1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* drivers/net/ethernet/freescale/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
10 * Maintainer: Kumar Gala
13 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
16 * Gianfar: AKA Lambda Draconis, "Dragon"
24 * The driver is initialized through of_device. Configuration information
25 * is therefore conveyed through an OF-style device tree.
27 * The Gianfar Ethernet Controller uses a ring of buffer
28 * descriptors. The beginning is indicated by a register
29 * pointing to the physical address of the start of the ring.
30 * The end is determined by a "wrap" bit being set in the
31 * last descriptor of the ring.
33 * When a packet is received, the RXF bit in the
34 * IEVENT register is set, triggering an interrupt when the
35 * corresponding bit in the IMASK register is also set (if
36 * interrupt coalescing is active, then the interrupt may not
37 * happen immediately, but will wait until either a set number
38 * of frames or amount of time have passed). In NAPI, the
39 * interrupt handler will signal there is work to be done, and
40 * exit. This method will start at the last known empty
41 * descriptor, and process every subsequent descriptor until there
42 * are none left with data (NAPI will stop after a set number of
43 * packets to give time to other tasks, but will eventually
44 * process all the packets). The data arrives inside a
45 * pre-allocated skb, and so after the skb is passed up to the
46 * stack, a new skb must be allocated, and the address field in
47 * the buffer descriptor must be updated to indicate this new
50 * When the kernel requests that a packet be transmitted, the
51 * driver starts where it left off last time, and points the
52 * descriptor at the buffer which was passed in. The driver
53 * then informs the DMA engine that there are packets ready to
54 * be transmitted. Once the controller is finished transmitting
55 * the packet, an interrupt may be triggered (under the same
56 * conditions as for reception, but depending on the TXF bit).
57 * The driver then cleans up the buffer.
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62 #include <linux/kernel.h>
63 #include <linux/platform_device.h>
64 #include <linux/string.h>
65 #include <linux/errno.h>
66 #include <linux/unistd.h>
67 #include <linux/slab.h>
68 #include <linux/interrupt.h>
69 #include <linux/delay.h>
70 #include <linux/netdevice.h>
71 #include <linux/etherdevice.h>
72 #include <linux/skbuff.h>
73 #include <linux/if_vlan.h>
74 #include <linux/spinlock.h>
76 #include <linux/of_address.h>
77 #include <linux/of_irq.h>
78 #include <linux/of_mdio.h>
80 #include <linux/tcp.h>
81 #include <linux/udp.h>
83 #include <linux/net_tstamp.h>
88 #include <asm/mpc85xx.h>
91 #include <linux/uaccess.h>
92 #include <linux/module.h>
93 #include <linux/dma-mapping.h>
94 #include <linux/crc32.h>
95 #include <linux/mii.h>
96 #include <linux/phy.h>
97 #include <linux/phy_fixed.h>
99 #include <linux/of_net.h>
103 #define TX_TIMEOUT (5*HZ)
105 MODULE_AUTHOR("Freescale Semiconductor, Inc");
106 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
107 MODULE_LICENSE("GPL");
109 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
114 bdp->bufPtr = cpu_to_be32(buf);
116 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
117 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
118 lstatus |= BD_LFLAG(RXBD_WRAP);
122 bdp->lstatus = cpu_to_be32(lstatus);
125 static void gfar_init_tx_rx_base(struct gfar_private *priv)
127 struct gfar __iomem *regs = priv->gfargrp[0].regs;
131 baddr = ®s->tbase0;
132 for (i = 0; i < priv->num_tx_queues; i++) {
133 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
137 baddr = ®s->rbase0;
138 for (i = 0; i < priv->num_rx_queues; i++) {
139 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
144 static void gfar_init_rqprm(struct gfar_private *priv)
146 struct gfar __iomem *regs = priv->gfargrp[0].regs;
150 baddr = ®s->rqprm0;
151 for (i = 0; i < priv->num_rx_queues; i++) {
152 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
153 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
158 static void gfar_rx_offload_en(struct gfar_private *priv)
160 /* set this when rx hw offload (TOE) functions are being used */
161 priv->uses_rxfcb = 0;
163 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
164 priv->uses_rxfcb = 1;
166 if (priv->hwts_rx_en || priv->rx_filer_enable)
167 priv->uses_rxfcb = 1;
170 static void gfar_mac_rx_config(struct gfar_private *priv)
172 struct gfar __iomem *regs = priv->gfargrp[0].regs;
175 if (priv->rx_filer_enable) {
176 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
177 /* Program the RIR0 reg with the required distribution */
178 gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0);
181 /* Restore PROMISC mode */
182 if (priv->ndev->flags & IFF_PROMISC)
185 if (priv->ndev->features & NETIF_F_RXCSUM)
186 rctrl |= RCTRL_CHECKSUMMING;
188 if (priv->extended_hash)
189 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
192 rctrl &= ~RCTRL_PAL_MASK;
193 rctrl |= RCTRL_PADDING(priv->padding);
196 /* Enable HW time stamping if requested from user space */
197 if (priv->hwts_rx_en)
198 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
200 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
201 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
203 /* Clear the LFC bit */
204 gfar_write(®s->rctrl, rctrl);
205 /* Init flow control threshold values */
206 gfar_init_rqprm(priv);
207 gfar_write(®s->ptv, DEFAULT_LFC_PTVVAL);
210 /* Init rctrl based on our settings */
211 gfar_write(®s->rctrl, rctrl);
214 static void gfar_mac_tx_config(struct gfar_private *priv)
216 struct gfar __iomem *regs = priv->gfargrp[0].regs;
219 if (priv->ndev->features & NETIF_F_IP_CSUM)
220 tctrl |= TCTRL_INIT_CSUM;
222 if (priv->prio_sched_en)
223 tctrl |= TCTRL_TXSCHED_PRIO;
225 tctrl |= TCTRL_TXSCHED_WRRS;
226 gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT);
227 gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT);
230 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
231 tctrl |= TCTRL_VLINS;
233 gfar_write(®s->tctrl, tctrl);
236 static void gfar_configure_coalescing(struct gfar_private *priv,
237 unsigned long tx_mask, unsigned long rx_mask)
239 struct gfar __iomem *regs = priv->gfargrp[0].regs;
242 if (priv->mode == MQ_MG_MODE) {
245 baddr = ®s->txic0;
246 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
247 gfar_write(baddr + i, 0);
248 if (likely(priv->tx_queue[i]->txcoalescing))
249 gfar_write(baddr + i, priv->tx_queue[i]->txic);
252 baddr = ®s->rxic0;
253 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
254 gfar_write(baddr + i, 0);
255 if (likely(priv->rx_queue[i]->rxcoalescing))
256 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
259 /* Backward compatible case -- even if we enable
260 * multiple queues, there's only single reg to program
262 gfar_write(®s->txic, 0);
263 if (likely(priv->tx_queue[0]->txcoalescing))
264 gfar_write(®s->txic, priv->tx_queue[0]->txic);
266 gfar_write(®s->rxic, 0);
267 if (unlikely(priv->rx_queue[0]->rxcoalescing))
268 gfar_write(®s->rxic, priv->rx_queue[0]->rxic);
272 static void gfar_configure_coalescing_all(struct gfar_private *priv)
274 gfar_configure_coalescing(priv, 0xFF, 0xFF);
277 static void gfar_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
279 struct gfar_private *priv = netdev_priv(dev);
282 for (i = 0; i < priv->num_rx_queues; i++) {
283 stats->rx_packets += priv->rx_queue[i]->stats.rx_packets;
284 stats->rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
285 stats->rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
288 for (i = 0; i < priv->num_tx_queues; i++) {
289 stats->tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
290 stats->tx_packets += priv->tx_queue[i]->stats.tx_packets;
293 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
294 struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon;
296 u32 rdrp, car, car_before;
299 spin_lock_irqsave(&priv->rmon_overflow.lock, flags);
300 car = gfar_read(&rmon->car1) & CAR1_C1RDR;
303 rdrp = gfar_read(&rmon->rdrp);
304 car = gfar_read(&rmon->car1) & CAR1_C1RDR;
305 } while (car != car_before);
307 priv->rmon_overflow.rdrp++;
308 gfar_write(&rmon->car1, car);
310 rdrp_offset = priv->rmon_overflow.rdrp;
311 spin_unlock_irqrestore(&priv->rmon_overflow.lock, flags);
313 stats->rx_missed_errors = rdrp + (rdrp_offset << 16);
317 /* Set the appropriate hash bit for the given addr */
318 /* The algorithm works like so:
319 * 1) Take the Destination Address (ie the multicast address), and
320 * do a CRC on it (little endian), and reverse the bits of the
322 * 2) Use the 8 most significant bits as a hash into a 256-entry
323 * table. The table is controlled through 8 32-bit registers:
324 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
325 * gaddr7. This means that the 3 most significant bits in the
326 * hash index which gaddr register to use, and the 5 other bits
327 * indicate which bit (assuming an IBM numbering scheme, which
328 * for PowerPC (tm) is usually the case) in the register holds
331 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
334 struct gfar_private *priv = netdev_priv(dev);
335 u32 result = ether_crc(ETH_ALEN, addr);
336 int width = priv->hash_width;
337 u8 whichbit = (result >> (32 - width)) & 0x1f;
338 u8 whichreg = result >> (32 - width + 5);
339 u32 value = (1 << (31-whichbit));
341 tempval = gfar_read(priv->hash_regs[whichreg]);
343 gfar_write(priv->hash_regs[whichreg], tempval);
346 /* There are multiple MAC Address register pairs on some controllers
347 * This function sets the numth pair to a given address
349 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
352 struct gfar_private *priv = netdev_priv(dev);
353 struct gfar __iomem *regs = priv->gfargrp[0].regs;
355 u32 __iomem *macptr = ®s->macstnaddr1;
359 /* For a station address of 0x12345678ABCD in transmission
360 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
361 * MACnADDR2 is set to 0x34120000.
