                 if (er32(EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0)
851                         break;
852                 usleep_range(1000, 2000);
853                 timeout--;
854         }
855         if (!timeout) {
856                 e_dbg("MNG configuration cycle has not completed.\n");
857                 return -E1000_ERR_RESET;
858         }
859
860         return 0;
861 }
862
863 /**
864  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
865  *  @hw: pointer to the HW structure
866  *  @active: true to enable LPLU, false to disable
867  *
868  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
869  *  this function also disables smart speed and vice versa.  LPLU will not be
870  *  activated unless the device autonegotiation advertisement meets standards
871  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
872  *  pointer entry point only called by PHY setup routines.
873  **/
874 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
875 {
876         struct e1000_phy_info *phy = &hw->phy;
877         s32 ret_val;
878         u16 data;
879
880         ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
881         if (ret_val)
882                 return ret_val;
883
884         if (active) {
885                 data |= IGP02E1000_PM_D0_LPLU;
886                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
887                 if (ret_val)
888                         return ret_val;
889
890                 /* When LPLU is enabled, we should disable SmartSpeed */
891                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
892                 if (ret_val)
893                         return ret_val;
894                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
895                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
896                 if (ret_val)
897                         return ret_val;
898         } else {
899                 data &= ~IGP02E1000_PM_D0_LPLU;
900                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
901                 if (ret_val)
902                         return ret_val;
903                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
904                  * during Dx states where the power conservation is most
905                  * important.  During driver activity we should enable
906                  * SmartSpeed, so performance is maintained.
907                  */
908                 if (phy->smart_speed == e1000_smart_speed_on) {
909                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
910                                            &data);
911                         if (ret_val)
912                                 return ret_val;
913
914                         data |= IGP01E1000_PSCFR_SMART_SPEED;
915                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
916                                            data);
917                         if (ret_val)
918                                 return ret_val;
919                 } else if (phy->smart_speed == e1000_smart_speed_off) {
920                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
921                                            &data);
922                         if (ret_val)
923                                 return ret_val;
924
925                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
926                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
927                                            data);
928                         if (ret_val)
929                                 return ret_val;
930                 }
931         }
932
933         return 0;
934 }
935
936 /**
937  *  e1000_reset_hw_82571 - Reset hardware
938  *  @hw: pointer to the HW structure
939  *
940  *  This resets the hardware into a known state.
941  **/
942 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
943 {
944         u32 ctrl, ctrl_ext, eecd, tctl;
945         s32 ret_val;
946
947         /* Prevent the PCI-E bus from sticking if there is no TLP connection
948          * on the last TLP read/write transaction when MAC is reset.
949          */
950         ret_val = e1000e_disable_pcie_master(hw);
951         if (ret_val)
952                 e_dbg("PCI-E Master disable polling has failed.\n");
953
954         e_dbg("Masking off all interrupts\n");
955         ew32(IMC, 0xffffffff);
956
957         ew32(RCTL, 0);
958         tctl = er32(TCTL);
959         tctl &= ~E1000_TCTL_EN;
960         ew32(TCTL, tctl);
961         e1e_flush();
962
963         usleep_range(10000, 11000);
964
965         /* Must acquire the MDIO ownership before MAC reset.
966          * Ownership defaults to firmware after a reset.
967          */
968         switch (hw->mac.type) {
969         case e1000_82573:
970                 ret_val = e1000_get_hw_semaphore_82573(hw);
971                 break;
972         case e1000_82574:
973         case e1000_82583:
974                 ret_val = e1000_get_hw_semaphore_82574(hw);
975                 break;
976         default:
977                 break;
978         }
979
980         ctrl = er32(CTRL);
981
982         e_dbg("Issuing a global reset to MAC\n");
983         ew32(CTRL, ctrl | E1000_CTRL_RST);
984
985         /* Must release MDIO ownership and mutex after MAC reset. */
986         switch (hw->mac.type) {
987         case e1000_82573:
988                 /* Release mutex only if the hw semaphore is acquired */
989                 if (!ret_val)
990                         e1000_put_hw_semaphore_82573(hw);
991                 break;
992         case e1000_82574:
993         case e1000_82583:
994                 /* Release mutex only if the hw semaphore is acquired */
995                 if (!ret_val)
996                         e1000_put_hw_semaphore_82574(hw);
997                 break;
998         default:
999                 break;
1000         }
1001
1002         if (hw->nvm.type == e1000_nvm_flash_hw) {
1003                 usleep_range(10, 20);
1004                 ctrl_ext = er32(CTRL_EXT);
1005                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1006                 ew32(CTRL_EXT, ctrl_ext);
1007                 e1e_flush();
1008         }
1009
1010         ret_val = e1000e_get_auto_rd_done(hw);
1011         if (ret_val)
1012                 /* We don't want to continue accessing MAC registers. */
1013                 return ret_val;
1014
1015         /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1016          * Need to wait for Phy configuration completion before accessing
1017          * NVM and Phy.
1018          */
1019
1020         switch (hw->mac.type) {
1021         case e1000_82571:
1022         case e1000_82572:
1023                 /* REQ and GNT bits need to be cleared when using AUTO_RD
1024                  * to access the EEPROM.
