]> Git Repo - linux.git/blob - drivers/net/ethernet/freescale/dpaa/dpaa_eth.c
Linux 6.14-rc3
[linux.git] / drivers / net / ethernet / freescale / dpaa / dpaa_eth.c
1 // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0-or-later
2 /*
3  * Copyright 2008 - 2016 Freescale Semiconductor Inc.
4  * Copyright 2020 NXP
5  */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/init.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/module.h>
12 #include <linux/of_mdio.h>
13 #include <linux/of_net.h>
14 #include <linux/io.h>
15 #include <linux/if_arp.h>
16 #include <linux/if_vlan.h>
17 #include <linux/icmp.h>
18 #include <linux/ip.h>
19 #include <linux/ipv6.h>
20 #include <linux/platform_device.h>
21 #include <linux/udp.h>
22 #include <linux/tcp.h>
23 #include <linux/net.h>
24 #include <linux/skbuff.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/highmem.h>
28 #include <linux/percpu.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/sort.h>
31 #include <linux/phy_fixed.h>
32 #include <linux/bpf.h>
33 #include <linux/bpf_trace.h>
34 #include <soc/fsl/bman.h>
35 #include <soc/fsl/qman.h>
36 #include "fman.h"
37 #include "fman_port.h"
38 #include "mac.h"
39 #include "dpaa_eth.h"
40
41 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
42  * using trace events only need to #include <trace/events/sched.h>
43  */
44 #define CREATE_TRACE_POINTS
45 #include "dpaa_eth_trace.h"
46
47 static int debug = -1;
48 module_param(debug, int, 0444);
49 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
50
51 static u16 tx_timeout = 1000;
52 module_param(tx_timeout, ushort, 0444);
53 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
54
55 #define FM_FD_STAT_RX_ERRORS                                            \
56         (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL     | \
57          FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
58          FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME     | \
59          FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
60          FM_FD_ERR_PRS_HDR_ERR)
61
62 #define FM_FD_STAT_TX_ERRORS \
63         (FM_FD_ERR_UNSUPPORTED_FORMAT | \
64          FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
65
66 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
67                           NETIF_MSG_LINK | NETIF_MSG_IFUP | \
68                           NETIF_MSG_IFDOWN | NETIF_MSG_HW)
69
70 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000
71 /* Ingress congestion threshold on FMan ports
72  * The size in bytes of the ingress tail-drop threshold on FMan ports.
73  * Traffic piling up above this value will be rejected by QMan and discarded
74  * by FMan.
75  */
76
77 /* Size in bytes of the FQ taildrop threshold */
78 #define DPAA_FQ_TD 0x200000
79
80 #define DPAA_CS_THRESHOLD_1G 0x06000000
81 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
82  * The size in bytes of the egress Congestion State notification threshold on
83  * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
84  * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
85  * and the larger the frame size, the more acute the problem.
86  * So we have to find a balance between these factors:
87  * - avoiding the device staying congested for a prolonged time (risking
88  *   the netdev watchdog to fire - see also the tx_timeout module param);
89  * - affecting performance of protocols such as TCP, which otherwise
90  *   behave well under the congestion notification mechanism;
91  * - preventing the Tx cores from tightly-looping (as if the congestion
92  *   threshold was too low to be effective);
93  * - running out of memory if the CS threshold is set too high.
94  */
95
96 #define DPAA_CS_THRESHOLD_10G 0x10000000
97 /* The size in bytes of the egress Congestion State notification threshold on
98  * 10G ports, range 0x1000 .. 0x10000000
99  */
100
101 /* Largest value that the FQD's OAL field can hold */
102 #define FSL_QMAN_MAX_OAL        127
103
104 /* Default alignment for start of data in an Rx FD */
105 #ifdef CONFIG_DPAA_ERRATUM_A050385
106 /* aligning data start to 64 avoids DMA transaction splits, unless the buffer
107  * is crossing a 4k page boundary
108  */
109 #define DPAA_FD_DATA_ALIGNMENT  (fman_has_errata_a050385() ? 64 : 16)
110 /* aligning to 256 avoids DMA transaction splits caused by 4k page boundary
111  * crossings; also, all SG fragments except the last must have a size multiple
112  * of 256 to avoid DMA transaction splits
113  */
114 #define DPAA_A050385_ALIGN 256
115 #define DPAA_FD_RX_DATA_ALIGNMENT (fman_has_errata_a050385() ? \
116                                    DPAA_A050385_ALIGN : 16)
117 #else
118 #define DPAA_FD_DATA_ALIGNMENT  16
119 #define DPAA_FD_RX_DATA_ALIGNMENT DPAA_FD_DATA_ALIGNMENT
120 #endif
121
122 /* The DPAA requires 256 bytes reserved and mapped for the SGT */
123 #define DPAA_SGT_SIZE 256
124
125 /* Values for the L3R field of the FM Parse Results
126  */
127 /* L3 Type field: First IP Present IPv4 */
128 #define FM_L3_PARSE_RESULT_IPV4 0x8000
129 /* L3 Type field: First IP Present IPv6 */
130 #define FM_L3_PARSE_RESULT_IPV6 0x4000
131 /* Values for the L4R field of the FM Parse Results */
132 /* L4 Type field: UDP */
133 #define FM_L4_PARSE_RESULT_UDP  0x40
134 /* L4 Type field: TCP */
135 #define FM_L4_PARSE_RESULT_TCP  0x20
136
137 /* FD status field indicating whether the FM Parser has attempted to validate
138  * the L4 csum of the frame.
139  * Note that having this bit set doesn't necessarily imply that the checksum
140  * is valid. One would have to check the parse results to find that out.
141  */
142 #define FM_FD_STAT_L4CV         0x00000004
143
144 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
145 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
146
147 #define FSL_DPAA_BPID_INV               0xff
148 #define FSL_DPAA_ETH_MAX_BUF_COUNT      128
149 #define FSL_DPAA_ETH_REFILL_THRESHOLD   80
150
151 #define DPAA_TX_PRIV_DATA_SIZE  16
152 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
153 #define DPAA_TIME_STAMP_SIZE 8
154 #define DPAA_HASH_RESULTS_SIZE 8
155 #define DPAA_HWA_SIZE (DPAA_PARSE_RESULTS_SIZE + DPAA_TIME_STAMP_SIZE \
156                        + DPAA_HASH_RESULTS_SIZE)
157 #define DPAA_RX_PRIV_DATA_DEFAULT_SIZE (DPAA_TX_PRIV_DATA_SIZE + \
158                                         XDP_PACKET_HEADROOM - DPAA_HWA_SIZE)
159 #ifdef CONFIG_DPAA_ERRATUM_A050385
160 #define DPAA_RX_PRIV_DATA_A050385_SIZE (DPAA_A050385_ALIGN - DPAA_HWA_SIZE)
161 #define DPAA_RX_PRIV_DATA_SIZE (fman_has_errata_a050385() ? \
162                                 DPAA_RX_PRIV_DATA_A050385_SIZE : \
163                                 DPAA_RX_PRIV_DATA_DEFAULT_SIZE)
164 #else
165 #define DPAA_RX_PRIV_DATA_SIZE DPAA_RX_PRIV_DATA_DEFAULT_SIZE
166 #endif
167
168 #define DPAA_ETH_PCD_RXQ_NUM    128
169
170 #define DPAA_ENQUEUE_RETRIES    100000
171
172 enum port_type {RX, TX};
173
174 struct fm_port_fqs {
175         struct dpaa_fq *tx_defq;
176         struct dpaa_fq *tx_errq;
177         struct dpaa_fq *rx_defq;
178         struct dpaa_fq *rx_errq;
179         struct dpaa_fq *rx_pcdq;
180 };
181
182 /* All the dpa bps in use at any moment */
183 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
184
185 #define DPAA_BP_RAW_SIZE 4096
186
187 #ifdef CONFIG_DPAA_ERRATUM_A050385
188 #define dpaa_bp_size(raw_size) (SKB_WITH_OVERHEAD(raw_size) & \
189                                 ~(DPAA_A050385_ALIGN - 1))
190 #else
191 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size)
192 #endif
193
194 static int dpaa_max_frm;
195
196 static int dpaa_rx_extra_headroom;
197
198 #define dpaa_get_max_mtu()      \
199         (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
200
201 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed);
202
203 static int dpaa_netdev_init(struct net_device *net_dev,
204                             const struct net_device_ops *dpaa_ops,
205                             u16 tx_timeout)
206 {
207         struct dpaa_priv *priv = netdev_priv(net_dev);
208         struct device *dev = net_dev->dev.parent;
209         struct mac_device *mac_dev = priv->mac_dev;
210         struct dpaa_percpu_priv *percpu_priv;
211         const u8 *mac_addr;
212         int i, err;
213
214         /* Although we access another CPU's private data here
215          * we do it at initialization so it is safe
216          */
217         for_each_possible_cpu(i) {
218                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
219                 percpu_priv->net_dev = net_dev;
220         }
221
222         net_dev->netdev_ops = dpaa_ops;
223         mac_addr = mac_dev->addr;
224
225         net_dev->mem_start = (unsigned long)priv->mac_dev->res->start;
226         net_dev->mem_end = (unsigned long)priv->mac_dev->res->end;
227
228         net_dev->min_mtu = ETH_MIN_MTU;
229         net_dev->max_mtu = dpaa_get_max_mtu();
230
231         net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
232                                  NETIF_F_RXHASH);
233
234         net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
235         /* The kernels enables GSO automatically, if we declare NETIF_F_SG.
236          * For conformity, we'll still declare GSO explicitly.
237          */
238         net_dev->features |= NETIF_F_GSO;
239         net_dev->features |= NETIF_F_RXCSUM;
240
241         net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
242         net_dev->lltx = true;
243         /* we do not want shared skbs on TX */
244         net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
245
246         net_dev->features |= net_dev->hw_features;
247         net_dev->vlan_features = net_dev->features;
248
249         net_dev->xdp_features = NETDEV_XDP_ACT_BASIC |
250                                 NETDEV_XDP_ACT_REDIRECT |
251                                 NETDEV_XDP_ACT_NDO_XMIT;
252
253         if (is_valid_ether_addr(mac_addr)) {
254                 memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
255                 eth_hw_addr_set(net_dev, mac_addr);
256         } else {
257                 eth_hw_addr_random(net_dev);
258                 err = mac_dev->change_addr(mac_dev->fman_mac,
259                         (const enet_addr_t *)net_dev->dev_addr);
260                 if (err) {
261                         dev_err(dev, "Failed to set random MAC address\n");
262                         return -EINVAL;
263                 }
264                 dev_info(dev, "Using random MAC address: %pM\n",
265                          net_dev->dev_addr);
266         }
267
268         net_dev->ethtool_ops = &dpaa_ethtool_ops;
269
270         net_dev->needed_headroom = priv->tx_headroom;
271         net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
272
273         /* The rest of the config is filled in by the mac device already */
274         mac_dev->phylink_config.dev = &net_dev->dev;
275         mac_dev->phylink_config.type = PHYLINK_NETDEV;
276         mac_dev->update_speed = dpaa_eth_cgr_set_speed;
277         mac_dev->phylink = phylink_create(&mac_dev->phylink_config,
278                                           dev_fwnode(mac_dev->dev),
279                                           mac_dev->phy_if,
280                                           mac_dev->phylink_ops);
281         if (IS_ERR(mac_dev->phylink)) {
282                 err = PTR_ERR(mac_dev->phylink);
283                 dev_err_probe(dev, err, "Could not create phylink\n");
284                 return err;
285         }
286
287         /* start without the RUNNING flag, phylib controls it later */
288         netif_carrier_off(net_dev);
289
290         err = register_netdev(net_dev);
291         if (err < 0) {
292                 dev_err(dev, "register_netdev() = %d\n", err);
293                 phylink_destroy(mac_dev->phylink);
294                 return err;
295         }
296
297         return 0;
298 }
299
300 static int dpaa_stop(struct net_device *net_dev)
301 {
302         struct mac_device *mac_dev;
303         struct dpaa_priv *priv;
304         int i, error;
305         int err = 0;
306
307         priv = netdev_priv(net_dev);
308         mac_dev = priv->mac_dev;
309
310         netif_tx_stop_all_queues(net_dev);
311         /* Allow the Fman (Tx) port to process in-flight frames before we
312          * try switching it off.
313          */
314         msleep(200);
315
316         phylink_stop(mac_dev->phylink);
317         mac_dev->disable(mac_dev->fman_mac);
318
319         for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
320                 error = fman_port_disable(mac_dev->port[i]);
321                 if (error)
322                         err = error;
323         }
324
325         phylink_disconnect_phy(mac_dev->phylink);
326         net_dev->phydev = NULL;
327
328         msleep(200);
329
330         return err;
331 }
332
333 static void dpaa_tx_timeout(struct net_device *net_dev, unsigned int txqueue)
334 {
335         struct dpaa_percpu_priv *percpu_priv;
336         const struct dpaa_priv  *priv;
337
338         priv = netdev_priv(net_dev);
339         percpu_priv = this_cpu_ptr(priv->percpu_priv);
340
341         netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
342                    jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
343
344         percpu_priv->stats.tx_errors++;
345 }
346
347 /* Calculates the statistics for the given device by adding the statistics
348  * collected by each CPU.
