1 // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0-or-later
3 * Copyright 2008 - 2016 Freescale Semiconductor Inc.
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/init.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/module.h>
12 #include <linux/of_mdio.h>
13 #include <linux/of_net.h>
15 #include <linux/if_arp.h>
16 #include <linux/if_vlan.h>
17 #include <linux/icmp.h>
19 #include <linux/ipv6.h>
20 #include <linux/platform_device.h>
21 #include <linux/udp.h>
22 #include <linux/tcp.h>
23 #include <linux/net.h>
24 #include <linux/skbuff.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/highmem.h>
28 #include <linux/percpu.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/sort.h>
31 #include <linux/phy_fixed.h>
32 #include <linux/bpf.h>
33 #include <linux/bpf_trace.h>
34 #include <soc/fsl/bman.h>
35 #include <soc/fsl/qman.h>
37 #include "fman_port.h"
41 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
42 * using trace events only need to #include <trace/events/sched.h>
44 #define CREATE_TRACE_POINTS
45 #include "dpaa_eth_trace.h"
47 static int debug = -1;
48 module_param(debug, int, 0444);
49 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
51 static u16 tx_timeout = 1000;
52 module_param(tx_timeout, ushort, 0444);
53 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
55 #define FM_FD_STAT_RX_ERRORS \
56 (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL | \
57 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
58 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME | \
59 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
60 FM_FD_ERR_PRS_HDR_ERR)
62 #define FM_FD_STAT_TX_ERRORS \
63 (FM_FD_ERR_UNSUPPORTED_FORMAT | \
64 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
66 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
67 NETIF_MSG_LINK | NETIF_MSG_IFUP | \
68 NETIF_MSG_IFDOWN | NETIF_MSG_HW)
70 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000
71 /* Ingress congestion threshold on FMan ports
72 * The size in bytes of the ingress tail-drop threshold on FMan ports.
73 * Traffic piling up above this value will be rejected by QMan and discarded
77 /* Size in bytes of the FQ taildrop threshold */
78 #define DPAA_FQ_TD 0x200000
80 #define DPAA_CS_THRESHOLD_1G 0x06000000
81 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
82 * The size in bytes of the egress Congestion State notification threshold on
83 * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
84 * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
85 * and the larger the frame size, the more acute the problem.
86 * So we have to find a balance between these factors:
87 * - avoiding the device staying congested for a prolonged time (risking
88 * the netdev watchdog to fire - see also the tx_timeout module param);
89 * - affecting performance of protocols such as TCP, which otherwise
90 * behave well under the congestion notification mechanism;
91 * - preventing the Tx cores from tightly-looping (as if the congestion
92 * threshold was too low to be effective);
93 * - running out of memory if the CS threshold is set too high.
96 #define DPAA_CS_THRESHOLD_10G 0x10000000
97 /* The size in bytes of the egress Congestion State notification threshold on
98 * 10G ports, range 0x1000 .. 0x10000000
101 /* Largest value that the FQD's OAL field can hold */
102 #define FSL_QMAN_MAX_OAL 127
104 /* Default alignment for start of data in an Rx FD */
105 #ifdef CONFIG_DPAA_ERRATUM_A050385
106 /* aligning data start to 64 avoids DMA transaction splits, unless the buffer
107 * is crossing a 4k page boundary
109 #define DPAA_FD_DATA_ALIGNMENT (fman_has_errata_a050385() ? 64 : 16)
110 /* aligning to 256 avoids DMA transaction splits caused by 4k page boundary
111 * crossings; also, all SG fragments except the last must have a size multiple
112 * of 256 to avoid DMA transaction splits
114 #define DPAA_A050385_ALIGN 256
115 #define DPAA_FD_RX_DATA_ALIGNMENT (fman_has_errata_a050385() ? \
116 DPAA_A050385_ALIGN : 16)
118 #define DPAA_FD_DATA_ALIGNMENT 16
119 #define DPAA_FD_RX_DATA_ALIGNMENT DPAA_FD_DATA_ALIGNMENT
122 /* The DPAA requires 256 bytes reserved and mapped for the SGT */
123 #define DPAA_SGT_SIZE 256
125 /* Values for the L3R field of the FM Parse Results
127 /* L3 Type field: First IP Present IPv4 */
128 #define FM_L3_PARSE_RESULT_IPV4 0x8000
129 /* L3 Type field: First IP Present IPv6 */
130 #define FM_L3_PARSE_RESULT_IPV6 0x4000
131 /* Values for the L4R field of the FM Parse Results */
132 /* L4 Type field: UDP */
133 #define FM_L4_PARSE_RESULT_UDP 0x40
134 /* L4 Type field: TCP */
135 #define FM_L4_PARSE_RESULT_TCP 0x20
137 /* FD status field indicating whether the FM Parser has attempted to validate
138 * the L4 csum of the frame.
139 * Note that having this bit set doesn't necessarily imply that the checksum
140 * is valid. One would have to check the parse results to find that out.
142 #define FM_FD_STAT_L4CV 0x00000004
144 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
145 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
147 #define FSL_DPAA_BPID_INV 0xff
148 #define FSL_DPAA_ETH_MAX_BUF_COUNT 128
149 #define FSL_DPAA_ETH_REFILL_THRESHOLD 80
151 #define DPAA_TX_PRIV_DATA_SIZE 16
152 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
153 #define DPAA_TIME_STAMP_SIZE 8
154 #define DPAA_HASH_RESULTS_SIZE 8
155 #define DPAA_HWA_SIZE (DPAA_PARSE_RESULTS_SIZE + DPAA_TIME_STAMP_SIZE \
156 + DPAA_HASH_RESULTS_SIZE)
157 #define DPAA_RX_PRIV_DATA_DEFAULT_SIZE (DPAA_TX_PRIV_DATA_SIZE + \
158 XDP_PACKET_HEADROOM - DPAA_HWA_SIZE)
159 #ifdef CONFIG_DPAA_ERRATUM_A050385
160 #define DPAA_RX_PRIV_DATA_A050385_SIZE (DPAA_A050385_ALIGN - DPAA_HWA_SIZE)
161 #define DPAA_RX_PRIV_DATA_SIZE (fman_has_errata_a050385() ? \
162 DPAA_RX_PRIV_DATA_A050385_SIZE : \
163 DPAA_RX_PRIV_DATA_DEFAULT_SIZE)
165 #define DPAA_RX_PRIV_DATA_SIZE DPAA_RX_PRIV_DATA_DEFAULT_SIZE
168 #define DPAA_ETH_PCD_RXQ_NUM 128
170 #define DPAA_ENQUEUE_RETRIES 100000
172 enum port_type {RX, TX};
175 struct dpaa_fq *tx_defq;
176 struct dpaa_fq *tx_errq;
177 struct dpaa_fq *rx_defq;
178 struct dpaa_fq *rx_errq;
179 struct dpaa_fq *rx_pcdq;
182 /* All the dpa bps in use at any moment */
183 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
185 #define DPAA_BP_RAW_SIZE 4096
187 #ifdef CONFIG_DPAA_ERRATUM_A050385
188 #define dpaa_bp_size(raw_size) (SKB_WITH_OVERHEAD(raw_size) & \
189 ~(DPAA_A050385_ALIGN - 1))
191 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size)
194 static int dpaa_max_frm;
196 static int dpaa_rx_extra_headroom;
198 #define dpaa_get_max_mtu() \
199 (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
201 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed);
203 static int dpaa_netdev_init(struct net_device *net_dev,
204 const struct net_device_ops *dpaa_ops,
207 struct dpaa_priv *priv = netdev_priv(net_dev);
208 struct device *dev = net_dev->dev.parent;
209 struct mac_device *mac_dev = priv->mac_dev;
210 struct dpaa_percpu_priv *percpu_priv;
214 /* Although we access another CPU's private data here
215 * we do it at initialization so it is safe
217 for_each_possible_cpu(i) {
218 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
219 percpu_priv->net_dev = net_dev;
222 net_dev->netdev_ops = dpaa_ops;
223 mac_addr = mac_dev->addr;
225 net_dev->mem_start = (unsigned long)priv->mac_dev->res->start;
226 net_dev->mem_end = (unsigned long)priv->mac_dev->res->end;
228 net_dev->min_mtu = ETH_MIN_MTU;
229 net_dev->max_mtu = dpaa_get_max_mtu();
231 net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
234 net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
235 /* The kernels enables GSO automatically, if we declare NETIF_F_SG.
236 * For conformity, we'll still declare GSO explicitly.
238 net_dev->features |= NETIF_F_GSO;
239 net_dev->features |= NETIF_F_RXCSUM;
241 net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
242 net_dev->lltx = true;
243 /* we do not want shared skbs on TX */
244 net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
246 net_dev->features |= net_dev->hw_features;
247 net_dev->vlan_features = net_dev->features;
249 net_dev->xdp_features = NETDEV_XDP_ACT_BASIC |
250 NETDEV_XDP_ACT_REDIRECT |
251 NETDEV_XDP_ACT_NDO_XMIT;
253 if (is_valid_ether_addr(mac_addr)) {
254 memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
255 eth_hw_addr_set(net_dev, mac_addr);
257 eth_hw_addr_random(net_dev);
258 err = mac_dev->change_addr(mac_dev->fman_mac,
259 (const enet_addr_t *)net_dev->dev_addr);
261 dev_err(dev, "Failed to set random MAC address\n");
264 dev_info(dev, "Using random MAC address: %pM\n",
268 net_dev->ethtool_ops = &dpaa_ethtool_ops;
270 net_dev->needed_headroom = priv->tx_headroom;
271 net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
273 /* The rest of the config is filled in by the mac device already */
274 mac_dev->phylink_config.dev = &net_dev->dev;
275 mac_dev->phylink_config.type = PHYLINK_NETDEV;
276 mac_dev->update_speed = dpaa_eth_cgr_set_speed;
277 mac_dev->phylink = phylink_create(&mac_dev->phylink_config,
278 dev_fwnode(mac_dev->dev),
280 mac_dev->phylink_ops);
281 if (IS_ERR(mac_dev->phylink)) {
282 err = PTR_ERR(mac_dev->phylink);
283 dev_err_probe(dev, err, "Could not create phylink\n");
287 /* start without the RUNNING flag, phylib controls it later */
288 netif_carrier_off(net_dev);
290 err = register_netdev(net_dev);
292 dev_err(dev, "register_netdev() = %d\n", err);
293 phylink_destroy(mac_dev->phylink);
300 static int dpaa_stop(struct net_device *net_dev)
302 struct mac_device *mac_dev;
303 struct dpaa_priv *priv;
307 priv = netdev_priv(net_dev);
308 mac_dev = priv->mac_dev;
310 netif_tx_stop_all_queues(net_dev);
311 /* Allow the Fman (Tx) port to process in-flight frames before we
312 * try switching it off.
316 phylink_stop(mac_dev->phylink);
317 mac_dev->disable(mac_dev->fman_mac);
319 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
320 error = fman_port_disable(mac_dev->port[i]);
325 phylink_disconnect_phy(mac_dev->phylink);
326 net_dev->phydev = NULL;
333 static void dpaa_tx_timeout(struct net_device *net_dev, unsigned int txqueue)
335 struct dpaa_percpu_priv *percpu_priv;
336 const struct dpaa_priv *priv;
338 priv = netdev_priv(net_dev);
339 percpu_priv = this_cpu_ptr(priv->percpu_priv);
341 netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
342 jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
344 percpu_priv->stats.tx_errors++;
347 /* Calculates the statistics for the given device by adding the statistics
348 * collected by each CPU.