1025                  */
1026                 eecd = er32(EECD);
1027                 eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1028                 ew32(EECD, eecd);
1029                 break;
1030         case e1000_82573:
1031         case e1000_82574:
1032         case e1000_82583:
1033                 msleep(25);
1034                 break;
1035         default:
1036                 break;
1037         }
1038
1039         /* Clear any pending interrupt events. */
1040         ew32(IMC, 0xffffffff);
1041         er32(ICR);
1042
1043         if (hw->mac.type == e1000_82571) {
1044                 /* Install any alternate MAC address into RAR0 */
1045                 ret_val = e1000_check_alt_mac_addr_generic(hw);
1046                 if (ret_val)
1047                         return ret_val;
1048
1049                 e1000e_set_laa_state_82571(hw, true);
1050         }
1051
1052         /* Reinitialize the 82571 serdes link state machine */
1053         if (hw->phy.media_type == e1000_media_type_internal_serdes)
1054                 hw->mac.serdes_link_state = e1000_serdes_link_down;
1055
1056         return 0;
1057 }
1058
1059 /**
1060  *  e1000_init_hw_82571 - Initialize hardware
1061  *  @hw: pointer to the HW structure
1062  *
1063  *  This inits the hardware readying it for operation.
1064  **/
1065 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1066 {
1067         struct e1000_mac_info *mac = &hw->mac;
1068         u32 reg_data;
1069         s32 ret_val;
1070         u16 i, rar_count = mac->rar_entry_count;
1071
1072         e1000_initialize_hw_bits_82571(hw);
1073
1074         /* Initialize identification LED */
1075         ret_val = mac->ops.id_led_init(hw);
1076         /* An error is not fatal and we should not stop init due to this */
1077         if (ret_val)
1078                 e_dbg("Error initializing identification LED\n");
1079
1080         /* Disabling VLAN filtering */
1081         e_dbg("Initializing the IEEE VLAN\n");
1082         mac->ops.clear_vfta(hw);
1083
1084         /* Setup the receive address.
1085          * If, however, a locally administered address was assigned to the
1086          * 82571, we must reserve a RAR for it to work around an issue where
1087          * resetting one port will reload the MAC on the other port.
1088          */
1089         if (e1000e_get_laa_state_82571(hw))
1090                 rar_count--;
1091         e1000e_init_rx_addrs(hw, rar_count);
1092
1093         /* Zero out the Multicast HASH table */
1094         e_dbg("Zeroing the MTA\n");
1095         for (i = 0; i < mac->mta_reg_count; i++)
1096                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1097
1098         /* Setup link and flow control */
1099         ret_val = mac->ops.setup_link(hw);
1100
1101         /* Set the transmit descriptor write-back policy */
1102         reg_data = er32(TXDCTL(0));
1103         reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1104                     E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
1105         ew32(TXDCTL(0), reg_data);
1106
1107         /* ...for both queues. */
1108         switch (mac->type) {
1109         case e1000_82573:
1110                 e1000e_enable_tx_pkt_filtering(hw);
1111                 fallthrough;
1112         case e1000_82574:
1113         case e1000_82583:
1114                 reg_data = er32(GCR);
1115                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1116                 ew32(GCR, reg_data);
1117                 break;
1118         default:
1119                 reg_data = er32(TXDCTL(1));
1120                 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1121                             E1000_TXDCTL_FULL_TX_DESC_WB |
1122                             E1000_TXDCTL_COUNT_DESC);
1123                 ew32(TXDCTL(1), reg_data);
1124                 break;
1125         }
1126
1127         /* Clear all of the statistics registers (clear on read).  It is
1128          * important that we do this after we have tried to establish link
1129          * because the symbol error count will increment wildly if there
1130          * is no link.
1131          */
1132         e1000_clear_hw_cntrs_82571(hw);
1133
1134         return ret_val;
1135 }
1136
1137 /**
1138  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1139  *  @hw: pointer to the HW structure
1140  *
1141  *  Initializes required hardware-dependent bits needed for normal operation.
1142  **/
1143 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1144 {
1145         u32 reg;
1146
1147         /* Transmit Descriptor Control 0 */
1148         reg = er32(TXDCTL(0));
1149         reg |= BIT(22);
1150         ew32(TXDCTL(0), reg);
1151
1152         /* Transmit Descriptor Control 1 */
1153         reg = er32(TXDCTL(1));
1154         reg |= BIT(22);
1155         ew32(TXDCTL(1), reg);
1156
1157         /* Transmit Arbitration Control 0 */
1158         reg = er32(TARC(0));
1159         reg &= ~(0xF << 27);    /* 30:27 */
1160         switch (hw->mac.type) {
1161         case e1000_82571:
1162         case e1000_82572:
1163                 reg |= BIT(23) | BIT(24) | BIT(25) | BIT(26);
1164                 break;
1165         case e1000_82574:
1166         case e1000_82583:
1167                 reg |= BIT(26);
1168                 break;
1169         default:
1170                 break;
1171         }
1172         ew32(TARC(0), reg);
1173
1174         /* Transmit Arbitration Control 1 */
1175         reg = er32(TARC(1));
1176         switch (hw->mac.type) {
1177         case e1000_82571:
1178         case e1000_82572:
1179                 reg &= ~(BIT(29) | BIT(30));
1180                 reg |= BIT(22) | BIT(24) | BIT(25) | BIT(26);
1181                 if (er32(TCTL) & E1000_TCTL_MULR)
1182                         reg &= ~BIT(28);
1183                 else
1184                         reg |= BIT(28);
1185                 ew32(TARC(1), reg);
1186                 break;
1187         default:
1188                 break;
1189         }
1190
1191         /* Device Control */
1192         switch (hw->mac.type) {
1193         case e1000_82573:
1194         case e1000_82574:
1195         case e1000_82583:
1196                 reg = er32(CTRL);
1197                 reg &= ~BIT(29);
1198                 ew32(CTRL, reg);
1199                 break;
1200         default:
1201                 break;
1202         }
1203
1204         /* Extended Device Control */
1205         switch (hw->mac.type) {
1206         case e1000_82573:
1207         case e1000_82574:
1208         case e1000_82583:
1209                 reg = er32(CTRL_EXT);
1210                 reg &= ~BIT(23);
1211                 reg |= BIT(22);
1212                 ew32(CTRL_EXT, reg);
1213                 break;
1214         default:
1215                 break;
1216         }
1217
1218         if (hw->mac.type == e1000_82571) {
1219                 reg = er32(PBA_ECC);
1220                 reg |= E1000_PBA_ECC_CORR_EN;
1221                 ew32(PBA_ECC, reg);
1222         }
1223
1224         /* Workaround for hardware errata.