363 tempval = (addr[5] << 24) | (addr[4] << 16) |
364 (addr[3] << 8) | addr[2];
366 gfar_write(macptr, tempval);
368 tempval = (addr[1] << 24) | (addr[0] << 16);
370 gfar_write(macptr+1, tempval);
373 static int gfar_set_mac_addr(struct net_device *dev, void *p)
377 ret = eth_mac_addr(dev, p);
381 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
386 static void gfar_ints_disable(struct gfar_private *priv)
389 for (i = 0; i < priv->num_grps; i++) {
390 struct gfar __iomem *regs = priv->gfargrp[i].regs;
392 gfar_write(®s->ievent, IEVENT_INIT_CLEAR);
394 /* Initialize IMASK */
395 gfar_write(®s->imask, IMASK_INIT_CLEAR);
399 static void gfar_ints_enable(struct gfar_private *priv)
402 for (i = 0; i < priv->num_grps; i++) {
403 struct gfar __iomem *regs = priv->gfargrp[i].regs;
404 /* Unmask the interrupts we look for */
405 gfar_write(®s->imask,
406 IMASK_DEFAULT | priv->rmon_overflow.imask);
410 static int gfar_alloc_tx_queues(struct gfar_private *priv)
414 for (i = 0; i < priv->num_tx_queues; i++) {
415 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
417 if (!priv->tx_queue[i])
420 priv->tx_queue[i]->tx_skbuff = NULL;
421 priv->tx_queue[i]->qindex = i;
422 priv->tx_queue[i]->dev = priv->ndev;
423 spin_lock_init(&(priv->tx_queue[i]->txlock));
428 static int gfar_alloc_rx_queues(struct gfar_private *priv)
432 for (i = 0; i < priv->num_rx_queues; i++) {
433 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
435 if (!priv->rx_queue[i])
438 priv->rx_queue[i]->qindex = i;
439 priv->rx_queue[i]->ndev = priv->ndev;
444 static void gfar_free_tx_queues(struct gfar_private *priv)
448 for (i = 0; i < priv->num_tx_queues; i++)
449 kfree(priv->tx_queue[i]);
452 static void gfar_free_rx_queues(struct gfar_private *priv)
456 for (i = 0; i < priv->num_rx_queues; i++)
457 kfree(priv->rx_queue[i]);
460 static void unmap_group_regs(struct gfar_private *priv)
464 for (i = 0; i < MAXGROUPS; i++)
465 if (priv->gfargrp[i].regs)
466 iounmap(priv->gfargrp[i].regs);
469 static void free_gfar_dev(struct gfar_private *priv)
473 for (i = 0; i < priv->num_grps; i++)
474 for (j = 0; j < GFAR_NUM_IRQS; j++) {
475 kfree(priv->gfargrp[i].irqinfo[j]);
476 priv->gfargrp[i].irqinfo[j] = NULL;
479 free_netdev(priv->ndev);
482 static void disable_napi(struct gfar_private *priv)
486 for (i = 0; i < priv->num_grps; i++) {
487 napi_disable(&priv->gfargrp[i].napi_rx);
488 napi_disable(&priv->gfargrp[i].napi_tx);
492 static void enable_napi(struct gfar_private *priv)
496 for (i = 0; i < priv->num_grps; i++) {
497 napi_enable(&priv->gfargrp[i].napi_rx);
498 napi_enable(&priv->gfargrp[i].napi_tx);
502 static int gfar_parse_group(struct device_node *np,
503 struct gfar_private *priv, const char *model)
505 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
508 for (i = 0; i < GFAR_NUM_IRQS; i++) {
509 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
511 if (!grp->irqinfo[i])
515 grp->regs = of_iomap(np, 0);
519 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
521 /* If we aren't the FEC we have multiple interrupts */
522 if (model && strcasecmp(model, "FEC")) {
523 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
524 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
525 if (!gfar_irq(grp, TX)->irq ||
526 !gfar_irq(grp, RX)->irq ||
527 !gfar_irq(grp, ER)->irq)
532 spin_lock_init(&grp->grplock);
533 if (priv->mode == MQ_MG_MODE) {
534 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
535 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
536 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
538 grp->rx_bit_map = 0xFF;
539 grp->tx_bit_map = 0xFF;
542 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
543 * right to left, so we need to revert the 8 bits to get the q index
545 grp->rx_bit_map = bitrev8(grp->rx_bit_map);
546 grp->tx_bit_map = bitrev8(grp->tx_bit_map);
548 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
549 * also assign queues to groups
551 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
553 grp->rx_queue = priv->rx_queue[i];
554 grp->num_rx_queues++;
555 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
556 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
557 priv->rx_queue[i]->grp = grp;
560 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
562 grp->tx_queue = priv->tx_queue[i];
563 grp->num_tx_queues++;
564 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
565 priv->tqueue |= (TQUEUE_EN0 >> i);
566 priv->tx_queue[i]->grp = grp;
574 static int gfar_of_group_count(struct device_node *np)
576 struct device_node *child;
579 for_each_available_child_of_node(np, child)
580 if (of_node_name_eq(child, "queue-group"))
586 /* Reads the controller's registers to determine what interface
587 * connects it to the PHY.
589 static phy_interface_t gfar_get_interface(struct net_device *dev)
591 struct gfar_private *priv = netdev_priv(dev);
592 struct gfar __iomem *regs = priv->gfargrp[0].regs;
595 ecntrl = gfar_read(®s->ecntrl);
597 if (ecntrl & ECNTRL_SGMII_MODE)
598 return PHY_INTERFACE_MODE_SGMII;
600 if (ecntrl & ECNTRL_TBI_MODE) {
601 if (ecntrl & ECNTRL_REDUCED_MODE)
602 return PHY_INTERFACE_MODE_RTBI;
604 return PHY_INTERFACE_MODE_TBI;
607 if (ecntrl & ECNTRL_REDUCED_MODE) {
608 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
609 return PHY_INTERFACE_MODE_RMII;
612 phy_interface_t interface = priv->interface;
614 /* This isn't autodetected right now, so it must
615 * be set by the device tree or platform code.
617 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
618 return PHY_INTERFACE_MODE_RGMII_ID;
620 return PHY_INTERFACE_MODE_RGMII;
624 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
625 return PHY_INTERFACE_MODE_GMII;
627 return PHY_INTERFACE_MODE_MII;
630 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
634 phy_interface_t interface;
635 struct net_device *dev = NULL;
636 struct gfar_private *priv = NULL;
637 struct device_node *np = ofdev->dev.of_node;
638 struct device_node *child = NULL;
641 unsigned int num_tx_qs, num_rx_qs;
647 if (of_device_is_compatible(np, "fsl,etsec2"))
652 if (mode == SQ_SG_MODE) {
655 } else { /* MQ_MG_MODE */
656 /* get the actual number of supported groups */
657 unsigned int num_grps = gfar_of_group_count(np);
659 if (num_grps == 0 || num_grps > MAXGROUPS) {
660 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
662 pr_err("Cannot do alloc_etherdev, aborting\n");
666 num_tx_qs = num_grps; /* one txq per int group */
667 num_rx_qs = num_grps; /* one rxq per int group */
670 if (num_tx_qs > MAX_TX_QS) {
671 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
672 num_tx_qs, MAX_TX_QS);
673 pr_err("Cannot do alloc_etherdev, aborting\n");
677 if (num_rx_qs > MAX_RX_QS) {
678 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
679 num_rx_qs, MAX_RX_QS);
680 pr_err("Cannot do alloc_etherdev, aborting\n");
684 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
689 priv = netdev_priv(dev);
694 priv->num_tx_queues = num_tx_qs;
695 netif_set_real_num_rx_queues(dev, num_rx_qs);
696 priv->num_rx_queues = num_rx_qs;
698 err = gfar_alloc_tx_queues(priv);
700 goto tx_alloc_failed;
702 err = gfar_alloc_rx_queues(priv);
704 goto rx_alloc_failed;
706 err = of_property_read_string(np, "model", &model);
708 pr_err("Device model property missing, aborting\n");
709 goto rx_alloc_failed;
712 /* Init Rx queue filer rule set linked list */
713 INIT_LIST_HEAD(&priv->rx_list.list);
714 priv->rx_list.count = 0;
715 mutex_init(&priv->rx_queue_access);
717 for (i = 0; i < MAXGROUPS; i++)
718 priv->gfargrp[i].regs = NULL;
720 /* Parse and initialize group specific information */
721 if (priv->mode == MQ_MG_MODE) {
722 for_each_available_child_of_node(np, child) {
723 if (!of_node_name_eq(child, "queue-group"))
726 err = gfar_parse_group(child, priv, model);
732 } else { /* SQ_SG_MODE */
733 err = gfar_parse_group(np, priv, model);
738 if (of_property_read_bool(np, "bd-stash")) {
739 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
740 priv->bd_stash_en = 1;
743 err = of_property_read_u32(np, "rx-stash-len", &stash_len);
746 priv->rx_stash_size = stash_len;
748 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
751 priv->rx_stash_index = stash_idx;
753 if (stash_len || stash_idx)
754 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
756 err = of_get_ethdev_address(np, dev);
757 if (err == -EPROBE_DEFER)
760 eth_hw_addr_random(dev);
761 dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr);
764 if (model && !strcasecmp(model, "TSEC"))
765 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
766 FSL_GIANFAR_DEV_HAS_COALESCE |
767 FSL_GIANFAR_DEV_HAS_RMON |
768 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
770 if (model && !strcasecmp(model, "eTSEC"))
771 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
772 FSL_GIANFAR_DEV_HAS_COALESCE |
773 FSL_GIANFAR_DEV_HAS_RMON |
774 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
775 FSL_GIANFAR_DEV_HAS_CSUM |
776 FSL_GIANFAR_DEV_HAS_VLAN |
777 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
778 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
779 FSL_GIANFAR_DEV_HAS_TIMER |
780 FSL_GIANFAR_DEV_HAS_RX_FILER;
782 /* Use PHY connection type from the DT node if one is specified there.
783 * rgmii-id really needs to be specified. Other types can be
784 * detected by hardware
786 err = of_get_phy_mode(np, &interface);
788 priv->interface = interface;
790 priv->interface = gfar_get_interface(dev);
792 if (of_property_read_bool(np, "fsl,magic-packet"))
793 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
795 if (of_property_read_bool(np, "fsl,wake-on-filer"))
796 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
798 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
800 /* In the case of a fixed PHY, the DT node associated
801 * to the PHY is the Ethernet MAC DT node.
803 if (!priv->phy_node && of_phy_is_fixed_link(np)) {
804 err = of_phy_register_fixed_link(np);
808 priv->phy_node = of_node_get(np);
811 /* Find the TBI PHY. If it's not there, we don't support SGMII */
812 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
817 unmap_group_regs(priv);
819 gfar_free_rx_queues(priv);
821 gfar_free_tx_queues(priv);
826 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
829 u32 rqfpr = FPR_FILER_MASK;
833 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
834 priv->ftp_rqfpr[rqfar] = rqfpr;
835 priv->ftp_rqfcr[rqfar] = rqfcr;
836 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
839 rqfcr = RQFCR_CMP_NOMATCH;
840 priv->ftp_rqfpr[rqfar] = rqfpr;
841 priv->ftp_rqfcr[rqfar] = rqfcr;
842 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
845 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
847 priv->ftp_rqfcr[rqfar] = rqfcr;
848 priv->ftp_rqfpr[rqfar] = rqfpr;
849 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
852 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
854 priv->ftp_rqfcr[rqfar] = rqfcr;
855 priv->ftp_rqfpr[rqfar] = rqfpr;
856 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
861 static void gfar_init_filer_table(struct gfar_private *priv)
864 u32 rqfar = MAX_FILER_IDX;
866 u32 rqfpr = FPR_FILER_MASK;
869 rqfcr = RQFCR_CMP_MATCH;
870 priv->ftp_rqfcr[rqfar] = rqfcr;
871 priv->ftp_rqfpr[rqfar] = rqfpr;
872 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
874 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
875 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
876 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
877 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
878 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
879 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
881 /* cur_filer_idx indicated the first non-masked rule */
882 priv->cur_filer_idx = rqfar;
884 /* Rest are masked rules */
885 rqfcr = RQFCR_CMP_NOMATCH;
886 for (i = 0; i < rqfar; i++) {
887 priv->ftp_rqfcr[i] = rqfcr;
888 priv->ftp_rqfpr[i] = rqfpr;
889 gfar_write_filer(priv, i, rqfcr, rqfpr);
894 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
896 unsigned int pvr = mfspr(SPRN_PVR);
897 unsigned int svr = mfspr(SPRN_SVR);
898 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
899 unsigned int rev = svr & 0xffff;
901 /* MPC8313 Rev 2.0 and higher; All MPC837x */
902 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
903 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
904 priv->errata |= GFAR_ERRATA_74;
906 /* MPC8313 and MPC837x all rev */
907 if ((pvr == 0x80850010 && mod == 0x80b0) ||
908 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
909 priv->errata |= GFAR_ERRATA_76;
911 /* MPC8313 Rev < 2.0 */
912 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
913 priv->errata |= GFAR_ERRATA_12;
916 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
918 unsigned int svr = mfspr(SPRN_SVR);
920 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
921 priv->errata |= GFAR_ERRATA_12;
922 /* P2020/P1010 Rev 1; MPC8548 Rev 2 */
923 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
924 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
925 ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
926 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
930 static void gfar_detect_errata(struct gfar_private *priv)
932 struct device *dev = &priv->ofdev->dev;
934 /* no plans to fix */
935 priv->errata |= GFAR_ERRATA_A002;
938 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
939 __gfar_detect_errata_85xx(priv);
940 else /* non-mpc85xx parts, i.e. e300 core based */
941 __gfar_detect_errata_83xx(priv);
945 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
949 static void gfar_init_addr_hash_table(struct gfar_private *priv)
951 struct gfar __iomem *regs = priv->gfargrp[0].regs;
953 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
954 priv->extended_hash = 1;
955 priv->hash_width = 9;
957 priv->hash_regs[0] = ®s->igaddr0;
958 priv->hash_regs[1] = ®s->igaddr1;
959 priv->hash_regs[2] = ®s->igaddr2;
960 priv->hash_regs[3] = ®s->igaddr3;
961 priv->hash_regs[4] = ®s->igaddr4;
962 priv->hash_regs[5] = ®s->igaddr5;
963 priv->hash_regs[6] = ®s->igaddr6;
964 priv->hash_regs[7] = ®s->igaddr7;
965 priv->hash_regs[8] = ®s->gaddr0;
966 priv->hash_regs[9] = ®s->gaddr1;
967 priv->hash_regs[10] = ®s->gaddr2;
968 priv->hash_regs[11] = ®s->gaddr3;
969 priv->hash_regs[12] = ®s->gaddr4;
970 priv->hash_regs[13] = ®s->gaddr5;
971 priv->hash_regs[14] = ®s->gaddr6;
972 priv->hash_regs[15] = ®s->gaddr7;
975 priv->extended_hash = 0;
976 priv->hash_width = 8;
978 priv->hash_regs[0] = ®s->gaddr0;
979 priv->hash_regs[1] = ®s->gaddr1;
980 priv->hash_regs[2] = ®s->gaddr2;
981 priv->hash_regs[3] = ®s->gaddr3;
982 priv->hash_regs[4] = ®s->gaddr4;
983 priv->hash_regs[5] = ®s->gaddr5;
984 priv->hash_regs[6] = ®s->gaddr6;
985 priv->hash_regs[7] = ®s->gaddr7;
989 static int __gfar_is_rx_idle(struct gfar_private *priv)
993 /* Normaly TSEC should not hang on GRS commands, so we should
994 * actually wait for IEVENT_GRSC flag.