350 static void dpaa_get_stats64(struct net_device *net_dev,
351 struct rtnl_link_stats64 *s)
353 int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
354 struct dpaa_priv *priv = netdev_priv(net_dev);
355 struct dpaa_percpu_priv *percpu_priv;
356 u64 *netstats = (u64 *)s;
360 for_each_possible_cpu(i) {
361 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
363 cpustats = (u64 *)&percpu_priv->stats;
365 /* add stats from all CPUs */
366 for (j = 0; j < numstats; j++)
367 netstats[j] += cpustats[j];
371 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
374 struct dpaa_priv *priv = netdev_priv(net_dev);
375 int num_txqs_per_tc = dpaa_num_txqs_per_tc();
376 struct tc_mqprio_qopt *mqprio = type_data;
380 if (type != TC_SETUP_QDISC_MQPRIO)
383 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
384 num_tc = mqprio->num_tc;
386 if (num_tc == priv->num_tc)
390 netdev_reset_tc(net_dev);
394 if (num_tc > DPAA_TC_NUM) {
395 netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
400 netdev_set_num_tc(net_dev, num_tc);
402 for (i = 0; i < num_tc; i++)
403 netdev_set_tc_queue(net_dev, i, num_txqs_per_tc,
404 i * num_txqs_per_tc);
407 priv->num_tc = num_tc ? : 1;
408 netif_set_real_num_tx_queues(net_dev, priv->num_tc * num_txqs_per_tc);
412 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
414 struct dpaa_eth_data *eth_data;
415 struct device *dpaa_dev;
416 struct mac_device *mac_dev;
418 dpaa_dev = &pdev->dev;
419 eth_data = dpaa_dev->platform_data;
421 dev_err(dpaa_dev, "eth_data missing\n");
422 return ERR_PTR(-ENODEV);
424 mac_dev = eth_data->mac_dev;
426 dev_err(dpaa_dev, "mac_dev missing\n");
427 return ERR_PTR(-EINVAL);
433 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
435 const struct dpaa_priv *priv;
436 struct mac_device *mac_dev;
437 struct sockaddr old_addr;
440 priv = netdev_priv(net_dev);
442 memcpy(old_addr.sa_data, net_dev->dev_addr, ETH_ALEN);
444 err = eth_mac_addr(net_dev, addr);
446 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
450 mac_dev = priv->mac_dev;
452 err = mac_dev->change_addr(mac_dev->fman_mac,
453 (const enet_addr_t *)net_dev->dev_addr);
455 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
457 /* reverting to previous address */
458 eth_mac_addr(net_dev, &old_addr);
466 static int dpaa_addr_sync(struct net_device *net_dev, const u8 *addr)
468 const struct dpaa_priv *priv = netdev_priv(net_dev);
470 return priv->mac_dev->add_hash_mac_addr(priv->mac_dev->fman_mac,
471 (enet_addr_t *)addr);
474 static int dpaa_addr_unsync(struct net_device *net_dev, const u8 *addr)
476 const struct dpaa_priv *priv = netdev_priv(net_dev);
478 return priv->mac_dev->remove_hash_mac_addr(priv->mac_dev->fman_mac,
479 (enet_addr_t *)addr);
482 static void dpaa_set_rx_mode(struct net_device *net_dev)
484 const struct dpaa_priv *priv;
487 priv = netdev_priv(net_dev);
489 if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
490 priv->mac_dev->promisc = !priv->mac_dev->promisc;
491 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
492 priv->mac_dev->promisc);
494 netif_err(priv, drv, net_dev,
495 "mac_dev->set_promisc() = %d\n",
499 if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) {
500 priv->mac_dev->allmulti = !priv->mac_dev->allmulti;
501 err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac,
502 priv->mac_dev->allmulti);
504 netif_err(priv, drv, net_dev,
505 "mac_dev->set_allmulti() = %d\n",
509 err = __dev_mc_sync(net_dev, dpaa_addr_sync, dpaa_addr_unsync);
511 netif_err(priv, drv, net_dev, "dpaa_addr_sync() = %d\n",
515 static struct dpaa_bp *dpaa_bpid2pool(int bpid)
517 if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
520 return dpaa_bp_array[bpid];
523 /* checks if this bpool is already allocated */
524 static bool dpaa_bpid2pool_use(int bpid)
526 if (dpaa_bpid2pool(bpid)) {
527 refcount_inc(&dpaa_bp_array[bpid]->refs);
534 /* called only once per bpid by dpaa_bp_alloc_pool() */
535 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
537 dpaa_bp_array[bpid] = dpaa_bp;
538 refcount_set(&dpaa_bp->refs, 1);
541 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
545 if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
546 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
551 /* If the pool is already specified, we only create one per bpid */
552 if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
553 dpaa_bpid2pool_use(dpaa_bp->bpid))
556 if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
557 dpaa_bp->pool = bman_new_pool();
558 if (!dpaa_bp->pool) {
559 pr_err("%s: bman_new_pool() failed\n",
564 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
567 if (dpaa_bp->seed_cb) {
568 err = dpaa_bp->seed_cb(dpaa_bp);
570 goto pool_seed_failed;
573 dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
578 pr_err("%s: pool seeding failed\n", __func__);
579 bman_free_pool(dpaa_bp->pool);
584 /* remove and free all the buffers from the given buffer pool */
585 static void dpaa_bp_drain(struct dpaa_bp *bp)
591 struct bm_buffer bmb[8];
594 ret = bman_acquire(bp->pool, bmb, num);
597 /* we have less than 8 buffers left;
598 * drain them one by one
604 /* Pool is fully drained */
610 for (i = 0; i < num; i++)
611 bp->free_buf_cb(bp, &bmb[i]);
615 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
617 struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
619 /* the mapping between bpid and dpaa_bp is done very late in the
620 * allocation procedure; if something failed before the mapping, the bp
621 * was not configured, therefore we don't need the below instructions
626 if (!refcount_dec_and_test(&bp->refs))
632 dpaa_bp_array[bp->bpid] = NULL;
633 bman_free_pool(bp->pool);
636 static void dpaa_bps_free(struct dpaa_priv *priv)
638 dpaa_bp_free(priv->dpaa_bp);
641 /* Use multiple WQs for FQ assignment:
642 * - Tx Confirmation queues go to WQ1.
643 * - Rx Error and Tx Error queues go to WQ5 (giving them a better chance
644 * to be scheduled, in case there are many more FQs in WQ6).
645 * - Rx Default goes to WQ6.
646 * - Tx queues go to different WQs depending on their priority. Equal
647 * chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
648 * WQ0 (highest priority).
649 * This ensures that Tx-confirmed buffers are timely released. In particular,
650 * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
651 * are greatly outnumbered by other FQs in the system, while
652 * dequeue scheduling is round-robin.
654 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
656 switch (fq->fq_type) {
657 case FQ_TYPE_TX_CONFIRM:
658 case FQ_TYPE_TX_CONF_MQ:
661 case FQ_TYPE_RX_ERROR:
662 case FQ_TYPE_TX_ERROR:
665 case FQ_TYPE_RX_DEFAULT:
670 switch (idx / dpaa_num_txqs_per_tc()) {
672 /* Low priority (best effort) */
676 /* Medium priority */
684 /* Very high priority */
688 WARN(1, "Too many TX FQs: more than %zu!\n",
689 dpaa_max_num_txqs());
693 WARN(1, "Invalid FQ type %d for FQID %d!\n",
694 fq->fq_type, fq->fqid);
698 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
699 u32 start, u32 count,
700 struct list_head *list,
701 enum dpaa_fq_type fq_type)
703 struct dpaa_fq *dpaa_fq;
706 dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq),
711 for (i = 0; i < count; i++) {
712 dpaa_fq[i].fq_type = fq_type;
713 dpaa_fq[i].fqid = start ? start + i : 0;
714 list_add_tail(&dpaa_fq[i].list, list);
717 for (i = 0; i < count; i++)
718 dpaa_assign_wq(dpaa_fq + i, i);
723 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
724 struct fm_port_fqs *port_fqs)
726 struct dpaa_fq *dpaa_fq;
727 u32 fq_base, fq_base_aligned, i;
729 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
731 goto fq_alloc_failed;
733 port_fqs->rx_errq = &dpaa_fq[0];
735 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
737 goto fq_alloc_failed;
739 port_fqs->rx_defq = &dpaa_fq[0];
741 /* the PCD FQIDs range needs to be aligned for correct operation */
742 if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM))
743 goto fq_alloc_failed;
745 fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM);
747 for (i = fq_base; i < fq_base_aligned; i++)
748 qman_release_fqid(i);
750 for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM;
751 i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++)
752 qman_release_fqid(i);
754 dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM,
755 list, FQ_TYPE_RX_PCD);
757 goto fq_alloc_failed;
759 port_fqs->rx_pcdq = &dpaa_fq[0];
761 if (!dpaa_fq_alloc(dev, 0, dpaa_max_num_txqs(), list,
763 goto fq_alloc_failed;
765 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
767 goto fq_alloc_failed;
769 port_fqs->tx_errq = &dpaa_fq[0];
771 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
773 goto fq_alloc_failed;
775 port_fqs->tx_defq = &dpaa_fq[0];
777 if (!dpaa_fq_alloc(dev, 0, dpaa_max_num_txqs(), list, FQ_TYPE_TX))
778 goto fq_alloc_failed;
783 dev_err(dev, "dpaa_fq_alloc() failed\n");
787 static u32 rx_pool_channel;
788 static DEFINE_SPINLOCK(rx_pool_channel_init);
790 static int dpaa_get_channel(void)
792 spin_lock(&rx_pool_channel_init);
793 if (!rx_pool_channel) {
797 ret = qman_alloc_pool(&pool);
800 rx_pool_channel = pool;
802 spin_unlock(&rx_pool_channel_init);
803 if (!rx_pool_channel)
805 return rx_pool_channel;
808 static void dpaa_release_channel(void)
810 qman_release_pool(rx_pool_channel);
813 static void dpaa_eth_add_channel(u16 channel, struct device *dev)
815 u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
816 const cpumask_t *cpus = qman_affine_cpus();
817 struct qman_portal *portal;
820 for_each_cpu_and(cpu, cpus, cpu_online_mask) {
821 portal = qman_get_affine_portal(cpu);
822 qman_p_static_dequeue_add(portal, pool);
823 qman_start_using_portal(portal, dev);
827 /* Congestion group state change notification callback.
828 * Stops the device's egress queues while they are congested and
829 * wakes them upon exiting congested state.
830 * Also updates some CGR-related stats.
832 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
835 struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
836 struct dpaa_priv, cgr_data.cgr);
839 priv->cgr_data.congestion_start_jiffies = jiffies;
840 netif_tx_stop_all_queues(priv->net_dev);
841 priv->cgr_data.cgr_congested_count++;
843 priv->cgr_data.congested_jiffies +=
844 (jiffies - priv->cgr_data.congestion_start_jiffies);
845 netif_tx_wake_all_queues(priv->net_dev);
849 static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
851 struct qm_mcc_initcgr initcgr;
855 err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
857 if (netif_msg_drv(priv))
858 pr_err("%s: Error %d allocating CGR ID\n",
862 priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
864 /* Enable Congestion State Change Notifications and CS taildrop */
865 memset(&initcgr, 0, sizeof(initcgr));
866 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
867 initcgr.cgr.cscn_en = QM_CGR_EN;
869 /* Set different thresholds based on the configured MAC speed.