1225          * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1226          */
1227         if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1228                 reg = er32(CTRL_EXT);
1229                 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1230                 ew32(CTRL_EXT, reg);
1231         }
1232
1233         /* Disable IPv6 extension header parsing because some malformed
1234          * IPv6 headers can hang the Rx.
1235          */
1236         if (hw->mac.type <= e1000_82573) {
1237                 reg = er32(RFCTL);
1238                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1239                 ew32(RFCTL, reg);
1240         }
1241
1242         /* PCI-Ex Control Registers */
1243         switch (hw->mac.type) {
1244         case e1000_82574:
1245         case e1000_82583:
1246                 reg = er32(GCR);
1247                 reg |= BIT(22);
1248                 ew32(GCR, reg);
1249
1250                 /* Workaround for hardware errata.
1251                  * apply workaround for hardware errata documented in errata
1252                  * docs Fixes issue where some error prone or unreliable PCIe
1253                  * completions are occurring, particularly with ASPM enabled.
1254                  * Without fix, issue can cause Tx timeouts.
1255                  */
1256                 reg = er32(GCR2);
1257                 reg |= 1;
1258                 ew32(GCR2, reg);
1259                 break;
1260         default:
1261                 break;
1262         }
1263 }
1264
1265 /**
1266  *  e1000_clear_vfta_82571 - Clear VLAN filter table
1267  *  @hw: pointer to the HW structure
1268  *
1269  *  Clears the register array which contains the VLAN filter table by
1270  *  setting all the values to 0.
1271  **/
1272 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1273 {
1274         u32 offset;
1275         u32 vfta_value = 0;
1276         u32 vfta_offset = 0;
1277         u32 vfta_bit_in_reg = 0;
1278
1279         switch (hw->mac.type) {
1280         case e1000_82573:
1281         case e1000_82574:
1282         case e1000_82583:
1283                 if (hw->mng_cookie.vlan_id != 0) {
1284                         /* The VFTA is a 4096b bit-field, each identifying
1285                          * a single VLAN ID.  The following operations
1286                          * determine which 32b entry (i.e. offset) into the
1287                          * array we want to set the VLAN ID (i.e. bit) of
1288                          * the manageability unit.
1289                          */
1290                         vfta_offset = (hw->mng_cookie.vlan_id >>
1291                                        E1000_VFTA_ENTRY_SHIFT) &
1292                             E1000_VFTA_ENTRY_MASK;
1293                         vfta_bit_in_reg =
1294                             BIT(hw->mng_cookie.vlan_id &
1295                                 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1296                 }
1297                 break;
1298         default:
1299                 break;
1300         }
1301         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1302                 /* If the offset we want to clear is the same offset of the
1303                  * manageability VLAN ID, then clear all bits except that of
1304                  * the manageability unit.
1305                  */
1306                 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1307                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1308                 e1e_flush();
1309         }
1310 }
1311
1312 /**
1313  *  e1000_check_mng_mode_82574 - Check manageability is enabled
1314  *  @hw: pointer to the HW structure
1315  *
1316  *  Reads the NVM Initialization Control Word 2 and returns true
1317  *  (>0) if any manageability is enabled, else false (0).
1318  **/
1319 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1320 {
1321         u16 data;
1322
1323         e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1324         return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1325 }
1326
1327 /**
1328  *  e1000_led_on_82574 - Turn LED on
1329  *  @hw: pointer to the HW structure
1330  *
1331  *  Turn LED on.
1332  **/
1333 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1334 {
1335         u32 ctrl;
1336         u32 i;
1337
1338         ctrl = hw->mac.ledctl_mode2;
1339         if (!(E1000_STATUS_LU & er32(STATUS))) {
1340                 /* If no link, then turn LED on by setting the invert bit
1341                  * for each LED that's "on" (0x0E) in ledctl_mode2.