349  */
350 static void dpaa_get_stats64(struct net_device *net_dev,
351                              struct rtnl_link_stats64 *s)
352 {
353         int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
354         struct dpaa_priv *priv = netdev_priv(net_dev);
355         struct dpaa_percpu_priv *percpu_priv;
356         u64 *netstats = (u64 *)s;
357         u64 *cpustats;
358         int i, j;
359
360         for_each_possible_cpu(i) {
361                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
362
363                 cpustats = (u64 *)&percpu_priv->stats;
364
365                 /* add stats from all CPUs */
366                 for (j = 0; j < numstats; j++)
367                         netstats[j] += cpustats[j];
368         }
369 }
370
371 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
372                          void *type_data)
373 {
374         struct dpaa_priv *priv = netdev_priv(net_dev);
375         int num_txqs_per_tc = dpaa_num_txqs_per_tc();
376         struct tc_mqprio_qopt *mqprio = type_data;
377         u8 num_tc;
378         int i;
379
380         if (type != TC_SETUP_QDISC_MQPRIO)
381                 return -EOPNOTSUPP;
382
383         mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
384         num_tc = mqprio->num_tc;
385
386         if (num_tc == priv->num_tc)
387                 return 0;
388
389         if (!num_tc) {
390                 netdev_reset_tc(net_dev);
391                 goto out;
392         }
393
394         if (num_tc > DPAA_TC_NUM) {
395                 netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
396                            DPAA_TC_NUM);
397                 return -EINVAL;
398         }
399
400         netdev_set_num_tc(net_dev, num_tc);
401
402         for (i = 0; i < num_tc; i++)
403                 netdev_set_tc_queue(net_dev, i, num_txqs_per_tc,
404                                     i * num_txqs_per_tc);
405
406 out:
407         priv->num_tc = num_tc ? : 1;
408         netif_set_real_num_tx_queues(net_dev, priv->num_tc * num_txqs_per_tc);
409         return 0;
410 }
411
412 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
413 {
414         struct dpaa_eth_data *eth_data;
415         struct device *dpaa_dev;
416         struct mac_device *mac_dev;
417
418         dpaa_dev = &pdev->dev;
419         eth_data = dpaa_dev->platform_data;
420         if (!eth_data) {
421                 dev_err(dpaa_dev, "eth_data missing\n");
422                 return ERR_PTR(-ENODEV);
423         }
424         mac_dev = eth_data->mac_dev;
425         if (!mac_dev) {
426                 dev_err(dpaa_dev, "mac_dev missing\n");
427                 return ERR_PTR(-EINVAL);
428         }
429
430         return mac_dev;
431 }
432
433 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
434 {
435         const struct dpaa_priv *priv;
436         struct mac_device *mac_dev;
437         struct sockaddr old_addr;
438         int err;
439
440         priv = netdev_priv(net_dev);
441
442         memcpy(old_addr.sa_data, net_dev->dev_addr,  ETH_ALEN);
443
444         err = eth_mac_addr(net_dev, addr);
445         if (err < 0) {
446                 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
447                 return err;
448         }
449
450         mac_dev = priv->mac_dev;
451
452         err = mac_dev->change_addr(mac_dev->fman_mac,
453                                    (const enet_addr_t *)net_dev->dev_addr);
454         if (err < 0) {
455                 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
456                           err);
457                 /* reverting to previous address */
458                 eth_mac_addr(net_dev, &old_addr);
459
460                 return err;
461         }
462
463         return 0;
464 }
465
466 static int dpaa_addr_sync(struct net_device *net_dev, const u8 *addr)
467 {
468         const struct dpaa_priv *priv = netdev_priv(net_dev);
469
470         return priv->mac_dev->add_hash_mac_addr(priv->mac_dev->fman_mac,
471                                                 (enet_addr_t *)addr);
472 }
473
474 static int dpaa_addr_unsync(struct net_device *net_dev, const u8 *addr)
475 {
476         const struct dpaa_priv *priv = netdev_priv(net_dev);
477
478         return priv->mac_dev->remove_hash_mac_addr(priv->mac_dev->fman_mac,
479                                                    (enet_addr_t *)addr);
480 }
481
482 static void dpaa_set_rx_mode(struct net_device *net_dev)
483 {
484         const struct dpaa_priv  *priv;
485         int err;
486
487         priv = netdev_priv(net_dev);
488
489         if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
490                 priv->mac_dev->promisc = !priv->mac_dev->promisc;
491                 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
492                                                  priv->mac_dev->promisc);
493                 if (err < 0)
494                         netif_err(priv, drv, net_dev,
495                                   "mac_dev->set_promisc() = %d\n",
496                                   err);
497         }
498
499         if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) {
500                 priv->mac_dev->allmulti = !priv->mac_dev->allmulti;
501                 err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac,
502                                                   priv->mac_dev->allmulti);
503                 if (err < 0)
504                         netif_err(priv, drv, net_dev,
505                                   "mac_dev->set_allmulti() = %d\n",
506                                   err);
507         }
508
509         err = __dev_mc_sync(net_dev, dpaa_addr_sync, dpaa_addr_unsync);
510         if (err < 0)
511                 netif_err(priv, drv, net_dev, "dpaa_addr_sync() = %d\n",
512                           err);
513 }
514
515 static struct dpaa_bp *dpaa_bpid2pool(int bpid)
516 {
517         if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
518                 return NULL;
519
520         return dpaa_bp_array[bpid];
521 }
522
523 /* checks if this bpool is already allocated */
524 static bool dpaa_bpid2pool_use(int bpid)
525 {
526         if (dpaa_bpid2pool(bpid)) {
527                 refcount_inc(&dpaa_bp_array[bpid]->refs);
528                 return true;
529         }
530
531         return false;
532 }
533
534 /* called only once per bpid by dpaa_bp_alloc_pool() */
535 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
536 {
537         dpaa_bp_array[bpid] = dpaa_bp;
538         refcount_set(&dpaa_bp->refs, 1);
539 }
540
541 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
542 {
543         int err;
544
545         if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
546                 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
547                        __func__);
548                 return -EINVAL;
549         }
550
551         /* If the pool is already specified, we only create one per bpid */
552         if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
553             dpaa_bpid2pool_use(dpaa_bp->bpid))
554                 return 0;
555
556         if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
557                 dpaa_bp->pool = bman_new_pool();
558                 if (!dpaa_bp->pool) {
559                         pr_err("%s: bman_new_pool() failed\n",
560                                __func__);
561                         return -ENODEV;
562                 }
563
564                 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
565         }
566
567         if (dpaa_bp->seed_cb) {
568                 err = dpaa_bp->seed_cb(dpaa_bp);
569                 if (err)
570                         goto pool_seed_failed;
571         }
572
573         dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
574
575         return 0;
576
577 pool_seed_failed:
578         pr_err("%s: pool seeding failed\n", __func__);
579         bman_free_pool(dpaa_bp->pool);
580
581         return err;
582 }
583
584 /* remove and free all the buffers from the given buffer pool */
585 static void dpaa_bp_drain(struct dpaa_bp *bp)
586 {
587         u8 num = 8;
588         int ret;
589
590         do {
591                 struct bm_buffer bmb[8];
592                 int i;
593
594                 ret = bman_acquire(bp->pool, bmb, num);
595                 if (ret < 0) {
596                         if (num == 8) {
597                                 /* we have less than 8 buffers left;
598                                  * drain them one by one
599                                  */
600                                 num = 1;
601                                 ret = 1;
602                                 continue;
603                         } else {
604                                 /* Pool is fully drained */
605                                 break;
606                         }
607                 }
608
609                 if (bp->free_buf_cb)
610                         for (i = 0; i < num; i++)
611                                 bp->free_buf_cb(bp, &bmb[i]);
612         } while (ret > 0);
613 }
614
615 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
616 {
617         struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
618
619         /* the mapping between bpid and dpaa_bp is done very late in the
620          * allocation procedure; if something failed before the mapping, the bp
621          * was not configured, therefore we don't need the below instructions
622          */
623         if (!bp)
624                 return;
625
626         if (!refcount_dec_and_test(&bp->refs))
627                 return;
628
629         if (bp->free_buf_cb)
630                 dpaa_bp_drain(bp);
631
632         dpaa_bp_array[bp->bpid] = NULL;
633         bman_free_pool(bp->pool);
634 }
635
636 static void dpaa_bps_free(struct dpaa_priv *priv)
637 {
638         dpaa_bp_free(priv->dpaa_bp);
639 }
640
641 /* Use multiple WQs for FQ assignment:
642  *      - Tx Confirmation queues go to WQ1.
643  *      - Rx Error and Tx Error queues go to WQ5 (giving them a better chance
644  *        to be scheduled, in case there are many more FQs in WQ6).
645  *      - Rx Default goes to WQ6.
646  *      - Tx queues go to different WQs depending on their priority. Equal
647  *        chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
648  *        WQ0 (highest priority).
649  * This ensures that Tx-confirmed buffers are timely released. In particular,
650  * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
651  * are greatly outnumbered by other FQs in the system, while
652  * dequeue scheduling is round-robin.
653  */
654 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
655 {
656         switch (fq->fq_type) {
657         case FQ_TYPE_TX_CONFIRM:
658         case FQ_TYPE_TX_CONF_MQ:
659                 fq->wq = 1;
660                 break;
661         case FQ_TYPE_RX_ERROR:
662         case FQ_TYPE_TX_ERROR:
663                 fq->wq = 5;
664                 break;
665         case FQ_TYPE_RX_DEFAULT:
666         case FQ_TYPE_RX_PCD:
667                 fq->wq = 6;
668                 break;
669         case FQ_TYPE_TX:
670                 switch (idx / dpaa_num_txqs_per_tc()) {
671                 case 0:
672                         /* Low priority (best effort) */
673                         fq->wq = 6;
674                         break;
675                 case 1:
676                         /* Medium priority */
677                         fq->wq = 2;
678                         break;
679                 case 2:
680                         /* High priority */
681                         fq->wq = 1;
682                         break;
683                 case 3:
684                         /* Very high priority */
685                         fq->wq = 0;
686                         break;
687                 default:
688                         WARN(1, "Too many TX FQs: more than %zu!\n",
689                              dpaa_max_num_txqs());
690                 }
691                 break;
692         default:
693                 WARN(1, "Invalid FQ type %d for FQID %d!\n",
694                      fq->fq_type, fq->fqid);
695         }
696 }
697
698 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
699                                      u32 start, u32 count,
700                                      struct list_head *list,
701                                      enum dpaa_fq_type fq_type)
702 {
703         struct dpaa_fq *dpaa_fq;
704         int i;
705
706         dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq),
707                                GFP_KERNEL);
708         if (!dpaa_fq)
709                 return NULL;
710
711         for (i = 0; i < count; i++) {
712                 dpaa_fq[i].fq_type = fq_type;
713                 dpaa_fq[i].fqid = start ? start + i : 0;
714                 list_add_tail(&dpaa_fq[i].list, list);
715         }
716
717         for (i = 0; i < count; i++)
718                 dpaa_assign_wq(dpaa_fq + i, i);
719
720         return dpaa_fq;
721 }
722
723 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
724                               struct fm_port_fqs *port_fqs)
725 {
726         struct dpaa_fq *dpaa_fq;
727         u32 fq_base, fq_base_aligned, i;
728
729         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
730         if (!dpaa_fq)
731                 goto fq_alloc_failed;
732
733         port_fqs->rx_errq = &dpaa_fq[0];
734
735         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
736         if (!dpaa_fq)
737                 goto fq_alloc_failed;
738
739         port_fqs->rx_defq = &dpaa_fq[0];
740
741         /* the PCD FQIDs range needs to be aligned for correct operation */
742         if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM))
743                 goto fq_alloc_failed;
744
745         fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM);
746
747         for (i = fq_base; i < fq_base_aligned; i++)
748                 qman_release_fqid(i);
749
750         for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM;
751              i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++)
752                 qman_release_fqid(i);
753
754         dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM,
755                                 list, FQ_TYPE_RX_PCD);
756         if (!dpaa_fq)
757                 goto fq_alloc_failed;
758
759         port_fqs->rx_pcdq = &dpaa_fq[0];
760
761         if (!dpaa_fq_alloc(dev, 0, dpaa_max_num_txqs(), list,
762                            FQ_TYPE_TX_CONF_MQ))
763                 goto fq_alloc_failed;
764
765         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
766         if (!dpaa_fq)
767                 goto fq_alloc_failed;
768
769         port_fqs->tx_errq = &dpaa_fq[0];
770
771         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
772         if (!dpaa_fq)
773                 goto fq_alloc_failed;
774
775         port_fqs->tx_defq = &dpaa_fq[0];
776
777         if (!dpaa_fq_alloc(dev, 0, dpaa_max_num_txqs(), list, FQ_TYPE_TX))
778                 goto fq_alloc_failed;
779
780         return 0;
781
782 fq_alloc_failed:
783         dev_err(dev, "dpaa_fq_alloc() failed\n");
784         return -ENOMEM;
785 }
786
787 static u32 rx_pool_channel;
788 static DEFINE_SPINLOCK(rx_pool_channel_init);
789
790 static int dpaa_get_channel(void)
791 {
792         spin_lock(&rx_pool_channel_init);
793         if (!rx_pool_channel) {
794                 u32 pool;
795                 int ret;
796
797                 ret = qman_alloc_pool(&pool);
798
799                 if (!ret)
800                         rx_pool_channel = pool;
801         }
802         spin_unlock(&rx_pool_channel_init);
803         if (!rx_pool_channel)
804                 return -ENOMEM;
805         return rx_pool_channel;
806 }
807
808 static void dpaa_release_channel(void)
809 {
810         qman_release_pool(rx_pool_channel);
811 }
812
813 static void dpaa_eth_add_channel(u16 channel, struct device *dev)
814 {
815         u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
816         const cpumask_t *cpus = qman_affine_cpus();
817         struct qman_portal *portal;
818         int cpu;
819
820         for_each_cpu_and(cpu, cpus, cpu_online_mask) {
821                 portal = qman_get_affine_portal(cpu);
822                 qman_p_static_dequeue_add(portal, pool);
823                 qman_start_using_portal(portal, dev);
824         }
825 }
826
827 /* Congestion group state change notification callback.
828  * Stops the device's egress queues while they are congested and
829  * wakes them upon exiting congested state.
830  * Also updates some CGR-related stats.
831  */
832 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
833                            int congested)
834 {
835         struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
836                 struct dpaa_priv, cgr_data.cgr);
837
838         if (congested) {
839                 priv->cgr_data.congestion_start_jiffies = jiffies;
840                 netif_tx_stop_all_queues(priv->net_dev);
841                 priv->cgr_data.cgr_congested_count++;
842         } else {
843                 priv->cgr_data.congested_jiffies +=
844                         (jiffies - priv->cgr_data.congestion_start_jiffies);
845                 netif_tx_wake_all_queues(priv->net_dev);
846         }
847 }
848
849 static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
850 {
851         struct qm_mcc_initcgr initcgr;
852         u32 cs_th;
853         int err;
854
855         err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
856         if (err < 0) {
857                 if (netif_msg_drv(priv))
858                         pr_err("%s: Error %d allocating CGR ID\n",
859                                __func__, err);
860                 goto out_error;
861         }
862         priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
863
864         /* Enable Congestion State Change Notifications and CS taildrop */
865         memset(&initcgr, 0, sizeof(initcgr));
866         initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
867         initcgr.cgr.cscn_en = QM_CGR_EN;
868
869         /* Set different thresholds based on the configured MAC speed.
870          * This may turn suboptimal if the MAC is reconfigured at another
871          * speed, so MACs must call dpaa_eth_cgr_set_speed in their link_up
872          * callback.