870 * This may turn suboptimal if the MAC is reconfigured at another
871 * speed, so MACs must call dpaa_eth_cgr_set_speed in their link_up
874 if (priv->mac_dev->phylink_config.mac_capabilities & MAC_10000FD)
875 cs_th = DPAA_CS_THRESHOLD_10G;
877 cs_th = DPAA_CS_THRESHOLD_1G;
878 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
880 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
881 initcgr.cgr.cstd_en = QM_CGR_EN;
883 err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
886 if (netif_msg_drv(priv))
887 pr_err("%s: Error %d creating CGR with ID %d\n",
888 __func__, err, priv->cgr_data.cgr.cgrid);
889 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
892 if (netif_msg_drv(priv))
893 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
894 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
895 priv->cgr_data.cgr.chan);
901 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed)
903 struct net_device *net_dev = to_net_dev(mac_dev->phylink_config.dev);
904 struct dpaa_priv *priv = netdev_priv(net_dev);
905 struct qm_mcc_initcgr opts = { };
909 opts.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
912 cs_th = DPAA_CS_THRESHOLD_10G;
916 cs_th = DPAA_CS_THRESHOLD_1G;
919 qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, cs_th, 1);
921 err = qman_update_cgr_safe(&priv->cgr_data.cgr, &opts);
923 netdev_err(net_dev, "could not update speed: %d\n", err);
926 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
928 const struct qman_fq *template)
930 fq->fq_base = *template;
931 fq->net_dev = priv->net_dev;
933 fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
934 fq->channel = priv->channel;
937 static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
939 struct fman_port *port,
940 const struct qman_fq *template)
942 fq->fq_base = *template;
943 fq->net_dev = priv->net_dev;
946 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
947 fq->channel = (u16)fman_port_get_qman_channel_id(port);
949 fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
953 static int dpaa_fq_setup(struct dpaa_priv *priv,
954 const struct dpaa_fq_cbs *fq_cbs,
955 struct fman_port *tx_port)
957 int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu;
958 const cpumask_t *affine_cpus = qman_affine_cpus();
962 channels = kcalloc(num_possible_cpus(), sizeof(u16), GFP_KERNEL);
966 for_each_cpu_and(cpu, affine_cpus, cpu_online_mask)
967 channels[num_portals++] = qman_affine_channel(cpu);
969 if (num_portals == 0)
970 dev_err(priv->net_dev->dev.parent,
971 "No Qman software (affine) channels found\n");
973 /* Initialize each FQ in the list */
974 list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
975 switch (fq->fq_type) {
976 case FQ_TYPE_RX_DEFAULT:
977 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
979 case FQ_TYPE_RX_ERROR:
980 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
985 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
986 fq->channel = channels[portal_cnt++ % num_portals];
989 dpaa_setup_egress(priv, fq, tx_port,
990 &fq_cbs->egress_ern);
991 priv->egress_fqs[egress_cnt++] = &fq->fq_base;
993 case FQ_TYPE_TX_CONF_MQ:
994 priv->conf_fqs[conf_cnt++] = &fq->fq_base;
996 case FQ_TYPE_TX_CONFIRM:
997 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
999 case FQ_TYPE_TX_ERROR:
1000 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
1003 dev_warn(priv->net_dev->dev.parent,
1004 "Unknown FQ type detected!\n");
1014 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
1015 struct qman_fq *tx_fq)
1019 for (i = 0; i < dpaa_max_num_txqs(); i++)
1020 if (priv->egress_fqs[i] == tx_fq)
1026 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
1028 const struct dpaa_priv *priv;
1029 struct qman_fq *confq = NULL;
1030 struct qm_mcc_initfq initfq;
1036 priv = netdev_priv(dpaa_fq->net_dev);
1037 dev = dpaa_fq->net_dev->dev.parent;
1039 if (dpaa_fq->fqid == 0)
1040 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
1042 dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
1044 err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
1046 dev_err(dev, "qman_create_fq() failed\n");
1049 fq = &dpaa_fq->fq_base;
1051 if (dpaa_fq->init) {
1052 memset(&initfq, 0, sizeof(initfq));
1054 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
1055 /* Note: we may get to keep an empty FQ in cache */
1056 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
1058 /* Try to reduce the number of portal interrupts for
1059 * Tx Confirmation FQs.
1061 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
1062 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
1065 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
1067 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
1069 /* Put all egress queues in a congestion group of their own.
1070 * Sensu stricto, the Tx confirmation queues are Rx FQs,
1071 * rather than Tx - but they nonetheless account for the
1072 * memory footprint on behalf of egress traffic. We therefore
1073 * place them in the netdev's CGR, along with the Tx FQs.
1075 if (dpaa_fq->fq_type == FQ_TYPE_TX ||
1076 dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
1077 dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
1078 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1079 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1080 initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
1081 /* Set a fixed overhead accounting, in an attempt to
1082 * reduce the impact of fixed-size skb shells and the
1083 * driver's needed headroom on system memory. This is
1084 * especially the case when the egress traffic is
1085 * composed of small datagrams.
1086 * Unfortunately, QMan's OAL value is capped to an
1087 * insufficient value, but even that is better than
1088 * no overhead accounting at all.
1090 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1091 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1092 qm_fqd_set_oal(&initfq.fqd,
1093 min(sizeof(struct sk_buff) +
1095 (size_t)FSL_QMAN_MAX_OAL));
1099 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
1100 qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
1101 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
1104 if (dpaa_fq->fq_type == FQ_TYPE_TX) {
1105 queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
1107 confq = priv->conf_fqs[queue_id];
1110 cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1111 /* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
1112 * A2V=1 (contextA A2 field is valid)
1113 * A0V=1 (contextA A0 field is valid)
1114 * B0V=1 (contextB field is valid)
1115 * ContextA A2: EBD=1 (deallocate buffers inside FMan)
1116 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
1118 qm_fqd_context_a_set64(&initfq.fqd,
1119 0x1e00000080000000ULL);
1123 /* Put all the ingress queues in our "ingress CGR". */
1124 if (priv->use_ingress_cgr &&
1125 (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1126 dpaa_fq->fq_type == FQ_TYPE_RX_ERROR ||
1127 dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) {
1128 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1129 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1130 initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
1131 /* Set a fixed overhead accounting, just like for the
1134 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1135 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1136 qm_fqd_set_oal(&initfq.fqd,
1137 min(sizeof(struct sk_buff) +
1139 (size_t)FSL_QMAN_MAX_OAL));
1142 /* Initialization common to all ingress queues */
1143 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
1144 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1145 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
1146 QM_FQCTRL_CTXASTASHING);
1147 initfq.fqd.context_a.stashing.exclusive =
1148 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
1149 QM_STASHING_EXCL_ANNOTATION;
1150 qm_fqd_set_stashing(&initfq.fqd, 1, 2,
1151 DIV_ROUND_UP(sizeof(struct qman_fq),
1155 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1157 dev_err(dev, "qman_init_fq(%u) = %d\n",
1158 qman_fq_fqid(fq), err);
1159 qman_destroy_fq(fq);
1164 dpaa_fq->fqid = qman_fq_fqid(fq);
1166 if (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1167 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) {
1168 err = xdp_rxq_info_reg(&dpaa_fq->xdp_rxq, dpaa_fq->net_dev,
1171 dev_err(dev, "xdp_rxq_info_reg() = %d\n", err);
1175 err = xdp_rxq_info_reg_mem_model(&dpaa_fq->xdp_rxq,
1176 MEM_TYPE_PAGE_ORDER0, NULL);
1178 dev_err(dev, "xdp_rxq_info_reg_mem_model() = %d\n",
1180 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq);
1188 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1190 const struct dpaa_priv *priv;
1191 struct dpaa_fq *dpaa_fq;
1196 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1197 priv = netdev_priv(dpaa_fq->net_dev);
1199 if (dpaa_fq->init) {
1200 err = qman_retire_fq(fq, NULL);
1201 if (err < 0 && netif_msg_drv(priv))
1202 dev_err(dev, "qman_retire_fq(%u) = %d\n",
1203 qman_fq_fqid(fq), err);
1205 error = qman_oos_fq(fq);
1206 if (error < 0 && netif_msg_drv(priv)) {
1207 dev_err(dev, "qman_oos_fq(%u) = %d\n",
1208 qman_fq_fqid(fq), error);
1214 if ((dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1215 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) &&
1216 xdp_rxq_info_is_reg(&dpaa_fq->xdp_rxq))
1217 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq);
1219 qman_destroy_fq(fq);
1220 list_del(&dpaa_fq->list);
1225 static int dpaa_fq_free(struct device *dev, struct list_head *list)
1227 struct dpaa_fq *dpaa_fq, *tmp;
1231 list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1232 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1233 if (error < 0 && err >= 0)
1240 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1241 struct dpaa_fq *defq,
1242 struct dpaa_buffer_layout *buf_layout)
1244 struct fman_buffer_prefix_content buf_prefix_content;
1245 struct fman_port_params params;
1248 memset(¶ms, 0, sizeof(params));
1249 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1251 buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1252 buf_prefix_content.pass_prs_result = true;
1253 buf_prefix_content.pass_hash_result = true;
1254 buf_prefix_content.pass_time_stamp = true;
1255 buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1257 params.specific_params.non_rx_params.err_fqid = errq->fqid;
1258 params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1260 err = fman_port_config(port, ¶ms);
1262 pr_err("%s: fman_port_config failed\n", __func__);
1266 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1268 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1273 err = fman_port_init(port);
1275 pr_err("%s: fm_port_init failed\n", __func__);
1280 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp,
1281 struct dpaa_fq *errq,
1282 struct dpaa_fq *defq, struct dpaa_fq *pcdq,
1283 struct dpaa_buffer_layout *buf_layout)
1285 struct fman_buffer_prefix_content buf_prefix_content;
1286 struct fman_port_rx_params *rx_p;
1287 struct fman_port_params params;
1290 memset(¶ms, 0, sizeof(params));
1291 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1293 buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1294 buf_prefix_content.pass_prs_result = true;
1295 buf_prefix_content.pass_hash_result = true;
1296 buf_prefix_content.pass_time_stamp = true;
1297 buf_prefix_content.data_align = DPAA_FD_RX_DATA_ALIGNMENT;
1299 rx_p = ¶ms.specific_params.rx_params;
1300 rx_p->err_fqid = errq->fqid;
1301 rx_p->dflt_fqid = defq->fqid;
1303 rx_p->pcd_base_fqid = pcdq->fqid;
1304 rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM;
1307 rx_p->ext_buf_pools.num_of_pools_used = 1;
1308 rx_p->ext_buf_pools.ext_buf_pool[0].id = bp->bpid;
1309 rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size;
1311 err = fman_port_config(port, ¶ms);
1313 pr_err("%s: fman_port_config failed\n", __func__);
1317 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1319 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1324 err = fman_port_init(port);
1326 pr_err("%s: fm_port_init failed\n", __func__);
1331 static int dpaa_eth_init_ports(struct mac_device *mac_dev,
1333 struct fm_port_fqs *port_fqs,
1334 struct dpaa_buffer_layout *buf_layout,
1337 struct fman_port *rxport = mac_dev->port[RX];
1338 struct fman_port *txport = mac_dev->port[TX];
1341 err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1342 port_fqs->tx_defq, &buf_layout[TX]);
1346 err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq,
1347 port_fqs->rx_defq, port_fqs->rx_pcdq,
1353 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1354 struct bm_buffer *bmb, int cnt)
1358 err = bman_release(dpaa_bp->pool, bmb, cnt);
1359 /* Should never occur, address anyway to avoid leaking the buffers */
1360 if (WARN_ON(err) && dpaa_bp->free_buf_cb)
1362 dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1367 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1369 struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1370 struct dpaa_bp *dpaa_bp;
1373 memset(bmb, 0, sizeof(bmb));
1376 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1382 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1384 bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1387 } while (j < ARRAY_SIZE(bmb) &&
1388 !qm_sg_entry_is_final(&sgt[i - 1]) &&
1389 sgt[i - 1].bpid == sgt[i].bpid);
1391 dpaa_bman_release(dpaa_bp, bmb, j);
1392 } while (!qm_sg_entry_is_final(&sgt[i - 1]));
1395 static void dpaa_fd_release(const struct net_device *net_dev,
1396 const struct qm_fd *fd)
1398 struct qm_sg_entry *sgt;
1399 struct dpaa_bp *dpaa_bp;
1400 struct bm_buffer bmb;
1405 bm_buffer_set64(&bmb, qm_fd_addr(fd));
1407 dpaa_bp = dpaa_bpid2pool(fd->bpid);
1411 if (qm_fd_get_format(fd) == qm_fd_sg) {
1412 vaddr = phys_to_virt(qm_fd_addr(fd));
1413 sgt = vaddr + qm_fd_get_offset(fd);
1415 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd),
1416 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1418 dpaa_release_sgt_members(sgt);
1420 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev,
1421 virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE,
1423 if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) {
1424 netdev_err(net_dev, "DMA mapping failed\n");
1427 bm_buffer_set64(&bmb, addr);
1430 dpaa_bman_release(dpaa_bp, &bmb, 1);
1433 static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1434 const union qm_mr_entry *msg)
1436 switch (msg->ern.rc & QM_MR_RC_MASK) {
1437 case QM_MR_RC_CGR_TAILDROP:
1438 percpu_priv->ern_cnt.cg_tdrop++;
1441 percpu_priv->ern_cnt.wred++;
1443 case QM_MR_RC_ERROR:
1444 percpu_priv->ern_cnt.err_cond++;
1446 case QM_MR_RC_ORPWINDOW_EARLY:
1447 percpu_priv->ern_cnt.early_window++;
1449 case QM_MR_RC_ORPWINDOW_LATE:
1450 percpu_priv->ern_cnt.late_window++;
1452 case QM_MR_RC_FQ_TAILDROP:
1453 percpu_priv->ern_cnt.fq_tdrop++;
1455 case QM_MR_RC_ORPWINDOW_RETIRED:
1456 percpu_priv->ern_cnt.fq_retired++;
1458 case QM_MR_RC_ORP_ZERO:
1459 percpu_priv->ern_cnt.orp_zero++;
1464 /* Turn on HW checksum computation for this outgoing frame.