1342                  */
1343                 for (i = 0; i < 4; i++)
1344                         if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1345                             E1000_LEDCTL_MODE_LED_ON)
1346                                 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1347         }
1348         ew32(LEDCTL, ctrl);
1349
1350         return 0;
1351 }
1352
1353 /**
1354  *  e1000_check_phy_82574 - check 82574 phy hung state
1355  *  @hw: pointer to the HW structure
1356  *
1357  *  Returns whether phy is hung or not
1358  **/
1359 bool e1000_check_phy_82574(struct e1000_hw *hw)
1360 {
1361         u16 status_1kbt = 0;
1362         u16 receive_errors = 0;
1363         s32 ret_val;
1364
1365         /* Read PHY Receive Error counter first, if its is max - all F's then
1366          * read the Base1000T status register If both are max then PHY is hung.
1367          */
1368         ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1369         if (ret_val)
1370                 return false;
1371         if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1372                 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1373                 if (ret_val)
1374                         return false;
1375                 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1376                     E1000_IDLE_ERROR_COUNT_MASK)
1377                         return true;
1378         }
1379
1380         return false;
1381 }
1382
1383 /**
1384  *  e1000_setup_link_82571 - Setup flow control and link settings
1385  *  @hw: pointer to the HW structure
1386  *
1387  *  Determines which flow control settings to use, then configures flow
1388  *  control.  Calls the appropriate media-specific link configuration
1389  *  function.  Assuming the adapter has a valid link partner, a valid link
1390  *  should be established.  Assumes the hardware has previously been reset
1391  *  and the transmitter and receiver are not enabled.
1392  **/
1393 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1394 {
1395         /* 82573 does not have a word in the NVM to determine
1396          * the default flow control setting, so we explicitly
1397          * set it to full.
1398          */
1399         switch (hw->mac.type) {
1400         case e1000_82573:
1401         case e1000_82574:
1402         case e1000_82583:
1403                 if (hw->fc.requested_mode == e1000_fc_default)
1404                         hw->fc.requested_mode = e1000_fc_full;
1405                 break;
1406         default:
1407                 break;
1408         }
1409
1410         return e1000e_setup_link_generic(hw);
1411 }
1412
1413 /**
1414  *  e1000_setup_copper_link_82571 - Configure copper link settings
1415  *  @hw: pointer to the HW structure
1416  *
1417  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1418  *  for link, once link is established calls to configure collision distance
1419  *  and flow control are called.
1420  **/
1421 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1422 {
1423         u32 ctrl;
1424         s32 ret_val;
1425
1426         ctrl = er32(CTRL);
1427         ctrl |= E1000_CTRL_SLU;
1428         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1429         ew32(CTRL, ctrl);
1430
1431         switch (hw->phy.type) {
1432         case e1000_phy_m88:
1433         case e1000_phy_bm:
1434                 ret_val = e1000e_copper_link_setup_m88(hw);
1435                 break;
1436         case e1000_phy_igp_2:
1437                 ret_val = e1000e_copper_link_setup_igp(hw);
1438                 break;
1439         default:
1440                 return -E1000_ERR_PHY;
1441         }
1442
1443         if (ret_val)
1444                 return ret_val;
1445
1446         return e1000e_setup_copper_link(hw);
1447 }
1448
1449 /**
1450  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1451  *  @hw: pointer to the HW structure
1452  *
1453  *  Configures collision distance and flow control for fiber and serdes links.
1454  *  Upon successful setup, poll for link.
1455  **/
1456 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1457 {
1458         switch (hw->mac.type) {
1459         case e1000_82571:
1460         case e1000_82572:
1461                 /* If SerDes loopback mode is entered, there is no form
1462                  * of reset to take the adapter out of that mode.  So we
1463                  * have to explicitly take the adapter out of loopback
1464                  * mode.  This prevents drivers from twiddling their thumbs
1465                  * if another tool failed to take it out of loopback mode.
1466                  */
1467                 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1468                 break;
1469         default:
1470                 break;
1471         }
1472
1473         return e1000e_setup_fiber_serdes_link(hw);
1474 }
1475
1476 /**
1477  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1478  *  @hw: pointer to the HW structure
1479  *
1480  *  Reports the link state as up or down.
1481  *
1482  *  If autonegotiation is supported by the link partner, the link state is
1483  *  determined by the result of autonegotiation. This is the most likely case.
1484  *  If autonegotiation is not supported by the link partner, and the link
1485  *  has a valid signal, force the link up.
1486  *
1487  *  The link state is represented internally here by 4 states:
1488  *
1489  *  1) down
1490  *  2) autoneg_progress
1491  *  3) autoneg_complete (the link successfully autonegotiated)
1492  *  4) forced_up (the link has been forced up, it did not autonegotiate)
1493  *
1494  **/
1495 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1496 {
1497         struct e1000_mac_info *mac = &hw->mac;
1498         u32 rxcw;
1499         u32 ctrl;
1500         u32 status;
1501         u32 txcw;
1502         u32 i;
1503         s32 ret_val = 0;
1504
1505         ctrl = er32(CTRL);
1506         status = er32(STATUS);
1507         er32(RXCW);
1508         /* SYNCH bit and IV bit are sticky */
1509         usleep_range(10, 20);
1510         rxcw = er32(RXCW);
1511
1512         if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1513                 /* Receiver is synchronized with no invalid bits.  */
1514                 switch (mac->serdes_link_state) {
1515                 case e1000_serdes_link_autoneg_complete:
1516                         if (!(status & E1000_STATUS_LU)) {
1517                                 /* We have lost link, retry autoneg before
1518                                  * reporting link failure
1519                                  */
1520                                 mac->serdes_link_state =
1521                                     e1000_serdes_link_autoneg_progress;
1522                                 mac->serdes_has_link = false;
1523                                 e_dbg("AN_UP     -> AN_PROG\n");
1524                         } else {
1525                                 mac->serdes_has_link = true;
1526                         }
1527                         break;
1528
1529                 case e1000_serdes_link_forced_up:
1530                         /* If we are receiving /C/ ordered sets, re-enable
1531                          * auto-negotiation in the TXCW register and disable
1532                          * forced link in the Device Control register in an
1533                          * attempt to auto-negotiate with our link partner.