996 if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
999 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1000 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1001 * and the Rx can be safely reset.
1003 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1005 if ((res & 0xffff) == (res >> 16))
1011 /* Halt the receive and transmit queues */
1012 static void gfar_halt_nodisable(struct gfar_private *priv)
1014 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1016 unsigned int timeout;
1019 gfar_ints_disable(priv);
1021 if (gfar_is_dma_stopped(priv))
1024 /* Stop the DMA, and wait for it to stop */
1025 tempval = gfar_read(®s->dmactrl);
1026 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1027 gfar_write(®s->dmactrl, tempval);
1031 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1037 stopped = gfar_is_dma_stopped(priv);
1039 if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1040 !__gfar_is_rx_idle(priv))
1044 /* Halt the receive and transmit queues */
1045 static void gfar_halt(struct gfar_private *priv)
1047 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1050 /* Dissable the Rx/Tx hw queues */
1051 gfar_write(®s->rqueue, 0);
1052 gfar_write(®s->tqueue, 0);
1056 gfar_halt_nodisable(priv);
1058 /* Disable Rx/Tx DMA */
1059 tempval = gfar_read(®s->maccfg1);
1060 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1061 gfar_write(®s->maccfg1, tempval);
1064 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1066 struct txbd8 *txbdp;
1067 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1070 txbdp = tx_queue->tx_bd_base;
1072 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1073 if (!tx_queue->tx_skbuff[i])
1076 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1077 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1079 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1082 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1083 be16_to_cpu(txbdp->length),
1087 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1088 tx_queue->tx_skbuff[i] = NULL;
1090 kfree(tx_queue->tx_skbuff);
1091 tx_queue->tx_skbuff = NULL;
1094 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1098 struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1100 dev_kfree_skb(rx_queue->skb);
1102 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1103 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1112 dma_unmap_page(rx_queue->dev, rxb->dma,
1113 PAGE_SIZE, DMA_FROM_DEVICE);
1114 __free_page(rxb->page);
1119 kfree(rx_queue->rx_buff);
1120 rx_queue->rx_buff = NULL;
1123 /* If there are any tx skbs or rx skbs still around, free them.
1124 * Then free tx_skbuff and rx_skbuff
1126 static void free_skb_resources(struct gfar_private *priv)
1128 struct gfar_priv_tx_q *tx_queue = NULL;
1129 struct gfar_priv_rx_q *rx_queue = NULL;
1132 /* Go through all the buffer descriptors and free their data buffers */
1133 for (i = 0; i < priv->num_tx_queues; i++) {
1134 struct netdev_queue *txq;
1136 tx_queue = priv->tx_queue[i];
1137 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1138 if (tx_queue->tx_skbuff)
1139 free_skb_tx_queue(tx_queue);
1140 netdev_tx_reset_queue(txq);
1143 for (i = 0; i < priv->num_rx_queues; i++) {
1144 rx_queue = priv->rx_queue[i];
1145 if (rx_queue->rx_buff)
1146 free_skb_rx_queue(rx_queue);
1149 dma_free_coherent(priv->dev,
1150 sizeof(struct txbd8) * priv->total_tx_ring_size +
1151 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1152 priv->tx_queue[0]->tx_bd_base,
1153 priv->tx_queue[0]->tx_bd_dma_base);
1156 void stop_gfar(struct net_device *dev)
1158 struct gfar_private *priv = netdev_priv(dev);
1160 netif_tx_stop_all_queues(dev);
1162 smp_mb__before_atomic();
1163 set_bit(GFAR_DOWN, &priv->state);
1164 smp_mb__after_atomic();
1168 /* disable ints and gracefully shut down Rx/Tx DMA */
1171 phy_stop(dev->phydev);
1173 free_skb_resources(priv);
1176 static void gfar_start(struct gfar_private *priv)
1178 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1182 /* Enable Rx/Tx hw queues */
1183 gfar_write(®s->rqueue, priv->rqueue);
1184 gfar_write(®s->tqueue, priv->tqueue);
1186 /* Initialize DMACTRL to have WWR and WOP */
1187 tempval = gfar_read(®s->dmactrl);
1188 tempval |= DMACTRL_INIT_SETTINGS;
1189 gfar_write(®s->dmactrl, tempval);
1191 /* Make sure we aren't stopped */
1192 tempval = gfar_read(®s->dmactrl);
1193 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1194 gfar_write(®s->dmactrl, tempval);
1196 for (i = 0; i < priv->num_grps; i++) {
1197 regs = priv->gfargrp[i].regs;
1198 /* Clear THLT/RHLT, so that the DMA starts polling now */
1199 gfar_write(®s->tstat, priv->gfargrp[i].tstat);
1200 gfar_write(®s->rstat, priv->gfargrp[i].rstat);
1203 /* Enable Rx/Tx DMA */
1204 tempval = gfar_read(®s->maccfg1);
1205 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1206 gfar_write(®s->maccfg1, tempval);
1208 gfar_ints_enable(priv);
1210 netif_trans_update(priv->ndev); /* prevent tx timeout */
1213 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1218 page = dev_alloc_page();
1219 if (unlikely(!page))
1222 addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1223 if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1231 rxb->page_offset = 0;
1236 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1238 struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1239 struct gfar_extra_stats *estats = &priv->extra_stats;
1241 netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1242 atomic64_inc(&estats->rx_alloc_err);
1245 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1249 struct gfar_rx_buff *rxb;
1252 i = rx_queue->next_to_use;
1253 bdp = &rx_queue->rx_bd_base[i];
1254 rxb = &rx_queue->rx_buff[i];
1256 while (alloc_cnt--) {
1257 /* try reuse page */
1258 if (unlikely(!rxb->page)) {
1259 if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1260 gfar_rx_alloc_err(rx_queue);
1265 /* Setup the new RxBD */
1266 gfar_init_rxbdp(rx_queue, bdp,
1267 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1269 /* Update to the next pointer */
1273 if (unlikely(++i == rx_queue->rx_ring_size)) {
1275 bdp = rx_queue->rx_bd_base;
1276 rxb = rx_queue->rx_buff;
1280 rx_queue->next_to_use = i;
1281 rx_queue->next_to_alloc = i;
1284 static void gfar_init_bds(struct net_device *ndev)
1286 struct gfar_private *priv = netdev_priv(ndev);
1287 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1288 struct gfar_priv_tx_q *tx_queue = NULL;
1289 struct gfar_priv_rx_q *rx_queue = NULL;
1290 struct txbd8 *txbdp;
1291 u32 __iomem *rfbptr;
1294 for (i = 0; i < priv->num_tx_queues; i++) {
1295 tx_queue = priv->tx_queue[i];
1296 /* Initialize some variables in our dev structure */
1297 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1298 tx_queue->dirty_tx = tx_queue->tx_bd_base;
1299 tx_queue->cur_tx = tx_queue->tx_bd_base;
1300 tx_queue->skb_curtx = 0;
1301 tx_queue->skb_dirtytx = 0;
1303 /* Initialize Transmit Descriptor Ring */
1304 txbdp = tx_queue->tx_bd_base;
1305 for (j = 0; j < tx_queue->tx_ring_size; j++) {
1311 /* Set the last descriptor in the ring to indicate wrap */
1313 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1317 rfbptr = ®s->rfbptr0;
1318 for (i = 0; i < priv->num_rx_queues; i++) {
1319 rx_queue = priv->rx_queue[i];
1321 rx_queue->next_to_clean = 0;
1322 rx_queue->next_to_use = 0;
1323 rx_queue->next_to_alloc = 0;
1325 /* make sure next_to_clean != next_to_use after this
1326 * by leaving at least 1 unused descriptor
1328 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1330 rx_queue->rfbptr = rfbptr;
1335 static int gfar_alloc_skb_resources(struct net_device *ndev)
1340 struct gfar_private *priv = netdev_priv(ndev);
1341 struct device *dev = priv->dev;
1342 struct gfar_priv_tx_q *tx_queue = NULL;
1343 struct gfar_priv_rx_q *rx_queue = NULL;
1345 priv->total_tx_ring_size = 0;
1346 for (i = 0; i < priv->num_tx_queues; i++)
1347 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1349 priv->total_rx_ring_size = 0;
1350 for (i = 0; i < priv->num_rx_queues; i++)
1351 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1353 /* Allocate memory for the buffer descriptors */
1354 vaddr = dma_alloc_coherent(dev,
1355 (priv->total_tx_ring_size *
1356 sizeof(struct txbd8)) +
1357 (priv->total_rx_ring_size *
1358 sizeof(struct rxbd8)),
1363 for (i = 0; i < priv->num_tx_queues; i++) {
1364 tx_queue = priv->tx_queue[i];
1365 tx_queue->tx_bd_base = vaddr;
1366 tx_queue->tx_bd_dma_base = addr;
1367 tx_queue->dev = ndev;
1368 /* enet DMA only understands physical addresses */
1369 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1370 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1373 /* Start the rx descriptor ring where the tx ring leaves off */
1374 for (i = 0; i < priv->num_rx_queues; i++) {
1375 rx_queue = priv->rx_queue[i];
1376 rx_queue->rx_bd_base = vaddr;
1377 rx_queue->rx_bd_dma_base = addr;
1378 rx_queue->ndev = ndev;
1379 rx_queue->dev = dev;
1380 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1381 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1384 /* Setup the skbuff rings */
1385 for (i = 0; i < priv->num_tx_queues; i++) {
1386 tx_queue = priv->tx_queue[i];
1387 tx_queue->tx_skbuff =
1388 kmalloc_array(tx_queue->tx_ring_size,
1389 sizeof(*tx_queue->tx_skbuff),
1391 if (!tx_queue->tx_skbuff)
1394 for (j = 0; j < tx_queue->tx_ring_size; j++)
1395 tx_queue->tx_skbuff[j] = NULL;
1398 for (i = 0; i < priv->num_rx_queues; i++) {
1399 rx_queue = priv->rx_queue[i];
1400 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1401 sizeof(*rx_queue->rx_buff),
1403 if (!rx_queue->rx_buff)
1407 gfar_init_bds(ndev);
1412 free_skb_resources(priv);
1416 /* Bring the controller up and running */
1417 int startup_gfar(struct net_device *ndev)
1419 struct gfar_private *priv = netdev_priv(ndev);
1422 gfar_mac_reset(priv);
1424 err = gfar_alloc_skb_resources(ndev);
1428 gfar_init_tx_rx_base(priv);
1430 smp_mb__before_atomic();
1431 clear_bit(GFAR_DOWN, &priv->state);
1432 smp_mb__after_atomic();
1434 /* Start Rx/Tx DMA and enable the interrupts */
1437 /* force link state update after mac reset */
1440 priv->oldduplex = -1;
1442 phy_start(ndev->phydev);
1446 netif_tx_wake_all_queues(ndev);
1451 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1453 struct net_device *ndev = priv->ndev;
1454 struct phy_device *phydev = ndev->phydev;
1457 if (!phydev->duplex)
1460 if (!priv->pause_aneg_en) {
1461 if (priv->tx_pause_en)
1462 val |= MACCFG1_TX_FLOW;
1463 if (priv->rx_pause_en)
1464 val |= MACCFG1_RX_FLOW;
1466 u16 lcl_adv, rmt_adv;
1468 /* get link partner capabilities */
1471 rmt_adv = LPA_PAUSE_CAP;
1472 if (phydev->asym_pause)
1473 rmt_adv |= LPA_PAUSE_ASYM;
1475 lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1476 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1477 if (flowctrl & FLOW_CTRL_TX)
1478 val |= MACCFG1_TX_FLOW;
1479 if (flowctrl & FLOW_CTRL_RX)
1480 val |= MACCFG1_RX_FLOW;
1486 static noinline void gfar_update_link_state(struct gfar_private *priv)
1488 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1489 struct net_device *ndev = priv->ndev;
1490 struct phy_device *phydev = ndev->phydev;
1491 struct gfar_priv_rx_q *rx_queue = NULL;
1494 if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1498 u32 tempval1 = gfar_read(®s->maccfg1);
1499 u32 tempval = gfar_read(®s->maccfg2);
1500 u32 ecntrl = gfar_read(®s->ecntrl);