873          */
874         if (priv->mac_dev->phylink_config.mac_capabilities & MAC_10000FD)
875                 cs_th = DPAA_CS_THRESHOLD_10G;
876         else
877                 cs_th = DPAA_CS_THRESHOLD_1G;
878         qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
879
880         initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
881         initcgr.cgr.cstd_en = QM_CGR_EN;
882
883         err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
884                               &initcgr);
885         if (err < 0) {
886                 if (netif_msg_drv(priv))
887                         pr_err("%s: Error %d creating CGR with ID %d\n",
888                                __func__, err, priv->cgr_data.cgr.cgrid);
889                 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
890                 goto out_error;
891         }
892         if (netif_msg_drv(priv))
893                 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
894                          priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
895                          priv->cgr_data.cgr.chan);
896
897 out_error:
898         return err;
899 }
900
901 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed)
902 {
903         struct net_device *net_dev = to_net_dev(mac_dev->phylink_config.dev);
904         struct dpaa_priv *priv = netdev_priv(net_dev);
905         struct qm_mcc_initcgr opts = { };
906         u32 cs_th;
907         int err;
908
909         opts.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
910         switch (speed) {
911         case SPEED_10000:
912                 cs_th = DPAA_CS_THRESHOLD_10G;
913                 break;
914         case SPEED_1000:
915         default:
916                 cs_th = DPAA_CS_THRESHOLD_1G;
917                 break;
918         }
919         qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, cs_th, 1);
920
921         err = qman_update_cgr_safe(&priv->cgr_data.cgr, &opts);
922         if (err)
923                 netdev_err(net_dev, "could not update speed: %d\n", err);
924 }
925
926 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
927                                       struct dpaa_fq *fq,
928                                       const struct qman_fq *template)
929 {
930         fq->fq_base = *template;
931         fq->net_dev = priv->net_dev;
932
933         fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
934         fq->channel = priv->channel;
935 }
936
937 static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
938                                      struct dpaa_fq *fq,
939                                      struct fman_port *port,
940                                      const struct qman_fq *template)
941 {
942         fq->fq_base = *template;
943         fq->net_dev = priv->net_dev;
944
945         if (port) {
946                 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
947                 fq->channel = (u16)fman_port_get_qman_channel_id(port);
948         } else {
949                 fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
950         }
951 }
952
953 static int dpaa_fq_setup(struct dpaa_priv *priv,
954                          const struct dpaa_fq_cbs *fq_cbs,
955                          struct fman_port *tx_port)
956 {
957         int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu;
958         const cpumask_t *affine_cpus = qman_affine_cpus();
959         struct dpaa_fq *fq;
960         u16 *channels;
961
962         channels = kcalloc(num_possible_cpus(), sizeof(u16), GFP_KERNEL);
963         if (!channels)
964                 return -ENOMEM;
965
966         for_each_cpu_and(cpu, affine_cpus, cpu_online_mask)
967                 channels[num_portals++] = qman_affine_channel(cpu);
968
969         if (num_portals == 0)
970                 dev_err(priv->net_dev->dev.parent,
971                         "No Qman software (affine) channels found\n");
972
973         /* Initialize each FQ in the list */
974         list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
975                 switch (fq->fq_type) {
976                 case FQ_TYPE_RX_DEFAULT:
977                         dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
978                         break;
979                 case FQ_TYPE_RX_ERROR:
980                         dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
981                         break;
982                 case FQ_TYPE_RX_PCD:
983                         if (!num_portals)
984                                 continue;
985                         dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
986                         fq->channel = channels[portal_cnt++ % num_portals];
987                         break;
988                 case FQ_TYPE_TX:
989                         dpaa_setup_egress(priv, fq, tx_port,
990                                           &fq_cbs->egress_ern);
991                         priv->egress_fqs[egress_cnt++] = &fq->fq_base;
992                         break;
993                 case FQ_TYPE_TX_CONF_MQ:
994                         priv->conf_fqs[conf_cnt++] = &fq->fq_base;
995                         fallthrough;
996                 case FQ_TYPE_TX_CONFIRM:
997                         dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
998                         break;
999                 case FQ_TYPE_TX_ERROR:
1000                         dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
1001                         break;
1002                 default:
1003                         dev_warn(priv->net_dev->dev.parent,
1004                                  "Unknown FQ type detected!\n");
1005                         break;
1006                 }
1007         }
1008
1009         kfree(channels);
1010
1011         return 0;
1012 }
1013
1014 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
1015                                    struct qman_fq *tx_fq)
1016 {
1017         int i;
1018
1019         for (i = 0; i < dpaa_max_num_txqs(); i++)
1020                 if (priv->egress_fqs[i] == tx_fq)
1021                         return i;
1022
1023         return -EINVAL;
1024 }
1025
1026 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
1027 {
1028         const struct dpaa_priv  *priv;
1029         struct qman_fq *confq = NULL;
1030         struct qm_mcc_initfq initfq;
1031         struct device *dev;
1032         struct qman_fq *fq;
1033         int queue_id;
1034         int err;
1035
1036         priv = netdev_priv(dpaa_fq->net_dev);
1037         dev = dpaa_fq->net_dev->dev.parent;
1038
1039         if (dpaa_fq->fqid == 0)
1040                 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
1041
1042         dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
1043
1044         err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
1045         if (err) {
1046                 dev_err(dev, "qman_create_fq() failed\n");
1047                 return err;
1048         }
1049         fq = &dpaa_fq->fq_base;
1050
1051         if (dpaa_fq->init) {
1052                 memset(&initfq, 0, sizeof(initfq));
1053
1054                 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
1055                 /* Note: we may get to keep an empty FQ in cache */
1056                 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
1057
1058                 /* Try to reduce the number of portal interrupts for
1059                  * Tx Confirmation FQs.
1060                  */
1061                 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
1062                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
1063
1064                 /* FQ placement */
1065                 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
1066
1067                 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
1068
1069                 /* Put all egress queues in a congestion group of their own.
1070                  * Sensu stricto, the Tx confirmation queues are Rx FQs,
1071                  * rather than Tx - but they nonetheless account for the
1072                  * memory footprint on behalf of egress traffic. We therefore
1073                  * place them in the netdev's CGR, along with the Tx FQs.
1074                  */
1075                 if (dpaa_fq->fq_type == FQ_TYPE_TX ||
1076                     dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
1077                     dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
1078                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1079                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1080                         initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
1081                         /* Set a fixed overhead accounting, in an attempt to
1082                          * reduce the impact of fixed-size skb shells and the
1083                          * driver's needed headroom on system memory. This is
1084                          * especially the case when the egress traffic is
1085                          * composed of small datagrams.
1086                          * Unfortunately, QMan's OAL value is capped to an
1087                          * insufficient value, but even that is better than
1088                          * no overhead accounting at all.
1089                          */
1090                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1091                         qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1092                         qm_fqd_set_oal(&initfq.fqd,
1093                                        min(sizeof(struct sk_buff) +
1094                                        priv->tx_headroom,
1095                                        (size_t)FSL_QMAN_MAX_OAL));
1096                 }
1097
1098                 if (td_enable) {
1099                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
1100                         qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
1101                         initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
1102                 }
1103
1104                 if (dpaa_fq->fq_type == FQ_TYPE_TX) {
1105                         queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
1106                         if (queue_id >= 0)
1107                                 confq = priv->conf_fqs[queue_id];
1108                         if (confq) {
1109                                 initfq.we_mask |=
1110                                         cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1111                         /* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
1112                          *           A2V=1 (contextA A2 field is valid)
1113                          *           A0V=1 (contextA A0 field is valid)
1114                          *           B0V=1 (contextB field is valid)
1115                          * ContextA A2: EBD=1 (deallocate buffers inside FMan)
1116                          * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
1117                          */
1118                                 qm_fqd_context_a_set64(&initfq.fqd,
1119                                                        0x1e00000080000000ULL);
1120                         }
1121                 }
1122
1123                 /* Put all the ingress queues in our "ingress CGR". */
1124                 if (priv->use_ingress_cgr &&
1125                     (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1126                      dpaa_fq->fq_type == FQ_TYPE_RX_ERROR ||
1127                      dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) {
1128                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1129                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1130                         initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
1131                         /* Set a fixed overhead accounting, just like for the
1132                          * egress CGR.
1133                          */
1134                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1135                         qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1136                         qm_fqd_set_oal(&initfq.fqd,
1137                                        min(sizeof(struct sk_buff) +
1138                                        priv->tx_headroom,
1139                                        (size_t)FSL_QMAN_MAX_OAL));
1140                 }
1141
1142                 /* Initialization common to all ingress queues */
1143                 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
1144                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1145                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
1146                                                 QM_FQCTRL_CTXASTASHING);
1147                         initfq.fqd.context_a.stashing.exclusive =
1148                                 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
1149                                 QM_STASHING_EXCL_ANNOTATION;
1150                         qm_fqd_set_stashing(&initfq.fqd, 1, 2,
1151                                             DIV_ROUND_UP(sizeof(struct qman_fq),
1152                                                          64));
1153                 }
1154
1155                 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1156                 if (err < 0) {
1157                         dev_err(dev, "qman_init_fq(%u) = %d\n",
1158                                 qman_fq_fqid(fq), err);
1159                         qman_destroy_fq(fq);
1160                         return err;
1161                 }
1162         }
1163
1164         dpaa_fq->fqid = qman_fq_fqid(fq);
1165
1166         if (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1167             dpaa_fq->fq_type == FQ_TYPE_RX_PCD) {
1168                 err = xdp_rxq_info_reg(&dpaa_fq->xdp_rxq, dpaa_fq->net_dev,
1169                                        dpaa_fq->fqid, 0);
1170                 if (err) {
1171                         dev_err(dev, "xdp_rxq_info_reg() = %d\n", err);
1172                         return err;
1173                 }
1174
1175                 err = xdp_rxq_info_reg_mem_model(&dpaa_fq->xdp_rxq,
1176                                                  MEM_TYPE_PAGE_ORDER0, NULL);
1177                 if (err) {
1178                         dev_err(dev, "xdp_rxq_info_reg_mem_model() = %d\n",
1179                                 err);
1180                         xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq);
1181                         return err;
1182                 }
1183         }
1184
1185         return 0;
1186 }
1187
1188 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1189 {
1190         const struct dpaa_priv  *priv;
1191         struct dpaa_fq *dpaa_fq;
1192         int err, error;
1193
1194         err = 0;
1195
1196         dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1197         priv = netdev_priv(dpaa_fq->net_dev);
1198
1199         if (dpaa_fq->init) {
1200                 err = qman_retire_fq(fq, NULL);
1201                 if (err < 0 && netif_msg_drv(priv))
1202                         dev_err(dev, "qman_retire_fq(%u) = %d\n",
1203                                 qman_fq_fqid(fq), err);
1204
1205                 error = qman_oos_fq(fq);
1206                 if (error < 0 && netif_msg_drv(priv)) {
1207                         dev_err(dev, "qman_oos_fq(%u) = %d\n",
1208                                 qman_fq_fqid(fq), error);
1209                         if (err >= 0)
1210                                 err = error;
1211                 }
1212         }
1213
1214         if ((dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1215              dpaa_fq->fq_type == FQ_TYPE_RX_PCD) &&
1216             xdp_rxq_info_is_reg(&dpaa_fq->xdp_rxq))
1217                 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq);
1218
1219         qman_destroy_fq(fq);
1220         list_del(&dpaa_fq->list);
1221
1222         return err;
1223 }
1224
1225 static int dpaa_fq_free(struct device *dev, struct list_head *list)
1226 {
1227         struct dpaa_fq *dpaa_fq, *tmp;
1228         int err, error;
1229
1230         err = 0;
1231         list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1232                 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1233                 if (error < 0 && err >= 0)
1234                         err = error;
1235         }
1236
1237         return err;
1238 }
1239
1240 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1241                                  struct dpaa_fq *defq,
1242                                  struct dpaa_buffer_layout *buf_layout)
1243 {
1244         struct fman_buffer_prefix_content buf_prefix_content;
1245         struct fman_port_params params;
1246         int err;
1247
1248         memset(&params, 0, sizeof(params));
1249         memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1250
1251         buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1252         buf_prefix_content.pass_prs_result = true;
1253         buf_prefix_content.pass_hash_result = true;
1254         buf_prefix_content.pass_time_stamp = true;
1255         buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1256
1257         params.specific_params.non_rx_params.err_fqid = errq->fqid;
1258         params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1259
1260         err = fman_port_config(port, &params);
1261         if (err) {
1262                 pr_err("%s: fman_port_config failed\n", __func__);
1263                 return err;
1264         }
1265
1266         err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1267         if (err) {
1268                 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1269                        __func__);
1270                 return err;
1271         }
1272
1273         err = fman_port_init(port);
1274         if (err)
1275                 pr_err("%s: fm_port_init failed\n", __func__);
1276
1277         return err;
1278 }
1279
1280 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp,
1281                                  struct dpaa_fq *errq,
1282                                  struct dpaa_fq *defq, struct dpaa_fq *pcdq,
1283                                  struct dpaa_buffer_layout *buf_layout)
1284 {
1285         struct fman_buffer_prefix_content buf_prefix_content;
1286         struct fman_port_rx_params *rx_p;
1287         struct fman_port_params params;
1288         int err;
1289
1290         memset(&params, 0, sizeof(params));
1291         memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1292
1293         buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1294         buf_prefix_content.pass_prs_result = true;
1295         buf_prefix_content.pass_hash_result = true;
1296         buf_prefix_content.pass_time_stamp = true;
1297         buf_prefix_content.data_align = DPAA_FD_RX_DATA_ALIGNMENT;
1298
1299         rx_p = &params.specific_params.rx_params;
1300         rx_p->err_fqid = errq->fqid;
1301         rx_p->dflt_fqid = defq->fqid;
1302         if (pcdq) {
1303                 rx_p->pcd_base_fqid = pcdq->fqid;
1304                 rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM;
1305         }
1306
1307         rx_p->ext_buf_pools.num_of_pools_used = 1;
1308         rx_p->ext_buf_pools.ext_buf_pool[0].id =  bp->bpid;
1309         rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size;
1310
1311         err = fman_port_config(port, &params);
1312         if (err) {
1313                 pr_err("%s: fman_port_config failed\n", __func__);
1314                 return err;
1315         }
1316
1317         err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1318         if (err) {
1319                 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1320                        __func__);
1321                 return err;
1322         }
1323
1324         err = fman_port_init(port);
1325         if (err)
1326                 pr_err("%s: fm_port_init failed\n", __func__);
1327
1328         return err;
1329 }
1330
1331 static int dpaa_eth_init_ports(struct mac_device *mac_dev,
1332                                struct dpaa_bp *bp,
1333                                struct fm_port_fqs *port_fqs,
1334                                struct dpaa_buffer_layout *buf_layout,
1335                                struct device *dev)
1336 {
1337         struct fman_port *rxport = mac_dev->port[RX];
1338         struct fman_port *txport = mac_dev->port[TX];
1339         int err;
1340
1341         err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1342                                     port_fqs->tx_defq, &buf_layout[TX]);
1343         if (err)
1344                 return err;
1345
1346         err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq,
1347                                     port_fqs->rx_defq, port_fqs->rx_pcdq,
1348                                     &buf_layout[RX]);
1349
1350         return err;
1351 }
1352
1353 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1354                              struct bm_buffer *bmb, int cnt)
1355 {
1356         int err;
1357
1358         err = bman_release(dpaa_bp->pool, bmb, cnt);
1359         /* Should never occur, address anyway to avoid leaking the buffers */
1360         if (WARN_ON(err) && dpaa_bp->free_buf_cb)
1361                 while (cnt-- > 0)
1362                         dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1363
1364         return cnt;
1365 }
1366
1367 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1368 {
1369         struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1370         struct dpaa_bp *dpaa_bp;
1371         int i = 0, j;
1372
1373         memset(bmb, 0, sizeof(bmb));
1374
1375         do {
1376                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1377                 if (!dpaa_bp)
1378                         return;
1379
1380                 j = 0;
1381                 do {
1382                         WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1383
1384                         bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1385
1386                         j++; i++;
1387                 } while (j < ARRAY_SIZE(bmb) &&
1388                                 !qm_sg_entry_is_final(&sgt[i - 1]) &&
1389                                 sgt[i - 1].bpid == sgt[i].bpid);
1390
1391                 dpaa_bman_release(dpaa_bp, bmb, j);
1392         } while (!qm_sg_entry_is_final(&sgt[i - 1]));
1393 }
1394
1395 static void dpaa_fd_release(const struct net_device *net_dev,
1396                             const struct qm_fd *fd)
1397 {
1398         struct qm_sg_entry *sgt;
1399         struct dpaa_bp *dpaa_bp;
1400         struct bm_buffer bmb;
1401         dma_addr_t addr;
1402         void *vaddr;
1403
1404         bmb.data = 0;
1405         bm_buffer_set64(&bmb, qm_fd_addr(fd));
1406
1407         dpaa_bp = dpaa_bpid2pool(fd->bpid);
1408         if (!dpaa_bp)
1409                 return;
1410
1411         if (qm_fd_get_format(fd) == qm_fd_sg) {
1412                 vaddr = phys_to_virt(qm_fd_addr(fd));
1413                 sgt = vaddr + qm_fd_get_offset(fd);
1414
1415                 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd),
1416                                DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1417
1418                 dpaa_release_sgt_members(sgt);
1419
1420                 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev,
1421                                     virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE,
1422                                     DMA_FROM_DEVICE);
1423                 if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) {
1424                         netdev_err(net_dev, "DMA mapping failed\n");
1425                         return;
1426                 }
1427                 bm_buffer_set64(&bmb, addr);
1428         }
1429
1430         dpaa_bman_release(dpaa_bp, &bmb, 1);
1431 }
1432
1433 static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1434                       const union qm_mr_entry *msg)
1435 {
1436         switch (msg->ern.rc & QM_MR_RC_MASK) {
1437         case QM_MR_RC_CGR_TAILDROP:
1438                 percpu_priv->ern_cnt.cg_tdrop++;
1439                 break;
1440         case QM_MR_RC_WRED:
1441                 percpu_priv->ern_cnt.wred++;
1442                 break;
1443         case QM_MR_RC_ERROR:
1444                 percpu_priv->ern_cnt.err_cond++;
1445                 break;
1446         case QM_MR_RC_ORPWINDOW_EARLY:
1447                 percpu_priv->ern_cnt.early_window++;
1448                 break;
1449         case QM_MR_RC_ORPWINDOW_LATE:
1450                 percpu_priv->ern_cnt.late_window++;
1451                 break;
1452         case QM_MR_RC_FQ_TAILDROP:
1453                 percpu_priv->ern_cnt.fq_tdrop++;
1454                 break;
1455         case QM_MR_RC_ORPWINDOW_RETIRED:
1456                 percpu_priv->ern_cnt.fq_retired++;
1457                 break;
1458         case QM_MR_RC_ORP_ZERO:
1459                 percpu_priv->ern_cnt.orp_zero++;
1460                 break;
1461         }
1462 }
1463
1464 /* Turn on HW checksum computation for this outgoing frame.