1534                          */
1535                         if (rxcw & E1000_RXCW_C) {
1536                                 /* Enable autoneg, and unforce link up */
1537                                 ew32(TXCW, mac->txcw);
1538                                 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1539                                 mac->serdes_link_state =
1540                                     e1000_serdes_link_autoneg_progress;
1541                                 mac->serdes_has_link = false;
1542                                 e_dbg("FORCED_UP -> AN_PROG\n");
1543                         } else {
1544                                 mac->serdes_has_link = true;
1545                         }
1546                         break;
1547
1548                 case e1000_serdes_link_autoneg_progress:
1549                         if (rxcw & E1000_RXCW_C) {
1550                                 /* We received /C/ ordered sets, meaning the
1551                                  * link partner has autonegotiated, and we can
1552                                  * trust the Link Up (LU) status bit.
1553                                  */
1554                                 if (status & E1000_STATUS_LU) {
1555                                         mac->serdes_link_state =
1556                                             e1000_serdes_link_autoneg_complete;
1557                                         e_dbg("AN_PROG   -> AN_UP\n");
1558                                         mac->serdes_has_link = true;
1559                                 } else {
1560                                         /* Autoneg completed, but failed. */
1561                                         mac->serdes_link_state =
1562                                             e1000_serdes_link_down;
1563                                         e_dbg("AN_PROG   -> DOWN\n");
1564                                 }
1565                         } else {
1566                                 /* The link partner did not autoneg.
1567                                  * Force link up and full duplex, and change
1568                                  * state to forced.
1569                                  */
1570                                 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1571                                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1572                                 ew32(CTRL, ctrl);
1573
1574                                 /* Configure Flow Control after link up. */
1575                                 ret_val = e1000e_config_fc_after_link_up(hw);
1576                                 if (ret_val) {
1577                                         e_dbg("Error config flow control\n");
1578                                         break;
1579                                 }
1580                                 mac->serdes_link_state =
1581                                     e1000_serdes_link_forced_up;
1582                                 mac->serdes_has_link = true;
1583                                 e_dbg("AN_PROG   -> FORCED_UP\n");
1584                         }
1585                         break;
1586
1587                 case e1000_serdes_link_down:
1588                 default:
1589                         /* The link was down but the receiver has now gained
1590                          * valid sync, so lets see if we can bring the link
1591                          * up.
1592                          */
1593                         ew32(TXCW, mac->txcw);
1594                         ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1595                         mac->serdes_link_state =
1596                             e1000_serdes_link_autoneg_progress;
1597                         mac->serdes_has_link = false;
1598                         e_dbg("DOWN      -> AN_PROG\n");
1599                         break;
1600                 }
1601         } else {
1602                 if (!(rxcw & E1000_RXCW_SYNCH)) {
1603                         mac->serdes_has_link = false;
1604                         mac->serdes_link_state = e1000_serdes_link_down;
1605                         e_dbg("ANYSTATE  -> DOWN\n");
1606                 } else {
1607                         /* Check several times, if SYNCH bit and CONFIG
1608                          * bit both are consistently 1 then simply ignore
1609                          * the IV bit and restart Autoneg
1610                          */
1611                         for (i = 0; i < AN_RETRY_COUNT; i++) {
1612                                 usleep_range(10, 20);
1613                                 rxcw = er32(RXCW);
1614                                 if ((rxcw & E1000_RXCW_SYNCH) &&
1615                                     (rxcw & E1000_RXCW_C))
1616                                         continue;
1617
1618                                 if (rxcw & E1000_RXCW_IV) {
1619                                         mac->serdes_has_link = false;
1620                                         mac->serdes_link_state =
1621                                             e1000_serdes_link_down;
1622                                         e_dbg("ANYSTATE  -> DOWN\n");
1623                                         break;
1624                                 }
1625                         }
1626
1627                         if (i == AN_RETRY_COUNT) {
1628                                 txcw = er32(TXCW);
1629                                 txcw |= E1000_TXCW_ANE;
1630                                 ew32(TXCW, txcw);
1631                                 mac->serdes_link_state =
1632                                     e1000_serdes_link_autoneg_progress;
1633                                 mac->serdes_has_link = false;
1634                                 e_dbg("ANYSTATE  -> AN_PROG\n");
1635                         }
1636                 }
1637         }
1638
1639         return ret_val;
1640 }
1641
1642 /**
1643  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1644  *  @hw: pointer to the HW structure
1645  *  @data: pointer to the NVM (EEPROM)
1646  *
1647  *  Read the EEPROM for the current default LED configuration.  If the
1648  *  LED configuration is not valid, set to a valid LED configuration.