1465 * If the current protocol is not something we support in this regard
1466 * (or if the stack has already computed the SW checksum), we do nothing.
1468 * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1471 * Note that this function may modify the fd->cmd field and the skb data buffer
1472 * (the Parse Results area).
1474 static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1475 struct sk_buff *skb,
1477 void *parse_results)
1479 struct fman_prs_result *parse_result;
1480 u16 ethertype = ntohs(skb->protocol);
1481 struct ipv6hdr *ipv6h = NULL;
1486 if (skb->ip_summed != CHECKSUM_PARTIAL)
1489 /* Note: L3 csum seems to be already computed in sw, but we can't choose
1490 * L4 alone from the FM configuration anyway.
1493 /* Fill in some fields of the Parse Results array, so the FMan
1494 * can find them as if they came from the FMan Parser.
1496 parse_result = (struct fman_prs_result *)parse_results;
1498 /* If we're dealing with VLAN, get the real Ethernet type */
1499 if (ethertype == ETH_P_8021Q)
1500 ethertype = ntohs(skb_vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1502 /* Fill in the relevant L3 parse result fields
1503 * and read the L4 protocol type
1505 switch (ethertype) {
1507 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1510 l4_proto = iph->protocol;
1513 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1514 ipv6h = ipv6_hdr(skb);
1516 l4_proto = ipv6h->nexthdr;
1519 /* We shouldn't even be here */
1520 if (net_ratelimit())
1521 netif_alert(priv, tx_err, priv->net_dev,
1522 "Can't compute HW csum for L3 proto 0x%x\n",
1523 ntohs(skb->protocol));
1528 /* Fill in the relevant L4 parse result fields */
1531 parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1534 parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1537 if (net_ratelimit())
1538 netif_alert(priv, tx_err, priv->net_dev,
1539 "Can't compute HW csum for L4 proto 0x%x\n",
1545 /* At index 0 is IPOffset_1 as defined in the Parse Results */
1546 parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1547 parse_result->l4_off = (u8)skb_transport_offset(skb);
1549 /* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1550 fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1552 /* On P1023 and similar platforms fd->cmd interpretation could
1553 * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1554 * is not set so we do not need to check; in the future, if/when
1555 * using context_a we need to check this bit
1562 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1564 struct net_device *net_dev = dpaa_bp->priv->net_dev;
1565 struct bm_buffer bmb[8];
1570 for (i = 0; i < 8; i++) {
1571 p = dev_alloc_pages(0);
1573 netdev_err(net_dev, "dev_alloc_pages() failed\n");
1574 goto release_previous_buffs;
1577 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0,
1578 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1579 if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev,
1581 netdev_err(net_dev, "DMA map failed\n");
1582 goto release_previous_buffs;
1586 bm_buffer_set64(&bmb[i], addr);
1590 return dpaa_bman_release(dpaa_bp, bmb, i);
1592 release_previous_buffs:
1593 WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1595 bm_buffer_set64(&bmb[i], 0);
1596 /* Avoid releasing a completely null buffer; bman_release() requires
1597 * at least one buffer.
1605 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1609 /* Give each CPU an allotment of "config_count" buffers */
1610 for_each_possible_cpu(i) {
1611 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1614 /* Although we access another CPU's counters here
1615 * we do it at boot time so it is safe
1617 for (j = 0; j < dpaa_bp->config_count; j += 8)
1618 *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1623 /* Add buffers/(pages) for Rx processing whenever bpool count falls below
1626 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1628 int count = *countptr;
1631 if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1633 new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1634 if (unlikely(!new_bufs)) {
1635 /* Avoid looping forever if we've temporarily
1636 * run out of memory. We'll try again at the
1642 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1645 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1652 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1654 struct dpaa_bp *dpaa_bp;
1657 dpaa_bp = priv->dpaa_bp;
1660 countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1662 return dpaa_eth_refill_bpool(dpaa_bp, countptr);
1665 /* Cleanup function for outgoing frame descriptors that were built on Tx path,
1666 * either contiguous frames or scatter/gather ones.
1667 * Skb freeing is not handled here.
1669 * This function may be called on error paths in the Tx function, so guard
1670 * against cases when not all fd relevant fields were filled in. To avoid
1671 * reading the invalid transmission timestamp for the error paths set ts to
1674 * Return the skb backpointer, since for S/G frames the buffer containing it
1677 * No skb backpointer is set when transmitting XDP frames. Cleanup the buffer
1678 * and return NULL in this case.
1680 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1681 const struct qm_fd *fd, bool ts)
1683 const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1684 struct device *dev = priv->net_dev->dev.parent;
1685 struct skb_shared_hwtstamps shhwtstamps;
1686 dma_addr_t addr = qm_fd_addr(fd);
1687 void *vaddr = phys_to_virt(addr);
1688 const struct qm_sg_entry *sgt;
1689 struct dpaa_eth_swbp *swbp;
1690 struct sk_buff *skb;
1694 if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1695 dma_unmap_page(priv->tx_dma_dev, addr,
1696 qm_fd_get_offset(fd) + DPAA_SGT_SIZE,
1699 /* The sgt buffer has been allocated with netdev_alloc_frag(),
1702 sgt = vaddr + qm_fd_get_offset(fd);
1704 /* sgt[0] is from lowmem, was dma_map_single()-ed */
1705 dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]),
1706 qm_sg_entry_get_len(&sgt[0]), dma_dir);
1708 /* remaining pages were mapped with skb_frag_dma_map() */
1709 for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) &&
1710 !qm_sg_entry_is_final(&sgt[i - 1]); i++) {
1711 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1713 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]),
1714 qm_sg_entry_get_len(&sgt[i]), dma_dir);
1717 dma_unmap_single(priv->tx_dma_dev, addr,
1718 qm_fd_get_offset(fd) + qm_fd_get_length(fd),
1722 swbp = (struct dpaa_eth_swbp *)vaddr;
1725 /* No skb backpointer is set when running XDP. An xdp_frame
1726 * backpointer is saved instead.
1729 xdp_return_frame(swbp->xdpf);
1733 /* DMA unmapping is required before accessing the HW provided info */
1734 if (ts && priv->tx_tstamp &&
1735 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
1736 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
1738 if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr,
1740 shhwtstamps.hwtstamp = ns_to_ktime(ns);
1741 skb_tstamp_tx(skb, &shhwtstamps);
1743 dev_warn(dev, "fman_port_get_tstamp failed!\n");
1747 if (qm_fd_get_format(fd) == qm_fd_sg)
1748 /* Free the page that we allocated on Tx for the SGT */
1749 free_pages((unsigned long)vaddr, 0);
1754 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
1756 /* The parser has run and performed L4 checksum validation.
1757 * We know there were no parser errors (and implicitly no
1758 * L4 csum error), otherwise we wouldn't be here.
1760 if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
1761 (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
1762 return CHECKSUM_UNNECESSARY;
1764 /* We're here because either the parser didn't run or the L4 checksum
1765 * was not verified. This may include the case of a UDP frame with
1766 * checksum zero or an L4 proto other than TCP/UDP
1768 return CHECKSUM_NONE;
1771 #define PTR_IS_ALIGNED(x, a) (IS_ALIGNED((unsigned long)(x), (a)))
1773 /* Build a linear skb around the received buffer.
1774 * We are guaranteed there is enough room at the end of the data buffer to
1775 * accommodate the shared info area of the skb.
1777 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1778 const struct qm_fd *fd)
1780 ssize_t fd_off = qm_fd_get_offset(fd);
1781 dma_addr_t addr = qm_fd_addr(fd);
1782 struct dpaa_bp *dpaa_bp;
1783 struct sk_buff *skb;
1786 vaddr = phys_to_virt(addr);
1787 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1789 dpaa_bp = dpaa_bpid2pool(fd->bpid);
1793 skb = build_skb(vaddr, dpaa_bp->size +
1794 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1795 if (WARN_ONCE(!skb, "Build skb failure on Rx\n"))
1797 skb_reserve(skb, fd_off);
1798 skb_put(skb, qm_fd_get_length(fd));
1800 skb->ip_summed = rx_csum_offload(priv, fd);
1805 free_pages((unsigned long)vaddr, 0);
1809 /* Build an skb with the data of the first S/G entry in the linear portion and
1810 * the rest of the frame as skb fragments.
1812 * The page fragment holding the S/G Table is recycled here.
1814 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1815 const struct qm_fd *fd)
1817 ssize_t fd_off = qm_fd_get_offset(fd);
1818 dma_addr_t addr = qm_fd_addr(fd);
1819 const struct qm_sg_entry *sgt;
1820 struct page *page, *head_page;
1821 struct dpaa_bp *dpaa_bp;
1822 void *vaddr, *sg_vaddr;
1823 struct sk_buff *skb;
1830 vaddr = phys_to_virt(addr);
1831 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1833 /* Iterate through the SGT entries and add data buffers to the skb */
1834 sgt = vaddr + fd_off;
1836 for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1837 /* Extension bit is not supported */
1838 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1840 sg_addr = qm_sg_addr(&sgt[i]);
1841 sg_vaddr = phys_to_virt(sg_addr);
1842 WARN_ON(!PTR_IS_ALIGNED(sg_vaddr, SMP_CACHE_BYTES));
1844 dma_unmap_page(priv->rx_dma_dev, sg_addr,
1845 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1847 /* We may use multiple Rx pools */
1848 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1853 sz = dpaa_bp->size +
1854 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1855 skb = build_skb(sg_vaddr, sz);
1859 skb->ip_summed = rx_csum_offload(priv, fd);
1861 /* Make sure forwarded skbs will have enough space
1862 * on Tx, if extra headers are added.
1864 WARN_ON(fd_off != priv->rx_headroom);
1865 /* The offset to data start within the buffer holding
1866 * the SGT should always be equal to the offset to data
1867 * start within the first buffer holding the frame.
1869 WARN_ON_ONCE(fd_off != qm_sg_entry_get_off(&sgt[i]));
1870 skb_reserve(skb, fd_off);
1871 skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1873 /* Not the first S/G entry; all data from buffer will
1874 * be added in an skb fragment; fragment index is offset
1875 * by one since first S/G entry was incorporated in the
1876 * linear part of the skb.
1878 * Caution: 'page' may be a tail page.