1465  * If the current protocol is not something we support in this regard
1466  * (or if the stack has already computed the SW checksum), we do nothing.
1467  *
1468  * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1469  * otherwise.
1470  *
1471  * Note that this function may modify the fd->cmd field and the skb data buffer
1472  * (the Parse Results area).
1473  */
1474 static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1475                                struct sk_buff *skb,
1476                                struct qm_fd *fd,
1477                                void *parse_results)
1478 {
1479         struct fman_prs_result *parse_result;
1480         u16 ethertype = ntohs(skb->protocol);
1481         struct ipv6hdr *ipv6h = NULL;
1482         struct iphdr *iph;
1483         int retval = 0;
1484         u8 l4_proto;
1485
1486         if (skb->ip_summed != CHECKSUM_PARTIAL)
1487                 return 0;
1488
1489         /* Note: L3 csum seems to be already computed in sw, but we can't choose
1490          * L4 alone from the FM configuration anyway.
1491          */
1492
1493         /* Fill in some fields of the Parse Results array, so the FMan
1494          * can find them as if they came from the FMan Parser.
1495          */
1496         parse_result = (struct fman_prs_result *)parse_results;
1497
1498         /* If we're dealing with VLAN, get the real Ethernet type */
1499         if (ethertype == ETH_P_8021Q)
1500                 ethertype = ntohs(skb_vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1501
1502         /* Fill in the relevant L3 parse result fields
1503          * and read the L4 protocol type
1504          */
1505         switch (ethertype) {
1506         case ETH_P_IP:
1507                 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1508                 iph = ip_hdr(skb);
1509                 WARN_ON(!iph);
1510                 l4_proto = iph->protocol;
1511                 break;
1512         case ETH_P_IPV6:
1513                 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1514                 ipv6h = ipv6_hdr(skb);
1515                 WARN_ON(!ipv6h);
1516                 l4_proto = ipv6h->nexthdr;
1517                 break;
1518         default:
1519                 /* We shouldn't even be here */
1520                 if (net_ratelimit())
1521                         netif_alert(priv, tx_err, priv->net_dev,
1522                                     "Can't compute HW csum for L3 proto 0x%x\n",
1523                                     ntohs(skb->protocol));
1524                 retval = -EIO;
1525                 goto return_error;
1526         }
1527
1528         /* Fill in the relevant L4 parse result fields */
1529         switch (l4_proto) {
1530         case IPPROTO_UDP:
1531                 parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1532                 break;
1533         case IPPROTO_TCP:
1534                 parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1535                 break;
1536         default:
1537                 if (net_ratelimit())
1538                         netif_alert(priv, tx_err, priv->net_dev,
1539                                     "Can't compute HW csum for L4 proto 0x%x\n",
1540                                     l4_proto);
1541                 retval = -EIO;
1542                 goto return_error;
1543         }
1544
1545         /* At index 0 is IPOffset_1 as defined in the Parse Results */
1546         parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1547         parse_result->l4_off = (u8)skb_transport_offset(skb);
1548
1549         /* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1550         fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1551
1552         /* On P1023 and similar platforms fd->cmd interpretation could
1553          * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1554          * is not set so we do not need to check; in the future, if/when
1555          * using context_a we need to check this bit
1556          */
1557
1558 return_error:
1559         return retval;
1560 }
1561
1562 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1563 {
1564         struct net_device *net_dev = dpaa_bp->priv->net_dev;
1565         struct bm_buffer bmb[8];
1566         dma_addr_t addr;
1567         struct page *p;
1568         u8 i;
1569
1570         for (i = 0; i < 8; i++) {
1571                 p = dev_alloc_pages(0);
1572                 if (unlikely(!p)) {
1573                         netdev_err(net_dev, "dev_alloc_pages() failed\n");
1574                         goto release_previous_buffs;
1575                 }
1576
1577                 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0,
1578                                     DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1579                 if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev,
1580                                                addr))) {
1581                         netdev_err(net_dev, "DMA map failed\n");
1582                         goto release_previous_buffs;
1583                 }
1584
1585                 bmb[i].data = 0;
1586                 bm_buffer_set64(&bmb[i], addr);
1587         }
1588
1589 release_bufs:
1590         return dpaa_bman_release(dpaa_bp, bmb, i);
1591
1592 release_previous_buffs:
1593         WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1594
1595         bm_buffer_set64(&bmb[i], 0);
1596         /* Avoid releasing a completely null buffer; bman_release() requires
1597          * at least one buffer.
1598          */
1599         if (likely(i))
1600                 goto release_bufs;
1601
1602         return 0;
1603 }
1604
1605 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1606 {
1607         int i;
1608
1609         /* Give each CPU an allotment of "config_count" buffers */
1610         for_each_possible_cpu(i) {
1611                 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1612                 int j;
1613
1614                 /* Although we access another CPU's counters here
1615                  * we do it at boot time so it is safe
1616                  */
1617                 for (j = 0; j < dpaa_bp->config_count; j += 8)
1618                         *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1619         }
1620         return 0;
1621 }
1622
1623 /* Add buffers/(pages) for Rx processing whenever bpool count falls below
1624  * REFILL_THRESHOLD.
1625  */
1626 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1627 {
1628         int count = *countptr;
1629         int new_bufs;
1630
1631         if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1632                 do {
1633                         new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1634                         if (unlikely(!new_bufs)) {
1635                                 /* Avoid looping forever if we've temporarily
1636                                  * run out of memory. We'll try again at the
1637                                  * next NAPI cycle.
1638                                  */
1639                                 break;
1640                         }
1641                         count += new_bufs;
1642                 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1643
1644                 *countptr = count;
1645                 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1646                         return -ENOMEM;
1647         }
1648
1649         return 0;
1650 }
1651
1652 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1653 {
1654         struct dpaa_bp *dpaa_bp;
1655         int *countptr;
1656
1657         dpaa_bp = priv->dpaa_bp;
1658         if (!dpaa_bp)
1659                 return -EINVAL;
1660         countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1661
1662         return dpaa_eth_refill_bpool(dpaa_bp, countptr);
1663 }
1664
1665 /* Cleanup function for outgoing frame descriptors that were built on Tx path,
1666  * either contiguous frames or scatter/gather ones.
1667  * Skb freeing is not handled here.
1668  *
1669  * This function may be called on error paths in the Tx function, so guard
1670  * against cases when not all fd relevant fields were filled in. To avoid
1671  * reading the invalid transmission timestamp for the error paths set ts to
1672  * false.
1673  *
1674  * Return the skb backpointer, since for S/G frames the buffer containing it
1675  * gets freed here.
1676  *
1677  * No skb backpointer is set when transmitting XDP frames. Cleanup the buffer
1678  * and return NULL in this case.
1679  */
1680 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1681                                           const struct qm_fd *fd, bool ts)
1682 {
1683         const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1684         struct device *dev = priv->net_dev->dev.parent;
1685         struct skb_shared_hwtstamps shhwtstamps;
1686         dma_addr_t addr = qm_fd_addr(fd);
1687         void *vaddr = phys_to_virt(addr);
1688         const struct qm_sg_entry *sgt;
1689         struct dpaa_eth_swbp *swbp;
1690         struct sk_buff *skb;
1691         u64 ns;
1692         int i;
1693
1694         if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1695                 dma_unmap_page(priv->tx_dma_dev, addr,
1696                                qm_fd_get_offset(fd) + DPAA_SGT_SIZE,
1697                                dma_dir);
1698
1699                 /* The sgt buffer has been allocated with netdev_alloc_frag(),
1700                  * it's from lowmem.
1701                  */
1702                 sgt = vaddr + qm_fd_get_offset(fd);
1703
1704                 /* sgt[0] is from lowmem, was dma_map_single()-ed */
1705                 dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]),
1706                                  qm_sg_entry_get_len(&sgt[0]), dma_dir);
1707
1708                 /* remaining pages were mapped with skb_frag_dma_map() */
1709                 for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) &&
1710                      !qm_sg_entry_is_final(&sgt[i - 1]); i++) {
1711                         WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1712
1713                         dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]),
1714                                        qm_sg_entry_get_len(&sgt[i]), dma_dir);
1715                 }
1716         } else {
1717                 dma_unmap_single(priv->tx_dma_dev, addr,
1718                                  qm_fd_get_offset(fd) + qm_fd_get_length(fd),
1719                                  dma_dir);
1720         }
1721
1722         swbp = (struct dpaa_eth_swbp *)vaddr;
1723         skb = swbp->skb;
1724
1725         /* No skb backpointer is set when running XDP. An xdp_frame
1726          * backpointer is saved instead.
1727          */
1728         if (!skb) {
1729                 xdp_return_frame(swbp->xdpf);
1730                 return NULL;
1731         }
1732
1733         /* DMA unmapping is required before accessing the HW provided info */
1734         if (ts && priv->tx_tstamp &&
1735             skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
1736                 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
1737
1738                 if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr,
1739                                           &ns)) {
1740                         shhwtstamps.hwtstamp = ns_to_ktime(ns);
1741                         skb_tstamp_tx(skb, &shhwtstamps);
1742                 } else {
1743                         dev_warn(dev, "fman_port_get_tstamp failed!\n");
1744                 }
1745         }
1746
1747         if (qm_fd_get_format(fd) == qm_fd_sg)
1748                 /* Free the page that we allocated on Tx for the SGT */
1749                 free_pages((unsigned long)vaddr, 0);
1750
1751         return skb;
1752 }
1753
1754 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
1755 {
1756         /* The parser has run and performed L4 checksum validation.
1757          * We know there were no parser errors (and implicitly no
1758          * L4 csum error), otherwise we wouldn't be here.
1759          */
1760         if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
1761             (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
1762                 return CHECKSUM_UNNECESSARY;
1763
1764         /* We're here because either the parser didn't run or the L4 checksum
1765          * was not verified. This may include the case of a UDP frame with
1766          * checksum zero or an L4 proto other than TCP/UDP
1767          */
1768         return CHECKSUM_NONE;
1769 }
1770
1771 #define PTR_IS_ALIGNED(x, a) (IS_ALIGNED((unsigned long)(x), (a)))
1772
1773 /* Build a linear skb around the received buffer.
1774  * We are guaranteed there is enough room at the end of the data buffer to
1775  * accommodate the shared info area of the skb.
1776  */
1777 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1778                                         const struct qm_fd *fd)
1779 {
1780         ssize_t fd_off = qm_fd_get_offset(fd);
1781         dma_addr_t addr = qm_fd_addr(fd);
1782         struct dpaa_bp *dpaa_bp;
1783         struct sk_buff *skb;
1784         void *vaddr;
1785
1786         vaddr = phys_to_virt(addr);
1787         WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1788
1789         dpaa_bp = dpaa_bpid2pool(fd->bpid);
1790         if (!dpaa_bp)
1791                 goto free_buffer;
1792
1793         skb = build_skb(vaddr, dpaa_bp->size +
1794                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1795         if (WARN_ONCE(!skb, "Build skb failure on Rx\n"))
1796                 goto free_buffer;
1797         skb_reserve(skb, fd_off);
1798         skb_put(skb, qm_fd_get_length(fd));
1799
1800         skb->ip_summed = rx_csum_offload(priv, fd);
1801
1802         return skb;
1803
1804 free_buffer:
1805         free_pages((unsigned long)vaddr, 0);
1806         return NULL;
1807 }
1808
1809 /* Build an skb with the data of the first S/G entry in the linear portion and
1810  * the rest of the frame as skb fragments.
1811  *
1812  * The page fragment holding the S/G Table is recycled here.
1813  */
1814 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1815                                     const struct qm_fd *fd)
1816 {
1817         ssize_t fd_off = qm_fd_get_offset(fd);
1818         dma_addr_t addr = qm_fd_addr(fd);
1819         const struct qm_sg_entry *sgt;
1820         struct page *page, *head_page;
1821         struct dpaa_bp *dpaa_bp;
1822         void *vaddr, *sg_vaddr;
1823         struct sk_buff *skb;
1824         dma_addr_t sg_addr;
1825         int page_offset;
1826         unsigned int sz;
1827         int *count_ptr;
1828         int i, j;
1829
1830         vaddr = phys_to_virt(addr);
1831         WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1832
1833         /* Iterate through the SGT entries and add data buffers to the skb */
1834         sgt = vaddr + fd_off;
1835         skb = NULL;
1836         for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1837                 /* Extension bit is not supported */
1838                 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1839
1840                 sg_addr = qm_sg_addr(&sgt[i]);
1841                 sg_vaddr = phys_to_virt(sg_addr);
1842                 WARN_ON(!PTR_IS_ALIGNED(sg_vaddr, SMP_CACHE_BYTES));
1843
1844                 dma_unmap_page(priv->rx_dma_dev, sg_addr,
1845                                DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1846
1847                 /* We may use multiple Rx pools */
1848                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1849                 if (!dpaa_bp)
1850                         goto free_buffers;
1851
1852                 if (!skb) {
1853                         sz = dpaa_bp->size +
1854                                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1855                         skb = build_skb(sg_vaddr, sz);
1856                         if (WARN_ON(!skb))
1857                                 goto free_buffers;
1858
1859                         skb->ip_summed = rx_csum_offload(priv, fd);
1860
1861                         /* Make sure forwarded skbs will have enough space
1862                          * on Tx, if extra headers are added.
1863                          */
1864                         WARN_ON(fd_off != priv->rx_headroom);
1865                         /* The offset to data start within the buffer holding
1866                          * the SGT should always be equal to the offset to data
1867                          * start within the first buffer holding the frame.
1868                          */
1869                         WARN_ON_ONCE(fd_off != qm_sg_entry_get_off(&sgt[i]));
1870                         skb_reserve(skb, fd_off);
1871                         skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1872                 } else {
1873                         /* Not the first S/G entry; all data from buffer will
1874                          * be added in an skb fragment; fragment index is offset
1875                          * by one since first S/G entry was incorporated in the
1876                          * linear part of the skb.
1877                          *
1878                          * Caution: 'page' may be a tail page.