1649  **/
1650 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1651 {
1652         s32 ret_val;
1653
1654         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1655         if (ret_val) {
1656                 e_dbg("NVM Read Error\n");
1657                 return ret_val;
1658         }
1659
1660         switch (hw->mac.type) {
1661         case e1000_82573:
1662         case e1000_82574:
1663         case e1000_82583:
1664                 if (*data == ID_LED_RESERVED_F746)
1665                         *data = ID_LED_DEFAULT_82573;
1666                 break;
1667         default:
1668                 if (*data == ID_LED_RESERVED_0000 ||
1669                     *data == ID_LED_RESERVED_FFFF)
1670                         *data = ID_LED_DEFAULT;
1671                 break;
1672         }
1673
1674         return 0;
1675 }
1676
1677 /**
1678  *  e1000e_get_laa_state_82571 - Get locally administered address state
1679  *  @hw: pointer to the HW structure
1680  *
1681  *  Retrieve and return the current locally administered address state.
1682  **/
1683 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1684 {
1685         if (hw->mac.type != e1000_82571)
1686                 return false;
1687
1688         return hw->dev_spec.e82571.laa_is_present;
1689 }
1690
1691 /**
1692  *  e1000e_set_laa_state_82571 - Set locally administered address state
1693  *  @hw: pointer to the HW structure
1694  *  @state: enable/disable locally administered address
1695  *
1696  *  Enable/Disable the current locally administered address state.
1697  **/
1698 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1699 {
1700         if (hw->mac.type != e1000_82571)
1701                 return;
1702
1703         hw->dev_spec.e82571.laa_is_present = state;
1704
1705         /* If workaround is activated... */
1706         if (state)
1707                 /* Hold a copy of the LAA in RAR[14] This is done so that
1708                  * between the time RAR[0] gets clobbered and the time it
1709                  * gets fixed, the actual LAA is in one of the RARs and no
1710                  * incoming packets directed to this port are dropped.
1711                  * Eventually the LAA will be in RAR[0] and RAR[14].
1712                  */
1713                 hw->mac.ops.rar_set(hw, hw->mac.addr,
1714                                     hw->mac.rar_entry_count - 1);
1715 }
1716
1717 /**
1718  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1719  *  @hw: pointer to the HW structure
1720  *
1721  *  Verifies that the EEPROM has completed the update.  After updating the
1722  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1723  *  the checksum fix is not implemented, we need to set the bit and update
1724  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1725  *  we need to return bad checksum.
1726  **/
1727 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1728 {
1729         struct e1000_nvm_info *nvm = &hw->nvm;
1730         s32 ret_val;
1731         u16 data;
1732
1733         if (nvm->type != e1000_nvm_flash_hw)
1734                 return 0;
1735
1736         /* Check bit 4 of word 10h.  If it is 0, firmware is done updating
1737          * 10h-12h.  Checksum may need to be fixed.
1738          */
1739         ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1740         if (ret_val)
1741                 return ret_val;
1742
1743         if (!(data & 0x10)) {
1744                 /* Read 0x23 and check bit 15.  This bit is a 1
1745                  * when the checksum has already been fixed.  If
1746                  * the checksum is still wrong and this bit is a
1747                  * 1, we need to return bad checksum.  Otherwise,
1748                  * we need to set this bit to a 1 and update the
1749                  * checksum.
1750                  */
1751                 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1752                 if (ret_val)
1753                         return ret_val;
1754
1755                 if (!(data & 0x8000)) {
1756                         data |= 0x8000;
1757                         ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1758                         if (ret_val)
1759                                 return ret_val;
1760                         ret_val = e1000e_update_nvm_checksum(hw);
1761                         if (ret_val)
1762                                 return ret_val;
1763                 }
1764         }
1765
1766         return 0;
1767 }
1768
1769 /**
1770  *  e1000_read_mac_addr_82571 - Read device MAC address
1771  *  @hw: pointer to the HW structure
1772  **/
1773 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1774 {
1775         if (hw->mac.type == e1000_82571) {
1776                 s32 ret_val;
1777
1778                 /* If there's an alternate MAC address place it in RAR0
1779                  * so that it will override the Si installed default perm
1780                  * address.
1781                  */
1782                 ret_val = e1000_check_alt_mac_addr_generic(hw);
1783                 if (ret_val)
1784                         return ret_val;
1785         }
1786
1787         return e1000_read_mac_addr_generic(hw);
1788 }
1789
1790 /**
1791  * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1792  * @hw: pointer to the HW structure
1793  *
1794  * In the case of a PHY power down to save power, or to turn off link during a
1795  * driver unload, or wake on lan is not enabled, remove the link.
1796  **/
1797 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1798 {
1799         struct e1000_phy_info *phy = &hw->phy;
1800         struct e1000_mac_info *mac = &hw->mac;
1801
1802         if (!phy->ops.check_reset_block)
1803                 return;
1804
1805         /* If the management interface is not enabled, then power down */
1806         if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1807                 e1000_power_down_phy_copper(hw);
1808 }
1809
1810 /**
1811  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1812  *  @hw: pointer to the HW structure
1813  *
1814  *  Clears the hardware counters by reading the counter registers.