1501 u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1503 if (phydev->duplex != priv->oldduplex) {
1504 if (!(phydev->duplex))
1505 tempval &= ~(MACCFG2_FULL_DUPLEX);
1507 tempval |= MACCFG2_FULL_DUPLEX;
1509 priv->oldduplex = phydev->duplex;
1512 if (phydev->speed != priv->oldspeed) {
1513 switch (phydev->speed) {
1516 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1518 ecntrl &= ~(ECNTRL_R100);
1523 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1525 /* Reduced mode distinguishes
1526 * between 10 and 100
1528 if (phydev->speed == SPEED_100)
1529 ecntrl |= ECNTRL_R100;
1531 ecntrl &= ~(ECNTRL_R100);
1534 netif_warn(priv, link, priv->ndev,
1535 "Ack! Speed (%d) is not 10/100/1000!\n",
1540 priv->oldspeed = phydev->speed;
1543 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1544 tempval1 |= gfar_get_flowctrl_cfg(priv);
1546 /* Turn last free buffer recording on */
1547 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1548 for (i = 0; i < priv->num_rx_queues; i++) {
1551 rx_queue = priv->rx_queue[i];
1552 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1553 gfar_write(rx_queue->rfbptr, bdp_dma);
1556 priv->tx_actual_en = 1;
1559 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1560 priv->tx_actual_en = 0;
1562 gfar_write(®s->maccfg1, tempval1);
1563 gfar_write(®s->maccfg2, tempval);
1564 gfar_write(®s->ecntrl, ecntrl);
1569 } else if (priv->oldlink) {
1572 priv->oldduplex = -1;
1575 if (netif_msg_link(priv))
1576 phy_print_status(phydev);
1579 /* Called every time the controller might need to be made
1580 * aware of new link state. The PHY code conveys this
1581 * information through variables in the phydev structure, and this
1582 * function converts those variables into the appropriate
1583 * register values, and can bring down the device if needed.
1585 static void adjust_link(struct net_device *dev)
1587 struct gfar_private *priv = netdev_priv(dev);
1588 struct phy_device *phydev = dev->phydev;
1590 if (unlikely(phydev->link != priv->oldlink ||
1591 (phydev->link && (phydev->duplex != priv->oldduplex ||
1592 phydev->speed != priv->oldspeed))))
1593 gfar_update_link_state(priv);
1596 /* Initialize TBI PHY interface for communicating with the
1597 * SERDES lynx PHY on the chip. We communicate with this PHY
1598 * through the MDIO bus on each controller, treating it as a
1599 * "normal" PHY at the address found in the TBIPA register. We assume
1600 * that the TBIPA register is valid. Either the MDIO bus code will set
1601 * it to a value that doesn't conflict with other PHYs on the bus, or the
1602 * value doesn't matter, as there are no other PHYs on the bus.
1604 static void gfar_configure_serdes(struct net_device *dev)
1606 struct gfar_private *priv = netdev_priv(dev);
1607 struct phy_device *tbiphy;
1609 if (!priv->tbi_node) {
1610 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1611 "device tree specify a tbi-handle\n");
1615 tbiphy = of_phy_find_device(priv->tbi_node);
1617 dev_err(&dev->dev, "error: Could not get TBI device\n");
1621 /* If the link is already up, we must already be ok, and don't need to
1622 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1623 * everything for us? Resetting it takes the link down and requires
1624 * several seconds for it to come back.
1626 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1627 put_device(&tbiphy->mdio.dev);
1631 /* Single clk mode, mii mode off(for serdes communication) */
1632 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1634 phy_write(tbiphy, MII_ADVERTISE,
1635 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1636 ADVERTISE_1000XPSE_ASYM);
1638 phy_write(tbiphy, MII_BMCR,
1639 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1642 put_device(&tbiphy->mdio.dev);
1645 /* Initializes driver's PHY state, and attaches to the PHY.
1646 * Returns 0 on success.
1648 static int init_phy(struct net_device *dev)
1650 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1651 struct gfar_private *priv = netdev_priv(dev);
1652 phy_interface_t interface = priv->interface;
1653 struct phy_device *phydev;
1654 struct ethtool_keee edata;
1656 linkmode_set_bit_array(phy_10_100_features_array,
1657 ARRAY_SIZE(phy_10_100_features_array),
1659 linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1660 linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1661 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1662 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1666 priv->oldduplex = -1;
1668 phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1671 dev_err(&dev->dev, "could not attach to PHY\n");
1675 if (interface == PHY_INTERFACE_MODE_SGMII)
1676 gfar_configure_serdes(dev);
1678 /* Remove any features not supported by the controller */
1679 linkmode_and(phydev->supported, phydev->supported, mask);
1680 linkmode_copy(phydev->advertising, phydev->supported);
1682 /* Add support for flow control */
1683 phy_support_asym_pause(phydev);
1685 /* disable EEE autoneg, EEE not supported by eTSEC */
1686 memset(&edata, 0, sizeof(struct ethtool_keee));
1687 phy_ethtool_set_eee(phydev, &edata);
1692 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1694 struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1696 memset(fcb, 0, GMAC_FCB_LEN);
1701 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1704 /* If we're here, it's a IP packet with a TCP or UDP
1705 * payload. We set it to checksum, using a pseudo-header
1708 u8 flags = TXFCB_DEFAULT;
1710 /* Tell the controller what the protocol is
1711 * And provide the already calculated phcs
1713 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1715 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1717 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1719 /* l3os is the distance between the start of the
1720 * frame (skb->data) and the start of the IP hdr.
1721 * l4os is the distance between the start of the
1722 * l3 hdr and the l4 hdr
1724 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1725 fcb->l4os = skb_network_header_len(skb);
1730 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1732 fcb->flags |= TXFCB_VLN;
1733 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1736 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1737 struct txbd8 *base, int ring_size)
1739 struct txbd8 *new_bd = bdp + stride;
1741 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1744 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1747 return skip_txbd(bdp, 1, base, ring_size);
1750 /* eTSEC12: csum generation not supported for some fcb offsets */
1751 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1752 unsigned long fcb_addr)
1754 return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1755 (fcb_addr % 0x20) > 0x18);
1758 /* eTSEC76: csum generation for frames larger than 2500 may
1759 * cause excess delays before start of transmission
1761 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1764 return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1768 /* This is called by the kernel when a frame is ready for transmission.
1769 * It is pointed to by the dev->hard_start_xmit function pointer
1771 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1773 struct gfar_private *priv = netdev_priv(dev);
1774 struct gfar_priv_tx_q *tx_queue = NULL;
1775 struct netdev_queue *txq;
1776 struct gfar __iomem *regs = NULL;
1777 struct txfcb *fcb = NULL;
1778 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1782 int do_tstamp, do_csum, do_vlan;
1784 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1786 rq = skb->queue_mapping;
1787 tx_queue = priv->tx_queue[rq];
1788 txq = netdev_get_tx_queue(dev, rq);
1789 base = tx_queue->tx_bd_base;
1790 regs = tx_queue->grp->regs;
1792 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1793 do_vlan = skb_vlan_tag_present(skb);
1794 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1797 if (do_csum || do_vlan)
1798 fcb_len = GMAC_FCB_LEN;
1800 /* check if time stamp should be generated */
1801 if (unlikely(do_tstamp))
1802 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1804 /* make space for additional header when fcb is needed */
1806 if (unlikely(skb_cow_head(skb, fcb_len))) {
1807 dev->stats.tx_errors++;
1808 dev_kfree_skb_any(skb);
1809 return NETDEV_TX_OK;
1813 /* total number of fragments in the SKB */
1814 nr_frags = skb_shinfo(skb)->nr_frags;
1816 /* calculate the required number of TxBDs for this skb */
1817 if (unlikely(do_tstamp))
1818 nr_txbds = nr_frags + 2;
1820 nr_txbds = nr_frags + 1;
1822 /* check if there is space to queue this packet */
1823 if (nr_txbds > tx_queue->num_txbdfree) {
1824 /* no space, stop the queue */
1825 netif_tx_stop_queue(txq);
1826 dev->stats.tx_fifo_errors++;
1827 return NETDEV_TX_BUSY;
1830 /* Update transmit stats */
1831 bytes_sent = skb->len;
1832 tx_queue->stats.tx_bytes += bytes_sent;
1833 /* keep Tx bytes on wire for BQL accounting */
1834 GFAR_CB(skb)->bytes_sent = bytes_sent;
1835 tx_queue->stats.tx_packets++;
1837 txbdp = txbdp_start = tx_queue->cur_tx;
1838 lstatus = be32_to_cpu(txbdp->lstatus);
1840 /* Add TxPAL between FCB and frame if required */
1841 if (unlikely(do_tstamp)) {
1842 skb_push(skb, GMAC_TXPAL_LEN);
1843 memset(skb->data, 0, GMAC_TXPAL_LEN);
1846 /* Add TxFCB if required */
1848 fcb = gfar_add_fcb(skb);
1849 lstatus |= BD_LFLAG(TXBD_TOE);
1852 /* Set up checksumming */
1854 gfar_tx_checksum(skb, fcb, fcb_len);
1856 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1857 unlikely(gfar_csum_errata_76(priv, skb->len))) {
1858 __skb_pull(skb, GMAC_FCB_LEN);
1859 skb_checksum_help(skb);
1860 if (do_vlan || do_tstamp) {
1861 /* put back a new fcb for vlan/tstamp TOE */
1862 fcb = gfar_add_fcb(skb);
1864 /* Tx TOE not used */
1865 lstatus &= ~(BD_LFLAG(TXBD_TOE));
1872 gfar_tx_vlan(skb, fcb);
1874 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1876 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1879 txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1881 /* Time stamp insertion requires one additional TxBD */
1882 if (unlikely(do_tstamp))
1883 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1884 tx_queue->tx_ring_size);
1886 if (likely(!nr_frags)) {
1887 if (likely(!do_tstamp))
1888 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1890 u32 lstatus_start = lstatus;
1892 /* Place the fragment addresses and lengths into the TxBDs */
1893 frag = &skb_shinfo(skb)->frags[0];
1894 for (i = 0; i < nr_frags; i++, frag++) {
1897 /* Point at the next BD, wrapping as needed */
1898 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1900 size = skb_frag_size(frag);
1902 lstatus = be32_to_cpu(txbdp->lstatus) | size |
1903 BD_LFLAG(TXBD_READY);
1905 /* Handle the last BD specially */
1906 if (i == nr_frags - 1)
1907 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1909 bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1910 size, DMA_TO_DEVICE);
1911 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1914 /* set the TxBD length and buffer pointer */
1915 txbdp->bufPtr = cpu_to_be32(bufaddr);
1916 txbdp->lstatus = cpu_to_be32(lstatus);
1919 lstatus = lstatus_start;
1922 /* If time stamping is requested one additional TxBD must be set up. The
1923 * first TxBD points to the FCB and must have a data length of
1924 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1925 * the full frame length.