1879                          */
1880                         page = virt_to_page(sg_vaddr);
1881                         head_page = virt_to_head_page(sg_vaddr);
1882
1883                         /* Compute offset of sg_vaddr in (possibly tail) page */
1884                         page_offset = ((unsigned long)sg_vaddr &
1885                                         (PAGE_SIZE - 1)) +
1886                                 (page_address(page) - page_address(head_page));
1887
1888                         /* Non-initial SGT entries should not have a buffer
1889                          * offset.
1890                          */
1891                         WARN_ON_ONCE(qm_sg_entry_get_off(&sgt[i]));
1892
1893                         /* skb_add_rx_frag() does no checking on the page; if
1894                          * we pass it a tail page, we'll end up with
1895                          * bad page accounting and eventually with segfaults.
1896                          */
1897                         skb_add_rx_frag(skb, i - 1, head_page, page_offset,
1898                                         qm_sg_entry_get_len(&sgt[i]),
1899                                         dpaa_bp->size);
1900                 }
1901
1902                 /* Update the pool count for the current {cpu x bpool} */
1903                 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1904                 (*count_ptr)--;
1905
1906                 if (qm_sg_entry_is_final(&sgt[i]))
1907                         break;
1908         }
1909         WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1910
1911         /* free the SG table buffer */
1912         free_pages((unsigned long)vaddr, 0);
1913
1914         return skb;
1915
1916 free_buffers:
1917         /* free all the SG entries */
1918         for (j = 0; j < DPAA_SGT_MAX_ENTRIES ; j++) {
1919                 sg_addr = qm_sg_addr(&sgt[j]);
1920                 sg_vaddr = phys_to_virt(sg_addr);
1921                 /* all pages 0..i were unmaped */
1922                 if (j > i)
1923                         dma_unmap_page(priv->rx_dma_dev, qm_sg_addr(&sgt[j]),
1924                                        DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1925                 free_pages((unsigned long)sg_vaddr, 0);
1926                 /* counters 0..i-1 were decremented */
1927                 if (j >= i) {
1928                         dpaa_bp = dpaa_bpid2pool(sgt[j].bpid);
1929                         if (dpaa_bp) {
1930                                 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1931                                 (*count_ptr)--;
1932                         }
1933                 }
1934
1935                 if (qm_sg_entry_is_final(&sgt[j]))
1936                         break;
1937         }
1938         /* free the SGT fragment */
1939         free_pages((unsigned long)vaddr, 0);
1940
1941         return NULL;
1942 }
1943
1944 static int skb_to_contig_fd(struct dpaa_priv *priv,
1945                             struct sk_buff *skb, struct qm_fd *fd,
1946                             int *offset)
1947 {
1948         struct net_device *net_dev = priv->net_dev;
1949         enum dma_data_direction dma_dir;
1950         struct dpaa_eth_swbp *swbp;
1951         unsigned char *buff_start;
1952         dma_addr_t addr;
1953         int err;
1954
1955         /* We are guaranteed to have at least tx_headroom bytes
1956          * available, so just use that for offset.
1957          */
1958         fd->bpid = FSL_DPAA_BPID_INV;
1959         buff_start = skb->data - priv->tx_headroom;
1960         dma_dir = DMA_TO_DEVICE;
1961
1962         swbp = (struct dpaa_eth_swbp *)buff_start;
1963         swbp->skb = skb;
1964
1965         /* Enable L3/L4 hardware checksum computation.
1966          *
1967          * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1968          * need to write into the skb.
1969          */
1970         err = dpaa_enable_tx_csum(priv, skb, fd,
1971                                   buff_start + DPAA_TX_PRIV_DATA_SIZE);
1972         if (unlikely(err < 0)) {
1973                 if (net_ratelimit())
1974                         netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1975                                   err);
1976                 return err;
1977         }
1978
1979         /* Fill in the rest of the FD fields */
1980         qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1981         fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1982
1983         /* Map the entire buffer size that may be seen by FMan, but no more */
1984         addr = dma_map_single(priv->tx_dma_dev, buff_start,
1985                               priv->tx_headroom + skb->len, dma_dir);
1986         if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1987                 if (net_ratelimit())
1988                         netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1989                 return -EINVAL;
1990         }
1991         qm_fd_addr_set64(fd, addr);
1992
1993         return 0;
1994 }
1995
1996 static int skb_to_sg_fd(struct dpaa_priv *priv,
1997                         struct sk_buff *skb, struct qm_fd *fd)
1998 {
1999         const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
2000         const int nr_frags = skb_shinfo(skb)->nr_frags;
2001         struct net_device *net_dev = priv->net_dev;
2002         struct dpaa_eth_swbp *swbp;
2003         struct qm_sg_entry *sgt;
2004         void *buff_start;
2005         skb_frag_t *frag;
2006         dma_addr_t addr;
2007         size_t frag_len;
2008         struct page *p;
2009         int i, j, err;
2010
2011         /* get a page to store the SGTable */
2012         p = dev_alloc_pages(0);
2013         if (unlikely(!p)) {
2014                 netdev_err(net_dev, "dev_alloc_pages() failed\n");
2015                 return -ENOMEM;
2016         }
2017         buff_start = page_address(p);
2018
2019         /* Enable L3/L4 hardware checksum computation.
2020          *
2021          * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
2022          * need to write into the skb.
2023          */
2024         err = dpaa_enable_tx_csum(priv, skb, fd,
2025                                   buff_start + DPAA_TX_PRIV_DATA_SIZE);
2026         if (unlikely(err < 0)) {
2027                 if (net_ratelimit())
2028                         netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
2029                                   err);
2030                 goto csum_failed;
2031         }
2032
2033         /* SGT[0] is used by the linear part */
2034         sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom);
2035         frag_len = skb_headlen(skb);
2036         qm_sg_entry_set_len(&sgt[0], frag_len);
2037         sgt[0].bpid = FSL_DPAA_BPID_INV;
2038         sgt[0].offset = 0;
2039         addr = dma_map_single(priv->tx_dma_dev, skb->data,
2040                               skb_headlen(skb), dma_dir);
2041         if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2042                 netdev_err(priv->net_dev, "DMA mapping failed\n");
2043                 err = -EINVAL;
2044                 goto sg0_map_failed;
2045         }
2046         qm_sg_entry_set64(&sgt[0], addr);
2047
2048         /* populate the rest of SGT entries */
2049         for (i = 0; i < nr_frags; i++) {
2050                 frag = &skb_shinfo(skb)->frags[i];
2051                 frag_len = skb_frag_size(frag);
2052                 WARN_ON(!skb_frag_page(frag));
2053                 addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0,
2054                                         frag_len, dma_dir);
2055                 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2056                         netdev_err(priv->net_dev, "DMA mapping failed\n");
2057                         err = -EINVAL;
2058                         goto sg_map_failed;
2059                 }
2060
2061                 qm_sg_entry_set_len(&sgt[i + 1], frag_len);
2062                 sgt[i + 1].bpid = FSL_DPAA_BPID_INV;
2063                 sgt[i + 1].offset = 0;
2064
2065                 /* keep the offset in the address */
2066                 qm_sg_entry_set64(&sgt[i + 1], addr);
2067         }
2068
2069         /* Set the final bit in the last used entry of the SGT */
2070         qm_sg_entry_set_f(&sgt[nr_frags], frag_len);
2071
2072         /* set fd offset to priv->tx_headroom */
2073         qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
2074
2075         /* DMA map the SGT page */
2076         swbp = (struct dpaa_eth_swbp *)buff_start;
2077         swbp->skb = skb;
2078
2079         addr = dma_map_page(priv->tx_dma_dev, p, 0,
2080                             priv->tx_headroom + DPAA_SGT_SIZE, dma_dir);
2081         if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2082                 netdev_err(priv->net_dev, "DMA mapping failed\n");
2083                 err = -EINVAL;
2084                 goto sgt_map_failed;
2085         }
2086
2087         fd->bpid = FSL_DPAA_BPID_INV;
2088         fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2089         qm_fd_addr_set64(fd, addr);
2090
2091         return 0;
2092
2093 sgt_map_failed:
2094 sg_map_failed:
2095         for (j = 0; j < i; j++)
2096                 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]),
2097                                qm_sg_entry_get_len(&sgt[j]), dma_dir);
2098 sg0_map_failed:
2099 csum_failed:
2100         free_pages((unsigned long)buff_start, 0);
2101
2102         return err;
2103 }
2104
2105 static inline int dpaa_xmit(struct dpaa_priv *priv,
2106                             struct rtnl_link_stats64 *percpu_stats,
2107                             int queue,
2108                             struct qm_fd *fd)
2109 {
2110         struct qman_fq *egress_fq;
2111         int err, i;
2112
2113         egress_fq = priv->egress_fqs[queue];
2114         if (fd->bpid == FSL_DPAA_BPID_INV)
2115                 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
2116
2117         /* Trace this Tx fd */
2118         trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
2119
2120         for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
2121                 err = qman_enqueue(egress_fq, fd);
2122                 if (err != -EBUSY)
2123                         break;
2124         }
2125
2126         if (unlikely(err < 0)) {
2127                 percpu_stats->tx_fifo_errors++;
2128                 return err;
2129         }
2130
2131         percpu_stats->tx_packets++;
2132         percpu_stats->tx_bytes += qm_fd_get_length(fd);
2133
2134         return 0;
2135 }
2136
2137 #ifdef CONFIG_DPAA_ERRATUM_A050385
2138 static int dpaa_a050385_wa_skb(struct net_device *net_dev, struct sk_buff **s)
2139 {
2140         struct dpaa_priv *priv = netdev_priv(net_dev);
2141         struct sk_buff *new_skb, *skb = *s;
2142         unsigned char *start, i;
2143
2144         /* check linear buffer alignment */
2145         if (!PTR_IS_ALIGNED(skb->data, DPAA_A050385_ALIGN))
2146                 goto workaround;
2147
2148         /* linear buffers just need to have an aligned start */
2149         if (!skb_is_nonlinear(skb))
2150                 return 0;
2151
2152         /* linear data size for nonlinear skbs needs to be aligned */
2153         if (!IS_ALIGNED(skb_headlen(skb), DPAA_A050385_ALIGN))
2154                 goto workaround;
2155
2156         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2157                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2158
2159                 /* all fragments need to have aligned start addresses */
2160                 if (!IS_ALIGNED(skb_frag_off(frag), DPAA_A050385_ALIGN))
2161                         goto workaround;
2162
2163                 /* all but last fragment need to have aligned sizes */
2164                 if (!IS_ALIGNED(skb_frag_size(frag), DPAA_A050385_ALIGN) &&
2165                     (i < skb_shinfo(skb)->nr_frags - 1))
2166                         goto workaround;
2167         }
2168
2169         return 0;
2170
2171 workaround:
2172         /* copy all the skb content into a new linear buffer */
2173         new_skb = netdev_alloc_skb(net_dev, skb->len + DPAA_A050385_ALIGN - 1 +
2174                                                 priv->tx_headroom);
2175         if (!new_skb)
2176                 return -ENOMEM;
2177
2178         /* NET_SKB_PAD bytes already reserved, adding up to tx_headroom */
2179         skb_reserve(new_skb, priv->tx_headroom - NET_SKB_PAD);
2180
2181         /* Workaround for DPAA_A050385 requires data start to be aligned */
2182         start = PTR_ALIGN(new_skb->data, DPAA_A050385_ALIGN);
2183         if (start - new_skb->data)
2184                 skb_reserve(new_skb, start - new_skb->data);
2185
2186         skb_put(new_skb, skb->len);
2187         skb_copy_bits(skb, 0, new_skb->data, skb->len);
2188         skb_copy_header(new_skb, skb);
2189         new_skb->dev = skb->dev;
2190
2191         /* Copy relevant timestamp info from the old skb to the new */
2192         if (priv->tx_tstamp) {
2193                 skb_shinfo(new_skb)->tx_flags = skb_shinfo(skb)->tx_flags;
2194                 skb_shinfo(new_skb)->hwtstamps = skb_shinfo(skb)->hwtstamps;
2195                 skb_shinfo(new_skb)->tskey = skb_shinfo(skb)->tskey;
2196                 if (skb->sk)
2197                         skb_set_owner_w(new_skb, skb->sk);
2198         }
2199
2200         /* We move the headroom when we align it so we have to reset the
2201          * network and transport header offsets relative to the new data
2202          * pointer. The checksum offload relies on these offsets.
2203          */
2204         skb_set_network_header(new_skb, skb_network_offset(skb));
2205         skb_set_transport_header(new_skb, skb_transport_offset(skb));
2206
2207         dev_kfree_skb(skb);
2208         *s = new_skb;
2209
2210         return 0;
2211 }
2212
2213 static int dpaa_a050385_wa_xdpf(struct dpaa_priv *priv,
2214                                 struct xdp_frame **init_xdpf)
2215 {
2216         struct xdp_frame *new_xdpf, *xdpf = *init_xdpf;
2217         void *new_buff, *aligned_data;
2218         struct page *p;
2219         u32 data_shift;
2220         int headroom;
2221
2222         /* Check the data alignment and make sure the headroom is large
2223          * enough to store the xdpf backpointer. Use an aligned headroom
2224          * value.
2225          *
2226          * Due to alignment constraints, we give XDP access to the full 256
2227          * byte frame headroom. If the XDP program uses all of it, copy the
2228          * data to a new buffer and make room for storing the backpointer.
2229          */
2230         if (PTR_IS_ALIGNED(xdpf->data, DPAA_FD_DATA_ALIGNMENT) &&
2231             xdpf->headroom >= priv->tx_headroom) {
2232                 xdpf->headroom = priv->tx_headroom;
2233                 return 0;
2234         }
2235
2236         /* Try to move the data inside the buffer just enough to align it and
2237          * store the xdpf backpointer. If the available headroom isn't large
2238          * enough, resort to allocating a new buffer and copying the data.
2239          */
2240         aligned_data = PTR_ALIGN_DOWN(xdpf->data, DPAA_FD_DATA_ALIGNMENT);
2241         data_shift = xdpf->data - aligned_data;
2242
2243         /* The XDP frame's headroom needs to be large enough to accommodate
2244          * shifting the data as well as storing the xdpf backpointer.
2245          */
2246         if (xdpf->headroom  >= data_shift + priv->tx_headroom) {
2247                 memmove(aligned_data, xdpf->data, xdpf->len);
2248                 xdpf->data = aligned_data;
2249                 xdpf->headroom = priv->tx_headroom;
2250                 return 0;
2251         }
2252
2253         /* The new xdp_frame is stored in the new buffer. Reserve enough space
2254          * in the headroom for storing it along with the driver's private
2255          * info. The headroom needs to be aligned to DPAA_FD_DATA_ALIGNMENT to
2256          * guarantee the data's alignment in the buffer.
2257          */
2258         headroom = ALIGN(sizeof(*new_xdpf) + priv->tx_headroom,
2259                          DPAA_FD_DATA_ALIGNMENT);
2260
2261         /* Assure the extended headroom and data don't overflow the buffer,
2262          * while maintaining the mandatory tailroom.
2263          */
2264         if (headroom + xdpf->len > DPAA_BP_RAW_SIZE -
2265                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
2266                 return -ENOMEM;
2267
2268         p = dev_alloc_pages(0);
2269         if (unlikely(!p))
2270                 return -ENOMEM;
2271
2272         /* Copy the data to the new buffer at a properly aligned offset */
2273         new_buff = page_address(p);
2274         memcpy(new_buff + headroom, xdpf->data, xdpf->len);
2275
2276         /* Create an XDP frame around the new buffer in a similar fashion
2277          * to xdp_convert_buff_to_frame.