1815  **/
1816 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1817 {
1818         e1000e_clear_hw_cntrs_base(hw);
1819
1820         er32(PRC64);
1821         er32(PRC127);
1822         er32(PRC255);
1823         er32(PRC511);
1824         er32(PRC1023);
1825         er32(PRC1522);
1826         er32(PTC64);
1827         er32(PTC127);
1828         er32(PTC255);
1829         er32(PTC511);
1830         er32(PTC1023);
1831         er32(PTC1522);
1832
1833         er32(ALGNERRC);
1834         er32(RXERRC);
1835         er32(TNCRS);
1836         er32(CEXTERR);
1837         er32(TSCTC);
1838         er32(TSCTFC);
1839
1840         er32(MGTPRC);
1841         er32(MGTPDC);
1842         er32(MGTPTC);
1843
1844         er32(IAC);
1845         er32(ICRXOC);
1846
1847         er32(ICRXPTC);
1848         er32(ICRXATC);
1849         er32(ICTXPTC);
1850         er32(ICTXATC);
1851         er32(ICTXQEC);
1852         er32(ICTXQMTC);
1853         er32(ICRXDMTC);
1854 }
1855
1856 static const struct e1000_mac_operations e82571_mac_ops = {
1857         /* .check_mng_mode: mac type dependent */
1858         /* .check_for_link: media type dependent */
1859         .id_led_init            = e1000e_id_led_init_generic,
1860         .cleanup_led            = e1000e_cleanup_led_generic,
1861         .clear_hw_cntrs         = e1000_clear_hw_cntrs_82571,
1862         .get_bus_info           = e1000e_get_bus_info_pcie,
1863         .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1864         /* .get_link_up_info: media type dependent */
1865         /* .led_on: mac type dependent */
1866         .led_off                = e1000e_led_off_generic,
1867         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1868         .write_vfta             = e1000_write_vfta_generic,
1869         .clear_vfta             = e1000_clear_vfta_82571,
1870         .reset_hw               = e1000_reset_hw_82571,
1871         .init_hw                = e1000_init_hw_82571,
1872         .setup_link             = e1000_setup_link_82571,
1873         /* .setup_physical_interface: media type dependent */
1874         .setup_led              = e1000e_setup_led_generic,
1875         .config_collision_dist  = e1000e_config_collision_dist_generic,
1876         .read_mac_addr          = e1000_read_mac_addr_82571,
1877         .rar_set                = e1000e_rar_set_generic,
1878         .rar_get_count          = e1000e_rar_get_count_generic,
1879 };
1880
1881 static const struct e1000_phy_operations e82_phy_ops_igp = {
1882         .acquire                = e1000_get_hw_semaphore_82571,
1883         .check_polarity         = e1000_check_polarity_igp,
1884         .check_reset_block      = e1000e_check_reset_block_generic,
1885         .commit                 = NULL,
1886         .force_speed_duplex     = e1000e_phy_force_speed_duplex_igp,
1887         .get_cfg_done           = e1000_get_cfg_done_82571,
1888         .get_cable_length       = e1000e_get_cable_length_igp_2,
1889         .get_info               = e1000e_get_phy_info_igp,
1890         .read_reg               = e1000e_read_phy_reg_igp,
1891         .release                = e1000_put_hw_semaphore_82571,
1892         .reset                  = e1000e_phy_hw_reset_generic,
1893         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1894         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1895         .write_reg              = e1000e_write_phy_reg_igp,
1896         .cfg_on_link_up         = NULL,
1897 };
1898
1899 static const struct e1000_phy_operations e82_phy_ops_m88 = {
1900         .acquire                = e1000_get_hw_semaphore_82571,
1901         .check_polarity         = e1000_check_polarity_m88,
1902         .check_reset_block      = e1000e_check_reset_block_generic,
1903         .commit                 = e1000e_phy_sw_reset,
1904         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1905         .get_cfg_done           = e1000e_get_cfg_done_generic,
1906         .get_cable_length       = e1000e_get_cable_length_m88,
1907         .get_info               = e1000e_get_phy_info_m88,
1908         .read_reg               = e1000e_read_phy_reg_m88,
1909         .release                = e1000_put_hw_semaphore_82571,
1910         .reset                  = e1000e_phy_hw_reset_generic,
1911         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1912         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1913         .write_reg              = e1000e_write_phy_reg_m88,
1914         .cfg_on_link_up         = NULL,
1915 };
1916
1917 static const struct e1000_phy_operations e82_phy_ops_bm = {
1918         .acquire                = e1000_get_hw_semaphore_82571,
1919         .check_polarity         = e1000_check_polarity_m88,
1920         .check_reset_block      = e1000e_check_reset_block_generic,
1921         .commit                 = e1000e_phy_sw_reset,
1922         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1923         .get_cfg_done           = e1000e_get_cfg_done_generic,
1924         .get_cable_length       = e1000e_get_cable_length_m88,
1925         .get_info               = e1000e_get_phy_info_m88,
1926         .read_reg               = e1000e_read_phy_reg_bm2,
1927         .release                = e1000_put_hw_semaphore_82571,
1928         .reset                  = e1000e_phy_hw_reset_generic,
1929         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1930         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1931         .write_reg              = e1000e_write_phy_reg_bm2,
1932         .cfg_on_link_up         = NULL,
1933 };
1934
1935 static const struct e1000_nvm_operations e82571_nvm_ops = {
1936         .acquire                = e1000_acquire_nvm_82571,
1937         .read                   = e1000e_read_nvm_eerd,
1938         .release                = e1000_release_nvm_82571,
1939         .reload                 = e1000e_reload_nvm_generic,
1940         .update                 = e1000_update_nvm_checksum_82571,