1927 if (unlikely(do_tstamp)) {
1928 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1930 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1933 lstatus_ts |= BD_LFLAG(TXBD_READY) |
1934 (skb_headlen(skb) - fcb_len);
1936 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1938 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1939 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1940 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1942 /* Setup tx hardware time stamping */
1943 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1946 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1949 skb_tx_timestamp(skb);
1950 netdev_tx_sent_queue(txq, bytes_sent);
1954 txbdp_start->lstatus = cpu_to_be32(lstatus);
1956 gfar_wmb(); /* force lstatus write before tx_skbuff */
1958 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1960 /* Update the current skb pointer to the next entry we will use
1961 * (wrapping if necessary)
1963 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1964 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1966 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1968 /* We can work in parallel with gfar_clean_tx_ring(), except
1969 * when modifying num_txbdfree. Note that we didn't grab the lock
1970 * when we were reading the num_txbdfree and checking for available
1971 * space, that's because outside of this function it can only grow.
1973 spin_lock_bh(&tx_queue->txlock);
1974 /* reduce TxBD free count */
1975 tx_queue->num_txbdfree -= (nr_txbds);
1976 spin_unlock_bh(&tx_queue->txlock);
1978 /* If the next BD still needs to be cleaned up, then the bds
1979 * are full. We need to tell the kernel to stop sending us stuff.
1981 if (!tx_queue->num_txbdfree) {
1982 netif_tx_stop_queue(txq);
1984 dev->stats.tx_fifo_errors++;
1987 /* Tell the DMA to go go go */
1988 gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
1990 return NETDEV_TX_OK;
1993 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
1995 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1996 for (i = 0; i < nr_frags; i++) {
1997 lstatus = be32_to_cpu(txbdp->lstatus);
1998 if (!(lstatus & BD_LFLAG(TXBD_READY)))
2001 lstatus &= ~BD_LFLAG(TXBD_READY);
2002 txbdp->lstatus = cpu_to_be32(lstatus);
2003 bufaddr = be32_to_cpu(txbdp->bufPtr);
2004 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2006 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2009 dev_kfree_skb_any(skb);
2010 return NETDEV_TX_OK;
2013 /* Changes the mac address if the controller is not running. */
2014 static int gfar_set_mac_address(struct net_device *dev)
2016 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2021 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2023 struct gfar_private *priv = netdev_priv(dev);
2025 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2028 if (dev->flags & IFF_UP)
2031 WRITE_ONCE(dev->mtu, new_mtu);
2033 if (dev->flags & IFF_UP)
2036 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2041 static void reset_gfar(struct net_device *ndev)
2043 struct gfar_private *priv = netdev_priv(ndev);
2045 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2051 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2054 /* gfar_reset_task gets scheduled when a packet has not been
2055 * transmitted after a set amount of time.
2056 * For now, assume that clearing out all the structures, and
2057 * starting over will fix the problem.
2059 static void gfar_reset_task(struct work_struct *work)
2061 struct gfar_private *priv = container_of(work, struct gfar_private,
2063 reset_gfar(priv->ndev);
2066 static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2068 struct gfar_private *priv = netdev_priv(dev);
2070 dev->stats.tx_errors++;
2071 schedule_work(&priv->reset_task);
2074 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2076 struct hwtstamp_config config;
2077 struct gfar_private *priv = netdev_priv(netdev);
2079 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2082 switch (config.tx_type) {
2083 case HWTSTAMP_TX_OFF:
2084 priv->hwts_tx_en = 0;
2086 case HWTSTAMP_TX_ON:
2087 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2089 priv->hwts_tx_en = 1;
2095 switch (config.rx_filter) {
2096 case HWTSTAMP_FILTER_NONE:
2097 if (priv->hwts_rx_en) {
2098 priv->hwts_rx_en = 0;
2103 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2105 if (!priv->hwts_rx_en) {
2106 priv->hwts_rx_en = 1;
2109 config.rx_filter = HWTSTAMP_FILTER_ALL;
2113 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2117 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2119 struct hwtstamp_config config;
2120 struct gfar_private *priv = netdev_priv(netdev);
2123 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2124 config.rx_filter = (priv->hwts_rx_en ?
2125 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2127 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2131 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2133 struct phy_device *phydev = dev->phydev;
2135 if (!netif_running(dev))
2138 if (cmd == SIOCSHWTSTAMP)
2139 return gfar_hwtstamp_set(dev, rq);
2140 if (cmd == SIOCGHWTSTAMP)
2141 return gfar_hwtstamp_get(dev, rq);
2146 return phy_mii_ioctl(phydev, rq, cmd);
2149 /* Interrupt Handler for Transmit complete */
2150 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2152 struct net_device *dev = tx_queue->dev;
2153 struct netdev_queue *txq;
2154 struct gfar_private *priv = netdev_priv(dev);
2155 struct txbd8 *bdp, *next = NULL;
2156 struct txbd8 *lbdp = NULL;
2157 struct txbd8 *base = tx_queue->tx_bd_base;
2158 struct sk_buff *skb;
2160 int tx_ring_size = tx_queue->tx_ring_size;
2161 int frags = 0, nr_txbds = 0;
2164 int tqi = tx_queue->qindex;
2165 unsigned int bytes_sent = 0;
2169 txq = netdev_get_tx_queue(dev, tqi);
2170 bdp = tx_queue->dirty_tx;
2171 skb_dirtytx = tx_queue->skb_dirtytx;
2173 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2176 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2179 frags = skb_shinfo(skb)->nr_frags;
2181 /* When time stamping, one additional TxBD must be freed.
2182 * Also, we need to dma_unmap_single() the TxPAL.
2184 if (unlikely(do_tstamp))
2185 nr_txbds = frags + 2;
2187 nr_txbds = frags + 1;
2189 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2191 lstatus = be32_to_cpu(lbdp->lstatus);
2193 /* Only clean completed frames */
2194 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2195 (lstatus & BD_LENGTH_MASK))
2198 if (unlikely(do_tstamp)) {
2199 next = next_txbd(bdp, base, tx_ring_size);
2200 buflen = be16_to_cpu(next->length) +
2201 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2203 buflen = be16_to_cpu(bdp->length);
2205 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2206 buflen, DMA_TO_DEVICE);
2208 if (unlikely(do_tstamp)) {
2209 struct skb_shared_hwtstamps shhwtstamps;
2212 ns = (__be64 *)(((uintptr_t)skb->data + 0x10) & ~0x7UL);
2214 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2215 shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2216 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2217 skb_tstamp_tx(skb, &shhwtstamps);
2218 gfar_clear_txbd_status(bdp);
2222 gfar_clear_txbd_status(bdp);
2223 bdp = next_txbd(bdp, base, tx_ring_size);
2225 for (i = 0; i < frags; i++) {
2226 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2227 be16_to_cpu(bdp->length),
2229 gfar_clear_txbd_status(bdp);
2230 bdp = next_txbd(bdp, base, tx_ring_size);
2233 bytes_sent += GFAR_CB(skb)->bytes_sent;
2235 dev_kfree_skb_any(skb);
2237 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2239 skb_dirtytx = (skb_dirtytx + 1) &
2240 TX_RING_MOD_MASK(tx_ring_size);
2243 spin_lock(&tx_queue->txlock);
2244 tx_queue->num_txbdfree += nr_txbds;
2245 spin_unlock(&tx_queue->txlock);
2248 /* If we freed a buffer, we can restart transmission, if necessary */
2249 if (tx_queue->num_txbdfree &&
2250 netif_tx_queue_stopped(txq) &&
2251 !(test_bit(GFAR_DOWN, &priv->state)))
2252 netif_wake_subqueue(priv->ndev, tqi);
2254 /* Update dirty indicators */
2255 tx_queue->skb_dirtytx = skb_dirtytx;
2256 tx_queue->dirty_tx = bdp;
2258 netdev_tx_completed_queue(txq, howmany, bytes_sent);
2261 static void count_errors(u32 lstatus, struct net_device *ndev)
2263 struct gfar_private *priv = netdev_priv(ndev);
2264 struct net_device_stats *stats = &ndev->stats;
2265 struct gfar_extra_stats *estats = &priv->extra_stats;
2267 /* If the packet was truncated, none of the other errors matter */
2268 if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2269 stats->rx_length_errors++;
2271 atomic64_inc(&estats->rx_trunc);
2275 /* Count the errors, if there were any */
2276 if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2277 stats->rx_length_errors++;
2279 if (lstatus & BD_LFLAG(RXBD_LARGE))
2280 atomic64_inc(&estats->rx_large);
2282 atomic64_inc(&estats->rx_short);
2284 if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2285 stats->rx_frame_errors++;
2286 atomic64_inc(&estats->rx_nonoctet);
2288 if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2289 atomic64_inc(&estats->rx_crcerr);
2290 stats->rx_crc_errors++;
2292 if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2293 atomic64_inc(&estats->rx_overrun);
2294 stats->rx_over_errors++;
2298 static irqreturn_t gfar_receive(int irq, void *grp_id)
2300 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2301 unsigned long flags;
2304 ievent = gfar_read(&grp->regs->ievent);
2306 if (unlikely(ievent & IEVENT_FGPI)) {
2307 gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2311 if (likely(napi_schedule_prep(&grp->napi_rx))) {
2312 spin_lock_irqsave(&grp->grplock, flags);
2313 imask = gfar_read(&grp->regs->imask);
2314 imask &= IMASK_RX_DISABLED | grp->priv->rmon_overflow.imask;
2315 gfar_write(&grp->regs->imask, imask);
2316 spin_unlock_irqrestore(&grp->grplock, flags);
2317 __napi_schedule(&grp->napi_rx);
2319 /* Clear IEVENT, so interrupts aren't called again
2320 * because of the packets that have already arrived.