2278          */
2279         new_xdpf = new_buff;
2280         new_xdpf->data = new_buff + headroom;
2281         new_xdpf->len = xdpf->len;
2282         new_xdpf->headroom = priv->tx_headroom;
2283         new_xdpf->frame_sz = DPAA_BP_RAW_SIZE;
2284         new_xdpf->mem_type = MEM_TYPE_PAGE_ORDER0;
2285
2286         /* Release the initial buffer */
2287         xdp_return_frame_rx_napi(xdpf);
2288
2289         *init_xdpf = new_xdpf;
2290         return 0;
2291 }
2292 #endif
2293
2294 static netdev_tx_t
2295 dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
2296 {
2297         const int queue_mapping = skb_get_queue_mapping(skb);
2298         struct rtnl_link_stats64 *percpu_stats;
2299         struct dpaa_percpu_priv *percpu_priv;
2300         struct netdev_queue *txq;
2301         struct dpaa_priv *priv;
2302         struct qm_fd fd;
2303         bool nonlinear;
2304         int offset = 0;
2305         int err = 0;
2306
2307         priv = netdev_priv(net_dev);
2308         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2309         percpu_stats = &percpu_priv->stats;
2310
2311         qm_fd_clear_fd(&fd);
2312
2313         /* Packet data is always read as 32-bit words, so zero out any part of
2314          * the skb which might be sent if we have to pad the packet
2315          */
2316         if (__skb_put_padto(skb, ETH_ZLEN, false))
2317                 goto enomem;
2318
2319         nonlinear = skb_is_nonlinear(skb);
2320         if (!nonlinear) {
2321                 /* We're going to store the skb backpointer at the beginning
2322                  * of the data buffer, so we need a privately owned skb
2323                  *
2324                  * We've made sure skb is not shared in dev->priv_flags,
2325                  * we need to verify the skb head is not cloned
2326                  */
2327                 if (skb_cow_head(skb, priv->tx_headroom))
2328                         goto enomem;
2329
2330                 WARN_ON(skb_is_nonlinear(skb));
2331         }
2332
2333         /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
2334          * make sure we don't feed FMan with more fragments than it supports.
2335          */
2336         if (unlikely(nonlinear &&
2337                      (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) {
2338                 /* If the egress skb contains more fragments than we support
2339                  * we have no choice but to linearize it ourselves.
2340                  */
2341                 if (__skb_linearize(skb))
2342                         goto enomem;
2343
2344                 nonlinear = skb_is_nonlinear(skb);
2345         }
2346
2347 #ifdef CONFIG_DPAA_ERRATUM_A050385
2348         if (unlikely(fman_has_errata_a050385())) {
2349                 if (dpaa_a050385_wa_skb(net_dev, &skb))
2350                         goto enomem;
2351                 nonlinear = skb_is_nonlinear(skb);
2352         }
2353 #endif
2354
2355         if (nonlinear) {
2356                 /* Just create a S/G fd based on the skb */
2357                 err = skb_to_sg_fd(priv, skb, &fd);
2358                 percpu_priv->tx_frag_skbuffs++;
2359         } else {
2360                 /* Create a contig FD from this skb */
2361                 err = skb_to_contig_fd(priv, skb, &fd, &offset);
2362         }
2363         if (unlikely(err < 0))
2364                 goto skb_to_fd_failed;
2365
2366         txq = netdev_get_tx_queue(net_dev, queue_mapping);
2367
2368         /* LLTX requires to do our own update of trans_start */
2369         txq_trans_cond_update(txq);
2370
2371         if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
2372                 fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD);
2373                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2374         }
2375
2376         if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
2377                 return NETDEV_TX_OK;
2378
2379         dpaa_cleanup_tx_fd(priv, &fd, false);
2380 skb_to_fd_failed:
2381 enomem:
2382         percpu_stats->tx_errors++;
2383         dev_kfree_skb(skb);
2384         return NETDEV_TX_OK;
2385 }
2386
2387 static void dpaa_rx_error(struct net_device *net_dev,
2388                           const struct dpaa_priv *priv,
2389                           struct dpaa_percpu_priv *percpu_priv,
2390                           const struct qm_fd *fd,
2391                           u32 fqid)
2392 {
2393         if (net_ratelimit())
2394                 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
2395                           be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
2396
2397         percpu_priv->stats.rx_errors++;
2398
2399         if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
2400                 percpu_priv->rx_errors.dme++;
2401         if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
2402                 percpu_priv->rx_errors.fpe++;
2403         if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
2404                 percpu_priv->rx_errors.fse++;
2405         if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
2406                 percpu_priv->rx_errors.phe++;
2407
2408         dpaa_fd_release(net_dev, fd);
2409 }
2410
2411 static void dpaa_tx_error(struct net_device *net_dev,
2412                           const struct dpaa_priv *priv,
2413                           struct dpaa_percpu_priv *percpu_priv,
2414                           const struct qm_fd *fd,
2415                           u32 fqid)
2416 {
2417         struct sk_buff *skb;
2418
2419         if (net_ratelimit())
2420                 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2421                            be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
2422
2423         percpu_priv->stats.tx_errors++;
2424
2425         skb = dpaa_cleanup_tx_fd(priv, fd, false);
2426         dev_kfree_skb(skb);
2427 }
2428
2429 static int dpaa_eth_poll(struct napi_struct *napi, int budget)
2430 {
2431         struct dpaa_napi_portal *np =
2432                         container_of(napi, struct dpaa_napi_portal, napi);
2433         int cleaned;
2434
2435         np->xdp_act = 0;
2436
2437         cleaned = qman_p_poll_dqrr(np->p, budget);
2438
2439         if (np->xdp_act & XDP_REDIRECT)
2440                 xdp_do_flush();
2441
2442         if (cleaned < budget) {
2443                 napi_complete_done(napi, cleaned);
2444                 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2445         } else if (np->down) {
2446                 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2447         }
2448
2449         return cleaned;
2450 }
2451
2452 static void dpaa_tx_conf(struct net_device *net_dev,
2453                          const struct dpaa_priv *priv,
2454                          struct dpaa_percpu_priv *percpu_priv,
2455                          const struct qm_fd *fd,
2456                          u32 fqid)
2457 {
2458         struct sk_buff  *skb;
2459
2460         if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2461                 if (net_ratelimit())
2462                         netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2463                                    be32_to_cpu(fd->status) &
2464                                    FM_FD_STAT_TX_ERRORS);
2465
2466                 percpu_priv->stats.tx_errors++;
2467         }
2468
2469         percpu_priv->tx_confirm++;
2470
2471         skb = dpaa_cleanup_tx_fd(priv, fd, true);
2472
2473         consume_skb(skb);
2474 }
2475
2476 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2477                                          struct qman_portal *portal, bool sched_napi)
2478 {
2479         if (sched_napi) {
2480                 /* Disable QMan IRQ and invoke NAPI */
2481                 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2482
2483                 percpu_priv->np.p = portal;
2484                 napi_schedule(&percpu_priv->np.napi);
2485                 percpu_priv->in_interrupt++;
2486                 return 1;
2487         }
2488         return 0;
2489 }
2490
2491 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2492                                               struct qman_fq *fq,
2493                                               const struct qm_dqrr_entry *dq,
2494                                               bool sched_napi)
2495 {
2496         struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2497         struct dpaa_percpu_priv *percpu_priv;
2498         struct net_device *net_dev;
2499         struct dpaa_bp *dpaa_bp;
2500         struct dpaa_priv *priv;
2501
2502         net_dev = dpaa_fq->net_dev;
2503         priv = netdev_priv(net_dev);
2504         dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2505         if (!dpaa_bp)
2506                 return qman_cb_dqrr_consume;
2507
2508         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2509
2510         if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2511                 return qman_cb_dqrr_stop;
2512
2513         dpaa_eth_refill_bpools(priv);
2514         dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2515
2516         return qman_cb_dqrr_consume;
2517 }
2518
2519 static int dpaa_xdp_xmit_frame(struct net_device *net_dev,
2520                                struct xdp_frame *xdpf)
2521 {
2522         struct dpaa_priv *priv = netdev_priv(net_dev);
2523         struct rtnl_link_stats64 *percpu_stats;
2524         struct dpaa_percpu_priv *percpu_priv;
2525         struct dpaa_eth_swbp *swbp;
2526         struct netdev_queue *txq;
2527         void *buff_start;
2528         struct qm_fd fd;
2529         dma_addr_t addr;
2530         int err;
2531
2532         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2533         percpu_stats = &percpu_priv->stats;
2534
2535 #ifdef CONFIG_DPAA_ERRATUM_A050385
2536         if (unlikely(fman_has_errata_a050385())) {
2537                 if (dpaa_a050385_wa_xdpf(priv, &xdpf)) {
2538                         err = -ENOMEM;
2539                         goto out_error;
2540                 }
2541         }
2542 #endif
2543
2544         if (xdpf->headroom < DPAA_TX_PRIV_DATA_SIZE) {
2545                 err = -EINVAL;
2546                 goto out_error;
2547         }
2548
2549         buff_start = xdpf->data - xdpf->headroom;
2550
2551         /* Leave empty the skb backpointer at the start of the buffer.
2552          * Save the XDP frame for easy cleanup on confirmation.
2553          */
2554         swbp = (struct dpaa_eth_swbp *)buff_start;
2555         swbp->skb = NULL;
2556         swbp->xdpf = xdpf;
2557
2558         qm_fd_clear_fd(&fd);
2559         fd.bpid = FSL_DPAA_BPID_INV;
2560         fd.cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2561         qm_fd_set_contig(&fd, xdpf->headroom, xdpf->len);
2562
2563         addr = dma_map_single(priv->tx_dma_dev, buff_start,
2564                               xdpf->headroom + xdpf->len,
2565                               DMA_TO_DEVICE);
2566         if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2567                 err = -EINVAL;
2568                 goto out_error;
2569         }
2570
2571         qm_fd_addr_set64(&fd, addr);
2572
2573         /* Bump the trans_start */
2574         txq = netdev_get_tx_queue(net_dev, smp_processor_id());
2575         txq_trans_cond_update(txq);
2576
2577         err = dpaa_xmit(priv, percpu_stats, smp_processor_id(), &fd);
2578         if (err) {
2579                 dma_unmap_single(priv->tx_dma_dev, addr,
2580                                  qm_fd_get_offset(&fd) + qm_fd_get_length(&fd),
2581                                  DMA_TO_DEVICE);
2582                 goto out_error;
2583         }
2584
2585         return 0;
2586
2587 out_error:
2588         percpu_stats->tx_errors++;
2589         return err;
2590 }
2591
2592 static u32 dpaa_run_xdp(struct dpaa_priv *priv, struct qm_fd *fd, void *vaddr,
2593                         struct dpaa_fq *dpaa_fq, unsigned int *xdp_meta_len)
2594 {
2595         ssize_t fd_off = qm_fd_get_offset(fd);
2596         struct bpf_prog *xdp_prog;
2597         struct xdp_frame *xdpf;
2598         struct xdp_buff xdp;
2599         u32 xdp_act;
2600         int err;
2601
2602         xdp_prog = READ_ONCE(priv->xdp_prog);
2603         if (!xdp_prog)
2604                 return XDP_PASS;
2605
2606         xdp_init_buff(&xdp, DPAA_BP_RAW_SIZE - DPAA_TX_PRIV_DATA_SIZE,
2607                       &dpaa_fq->xdp_rxq);
2608         xdp_prepare_buff(&xdp, vaddr + fd_off - XDP_PACKET_HEADROOM,
2609                          XDP_PACKET_HEADROOM, qm_fd_get_length(fd), true);
2610
2611         /* We reserve a fixed headroom of 256 bytes under the erratum and we
2612          * offer it all to XDP programs to use. If no room is left for the
2613          * xdpf backpointer on TX, we will need to copy the data.
2614          * Disable metadata support since data realignments might be required
2615          * and the information can be lost.
2616          */
2617 #ifdef CONFIG_DPAA_ERRATUM_A050385
2618         if (unlikely(fman_has_errata_a050385())) {
2619                 xdp_set_data_meta_invalid(&xdp);
2620                 xdp.data_hard_start = vaddr;
2621                 xdp.frame_sz = DPAA_BP_RAW_SIZE;
2622         }
2623 #endif
2624
2625         xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp);
2626
2627         /* Update the length and the offset of the FD */
2628         qm_fd_set_contig(fd, xdp.data - vaddr, xdp.data_end - xdp.data);
2629
2630         switch (xdp_act) {
2631         case XDP_PASS:
2632 #ifdef CONFIG_DPAA_ERRATUM_A050385
2633                 *xdp_meta_len = xdp_data_meta_unsupported(&xdp) ? 0 :
2634                                 xdp.data - xdp.data_meta;
2635 #else
2636                 *xdp_meta_len = xdp.data - xdp.data_meta;
2637 #endif
2638                 break;
2639         case XDP_TX:
2640                 /* We can access the full headroom when sending the frame
2641                  * back out
2642                  */
2643                 xdp.data_hard_start = vaddr;
2644                 xdp.frame_sz = DPAA_BP_RAW_SIZE;
2645                 xdpf = xdp_convert_buff_to_frame(&xdp);
2646                 if (unlikely(!xdpf)) {
2647                         free_pages((unsigned long)vaddr, 0);
2648                         break;
2649                 }
2650
2651                 if (dpaa_xdp_xmit_frame(priv->net_dev, xdpf))
2652                         xdp_return_frame_rx_napi(xdpf);
2653
2654                 break;
2655         case XDP_REDIRECT:
2656                 /* Allow redirect to use the full headroom */
2657                 xdp.data_hard_start = vaddr;
2658                 xdp.frame_sz = DPAA_BP_RAW_SIZE;
2659
2660                 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog);
2661                 if (err) {
2662                         trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act);
2663                         free_pages((unsigned long)vaddr, 0);
2664                 }
2665                 break;
2666         default:
2667                 bpf_warn_invalid_xdp_action(priv->net_dev, xdp_prog, xdp_act);
2668                 fallthrough;
2669         case XDP_ABORTED:
2670                 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act);
2671                 fallthrough;
2672         case XDP_DROP:
2673                 /* Free the buffer */
2674                 free_pages((unsigned long)vaddr, 0);
2675                 break;
2676         }
2677
2678         return xdp_act;
2679 }
2680
2681 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2682                                                 struct qman_fq *fq,
2683                                                 const struct qm_dqrr_entry *dq,
2684                                                 bool sched_napi)
2685 {
2686         bool ts_valid = false, hash_valid = false;
2687         struct skb_shared_hwtstamps *shhwtstamps;
2688         unsigned int skb_len, xdp_meta_len = 0;
2689         struct rtnl_link_stats64 *percpu_stats;
2690         struct dpaa_percpu_priv *percpu_priv;
2691         const struct qm_fd *fd = &dq->fd;
2692         dma_addr_t addr = qm_fd_addr(fd);
2693         struct dpaa_napi_portal *np;
2694         enum qm_fd_format fd_format;
2695         struct net_device *net_dev;
2696         u32 fd_status, hash_offset;
2697         struct qm_sg_entry *sgt;
2698         struct dpaa_bp *dpaa_bp;
2699         struct dpaa_fq *dpaa_fq;
2700         struct dpaa_priv *priv;
2701         struct sk_buff *skb;
2702         int *count_ptr;
2703         u32 xdp_act;
2704         void *vaddr;
2705         u32 hash;
2706         u64 ns;
2707
2708         dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2709         fd_status = be32_to_cpu(fd->status);
2710         fd_format = qm_fd_get_format(fd);
2711         net_dev = dpaa_fq->net_dev;
2712         priv = netdev_priv(net_dev);
2713         dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2714         if (!dpaa_bp)
2715                 return qman_cb_dqrr_consume;
2716
2717         /* Trace the Rx fd */
2718         trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2719
2720         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2721         percpu_stats = &percpu_priv->stats;
2722         np = &percpu_priv->np;
2723
2724         if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)))
2725                 return qman_cb_dqrr_stop;
2726
2727         /* Make sure we didn't run out of buffers */
2728         if (unlikely(dpaa_eth_refill_bpools(priv))) {
2729                 /* Unable to refill the buffer pool due to insufficient
2730                  * system memory. Just release the frame back into the pool,
2731                  * otherwise we'll soon end up with an empty buffer pool.