1941         .valid_led_default      = e1000_valid_led_default_82571,
1942         .validate               = e1000_validate_nvm_checksum_82571,
1943         .write                  = e1000_write_nvm_82571,
1944 };
1945
1946 const struct e1000_info e1000_82571_info = {
1947         .mac                    = e1000_82571,
1948         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1949                                   | FLAG_HAS_JUMBO_FRAMES
1950                                   | FLAG_HAS_WOL
1951                                   | FLAG_APME_IN_CTRL3
1952                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1953                                   | FLAG_HAS_SMART_POWER_DOWN
1954                                   | FLAG_RESET_OVERWRITES_LAA /* errata */
1955                                   | FLAG_TARC_SPEED_MODE_BIT /* errata */
1956                                   | FLAG_APME_CHECK_PORT_B,
1957         .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1958                                   | FLAG2_DMA_BURST,
1959         .pba                    = 38,
1960         .max_hw_frame_size      = DEFAULT_JUMBO,
1961         .get_variants           = e1000_get_variants_82571,
1962         .mac_ops                = &e82571_mac_ops,
1963         .phy_ops                = &e82_phy_ops_igp,
1964         .nvm_ops                = &e82571_nvm_ops,
1965 };
1966
1967 const struct e1000_info e1000_82572_info = {
1968         .mac                    = e1000_82572,
1969         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1970                                   | FLAG_HAS_JUMBO_FRAMES
1971                                   | FLAG_HAS_WOL
1972                                   | FLAG_APME_IN_CTRL3
1973                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1974                                   | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1975         .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1976                                   | FLAG2_DMA_BURST,
1977         .pba                    = 38,
1978         .max_hw_frame_size      = DEFAULT_JUMBO,
1979         .get_variants           = e1000_get_variants_82571,
1980         .mac_ops                = &e82571_mac_ops,
1981         .phy_ops                = &e82_phy_ops_igp,
1982         .nvm_ops                = &e82571_nvm_ops,
1983 };
1984
1985 const struct e1000_info e1000_82573_info = {
1986         .mac                    = e1000_82573,
1987         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1988                                   | FLAG_HAS_WOL
1989                                   | FLAG_APME_IN_CTRL3
1990                                   | FLAG_HAS_SMART_POWER_DOWN
1991                                   | FLAG_HAS_AMT
1992                                   | FLAG_HAS_SWSM_ON_LOAD,
1993         .flags2                 = FLAG2_DISABLE_ASPM_L1
1994                                   | FLAG2_DISABLE_ASPM_L0S,
1995         .pba                    = 20,
1996         .max_hw_frame_size      = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
1997         .get_variants           = e1000_get_variants_82571,
1998         .mac_ops                = &e82571_mac_ops,
1999         .phy_ops                = &e82_phy_ops_m88,
2000         .nvm_ops                = &e82571_nvm_ops,
2001 };
2002
2003 const struct e1000_info e1000_82574_info = {
2004         .mac                    = e1000_82574,
2005         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2006                                   | FLAG_HAS_MSIX
2007                                   | FLAG_HAS_JUMBO_FRAMES
2008                                   | FLAG_HAS_WOL
2009                                   | FLAG_HAS_HW_TIMESTAMP
2010                                   | FLAG_APME_IN_CTRL3
2011                                   | FLAG_HAS_SMART_POWER_DOWN
2012                                   | FLAG_HAS_AMT
2013                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
2014         .flags2                  = FLAG2_CHECK_PHY_HANG
2015                                   | FLAG2_DISABLE_ASPM_L0S
2016                                   | FLAG2_DISABLE_ASPM_L1
2017                                   | FLAG2_NO_DISABLE_RX
2018                                   | FLAG2_DMA_BURST
2019                                   | FLAG2_CHECK_SYSTIM_OVERFLOW,
2020         .pba                    = 32,
2021         .max_hw_frame_size      = DEFAULT_JUMBO,
2022         .get_variants           = e1000_get_variants_82571,
2023         .mac_ops                = &e82571_mac_ops,
2024         .phy_ops                = &e82_phy_ops_bm,
2025         .nvm_ops                = &e82571_nvm_ops,
2026 };
2027
2028 const struct e1000_info e1000_82583_info = {
2029         .mac                    = e1000_82583,
2030         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2031                                   | FLAG_HAS_WOL
2032                                   | FLAG_HAS_HW_TIMESTAMP
2033                                   | FLAG_APME_IN_CTRL3
2034                                   | FLAG_HAS_SMART_POWER_DOWN
2035                                   | FLAG_HAS_AMT
2036                                   | FLAG_HAS_JUMBO_FRAMES
2037                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
2038         .flags2                 = FLAG2_DISABLE_ASPM_L0S
2039                                   | FLAG2_DISABLE_ASPM_L1
2040                                   | FLAG2_NO_DISABLE_RX
2041                                   | FLAG2_CHECK_SYSTIM_OVERFLOW,
2042         .pba                    = 32,
2043         .max_hw_frame_size      = DEFAULT_JUMBO,
2044         .get_variants           = e1000_get_variants_82571,
2045         .mac_ops                = &e82571_mac_ops,
2046         .phy_ops                = &e82_phy_ops_bm,
2047         .nvm_ops                = &e82571_nvm_ops,
2048 };
This page took 0.148112 seconds and 4 git commands to generate.