1880 page = virt_to_page(sg_vaddr);
1881 head_page = virt_to_head_page(sg_vaddr);
1883 /* Compute offset of sg_vaddr in (possibly tail) page */
1884 page_offset = ((unsigned long)sg_vaddr &
1886 (page_address(page) - page_address(head_page));
1888 /* Non-initial SGT entries should not have a buffer
1891 WARN_ON_ONCE(qm_sg_entry_get_off(&sgt[i]));
1893 /* skb_add_rx_frag() does no checking on the page; if
1894 * we pass it a tail page, we'll end up with
1895 * bad page accounting and eventually with segfaults.
1897 skb_add_rx_frag(skb, i - 1, head_page, page_offset,
1898 qm_sg_entry_get_len(&sgt[i]),
1902 /* Update the pool count for the current {cpu x bpool} */
1903 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1906 if (qm_sg_entry_is_final(&sgt[i]))
1909 WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1911 /* free the SG table buffer */
1912 free_pages((unsigned long)vaddr, 0);
1917 /* free all the SG entries */
1918 for (j = 0; j < DPAA_SGT_MAX_ENTRIES ; j++) {
1919 sg_addr = qm_sg_addr(&sgt[j]);
1920 sg_vaddr = phys_to_virt(sg_addr);
1921 /* all pages 0..i were unmaped */
1923 dma_unmap_page(priv->rx_dma_dev, qm_sg_addr(&sgt[j]),
1924 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1925 free_pages((unsigned long)sg_vaddr, 0);
1926 /* counters 0..i-1 were decremented */
1928 dpaa_bp = dpaa_bpid2pool(sgt[j].bpid);
1930 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1935 if (qm_sg_entry_is_final(&sgt[j]))
1938 /* free the SGT fragment */
1939 free_pages((unsigned long)vaddr, 0);
1944 static int skb_to_contig_fd(struct dpaa_priv *priv,
1945 struct sk_buff *skb, struct qm_fd *fd,
1948 struct net_device *net_dev = priv->net_dev;
1949 enum dma_data_direction dma_dir;
1950 struct dpaa_eth_swbp *swbp;
1951 unsigned char *buff_start;
1955 /* We are guaranteed to have at least tx_headroom bytes
1956 * available, so just use that for offset.
1958 fd->bpid = FSL_DPAA_BPID_INV;
1959 buff_start = skb->data - priv->tx_headroom;
1960 dma_dir = DMA_TO_DEVICE;
1962 swbp = (struct dpaa_eth_swbp *)buff_start;
1965 /* Enable L3/L4 hardware checksum computation.
1967 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1968 * need to write into the skb.
1970 err = dpaa_enable_tx_csum(priv, skb, fd,
1971 buff_start + DPAA_TX_PRIV_DATA_SIZE);
1972 if (unlikely(err < 0)) {
1973 if (net_ratelimit())
1974 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1979 /* Fill in the rest of the FD fields */
1980 qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1981 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1983 /* Map the entire buffer size that may be seen by FMan, but no more */
1984 addr = dma_map_single(priv->tx_dma_dev, buff_start,
1985 priv->tx_headroom + skb->len, dma_dir);
1986 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1987 if (net_ratelimit())
1988 netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1991 qm_fd_addr_set64(fd, addr);
1996 static int skb_to_sg_fd(struct dpaa_priv *priv,
1997 struct sk_buff *skb, struct qm_fd *fd)
1999 const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
2000 const int nr_frags = skb_shinfo(skb)->nr_frags;
2001 struct net_device *net_dev = priv->net_dev;
2002 struct dpaa_eth_swbp *swbp;
2003 struct qm_sg_entry *sgt;
2011 /* get a page to store the SGTable */
2012 p = dev_alloc_pages(0);
2014 netdev_err(net_dev, "dev_alloc_pages() failed\n");
2017 buff_start = page_address(p);
2019 /* Enable L3/L4 hardware checksum computation.
2021 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
2022 * need to write into the skb.
2024 err = dpaa_enable_tx_csum(priv, skb, fd,
2025 buff_start + DPAA_TX_PRIV_DATA_SIZE);
2026 if (unlikely(err < 0)) {
2027 if (net_ratelimit())
2028 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
2033 /* SGT[0] is used by the linear part */
2034 sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom);
2035 frag_len = skb_headlen(skb);
2036 qm_sg_entry_set_len(&sgt[0], frag_len);
2037 sgt[0].bpid = FSL_DPAA_BPID_INV;
2039 addr = dma_map_single(priv->tx_dma_dev, skb->data,
2040 skb_headlen(skb), dma_dir);
2041 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2042 netdev_err(priv->net_dev, "DMA mapping failed\n");
2044 goto sg0_map_failed;
2046 qm_sg_entry_set64(&sgt[0], addr);
2048 /* populate the rest of SGT entries */
2049 for (i = 0; i < nr_frags; i++) {
2050 frag = &skb_shinfo(skb)->frags[i];
2051 frag_len = skb_frag_size(frag);
2052 WARN_ON(!skb_frag_page(frag));
2053 addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0,
2055 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2056 netdev_err(priv->net_dev, "DMA mapping failed\n");
2061 qm_sg_entry_set_len(&sgt[i + 1], frag_len);
2062 sgt[i + 1].bpid = FSL_DPAA_BPID_INV;
2063 sgt[i + 1].offset = 0;
2065 /* keep the offset in the address */
2066 qm_sg_entry_set64(&sgt[i + 1], addr);
2069 /* Set the final bit in the last used entry of the SGT */
2070 qm_sg_entry_set_f(&sgt[nr_frags], frag_len);
2072 /* set fd offset to priv->tx_headroom */
2073 qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
2075 /* DMA map the SGT page */
2076 swbp = (struct dpaa_eth_swbp *)buff_start;
2079 addr = dma_map_page(priv->tx_dma_dev, p, 0,
2080 priv->tx_headroom + DPAA_SGT_SIZE, dma_dir);
2081 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2082 netdev_err(priv->net_dev, "DMA mapping failed\n");
2084 goto sgt_map_failed;
2087 fd->bpid = FSL_DPAA_BPID_INV;
2088 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2089 qm_fd_addr_set64(fd, addr);
2095 for (j = 0; j < i; j++)
2096 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]),
2097 qm_sg_entry_get_len(&sgt[j]), dma_dir);
2100 free_pages((unsigned long)buff_start, 0);
2105 static inline int dpaa_xmit(struct dpaa_priv *priv,
2106 struct rtnl_link_stats64 *percpu_stats,
2110 struct qman_fq *egress_fq;
2113 egress_fq = priv->egress_fqs[queue];
2114 if (fd->bpid == FSL_DPAA_BPID_INV)
2115 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
2117 /* Trace this Tx fd */
2118 trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
2120 for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
2121 err = qman_enqueue(egress_fq, fd);
2126 if (unlikely(err < 0)) {
2127 percpu_stats->tx_fifo_errors++;
2131 percpu_stats->tx_packets++;
2132 percpu_stats->tx_bytes += qm_fd_get_length(fd);
2137 #ifdef CONFIG_DPAA_ERRATUM_A050385
2138 static int dpaa_a050385_wa_skb(struct net_device *net_dev, struct sk_buff **s)
2140 struct dpaa_priv *priv = netdev_priv(net_dev);
2141 struct sk_buff *new_skb, *skb = *s;
2142 unsigned char *start, i;
2144 /* check linear buffer alignment */
2145 if (!PTR_IS_ALIGNED(skb->data, DPAA_A050385_ALIGN))
2148 /* linear buffers just need to have an aligned start */
2149 if (!skb_is_nonlinear(skb))
2152 /* linear data size for nonlinear skbs needs to be aligned */
2153 if (!IS_ALIGNED(skb_headlen(skb), DPAA_A050385_ALIGN))
2156 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2157 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2159 /* all fragments need to have aligned start addresses */
2160 if (!IS_ALIGNED(skb_frag_off(frag), DPAA_A050385_ALIGN))
2163 /* all but last fragment need to have aligned sizes */
2164 if (!IS_ALIGNED(skb_frag_size(frag), DPAA_A050385_ALIGN) &&
2165 (i < skb_shinfo(skb)->nr_frags - 1))
2172 /* copy all the skb content into a new linear buffer */
2173 new_skb = netdev_alloc_skb(net_dev, skb->len + DPAA_A050385_ALIGN - 1 +
2178 /* NET_SKB_PAD bytes already reserved, adding up to tx_headroom */
2179 skb_reserve(new_skb, priv->tx_headroom - NET_SKB_PAD);
2181 /* Workaround for DPAA_A050385 requires data start to be aligned */
2182 start = PTR_ALIGN(new_skb->data, DPAA_A050385_ALIGN);
2183 if (start - new_skb->data)
2184 skb_reserve(new_skb, start - new_skb->data);
2186 skb_put(new_skb, skb->len);
2187 skb_copy_bits(skb, 0, new_skb->data, skb->len);
2188 skb_copy_header(new_skb, skb);
2189 new_skb->dev = skb->dev;
2191 /* Copy relevant timestamp info from the old skb to the new */
2192 if (priv->tx_tstamp) {
2193 skb_shinfo(new_skb)->tx_flags = skb_shinfo(skb)->tx_flags;
2194 skb_shinfo(new_skb)->hwtstamps = skb_shinfo(skb)->hwtstamps;
2195 skb_shinfo(new_skb)->tskey = skb_shinfo(skb)->tskey;
2197 skb_set_owner_w(new_skb, skb->sk);
2200 /* We move the headroom when we align it so we have to reset the
2201 * network and transport header offsets relative to the new data
2202 * pointer. The checksum offload relies on these offsets.
2204 skb_set_network_header(new_skb, skb_network_offset(skb));
2205 skb_set_transport_header(new_skb, skb_transport_offset(skb));
2213 static int dpaa_a050385_wa_xdpf(struct dpaa_priv *priv,
2214 struct xdp_frame **init_xdpf)
2216 struct xdp_frame *new_xdpf, *xdpf = *init_xdpf;
2217 void *new_buff, *aligned_data;
2222 /* Check the data alignment and make sure the headroom is large
2223 * enough to store the xdpf backpointer. Use an aligned headroom
2226 * Due to alignment constraints, we give XDP access to the full 256
2227 * byte frame headroom. If the XDP program uses all of it, copy the
2228 * data to a new buffer and make room for storing the backpointer.
2230 if (PTR_IS_ALIGNED(xdpf->data, DPAA_FD_DATA_ALIGNMENT) &&
2231 xdpf->headroom >= priv->tx_headroom) {
2232 xdpf->headroom = priv->tx_headroom;
2236 /* Try to move the data inside the buffer just enough to align it and
2237 * store the xdpf backpointer. If the available headroom isn't large
2238 * enough, resort to allocating a new buffer and copying the data.
2240 aligned_data = PTR_ALIGN_DOWN(xdpf->data, DPAA_FD_DATA_ALIGNMENT);
2241 data_shift = xdpf->data - aligned_data;
2243 /* The XDP frame's headroom needs to be large enough to accommodate
2244 * shifting the data as well as storing the xdpf backpointer.
2246 if (xdpf->headroom >= data_shift + priv->tx_headroom) {
2247 memmove(aligned_data, xdpf->data, xdpf->len);
2248 xdpf->data = aligned_data;
2249 xdpf->headroom = priv->tx_headroom;
2253 /* The new xdp_frame is stored in the new buffer. Reserve enough space
2254 * in the headroom for storing it along with the driver's private
2255 * info. The headroom needs to be aligned to DPAA_FD_DATA_ALIGNMENT to
2256 * guarantee the data's alignment in the buffer.
2258 headroom = ALIGN(sizeof(*new_xdpf) + priv->tx_headroom,
2259 DPAA_FD_DATA_ALIGNMENT);
2261 /* Assure the extended headroom and data don't overflow the buffer,
2262 * while maintaining the mandatory tailroom.