2322 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2328 /* Interrupt Handler for Transmit complete */
2329 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2331 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2332 unsigned long flags;
2335 if (likely(napi_schedule_prep(&grp->napi_tx))) {
2336 spin_lock_irqsave(&grp->grplock, flags);
2337 imask = gfar_read(&grp->regs->imask);
2338 imask &= IMASK_TX_DISABLED | grp->priv->rmon_overflow.imask;
2339 gfar_write(&grp->regs->imask, imask);
2340 spin_unlock_irqrestore(&grp->grplock, flags);
2341 __napi_schedule(&grp->napi_tx);
2343 /* Clear IEVENT, so interrupts aren't called again
2344 * because of the packets that have already arrived.
2346 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2352 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2353 struct sk_buff *skb, bool first)
2355 int size = lstatus & BD_LENGTH_MASK;
2356 struct page *page = rxb->page;
2358 if (likely(first)) {
2361 /* the last fragments' length contains the full frame length */
2362 if (lstatus & BD_LFLAG(RXBD_LAST))
2365 WARN(size < 0, "gianfar: rx fragment size underflow");
2369 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2370 rxb->page_offset + RXBUF_ALIGNMENT,
2371 size, GFAR_RXB_TRUESIZE);
2374 /* try reuse page */
2375 if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2378 /* change offset to the other half */
2379 rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2386 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2387 struct gfar_rx_buff *old_rxb)
2389 struct gfar_rx_buff *new_rxb;
2390 u16 nta = rxq->next_to_alloc;
2392 new_rxb = &rxq->rx_buff[nta];
2394 /* find next buf that can reuse a page */
2396 rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2398 /* copy page reference */
2399 *new_rxb = *old_rxb;
2401 /* sync for use by the device */
2402 dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2403 old_rxb->page_offset,
2404 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2407 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2408 u32 lstatus, struct sk_buff *skb)
2410 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2411 struct page *page = rxb->page;
2415 void *buff_addr = page_address(page) + rxb->page_offset;
2417 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2418 if (unlikely(!skb)) {
2419 gfar_rx_alloc_err(rx_queue);
2422 skb_reserve(skb, RXBUF_ALIGNMENT);
2426 dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2427 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2429 if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2430 /* reuse the free half of the page */
2431 gfar_reuse_rx_page(rx_queue, rxb);
2433 /* page cannot be reused, unmap it */
2434 dma_unmap_page(rx_queue->dev, rxb->dma,
2435 PAGE_SIZE, DMA_FROM_DEVICE);
2438 /* clear rxb content */
2444 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2446 /* If valid headers were found, and valid sums
2447 * were verified, then we tell the kernel that no
2448 * checksumming is necessary. Otherwise, it is [FIXME]
2450 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2451 (RXFCB_CIP | RXFCB_CTU))
2452 skb->ip_summed = CHECKSUM_UNNECESSARY;
2454 skb_checksum_none_assert(skb);
2457 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2458 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2460 struct gfar_private *priv = netdev_priv(ndev);
2461 struct rxfcb *fcb = NULL;
2463 /* fcb is at the beginning if exists */
2464 fcb = (struct rxfcb *)skb->data;
2466 /* Remove the FCB from the skb
2467 * Remove the padded bytes, if there are any
2469 if (priv->uses_rxfcb)
2470 skb_pull(skb, GMAC_FCB_LEN);
2472 /* Get receive timestamp from the skb */
2473 if (priv->hwts_rx_en) {
2474 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2475 __be64 *ns = (__be64 *)skb->data;
2477 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2478 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2482 skb_pull(skb, priv->padding);
2484 /* Trim off the FCS */
2485 pskb_trim(skb, skb->len - ETH_FCS_LEN);
2487 if (ndev->features & NETIF_F_RXCSUM)
2488 gfar_rx_checksum(skb, fcb);
2490 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2491 * Even if vlan rx accel is disabled, on some chips
2492 * RXFCB_VLN is pseudo randomly set.
2494 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2495 be16_to_cpu(fcb->flags) & RXFCB_VLN)
2496 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2497 be16_to_cpu(fcb->vlctl));
2500 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2501 * until the budget/quota has been reached. Returns the number
2504 static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2507 struct net_device *ndev = rx_queue->ndev;
2508 struct gfar_private *priv = netdev_priv(ndev);
2511 struct sk_buff *skb = rx_queue->skb;
2512 int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2513 unsigned int total_bytes = 0, total_pkts = 0;
2515 /* Get the first full descriptor */
2516 i = rx_queue->next_to_clean;
2518 while (rx_work_limit--) {
2521 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2522 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2526 bdp = &rx_queue->rx_bd_base[i];
2527 lstatus = be32_to_cpu(bdp->lstatus);
2528 if (lstatus & BD_LFLAG(RXBD_EMPTY))
2531 /* lost RXBD_LAST descriptor due to overrun */
2533 (lstatus & BD_LFLAG(RXBD_FIRST))) {
2534 /* discard faulty buffer */
2537 rx_queue->stats.rx_dropped++;
2539 /* can continue normally */
2542 /* order rx buffer descriptor reads */
2545 /* fetch next to clean buffer from the ring */
2546 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2553 if (unlikely(++i == rx_queue->rx_ring_size))
2556 rx_queue->next_to_clean = i;
2558 /* fetch next buffer if not the last in frame */
2559 if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2562 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2563 count_errors(lstatus, ndev);
2565 /* discard faulty buffer */
2568 rx_queue->stats.rx_dropped++;
2572 gfar_process_frame(ndev, skb);
2574 /* Increment the number of packets */
2576 total_bytes += skb->len;
2578 skb_record_rx_queue(skb, rx_queue->qindex);
2580 skb->protocol = eth_type_trans(skb, ndev);
2582 /* Send the packet up the stack */
2583 napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2588 /* Store incomplete frames for completion */
2589 rx_queue->skb = skb;
2591 rx_queue->stats.rx_packets += total_pkts;
2592 rx_queue->stats.rx_bytes += total_bytes;
2595 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2597 /* Update Last Free RxBD pointer for LFC */
2598 if (unlikely(priv->tx_actual_en)) {
2599 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2601 gfar_write(rx_queue->rfbptr, bdp_dma);
2607 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2609 struct gfar_priv_grp *gfargrp =
2610 container_of(napi, struct gfar_priv_grp, napi_rx);
2611 struct gfar __iomem *regs = gfargrp->regs;
2612 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2615 /* Clear IEVENT, so interrupts aren't called again
2616 * because of the packets that have already arrived
2618 gfar_write(®s->ievent, IEVENT_RX_MASK);
2620 work_done = gfar_clean_rx_ring(rx_queue, budget);
2622 if (work_done < budget) {
2624 napi_complete_done(napi, work_done);
2625 /* Clear the halt bit in RSTAT */
2626 gfar_write(®s->rstat, gfargrp->rstat);
2628 spin_lock_irq(&gfargrp->grplock);
2629 imask = gfar_read(®s->imask);
2630 imask |= IMASK_RX_DEFAULT;
2631 gfar_write(®s->imask, imask);
2632 spin_unlock_irq(&gfargrp->grplock);
2638 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2640 struct gfar_priv_grp *gfargrp =
2641 container_of(napi, struct gfar_priv_grp, napi_tx);
2642 struct gfar __iomem *regs = gfargrp->regs;
2643 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2646 /* Clear IEVENT, so interrupts aren't called again
2647 * because of the packets that have already arrived
2649 gfar_write(®s->ievent, IEVENT_TX_MASK);
2651 /* run Tx cleanup to completion */
2652 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2653 gfar_clean_tx_ring(tx_queue);
2655 napi_complete(napi);
2657 spin_lock_irq(&gfargrp->grplock);
2658 imask = gfar_read(®s->imask);
2659 imask |= IMASK_TX_DEFAULT;
2660 gfar_write(®s->imask, imask);
2661 spin_unlock_irq(&gfargrp->grplock);
2666 /* GFAR error interrupt handler */
2667 static irqreturn_t gfar_error(int irq, void *grp_id)
2669 struct gfar_priv_grp *gfargrp = grp_id;
2670 struct gfar __iomem *regs = gfargrp->regs;
2671 struct gfar_private *priv= gfargrp->priv;
2672 struct net_device *dev = priv->ndev;
2674 /* Save ievent for future reference */
2675 u32 events = gfar_read(®s->ievent);
2678 gfar_write(®s->ievent, events & IEVENT_ERR_MASK);
2680 /* Magic Packet is not an error. */
2681 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2682 (events & IEVENT_MAG))
2683 events &= ~IEVENT_MAG;
2686 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2688 "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2689 events, gfar_read(®s->imask));
2691 /* Update the error counters */
2692 if (events & IEVENT_TXE) {
2693 dev->stats.tx_errors++;
2695 if (events & IEVENT_LC)
2696 dev->stats.tx_window_errors++;
2697 if (events & IEVENT_CRL)
2698 dev->stats.tx_aborted_errors++;
2699 if (events & IEVENT_XFUN) {
2700 netif_dbg(priv, tx_err, dev,
2701 "TX FIFO underrun, packet dropped\n");
2702 dev->stats.tx_dropped++;
2703 atomic64_inc(&priv->extra_stats.tx_underrun);
2705 schedule_work(&priv->reset_task);
2707 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2709 if (events & IEVENT_MSRO) {
2710 struct rmon_mib __iomem *rmon = ®s->rmon;
2713 spin_lock(&priv->rmon_overflow.lock);
2714 car = gfar_read(&rmon->car1) & CAR1_C1RDR;
2716 priv->rmon_overflow.rdrp++;
2717 gfar_write(&rmon->car1, car);
2719 spin_unlock(&priv->rmon_overflow.lock);
2721 if (events & IEVENT_BSY) {
2722 dev->stats.rx_over_errors++;
2723 atomic64_inc(&priv->extra_stats.rx_bsy);
2725 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2726 gfar_read(®s->rstat));
2728 if (events & IEVENT_BABR) {
2729 dev->stats.rx_errors++;
2730 atomic64_inc(&priv->extra_stats.rx_babr);
2732 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2734 if (events & IEVENT_EBERR) {
2735 atomic64_inc(&priv->extra_stats.eberr);
2736 netif_dbg(priv, rx_err, dev, "bus error\n");
2738 if (events & IEVENT_RXC)
2739 netif_dbg(priv, rx_status, dev, "control frame\n");
2741 if (events & IEVENT_BABT) {
2742 atomic64_inc(&priv->extra_stats.tx_babt);
2743 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2748 /* The interrupt handler for devices with one interrupt */
2749 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2751 struct gfar_priv_grp *gfargrp = grp_id;
2753 /* Save ievent for future reference */
2754 u32 events = gfar_read(&gfargrp->regs->ievent);
2756 /* Check for reception */
2757 if (events & IEVENT_RX_MASK)
2758 gfar_receive(irq, grp_id);
2760 /* Check for transmit completion */
2761 if (events & IEVENT_TX_MASK)
2762 gfar_transmit(irq, grp_id);
2764 /* Check for errors */
2765 if (events & IEVENT_ERR_MASK)
2766 gfar_error(irq, grp_id);
2771 #ifdef CONFIG_NET_POLL_CONTROLLER
2772 /* Polling 'interrupt' - used by things like netconsole to send skbs
2773 * without having to re-enable interrupts. It's not called while
2774 * the interrupt routine is executing.