2732                  */
2733                 dpaa_fd_release(net_dev, &dq->fd);
2734                 return qman_cb_dqrr_consume;
2735         }
2736
2737         if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2738                 if (net_ratelimit())
2739                         netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2740                                    fd_status & FM_FD_STAT_RX_ERRORS);
2741
2742                 percpu_stats->rx_errors++;
2743                 dpaa_fd_release(net_dev, fd);
2744                 return qman_cb_dqrr_consume;
2745         }
2746
2747         dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
2748                        DMA_FROM_DEVICE);
2749
2750         /* prefetch the first 64 bytes of the frame or the SGT start */
2751         vaddr = phys_to_virt(addr);
2752         prefetch(vaddr + qm_fd_get_offset(fd));
2753
2754         /* The only FD types that we may receive are contig and S/G */
2755         WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2756
2757         /* Account for either the contig buffer or the SGT buffer (depending on
2758          * which case we were in) having been removed from the pool.
2759          */
2760         count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2761         (*count_ptr)--;
2762
2763         /* Extract the timestamp stored in the headroom before running XDP */
2764         if (priv->rx_tstamp) {
2765                 if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns))
2766                         ts_valid = true;
2767                 else
2768                         WARN_ONCE(1, "fman_port_get_tstamp failed!\n");
2769         }
2770
2771         /* Extract the hash stored in the headroom before running XDP */
2772         if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use &&
2773             !fman_port_get_hash_result_offset(priv->mac_dev->port[RX],
2774                                               &hash_offset)) {
2775                 hash = be32_to_cpu(*(__be32 *)(vaddr + hash_offset));
2776                 hash_valid = true;
2777         }
2778
2779         if (likely(fd_format == qm_fd_contig)) {
2780                 xdp_act = dpaa_run_xdp(priv, (struct qm_fd *)fd, vaddr,
2781                                        dpaa_fq, &xdp_meta_len);
2782                 np->xdp_act |= xdp_act;
2783                 if (xdp_act != XDP_PASS) {
2784                         percpu_stats->rx_packets++;
2785                         percpu_stats->rx_bytes += qm_fd_get_length(fd);
2786                         return qman_cb_dqrr_consume;
2787                 }
2788                 skb = contig_fd_to_skb(priv, fd);
2789         } else {
2790                 /* XDP doesn't support S/G frames. Return the fragments to the
2791                  * buffer pool and release the SGT.
2792                  */
2793                 if (READ_ONCE(priv->xdp_prog)) {
2794                         WARN_ONCE(1, "S/G frames not supported under XDP\n");
2795                         sgt = vaddr + qm_fd_get_offset(fd);
2796                         dpaa_release_sgt_members(sgt);
2797                         free_pages((unsigned long)vaddr, 0);
2798                         return qman_cb_dqrr_consume;
2799                 }
2800                 skb = sg_fd_to_skb(priv, fd);
2801         }
2802         if (!skb)
2803                 return qman_cb_dqrr_consume;
2804
2805         if (xdp_meta_len)
2806                 skb_metadata_set(skb, xdp_meta_len);
2807
2808         /* Set the previously extracted timestamp */
2809         if (ts_valid) {
2810                 shhwtstamps = skb_hwtstamps(skb);
2811                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2812                 shhwtstamps->hwtstamp = ns_to_ktime(ns);
2813         }
2814
2815         skb->protocol = eth_type_trans(skb, net_dev);
2816
2817         /* Set the previously extracted hash */
2818         if (hash_valid) {
2819                 enum pkt_hash_types type;
2820
2821                 /* if L4 exists, it was used in the hash generation */
2822                 type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ?
2823                         PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
2824                 skb_set_hash(skb, hash, type);
2825         }
2826
2827         skb_len = skb->len;
2828
2829         if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) {
2830                 percpu_stats->rx_dropped++;
2831                 return qman_cb_dqrr_consume;
2832         }
2833
2834         percpu_stats->rx_packets++;
2835         percpu_stats->rx_bytes += skb_len;
2836
2837         return qman_cb_dqrr_consume;
2838 }
2839
2840 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2841                                                 struct qman_fq *fq,
2842                                                 const struct qm_dqrr_entry *dq,
2843                                                 bool sched_napi)
2844 {
2845         struct dpaa_percpu_priv *percpu_priv;
2846         struct net_device *net_dev;
2847         struct dpaa_priv *priv;
2848
2849         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2850         priv = netdev_priv(net_dev);
2851
2852         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2853
2854         if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2855                 return qman_cb_dqrr_stop;
2856
2857         dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2858
2859         return qman_cb_dqrr_consume;
2860 }
2861
2862 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2863                                                struct qman_fq *fq,
2864                                                const struct qm_dqrr_entry *dq,
2865                                                bool sched_napi)
2866 {
2867         struct dpaa_percpu_priv *percpu_priv;
2868         struct net_device *net_dev;
2869         struct dpaa_priv *priv;
2870
2871         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2872         priv = netdev_priv(net_dev);
2873
2874         /* Trace the fd */
2875         trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2876
2877         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2878
2879         if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2880                 return qman_cb_dqrr_stop;
2881
2882         dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2883
2884         return qman_cb_dqrr_consume;
2885 }
2886
2887 static void egress_ern(struct qman_portal *portal,
2888                        struct qman_fq *fq,
2889                        const union qm_mr_entry *msg)
2890 {
2891         const struct qm_fd *fd = &msg->ern.fd;
2892         struct dpaa_percpu_priv *percpu_priv;
2893         const struct dpaa_priv *priv;
2894         struct net_device *net_dev;
2895         struct sk_buff *skb;
2896
2897         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2898         priv = netdev_priv(net_dev);
2899         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2900
2901         percpu_priv->stats.tx_dropped++;
2902         percpu_priv->stats.tx_fifo_errors++;
2903         count_ern(percpu_priv, msg);
2904
2905         skb = dpaa_cleanup_tx_fd(priv, fd, false);
2906         dev_kfree_skb_any(skb);
2907 }
2908
2909 static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2910         .rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2911         .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2912         .rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2913         .tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2914         .egress_ern = { .cb = { .ern = egress_ern } }
2915 };
2916
2917 static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2918 {
2919         struct dpaa_percpu_priv *percpu_priv;
2920         int i;
2921
2922         for_each_online_cpu(i) {
2923                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2924
2925                 percpu_priv->np.down = false;
2926                 napi_enable(&percpu_priv->np.napi);
2927         }
2928 }
2929
2930 static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2931 {
2932         struct dpaa_percpu_priv *percpu_priv;
2933         int i;
2934
2935         for_each_online_cpu(i) {
2936                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2937
2938                 percpu_priv->np.down = true;
2939                 napi_disable(&percpu_priv->np.napi);
2940         }
2941 }
2942
2943 static int dpaa_open(struct net_device *net_dev)
2944 {
2945         struct mac_device *mac_dev;
2946         struct dpaa_priv *priv;
2947         int err, i;
2948
2949         priv = netdev_priv(net_dev);
2950         mac_dev = priv->mac_dev;
2951         dpaa_eth_napi_enable(priv);
2952
2953         err = phylink_of_phy_connect(mac_dev->phylink,
2954                                      mac_dev->dev->of_node, 0);
2955         if (err)
2956                 goto phy_init_failed;
2957
2958         for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2959                 err = fman_port_enable(mac_dev->port[i]);
2960                 if (err)
2961                         goto mac_start_failed;
2962         }
2963
2964         err = priv->mac_dev->enable(mac_dev->fman_mac);
2965         if (err < 0) {
2966                 netif_err(priv, ifup, net_dev, "mac_dev->enable() = %d\n", err);
2967                 goto mac_start_failed;
2968         }
2969         phylink_start(mac_dev->phylink);
2970
2971         netif_tx_start_all_queues(net_dev);
2972
2973         return 0;
2974
2975 mac_start_failed:
2976         for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2977                 fman_port_disable(mac_dev->port[i]);
2978         phylink_disconnect_phy(mac_dev->phylink);
2979
2980 phy_init_failed:
2981         dpaa_eth_napi_disable(priv);
2982
2983         return err;
2984 }
2985
2986 static int dpaa_eth_stop(struct net_device *net_dev)
2987 {
2988         struct dpaa_priv *priv;
2989         int err;
2990
2991         err = dpaa_stop(net_dev);
2992
2993         priv = netdev_priv(net_dev);
2994         dpaa_eth_napi_disable(priv);
2995
2996         return err;
2997 }
2998
2999 static bool xdp_validate_mtu(struct dpaa_priv *priv, int mtu)
3000 {
3001         int max_contig_data = priv->dpaa_bp->size - priv->rx_headroom;
3002
3003         /* We do not support S/G fragments when XDP is enabled.
3004          * Limit the MTU in relation to the buffer size.
3005          */
3006         if (mtu + VLAN_ETH_HLEN + ETH_FCS_LEN > max_contig_data) {
3007                 dev_warn(priv->net_dev->dev.parent,
3008                          "The maximum MTU for XDP is %d\n",
3009                          max_contig_data - VLAN_ETH_HLEN - ETH_FCS_LEN);
3010                 return false;
3011         }
3012
3013         return true;
3014 }
3015
3016 static int dpaa_change_mtu(struct net_device *net_dev, int new_mtu)
3017 {
3018         struct dpaa_priv *priv = netdev_priv(net_dev);
3019
3020         if (priv->xdp_prog && !xdp_validate_mtu(priv, new_mtu))
3021                 return -EINVAL;
3022
3023         WRITE_ONCE(net_dev->mtu, new_mtu);
3024         return 0;
3025 }
3026
3027 static int dpaa_setup_xdp(struct net_device *net_dev, struct netdev_bpf *bpf)
3028 {
3029         struct dpaa_priv *priv = netdev_priv(net_dev);
3030         struct bpf_prog *old_prog;
3031         int err;
3032         bool up;
3033
3034         /* S/G fragments are not supported in XDP-mode */
3035         if (bpf->prog && !xdp_validate_mtu(priv, net_dev->mtu)) {
3036                 NL_SET_ERR_MSG_MOD(bpf->extack, "MTU too large for XDP");
3037                 return -EINVAL;
3038         }
3039
3040         up = netif_running(net_dev);
3041
3042         if (up)
3043                 dpaa_eth_stop(net_dev);
3044
3045         old_prog = xchg(&priv->xdp_prog, bpf->prog);
3046         if (old_prog)
3047                 bpf_prog_put(old_prog);
3048
3049         if (up) {
3050                 err = dpaa_open(net_dev);
3051                 if (err) {
3052                         NL_SET_ERR_MSG_MOD(bpf->extack, "dpaa_open() failed");
3053                         return err;
3054                 }
3055         }
3056
3057         return 0;
3058 }
3059
3060 static int dpaa_xdp(struct net_device *net_dev, struct netdev_bpf *xdp)
3061 {
3062         switch (xdp->command) {
3063         case XDP_SETUP_PROG:
3064                 return dpaa_setup_xdp(net_dev, xdp);
3065         default:
3066                 return -EINVAL;
3067         }
3068 }
3069
3070 static int dpaa_xdp_xmit(struct net_device *net_dev, int n,
3071                          struct xdp_frame **frames, u32 flags)
3072 {
3073         struct xdp_frame *xdpf;
3074         int i, nxmit = 0;
3075
3076         if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3077                 return -EINVAL;
3078
3079         if (!netif_running(net_dev))
3080                 return -ENETDOWN;
3081
3082         for (i = 0; i < n; i++) {
3083                 xdpf = frames[i];
3084                 if (dpaa_xdp_xmit_frame(net_dev, xdpf))
3085                         break;
3086                 nxmit++;
3087         }
3088
3089         return nxmit;
3090 }
3091
3092 static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3093 {
3094         struct dpaa_priv *priv = netdev_priv(dev);
3095         struct hwtstamp_config config;
3096
3097         if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
3098                 return -EFAULT;
3099
3100         switch (config.tx_type) {
3101         case HWTSTAMP_TX_OFF:
3102                 /* Couldn't disable rx/tx timestamping separately.
3103                  * Do nothing here.
3104                  */
3105                 priv->tx_tstamp = false;
3106                 break;
3107         case HWTSTAMP_TX_ON:
3108                 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
3109                 priv->tx_tstamp = true;
3110                 break;
3111         default:
3112                 return -ERANGE;
3113         }
3114
3115         if (config.rx_filter == HWTSTAMP_FILTER_NONE) {
3116                 /* Couldn't disable rx/tx timestamping separately.
3117                  * Do nothing here.
3118                  */
3119                 priv->rx_tstamp = false;
3120         } else {
3121                 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
3122                 priv->rx_tstamp = true;
3123                 /* TS is set for all frame types, not only those requested */
3124                 config.rx_filter = HWTSTAMP_FILTER_ALL;
3125         }
3126
3127         return copy_to_user(rq->ifr_data, &config, sizeof(config)) ?
3128                         -EFAULT : 0;
3129 }
3130
3131 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
3132 {
3133         int ret = -EINVAL;
3134         struct dpaa_priv *priv = netdev_priv(net_dev);
3135
3136         if (cmd == SIOCGMIIREG) {
3137                 if (net_dev->phydev)
3138                         return phylink_mii_ioctl(priv->mac_dev->phylink, rq,
3139                                                  cmd);
3140         }
3141
3142         if (cmd == SIOCSHWTSTAMP)
3143                 return dpaa_ts_ioctl(net_dev, rq, cmd);
3144
3145         return ret;
3146 }
3147
3148 static const struct net_device_ops dpaa_ops = {
3149         .ndo_open = dpaa_open,
3150         .ndo_start_xmit = dpaa_start_xmit,
3151         .ndo_stop = dpaa_eth_stop,
3152         .ndo_tx_timeout = dpaa_tx_timeout,
3153         .ndo_get_stats64 = dpaa_get_stats64,
3154         .ndo_change_carrier = fixed_phy_change_carrier,
3155         .ndo_set_mac_address = dpaa_set_mac_address,
3156         .ndo_validate_addr = eth_validate_addr,
3157         .ndo_set_rx_mode = dpaa_set_rx_mode,
3158         .ndo_eth_ioctl = dpaa_ioctl,
3159         .ndo_setup_tc = dpaa_setup_tc,
3160         .ndo_change_mtu = dpaa_change_mtu,
3161         .ndo_bpf = dpaa_xdp,
3162         .ndo_xdp_xmit = dpaa_xdp_xmit,
3163 };
3164
3165 static int dpaa_napi_add(struct net_device *net_dev)
3166 {
3167         struct dpaa_priv *priv = netdev_priv(net_dev);
3168         struct dpaa_percpu_priv *percpu_priv;
3169         int cpu;
3170
3171         for_each_possible_cpu(cpu) {
3172                 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
3173
3174                 netif_napi_add(net_dev, &percpu_priv->np.napi, dpaa_eth_poll);
3175         }
3176
3177         return 0;
3178 }
3179
3180 static void dpaa_napi_del(struct net_device *net_dev)
3181 {
3182         struct dpaa_priv *priv = netdev_priv(net_dev);
3183         struct dpaa_percpu_priv *percpu_priv;
3184         int cpu;
3185
3186         for_each_possible_cpu(cpu) {
3187                 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
3188
3189                 __netif_napi_del(&percpu_priv->np.napi);
3190         }
3191         synchronize_net();
3192 }
3193
3194 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
3195                                    struct bm_buffer *bmb)
3196 {
3197         dma_addr_t addr = bm_buf_addr(bmb);
3198
3199         dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
3200                        DMA_FROM_DEVICE);
3201
3202         skb_free_frag(phys_to_virt(addr));
3203 }
3204
3205 /* Alloc the dpaa_bp struct and configure default values */
3206 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
3207 {
3208         struct dpaa_bp *dpaa_bp;
3209
3210         dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
3211         if (!dpaa_bp)
3212                 return ERR_PTR(-ENOMEM);
3213
3214         dpaa_bp->bpid = FSL_DPAA_BPID_INV;
3215         dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
3216         if (!dpaa_bp->percpu_count)
3217                 return ERR_PTR(-ENOMEM);
3218
3219         dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
3220
3221         dpaa_bp->seed_cb = dpaa_bp_seed;
3222         dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
3223
3224         return dpaa_bp;
3225 }
3226
3227 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
3228  * We won't be sending congestion notifications to FMan; for now, we just use
3229  * this CGR to generate enqueue rejections to FMan in order to drop the frames
3230  * before they reach our ingress queues and eat up memory.