2264 if (headroom + xdpf->len > DPAA_BP_RAW_SIZE -
2265 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
2268 p = dev_alloc_pages(0);
2272 /* Copy the data to the new buffer at a properly aligned offset */
2273 new_buff = page_address(p);
2274 memcpy(new_buff + headroom, xdpf->data, xdpf->len);
2276 /* Create an XDP frame around the new buffer in a similar fashion
2277 * to xdp_convert_buff_to_frame.
2279 new_xdpf = new_buff;
2280 new_xdpf->data = new_buff + headroom;
2281 new_xdpf->len = xdpf->len;
2282 new_xdpf->headroom = priv->tx_headroom;
2283 new_xdpf->frame_sz = DPAA_BP_RAW_SIZE;
2284 new_xdpf->mem_type = MEM_TYPE_PAGE_ORDER0;
2286 /* Release the initial buffer */
2287 xdp_return_frame_rx_napi(xdpf);
2289 *init_xdpf = new_xdpf;
2295 dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
2297 const int queue_mapping = skb_get_queue_mapping(skb);
2298 struct rtnl_link_stats64 *percpu_stats;
2299 struct dpaa_percpu_priv *percpu_priv;
2300 struct netdev_queue *txq;
2301 struct dpaa_priv *priv;
2307 priv = netdev_priv(net_dev);
2308 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2309 percpu_stats = &percpu_priv->stats;
2311 qm_fd_clear_fd(&fd);
2313 /* Packet data is always read as 32-bit words, so zero out any part of
2314 * the skb which might be sent if we have to pad the packet
2316 if (__skb_put_padto(skb, ETH_ZLEN, false))
2319 nonlinear = skb_is_nonlinear(skb);
2321 /* We're going to store the skb backpointer at the beginning
2322 * of the data buffer, so we need a privately owned skb
2324 * We've made sure skb is not shared in dev->priv_flags,
2325 * we need to verify the skb head is not cloned
2327 if (skb_cow_head(skb, priv->tx_headroom))
2330 WARN_ON(skb_is_nonlinear(skb));
2333 /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
2334 * make sure we don't feed FMan with more fragments than it supports.
2336 if (unlikely(nonlinear &&
2337 (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) {
2338 /* If the egress skb contains more fragments than we support
2339 * we have no choice but to linearize it ourselves.
2341 if (__skb_linearize(skb))
2344 nonlinear = skb_is_nonlinear(skb);
2347 #ifdef CONFIG_DPAA_ERRATUM_A050385
2348 if (unlikely(fman_has_errata_a050385())) {
2349 if (dpaa_a050385_wa_skb(net_dev, &skb))
2351 nonlinear = skb_is_nonlinear(skb);
2356 /* Just create a S/G fd based on the skb */
2357 err = skb_to_sg_fd(priv, skb, &fd);
2358 percpu_priv->tx_frag_skbuffs++;
2360 /* Create a contig FD from this skb */
2361 err = skb_to_contig_fd(priv, skb, &fd, &offset);
2363 if (unlikely(err < 0))
2364 goto skb_to_fd_failed;
2366 txq = netdev_get_tx_queue(net_dev, queue_mapping);
2368 /* LLTX requires to do our own update of trans_start */
2369 txq_trans_cond_update(txq);
2371 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
2372 fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD);
2373 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2376 if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
2377 return NETDEV_TX_OK;
2379 dpaa_cleanup_tx_fd(priv, &fd, false);
2382 percpu_stats->tx_errors++;
2384 return NETDEV_TX_OK;
2387 static void dpaa_rx_error(struct net_device *net_dev,
2388 const struct dpaa_priv *priv,
2389 struct dpaa_percpu_priv *percpu_priv,
2390 const struct qm_fd *fd,
2393 if (net_ratelimit())
2394 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
2395 be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
2397 percpu_priv->stats.rx_errors++;
2399 if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
2400 percpu_priv->rx_errors.dme++;
2401 if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
2402 percpu_priv->rx_errors.fpe++;
2403 if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
2404 percpu_priv->rx_errors.fse++;
2405 if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
2406 percpu_priv->rx_errors.phe++;
2408 dpaa_fd_release(net_dev, fd);
2411 static void dpaa_tx_error(struct net_device *net_dev,
2412 const struct dpaa_priv *priv,
2413 struct dpaa_percpu_priv *percpu_priv,
2414 const struct qm_fd *fd,
2417 struct sk_buff *skb;
2419 if (net_ratelimit())
2420 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2421 be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
2423 percpu_priv->stats.tx_errors++;
2425 skb = dpaa_cleanup_tx_fd(priv, fd, false);
2429 static int dpaa_eth_poll(struct napi_struct *napi, int budget)
2431 struct dpaa_napi_portal *np =
2432 container_of(napi, struct dpaa_napi_portal, napi);
2437 cleaned = qman_p_poll_dqrr(np->p, budget);
2439 if (np->xdp_act & XDP_REDIRECT)
2442 if (cleaned < budget) {
2443 napi_complete_done(napi, cleaned);
2444 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2445 } else if (np->down) {
2446 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2452 static void dpaa_tx_conf(struct net_device *net_dev,
2453 const struct dpaa_priv *priv,
2454 struct dpaa_percpu_priv *percpu_priv,
2455 const struct qm_fd *fd,
2458 struct sk_buff *skb;
2460 if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2461 if (net_ratelimit())
2462 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2463 be32_to_cpu(fd->status) &
2464 FM_FD_STAT_TX_ERRORS);
2466 percpu_priv->stats.tx_errors++;
2469 percpu_priv->tx_confirm++;
2471 skb = dpaa_cleanup_tx_fd(priv, fd, true);
2476 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2477 struct qman_portal *portal, bool sched_napi)
2480 /* Disable QMan IRQ and invoke NAPI */
2481 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2483 percpu_priv->np.p = portal;
2484 napi_schedule(&percpu_priv->np.napi);
2485 percpu_priv->in_interrupt++;
2491 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2493 const struct qm_dqrr_entry *dq,
2496 struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2497 struct dpaa_percpu_priv *percpu_priv;
2498 struct net_device *net_dev;
2499 struct dpaa_bp *dpaa_bp;
2500 struct dpaa_priv *priv;
2502 net_dev = dpaa_fq->net_dev;
2503 priv = netdev_priv(net_dev);
2504 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2506 return qman_cb_dqrr_consume;
2508 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2510 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2511 return qman_cb_dqrr_stop;
2513 dpaa_eth_refill_bpools(priv);
2514 dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2516 return qman_cb_dqrr_consume;
2519 static int dpaa_xdp_xmit_frame(struct net_device *net_dev,
2520 struct xdp_frame *xdpf)
2522 struct dpaa_priv *priv = netdev_priv(net_dev);
2523 struct rtnl_link_stats64 *percpu_stats;
2524 struct dpaa_percpu_priv *percpu_priv;
2525 struct dpaa_eth_swbp *swbp;
2526 struct netdev_queue *txq;
2532 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2533 percpu_stats = &percpu_priv->stats;
2535 #ifdef CONFIG_DPAA_ERRATUM_A050385
2536 if (unlikely(fman_has_errata_a050385())) {
2537 if (dpaa_a050385_wa_xdpf(priv, &xdpf)) {
2544 if (xdpf->headroom < DPAA_TX_PRIV_DATA_SIZE) {
2549 buff_start = xdpf->data - xdpf->headroom;
2551 /* Leave empty the skb backpointer at the start of the buffer.
2552 * Save the XDP frame for easy cleanup on confirmation.
2554 swbp = (struct dpaa_eth_swbp *)buff_start;
2558 qm_fd_clear_fd(&fd);
2559 fd.bpid = FSL_DPAA_BPID_INV;
2560 fd.cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2561 qm_fd_set_contig(&fd, xdpf->headroom, xdpf->len);
2563 addr = dma_map_single(priv->tx_dma_dev, buff_start,
2564 xdpf->headroom + xdpf->len,
2566 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2571 qm_fd_addr_set64(&fd, addr);
2573 /* Bump the trans_start */
2574 txq = netdev_get_tx_queue(net_dev, smp_processor_id());
2575 txq_trans_cond_update(txq);
2577 err = dpaa_xmit(priv, percpu_stats, smp_processor_id(), &fd);
2579 dma_unmap_single(priv->tx_dma_dev, addr,
2580 qm_fd_get_offset(&fd) + qm_fd_get_length(&fd),
2588 percpu_stats->tx_errors++;
2592 static u32 dpaa_run_xdp(struct dpaa_priv *priv, struct qm_fd *fd, void *vaddr,
2593 struct dpaa_fq *dpaa_fq, unsigned int *xdp_meta_len)
2595 ssize_t fd_off = qm_fd_get_offset(fd);
2596 struct bpf_prog *xdp_prog;
2597 struct xdp_frame *xdpf;
2598 struct xdp_buff xdp;
2602 xdp_prog = READ_ONCE(priv->xdp_prog);
2606 xdp_init_buff(&xdp, DPAA_BP_RAW_SIZE - DPAA_TX_PRIV_DATA_SIZE,
2608 xdp_prepare_buff(&xdp, vaddr + fd_off - XDP_PACKET_HEADROOM,
2609 XDP_PACKET_HEADROOM, qm_fd_get_length(fd), true);
2611 /* We reserve a fixed headroom of 256 bytes under the erratum and we
2612 * offer it all to XDP programs to use. If no room is left for the
2613 * xdpf backpointer on TX, we will need to copy the data.
2614 * Disable metadata support since data realignments might be required
2615 * and the information can be lost.
2617 #ifdef CONFIG_DPAA_ERRATUM_A050385
2618 if (unlikely(fman_has_errata_a050385())) {
2619 xdp_set_data_meta_invalid(&xdp);
2620 xdp.data_hard_start = vaddr;
2621 xdp.frame_sz = DPAA_BP_RAW_SIZE;
2625 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp);
2627 /* Update the length and the offset of the FD */
2628 qm_fd_set_contig(fd, xdp.data - vaddr, xdp.data_end - xdp.data);
2632 #ifdef CONFIG_DPAA_ERRATUM_A050385
2633 *xdp_meta_len = xdp_data_meta_unsupported(&xdp) ? 0 :
2634 xdp.data - xdp.data_meta;
2636 *xdp_meta_len = xdp.data - xdp.data_meta;
2640 /* We can access the full headroom when sending the frame
2643 xdp.data_hard_start = vaddr;
2644 xdp.frame_sz = DPAA_BP_RAW_SIZE;
2645 xdpf = xdp_convert_buff_to_frame(&xdp);
2646 if (unlikely(!xdpf)) {
2647 free_pages((unsigned long)vaddr, 0);
2651 if (dpaa_xdp_xmit_frame(priv->net_dev, xdpf))
2652 xdp_return_frame_rx_napi(xdpf);
2656 /* Allow redirect to use the full headroom */
2657 xdp.data_hard_start = vaddr;
2658 xdp.frame_sz = DPAA_BP_RAW_SIZE;
2660 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog);
2662 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act);
2663 free_pages((unsigned long)vaddr, 0);
2667 bpf_warn_invalid_xdp_action(priv->net_dev, xdp_prog, xdp_act);
2670 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act);
2673 /* Free the buffer */
2674 free_pages((unsigned long)vaddr, 0);
2681 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2683 const struct qm_dqrr_entry *dq,
2686 bool ts_valid = false, hash_valid = false;
2687 struct skb_shared_hwtstamps *shhwtstamps;
2688 unsigned int skb_len, xdp_meta_len = 0;
2689 struct rtnl_link_stats64 *percpu_stats;
2690 struct dpaa_percpu_priv *percpu_priv;
2691 const struct qm_fd *fd = &dq->fd;
2692 dma_addr_t addr = qm_fd_addr(fd);
2693 struct dpaa_napi_portal *np;
2694 enum qm_fd_format fd_format;
2695 struct net_device *net_dev;
2696 u32 fd_status, hash_offset;
2697 struct qm_sg_entry *sgt;
2698 struct dpaa_bp *dpaa_bp;
2699 struct dpaa_fq *dpaa_fq;
2700 struct dpaa_priv *priv;
2701 struct sk_buff *skb;
2708 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2709 fd_status = be32_to_cpu(fd->status);
2710 fd_format = qm_fd_get_format(fd);
2711 net_dev = dpaa_fq->net_dev;
2712 priv = netdev_priv(net_dev);
2713 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2715 return qman_cb_dqrr_consume;
2717 /* Trace the Rx fd */
2718 trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2720 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2721 percpu_stats = &percpu_priv->stats;
2722 np = &percpu_priv->np;
2724 if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)))
2725 return qman_cb_dqrr_stop;
2727 /* Make sure we didn't run out of buffers */
2728 if (unlikely(dpaa_eth_refill_bpools(priv))) {
2729 /* Unable to refill the buffer pool due to insufficient
2730 * system memory. Just release the frame back into the pool,
2731 * otherwise we'll soon end up with an empty buffer pool.