2776 static void gfar_netpoll(struct net_device *dev)
2778 struct gfar_private *priv = netdev_priv(dev);
2781 /* If the device has multiple interrupts, run tx/rx */
2782 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2783 for (i = 0; i < priv->num_grps; i++) {
2784 struct gfar_priv_grp *grp = &priv->gfargrp[i];
2786 disable_irq(gfar_irq(grp, TX)->irq);
2787 disable_irq(gfar_irq(grp, RX)->irq);
2788 disable_irq(gfar_irq(grp, ER)->irq);
2789 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2790 enable_irq(gfar_irq(grp, ER)->irq);
2791 enable_irq(gfar_irq(grp, RX)->irq);
2792 enable_irq(gfar_irq(grp, TX)->irq);
2795 for (i = 0; i < priv->num_grps; i++) {
2796 struct gfar_priv_grp *grp = &priv->gfargrp[i];
2798 disable_irq(gfar_irq(grp, TX)->irq);
2799 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2800 enable_irq(gfar_irq(grp, TX)->irq);
2806 static void free_grp_irqs(struct gfar_priv_grp *grp)
2808 free_irq(gfar_irq(grp, TX)->irq, grp);
2809 free_irq(gfar_irq(grp, RX)->irq, grp);
2810 free_irq(gfar_irq(grp, ER)->irq, grp);
2813 static int register_grp_irqs(struct gfar_priv_grp *grp)
2815 struct gfar_private *priv = grp->priv;
2816 struct net_device *dev = priv->ndev;
2819 /* If the device has multiple interrupts, register for
2820 * them. Otherwise, only register for the one
2822 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2823 /* Install our interrupt handlers for Error,
2824 * Transmit, and Receive
2826 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2827 gfar_irq(grp, ER)->name, grp);
2829 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2830 gfar_irq(grp, ER)->irq);
2834 enable_irq_wake(gfar_irq(grp, ER)->irq);
2836 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2837 gfar_irq(grp, TX)->name, grp);
2839 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2840 gfar_irq(grp, TX)->irq);
2843 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2844 gfar_irq(grp, RX)->name, grp);
2846 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2847 gfar_irq(grp, RX)->irq);
2850 enable_irq_wake(gfar_irq(grp, RX)->irq);
2853 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2854 gfar_irq(grp, TX)->name, grp);
2856 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2857 gfar_irq(grp, TX)->irq);
2860 enable_irq_wake(gfar_irq(grp, TX)->irq);
2866 free_irq(gfar_irq(grp, TX)->irq, grp);
2868 free_irq(gfar_irq(grp, ER)->irq, grp);
2874 static void gfar_free_irq(struct gfar_private *priv)
2879 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2880 for (i = 0; i < priv->num_grps; i++)
2881 free_grp_irqs(&priv->gfargrp[i]);
2883 for (i = 0; i < priv->num_grps; i++)
2884 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2889 static int gfar_request_irq(struct gfar_private *priv)
2893 for (i = 0; i < priv->num_grps; i++) {
2894 err = register_grp_irqs(&priv->gfargrp[i]);
2896 for (j = 0; j < i; j++)
2897 free_grp_irqs(&priv->gfargrp[j]);
2905 /* Called when something needs to use the ethernet device
2906 * Returns 0 for success.
2908 static int gfar_enet_open(struct net_device *dev)
2910 struct gfar_private *priv = netdev_priv(dev);
2913 err = init_phy(dev);
2917 err = gfar_request_irq(priv);
2921 err = startup_gfar(dev);
2928 /* Stops the kernel queue, and halts the controller */
2929 static int gfar_close(struct net_device *dev)
2931 struct gfar_private *priv = netdev_priv(dev);
2933 cancel_work_sync(&priv->reset_task);
2936 /* Disconnect from the PHY */
2937 phy_disconnect(dev->phydev);
2939 gfar_free_irq(priv);
2944 /* Clears each of the exact match registers to zero, so they
2945 * don't interfere with normal reception
2947 static void gfar_clear_exact_match(struct net_device *dev)
2950 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
2952 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
2953 gfar_set_mac_for_addr(dev, idx, zero_arr);
2956 /* Update the hash table based on the current list of multicast
2957 * addresses we subscribe to. Also, change the promiscuity of
2958 * the device based on the flags (this function is called
2959 * whenever dev->flags is changed
2961 static void gfar_set_multi(struct net_device *dev)
2963 struct netdev_hw_addr *ha;
2964 struct gfar_private *priv = netdev_priv(dev);
2965 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2968 if (dev->flags & IFF_PROMISC) {
2969 /* Set RCTRL to PROM */
2970 tempval = gfar_read(®s->rctrl);
2971 tempval |= RCTRL_PROM;
2972 gfar_write(®s->rctrl, tempval);
2974 /* Set RCTRL to not PROM */
2975 tempval = gfar_read(®s->rctrl);
2976 tempval &= ~(RCTRL_PROM);
2977 gfar_write(®s->rctrl, tempval);
2980 if (dev->flags & IFF_ALLMULTI) {
2981 /* Set the hash to rx all multicast frames */
2982 gfar_write(®s->igaddr0, 0xffffffff);
2983 gfar_write(®s->igaddr1, 0xffffffff);
2984 gfar_write(®s->igaddr2, 0xffffffff);
2985 gfar_write(®s->igaddr3, 0xffffffff);
2986 gfar_write(®s->igaddr4, 0xffffffff);
2987 gfar_write(®s->igaddr5, 0xffffffff);
2988 gfar_write(®s->igaddr6, 0xffffffff);
2989 gfar_write(®s->igaddr7, 0xffffffff);
2990 gfar_write(®s->gaddr0, 0xffffffff);
2991 gfar_write(®s->gaddr1, 0xffffffff);
2992 gfar_write(®s->gaddr2, 0xffffffff);
2993 gfar_write(®s->gaddr3, 0xffffffff);
2994 gfar_write(®s->gaddr4, 0xffffffff);
2995 gfar_write(®s->gaddr5, 0xffffffff);
2996 gfar_write(®s->gaddr6, 0xffffffff);
2997 gfar_write(®s->gaddr7, 0xffffffff);
3002 /* zero out the hash */
3003 gfar_write(®s->igaddr0, 0x0);
3004 gfar_write(®s->igaddr1, 0x0);
3005 gfar_write(®s->igaddr2, 0x0);
3006 gfar_write(®s->igaddr3, 0x0);
3007 gfar_write(®s->igaddr4, 0x0);
3008 gfar_write(®s->igaddr5, 0x0);
3009 gfar_write(®s->igaddr6, 0x0);
3010 gfar_write(®s->igaddr7, 0x0);
3011 gfar_write(®s->gaddr0, 0x0);
3012 gfar_write(®s->gaddr1, 0x0);
3013 gfar_write(®s->gaddr2, 0x0);
3014 gfar_write(®s->gaddr3, 0x0);
3015 gfar_write(®s->gaddr4, 0x0);
3016 gfar_write(®s->gaddr5, 0x0);
3017 gfar_write(®s->gaddr6, 0x0);
3018 gfar_write(®s->gaddr7, 0x0);
3020 /* If we have extended hash tables, we need to
3021 * clear the exact match registers to prepare for
3024 if (priv->extended_hash) {
3025 em_num = GFAR_EM_NUM + 1;
3026 gfar_clear_exact_match(dev);
3033 if (netdev_mc_empty(dev))
3036 /* Parse the list, and set the appropriate bits */
3037 netdev_for_each_mc_addr(ha, dev) {
3039 gfar_set_mac_for_addr(dev, idx, ha->addr);
3042 gfar_set_hash_for_addr(dev, ha->addr);
3047 void gfar_mac_reset(struct gfar_private *priv)
3049 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3052 /* Reset MAC layer */
3053 gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET);
3055 /* We need to delay at least 3 TX clocks */
3058 /* the soft reset bit is not self-resetting, so we need to
3059 * clear it before resuming normal operation
3061 gfar_write(®s->maccfg1, 0);
3065 gfar_rx_offload_en(priv);
3067 /* Initialize the max receive frame/buffer lengths */
3068 gfar_write(®s->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3069 gfar_write(®s->mrblr, GFAR_RXB_SIZE);
3071 /* Initialize the Minimum Frame Length Register */
3072 gfar_write(®s->minflr, MINFLR_INIT_SETTINGS);
3074 /* Initialize MACCFG2. */
3075 tempval = MACCFG2_INIT_SETTINGS;
3077 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3078 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1,
3079 * and by checking RxBD[LG] and discarding larger than MAXFRM.
3081 if (gfar_has_errata(priv, GFAR_ERRATA_74))
3082 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3084 gfar_write(®s->maccfg2, tempval);
3086 /* Clear mac addr hash registers */
3087 gfar_write(®s->igaddr0, 0);
3088 gfar_write(®s->igaddr1, 0);
3089 gfar_write(®s->igaddr2, 0);
3090 gfar_write(®s->igaddr3, 0);
3091 gfar_write(®s->igaddr4, 0);
3092 gfar_write(®s->igaddr5, 0);
3093 gfar_write(®s->igaddr6, 0);
3094 gfar_write(®s->igaddr7, 0);
3096 gfar_write(®s->gaddr0, 0);
3097 gfar_write(®s->gaddr1, 0);
3098 gfar_write(®s->gaddr2, 0);
3099 gfar_write(®s->gaddr3, 0);
3100 gfar_write(®s->gaddr4, 0);
3101 gfar_write(®s->gaddr5, 0);
3102 gfar_write(®s->gaddr6, 0);
3103 gfar_write(®s->gaddr7, 0);
3105 if (priv->extended_hash)
3106 gfar_clear_exact_match(priv->ndev);
3108 gfar_mac_rx_config(priv);
3110 gfar_mac_tx_config(priv);
3112 gfar_set_mac_address(priv->ndev);
3114 gfar_set_multi(priv->ndev);
3116 /* clear ievent and imask before configuring coalescing */
3117 gfar_ints_disable(priv);
3119 /* Configure the coalescing support */
3120 gfar_configure_coalescing_all(priv);
3123 static void gfar_hw_init(struct gfar_private *priv)
3125 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3128 /* Stop the DMA engine now, in case it was running before
3129 * (The firmware could have used it, and left it running).
3133 gfar_mac_reset(priv);
3135 /* Zero out the rmon mib registers if it has them */
3136 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3137 memset_io(®s->rmon, 0, offsetof(struct rmon_mib, car1));
3139 /* Mask off the CAM interrupts */
3140 gfar_write(®s->rmon.cam1, 0xffffffff);
3141 gfar_write(®s->rmon.cam2, 0xffffffff);
3142 /* Clear the CAR registers (w1c style) */
3143 gfar_write(®s->rmon.car1, 0xffffffff);
3144 gfar_write(®s->rmon.car2, 0xffffffff);
3147 /* Initialize ECNTRL */
3148 gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS);
3150 /* Set the extraction length and index */
3151 attrs = ATTRELI_EL(priv->rx_stash_size) |
3152 ATTRELI_EI(priv->rx_stash_index);
3154 gfar_write(®s->attreli, attrs);
3156 /* Start with defaults, and add stashing
3157 * depending on driver parameters
3159 attrs = ATTR_INIT_SETTINGS;
3161 if (priv->bd_stash_en)
3162 attrs |= ATTR_BDSTASH;
3164 if (priv->rx_stash_size != 0)
3165 attrs |= ATTR_BUFSTASH;
3167 gfar_write(®s->attr, attrs);
3170 gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3171 gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3172 gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3174 /* Program the interrupt steering regs, only for MG devices */
3175 if (priv->num_grps > 1)
3176 gfar_write_isrg(priv);
3179 static const struct net_device_ops gfar_netdev_ops = {
3180 .ndo_open = gfar_enet_open,
3181 .ndo_start_xmit = gfar_start_xmit,
3182 .ndo_stop = gfar_close,
3183 .ndo_change_mtu = gfar_change_mtu,
3184 .ndo_set_features = gfar_set_features,
3185 .ndo_set_rx_mode = gfar_set_multi,
3186 .ndo_tx_timeout = gfar_timeout,
3187 .ndo_eth_ioctl = gfar_ioctl,
3188 .ndo_get_stats64 = gfar_get_stats64,
3189 .ndo_change_carrier = fixed_phy_change_carrier,
3190 .ndo_set_mac_address = gfar_set_mac_addr,
3191 .ndo_validate_addr = eth_validate_addr,
3192 #ifdef CONFIG_NET_POLL_CONTROLLER
3193 .ndo_poll_controller = gfar_netpoll,
3197 /* Set up the ethernet device structure, private data,
3198 * and anything else we need before we start
3200 static int gfar_probe(struct platform_device *ofdev)
3202 struct device_node *np = ofdev->dev.of_node;
3203 struct net_device *dev = NULL;
3204 struct gfar_private *priv = NULL;
3207 err = gfar_of_init(ofdev, &dev);
3212 priv = netdev_priv(dev);
3214 priv->ofdev = ofdev;
3215 priv->dev = &ofdev->dev;
3216 SET_NETDEV_DEV(dev, &ofdev->dev);
3218 INIT_WORK(&priv->reset_task, gfar_reset_task);
3220 platform_set_drvdata(ofdev, priv);
3222 gfar_detect_errata(priv);
3224 /* Set the dev->base_addr to the gfar reg region */
3225 dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3227 /* Fill in the dev structure */
3228 dev->watchdog_timeo = TX_TIMEOUT;
3229 /* MTU range: 50 - 9586 */
3232 dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3233 dev->netdev_ops = &gfar_netdev_ops;
3234 dev->ethtool_ops = &gfar_ethtool_ops;
3236 /* Register for napi ...We are registering NAPI for each grp */
3237 for (i = 0; i < priv->num_grps; i++) {
3238 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3240 netif_napi_add_tx_weight(dev, &priv->gfargrp[i].napi_tx,
3241 gfar_poll_tx_sq, 2);
3244 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3245 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3247 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3248 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3251 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3252 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3253 NETIF_F_HW_VLAN_CTAG_RX;
3254 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3257 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3259 gfar_init_addr_hash_table(priv);
3261 /* Insert receive time stamps into padding alignment bytes, and
3262 * plus 2 bytes padding to ensure the cpu alignment.