3231  */
3232 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
3233 {
3234         struct qm_mcc_initcgr initcgr;
3235         u32 cs_th;
3236         int err;
3237
3238         err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
3239         if (err < 0) {
3240                 if (netif_msg_drv(priv))
3241                         pr_err("Error %d allocating CGR ID\n", err);
3242                 goto out_error;
3243         }
3244
3245         /* Enable CS TD, but disable Congestion State Change Notifications. */
3246         memset(&initcgr, 0, sizeof(initcgr));
3247         initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
3248         initcgr.cgr.cscn_en = QM_CGR_EN;
3249         cs_th = DPAA_INGRESS_CS_THRESHOLD;
3250         qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
3251
3252         initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
3253         initcgr.cgr.cstd_en = QM_CGR_EN;
3254
3255         /* This CGR will be associated with the SWP affined to the current CPU.
3256          * However, we'll place all our ingress FQs in it.
3257          */
3258         err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
3259                               &initcgr);
3260         if (err < 0) {
3261                 if (netif_msg_drv(priv))
3262                         pr_err("Error %d creating ingress CGR with ID %d\n",
3263                                err, priv->ingress_cgr.cgrid);
3264                 qman_release_cgrid(priv->ingress_cgr.cgrid);
3265                 goto out_error;
3266         }
3267         if (netif_msg_drv(priv))
3268                 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
3269                          priv->ingress_cgr.cgrid, priv->mac_dev->addr);
3270
3271         priv->use_ingress_cgr = true;
3272
3273 out_error:
3274         return err;
3275 }
3276
3277 static u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl,
3278                              enum port_type port)
3279 {
3280         u16 headroom;
3281
3282         /* The frame headroom must accommodate:
3283          * - the driver private data area
3284          * - parse results, hash results, timestamp if selected
3285          * If either hash results or time stamp are selected, both will
3286          * be copied to/from the frame headroom, as TS is located between PR and
3287          * HR in the IC and IC copy size has a granularity of 16bytes
3288          * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
3289          *
3290          * Also make sure the headroom is a multiple of data_align bytes
3291          */
3292         headroom = (u16)(bl[port].priv_data_size + DPAA_HWA_SIZE);
3293
3294         if (port == RX) {
3295 #ifdef CONFIG_DPAA_ERRATUM_A050385
3296                 if (unlikely(fman_has_errata_a050385()))
3297                         headroom = XDP_PACKET_HEADROOM;
3298 #endif
3299
3300                 return ALIGN(headroom, DPAA_FD_RX_DATA_ALIGNMENT);
3301         } else {
3302                 return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT);
3303         }
3304 }
3305
3306 static int dpaa_eth_probe(struct platform_device *pdev)
3307 {
3308         struct net_device *net_dev = NULL;
3309         struct dpaa_bp *dpaa_bp = NULL;
3310         struct dpaa_fq *dpaa_fq, *tmp;
3311         struct dpaa_priv *priv = NULL;
3312         struct fm_port_fqs port_fqs;
3313         struct mac_device *mac_dev;
3314         int err = 0, channel;
3315         struct device *dev;
3316
3317         dev = &pdev->dev;
3318
3319         err = bman_is_probed();
3320         if (!err)
3321                 return -EPROBE_DEFER;
3322         if (err < 0) {
3323                 dev_err(dev, "failing probe due to bman probe error\n");
3324                 return -ENODEV;
3325         }
3326         err = qman_is_probed();
3327         if (!err)
3328                 return -EPROBE_DEFER;
3329         if (err < 0) {
3330                 dev_err(dev, "failing probe due to qman probe error\n");
3331                 return -ENODEV;
3332         }
3333         err = bman_portals_probed();
3334         if (!err)
3335                 return -EPROBE_DEFER;
3336         if (err < 0) {
3337                 dev_err(dev,
3338                         "failing probe due to bman portals probe error\n");
3339                 return -ENODEV;
3340         }
3341         err = qman_portals_probed();
3342         if (!err)
3343                 return -EPROBE_DEFER;
3344         if (err < 0) {
3345                 dev_err(dev,
3346                         "failing probe due to qman portals probe error\n");
3347                 return -ENODEV;
3348         }
3349
3350         /* Allocate this early, so we can store relevant information in
3351          * the private area
3352          */
3353         net_dev = alloc_etherdev_mq(sizeof(*priv), dpaa_max_num_txqs());
3354         if (!net_dev) {
3355                 dev_err(dev, "alloc_etherdev_mq() failed\n");
3356                 return -ENOMEM;
3357         }
3358
3359         /* Do this here, so we can be verbose early */
3360         SET_NETDEV_DEV(net_dev, dev->parent);
3361         dev_set_drvdata(dev, net_dev);
3362
3363         priv = netdev_priv(net_dev);
3364         priv->net_dev = net_dev;
3365
3366         priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
3367
3368         priv->egress_fqs = devm_kcalloc(dev, dpaa_max_num_txqs(),
3369                                         sizeof(*priv->egress_fqs),
3370                                         GFP_KERNEL);
3371         if (!priv->egress_fqs) {
3372                 err = -ENOMEM;
3373                 goto free_netdev;
3374         }
3375
3376         priv->conf_fqs = devm_kcalloc(dev, dpaa_max_num_txqs(),
3377                                       sizeof(*priv->conf_fqs),
3378                                       GFP_KERNEL);
3379         if (!priv->conf_fqs) {
3380                 err = -ENOMEM;
3381                 goto free_netdev;
3382         }
3383
3384         mac_dev = dpaa_mac_dev_get(pdev);
3385         if (IS_ERR(mac_dev)) {
3386                 netdev_err(net_dev, "dpaa_mac_dev_get() failed\n");
3387                 err = PTR_ERR(mac_dev);
3388                 goto free_netdev;
3389         }
3390
3391         /* Devices used for DMA mapping */
3392         priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]);
3393         priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]);
3394         err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40));
3395         if (!err)
3396                 err = dma_coerce_mask_and_coherent(priv->tx_dma_dev,
3397                                                    DMA_BIT_MASK(40));
3398         if (err) {
3399                 netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n");
3400                 goto free_netdev;
3401         }
3402
3403         /* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
3404          * we choose conservatively and let the user explicitly set a higher
3405          * MTU via ifconfig. Otherwise, the user may end up with different MTUs
3406          * in the same LAN.
3407          * If on the other hand fsl_fm_max_frm has been chosen below 1500,
3408          * start with the maximum allowed.
3409          */
3410         net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
3411
3412         netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
3413                    net_dev->mtu);
3414
3415         priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
3416         priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
3417
3418         /* bp init */
3419         dpaa_bp = dpaa_bp_alloc(dev);
3420         if (IS_ERR(dpaa_bp)) {
3421                 err = PTR_ERR(dpaa_bp);
3422                 goto free_dpaa_bps;
3423         }
3424         /* the raw size of the buffers used for reception */
3425         dpaa_bp->raw_size = DPAA_BP_RAW_SIZE;
3426         /* avoid runtime computations by keeping the usable size here */
3427         dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size);
3428         dpaa_bp->priv = priv;
3429
3430         err = dpaa_bp_alloc_pool(dpaa_bp);
3431         if (err < 0)
3432                 goto free_dpaa_bps;
3433         priv->dpaa_bp = dpaa_bp;
3434
3435         INIT_LIST_HEAD(&priv->dpaa_fq_list);
3436
3437         memset(&port_fqs, 0, sizeof(port_fqs));
3438
3439         err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
3440         if (err < 0) {
3441                 dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
3442                 goto free_dpaa_bps;
3443         }
3444
3445         priv->mac_dev = mac_dev;
3446
3447         channel = dpaa_get_channel();
3448         if (channel < 0) {
3449                 dev_err(dev, "dpaa_get_channel() failed\n");
3450                 err = channel;
3451                 goto free_dpaa_bps;
3452         }
3453
3454         priv->channel = (u16)channel;
3455
3456         /* Walk the CPUs with affine portals
3457          * and add this pool channel to each's dequeue mask.
3458          */
3459         dpaa_eth_add_channel(priv->channel, &pdev->dev);
3460
3461         err = dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
3462         if (err)
3463                 goto free_dpaa_bps;
3464
3465         /* Create a congestion group for this netdev, with
3466          * dynamically-allocated CGR ID.
3467          * Must be executed after probing the MAC, but before
3468          * assigning the egress FQs to the CGRs.
3469          */
3470         err = dpaa_eth_cgr_init(priv);
3471         if (err < 0) {
3472                 dev_err(dev, "Error initializing CGR\n");
3473                 goto free_dpaa_bps;
3474         }
3475
3476         err = dpaa_ingress_cgr_init(priv);
3477         if (err < 0) {
3478                 dev_err(dev, "Error initializing ingress CGR\n");
3479                 goto delete_egress_cgr;
3480         }
3481
3482         /* Add the FQs to the interface, and make them active */
3483         list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
3484                 err = dpaa_fq_init(dpaa_fq, false);
3485                 if (err < 0)
3486                         goto free_dpaa_fqs;
3487         }
3488
3489         priv->tx_headroom = dpaa_get_headroom(priv->buf_layout, TX);
3490         priv->rx_headroom = dpaa_get_headroom(priv->buf_layout, RX);
3491
3492         /* All real interfaces need their ports initialized */
3493         err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs,
3494                                   &priv->buf_layout[0], dev);
3495         if (err)
3496                 goto free_dpaa_fqs;
3497
3498         /* Rx traffic distribution based on keygen hashing defaults to on */
3499         priv->keygen_in_use = true;
3500
3501         priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
3502         if (!priv->percpu_priv) {
3503                 dev_err(dev, "devm_alloc_percpu() failed\n");
3504                 err = -ENOMEM;
3505                 goto free_dpaa_fqs;
3506         }
3507
3508         priv->num_tc = 1;
3509         netif_set_real_num_tx_queues(net_dev,
3510                                      priv->num_tc * dpaa_num_txqs_per_tc());
3511
3512         /* Initialize NAPI */
3513         err = dpaa_napi_add(net_dev);
3514         if (err < 0)
3515                 goto delete_dpaa_napi;
3516
3517         err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
3518         if (err < 0)
3519                 goto delete_dpaa_napi;
3520
3521         dpaa_eth_sysfs_init(&net_dev->dev);
3522
3523         netif_info(priv, probe, net_dev, "Probed interface %s\n",
3524                    net_dev->name);
3525
3526         return 0;
3527
3528 delete_dpaa_napi:
3529         dpaa_napi_del(net_dev);
3530 free_dpaa_fqs:
3531         dpaa_fq_free(dev, &priv->dpaa_fq_list);
3532         qman_delete_cgr_safe(&priv->ingress_cgr);
3533         qman_release_cgrid(priv->ingress_cgr.cgrid);
3534 delete_egress_cgr:
3535         qman_delete_cgr_safe(&priv->cgr_data.cgr);
3536         qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3537 free_dpaa_bps:
3538         dpaa_bps_free(priv);
3539 free_netdev:
3540         dev_set_drvdata(dev, NULL);
3541         free_netdev(net_dev);
3542
3543         return err;
3544 }
3545
3546 static void dpaa_remove(struct platform_device *pdev)
3547 {
3548         struct net_device *net_dev;
3549         struct dpaa_priv *priv;
3550         struct device *dev;
3551         int err;
3552
3553         dev = &pdev->dev;
3554         net_dev = dev_get_drvdata(dev);
3555
3556         priv = netdev_priv(net_dev);
3557
3558         dpaa_eth_sysfs_remove(dev);
3559
3560         dev_set_drvdata(dev, NULL);
3561         unregister_netdev(net_dev);
3562         phylink_destroy(priv->mac_dev->phylink);
3563
3564         err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
3565         if (err)
3566                 dev_err(dev, "Failed to free FQs on remove (%pE)\n",
3567                         ERR_PTR(err));
3568
3569         qman_delete_cgr_safe(&priv->ingress_cgr);
3570         qman_release_cgrid(priv->ingress_cgr.cgrid);
3571         qman_delete_cgr_safe(&priv->cgr_data.cgr);
3572         qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3573
3574         dpaa_napi_del(net_dev);
3575
3576         dpaa_bps_free(priv);
3577
3578         free_netdev(net_dev);
3579 }
3580
3581 static const struct platform_device_id dpaa_devtype[] = {
3582         {
3583                 .name = "dpaa-ethernet",
3584                 .driver_data = 0,
3585         }, {
3586         }
3587 };
3588 MODULE_DEVICE_TABLE(platform, dpaa_devtype);
3589
3590 static struct platform_driver dpaa_driver = {
3591         .driver = {
3592                 .name = KBUILD_MODNAME,
3593         },
3594         .id_table = dpaa_devtype,
3595         .probe = dpaa_eth_probe,
3596         .remove = dpaa_remove
3597 };
3598
3599 static int __init dpaa_load(void)
3600 {
3601         int err;
3602
3603         pr_debug("FSL DPAA Ethernet driver\n");
3604
3605         /* initialize dpaa_eth mirror values */
3606         dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
3607         dpaa_max_frm = fman_get_max_frm();
3608
3609         err = platform_driver_register(&dpaa_driver);
3610         if (err < 0)
3611                 pr_err("Error, platform_driver_register() = %d\n", err);
3612
3613         return err;
3614 }
3615 module_init(dpaa_load);
3616
3617 static void __exit dpaa_unload(void)
3618 {
3619         platform_driver_unregister(&dpaa_driver);
3620
3621         /* Only one channel is used and needs to be released after all
3622          * interfaces are removed
3623          */
3624         dpaa_release_channel();
3625 }
3626 module_exit(dpaa_unload);
3627
3628 MODULE_LICENSE("Dual BSD/GPL");
3629 MODULE_DESCRIPTION("FSL DPAA Ethernet driver");
This page took 0.252534 seconds and 4 git commands to generate.