2733 dpaa_fd_release(net_dev, &dq->fd);
2734 return qman_cb_dqrr_consume;
2737 if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2738 if (net_ratelimit())
2739 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2740 fd_status & FM_FD_STAT_RX_ERRORS);
2742 percpu_stats->rx_errors++;
2743 dpaa_fd_release(net_dev, fd);
2744 return qman_cb_dqrr_consume;
2747 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
2750 /* prefetch the first 64 bytes of the frame or the SGT start */
2751 vaddr = phys_to_virt(addr);
2752 prefetch(vaddr + qm_fd_get_offset(fd));
2754 /* The only FD types that we may receive are contig and S/G */
2755 WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2757 /* Account for either the contig buffer or the SGT buffer (depending on
2758 * which case we were in) having been removed from the pool.
2760 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2763 /* Extract the timestamp stored in the headroom before running XDP */
2764 if (priv->rx_tstamp) {
2765 if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns))
2768 WARN_ONCE(1, "fman_port_get_tstamp failed!\n");
2771 /* Extract the hash stored in the headroom before running XDP */
2772 if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use &&
2773 !fman_port_get_hash_result_offset(priv->mac_dev->port[RX],
2775 hash = be32_to_cpu(*(__be32 *)(vaddr + hash_offset));
2779 if (likely(fd_format == qm_fd_contig)) {
2780 xdp_act = dpaa_run_xdp(priv, (struct qm_fd *)fd, vaddr,
2781 dpaa_fq, &xdp_meta_len);
2782 np->xdp_act |= xdp_act;
2783 if (xdp_act != XDP_PASS) {
2784 percpu_stats->rx_packets++;
2785 percpu_stats->rx_bytes += qm_fd_get_length(fd);
2786 return qman_cb_dqrr_consume;
2788 skb = contig_fd_to_skb(priv, fd);
2790 /* XDP doesn't support S/G frames. Return the fragments to the
2791 * buffer pool and release the SGT.
2793 if (READ_ONCE(priv->xdp_prog)) {
2794 WARN_ONCE(1, "S/G frames not supported under XDP\n");
2795 sgt = vaddr + qm_fd_get_offset(fd);
2796 dpaa_release_sgt_members(sgt);
2797 free_pages((unsigned long)vaddr, 0);
2798 return qman_cb_dqrr_consume;
2800 skb = sg_fd_to_skb(priv, fd);
2803 return qman_cb_dqrr_consume;
2806 skb_metadata_set(skb, xdp_meta_len);
2808 /* Set the previously extracted timestamp */
2810 shhwtstamps = skb_hwtstamps(skb);
2811 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2812 shhwtstamps->hwtstamp = ns_to_ktime(ns);
2815 skb->protocol = eth_type_trans(skb, net_dev);
2817 /* Set the previously extracted hash */
2819 enum pkt_hash_types type;
2821 /* if L4 exists, it was used in the hash generation */
2822 type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ?
2823 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
2824 skb_set_hash(skb, hash, type);
2829 if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) {
2830 percpu_stats->rx_dropped++;
2831 return qman_cb_dqrr_consume;
2834 percpu_stats->rx_packets++;
2835 percpu_stats->rx_bytes += skb_len;
2837 return qman_cb_dqrr_consume;
2840 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2842 const struct qm_dqrr_entry *dq,
2845 struct dpaa_percpu_priv *percpu_priv;
2846 struct net_device *net_dev;
2847 struct dpaa_priv *priv;
2849 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2850 priv = netdev_priv(net_dev);
2852 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2854 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2855 return qman_cb_dqrr_stop;
2857 dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2859 return qman_cb_dqrr_consume;
2862 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2864 const struct qm_dqrr_entry *dq,
2867 struct dpaa_percpu_priv *percpu_priv;
2868 struct net_device *net_dev;
2869 struct dpaa_priv *priv;
2871 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2872 priv = netdev_priv(net_dev);
2875 trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2877 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2879 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2880 return qman_cb_dqrr_stop;
2882 dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2884 return qman_cb_dqrr_consume;
2887 static void egress_ern(struct qman_portal *portal,
2889 const union qm_mr_entry *msg)
2891 const struct qm_fd *fd = &msg->ern.fd;
2892 struct dpaa_percpu_priv *percpu_priv;
2893 const struct dpaa_priv *priv;
2894 struct net_device *net_dev;
2895 struct sk_buff *skb;
2897 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2898 priv = netdev_priv(net_dev);
2899 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2901 percpu_priv->stats.tx_dropped++;
2902 percpu_priv->stats.tx_fifo_errors++;
2903 count_ern(percpu_priv, msg);
2905 skb = dpaa_cleanup_tx_fd(priv, fd, false);
2906 dev_kfree_skb_any(skb);
2909 static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2910 .rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2911 .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2912 .rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2913 .tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2914 .egress_ern = { .cb = { .ern = egress_ern } }
2917 static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2919 struct dpaa_percpu_priv *percpu_priv;
2922 for_each_online_cpu(i) {
2923 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2925 percpu_priv->np.down = false;
2926 napi_enable(&percpu_priv->np.napi);
2930 static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2932 struct dpaa_percpu_priv *percpu_priv;
2935 for_each_online_cpu(i) {
2936 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2938 percpu_priv->np.down = true;
2939 napi_disable(&percpu_priv->np.napi);
2943 static int dpaa_open(struct net_device *net_dev)
2945 struct mac_device *mac_dev;
2946 struct dpaa_priv *priv;
2949 priv = netdev_priv(net_dev);
2950 mac_dev = priv->mac_dev;
2951 dpaa_eth_napi_enable(priv);
2953 err = phylink_of_phy_connect(mac_dev->phylink,
2954 mac_dev->dev->of_node, 0);
2956 goto phy_init_failed;
2958 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2959 err = fman_port_enable(mac_dev->port[i]);
2961 goto mac_start_failed;
2964 err = priv->mac_dev->enable(mac_dev->fman_mac);
2966 netif_err(priv, ifup, net_dev, "mac_dev->enable() = %d\n", err);
2967 goto mac_start_failed;
2969 phylink_start(mac_dev->phylink);
2971 netif_tx_start_all_queues(net_dev);
2976 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2977 fman_port_disable(mac_dev->port[i]);
2978 phylink_disconnect_phy(mac_dev->phylink);
2981 dpaa_eth_napi_disable(priv);
2986 static int dpaa_eth_stop(struct net_device *net_dev)
2988 struct dpaa_priv *priv;
2991 err = dpaa_stop(net_dev);
2993 priv = netdev_priv(net_dev);
2994 dpaa_eth_napi_disable(priv);
2999 static bool xdp_validate_mtu(struct dpaa_priv *priv, int mtu)
3001 int max_contig_data = priv->dpaa_bp->size - priv->rx_headroom;
3003 /* We do not support S/G fragments when XDP is enabled.
3004 * Limit the MTU in relation to the buffer size.
3006 if (mtu + VLAN_ETH_HLEN + ETH_FCS_LEN > max_contig_data) {
3007 dev_warn(priv->net_dev->dev.parent,
3008 "The maximum MTU for XDP is %d\n",
3009 max_contig_data - VLAN_ETH_HLEN - ETH_FCS_LEN);
3016 static int dpaa_change_mtu(struct net_device *net_dev, int new_mtu)
3018 struct dpaa_priv *priv = netdev_priv(net_dev);
3020 if (priv->xdp_prog && !xdp_validate_mtu(priv, new_mtu))
3023 WRITE_ONCE(net_dev->mtu, new_mtu);
3027 static int dpaa_setup_xdp(struct net_device *net_dev, struct netdev_bpf *bpf)
3029 struct dpaa_priv *priv = netdev_priv(net_dev);
3030 struct bpf_prog *old_prog;
3034 /* S/G fragments are not supported in XDP-mode */
3035 if (bpf->prog && !xdp_validate_mtu(priv, net_dev->mtu)) {
3036 NL_SET_ERR_MSG_MOD(bpf->extack, "MTU too large for XDP");
3040 up = netif_running(net_dev);
3043 dpaa_eth_stop(net_dev);
3045 old_prog = xchg(&priv->xdp_prog, bpf->prog);
3047 bpf_prog_put(old_prog);
3050 err = dpaa_open(net_dev);
3052 NL_SET_ERR_MSG_MOD(bpf->extack, "dpaa_open() failed");
3060 static int dpaa_xdp(struct net_device *net_dev, struct netdev_bpf *xdp)
3062 switch (xdp->command) {
3063 case XDP_SETUP_PROG:
3064 return dpaa_setup_xdp(net_dev, xdp);
3070 static int dpaa_xdp_xmit(struct net_device *net_dev, int n,
3071 struct xdp_frame **frames, u32 flags)
3073 struct xdp_frame *xdpf;
3076 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3079 if (!netif_running(net_dev))
3082 for (i = 0; i < n; i++) {
3084 if (dpaa_xdp_xmit_frame(net_dev, xdpf))
3092 static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3094 struct dpaa_priv *priv = netdev_priv(dev);
3095 struct hwtstamp_config config;
3097 if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
3100 switch (config.tx_type) {
3101 case HWTSTAMP_TX_OFF:
3102 /* Couldn't disable rx/tx timestamping separately.
3105 priv->tx_tstamp = false;
3107 case HWTSTAMP_TX_ON:
3108 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
3109 priv->tx_tstamp = true;
3115 if (config.rx_filter == HWTSTAMP_FILTER_NONE) {
3116 /* Couldn't disable rx/tx timestamping separately.
3119 priv->rx_tstamp = false;
3121 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
3122 priv->rx_tstamp = true;
3123 /* TS is set for all frame types, not only those requested */
3124 config.rx_filter = HWTSTAMP_FILTER_ALL;
3127 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ?