3264 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3265 priv->padding = 8 + DEFAULT_PADDING;
3267 if (dev->features & NETIF_F_IP_CSUM ||
3268 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3269 dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
3271 /* Initializing some of the rx/tx queue level parameters */
3272 for (i = 0; i < priv->num_tx_queues; i++) {
3273 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3274 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3275 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3276 priv->tx_queue[i]->txic = DEFAULT_TXIC;
3279 for (i = 0; i < priv->num_rx_queues; i++) {
3280 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3281 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3282 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3285 /* Always enable rx filer if available */
3286 priv->rx_filer_enable =
3287 (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3288 /* Enable most messages by default */
3289 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3290 /* use pritority h/w tx queue scheduling for single queue devices */
3291 if (priv->num_tx_queues == 1)
3292 priv->prio_sched_en = 1;
3294 set_bit(GFAR_DOWN, &priv->state);
3298 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3299 struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon;
3301 spin_lock_init(&priv->rmon_overflow.lock);
3302 priv->rmon_overflow.imask = IMASK_MSRO;
3303 gfar_write(&rmon->cam1, gfar_read(&rmon->cam1) & ~CAM1_M1RDR);
3306 /* Carrier starts down, phylib will bring it up */
3307 netif_carrier_off(dev);
3309 err = register_netdev(dev);
3312 pr_err("%s: Cannot register net device, aborting\n", dev->name);
3316 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3317 priv->wol_supported |= GFAR_WOL_MAGIC;
3319 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3320 priv->rx_filer_enable)
3321 priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3323 device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3325 /* fill out IRQ number and name fields */
3326 for (i = 0; i < priv->num_grps; i++) {
3327 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3328 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3329 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3330 dev->name, "_g", '0' + i, "_tx");
3331 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3332 dev->name, "_g", '0' + i, "_rx");
3333 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3334 dev->name, "_g", '0' + i, "_er");
3336 strcpy(gfar_irq(grp, TX)->name, dev->name);
3339 /* Initialize the filer table */
3340 gfar_init_filer_table(priv);
3342 /* Print out the device info */
3343 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3345 /* Even more device info helps when determining which kernel
3346 * provided which set of benchmarks.
3348 netdev_info(dev, "Running with NAPI enabled\n");
3349 for (i = 0; i < priv->num_rx_queues; i++)
3350 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3351 i, priv->rx_queue[i]->rx_ring_size);
3352 for (i = 0; i < priv->num_tx_queues; i++)
3353 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3354 i, priv->tx_queue[i]->tx_ring_size);
3359 if (of_phy_is_fixed_link(np))
3360 of_phy_deregister_fixed_link(np);
3361 unmap_group_regs(priv);
3362 gfar_free_rx_queues(priv);
3363 gfar_free_tx_queues(priv);
3364 of_node_put(priv->phy_node);
3365 of_node_put(priv->tbi_node);
3366 free_gfar_dev(priv);
3370 static void gfar_remove(struct platform_device *ofdev)
3372 struct gfar_private *priv = platform_get_drvdata(ofdev);
3373 struct device_node *np = ofdev->dev.of_node;
3375 of_node_put(priv->phy_node);
3376 of_node_put(priv->tbi_node);
3378 unregister_netdev(priv->ndev);
3380 if (of_phy_is_fixed_link(np))
3381 of_phy_deregister_fixed_link(np);
3383 unmap_group_regs(priv);
3384 gfar_free_rx_queues(priv);
3385 gfar_free_tx_queues(priv);
3386 free_gfar_dev(priv);
3391 static void __gfar_filer_disable(struct gfar_private *priv)
3393 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3396 temp = gfar_read(®s->rctrl);
3397 temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3398 gfar_write(®s->rctrl, temp);
3401 static void __gfar_filer_enable(struct gfar_private *priv)
3403 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3406 temp = gfar_read(®s->rctrl);
3407 temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3408 gfar_write(®s->rctrl, temp);
3411 /* Filer rules implementing wol capabilities */
3412 static void gfar_filer_config_wol(struct gfar_private *priv)
3417 __gfar_filer_disable(priv);
3419 /* clear the filer table, reject any packet by default */
3420 rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3421 for (i = 0; i <= MAX_FILER_IDX; i++)
3422 gfar_write_filer(priv, i, rqfcr, 0);
3425 if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3426 /* unicast packet, accept it */
3427 struct net_device *ndev = priv->ndev;
3428 /* get the default rx queue index */
3429 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3430 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3431 (ndev->dev_addr[1] << 8) |
3434 rqfcr = (qindex << 10) | RQFCR_AND |
3435 RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3437 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3439 dest_mac_addr = (ndev->dev_addr[3] << 16) |
3440 (ndev->dev_addr[4] << 8) |
3442 rqfcr = (qindex << 10) | RQFCR_GPI |
3443 RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3444 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3447 __gfar_filer_enable(priv);
3450 static void gfar_filer_restore_table(struct gfar_private *priv)
3455 __gfar_filer_disable(priv);
3457 for (i = 0; i <= MAX_FILER_IDX; i++) {
3458 rqfcr = priv->ftp_rqfcr[i];
3459 rqfpr = priv->ftp_rqfpr[i];
3460 gfar_write_filer(priv, i, rqfcr, rqfpr);
3463 __gfar_filer_enable(priv);
3466 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
3467 static void gfar_start_wol_filer(struct gfar_private *priv)
3469 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3473 /* Enable Rx hw queues */
3474 gfar_write(®s->rqueue, priv->rqueue);
3476 /* Initialize DMACTRL to have WWR and WOP */
3477 tempval = gfar_read(®s->dmactrl);
3478 tempval |= DMACTRL_INIT_SETTINGS;
3479 gfar_write(®s->dmactrl, tempval);
3481 /* Make sure we aren't stopped */
3482 tempval = gfar_read(®s->dmactrl);
3483 tempval &= ~DMACTRL_GRS;
3484 gfar_write(®s->dmactrl, tempval);
3486 for (i = 0; i < priv->num_grps; i++) {
3487 regs = priv->gfargrp[i].regs;
3488 /* Clear RHLT, so that the DMA starts polling now */
3489 gfar_write(®s->rstat, priv->gfargrp[i].rstat);
3490 /* enable the Filer General Purpose Interrupt */
3491 gfar_write(®s->imask, IMASK_FGPI);
3495 tempval = gfar_read(®s->maccfg1);
3496 tempval |= MACCFG1_RX_EN;
3497 gfar_write(®s->maccfg1, tempval);
3500 static int gfar_suspend(struct device *dev)
3502 struct gfar_private *priv = dev_get_drvdata(dev);
3503 struct net_device *ndev = priv->ndev;
3504 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3506 u16 wol = priv->wol_opts;
3508 if (!netif_running(ndev))
3512 netif_tx_lock(ndev);
3513 netif_device_detach(ndev);
3514 netif_tx_unlock(ndev);
3518 if (wol & GFAR_WOL_MAGIC) {
3519 /* Enable interrupt on Magic Packet */
3520 gfar_write(®s->imask, IMASK_MAG);
3522 /* Enable Magic Packet mode */
3523 tempval = gfar_read(®s->maccfg2);
3524 tempval |= MACCFG2_MPEN;
3525 gfar_write(®s->maccfg2, tempval);
3527 /* re-enable the Rx block */
3528 tempval = gfar_read(®s->maccfg1);
3529 tempval |= MACCFG1_RX_EN;
3530 gfar_write(®s->maccfg1, tempval);
3532 } else if (wol & GFAR_WOL_FILER_UCAST) {
3533 gfar_filer_config_wol(priv);
3534 gfar_start_wol_filer(priv);
3537 phy_stop(ndev->phydev);
3543 static int gfar_resume(struct device *dev)
3545 struct gfar_private *priv = dev_get_drvdata(dev);
3546 struct net_device *ndev = priv->ndev;
3547 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3549 u16 wol = priv->wol_opts;
3551 if (!netif_running(ndev))
3554 if (wol & GFAR_WOL_MAGIC) {
3555 /* Disable Magic Packet mode */
3556 tempval = gfar_read(®s->maccfg2);
3557 tempval &= ~MACCFG2_MPEN;
3558 gfar_write(®s->maccfg2, tempval);
3560 } else if (wol & GFAR_WOL_FILER_UCAST) {
3561 /* need to stop rx only, tx is already down */
3563 gfar_filer_restore_table(priv);
3566 phy_start(ndev->phydev);
3571 netif_device_attach(ndev);
3577 static int gfar_restore(struct device *dev)
3579 struct gfar_private *priv = dev_get_drvdata(dev);
3580 struct net_device *ndev = priv->ndev;
3582 if (!netif_running(ndev)) {
3583 netif_device_attach(ndev);
3588 gfar_init_bds(ndev);
3590 gfar_mac_reset(priv);
3592 gfar_init_tx_rx_base(priv);
3598 priv->oldduplex = -1;
3601 phy_start(ndev->phydev);
3603 netif_device_attach(ndev);
3609 static const struct dev_pm_ops gfar_pm_ops = {
3610 .suspend = gfar_suspend,
3611 .resume = gfar_resume,
3612 .freeze = gfar_suspend,
3613 .thaw = gfar_resume,
3614 .restore = gfar_restore,
3617 #define GFAR_PM_OPS (&gfar_pm_ops)
3621 #define GFAR_PM_OPS NULL
3625 static const struct of_device_id gfar_match[] =
3629 .compatible = "gianfar",
3632 .compatible = "fsl,etsec2",
3636 MODULE_DEVICE_TABLE(of, gfar_match);
3638 /* Structure for a device driver */
3639 static struct platform_driver gfar_driver = {
3641 .name = "fsl-gianfar",
3643 .of_match_table = gfar_match,
3645 .probe = gfar_probe,
3646 .remove = gfar_remove,
3649 module_platform_driver(gfar_driver);