3131 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
3134 struct dpaa_priv *priv = netdev_priv(net_dev);
3136 if (cmd == SIOCGMIIREG) {
3137 if (net_dev->phydev)
3138 return phylink_mii_ioctl(priv->mac_dev->phylink, rq,
3142 if (cmd == SIOCSHWTSTAMP)
3143 return dpaa_ts_ioctl(net_dev, rq, cmd);
3148 static const struct net_device_ops dpaa_ops = {
3149 .ndo_open = dpaa_open,
3150 .ndo_start_xmit = dpaa_start_xmit,
3151 .ndo_stop = dpaa_eth_stop,
3152 .ndo_tx_timeout = dpaa_tx_timeout,
3153 .ndo_get_stats64 = dpaa_get_stats64,
3154 .ndo_change_carrier = fixed_phy_change_carrier,
3155 .ndo_set_mac_address = dpaa_set_mac_address,
3156 .ndo_validate_addr = eth_validate_addr,
3157 .ndo_set_rx_mode = dpaa_set_rx_mode,
3158 .ndo_eth_ioctl = dpaa_ioctl,
3159 .ndo_setup_tc = dpaa_setup_tc,
3160 .ndo_change_mtu = dpaa_change_mtu,
3161 .ndo_bpf = dpaa_xdp,
3162 .ndo_xdp_xmit = dpaa_xdp_xmit,
3165 static int dpaa_napi_add(struct net_device *net_dev)
3167 struct dpaa_priv *priv = netdev_priv(net_dev);
3168 struct dpaa_percpu_priv *percpu_priv;
3171 for_each_possible_cpu(cpu) {
3172 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
3174 netif_napi_add(net_dev, &percpu_priv->np.napi, dpaa_eth_poll);
3180 static void dpaa_napi_del(struct net_device *net_dev)
3182 struct dpaa_priv *priv = netdev_priv(net_dev);
3183 struct dpaa_percpu_priv *percpu_priv;
3186 for_each_possible_cpu(cpu) {
3187 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
3189 __netif_napi_del(&percpu_priv->np.napi);
3194 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
3195 struct bm_buffer *bmb)
3197 dma_addr_t addr = bm_buf_addr(bmb);
3199 dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
3202 skb_free_frag(phys_to_virt(addr));
3205 /* Alloc the dpaa_bp struct and configure default values */
3206 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
3208 struct dpaa_bp *dpaa_bp;
3210 dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
3212 return ERR_PTR(-ENOMEM);
3214 dpaa_bp->bpid = FSL_DPAA_BPID_INV;
3215 dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
3216 if (!dpaa_bp->percpu_count)
3217 return ERR_PTR(-ENOMEM);
3219 dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
3221 dpaa_bp->seed_cb = dpaa_bp_seed;
3222 dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
3227 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
3228 * We won't be sending congestion notifications to FMan; for now, we just use
3229 * this CGR to generate enqueue rejections to FMan in order to drop the frames
3230 * before they reach our ingress queues and eat up memory.
3232 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
3234 struct qm_mcc_initcgr initcgr;
3238 err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
3240 if (netif_msg_drv(priv))
3241 pr_err("Error %d allocating CGR ID\n", err);
3245 /* Enable CS TD, but disable Congestion State Change Notifications. */
3246 memset(&initcgr, 0, sizeof(initcgr));
3247 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
3248 initcgr.cgr.cscn_en = QM_CGR_EN;
3249 cs_th = DPAA_INGRESS_CS_THRESHOLD;
3250 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
3252 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
3253 initcgr.cgr.cstd_en = QM_CGR_EN;
3255 /* This CGR will be associated with the SWP affined to the current CPU.
3256 * However, we'll place all our ingress FQs in it.
3258 err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
3261 if (netif_msg_drv(priv))
3262 pr_err("Error %d creating ingress CGR with ID %d\n",
3263 err, priv->ingress_cgr.cgrid);
3264 qman_release_cgrid(priv->ingress_cgr.cgrid);
3267 if (netif_msg_drv(priv))
3268 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
3269 priv->ingress_cgr.cgrid, priv->mac_dev->addr);
3271 priv->use_ingress_cgr = true;
3277 static u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl,
3278 enum port_type port)
3282 /* The frame headroom must accommodate:
3283 * - the driver private data area
3284 * - parse results, hash results, timestamp if selected
3285 * If either hash results or time stamp are selected, both will
3286 * be copied to/from the frame headroom, as TS is located between PR and
3287 * HR in the IC and IC copy size has a granularity of 16bytes
3288 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
3290 * Also make sure the headroom is a multiple of data_align bytes
3292 headroom = (u16)(bl[port].priv_data_size + DPAA_HWA_SIZE);
3295 #ifdef CONFIG_DPAA_ERRATUM_A050385
3296 if (unlikely(fman_has_errata_a050385()))
3297 headroom = XDP_PACKET_HEADROOM;
3300 return ALIGN(headroom, DPAA_FD_RX_DATA_ALIGNMENT);
3302 return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT);
3306 static int dpaa_eth_probe(struct platform_device *pdev)
3308 struct net_device *net_dev = NULL;
3309 struct dpaa_bp *dpaa_bp = NULL;
3310 struct dpaa_fq *dpaa_fq, *tmp;
3311 struct dpaa_priv *priv = NULL;
3312 struct fm_port_fqs port_fqs;
3313 struct mac_device *mac_dev;
3314 int err = 0, channel;
3319 err = bman_is_probed();
3321 return -EPROBE_DEFER;
3323 dev_err(dev, "failing probe due to bman probe error\n");
3326 err = qman_is_probed();
3328 return -EPROBE_DEFER;
3330 dev_err(dev, "failing probe due to qman probe error\n");
3333 err = bman_portals_probed();
3335 return -EPROBE_DEFER;
3338 "failing probe due to bman portals probe error\n");
3341 err = qman_portals_probed();
3343 return -EPROBE_DEFER;
3346 "failing probe due to qman portals probe error\n");
3350 /* Allocate this early, so we can store relevant information in
3353 net_dev = alloc_etherdev_mq(sizeof(*priv), dpaa_max_num_txqs());
3355 dev_err(dev, "alloc_etherdev_mq() failed\n");
3359 /* Do this here, so we can be verbose early */
3360 SET_NETDEV_DEV(net_dev, dev->parent);
3361 dev_set_drvdata(dev, net_dev);
3363 priv = netdev_priv(net_dev);
3364 priv->net_dev = net_dev;
3366 priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
3368 priv->egress_fqs = devm_kcalloc(dev, dpaa_max_num_txqs(),
3369 sizeof(*priv->egress_fqs),
3371 if (!priv->egress_fqs) {
3376 priv->conf_fqs = devm_kcalloc(dev, dpaa_max_num_txqs(),
3377 sizeof(*priv->conf_fqs),
3379 if (!priv->conf_fqs) {
3384 mac_dev = dpaa_mac_dev_get(pdev);
3385 if (IS_ERR(mac_dev)) {
3386 netdev_err(net_dev, "dpaa_mac_dev_get() failed\n");
3387 err = PTR_ERR(mac_dev);
3391 /* Devices used for DMA mapping */
3392 priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]);
3393 priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]);
3394 err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40));
3396 err = dma_coerce_mask_and_coherent(priv->tx_dma_dev,
3399 netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n");
3403 /* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
3404 * we choose conservatively and let the user explicitly set a higher
3405 * MTU via ifconfig. Otherwise, the user may end up with different MTUs
3407 * If on the other hand fsl_fm_max_frm has been chosen below 1500,
3408 * start with the maximum allowed.
3410 net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
3412 netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
3415 priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
3416 priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
3419 dpaa_bp = dpaa_bp_alloc(dev);
3420 if (IS_ERR(dpaa_bp)) {
3421 err = PTR_ERR(dpaa_bp);
3424 /* the raw size of the buffers used for reception */
3425 dpaa_bp->raw_size = DPAA_BP_RAW_SIZE;
3426 /* avoid runtime computations by keeping the usable size here */
3427 dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size);
3428 dpaa_bp->priv = priv;
3430 err = dpaa_bp_alloc_pool(dpaa_bp);
3433 priv->dpaa_bp = dpaa_bp;
3435 INIT_LIST_HEAD(&priv->dpaa_fq_list);
3437 memset(&port_fqs, 0, sizeof(port_fqs));
3439 err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
3441 dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
3445 priv->mac_dev = mac_dev;
3447 channel = dpaa_get_channel();
3449 dev_err(dev, "dpaa_get_channel() failed\n");
3454 priv->channel = (u16)channel;
3456 /* Walk the CPUs with affine portals
3457 * and add this pool channel to each's dequeue mask.
3459 dpaa_eth_add_channel(priv->channel, &pdev->dev);
3461 err = dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
3465 /* Create a congestion group for this netdev, with
3466 * dynamically-allocated CGR ID.
3467 * Must be executed after probing the MAC, but before
3468 * assigning the egress FQs to the CGRs.
3470 err = dpaa_eth_cgr_init(priv);
3472 dev_err(dev, "Error initializing CGR\n");
3476 err = dpaa_ingress_cgr_init(priv);
3478 dev_err(dev, "Error initializing ingress CGR\n");
3479 goto delete_egress_cgr;
3482 /* Add the FQs to the interface, and make them active */
3483 list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
3484 err = dpaa_fq_init(dpaa_fq, false);
3489 priv->tx_headroom = dpaa_get_headroom(priv->buf_layout, TX);
3490 priv->rx_headroom = dpaa_get_headroom(priv->buf_layout, RX);
3492 /* All real interfaces need their ports initialized */
3493 err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs,
3494 &priv->buf_layout[0], dev);
3498 /* Rx traffic distribution based on keygen hashing defaults to on */
3499 priv->keygen_in_use = true;
3501 priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
3502 if (!priv->percpu_priv) {
3503 dev_err(dev, "devm_alloc_percpu() failed\n");
3509 netif_set_real_num_tx_queues(net_dev,
3510 priv->num_tc * dpaa_num_txqs_per_tc());
3512 /* Initialize NAPI */
3513 err = dpaa_napi_add(net_dev);
3515 goto delete_dpaa_napi;
3517 err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
3519 goto delete_dpaa_napi;
3521 dpaa_eth_sysfs_init(&net_dev->dev);
3523 netif_info(priv, probe, net_dev, "Probed interface %s\n",
3529 dpaa_napi_del(net_dev);
3531 dpaa_fq_free(dev, &priv->dpaa_fq_list);
3532 qman_delete_cgr_safe(&priv->ingress_cgr);
3533 qman_release_cgrid(priv->ingress_cgr.cgrid);
3535 qman_delete_cgr_safe(&priv->cgr_data.cgr);
3536 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3538 dpaa_bps_free(priv);
3540 dev_set_drvdata(dev, NULL);
3541 free_netdev(net_dev);
3546 static void dpaa_remove(struct platform_device *pdev)
3548 struct net_device *net_dev;
3549 struct dpaa_priv *priv;
3554 net_dev = dev_get_drvdata(dev);
3556 priv = netdev_priv(net_dev);
3558 dpaa_eth_sysfs_remove(dev);
3560 dev_set_drvdata(dev, NULL);
3561 unregister_netdev(net_dev);
3562 phylink_destroy(priv->mac_dev->phylink);
3564 err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
3566 dev_err(dev, "Failed to free FQs on remove (%pE)\n",
3569 qman_delete_cgr_safe(&priv->ingress_cgr);
3570 qman_release_cgrid(priv->ingress_cgr.cgrid);
3571 qman_delete_cgr_safe(&priv->cgr_data.cgr);
3572 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3574 dpaa_napi_del(net_dev);
3576 dpaa_bps_free(priv);
3578 free_netdev(net_dev);
3581 static const struct platform_device_id dpaa_devtype[] = {
3583 .name = "dpaa-ethernet",
3588 MODULE_DEVICE_TABLE(platform, dpaa_devtype);
3590 static struct platform_driver dpaa_driver = {
3592 .name = KBUILD_MODNAME,
3594 .id_table = dpaa_devtype,
3595 .probe = dpaa_eth_probe,
3596 .remove = dpaa_remove
3599 static int __init dpaa_load(void)
3603 pr_debug("FSL DPAA Ethernet driver\n");
3605 /* initialize dpaa_eth mirror values */
3606 dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
3607 dpaa_max_frm = fman_get_max_frm();
3609 err = platform_driver_register(&dpaa_driver);
3611 pr_err("Error, platform_driver_register() = %d\n", err);
3615 module_init(dpaa_load);
3617 static void __exit dpaa_unload(void)
3619 platform_driver_unregister(&dpaa_driver);
3621 /* Only one channel is used and needs to be released after all
3622 * interfaces are removed
3624 dpaa_release_channel();
3626 module_exit(dpaa_unload);
3628 MODULE_LICENSE("Dual BSD/GPL");
3629 MODULE_DESCRIPTION("FSL DPAA Ethernet driver");